xref: /llvm-project/llvm/lib/ExecutionEngine/ExecutionEngine.cpp (revision 8c34dd82575920209d18f9fb93634886f7edbe26)
1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the common interface used by the various execution engine
11 // subclasses.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ExecutionEngine/ExecutionEngine.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ExecutionEngine/GenericValue.h"
20 #include "llvm/ExecutionEngine/JITEventListener.h"
21 #include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Mangler.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/IR/ValueHandle.h"
29 #include "llvm/Object/Archive.h"
30 #include "llvm/Object/ObjectFile.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/DynamicLibrary.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/Host.h"
35 #include "llvm/Support/MutexGuard.h"
36 #include "llvm/Support/TargetRegistry.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include <cmath>
40 #include <cstring>
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "jit"
44 
45 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
46 STATISTIC(NumGlobals  , "Number of global vars initialized");
47 
48 ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
49     std::unique_ptr<Module> M, std::string *ErrorStr,
50     std::shared_ptr<MCJITMemoryManager> MemMgr,
51     std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver,
52     std::unique_ptr<TargetMachine> TM) = nullptr;
53 
54 ExecutionEngine *(*ExecutionEngine::OrcMCJITReplacementCtor)(
55   std::string *ErrorStr, std::shared_ptr<MCJITMemoryManager> MemMgr,
56   std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver,
57   std::unique_ptr<TargetMachine> TM) = nullptr;
58 
59 ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M,
60                                                 std::string *ErrorStr) =nullptr;
61 
62 void JITEventListener::anchor() {}
63 
64 void ExecutionEngine::Init(std::unique_ptr<Module> M) {
65   CompilingLazily         = false;
66   GVCompilationDisabled   = false;
67   SymbolSearchingDisabled = false;
68 
69   // IR module verification is enabled by default in debug builds, and disabled
70   // by default in release builds.
71 #ifndef NDEBUG
72   VerifyModules = true;
73 #else
74   VerifyModules = false;
75 #endif
76 
77   assert(M && "Module is null?");
78   Modules.push_back(std::move(M));
79 }
80 
81 ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M)
82     : DL(M->getDataLayout()), LazyFunctionCreator(nullptr) {
83   Init(std::move(M));
84 }
85 
86 ExecutionEngine::ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M)
87     : DL(std::move(DL)), LazyFunctionCreator(nullptr) {
88   Init(std::move(M));
89 }
90 
91 ExecutionEngine::~ExecutionEngine() {
92   clearAllGlobalMappings();
93 }
94 
95 namespace {
96 /// \brief Helper class which uses a value handler to automatically deletes the
97 /// memory block when the GlobalVariable is destroyed.
98 class GVMemoryBlock final : public CallbackVH {
99   GVMemoryBlock(const GlobalVariable *GV)
100     : CallbackVH(const_cast<GlobalVariable*>(GV)) {}
101 
102 public:
103   /// \brief Returns the address the GlobalVariable should be written into.  The
104   /// GVMemoryBlock object prefixes that.
105   static char *Create(const GlobalVariable *GV, const DataLayout& TD) {
106     Type *ElTy = GV->getValueType();
107     size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
108     void *RawMemory = ::operator new(
109         alignTo(sizeof(GVMemoryBlock), TD.getPreferredAlignment(GV)) + GVSize);
110     new(RawMemory) GVMemoryBlock(GV);
111     return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
112   }
113 
114   void deleted() override {
115     // We allocated with operator new and with some extra memory hanging off the
116     // end, so don't just delete this.  I'm not sure if this is actually
117     // required.
118     this->~GVMemoryBlock();
119     ::operator delete(this);
120   }
121 };
122 }  // anonymous namespace
123 
124 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
125   return GVMemoryBlock::Create(GV, getDataLayout());
126 }
127 
128 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) {
129   llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
130 }
131 
132 void
133 ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) {
134   llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
135 }
136 
137 void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) {
138   llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive.");
139 }
140 
141 bool ExecutionEngine::removeModule(Module *M) {
142   for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) {
143     Module *Found = I->get();
144     if (Found == M) {
145       I->release();
146       Modules.erase(I);
147       clearGlobalMappingsFromModule(M);
148       return true;
149     }
150   }
151   return false;
152 }
153 
154 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
155   for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
156     Function *F = Modules[i]->getFunction(FnName);
157     if (F && !F->isDeclaration())
158       return F;
159   }
160   return nullptr;
161 }
162 
163 GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(const char *Name, bool AllowInternal) {
164   for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
165     GlobalVariable *GV = Modules[i]->getGlobalVariable(Name,AllowInternal);
166     if (GV && !GV->isDeclaration())
167       return GV;
168   }
169   return nullptr;
170 }
171 
172 uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) {
173   GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Name);
174   uint64_t OldVal;
175 
176   // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the
177   // GlobalAddressMap.
178   if (I == GlobalAddressMap.end())
179     OldVal = 0;
180   else {
181     GlobalAddressReverseMap.erase(I->second);
182     OldVal = I->second;
183     GlobalAddressMap.erase(I);
184   }
185 
186   return OldVal;
187 }
188 
189 std::string ExecutionEngine::getMangledName(const GlobalValue *GV) {
190   assert(GV->hasName() && "Global must have name.");
191 
192   MutexGuard locked(lock);
193   SmallString<128> FullName;
194 
195   const DataLayout &DL =
196     GV->getParent()->getDataLayout().isDefault()
197       ? getDataLayout()
198       : GV->getParent()->getDataLayout();
199 
200   Mangler::getNameWithPrefix(FullName, GV->getName(), DL);
201   return FullName.str();
202 }
203 
204 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
205   MutexGuard locked(lock);
206   addGlobalMapping(getMangledName(GV), (uint64_t) Addr);
207 }
208 
209 void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) {
210   MutexGuard locked(lock);
211 
212   assert(!Name.empty() && "Empty GlobalMapping symbol name!");
213 
214   DEBUG(dbgs() << "JIT: Map \'" << Name  << "\' to [" << Addr << "]\n";);
215   uint64_t &CurVal = EEState.getGlobalAddressMap()[Name];
216   assert((!CurVal || !Addr) && "GlobalMapping already established!");
217   CurVal = Addr;
218 
219   // If we are using the reverse mapping, add it too.
220   if (!EEState.getGlobalAddressReverseMap().empty()) {
221     std::string &V = EEState.getGlobalAddressReverseMap()[CurVal];
222     assert((!V.empty() || !Name.empty()) &&
223            "GlobalMapping already established!");
224     V = Name;
225   }
226 }
227 
228 void ExecutionEngine::clearAllGlobalMappings() {
229   MutexGuard locked(lock);
230 
231   EEState.getGlobalAddressMap().clear();
232   EEState.getGlobalAddressReverseMap().clear();
233 }
234 
235 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
236   MutexGuard locked(lock);
237 
238   for (Function &FI : *M)
239     EEState.RemoveMapping(getMangledName(&FI));
240   for (GlobalVariable &GI : M->globals())
241     EEState.RemoveMapping(getMangledName(&GI));
242 }
243 
244 uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV,
245                                               void *Addr) {
246   MutexGuard locked(lock);
247   return updateGlobalMapping(getMangledName(GV), (uint64_t) Addr);
248 }
249 
250 uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) {
251   MutexGuard locked(lock);
252 
253   ExecutionEngineState::GlobalAddressMapTy &Map =
254     EEState.getGlobalAddressMap();
255 
256   // Deleting from the mapping?
257   if (!Addr)
258     return EEState.RemoveMapping(Name);
259 
260   uint64_t &CurVal = Map[Name];
261   uint64_t OldVal = CurVal;
262 
263   if (CurVal && !EEState.getGlobalAddressReverseMap().empty())
264     EEState.getGlobalAddressReverseMap().erase(CurVal);
265   CurVal = Addr;
266 
267   // If we are using the reverse mapping, add it too.
268   if (!EEState.getGlobalAddressReverseMap().empty()) {
269     std::string &V = EEState.getGlobalAddressReverseMap()[CurVal];
270     assert((!V.empty() || !Name.empty()) &&
271            "GlobalMapping already established!");
272     V = Name;
273   }
274   return OldVal;
275 }
276 
277 uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) {
278   MutexGuard locked(lock);
279   uint64_t Address = 0;
280   ExecutionEngineState::GlobalAddressMapTy::iterator I =
281     EEState.getGlobalAddressMap().find(S);
282   if (I != EEState.getGlobalAddressMap().end())
283     Address = I->second;
284   return Address;
285 }
286 
287 
288 void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) {
289   MutexGuard locked(lock);
290   if (void* Address = (void *) getAddressToGlobalIfAvailable(S))
291     return Address;
292   return nullptr;
293 }
294 
295 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
296   MutexGuard locked(lock);
297   return getPointerToGlobalIfAvailable(getMangledName(GV));
298 }
299 
300 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
301   MutexGuard locked(lock);
302 
303   // If we haven't computed the reverse mapping yet, do so first.
304   if (EEState.getGlobalAddressReverseMap().empty()) {
305     for (ExecutionEngineState::GlobalAddressMapTy::iterator
306            I = EEState.getGlobalAddressMap().begin(),
307            E = EEState.getGlobalAddressMap().end(); I != E; ++I) {
308       StringRef Name = I->first();
309       uint64_t Addr = I->second;
310       EEState.getGlobalAddressReverseMap().insert(std::make_pair(
311                                                           Addr, Name));
312     }
313   }
314 
315   std::map<uint64_t, std::string>::iterator I =
316     EEState.getGlobalAddressReverseMap().find((uint64_t) Addr);
317 
318   if (I != EEState.getGlobalAddressReverseMap().end()) {
319     StringRef Name = I->second;
320     for (unsigned i = 0, e = Modules.size(); i != e; ++i)
321       if (GlobalValue *GV = Modules[i]->getNamedValue(Name))
322         return GV;
323   }
324   return nullptr;
325 }
326 
327 namespace {
328 class ArgvArray {
329   std::unique_ptr<char[]> Array;
330   std::vector<std::unique_ptr<char[]>> Values;
331 public:
332   /// Turn a vector of strings into a nice argv style array of pointers to null
333   /// terminated strings.
334   void *reset(LLVMContext &C, ExecutionEngine *EE,
335               const std::vector<std::string> &InputArgv);
336 };
337 }  // anonymous namespace
338 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
339                        const std::vector<std::string> &InputArgv) {
340   Values.clear();  // Free the old contents.
341   Values.reserve(InputArgv.size());
342   unsigned PtrSize = EE->getDataLayout().getPointerSize();
343   Array = make_unique<char[]>((InputArgv.size()+1)*PtrSize);
344 
345   DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array.get() << "\n");
346   Type *SBytePtr = Type::getInt8PtrTy(C);
347 
348   for (unsigned i = 0; i != InputArgv.size(); ++i) {
349     unsigned Size = InputArgv[i].size()+1;
350     auto Dest = make_unique<char[]>(Size);
351     DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest.get() << "\n");
352 
353     std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get());
354     Dest[Size-1] = 0;
355 
356     // Endian safe: Array[i] = (PointerTy)Dest;
357     EE->StoreValueToMemory(PTOGV(Dest.get()),
358                            (GenericValue*)(&Array[i*PtrSize]), SBytePtr);
359     Values.push_back(std::move(Dest));
360   }
361 
362   // Null terminate it
363   EE->StoreValueToMemory(PTOGV(nullptr),
364                          (GenericValue*)(&Array[InputArgv.size()*PtrSize]),
365                          SBytePtr);
366   return Array.get();
367 }
368 
369 void ExecutionEngine::runStaticConstructorsDestructors(Module &module,
370                                                        bool isDtors) {
371   const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
372   GlobalVariable *GV = module.getNamedGlobal(Name);
373 
374   // If this global has internal linkage, or if it has a use, then it must be
375   // an old-style (llvmgcc3) static ctor with __main linked in and in use.  If
376   // this is the case, don't execute any of the global ctors, __main will do
377   // it.
378   if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
379 
380   // Should be an array of '{ i32, void ()* }' structs.  The first value is
381   // the init priority, which we ignore.
382   ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
383   if (!InitList)
384     return;
385   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
386     ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
387     if (!CS) continue;
388 
389     Constant *FP = CS->getOperand(1);
390     if (FP->isNullValue())
391       continue;  // Found a sentinal value, ignore.
392 
393     // Strip off constant expression casts.
394     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
395       if (CE->isCast())
396         FP = CE->getOperand(0);
397 
398     // Execute the ctor/dtor function!
399     if (Function *F = dyn_cast<Function>(FP))
400       runFunction(F, None);
401 
402     // FIXME: It is marginally lame that we just do nothing here if we see an
403     // entry we don't recognize. It might not be unreasonable for the verifier
404     // to not even allow this and just assert here.
405   }
406 }
407 
408 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
409   // Execute global ctors/dtors for each module in the program.
410   for (std::unique_ptr<Module> &M : Modules)
411     runStaticConstructorsDestructors(*M, isDtors);
412 }
413 
414 #ifndef NDEBUG
415 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
416 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
417   unsigned PtrSize = EE->getDataLayout().getPointerSize();
418   for (unsigned i = 0; i < PtrSize; ++i)
419     if (*(i + (uint8_t*)Loc))
420       return false;
421   return true;
422 }
423 #endif
424 
425 int ExecutionEngine::runFunctionAsMain(Function *Fn,
426                                        const std::vector<std::string> &argv,
427                                        const char * const * envp) {
428   std::vector<GenericValue> GVArgs;
429   GenericValue GVArgc;
430   GVArgc.IntVal = APInt(32, argv.size());
431 
432   // Check main() type
433   unsigned NumArgs = Fn->getFunctionType()->getNumParams();
434   FunctionType *FTy = Fn->getFunctionType();
435   Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
436 
437   // Check the argument types.
438   if (NumArgs > 3)
439     report_fatal_error("Invalid number of arguments of main() supplied");
440   if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty)
441     report_fatal_error("Invalid type for third argument of main() supplied");
442   if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty)
443     report_fatal_error("Invalid type for second argument of main() supplied");
444   if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32))
445     report_fatal_error("Invalid type for first argument of main() supplied");
446   if (!FTy->getReturnType()->isIntegerTy() &&
447       !FTy->getReturnType()->isVoidTy())
448     report_fatal_error("Invalid return type of main() supplied");
449 
450   ArgvArray CArgv;
451   ArgvArray CEnv;
452   if (NumArgs) {
453     GVArgs.push_back(GVArgc); // Arg #0 = argc.
454     if (NumArgs > 1) {
455       // Arg #1 = argv.
456       GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv)));
457       assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
458              "argv[0] was null after CreateArgv");
459       if (NumArgs > 2) {
460         std::vector<std::string> EnvVars;
461         for (unsigned i = 0; envp[i]; ++i)
462           EnvVars.emplace_back(envp[i]);
463         // Arg #2 = envp.
464         GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars)));
465       }
466     }
467   }
468 
469   return runFunction(Fn, GVArgs).IntVal.getZExtValue();
470 }
471 
472 EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {}
473 
474 EngineBuilder::EngineBuilder(std::unique_ptr<Module> M)
475     : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr),
476       OptLevel(CodeGenOpt::Default), MemMgr(nullptr), Resolver(nullptr),
477       CMModel(CodeModel::JITDefault), UseOrcMCJITReplacement(false) {
478 // IR module verification is enabled by default in debug builds, and disabled
479 // by default in release builds.
480 #ifndef NDEBUG
481   VerifyModules = true;
482 #else
483   VerifyModules = false;
484 #endif
485 }
486 
487 EngineBuilder::~EngineBuilder() = default;
488 
489 EngineBuilder &EngineBuilder::setMCJITMemoryManager(
490                                    std::unique_ptr<RTDyldMemoryManager> mcjmm) {
491   auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm));
492   MemMgr = SharedMM;
493   Resolver = SharedMM;
494   return *this;
495 }
496 
497 EngineBuilder&
498 EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) {
499   MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM));
500   return *this;
501 }
502 
503 EngineBuilder&
504 EngineBuilder::setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR) {
505   Resolver = std::shared_ptr<RuntimeDyld::SymbolResolver>(std::move(SR));
506   return *this;
507 }
508 
509 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
510   std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership.
511 
512   // Make sure we can resolve symbols in the program as well. The zero arg
513   // to the function tells DynamicLibrary to load the program, not a library.
514   if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr))
515     return nullptr;
516 
517   // If the user specified a memory manager but didn't specify which engine to
518   // create, we assume they only want the JIT, and we fail if they only want
519   // the interpreter.
520   if (MemMgr) {
521     if (WhichEngine & EngineKind::JIT)
522       WhichEngine = EngineKind::JIT;
523     else {
524       if (ErrorStr)
525         *ErrorStr = "Cannot create an interpreter with a memory manager.";
526       return nullptr;
527     }
528   }
529 
530   // Unless the interpreter was explicitly selected or the JIT is not linked,
531   // try making a JIT.
532   if ((WhichEngine & EngineKind::JIT) && TheTM) {
533     Triple TT(M->getTargetTriple());
534     if (!TM->getTarget().hasJIT()) {
535       errs() << "WARNING: This target JIT is not designed for the host"
536              << " you are running.  If bad things happen, please choose"
537              << " a different -march switch.\n";
538     }
539 
540     ExecutionEngine *EE = nullptr;
541     if (ExecutionEngine::OrcMCJITReplacementCtor && UseOrcMCJITReplacement) {
542       EE = ExecutionEngine::OrcMCJITReplacementCtor(ErrorStr, std::move(MemMgr),
543                                                     std::move(Resolver),
544                                                     std::move(TheTM));
545       EE->addModule(std::move(M));
546     } else if (ExecutionEngine::MCJITCtor)
547       EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr),
548                                       std::move(Resolver), std::move(TheTM));
549 
550     if (EE) {
551       EE->setVerifyModules(VerifyModules);
552       return EE;
553     }
554   }
555 
556   // If we can't make a JIT and we didn't request one specifically, try making
557   // an interpreter instead.
558   if (WhichEngine & EngineKind::Interpreter) {
559     if (ExecutionEngine::InterpCtor)
560       return ExecutionEngine::InterpCtor(std::move(M), ErrorStr);
561     if (ErrorStr)
562       *ErrorStr = "Interpreter has not been linked in.";
563     return nullptr;
564   }
565 
566   if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) {
567     if (ErrorStr)
568       *ErrorStr = "JIT has not been linked in.";
569   }
570 
571   return nullptr;
572 }
573 
574 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
575   if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
576     return getPointerToFunction(F);
577 
578   MutexGuard locked(lock);
579   if (void* P = getPointerToGlobalIfAvailable(GV))
580     return P;
581 
582   // Global variable might have been added since interpreter started.
583   if (GlobalVariable *GVar =
584           const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
585     EmitGlobalVariable(GVar);
586   else
587     llvm_unreachable("Global hasn't had an address allocated yet!");
588 
589   return getPointerToGlobalIfAvailable(GV);
590 }
591 
592 /// \brief Converts a Constant* into a GenericValue, including handling of
593 /// ConstantExpr values.
594 GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
595   // If its undefined, return the garbage.
596   if (isa<UndefValue>(C)) {
597     GenericValue Result;
598     switch (C->getType()->getTypeID()) {
599     default:
600       break;
601     case Type::IntegerTyID:
602     case Type::X86_FP80TyID:
603     case Type::FP128TyID:
604     case Type::PPC_FP128TyID:
605       // Although the value is undefined, we still have to construct an APInt
606       // with the correct bit width.
607       Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
608       break;
609     case Type::StructTyID: {
610       // if the whole struct is 'undef' just reserve memory for the value.
611       if(StructType *STy = dyn_cast<StructType>(C->getType())) {
612         unsigned int elemNum = STy->getNumElements();
613         Result.AggregateVal.resize(elemNum);
614         for (unsigned int i = 0; i < elemNum; ++i) {
615           Type *ElemTy = STy->getElementType(i);
616           if (ElemTy->isIntegerTy())
617             Result.AggregateVal[i].IntVal =
618               APInt(ElemTy->getPrimitiveSizeInBits(), 0);
619           else if (ElemTy->isAggregateType()) {
620               const Constant *ElemUndef = UndefValue::get(ElemTy);
621               Result.AggregateVal[i] = getConstantValue(ElemUndef);
622             }
623           }
624         }
625       }
626       break;
627     case Type::VectorTyID:
628       // if the whole vector is 'undef' just reserve memory for the value.
629       auto* VTy = dyn_cast<VectorType>(C->getType());
630       Type *ElemTy = VTy->getElementType();
631       unsigned int elemNum = VTy->getNumElements();
632       Result.AggregateVal.resize(elemNum);
633       if (ElemTy->isIntegerTy())
634         for (unsigned int i = 0; i < elemNum; ++i)
635           Result.AggregateVal[i].IntVal =
636             APInt(ElemTy->getPrimitiveSizeInBits(), 0);
637       break;
638     }
639     return Result;
640   }
641 
642   // Otherwise, if the value is a ConstantExpr...
643   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
644     Constant *Op0 = CE->getOperand(0);
645     switch (CE->getOpcode()) {
646     case Instruction::GetElementPtr: {
647       // Compute the index
648       GenericValue Result = getConstantValue(Op0);
649       APInt Offset(DL.getPointerSizeInBits(), 0);
650       cast<GEPOperator>(CE)->accumulateConstantOffset(DL, Offset);
651 
652       char* tmp = (char*) Result.PointerVal;
653       Result = PTOGV(tmp + Offset.getSExtValue());
654       return Result;
655     }
656     case Instruction::Trunc: {
657       GenericValue GV = getConstantValue(Op0);
658       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
659       GV.IntVal = GV.IntVal.trunc(BitWidth);
660       return GV;
661     }
662     case Instruction::ZExt: {
663       GenericValue GV = getConstantValue(Op0);
664       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
665       GV.IntVal = GV.IntVal.zext(BitWidth);
666       return GV;
667     }
668     case Instruction::SExt: {
669       GenericValue GV = getConstantValue(Op0);
670       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
671       GV.IntVal = GV.IntVal.sext(BitWidth);
672       return GV;
673     }
674     case Instruction::FPTrunc: {
675       // FIXME long double
676       GenericValue GV = getConstantValue(Op0);
677       GV.FloatVal = float(GV.DoubleVal);
678       return GV;
679     }
680     case Instruction::FPExt:{
681       // FIXME long double
682       GenericValue GV = getConstantValue(Op0);
683       GV.DoubleVal = double(GV.FloatVal);
684       return GV;
685     }
686     case Instruction::UIToFP: {
687       GenericValue GV = getConstantValue(Op0);
688       if (CE->getType()->isFloatTy())
689         GV.FloatVal = float(GV.IntVal.roundToDouble());
690       else if (CE->getType()->isDoubleTy())
691         GV.DoubleVal = GV.IntVal.roundToDouble();
692       else if (CE->getType()->isX86_FP80Ty()) {
693         APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
694         (void)apf.convertFromAPInt(GV.IntVal,
695                                    false,
696                                    APFloat::rmNearestTiesToEven);
697         GV.IntVal = apf.bitcastToAPInt();
698       }
699       return GV;
700     }
701     case Instruction::SIToFP: {
702       GenericValue GV = getConstantValue(Op0);
703       if (CE->getType()->isFloatTy())
704         GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
705       else if (CE->getType()->isDoubleTy())
706         GV.DoubleVal = GV.IntVal.signedRoundToDouble();
707       else if (CE->getType()->isX86_FP80Ty()) {
708         APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
709         (void)apf.convertFromAPInt(GV.IntVal,
710                                    true,
711                                    APFloat::rmNearestTiesToEven);
712         GV.IntVal = apf.bitcastToAPInt();
713       }
714       return GV;
715     }
716     case Instruction::FPToUI: // double->APInt conversion handles sign
717     case Instruction::FPToSI: {
718       GenericValue GV = getConstantValue(Op0);
719       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
720       if (Op0->getType()->isFloatTy())
721         GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
722       else if (Op0->getType()->isDoubleTy())
723         GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
724       else if (Op0->getType()->isX86_FP80Ty()) {
725         APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal);
726         uint64_t v;
727         bool ignored;
728         (void)apf.convertToInteger(&v, BitWidth,
729                                    CE->getOpcode()==Instruction::FPToSI,
730                                    APFloat::rmTowardZero, &ignored);
731         GV.IntVal = v; // endian?
732       }
733       return GV;
734     }
735     case Instruction::PtrToInt: {
736       GenericValue GV = getConstantValue(Op0);
737       uint32_t PtrWidth = DL.getTypeSizeInBits(Op0->getType());
738       assert(PtrWidth <= 64 && "Bad pointer width");
739       GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
740       uint32_t IntWidth = DL.getTypeSizeInBits(CE->getType());
741       GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth);
742       return GV;
743     }
744     case Instruction::IntToPtr: {
745       GenericValue GV = getConstantValue(Op0);
746       uint32_t PtrWidth = DL.getTypeSizeInBits(CE->getType());
747       GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
748       assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
749       GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
750       return GV;
751     }
752     case Instruction::BitCast: {
753       GenericValue GV = getConstantValue(Op0);
754       Type* DestTy = CE->getType();
755       switch (Op0->getType()->getTypeID()) {
756         default: llvm_unreachable("Invalid bitcast operand");
757         case Type::IntegerTyID:
758           assert(DestTy->isFloatingPointTy() && "invalid bitcast");
759           if (DestTy->isFloatTy())
760             GV.FloatVal = GV.IntVal.bitsToFloat();
761           else if (DestTy->isDoubleTy())
762             GV.DoubleVal = GV.IntVal.bitsToDouble();
763           break;
764         case Type::FloatTyID:
765           assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
766           GV.IntVal = APInt::floatToBits(GV.FloatVal);
767           break;
768         case Type::DoubleTyID:
769           assert(DestTy->isIntegerTy(64) && "Invalid bitcast");
770           GV.IntVal = APInt::doubleToBits(GV.DoubleVal);
771           break;
772         case Type::PointerTyID:
773           assert(DestTy->isPointerTy() && "Invalid bitcast");
774           break; // getConstantValue(Op0)  above already converted it
775       }
776       return GV;
777     }
778     case Instruction::Add:
779     case Instruction::FAdd:
780     case Instruction::Sub:
781     case Instruction::FSub:
782     case Instruction::Mul:
783     case Instruction::FMul:
784     case Instruction::UDiv:
785     case Instruction::SDiv:
786     case Instruction::URem:
787     case Instruction::SRem:
788     case Instruction::And:
789     case Instruction::Or:
790     case Instruction::Xor: {
791       GenericValue LHS = getConstantValue(Op0);
792       GenericValue RHS = getConstantValue(CE->getOperand(1));
793       GenericValue GV;
794       switch (CE->getOperand(0)->getType()->getTypeID()) {
795       default: llvm_unreachable("Bad add type!");
796       case Type::IntegerTyID:
797         switch (CE->getOpcode()) {
798           default: llvm_unreachable("Invalid integer opcode");
799           case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
800           case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
801           case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
802           case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
803           case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
804           case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
805           case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
806           case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
807           case Instruction::Or:  GV.IntVal = LHS.IntVal | RHS.IntVal; break;
808           case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
809         }
810         break;
811       case Type::FloatTyID:
812         switch (CE->getOpcode()) {
813           default: llvm_unreachable("Invalid float opcode");
814           case Instruction::FAdd:
815             GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
816           case Instruction::FSub:
817             GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
818           case Instruction::FMul:
819             GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
820           case Instruction::FDiv:
821             GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
822           case Instruction::FRem:
823             GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break;
824         }
825         break;
826       case Type::DoubleTyID:
827         switch (CE->getOpcode()) {
828           default: llvm_unreachable("Invalid double opcode");
829           case Instruction::FAdd:
830             GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
831           case Instruction::FSub:
832             GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
833           case Instruction::FMul:
834             GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
835           case Instruction::FDiv:
836             GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
837           case Instruction::FRem:
838             GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
839         }
840         break;
841       case Type::X86_FP80TyID:
842       case Type::PPC_FP128TyID:
843       case Type::FP128TyID: {
844         const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics();
845         APFloat apfLHS = APFloat(Sem, LHS.IntVal);
846         switch (CE->getOpcode()) {
847           default: llvm_unreachable("Invalid long double opcode");
848           case Instruction::FAdd:
849             apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven);
850             GV.IntVal = apfLHS.bitcastToAPInt();
851             break;
852           case Instruction::FSub:
853             apfLHS.subtract(APFloat(Sem, RHS.IntVal),
854                             APFloat::rmNearestTiesToEven);
855             GV.IntVal = apfLHS.bitcastToAPInt();
856             break;
857           case Instruction::FMul:
858             apfLHS.multiply(APFloat(Sem, RHS.IntVal),
859                             APFloat::rmNearestTiesToEven);
860             GV.IntVal = apfLHS.bitcastToAPInt();
861             break;
862           case Instruction::FDiv:
863             apfLHS.divide(APFloat(Sem, RHS.IntVal),
864                           APFloat::rmNearestTiesToEven);
865             GV.IntVal = apfLHS.bitcastToAPInt();
866             break;
867           case Instruction::FRem:
868             apfLHS.mod(APFloat(Sem, RHS.IntVal));
869             GV.IntVal = apfLHS.bitcastToAPInt();
870             break;
871           }
872         }
873         break;
874       }
875       return GV;
876     }
877     default:
878       break;
879     }
880 
881     SmallString<256> Msg;
882     raw_svector_ostream OS(Msg);
883     OS << "ConstantExpr not handled: " << *CE;
884     report_fatal_error(OS.str());
885   }
886 
887   // Otherwise, we have a simple constant.
888   GenericValue Result;
889   switch (C->getType()->getTypeID()) {
890   case Type::FloatTyID:
891     Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
892     break;
893   case Type::DoubleTyID:
894     Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
895     break;
896   case Type::X86_FP80TyID:
897   case Type::FP128TyID:
898   case Type::PPC_FP128TyID:
899     Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
900     break;
901   case Type::IntegerTyID:
902     Result.IntVal = cast<ConstantInt>(C)->getValue();
903     break;
904   case Type::PointerTyID:
905     if (isa<ConstantPointerNull>(C))
906       Result.PointerVal = nullptr;
907     else if (const Function *F = dyn_cast<Function>(C))
908       Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
909     else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
910       Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
911     else
912       llvm_unreachable("Unknown constant pointer type!");
913     break;
914   case Type::VectorTyID: {
915     unsigned elemNum;
916     Type* ElemTy;
917     const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
918     const ConstantVector *CV = dyn_cast<ConstantVector>(C);
919     const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C);
920 
921     if (CDV) {
922         elemNum = CDV->getNumElements();
923         ElemTy = CDV->getElementType();
924     } else if (CV || CAZ) {
925         VectorType* VTy = dyn_cast<VectorType>(C->getType());
926         elemNum = VTy->getNumElements();
927         ElemTy = VTy->getElementType();
928     } else {
929         llvm_unreachable("Unknown constant vector type!");
930     }
931 
932     Result.AggregateVal.resize(elemNum);
933     // Check if vector holds floats.
934     if(ElemTy->isFloatTy()) {
935       if (CAZ) {
936         GenericValue floatZero;
937         floatZero.FloatVal = 0.f;
938         std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
939                   floatZero);
940         break;
941       }
942       if(CV) {
943         for (unsigned i = 0; i < elemNum; ++i)
944           if (!isa<UndefValue>(CV->getOperand(i)))
945             Result.AggregateVal[i].FloatVal = cast<ConstantFP>(
946               CV->getOperand(i))->getValueAPF().convertToFloat();
947         break;
948       }
949       if(CDV)
950         for (unsigned i = 0; i < elemNum; ++i)
951           Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i);
952 
953       break;
954     }
955     // Check if vector holds doubles.
956     if (ElemTy->isDoubleTy()) {
957       if (CAZ) {
958         GenericValue doubleZero;
959         doubleZero.DoubleVal = 0.0;
960         std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
961                   doubleZero);
962         break;
963       }
964       if(CV) {
965         for (unsigned i = 0; i < elemNum; ++i)
966           if (!isa<UndefValue>(CV->getOperand(i)))
967             Result.AggregateVal[i].DoubleVal = cast<ConstantFP>(
968               CV->getOperand(i))->getValueAPF().convertToDouble();
969         break;
970       }
971       if(CDV)
972         for (unsigned i = 0; i < elemNum; ++i)
973           Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i);
974 
975       break;
976     }
977     // Check if vector holds integers.
978     if (ElemTy->isIntegerTy()) {
979       if (CAZ) {
980         GenericValue intZero;
981         intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull);
982         std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
983                   intZero);
984         break;
985       }
986       if(CV) {
987         for (unsigned i = 0; i < elemNum; ++i)
988           if (!isa<UndefValue>(CV->getOperand(i)))
989             Result.AggregateVal[i].IntVal = cast<ConstantInt>(
990                                             CV->getOperand(i))->getValue();
991           else {
992             Result.AggregateVal[i].IntVal =
993               APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0);
994           }
995         break;
996       }
997       if(CDV)
998         for (unsigned i = 0; i < elemNum; ++i)
999           Result.AggregateVal[i].IntVal = APInt(
1000             CDV->getElementType()->getPrimitiveSizeInBits(),
1001             CDV->getElementAsInteger(i));
1002 
1003       break;
1004     }
1005     llvm_unreachable("Unknown constant pointer type!");
1006   }
1007   break;
1008 
1009   default:
1010     SmallString<256> Msg;
1011     raw_svector_ostream OS(Msg);
1012     OS << "ERROR: Constant unimplemented for type: " << *C->getType();
1013     report_fatal_error(OS.str());
1014   }
1015 
1016   return Result;
1017 }
1018 
1019 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
1020 /// with the integer held in IntVal.
1021 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
1022                              unsigned StoreBytes) {
1023   assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
1024   const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
1025 
1026   if (sys::IsLittleEndianHost) {
1027     // Little-endian host - the source is ordered from LSB to MSB.  Order the
1028     // destination from LSB to MSB: Do a straight copy.
1029     memcpy(Dst, Src, StoreBytes);
1030   } else {
1031     // Big-endian host - the source is an array of 64 bit words ordered from
1032     // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination
1033     // from MSB to LSB: Reverse the word order, but not the bytes in a word.
1034     while (StoreBytes > sizeof(uint64_t)) {
1035       StoreBytes -= sizeof(uint64_t);
1036       // May not be aligned so use memcpy.
1037       memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
1038       Src += sizeof(uint64_t);
1039     }
1040 
1041     memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
1042   }
1043 }
1044 
1045 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
1046                                          GenericValue *Ptr, Type *Ty) {
1047   const unsigned StoreBytes = getDataLayout().getTypeStoreSize(Ty);
1048 
1049   switch (Ty->getTypeID()) {
1050   default:
1051     dbgs() << "Cannot store value of type " << *Ty << "!\n";
1052     break;
1053   case Type::IntegerTyID:
1054     StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
1055     break;
1056   case Type::FloatTyID:
1057     *((float*)Ptr) = Val.FloatVal;
1058     break;
1059   case Type::DoubleTyID:
1060     *((double*)Ptr) = Val.DoubleVal;
1061     break;
1062   case Type::X86_FP80TyID:
1063     memcpy(Ptr, Val.IntVal.getRawData(), 10);
1064     break;
1065   case Type::PointerTyID:
1066     // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
1067     if (StoreBytes != sizeof(PointerTy))
1068       memset(&(Ptr->PointerVal), 0, StoreBytes);
1069 
1070     *((PointerTy*)Ptr) = Val.PointerVal;
1071     break;
1072   case Type::VectorTyID:
1073     for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) {
1074       if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
1075         *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal;
1076       if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
1077         *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal;
1078       if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) {
1079         unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8;
1080         StoreIntToMemory(Val.AggregateVal[i].IntVal,
1081           (uint8_t*)Ptr + numOfBytes*i, numOfBytes);
1082       }
1083     }
1084     break;
1085   }
1086 
1087   if (sys::IsLittleEndianHost != getDataLayout().isLittleEndian())
1088     // Host and target are different endian - reverse the stored bytes.
1089     std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
1090 }
1091 
1092 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
1093 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
1094 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
1095   assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
1096   uint8_t *Dst = reinterpret_cast<uint8_t *>(
1097                    const_cast<uint64_t *>(IntVal.getRawData()));
1098 
1099   if (sys::IsLittleEndianHost)
1100     // Little-endian host - the destination must be ordered from LSB to MSB.
1101     // The source is ordered from LSB to MSB: Do a straight copy.
1102     memcpy(Dst, Src, LoadBytes);
1103   else {
1104     // Big-endian - the destination is an array of 64 bit words ordered from
1105     // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is
1106     // ordered from MSB to LSB: Reverse the word order, but not the bytes in
1107     // a word.
1108     while (LoadBytes > sizeof(uint64_t)) {
1109       LoadBytes -= sizeof(uint64_t);
1110       // May not be aligned so use memcpy.
1111       memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
1112       Dst += sizeof(uint64_t);
1113     }
1114 
1115     memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
1116   }
1117 }
1118 
1119 /// FIXME: document
1120 ///
1121 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
1122                                           GenericValue *Ptr,
1123                                           Type *Ty) {
1124   const unsigned LoadBytes = getDataLayout().getTypeStoreSize(Ty);
1125 
1126   switch (Ty->getTypeID()) {
1127   case Type::IntegerTyID:
1128     // An APInt with all words initially zero.
1129     Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
1130     LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
1131     break;
1132   case Type::FloatTyID:
1133     Result.FloatVal = *((float*)Ptr);
1134     break;
1135   case Type::DoubleTyID:
1136     Result.DoubleVal = *((double*)Ptr);
1137     break;
1138   case Type::PointerTyID:
1139     Result.PointerVal = *((PointerTy*)Ptr);
1140     break;
1141   case Type::X86_FP80TyID: {
1142     // This is endian dependent, but it will only work on x86 anyway.
1143     // FIXME: Will not trap if loading a signaling NaN.
1144     uint64_t y[2];
1145     memcpy(y, Ptr, 10);
1146     Result.IntVal = APInt(80, y);
1147     break;
1148   }
1149   case Type::VectorTyID: {
1150     auto *VT = cast<VectorType>(Ty);
1151     Type *ElemT = VT->getElementType();
1152     const unsigned numElems = VT->getNumElements();
1153     if (ElemT->isFloatTy()) {
1154       Result.AggregateVal.resize(numElems);
1155       for (unsigned i = 0; i < numElems; ++i)
1156         Result.AggregateVal[i].FloatVal = *((float*)Ptr+i);
1157     }
1158     if (ElemT->isDoubleTy()) {
1159       Result.AggregateVal.resize(numElems);
1160       for (unsigned i = 0; i < numElems; ++i)
1161         Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i);
1162     }
1163     if (ElemT->isIntegerTy()) {
1164       GenericValue intZero;
1165       const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth();
1166       intZero.IntVal = APInt(elemBitWidth, 0);
1167       Result.AggregateVal.resize(numElems, intZero);
1168       for (unsigned i = 0; i < numElems; ++i)
1169         LoadIntFromMemory(Result.AggregateVal[i].IntVal,
1170           (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8);
1171     }
1172   break;
1173   }
1174   default:
1175     SmallString<256> Msg;
1176     raw_svector_ostream OS(Msg);
1177     OS << "Cannot load value of type " << *Ty << "!";
1178     report_fatal_error(OS.str());
1179   }
1180 }
1181 
1182 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
1183   DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
1184   DEBUG(Init->dump());
1185   if (isa<UndefValue>(Init))
1186     return;
1187 
1188   if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
1189     unsigned ElementSize =
1190         getDataLayout().getTypeAllocSize(CP->getType()->getElementType());
1191     for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
1192       InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
1193     return;
1194   }
1195 
1196   if (isa<ConstantAggregateZero>(Init)) {
1197     memset(Addr, 0, (size_t)getDataLayout().getTypeAllocSize(Init->getType()));
1198     return;
1199   }
1200 
1201   if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
1202     unsigned ElementSize =
1203         getDataLayout().getTypeAllocSize(CPA->getType()->getElementType());
1204     for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
1205       InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
1206     return;
1207   }
1208 
1209   if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
1210     const StructLayout *SL =
1211         getDataLayout().getStructLayout(cast<StructType>(CPS->getType()));
1212     for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
1213       InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
1214     return;
1215   }
1216 
1217   if (const ConstantDataSequential *CDS =
1218                dyn_cast<ConstantDataSequential>(Init)) {
1219     // CDS is already laid out in host memory order.
1220     StringRef Data = CDS->getRawDataValues();
1221     memcpy(Addr, Data.data(), Data.size());
1222     return;
1223   }
1224 
1225   if (Init->getType()->isFirstClassType()) {
1226     GenericValue Val = getConstantValue(Init);
1227     StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
1228     return;
1229   }
1230 
1231   DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n");
1232   llvm_unreachable("Unknown constant type to initialize memory with!");
1233 }
1234 
1235 /// EmitGlobals - Emit all of the global variables to memory, storing their
1236 /// addresses into GlobalAddress.  This must make sure to copy the contents of
1237 /// their initializers into the memory.
1238 void ExecutionEngine::emitGlobals() {
1239   // Loop over all of the global variables in the program, allocating the memory
1240   // to hold them.  If there is more than one module, do a prepass over globals
1241   // to figure out how the different modules should link together.
1242   std::map<std::pair<std::string, Type*>,
1243            const GlobalValue*> LinkedGlobalsMap;
1244 
1245   if (Modules.size() != 1) {
1246     for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1247       Module &M = *Modules[m];
1248       for (const auto &GV : M.globals()) {
1249         if (GV.hasLocalLinkage() || GV.isDeclaration() ||
1250             GV.hasAppendingLinkage() || !GV.hasName())
1251           continue;// Ignore external globals and globals with internal linkage.
1252 
1253         const GlobalValue *&GVEntry =
1254           LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())];
1255 
1256         // If this is the first time we've seen this global, it is the canonical
1257         // version.
1258         if (!GVEntry) {
1259           GVEntry = &GV;
1260           continue;
1261         }
1262 
1263         // If the existing global is strong, never replace it.
1264         if (GVEntry->hasExternalLinkage())
1265           continue;
1266 
1267         // Otherwise, we know it's linkonce/weak, replace it if this is a strong
1268         // symbol.  FIXME is this right for common?
1269         if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
1270           GVEntry = &GV;
1271       }
1272     }
1273   }
1274 
1275   std::vector<const GlobalValue*> NonCanonicalGlobals;
1276   for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1277     Module &M = *Modules[m];
1278     for (const auto &GV : M.globals()) {
1279       // In the multi-module case, see what this global maps to.
1280       if (!LinkedGlobalsMap.empty()) {
1281         if (const GlobalValue *GVEntry =
1282               LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) {
1283           // If something else is the canonical global, ignore this one.
1284           if (GVEntry != &GV) {
1285             NonCanonicalGlobals.push_back(&GV);
1286             continue;
1287           }
1288         }
1289       }
1290 
1291       if (!GV.isDeclaration()) {
1292         addGlobalMapping(&GV, getMemoryForGV(&GV));
1293       } else {
1294         // External variable reference. Try to use the dynamic loader to
1295         // get a pointer to it.
1296         if (void *SymAddr =
1297             sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName()))
1298           addGlobalMapping(&GV, SymAddr);
1299         else {
1300           report_fatal_error("Could not resolve external global address: "
1301                             +GV.getName());
1302         }
1303       }
1304     }
1305 
1306     // If there are multiple modules, map the non-canonical globals to their
1307     // canonical location.
1308     if (!NonCanonicalGlobals.empty()) {
1309       for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
1310         const GlobalValue *GV = NonCanonicalGlobals[i];
1311         const GlobalValue *CGV =
1312           LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
1313         void *Ptr = getPointerToGlobalIfAvailable(CGV);
1314         assert(Ptr && "Canonical global wasn't codegen'd!");
1315         addGlobalMapping(GV, Ptr);
1316       }
1317     }
1318 
1319     // Now that all of the globals are set up in memory, loop through them all
1320     // and initialize their contents.
1321     for (const auto &GV : M.globals()) {
1322       if (!GV.isDeclaration()) {
1323         if (!LinkedGlobalsMap.empty()) {
1324           if (const GlobalValue *GVEntry =
1325                 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())])
1326             if (GVEntry != &GV)  // Not the canonical variable.
1327               continue;
1328         }
1329         EmitGlobalVariable(&GV);
1330       }
1331     }
1332   }
1333 }
1334 
1335 // EmitGlobalVariable - This method emits the specified global variable to the
1336 // address specified in GlobalAddresses, or allocates new memory if it's not
1337 // already in the map.
1338 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
1339   void *GA = getPointerToGlobalIfAvailable(GV);
1340 
1341   if (!GA) {
1342     // If it's not already specified, allocate memory for the global.
1343     GA = getMemoryForGV(GV);
1344 
1345     // If we failed to allocate memory for this global, return.
1346     if (!GA) return;
1347 
1348     addGlobalMapping(GV, GA);
1349   }
1350 
1351   // Don't initialize if it's thread local, let the client do it.
1352   if (!GV->isThreadLocal())
1353     InitializeMemory(GV->getInitializer(), GA);
1354 
1355   Type *ElTy = GV->getValueType();
1356   size_t GVSize = (size_t)getDataLayout().getTypeAllocSize(ElTy);
1357   NumInitBytes += (unsigned)GVSize;
1358   ++NumGlobals;
1359 }
1360