1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/ExecutionEngine/ExecutionEngine.h" 17 #include "llvm/ExecutionEngine/JITMemoryManager.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ExecutionEngine/GenericValue.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/DynamicLibrary.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/Host.h" 30 #include "llvm/Support/MutexGuard.h" 31 #include "llvm/Support/TargetRegistry.h" 32 #include "llvm/Support/ValueHandle.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cmath> 36 #include <cstring> 37 using namespace llvm; 38 39 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 40 STATISTIC(NumGlobals , "Number of global vars initialized"); 41 42 ExecutionEngine *(*ExecutionEngine::JITCtor)( 43 Module *M, 44 std::string *ErrorStr, 45 JITMemoryManager *JMM, 46 bool GVsWithCode, 47 TargetMachine *TM) = 0; 48 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 49 Module *M, 50 std::string *ErrorStr, 51 RTDyldMemoryManager *MCJMM, 52 bool GVsWithCode, 53 TargetMachine *TM) = 0; 54 ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M, 55 std::string *ErrorStr) = 0; 56 57 ExecutionEngine::ExecutionEngine(Module *M) 58 : EEState(*this), 59 LazyFunctionCreator(0), 60 ExceptionTableRegister(0), 61 ExceptionTableDeregister(0) { 62 CompilingLazily = false; 63 GVCompilationDisabled = false; 64 SymbolSearchingDisabled = false; 65 Modules.push_back(M); 66 assert(M && "Module is null?"); 67 } 68 69 ExecutionEngine::~ExecutionEngine() { 70 clearAllGlobalMappings(); 71 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 72 delete Modules[i]; 73 } 74 75 void ExecutionEngine::DeregisterAllTables() { 76 if (ExceptionTableDeregister) { 77 DenseMap<const Function*, void*>::iterator it = AllExceptionTables.begin(); 78 DenseMap<const Function*, void*>::iterator ite = AllExceptionTables.end(); 79 for (; it != ite; ++it) 80 ExceptionTableDeregister(it->second); 81 AllExceptionTables.clear(); 82 } 83 } 84 85 namespace { 86 /// \brief Helper class which uses a value handler to automatically deletes the 87 /// memory block when the GlobalVariable is destroyed. 88 class GVMemoryBlock : public CallbackVH { 89 GVMemoryBlock(const GlobalVariable *GV) 90 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 91 92 public: 93 /// \brief Returns the address the GlobalVariable should be written into. The 94 /// GVMemoryBlock object prefixes that. 95 static char *Create(const GlobalVariable *GV, const DataLayout& TD) { 96 Type *ElTy = GV->getType()->getElementType(); 97 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 98 void *RawMemory = ::operator new( 99 DataLayout::RoundUpAlignment(sizeof(GVMemoryBlock), 100 TD.getPreferredAlignment(GV)) 101 + GVSize); 102 new(RawMemory) GVMemoryBlock(GV); 103 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 104 } 105 106 virtual void deleted() { 107 // We allocated with operator new and with some extra memory hanging off the 108 // end, so don't just delete this. I'm not sure if this is actually 109 // required. 110 this->~GVMemoryBlock(); 111 ::operator delete(this); 112 } 113 }; 114 } // anonymous namespace 115 116 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 117 return GVMemoryBlock::Create(GV, *getDataLayout()); 118 } 119 120 bool ExecutionEngine::removeModule(Module *M) { 121 for(SmallVectorImpl<Module *>::iterator I = Modules.begin(), 122 E = Modules.end(); I != E; ++I) { 123 Module *Found = *I; 124 if (Found == M) { 125 Modules.erase(I); 126 clearGlobalMappingsFromModule(M); 127 return true; 128 } 129 } 130 return false; 131 } 132 133 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 134 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 135 if (Function *F = Modules[i]->getFunction(FnName)) 136 return F; 137 } 138 return 0; 139 } 140 141 142 void *ExecutionEngineState::RemoveMapping(const MutexGuard &, 143 const GlobalValue *ToUnmap) { 144 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 145 void *OldVal; 146 147 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 148 // GlobalAddressMap. 149 if (I == GlobalAddressMap.end()) 150 OldVal = 0; 151 else { 152 OldVal = I->second; 153 GlobalAddressMap.erase(I); 154 } 155 156 GlobalAddressReverseMap.erase(OldVal); 157 return OldVal; 158 } 159 160 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 161 MutexGuard locked(lock); 162 163 DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 164 << "\' to [" << Addr << "]\n";); 165 void *&CurVal = EEState.getGlobalAddressMap(locked)[GV]; 166 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 167 CurVal = Addr; 168 169 // If we are using the reverse mapping, add it too. 170 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 171 AssertingVH<const GlobalValue> &V = 172 EEState.getGlobalAddressReverseMap(locked)[Addr]; 173 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 174 V = GV; 175 } 176 } 177 178 void ExecutionEngine::clearAllGlobalMappings() { 179 MutexGuard locked(lock); 180 181 EEState.getGlobalAddressMap(locked).clear(); 182 EEState.getGlobalAddressReverseMap(locked).clear(); 183 } 184 185 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 186 MutexGuard locked(lock); 187 188 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) 189 EEState.RemoveMapping(locked, FI); 190 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 191 GI != GE; ++GI) 192 EEState.RemoveMapping(locked, GI); 193 } 194 195 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 196 MutexGuard locked(lock); 197 198 ExecutionEngineState::GlobalAddressMapTy &Map = 199 EEState.getGlobalAddressMap(locked); 200 201 // Deleting from the mapping? 202 if (Addr == 0) 203 return EEState.RemoveMapping(locked, GV); 204 205 void *&CurVal = Map[GV]; 206 void *OldVal = CurVal; 207 208 if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty()) 209 EEState.getGlobalAddressReverseMap(locked).erase(CurVal); 210 CurVal = Addr; 211 212 // If we are using the reverse mapping, add it too. 213 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 214 AssertingVH<const GlobalValue> &V = 215 EEState.getGlobalAddressReverseMap(locked)[Addr]; 216 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 217 V = GV; 218 } 219 return OldVal; 220 } 221 222 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 223 MutexGuard locked(lock); 224 225 ExecutionEngineState::GlobalAddressMapTy::iterator I = 226 EEState.getGlobalAddressMap(locked).find(GV); 227 return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0; 228 } 229 230 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 231 MutexGuard locked(lock); 232 233 // If we haven't computed the reverse mapping yet, do so first. 234 if (EEState.getGlobalAddressReverseMap(locked).empty()) { 235 for (ExecutionEngineState::GlobalAddressMapTy::iterator 236 I = EEState.getGlobalAddressMap(locked).begin(), 237 E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I) 238 EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair( 239 I->second, I->first)); 240 } 241 242 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 243 EEState.getGlobalAddressReverseMap(locked).find(Addr); 244 return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 245 } 246 247 namespace { 248 class ArgvArray { 249 char *Array; 250 std::vector<char*> Values; 251 public: 252 ArgvArray() : Array(NULL) {} 253 ~ArgvArray() { clear(); } 254 void clear() { 255 delete[] Array; 256 Array = NULL; 257 for (size_t I = 0, E = Values.size(); I != E; ++I) { 258 delete[] Values[I]; 259 } 260 Values.clear(); 261 } 262 /// Turn a vector of strings into a nice argv style array of pointers to null 263 /// terminated strings. 264 void *reset(LLVMContext &C, ExecutionEngine *EE, 265 const std::vector<std::string> &InputArgv); 266 }; 267 } // anonymous namespace 268 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 269 const std::vector<std::string> &InputArgv) { 270 clear(); // Free the old contents. 271 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 272 Array = new char[(InputArgv.size()+1)*PtrSize]; 273 274 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n"); 275 Type *SBytePtr = Type::getInt8PtrTy(C); 276 277 for (unsigned i = 0; i != InputArgv.size(); ++i) { 278 unsigned Size = InputArgv[i].size()+1; 279 char *Dest = new char[Size]; 280 Values.push_back(Dest); 281 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"); 282 283 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 284 Dest[Size-1] = 0; 285 286 // Endian safe: Array[i] = (PointerTy)Dest; 287 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize), 288 SBytePtr); 289 } 290 291 // Null terminate it 292 EE->StoreValueToMemory(PTOGV(0), 293 (GenericValue*)(Array+InputArgv.size()*PtrSize), 294 SBytePtr); 295 return Array; 296 } 297 298 void ExecutionEngine::runStaticConstructorsDestructors(Module *module, 299 bool isDtors) { 300 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 301 GlobalVariable *GV = module->getNamedGlobal(Name); 302 303 // If this global has internal linkage, or if it has a use, then it must be 304 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 305 // this is the case, don't execute any of the global ctors, __main will do 306 // it. 307 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 308 309 // Should be an array of '{ i32, void ()* }' structs. The first value is 310 // the init priority, which we ignore. 311 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 312 if (InitList == 0) 313 return; 314 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 315 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 316 if (CS == 0) continue; 317 318 Constant *FP = CS->getOperand(1); 319 if (FP->isNullValue()) 320 continue; // Found a sentinal value, ignore. 321 322 // Strip off constant expression casts. 323 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 324 if (CE->isCast()) 325 FP = CE->getOperand(0); 326 327 // Execute the ctor/dtor function! 328 if (Function *F = dyn_cast<Function>(FP)) 329 runFunction(F, std::vector<GenericValue>()); 330 331 // FIXME: It is marginally lame that we just do nothing here if we see an 332 // entry we don't recognize. It might not be unreasonable for the verifier 333 // to not even allow this and just assert here. 334 } 335 } 336 337 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 338 // Execute global ctors/dtors for each module in the program. 339 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 340 runStaticConstructorsDestructors(Modules[i], isDtors); 341 } 342 343 #ifndef NDEBUG 344 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 345 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 346 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 347 for (unsigned i = 0; i < PtrSize; ++i) 348 if (*(i + (uint8_t*)Loc)) 349 return false; 350 return true; 351 } 352 #endif 353 354 int ExecutionEngine::runFunctionAsMain(Function *Fn, 355 const std::vector<std::string> &argv, 356 const char * const * envp) { 357 std::vector<GenericValue> GVArgs; 358 GenericValue GVArgc; 359 GVArgc.IntVal = APInt(32, argv.size()); 360 361 // Check main() type 362 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 363 FunctionType *FTy = Fn->getFunctionType(); 364 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 365 366 // Check the argument types. 367 if (NumArgs > 3) 368 report_fatal_error("Invalid number of arguments of main() supplied"); 369 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 370 report_fatal_error("Invalid type for third argument of main() supplied"); 371 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 372 report_fatal_error("Invalid type for second argument of main() supplied"); 373 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 374 report_fatal_error("Invalid type for first argument of main() supplied"); 375 if (!FTy->getReturnType()->isIntegerTy() && 376 !FTy->getReturnType()->isVoidTy()) 377 report_fatal_error("Invalid return type of main() supplied"); 378 379 ArgvArray CArgv; 380 ArgvArray CEnv; 381 if (NumArgs) { 382 GVArgs.push_back(GVArgc); // Arg #0 = argc. 383 if (NumArgs > 1) { 384 // Arg #1 = argv. 385 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 386 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 387 "argv[0] was null after CreateArgv"); 388 if (NumArgs > 2) { 389 std::vector<std::string> EnvVars; 390 for (unsigned i = 0; envp[i]; ++i) 391 EnvVars.push_back(envp[i]); 392 // Arg #2 = envp. 393 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 394 } 395 } 396 } 397 398 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 399 } 400 401 ExecutionEngine *ExecutionEngine::create(Module *M, 402 bool ForceInterpreter, 403 std::string *ErrorStr, 404 CodeGenOpt::Level OptLevel, 405 bool GVsWithCode) { 406 EngineBuilder EB = EngineBuilder(M) 407 .setEngineKind(ForceInterpreter 408 ? EngineKind::Interpreter 409 : EngineKind::JIT) 410 .setErrorStr(ErrorStr) 411 .setOptLevel(OptLevel) 412 .setAllocateGVsWithCode(GVsWithCode); 413 414 return EB.create(); 415 } 416 417 /// createJIT - This is the factory method for creating a JIT for the current 418 /// machine, it does not fall back to the interpreter. This takes ownership 419 /// of the module. 420 ExecutionEngine *ExecutionEngine::createJIT(Module *M, 421 std::string *ErrorStr, 422 JITMemoryManager *JMM, 423 CodeGenOpt::Level OL, 424 bool GVsWithCode, 425 Reloc::Model RM, 426 CodeModel::Model CMM) { 427 if (ExecutionEngine::JITCtor == 0) { 428 if (ErrorStr) 429 *ErrorStr = "JIT has not been linked in."; 430 return 0; 431 } 432 433 // Use the defaults for extra parameters. Users can use EngineBuilder to 434 // set them. 435 EngineBuilder EB(M); 436 EB.setEngineKind(EngineKind::JIT); 437 EB.setErrorStr(ErrorStr); 438 EB.setRelocationModel(RM); 439 EB.setCodeModel(CMM); 440 EB.setAllocateGVsWithCode(GVsWithCode); 441 EB.setOptLevel(OL); 442 EB.setJITMemoryManager(JMM); 443 444 // TODO: permit custom TargetOptions here 445 TargetMachine *TM = EB.selectTarget(); 446 if (!TM || (ErrorStr && ErrorStr->length() > 0)) return 0; 447 448 return ExecutionEngine::JITCtor(M, ErrorStr, JMM, GVsWithCode, TM); 449 } 450 451 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 452 OwningPtr<TargetMachine> TheTM(TM); // Take ownership. 453 454 // Make sure we can resolve symbols in the program as well. The zero arg 455 // to the function tells DynamicLibrary to load the program, not a library. 456 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) 457 return 0; 458 459 assert(!(JMM && MCJMM)); 460 461 // If the user specified a memory manager but didn't specify which engine to 462 // create, we assume they only want the JIT, and we fail if they only want 463 // the interpreter. 464 if (JMM || MCJMM) { 465 if (WhichEngine & EngineKind::JIT) 466 WhichEngine = EngineKind::JIT; 467 else { 468 if (ErrorStr) 469 *ErrorStr = "Cannot create an interpreter with a memory manager."; 470 return 0; 471 } 472 } 473 474 if (MCJMM && ! UseMCJIT) { 475 if (ErrorStr) 476 *ErrorStr = 477 "Cannot create a legacy JIT with a runtime dyld memory " 478 "manager."; 479 return 0; 480 } 481 482 // Unless the interpreter was explicitly selected or the JIT is not linked, 483 // try making a JIT. 484 if ((WhichEngine & EngineKind::JIT) && TheTM) { 485 Triple TT(M->getTargetTriple()); 486 if (!TM->getTarget().hasJIT()) { 487 errs() << "WARNING: This target JIT is not designed for the host" 488 << " you are running. If bad things happen, please choose" 489 << " a different -march switch.\n"; 490 } 491 492 if (UseMCJIT && ExecutionEngine::MCJITCtor) { 493 ExecutionEngine *EE = 494 ExecutionEngine::MCJITCtor(M, ErrorStr, MCJMM ? MCJMM : JMM, 495 AllocateGVsWithCode, TheTM.take()); 496 if (EE) return EE; 497 } else if (ExecutionEngine::JITCtor) { 498 ExecutionEngine *EE = 499 ExecutionEngine::JITCtor(M, ErrorStr, JMM, 500 AllocateGVsWithCode, TheTM.take()); 501 if (EE) return EE; 502 } 503 } 504 505 // If we can't make a JIT and we didn't request one specifically, try making 506 // an interpreter instead. 507 if (WhichEngine & EngineKind::Interpreter) { 508 if (ExecutionEngine::InterpCtor) 509 return ExecutionEngine::InterpCtor(M, ErrorStr); 510 if (ErrorStr) 511 *ErrorStr = "Interpreter has not been linked in."; 512 return 0; 513 } 514 515 if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0 && 516 ExecutionEngine::MCJITCtor == 0) { 517 if (ErrorStr) 518 *ErrorStr = "JIT has not been linked in."; 519 } 520 521 return 0; 522 } 523 524 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 525 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 526 return getPointerToFunction(F); 527 528 MutexGuard locked(lock); 529 if (void *P = EEState.getGlobalAddressMap(locked)[GV]) 530 return P; 531 532 // Global variable might have been added since interpreter started. 533 if (GlobalVariable *GVar = 534 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 535 EmitGlobalVariable(GVar); 536 else 537 llvm_unreachable("Global hasn't had an address allocated yet!"); 538 539 return EEState.getGlobalAddressMap(locked)[GV]; 540 } 541 542 /// \brief Converts a Constant* into a GenericValue, including handling of 543 /// ConstantExpr values. 544 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 545 // If its undefined, return the garbage. 546 if (isa<UndefValue>(C)) { 547 GenericValue Result; 548 switch (C->getType()->getTypeID()) { 549 default: 550 break; 551 case Type::IntegerTyID: 552 case Type::X86_FP80TyID: 553 case Type::FP128TyID: 554 case Type::PPC_FP128TyID: 555 // Although the value is undefined, we still have to construct an APInt 556 // with the correct bit width. 557 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 558 break; 559 case Type::StructTyID: { 560 // if the whole struct is 'undef' just reserve memory for the value. 561 if(StructType *STy = dyn_cast<StructType>(C->getType())) { 562 unsigned int elemNum = STy->getNumElements(); 563 Result.AggregateVal.resize(elemNum); 564 for (unsigned int i = 0; i < elemNum; ++i) { 565 Type *ElemTy = STy->getElementType(i); 566 if (ElemTy->isIntegerTy()) 567 Result.AggregateVal[i].IntVal = 568 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 569 else if (ElemTy->isAggregateType()) { 570 const Constant *ElemUndef = UndefValue::get(ElemTy); 571 Result.AggregateVal[i] = getConstantValue(ElemUndef); 572 } 573 } 574 } 575 } 576 break; 577 case Type::VectorTyID: 578 // if the whole vector is 'undef' just reserve memory for the value. 579 const VectorType* VTy = dyn_cast<VectorType>(C->getType()); 580 const Type *ElemTy = VTy->getElementType(); 581 unsigned int elemNum = VTy->getNumElements(); 582 Result.AggregateVal.resize(elemNum); 583 if (ElemTy->isIntegerTy()) 584 for (unsigned int i = 0; i < elemNum; ++i) 585 Result.AggregateVal[i].IntVal = 586 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 587 break; 588 } 589 return Result; 590 } 591 592 // Otherwise, if the value is a ConstantExpr... 593 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 594 Constant *Op0 = CE->getOperand(0); 595 switch (CE->getOpcode()) { 596 case Instruction::GetElementPtr: { 597 // Compute the index 598 GenericValue Result = getConstantValue(Op0); 599 APInt Offset(TD->getPointerSizeInBits(), 0); 600 cast<GEPOperator>(CE)->accumulateConstantOffset(*TD, Offset); 601 602 char* tmp = (char*) Result.PointerVal; 603 Result = PTOGV(tmp + Offset.getSExtValue()); 604 return Result; 605 } 606 case Instruction::Trunc: { 607 GenericValue GV = getConstantValue(Op0); 608 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 609 GV.IntVal = GV.IntVal.trunc(BitWidth); 610 return GV; 611 } 612 case Instruction::ZExt: { 613 GenericValue GV = getConstantValue(Op0); 614 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 615 GV.IntVal = GV.IntVal.zext(BitWidth); 616 return GV; 617 } 618 case Instruction::SExt: { 619 GenericValue GV = getConstantValue(Op0); 620 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 621 GV.IntVal = GV.IntVal.sext(BitWidth); 622 return GV; 623 } 624 case Instruction::FPTrunc: { 625 // FIXME long double 626 GenericValue GV = getConstantValue(Op0); 627 GV.FloatVal = float(GV.DoubleVal); 628 return GV; 629 } 630 case Instruction::FPExt:{ 631 // FIXME long double 632 GenericValue GV = getConstantValue(Op0); 633 GV.DoubleVal = double(GV.FloatVal); 634 return GV; 635 } 636 case Instruction::UIToFP: { 637 GenericValue GV = getConstantValue(Op0); 638 if (CE->getType()->isFloatTy()) 639 GV.FloatVal = float(GV.IntVal.roundToDouble()); 640 else if (CE->getType()->isDoubleTy()) 641 GV.DoubleVal = GV.IntVal.roundToDouble(); 642 else if (CE->getType()->isX86_FP80Ty()) { 643 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 644 (void)apf.convertFromAPInt(GV.IntVal, 645 false, 646 APFloat::rmNearestTiesToEven); 647 GV.IntVal = apf.bitcastToAPInt(); 648 } 649 return GV; 650 } 651 case Instruction::SIToFP: { 652 GenericValue GV = getConstantValue(Op0); 653 if (CE->getType()->isFloatTy()) 654 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 655 else if (CE->getType()->isDoubleTy()) 656 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 657 else if (CE->getType()->isX86_FP80Ty()) { 658 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 659 (void)apf.convertFromAPInt(GV.IntVal, 660 true, 661 APFloat::rmNearestTiesToEven); 662 GV.IntVal = apf.bitcastToAPInt(); 663 } 664 return GV; 665 } 666 case Instruction::FPToUI: // double->APInt conversion handles sign 667 case Instruction::FPToSI: { 668 GenericValue GV = getConstantValue(Op0); 669 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 670 if (Op0->getType()->isFloatTy()) 671 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 672 else if (Op0->getType()->isDoubleTy()) 673 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 674 else if (Op0->getType()->isX86_FP80Ty()) { 675 APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal); 676 uint64_t v; 677 bool ignored; 678 (void)apf.convertToInteger(&v, BitWidth, 679 CE->getOpcode()==Instruction::FPToSI, 680 APFloat::rmTowardZero, &ignored); 681 GV.IntVal = v; // endian? 682 } 683 return GV; 684 } 685 case Instruction::PtrToInt: { 686 GenericValue GV = getConstantValue(Op0); 687 uint32_t PtrWidth = TD->getTypeSizeInBits(Op0->getType()); 688 assert(PtrWidth <= 64 && "Bad pointer width"); 689 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 690 uint32_t IntWidth = TD->getTypeSizeInBits(CE->getType()); 691 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); 692 return GV; 693 } 694 case Instruction::IntToPtr: { 695 GenericValue GV = getConstantValue(Op0); 696 uint32_t PtrWidth = TD->getTypeSizeInBits(CE->getType()); 697 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 698 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 699 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 700 return GV; 701 } 702 case Instruction::BitCast: { 703 GenericValue GV = getConstantValue(Op0); 704 Type* DestTy = CE->getType(); 705 switch (Op0->getType()->getTypeID()) { 706 default: llvm_unreachable("Invalid bitcast operand"); 707 case Type::IntegerTyID: 708 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 709 if (DestTy->isFloatTy()) 710 GV.FloatVal = GV.IntVal.bitsToFloat(); 711 else if (DestTy->isDoubleTy()) 712 GV.DoubleVal = GV.IntVal.bitsToDouble(); 713 break; 714 case Type::FloatTyID: 715 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 716 GV.IntVal = APInt::floatToBits(GV.FloatVal); 717 break; 718 case Type::DoubleTyID: 719 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 720 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 721 break; 722 case Type::PointerTyID: 723 assert(DestTy->isPointerTy() && "Invalid bitcast"); 724 break; // getConstantValue(Op0) above already converted it 725 } 726 return GV; 727 } 728 case Instruction::Add: 729 case Instruction::FAdd: 730 case Instruction::Sub: 731 case Instruction::FSub: 732 case Instruction::Mul: 733 case Instruction::FMul: 734 case Instruction::UDiv: 735 case Instruction::SDiv: 736 case Instruction::URem: 737 case Instruction::SRem: 738 case Instruction::And: 739 case Instruction::Or: 740 case Instruction::Xor: { 741 GenericValue LHS = getConstantValue(Op0); 742 GenericValue RHS = getConstantValue(CE->getOperand(1)); 743 GenericValue GV; 744 switch (CE->getOperand(0)->getType()->getTypeID()) { 745 default: llvm_unreachable("Bad add type!"); 746 case Type::IntegerTyID: 747 switch (CE->getOpcode()) { 748 default: llvm_unreachable("Invalid integer opcode"); 749 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 750 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 751 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 752 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 753 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 754 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 755 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 756 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 757 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 758 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 759 } 760 break; 761 case Type::FloatTyID: 762 switch (CE->getOpcode()) { 763 default: llvm_unreachable("Invalid float opcode"); 764 case Instruction::FAdd: 765 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 766 case Instruction::FSub: 767 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 768 case Instruction::FMul: 769 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 770 case Instruction::FDiv: 771 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 772 case Instruction::FRem: 773 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 774 } 775 break; 776 case Type::DoubleTyID: 777 switch (CE->getOpcode()) { 778 default: llvm_unreachable("Invalid double opcode"); 779 case Instruction::FAdd: 780 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 781 case Instruction::FSub: 782 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 783 case Instruction::FMul: 784 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 785 case Instruction::FDiv: 786 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 787 case Instruction::FRem: 788 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 789 } 790 break; 791 case Type::X86_FP80TyID: 792 case Type::PPC_FP128TyID: 793 case Type::FP128TyID: { 794 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); 795 APFloat apfLHS = APFloat(Sem, LHS.IntVal); 796 switch (CE->getOpcode()) { 797 default: llvm_unreachable("Invalid long double opcode"); 798 case Instruction::FAdd: 799 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); 800 GV.IntVal = apfLHS.bitcastToAPInt(); 801 break; 802 case Instruction::FSub: 803 apfLHS.subtract(APFloat(Sem, RHS.IntVal), 804 APFloat::rmNearestTiesToEven); 805 GV.IntVal = apfLHS.bitcastToAPInt(); 806 break; 807 case Instruction::FMul: 808 apfLHS.multiply(APFloat(Sem, RHS.IntVal), 809 APFloat::rmNearestTiesToEven); 810 GV.IntVal = apfLHS.bitcastToAPInt(); 811 break; 812 case Instruction::FDiv: 813 apfLHS.divide(APFloat(Sem, RHS.IntVal), 814 APFloat::rmNearestTiesToEven); 815 GV.IntVal = apfLHS.bitcastToAPInt(); 816 break; 817 case Instruction::FRem: 818 apfLHS.mod(APFloat(Sem, RHS.IntVal), 819 APFloat::rmNearestTiesToEven); 820 GV.IntVal = apfLHS.bitcastToAPInt(); 821 break; 822 } 823 } 824 break; 825 } 826 return GV; 827 } 828 default: 829 break; 830 } 831 832 SmallString<256> Msg; 833 raw_svector_ostream OS(Msg); 834 OS << "ConstantExpr not handled: " << *CE; 835 report_fatal_error(OS.str()); 836 } 837 838 // Otherwise, we have a simple constant. 839 GenericValue Result; 840 switch (C->getType()->getTypeID()) { 841 case Type::FloatTyID: 842 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 843 break; 844 case Type::DoubleTyID: 845 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 846 break; 847 case Type::X86_FP80TyID: 848 case Type::FP128TyID: 849 case Type::PPC_FP128TyID: 850 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 851 break; 852 case Type::IntegerTyID: 853 Result.IntVal = cast<ConstantInt>(C)->getValue(); 854 break; 855 case Type::PointerTyID: 856 if (isa<ConstantPointerNull>(C)) 857 Result.PointerVal = 0; 858 else if (const Function *F = dyn_cast<Function>(C)) 859 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 860 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 861 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 862 else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 863 Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>( 864 BA->getBasicBlock()))); 865 else 866 llvm_unreachable("Unknown constant pointer type!"); 867 break; 868 case Type::VectorTyID: { 869 unsigned elemNum; 870 Type* ElemTy; 871 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); 872 const ConstantVector *CV = dyn_cast<ConstantVector>(C); 873 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); 874 875 if (CDV) { 876 elemNum = CDV->getNumElements(); 877 ElemTy = CDV->getElementType(); 878 } else if (CV || CAZ) { 879 VectorType* VTy = dyn_cast<VectorType>(C->getType()); 880 elemNum = VTy->getNumElements(); 881 ElemTy = VTy->getElementType(); 882 } else { 883 llvm_unreachable("Unknown constant vector type!"); 884 } 885 886 Result.AggregateVal.resize(elemNum); 887 // Check if vector holds floats. 888 if(ElemTy->isFloatTy()) { 889 if (CAZ) { 890 GenericValue floatZero; 891 floatZero.FloatVal = 0.f; 892 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 893 floatZero); 894 break; 895 } 896 if(CV) { 897 for (unsigned i = 0; i < elemNum; ++i) 898 if (!isa<UndefValue>(CV->getOperand(i))) 899 Result.AggregateVal[i].FloatVal = cast<ConstantFP>( 900 CV->getOperand(i))->getValueAPF().convertToFloat(); 901 break; 902 } 903 if(CDV) 904 for (unsigned i = 0; i < elemNum; ++i) 905 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); 906 907 break; 908 } 909 // Check if vector holds doubles. 910 if (ElemTy->isDoubleTy()) { 911 if (CAZ) { 912 GenericValue doubleZero; 913 doubleZero.DoubleVal = 0.0; 914 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 915 doubleZero); 916 break; 917 } 918 if(CV) { 919 for (unsigned i = 0; i < elemNum; ++i) 920 if (!isa<UndefValue>(CV->getOperand(i))) 921 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( 922 CV->getOperand(i))->getValueAPF().convertToDouble(); 923 break; 924 } 925 if(CDV) 926 for (unsigned i = 0; i < elemNum; ++i) 927 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); 928 929 break; 930 } 931 // Check if vector holds integers. 932 if (ElemTy->isIntegerTy()) { 933 if (CAZ) { 934 GenericValue intZero; 935 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); 936 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 937 intZero); 938 break; 939 } 940 if(CV) { 941 for (unsigned i = 0; i < elemNum; ++i) 942 if (!isa<UndefValue>(CV->getOperand(i))) 943 Result.AggregateVal[i].IntVal = cast<ConstantInt>( 944 CV->getOperand(i))->getValue(); 945 else { 946 Result.AggregateVal[i].IntVal = 947 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); 948 } 949 break; 950 } 951 if(CDV) 952 for (unsigned i = 0; i < elemNum; ++i) 953 Result.AggregateVal[i].IntVal = APInt( 954 CDV->getElementType()->getPrimitiveSizeInBits(), 955 CDV->getElementAsInteger(i)); 956 957 break; 958 } 959 llvm_unreachable("Unknown constant pointer type!"); 960 } 961 break; 962 963 default: 964 SmallString<256> Msg; 965 raw_svector_ostream OS(Msg); 966 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 967 report_fatal_error(OS.str()); 968 } 969 970 return Result; 971 } 972 973 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 974 /// with the integer held in IntVal. 975 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 976 unsigned StoreBytes) { 977 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 978 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 979 980 if (sys::IsLittleEndianHost) { 981 // Little-endian host - the source is ordered from LSB to MSB. Order the 982 // destination from LSB to MSB: Do a straight copy. 983 memcpy(Dst, Src, StoreBytes); 984 } else { 985 // Big-endian host - the source is an array of 64 bit words ordered from 986 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 987 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 988 while (StoreBytes > sizeof(uint64_t)) { 989 StoreBytes -= sizeof(uint64_t); 990 // May not be aligned so use memcpy. 991 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 992 Src += sizeof(uint64_t); 993 } 994 995 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 996 } 997 } 998 999 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 1000 GenericValue *Ptr, Type *Ty) { 1001 const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty); 1002 1003 switch (Ty->getTypeID()) { 1004 default: 1005 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 1006 break; 1007 case Type::IntegerTyID: 1008 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 1009 break; 1010 case Type::FloatTyID: 1011 *((float*)Ptr) = Val.FloatVal; 1012 break; 1013 case Type::DoubleTyID: 1014 *((double*)Ptr) = Val.DoubleVal; 1015 break; 1016 case Type::X86_FP80TyID: 1017 memcpy(Ptr, Val.IntVal.getRawData(), 10); 1018 break; 1019 case Type::PointerTyID: 1020 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 1021 if (StoreBytes != sizeof(PointerTy)) 1022 memset(&(Ptr->PointerVal), 0, StoreBytes); 1023 1024 *((PointerTy*)Ptr) = Val.PointerVal; 1025 break; 1026 case Type::VectorTyID: 1027 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { 1028 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) 1029 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; 1030 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) 1031 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; 1032 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { 1033 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; 1034 StoreIntToMemory(Val.AggregateVal[i].IntVal, 1035 (uint8_t*)Ptr + numOfBytes*i, numOfBytes); 1036 } 1037 } 1038 break; 1039 } 1040 1041 if (sys::IsLittleEndianHost != getDataLayout()->isLittleEndian()) 1042 // Host and target are different endian - reverse the stored bytes. 1043 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 1044 } 1045 1046 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 1047 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 1048 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 1049 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 1050 uint8_t *Dst = reinterpret_cast<uint8_t *>( 1051 const_cast<uint64_t *>(IntVal.getRawData())); 1052 1053 if (sys::IsLittleEndianHost) 1054 // Little-endian host - the destination must be ordered from LSB to MSB. 1055 // The source is ordered from LSB to MSB: Do a straight copy. 1056 memcpy(Dst, Src, LoadBytes); 1057 else { 1058 // Big-endian - the destination is an array of 64 bit words ordered from 1059 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 1060 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 1061 // a word. 1062 while (LoadBytes > sizeof(uint64_t)) { 1063 LoadBytes -= sizeof(uint64_t); 1064 // May not be aligned so use memcpy. 1065 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 1066 Dst += sizeof(uint64_t); 1067 } 1068 1069 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 1070 } 1071 } 1072 1073 /// FIXME: document 1074 /// 1075 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 1076 GenericValue *Ptr, 1077 Type *Ty) { 1078 const unsigned LoadBytes = getDataLayout()->getTypeStoreSize(Ty); 1079 1080 switch (Ty->getTypeID()) { 1081 case Type::IntegerTyID: 1082 // An APInt with all words initially zero. 1083 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 1084 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 1085 break; 1086 case Type::FloatTyID: 1087 Result.FloatVal = *((float*)Ptr); 1088 break; 1089 case Type::DoubleTyID: 1090 Result.DoubleVal = *((double*)Ptr); 1091 break; 1092 case Type::PointerTyID: 1093 Result.PointerVal = *((PointerTy*)Ptr); 1094 break; 1095 case Type::X86_FP80TyID: { 1096 // This is endian dependent, but it will only work on x86 anyway. 1097 // FIXME: Will not trap if loading a signaling NaN. 1098 uint64_t y[2]; 1099 memcpy(y, Ptr, 10); 1100 Result.IntVal = APInt(80, y); 1101 break; 1102 } 1103 case Type::VectorTyID: { 1104 const VectorType *VT = cast<VectorType>(Ty); 1105 const Type *ElemT = VT->getElementType(); 1106 const unsigned numElems = VT->getNumElements(); 1107 if (ElemT->isFloatTy()) { 1108 Result.AggregateVal.resize(numElems); 1109 for (unsigned i = 0; i < numElems; ++i) 1110 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); 1111 } 1112 if (ElemT->isDoubleTy()) { 1113 Result.AggregateVal.resize(numElems); 1114 for (unsigned i = 0; i < numElems; ++i) 1115 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); 1116 } 1117 if (ElemT->isIntegerTy()) { 1118 GenericValue intZero; 1119 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); 1120 intZero.IntVal = APInt(elemBitWidth, 0); 1121 Result.AggregateVal.resize(numElems, intZero); 1122 for (unsigned i = 0; i < numElems; ++i) 1123 LoadIntFromMemory(Result.AggregateVal[i].IntVal, 1124 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); 1125 } 1126 break; 1127 } 1128 default: 1129 SmallString<256> Msg; 1130 raw_svector_ostream OS(Msg); 1131 OS << "Cannot load value of type " << *Ty << "!"; 1132 report_fatal_error(OS.str()); 1133 } 1134 } 1135 1136 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 1137 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 1138 DEBUG(Init->dump()); 1139 if (isa<UndefValue>(Init)) 1140 return; 1141 1142 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 1143 unsigned ElementSize = 1144 getDataLayout()->getTypeAllocSize(CP->getType()->getElementType()); 1145 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 1146 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 1147 return; 1148 } 1149 1150 if (isa<ConstantAggregateZero>(Init)) { 1151 memset(Addr, 0, (size_t)getDataLayout()->getTypeAllocSize(Init->getType())); 1152 return; 1153 } 1154 1155 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 1156 unsigned ElementSize = 1157 getDataLayout()->getTypeAllocSize(CPA->getType()->getElementType()); 1158 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 1159 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 1160 return; 1161 } 1162 1163 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 1164 const StructLayout *SL = 1165 getDataLayout()->getStructLayout(cast<StructType>(CPS->getType())); 1166 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 1167 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 1168 return; 1169 } 1170 1171 if (const ConstantDataSequential *CDS = 1172 dyn_cast<ConstantDataSequential>(Init)) { 1173 // CDS is already laid out in host memory order. 1174 StringRef Data = CDS->getRawDataValues(); 1175 memcpy(Addr, Data.data(), Data.size()); 1176 return; 1177 } 1178 1179 if (Init->getType()->isFirstClassType()) { 1180 GenericValue Val = getConstantValue(Init); 1181 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 1182 return; 1183 } 1184 1185 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1186 llvm_unreachable("Unknown constant type to initialize memory with!"); 1187 } 1188 1189 /// EmitGlobals - Emit all of the global variables to memory, storing their 1190 /// addresses into GlobalAddress. This must make sure to copy the contents of 1191 /// their initializers into the memory. 1192 void ExecutionEngine::emitGlobals() { 1193 // Loop over all of the global variables in the program, allocating the memory 1194 // to hold them. If there is more than one module, do a prepass over globals 1195 // to figure out how the different modules should link together. 1196 std::map<std::pair<std::string, Type*>, 1197 const GlobalValue*> LinkedGlobalsMap; 1198 1199 if (Modules.size() != 1) { 1200 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1201 Module &M = *Modules[m]; 1202 for (Module::const_global_iterator I = M.global_begin(), 1203 E = M.global_end(); I != E; ++I) { 1204 const GlobalValue *GV = I; 1205 if (GV->hasLocalLinkage() || GV->isDeclaration() || 1206 GV->hasAppendingLinkage() || !GV->hasName()) 1207 continue;// Ignore external globals and globals with internal linkage. 1208 1209 const GlobalValue *&GVEntry = 1210 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1211 1212 // If this is the first time we've seen this global, it is the canonical 1213 // version. 1214 if (!GVEntry) { 1215 GVEntry = GV; 1216 continue; 1217 } 1218 1219 // If the existing global is strong, never replace it. 1220 if (GVEntry->hasExternalLinkage() || 1221 GVEntry->hasDLLImportLinkage() || 1222 GVEntry->hasDLLExportLinkage()) 1223 continue; 1224 1225 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1226 // symbol. FIXME is this right for common? 1227 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1228 GVEntry = GV; 1229 } 1230 } 1231 } 1232 1233 std::vector<const GlobalValue*> NonCanonicalGlobals; 1234 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1235 Module &M = *Modules[m]; 1236 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1237 I != E; ++I) { 1238 // In the multi-module case, see what this global maps to. 1239 if (!LinkedGlobalsMap.empty()) { 1240 if (const GlobalValue *GVEntry = 1241 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 1242 // If something else is the canonical global, ignore this one. 1243 if (GVEntry != &*I) { 1244 NonCanonicalGlobals.push_back(I); 1245 continue; 1246 } 1247 } 1248 } 1249 1250 if (!I->isDeclaration()) { 1251 addGlobalMapping(I, getMemoryForGV(I)); 1252 } else { 1253 // External variable reference. Try to use the dynamic loader to 1254 // get a pointer to it. 1255 if (void *SymAddr = 1256 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName())) 1257 addGlobalMapping(I, SymAddr); 1258 else { 1259 report_fatal_error("Could not resolve external global address: " 1260 +I->getName()); 1261 } 1262 } 1263 } 1264 1265 // If there are multiple modules, map the non-canonical globals to their 1266 // canonical location. 1267 if (!NonCanonicalGlobals.empty()) { 1268 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1269 const GlobalValue *GV = NonCanonicalGlobals[i]; 1270 const GlobalValue *CGV = 1271 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1272 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1273 assert(Ptr && "Canonical global wasn't codegen'd!"); 1274 addGlobalMapping(GV, Ptr); 1275 } 1276 } 1277 1278 // Now that all of the globals are set up in memory, loop through them all 1279 // and initialize their contents. 1280 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1281 I != E; ++I) { 1282 if (!I->isDeclaration()) { 1283 if (!LinkedGlobalsMap.empty()) { 1284 if (const GlobalValue *GVEntry = 1285 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 1286 if (GVEntry != &*I) // Not the canonical variable. 1287 continue; 1288 } 1289 EmitGlobalVariable(I); 1290 } 1291 } 1292 } 1293 } 1294 1295 // EmitGlobalVariable - This method emits the specified global variable to the 1296 // address specified in GlobalAddresses, or allocates new memory if it's not 1297 // already in the map. 1298 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1299 void *GA = getPointerToGlobalIfAvailable(GV); 1300 1301 if (GA == 0) { 1302 // If it's not already specified, allocate memory for the global. 1303 GA = getMemoryForGV(GV); 1304 addGlobalMapping(GV, GA); 1305 } 1306 1307 // Don't initialize if it's thread local, let the client do it. 1308 if (!GV->isThreadLocal()) 1309 InitializeMemory(GV->getInitializer(), GA); 1310 1311 Type *ElTy = GV->getType()->getElementType(); 1312 size_t GVSize = (size_t)getDataLayout()->getTypeAllocSize(ElTy); 1313 NumInitBytes += (unsigned)GVSize; 1314 ++NumGlobals; 1315 } 1316 1317 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1318 : EE(EE), GlobalAddressMap(this) { 1319 } 1320 1321 sys::Mutex * 1322 ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) { 1323 return &EES->EE.lock; 1324 } 1325 1326 void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES, 1327 const GlobalValue *Old) { 1328 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1329 EES->GlobalAddressReverseMap.erase(OldVal); 1330 } 1331 1332 void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *, 1333 const GlobalValue *, 1334 const GlobalValue *) { 1335 llvm_unreachable("The ExecutionEngine doesn't know how to handle a" 1336 " RAUW on a value it has a global mapping for."); 1337 } 1338