1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ExecutionEngine/ExecutionEngine.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ExecutionEngine/GenericValue.h" 19 #include "llvm/ExecutionEngine/JITEventListener.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/IR/ValueHandle.h" 26 #include "llvm/Object/Archive.h" 27 #include "llvm/Object/ObjectFile.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/DynamicLibrary.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/Host.h" 32 #include "llvm/Support/MutexGuard.h" 33 #include "llvm/Support/TargetRegistry.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include <cmath> 37 #include <cstring> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "jit" 41 42 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 43 STATISTIC(NumGlobals , "Number of global vars initialized"); 44 45 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 46 std::unique_ptr<Module> M, std::string *ErrorStr, 47 std::unique_ptr<RTDyldMemoryManager> MCJMM, 48 std::unique_ptr<TargetMachine> TM) = nullptr; 49 50 ExecutionEngine *(*ExecutionEngine::OrcMCJITReplacementCtor)( 51 std::string *ErrorStr, std::unique_ptr<RTDyldMemoryManager> OrcJMM, 52 std::unique_ptr<TargetMachine> TM) = nullptr; 53 54 ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M, 55 std::string *ErrorStr) =nullptr; 56 57 void JITEventListener::anchor() {} 58 59 ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M) 60 : EEState(*this), 61 LazyFunctionCreator(nullptr) { 62 CompilingLazily = false; 63 GVCompilationDisabled = false; 64 SymbolSearchingDisabled = false; 65 66 // IR module verification is enabled by default in debug builds, and disabled 67 // by default in release builds. 68 #ifndef NDEBUG 69 VerifyModules = true; 70 #else 71 VerifyModules = false; 72 #endif 73 74 assert(M && "Module is null?"); 75 Modules.push_back(std::move(M)); 76 } 77 78 ExecutionEngine::~ExecutionEngine() { 79 clearAllGlobalMappings(); 80 } 81 82 namespace { 83 /// \brief Helper class which uses a value handler to automatically deletes the 84 /// memory block when the GlobalVariable is destroyed. 85 class GVMemoryBlock : public CallbackVH { 86 GVMemoryBlock(const GlobalVariable *GV) 87 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 88 89 public: 90 /// \brief Returns the address the GlobalVariable should be written into. The 91 /// GVMemoryBlock object prefixes that. 92 static char *Create(const GlobalVariable *GV, const DataLayout& TD) { 93 Type *ElTy = GV->getType()->getElementType(); 94 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 95 void *RawMemory = ::operator new( 96 RoundUpToAlignment(sizeof(GVMemoryBlock), 97 TD.getPreferredAlignment(GV)) 98 + GVSize); 99 new(RawMemory) GVMemoryBlock(GV); 100 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 101 } 102 103 void deleted() override { 104 // We allocated with operator new and with some extra memory hanging off the 105 // end, so don't just delete this. I'm not sure if this is actually 106 // required. 107 this->~GVMemoryBlock(); 108 ::operator delete(this); 109 } 110 }; 111 } // anonymous namespace 112 113 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 114 return GVMemoryBlock::Create(GV, *getDataLayout()); 115 } 116 117 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { 118 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 119 } 120 121 void 122 ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) { 123 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 124 } 125 126 void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) { 127 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive."); 128 } 129 130 bool ExecutionEngine::removeModule(Module *M) { 131 for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) { 132 Module *Found = I->get(); 133 if (Found == M) { 134 I->release(); 135 Modules.erase(I); 136 clearGlobalMappingsFromModule(M); 137 return true; 138 } 139 } 140 return false; 141 } 142 143 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 144 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 145 if (Function *F = Modules[i]->getFunction(FnName)) 146 return F; 147 } 148 return nullptr; 149 } 150 151 152 void *ExecutionEngineState::RemoveMapping(const GlobalValue *ToUnmap) { 153 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 154 void *OldVal; 155 156 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 157 // GlobalAddressMap. 158 if (I == GlobalAddressMap.end()) 159 OldVal = nullptr; 160 else { 161 OldVal = I->second; 162 GlobalAddressMap.erase(I); 163 } 164 165 GlobalAddressReverseMap.erase(OldVal); 166 return OldVal; 167 } 168 169 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 170 MutexGuard locked(lock); 171 172 DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 173 << "\' to [" << Addr << "]\n";); 174 void *&CurVal = EEState.getGlobalAddressMap()[GV]; 175 assert((!CurVal || !Addr) && "GlobalMapping already established!"); 176 CurVal = Addr; 177 178 // If we are using the reverse mapping, add it too. 179 if (!EEState.getGlobalAddressReverseMap().empty()) { 180 AssertingVH<const GlobalValue> &V = 181 EEState.getGlobalAddressReverseMap()[Addr]; 182 assert((!V || !GV) && "GlobalMapping already established!"); 183 V = GV; 184 } 185 } 186 187 void ExecutionEngine::clearAllGlobalMappings() { 188 MutexGuard locked(lock); 189 190 EEState.getGlobalAddressMap().clear(); 191 EEState.getGlobalAddressReverseMap().clear(); 192 } 193 194 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 195 MutexGuard locked(lock); 196 197 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) 198 EEState.RemoveMapping(FI); 199 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 200 GI != GE; ++GI) 201 EEState.RemoveMapping(GI); 202 } 203 204 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 205 MutexGuard locked(lock); 206 207 ExecutionEngineState::GlobalAddressMapTy &Map = 208 EEState.getGlobalAddressMap(); 209 210 // Deleting from the mapping? 211 if (!Addr) 212 return EEState.RemoveMapping(GV); 213 214 void *&CurVal = Map[GV]; 215 void *OldVal = CurVal; 216 217 if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) 218 EEState.getGlobalAddressReverseMap().erase(CurVal); 219 CurVal = Addr; 220 221 // If we are using the reverse mapping, add it too. 222 if (!EEState.getGlobalAddressReverseMap().empty()) { 223 AssertingVH<const GlobalValue> &V = 224 EEState.getGlobalAddressReverseMap()[Addr]; 225 assert((!V || !GV) && "GlobalMapping already established!"); 226 V = GV; 227 } 228 return OldVal; 229 } 230 231 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 232 MutexGuard locked(lock); 233 234 ExecutionEngineState::GlobalAddressMapTy::iterator I = 235 EEState.getGlobalAddressMap().find(GV); 236 return I != EEState.getGlobalAddressMap().end() ? I->second : nullptr; 237 } 238 239 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 240 MutexGuard locked(lock); 241 242 // If we haven't computed the reverse mapping yet, do so first. 243 if (EEState.getGlobalAddressReverseMap().empty()) { 244 for (ExecutionEngineState::GlobalAddressMapTy::iterator 245 I = EEState.getGlobalAddressMap().begin(), 246 E = EEState.getGlobalAddressMap().end(); I != E; ++I) 247 EEState.getGlobalAddressReverseMap().insert(std::make_pair( 248 I->second, I->first)); 249 } 250 251 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 252 EEState.getGlobalAddressReverseMap().find(Addr); 253 return I != EEState.getGlobalAddressReverseMap().end() ? I->second : nullptr; 254 } 255 256 namespace { 257 class ArgvArray { 258 std::unique_ptr<char[]> Array; 259 std::vector<std::unique_ptr<char[]>> Values; 260 public: 261 /// Turn a vector of strings into a nice argv style array of pointers to null 262 /// terminated strings. 263 void *reset(LLVMContext &C, ExecutionEngine *EE, 264 const std::vector<std::string> &InputArgv); 265 }; 266 } // anonymous namespace 267 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 268 const std::vector<std::string> &InputArgv) { 269 Values.clear(); // Free the old contents. 270 Values.reserve(InputArgv.size()); 271 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 272 Array = make_unique<char[]>((InputArgv.size()+1)*PtrSize); 273 274 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array.get() << "\n"); 275 Type *SBytePtr = Type::getInt8PtrTy(C); 276 277 for (unsigned i = 0; i != InputArgv.size(); ++i) { 278 unsigned Size = InputArgv[i].size()+1; 279 auto Dest = make_unique<char[]>(Size); 280 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest.get() << "\n"); 281 282 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get()); 283 Dest[Size-1] = 0; 284 285 // Endian safe: Array[i] = (PointerTy)Dest; 286 EE->StoreValueToMemory(PTOGV(Dest.get()), 287 (GenericValue*)(&Array[i*PtrSize]), SBytePtr); 288 Values.push_back(std::move(Dest)); 289 } 290 291 // Null terminate it 292 EE->StoreValueToMemory(PTOGV(nullptr), 293 (GenericValue*)(&Array[InputArgv.size()*PtrSize]), 294 SBytePtr); 295 return Array.get(); 296 } 297 298 void ExecutionEngine::runStaticConstructorsDestructors(Module &module, 299 bool isDtors) { 300 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 301 GlobalVariable *GV = module.getNamedGlobal(Name); 302 303 // If this global has internal linkage, or if it has a use, then it must be 304 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 305 // this is the case, don't execute any of the global ctors, __main will do 306 // it. 307 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 308 309 // Should be an array of '{ i32, void ()* }' structs. The first value is 310 // the init priority, which we ignore. 311 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 312 if (!InitList) 313 return; 314 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 315 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 316 if (!CS) continue; 317 318 Constant *FP = CS->getOperand(1); 319 if (FP->isNullValue()) 320 continue; // Found a sentinal value, ignore. 321 322 // Strip off constant expression casts. 323 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 324 if (CE->isCast()) 325 FP = CE->getOperand(0); 326 327 // Execute the ctor/dtor function! 328 if (Function *F = dyn_cast<Function>(FP)) 329 runFunction(F, std::vector<GenericValue>()); 330 331 // FIXME: It is marginally lame that we just do nothing here if we see an 332 // entry we don't recognize. It might not be unreasonable for the verifier 333 // to not even allow this and just assert here. 334 } 335 } 336 337 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 338 // Execute global ctors/dtors for each module in the program. 339 for (std::unique_ptr<Module> &M : Modules) 340 runStaticConstructorsDestructors(*M, isDtors); 341 } 342 343 #ifndef NDEBUG 344 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 345 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 346 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 347 for (unsigned i = 0; i < PtrSize; ++i) 348 if (*(i + (uint8_t*)Loc)) 349 return false; 350 return true; 351 } 352 #endif 353 354 int ExecutionEngine::runFunctionAsMain(Function *Fn, 355 const std::vector<std::string> &argv, 356 const char * const * envp) { 357 std::vector<GenericValue> GVArgs; 358 GenericValue GVArgc; 359 GVArgc.IntVal = APInt(32, argv.size()); 360 361 // Check main() type 362 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 363 FunctionType *FTy = Fn->getFunctionType(); 364 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 365 366 // Check the argument types. 367 if (NumArgs > 3) 368 report_fatal_error("Invalid number of arguments of main() supplied"); 369 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 370 report_fatal_error("Invalid type for third argument of main() supplied"); 371 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 372 report_fatal_error("Invalid type for second argument of main() supplied"); 373 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 374 report_fatal_error("Invalid type for first argument of main() supplied"); 375 if (!FTy->getReturnType()->isIntegerTy() && 376 !FTy->getReturnType()->isVoidTy()) 377 report_fatal_error("Invalid return type of main() supplied"); 378 379 ArgvArray CArgv; 380 ArgvArray CEnv; 381 if (NumArgs) { 382 GVArgs.push_back(GVArgc); // Arg #0 = argc. 383 if (NumArgs > 1) { 384 // Arg #1 = argv. 385 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 386 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 387 "argv[0] was null after CreateArgv"); 388 if (NumArgs > 2) { 389 std::vector<std::string> EnvVars; 390 for (unsigned i = 0; envp[i]; ++i) 391 EnvVars.push_back(envp[i]); 392 // Arg #2 = envp. 393 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 394 } 395 } 396 } 397 398 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 399 } 400 401 EngineBuilder::EngineBuilder() { 402 InitEngine(); 403 } 404 405 EngineBuilder::EngineBuilder(std::unique_ptr<Module> M) 406 : M(std::move(M)), MCJMM(nullptr) { 407 InitEngine(); 408 } 409 410 EngineBuilder::~EngineBuilder() {} 411 412 EngineBuilder &EngineBuilder::setMCJITMemoryManager( 413 std::unique_ptr<RTDyldMemoryManager> mcjmm) { 414 MCJMM = std::move(mcjmm); 415 return *this; 416 } 417 418 void EngineBuilder::InitEngine() { 419 WhichEngine = EngineKind::Either; 420 ErrorStr = nullptr; 421 OptLevel = CodeGenOpt::Default; 422 MCJMM = nullptr; 423 Options = TargetOptions(); 424 RelocModel = Reloc::Default; 425 CMModel = CodeModel::JITDefault; 426 UseOrcMCJITReplacement = false; 427 428 // IR module verification is enabled by default in debug builds, and disabled 429 // by default in release builds. 430 #ifndef NDEBUG 431 VerifyModules = true; 432 #else 433 VerifyModules = false; 434 #endif 435 } 436 437 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 438 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. 439 440 // Make sure we can resolve symbols in the program as well. The zero arg 441 // to the function tells DynamicLibrary to load the program, not a library. 442 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) 443 return nullptr; 444 445 // If the user specified a memory manager but didn't specify which engine to 446 // create, we assume they only want the JIT, and we fail if they only want 447 // the interpreter. 448 if (MCJMM) { 449 if (WhichEngine & EngineKind::JIT) 450 WhichEngine = EngineKind::JIT; 451 else { 452 if (ErrorStr) 453 *ErrorStr = "Cannot create an interpreter with a memory manager."; 454 return nullptr; 455 } 456 } 457 458 // Unless the interpreter was explicitly selected or the JIT is not linked, 459 // try making a JIT. 460 if ((WhichEngine & EngineKind::JIT) && TheTM) { 461 Triple TT(M->getTargetTriple()); 462 if (!TM->getTarget().hasJIT()) { 463 errs() << "WARNING: This target JIT is not designed for the host" 464 << " you are running. If bad things happen, please choose" 465 << " a different -march switch.\n"; 466 } 467 468 ExecutionEngine *EE = nullptr; 469 if (ExecutionEngine::OrcMCJITReplacementCtor && UseOrcMCJITReplacement) { 470 EE = ExecutionEngine::OrcMCJITReplacementCtor(ErrorStr, std::move(MCJMM), 471 std::move(TheTM)); 472 EE->addModule(std::move(M)); 473 } else if (ExecutionEngine::MCJITCtor) 474 EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MCJMM), 475 std::move(TheTM)); 476 477 if (EE) { 478 EE->setVerifyModules(VerifyModules); 479 return EE; 480 } 481 } 482 483 // If we can't make a JIT and we didn't request one specifically, try making 484 // an interpreter instead. 485 if (WhichEngine & EngineKind::Interpreter) { 486 if (ExecutionEngine::InterpCtor) 487 return ExecutionEngine::InterpCtor(std::move(M), ErrorStr); 488 if (ErrorStr) 489 *ErrorStr = "Interpreter has not been linked in."; 490 return nullptr; 491 } 492 493 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) { 494 if (ErrorStr) 495 *ErrorStr = "JIT has not been linked in."; 496 } 497 498 return nullptr; 499 } 500 501 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 502 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 503 return getPointerToFunction(F); 504 505 MutexGuard locked(lock); 506 if (void *P = EEState.getGlobalAddressMap()[GV]) 507 return P; 508 509 // Global variable might have been added since interpreter started. 510 if (GlobalVariable *GVar = 511 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 512 EmitGlobalVariable(GVar); 513 else 514 llvm_unreachable("Global hasn't had an address allocated yet!"); 515 516 return EEState.getGlobalAddressMap()[GV]; 517 } 518 519 /// \brief Converts a Constant* into a GenericValue, including handling of 520 /// ConstantExpr values. 521 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 522 // If its undefined, return the garbage. 523 if (isa<UndefValue>(C)) { 524 GenericValue Result; 525 switch (C->getType()->getTypeID()) { 526 default: 527 break; 528 case Type::IntegerTyID: 529 case Type::X86_FP80TyID: 530 case Type::FP128TyID: 531 case Type::PPC_FP128TyID: 532 // Although the value is undefined, we still have to construct an APInt 533 // with the correct bit width. 534 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 535 break; 536 case Type::StructTyID: { 537 // if the whole struct is 'undef' just reserve memory for the value. 538 if(StructType *STy = dyn_cast<StructType>(C->getType())) { 539 unsigned int elemNum = STy->getNumElements(); 540 Result.AggregateVal.resize(elemNum); 541 for (unsigned int i = 0; i < elemNum; ++i) { 542 Type *ElemTy = STy->getElementType(i); 543 if (ElemTy->isIntegerTy()) 544 Result.AggregateVal[i].IntVal = 545 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 546 else if (ElemTy->isAggregateType()) { 547 const Constant *ElemUndef = UndefValue::get(ElemTy); 548 Result.AggregateVal[i] = getConstantValue(ElemUndef); 549 } 550 } 551 } 552 } 553 break; 554 case Type::VectorTyID: 555 // if the whole vector is 'undef' just reserve memory for the value. 556 const VectorType* VTy = dyn_cast<VectorType>(C->getType()); 557 const Type *ElemTy = VTy->getElementType(); 558 unsigned int elemNum = VTy->getNumElements(); 559 Result.AggregateVal.resize(elemNum); 560 if (ElemTy->isIntegerTy()) 561 for (unsigned int i = 0; i < elemNum; ++i) 562 Result.AggregateVal[i].IntVal = 563 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 564 break; 565 } 566 return Result; 567 } 568 569 // Otherwise, if the value is a ConstantExpr... 570 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 571 Constant *Op0 = CE->getOperand(0); 572 switch (CE->getOpcode()) { 573 case Instruction::GetElementPtr: { 574 // Compute the index 575 GenericValue Result = getConstantValue(Op0); 576 APInt Offset(DL->getPointerSizeInBits(), 0); 577 cast<GEPOperator>(CE)->accumulateConstantOffset(*DL, Offset); 578 579 char* tmp = (char*) Result.PointerVal; 580 Result = PTOGV(tmp + Offset.getSExtValue()); 581 return Result; 582 } 583 case Instruction::Trunc: { 584 GenericValue GV = getConstantValue(Op0); 585 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 586 GV.IntVal = GV.IntVal.trunc(BitWidth); 587 return GV; 588 } 589 case Instruction::ZExt: { 590 GenericValue GV = getConstantValue(Op0); 591 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 592 GV.IntVal = GV.IntVal.zext(BitWidth); 593 return GV; 594 } 595 case Instruction::SExt: { 596 GenericValue GV = getConstantValue(Op0); 597 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 598 GV.IntVal = GV.IntVal.sext(BitWidth); 599 return GV; 600 } 601 case Instruction::FPTrunc: { 602 // FIXME long double 603 GenericValue GV = getConstantValue(Op0); 604 GV.FloatVal = float(GV.DoubleVal); 605 return GV; 606 } 607 case Instruction::FPExt:{ 608 // FIXME long double 609 GenericValue GV = getConstantValue(Op0); 610 GV.DoubleVal = double(GV.FloatVal); 611 return GV; 612 } 613 case Instruction::UIToFP: { 614 GenericValue GV = getConstantValue(Op0); 615 if (CE->getType()->isFloatTy()) 616 GV.FloatVal = float(GV.IntVal.roundToDouble()); 617 else if (CE->getType()->isDoubleTy()) 618 GV.DoubleVal = GV.IntVal.roundToDouble(); 619 else if (CE->getType()->isX86_FP80Ty()) { 620 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 621 (void)apf.convertFromAPInt(GV.IntVal, 622 false, 623 APFloat::rmNearestTiesToEven); 624 GV.IntVal = apf.bitcastToAPInt(); 625 } 626 return GV; 627 } 628 case Instruction::SIToFP: { 629 GenericValue GV = getConstantValue(Op0); 630 if (CE->getType()->isFloatTy()) 631 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 632 else if (CE->getType()->isDoubleTy()) 633 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 634 else if (CE->getType()->isX86_FP80Ty()) { 635 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 636 (void)apf.convertFromAPInt(GV.IntVal, 637 true, 638 APFloat::rmNearestTiesToEven); 639 GV.IntVal = apf.bitcastToAPInt(); 640 } 641 return GV; 642 } 643 case Instruction::FPToUI: // double->APInt conversion handles sign 644 case Instruction::FPToSI: { 645 GenericValue GV = getConstantValue(Op0); 646 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 647 if (Op0->getType()->isFloatTy()) 648 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 649 else if (Op0->getType()->isDoubleTy()) 650 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 651 else if (Op0->getType()->isX86_FP80Ty()) { 652 APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal); 653 uint64_t v; 654 bool ignored; 655 (void)apf.convertToInteger(&v, BitWidth, 656 CE->getOpcode()==Instruction::FPToSI, 657 APFloat::rmTowardZero, &ignored); 658 GV.IntVal = v; // endian? 659 } 660 return GV; 661 } 662 case Instruction::PtrToInt: { 663 GenericValue GV = getConstantValue(Op0); 664 uint32_t PtrWidth = DL->getTypeSizeInBits(Op0->getType()); 665 assert(PtrWidth <= 64 && "Bad pointer width"); 666 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 667 uint32_t IntWidth = DL->getTypeSizeInBits(CE->getType()); 668 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); 669 return GV; 670 } 671 case Instruction::IntToPtr: { 672 GenericValue GV = getConstantValue(Op0); 673 uint32_t PtrWidth = DL->getTypeSizeInBits(CE->getType()); 674 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 675 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 676 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 677 return GV; 678 } 679 case Instruction::BitCast: { 680 GenericValue GV = getConstantValue(Op0); 681 Type* DestTy = CE->getType(); 682 switch (Op0->getType()->getTypeID()) { 683 default: llvm_unreachable("Invalid bitcast operand"); 684 case Type::IntegerTyID: 685 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 686 if (DestTy->isFloatTy()) 687 GV.FloatVal = GV.IntVal.bitsToFloat(); 688 else if (DestTy->isDoubleTy()) 689 GV.DoubleVal = GV.IntVal.bitsToDouble(); 690 break; 691 case Type::FloatTyID: 692 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 693 GV.IntVal = APInt::floatToBits(GV.FloatVal); 694 break; 695 case Type::DoubleTyID: 696 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 697 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 698 break; 699 case Type::PointerTyID: 700 assert(DestTy->isPointerTy() && "Invalid bitcast"); 701 break; // getConstantValue(Op0) above already converted it 702 } 703 return GV; 704 } 705 case Instruction::Add: 706 case Instruction::FAdd: 707 case Instruction::Sub: 708 case Instruction::FSub: 709 case Instruction::Mul: 710 case Instruction::FMul: 711 case Instruction::UDiv: 712 case Instruction::SDiv: 713 case Instruction::URem: 714 case Instruction::SRem: 715 case Instruction::And: 716 case Instruction::Or: 717 case Instruction::Xor: { 718 GenericValue LHS = getConstantValue(Op0); 719 GenericValue RHS = getConstantValue(CE->getOperand(1)); 720 GenericValue GV; 721 switch (CE->getOperand(0)->getType()->getTypeID()) { 722 default: llvm_unreachable("Bad add type!"); 723 case Type::IntegerTyID: 724 switch (CE->getOpcode()) { 725 default: llvm_unreachable("Invalid integer opcode"); 726 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 727 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 728 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 729 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 730 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 731 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 732 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 733 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 734 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 735 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 736 } 737 break; 738 case Type::FloatTyID: 739 switch (CE->getOpcode()) { 740 default: llvm_unreachable("Invalid float opcode"); 741 case Instruction::FAdd: 742 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 743 case Instruction::FSub: 744 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 745 case Instruction::FMul: 746 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 747 case Instruction::FDiv: 748 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 749 case Instruction::FRem: 750 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 751 } 752 break; 753 case Type::DoubleTyID: 754 switch (CE->getOpcode()) { 755 default: llvm_unreachable("Invalid double opcode"); 756 case Instruction::FAdd: 757 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 758 case Instruction::FSub: 759 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 760 case Instruction::FMul: 761 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 762 case Instruction::FDiv: 763 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 764 case Instruction::FRem: 765 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 766 } 767 break; 768 case Type::X86_FP80TyID: 769 case Type::PPC_FP128TyID: 770 case Type::FP128TyID: { 771 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); 772 APFloat apfLHS = APFloat(Sem, LHS.IntVal); 773 switch (CE->getOpcode()) { 774 default: llvm_unreachable("Invalid long double opcode"); 775 case Instruction::FAdd: 776 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); 777 GV.IntVal = apfLHS.bitcastToAPInt(); 778 break; 779 case Instruction::FSub: 780 apfLHS.subtract(APFloat(Sem, RHS.IntVal), 781 APFloat::rmNearestTiesToEven); 782 GV.IntVal = apfLHS.bitcastToAPInt(); 783 break; 784 case Instruction::FMul: 785 apfLHS.multiply(APFloat(Sem, RHS.IntVal), 786 APFloat::rmNearestTiesToEven); 787 GV.IntVal = apfLHS.bitcastToAPInt(); 788 break; 789 case Instruction::FDiv: 790 apfLHS.divide(APFloat(Sem, RHS.IntVal), 791 APFloat::rmNearestTiesToEven); 792 GV.IntVal = apfLHS.bitcastToAPInt(); 793 break; 794 case Instruction::FRem: 795 apfLHS.mod(APFloat(Sem, RHS.IntVal), 796 APFloat::rmNearestTiesToEven); 797 GV.IntVal = apfLHS.bitcastToAPInt(); 798 break; 799 } 800 } 801 break; 802 } 803 return GV; 804 } 805 default: 806 break; 807 } 808 809 SmallString<256> Msg; 810 raw_svector_ostream OS(Msg); 811 OS << "ConstantExpr not handled: " << *CE; 812 report_fatal_error(OS.str()); 813 } 814 815 // Otherwise, we have a simple constant. 816 GenericValue Result; 817 switch (C->getType()->getTypeID()) { 818 case Type::FloatTyID: 819 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 820 break; 821 case Type::DoubleTyID: 822 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 823 break; 824 case Type::X86_FP80TyID: 825 case Type::FP128TyID: 826 case Type::PPC_FP128TyID: 827 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 828 break; 829 case Type::IntegerTyID: 830 Result.IntVal = cast<ConstantInt>(C)->getValue(); 831 break; 832 case Type::PointerTyID: 833 if (isa<ConstantPointerNull>(C)) 834 Result.PointerVal = nullptr; 835 else if (const Function *F = dyn_cast<Function>(C)) 836 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 837 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 838 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 839 else 840 llvm_unreachable("Unknown constant pointer type!"); 841 break; 842 case Type::VectorTyID: { 843 unsigned elemNum; 844 Type* ElemTy; 845 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); 846 const ConstantVector *CV = dyn_cast<ConstantVector>(C); 847 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); 848 849 if (CDV) { 850 elemNum = CDV->getNumElements(); 851 ElemTy = CDV->getElementType(); 852 } else if (CV || CAZ) { 853 VectorType* VTy = dyn_cast<VectorType>(C->getType()); 854 elemNum = VTy->getNumElements(); 855 ElemTy = VTy->getElementType(); 856 } else { 857 llvm_unreachable("Unknown constant vector type!"); 858 } 859 860 Result.AggregateVal.resize(elemNum); 861 // Check if vector holds floats. 862 if(ElemTy->isFloatTy()) { 863 if (CAZ) { 864 GenericValue floatZero; 865 floatZero.FloatVal = 0.f; 866 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 867 floatZero); 868 break; 869 } 870 if(CV) { 871 for (unsigned i = 0; i < elemNum; ++i) 872 if (!isa<UndefValue>(CV->getOperand(i))) 873 Result.AggregateVal[i].FloatVal = cast<ConstantFP>( 874 CV->getOperand(i))->getValueAPF().convertToFloat(); 875 break; 876 } 877 if(CDV) 878 for (unsigned i = 0; i < elemNum; ++i) 879 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); 880 881 break; 882 } 883 // Check if vector holds doubles. 884 if (ElemTy->isDoubleTy()) { 885 if (CAZ) { 886 GenericValue doubleZero; 887 doubleZero.DoubleVal = 0.0; 888 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 889 doubleZero); 890 break; 891 } 892 if(CV) { 893 for (unsigned i = 0; i < elemNum; ++i) 894 if (!isa<UndefValue>(CV->getOperand(i))) 895 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( 896 CV->getOperand(i))->getValueAPF().convertToDouble(); 897 break; 898 } 899 if(CDV) 900 for (unsigned i = 0; i < elemNum; ++i) 901 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); 902 903 break; 904 } 905 // Check if vector holds integers. 906 if (ElemTy->isIntegerTy()) { 907 if (CAZ) { 908 GenericValue intZero; 909 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); 910 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 911 intZero); 912 break; 913 } 914 if(CV) { 915 for (unsigned i = 0; i < elemNum; ++i) 916 if (!isa<UndefValue>(CV->getOperand(i))) 917 Result.AggregateVal[i].IntVal = cast<ConstantInt>( 918 CV->getOperand(i))->getValue(); 919 else { 920 Result.AggregateVal[i].IntVal = 921 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); 922 } 923 break; 924 } 925 if(CDV) 926 for (unsigned i = 0; i < elemNum; ++i) 927 Result.AggregateVal[i].IntVal = APInt( 928 CDV->getElementType()->getPrimitiveSizeInBits(), 929 CDV->getElementAsInteger(i)); 930 931 break; 932 } 933 llvm_unreachable("Unknown constant pointer type!"); 934 } 935 break; 936 937 default: 938 SmallString<256> Msg; 939 raw_svector_ostream OS(Msg); 940 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 941 report_fatal_error(OS.str()); 942 } 943 944 return Result; 945 } 946 947 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 948 /// with the integer held in IntVal. 949 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 950 unsigned StoreBytes) { 951 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 952 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 953 954 if (sys::IsLittleEndianHost) { 955 // Little-endian host - the source is ordered from LSB to MSB. Order the 956 // destination from LSB to MSB: Do a straight copy. 957 memcpy(Dst, Src, StoreBytes); 958 } else { 959 // Big-endian host - the source is an array of 64 bit words ordered from 960 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 961 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 962 while (StoreBytes > sizeof(uint64_t)) { 963 StoreBytes -= sizeof(uint64_t); 964 // May not be aligned so use memcpy. 965 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 966 Src += sizeof(uint64_t); 967 } 968 969 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 970 } 971 } 972 973 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 974 GenericValue *Ptr, Type *Ty) { 975 const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty); 976 977 switch (Ty->getTypeID()) { 978 default: 979 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 980 break; 981 case Type::IntegerTyID: 982 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 983 break; 984 case Type::FloatTyID: 985 *((float*)Ptr) = Val.FloatVal; 986 break; 987 case Type::DoubleTyID: 988 *((double*)Ptr) = Val.DoubleVal; 989 break; 990 case Type::X86_FP80TyID: 991 memcpy(Ptr, Val.IntVal.getRawData(), 10); 992 break; 993 case Type::PointerTyID: 994 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 995 if (StoreBytes != sizeof(PointerTy)) 996 memset(&(Ptr->PointerVal), 0, StoreBytes); 997 998 *((PointerTy*)Ptr) = Val.PointerVal; 999 break; 1000 case Type::VectorTyID: 1001 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { 1002 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) 1003 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; 1004 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) 1005 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; 1006 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { 1007 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; 1008 StoreIntToMemory(Val.AggregateVal[i].IntVal, 1009 (uint8_t*)Ptr + numOfBytes*i, numOfBytes); 1010 } 1011 } 1012 break; 1013 } 1014 1015 if (sys::IsLittleEndianHost != getDataLayout()->isLittleEndian()) 1016 // Host and target are different endian - reverse the stored bytes. 1017 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 1018 } 1019 1020 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 1021 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 1022 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 1023 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 1024 uint8_t *Dst = reinterpret_cast<uint8_t *>( 1025 const_cast<uint64_t *>(IntVal.getRawData())); 1026 1027 if (sys::IsLittleEndianHost) 1028 // Little-endian host - the destination must be ordered from LSB to MSB. 1029 // The source is ordered from LSB to MSB: Do a straight copy. 1030 memcpy(Dst, Src, LoadBytes); 1031 else { 1032 // Big-endian - the destination is an array of 64 bit words ordered from 1033 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 1034 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 1035 // a word. 1036 while (LoadBytes > sizeof(uint64_t)) { 1037 LoadBytes -= sizeof(uint64_t); 1038 // May not be aligned so use memcpy. 1039 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 1040 Dst += sizeof(uint64_t); 1041 } 1042 1043 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 1044 } 1045 } 1046 1047 /// FIXME: document 1048 /// 1049 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 1050 GenericValue *Ptr, 1051 Type *Ty) { 1052 const unsigned LoadBytes = getDataLayout()->getTypeStoreSize(Ty); 1053 1054 switch (Ty->getTypeID()) { 1055 case Type::IntegerTyID: 1056 // An APInt with all words initially zero. 1057 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 1058 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 1059 break; 1060 case Type::FloatTyID: 1061 Result.FloatVal = *((float*)Ptr); 1062 break; 1063 case Type::DoubleTyID: 1064 Result.DoubleVal = *((double*)Ptr); 1065 break; 1066 case Type::PointerTyID: 1067 Result.PointerVal = *((PointerTy*)Ptr); 1068 break; 1069 case Type::X86_FP80TyID: { 1070 // This is endian dependent, but it will only work on x86 anyway. 1071 // FIXME: Will not trap if loading a signaling NaN. 1072 uint64_t y[2]; 1073 memcpy(y, Ptr, 10); 1074 Result.IntVal = APInt(80, y); 1075 break; 1076 } 1077 case Type::VectorTyID: { 1078 const VectorType *VT = cast<VectorType>(Ty); 1079 const Type *ElemT = VT->getElementType(); 1080 const unsigned numElems = VT->getNumElements(); 1081 if (ElemT->isFloatTy()) { 1082 Result.AggregateVal.resize(numElems); 1083 for (unsigned i = 0; i < numElems; ++i) 1084 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); 1085 } 1086 if (ElemT->isDoubleTy()) { 1087 Result.AggregateVal.resize(numElems); 1088 for (unsigned i = 0; i < numElems; ++i) 1089 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); 1090 } 1091 if (ElemT->isIntegerTy()) { 1092 GenericValue intZero; 1093 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); 1094 intZero.IntVal = APInt(elemBitWidth, 0); 1095 Result.AggregateVal.resize(numElems, intZero); 1096 for (unsigned i = 0; i < numElems; ++i) 1097 LoadIntFromMemory(Result.AggregateVal[i].IntVal, 1098 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); 1099 } 1100 break; 1101 } 1102 default: 1103 SmallString<256> Msg; 1104 raw_svector_ostream OS(Msg); 1105 OS << "Cannot load value of type " << *Ty << "!"; 1106 report_fatal_error(OS.str()); 1107 } 1108 } 1109 1110 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 1111 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 1112 DEBUG(Init->dump()); 1113 if (isa<UndefValue>(Init)) 1114 return; 1115 1116 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 1117 unsigned ElementSize = 1118 getDataLayout()->getTypeAllocSize(CP->getType()->getElementType()); 1119 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 1120 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 1121 return; 1122 } 1123 1124 if (isa<ConstantAggregateZero>(Init)) { 1125 memset(Addr, 0, (size_t)getDataLayout()->getTypeAllocSize(Init->getType())); 1126 return; 1127 } 1128 1129 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 1130 unsigned ElementSize = 1131 getDataLayout()->getTypeAllocSize(CPA->getType()->getElementType()); 1132 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 1133 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 1134 return; 1135 } 1136 1137 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 1138 const StructLayout *SL = 1139 getDataLayout()->getStructLayout(cast<StructType>(CPS->getType())); 1140 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 1141 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 1142 return; 1143 } 1144 1145 if (const ConstantDataSequential *CDS = 1146 dyn_cast<ConstantDataSequential>(Init)) { 1147 // CDS is already laid out in host memory order. 1148 StringRef Data = CDS->getRawDataValues(); 1149 memcpy(Addr, Data.data(), Data.size()); 1150 return; 1151 } 1152 1153 if (Init->getType()->isFirstClassType()) { 1154 GenericValue Val = getConstantValue(Init); 1155 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 1156 return; 1157 } 1158 1159 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1160 llvm_unreachable("Unknown constant type to initialize memory with!"); 1161 } 1162 1163 /// EmitGlobals - Emit all of the global variables to memory, storing their 1164 /// addresses into GlobalAddress. This must make sure to copy the contents of 1165 /// their initializers into the memory. 1166 void ExecutionEngine::emitGlobals() { 1167 // Loop over all of the global variables in the program, allocating the memory 1168 // to hold them. If there is more than one module, do a prepass over globals 1169 // to figure out how the different modules should link together. 1170 std::map<std::pair<std::string, Type*>, 1171 const GlobalValue*> LinkedGlobalsMap; 1172 1173 if (Modules.size() != 1) { 1174 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1175 Module &M = *Modules[m]; 1176 for (const auto &GV : M.globals()) { 1177 if (GV.hasLocalLinkage() || GV.isDeclaration() || 1178 GV.hasAppendingLinkage() || !GV.hasName()) 1179 continue;// Ignore external globals and globals with internal linkage. 1180 1181 const GlobalValue *&GVEntry = 1182 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]; 1183 1184 // If this is the first time we've seen this global, it is the canonical 1185 // version. 1186 if (!GVEntry) { 1187 GVEntry = &GV; 1188 continue; 1189 } 1190 1191 // If the existing global is strong, never replace it. 1192 if (GVEntry->hasExternalLinkage()) 1193 continue; 1194 1195 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1196 // symbol. FIXME is this right for common? 1197 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1198 GVEntry = &GV; 1199 } 1200 } 1201 } 1202 1203 std::vector<const GlobalValue*> NonCanonicalGlobals; 1204 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1205 Module &M = *Modules[m]; 1206 for (const auto &GV : M.globals()) { 1207 // In the multi-module case, see what this global maps to. 1208 if (!LinkedGlobalsMap.empty()) { 1209 if (const GlobalValue *GVEntry = 1210 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) { 1211 // If something else is the canonical global, ignore this one. 1212 if (GVEntry != &GV) { 1213 NonCanonicalGlobals.push_back(&GV); 1214 continue; 1215 } 1216 } 1217 } 1218 1219 if (!GV.isDeclaration()) { 1220 addGlobalMapping(&GV, getMemoryForGV(&GV)); 1221 } else { 1222 // External variable reference. Try to use the dynamic loader to 1223 // get a pointer to it. 1224 if (void *SymAddr = 1225 sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName())) 1226 addGlobalMapping(&GV, SymAddr); 1227 else { 1228 report_fatal_error("Could not resolve external global address: " 1229 +GV.getName()); 1230 } 1231 } 1232 } 1233 1234 // If there are multiple modules, map the non-canonical globals to their 1235 // canonical location. 1236 if (!NonCanonicalGlobals.empty()) { 1237 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1238 const GlobalValue *GV = NonCanonicalGlobals[i]; 1239 const GlobalValue *CGV = 1240 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1241 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1242 assert(Ptr && "Canonical global wasn't codegen'd!"); 1243 addGlobalMapping(GV, Ptr); 1244 } 1245 } 1246 1247 // Now that all of the globals are set up in memory, loop through them all 1248 // and initialize their contents. 1249 for (const auto &GV : M.globals()) { 1250 if (!GV.isDeclaration()) { 1251 if (!LinkedGlobalsMap.empty()) { 1252 if (const GlobalValue *GVEntry = 1253 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) 1254 if (GVEntry != &GV) // Not the canonical variable. 1255 continue; 1256 } 1257 EmitGlobalVariable(&GV); 1258 } 1259 } 1260 } 1261 } 1262 1263 // EmitGlobalVariable - This method emits the specified global variable to the 1264 // address specified in GlobalAddresses, or allocates new memory if it's not 1265 // already in the map. 1266 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1267 void *GA = getPointerToGlobalIfAvailable(GV); 1268 1269 if (!GA) { 1270 // If it's not already specified, allocate memory for the global. 1271 GA = getMemoryForGV(GV); 1272 1273 // If we failed to allocate memory for this global, return. 1274 if (!GA) return; 1275 1276 addGlobalMapping(GV, GA); 1277 } 1278 1279 // Don't initialize if it's thread local, let the client do it. 1280 if (!GV->isThreadLocal()) 1281 InitializeMemory(GV->getInitializer(), GA); 1282 1283 Type *ElTy = GV->getType()->getElementType(); 1284 size_t GVSize = (size_t)getDataLayout()->getTypeAllocSize(ElTy); 1285 NumInitBytes += (unsigned)GVSize; 1286 ++NumGlobals; 1287 } 1288 1289 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1290 : EE(EE), GlobalAddressMap(this) { 1291 } 1292 1293 sys::Mutex * 1294 ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) { 1295 return &EES->EE.lock; 1296 } 1297 1298 void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES, 1299 const GlobalValue *Old) { 1300 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1301 EES->GlobalAddressReverseMap.erase(OldVal); 1302 } 1303 1304 void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *, 1305 const GlobalValue *, 1306 const GlobalValue *) { 1307 llvm_unreachable("The ExecutionEngine doesn't know how to handle a" 1308 " RAUW on a value it has a global mapping for."); 1309 } 1310