1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/Module.h" 19 #include "llvm/ModuleProvider.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ExecutionEngine/ExecutionEngine.h" 22 #include "llvm/ExecutionEngine/GenericValue.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/MutexGuard.h" 25 #include "llvm/System/DynamicLibrary.h" 26 #include "llvm/Target/TargetData.h" 27 #include <iostream> 28 using namespace llvm; 29 30 namespace { 31 Statistic<> NumInitBytes("lli", "Number of bytes of global vars initialized"); 32 Statistic<> NumGlobals ("lli", "Number of global vars initialized"); 33 } 34 35 ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0; 36 ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0; 37 38 ExecutionEngine::ExecutionEngine(ModuleProvider *P) { 39 LazyCompilationDisabled = false; 40 Modules.push_back(P); 41 assert(P && "ModuleProvider is null?"); 42 } 43 44 ExecutionEngine::ExecutionEngine(Module *M) { 45 LazyCompilationDisabled = false; 46 assert(M && "Module is null?"); 47 Modules.push_back(new ExistingModuleProvider(M)); 48 } 49 50 ExecutionEngine::~ExecutionEngine() { 51 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 52 delete Modules[i]; 53 } 54 55 /// FindFunctionNamed - Search all of the active modules to find the one that 56 /// defines FnName. This is very slow operation and shouldn't be used for 57 /// general code. 58 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 59 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 60 if (Function *F = Modules[i]->getModule()->getNamedFunction(FnName)) 61 return F; 62 } 63 return 0; 64 } 65 66 67 /// addGlobalMapping - Tell the execution engine that the specified global is 68 /// at the specified location. This is used internally as functions are JIT'd 69 /// and as global variables are laid out in memory. It can and should also be 70 /// used by clients of the EE that want to have an LLVM global overlay 71 /// existing data in memory. 72 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 73 MutexGuard locked(lock); 74 75 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 76 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 77 CurVal = Addr; 78 79 // If we are using the reverse mapping, add it too 80 if (!state.getGlobalAddressReverseMap(locked).empty()) { 81 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; 82 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 83 V = GV; 84 } 85 } 86 87 /// clearAllGlobalMappings - Clear all global mappings and start over again 88 /// use in dynamic compilation scenarios when you want to move globals 89 void ExecutionEngine::clearAllGlobalMappings() { 90 MutexGuard locked(lock); 91 92 state.getGlobalAddressMap(locked).clear(); 93 state.getGlobalAddressReverseMap(locked).clear(); 94 } 95 96 /// updateGlobalMapping - Replace an existing mapping for GV with a new 97 /// address. This updates both maps as required. If "Addr" is null, the 98 /// entry for the global is removed from the mappings. 99 void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 100 MutexGuard locked(lock); 101 102 // Deleting from the mapping? 103 if (Addr == 0) { 104 state.getGlobalAddressMap(locked).erase(GV); 105 if (!state.getGlobalAddressReverseMap(locked).empty()) 106 state.getGlobalAddressReverseMap(locked).erase(Addr); 107 return; 108 } 109 110 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 111 if (CurVal && !state.getGlobalAddressReverseMap(locked).empty()) 112 state.getGlobalAddressReverseMap(locked).erase(CurVal); 113 CurVal = Addr; 114 115 // If we are using the reverse mapping, add it too 116 if (!state.getGlobalAddressReverseMap(locked).empty()) { 117 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; 118 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 119 V = GV; 120 } 121 } 122 123 /// getPointerToGlobalIfAvailable - This returns the address of the specified 124 /// global value if it is has already been codegen'd, otherwise it returns null. 125 /// 126 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 127 MutexGuard locked(lock); 128 129 std::map<const GlobalValue*, void*>::iterator I = 130 state.getGlobalAddressMap(locked).find(GV); 131 return I != state.getGlobalAddressMap(locked).end() ? I->second : 0; 132 } 133 134 /// getGlobalValueAtAddress - Return the LLVM global value object that starts 135 /// at the specified address. 136 /// 137 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 138 MutexGuard locked(lock); 139 140 // If we haven't computed the reverse mapping yet, do so first. 141 if (state.getGlobalAddressReverseMap(locked).empty()) { 142 for (std::map<const GlobalValue*, void *>::iterator 143 I = state.getGlobalAddressMap(locked).begin(), 144 E = state.getGlobalAddressMap(locked).end(); I != E; ++I) 145 state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, 146 I->first)); 147 } 148 149 std::map<void *, const GlobalValue*>::iterator I = 150 state.getGlobalAddressReverseMap(locked).find(Addr); 151 return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 152 } 153 154 // CreateArgv - Turn a vector of strings into a nice argv style array of 155 // pointers to null terminated strings. 156 // 157 static void *CreateArgv(ExecutionEngine *EE, 158 const std::vector<std::string> &InputArgv) { 159 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 160 char *Result = new char[(InputArgv.size()+1)*PtrSize]; 161 162 DEBUG(std::cerr << "ARGV = " << (void*)Result << "\n"); 163 const Type *SBytePtr = PointerType::get(Type::SByteTy); 164 165 for (unsigned i = 0; i != InputArgv.size(); ++i) { 166 unsigned Size = InputArgv[i].size()+1; 167 char *Dest = new char[Size]; 168 DEBUG(std::cerr << "ARGV[" << i << "] = " << (void*)Dest << "\n"); 169 170 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 171 Dest[Size-1] = 0; 172 173 // Endian safe: Result[i] = (PointerTy)Dest; 174 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), 175 SBytePtr); 176 } 177 178 // Null terminate it 179 EE->StoreValueToMemory(PTOGV(0), 180 (GenericValue*)(Result+InputArgv.size()*PtrSize), 181 SBytePtr); 182 return Result; 183 } 184 185 186 /// runStaticConstructorsDestructors - This method is used to execute all of 187 /// the static constructors or destructors for a program, depending on the 188 /// value of isDtors. 189 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 190 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 191 192 // Execute global ctors/dtors for each module in the program. 193 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 194 GlobalVariable *GV = Modules[m]->getModule()->getNamedGlobal(Name); 195 196 // If this global has internal linkage, or if it has a use, then it must be 197 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 198 // this is the case, don't execute any of the global ctors, __main will do 199 // it. 200 if (!GV || GV->isExternal() || GV->hasInternalLinkage()) continue; 201 202 // Should be an array of '{ int, void ()* }' structs. The first value is 203 // the init priority, which we ignore. 204 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 205 if (!InitList) continue; 206 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 207 if (ConstantStruct *CS = 208 dyn_cast<ConstantStruct>(InitList->getOperand(i))) { 209 if (CS->getNumOperands() != 2) break; // Not array of 2-element structs. 210 211 Constant *FP = CS->getOperand(1); 212 if (FP->isNullValue()) 213 break; // Found a null terminator, exit. 214 215 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 216 if (CE->getOpcode() == Instruction::Cast) 217 FP = CE->getOperand(0); 218 if (Function *F = dyn_cast<Function>(FP)) { 219 // Execute the ctor/dtor function! 220 runFunction(F, std::vector<GenericValue>()); 221 } 222 } 223 } 224 } 225 226 /// runFunctionAsMain - This is a helper function which wraps runFunction to 227 /// handle the common task of starting up main with the specified argc, argv, 228 /// and envp parameters. 229 int ExecutionEngine::runFunctionAsMain(Function *Fn, 230 const std::vector<std::string> &argv, 231 const char * const * envp) { 232 std::vector<GenericValue> GVArgs; 233 GenericValue GVArgc; 234 GVArgc.IntVal = argv.size(); 235 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 236 if (NumArgs) { 237 GVArgs.push_back(GVArgc); // Arg #0 = argc. 238 if (NumArgs > 1) { 239 GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv. 240 assert(((char **)GVTOP(GVArgs[1]))[0] && 241 "argv[0] was null after CreateArgv"); 242 if (NumArgs > 2) { 243 std::vector<std::string> EnvVars; 244 for (unsigned i = 0; envp[i]; ++i) 245 EnvVars.push_back(envp[i]); 246 GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp. 247 } 248 } 249 } 250 return runFunction(Fn, GVArgs).IntVal; 251 } 252 253 /// If possible, create a JIT, unless the caller specifically requests an 254 /// Interpreter or there's an error. If even an Interpreter cannot be created, 255 /// NULL is returned. 256 /// 257 ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, 258 bool ForceInterpreter) { 259 ExecutionEngine *EE = 0; 260 261 // Unless the interpreter was explicitly selected, try making a JIT. 262 if (!ForceInterpreter && JITCtor) 263 EE = JITCtor(MP); 264 265 // If we can't make a JIT, make an interpreter instead. 266 if (EE == 0 && InterpCtor) 267 EE = InterpCtor(MP); 268 269 if (EE) { 270 // Make sure we can resolve symbols in the program as well. The zero arg 271 // to the function tells DynamicLibrary to load the program, not a library. 272 try { 273 sys::DynamicLibrary::LoadLibraryPermanently(0); 274 } catch (...) { 275 } 276 } 277 278 return EE; 279 } 280 281 /// getPointerToGlobal - This returns the address of the specified global 282 /// value. This may involve code generation if it's a function. 283 /// 284 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 285 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 286 return getPointerToFunction(F); 287 288 MutexGuard locked(lock); 289 void *p = state.getGlobalAddressMap(locked)[GV]; 290 if (p) 291 return p; 292 293 // Global variable might have been added since interpreter started. 294 if (GlobalVariable *GVar = 295 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 296 EmitGlobalVariable(GVar); 297 else 298 assert("Global hasn't had an address allocated yet!"); 299 return state.getGlobalAddressMap(locked)[GV]; 300 } 301 302 /// FIXME: document 303 /// 304 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 305 GenericValue Result; 306 if (isa<UndefValue>(C)) return Result; 307 308 if (ConstantExpr *CE = const_cast<ConstantExpr*>(dyn_cast<ConstantExpr>(C))) { 309 switch (CE->getOpcode()) { 310 case Instruction::GetElementPtr: { 311 Result = getConstantValue(CE->getOperand(0)); 312 std::vector<Value*> Indexes(CE->op_begin()+1, CE->op_end()); 313 uint64_t Offset = 314 TD->getIndexedOffset(CE->getOperand(0)->getType(), Indexes); 315 316 if (getTargetData()->getPointerSize() == 4) 317 Result.IntVal += Offset; 318 else 319 Result.LongVal += Offset; 320 return Result; 321 } 322 case Instruction::Cast: { 323 // We only need to handle a few cases here. Almost all casts will 324 // automatically fold, just the ones involving pointers won't. 325 // 326 Constant *Op = CE->getOperand(0); 327 GenericValue GV = getConstantValue(Op); 328 329 // Handle cast of pointer to pointer... 330 if (Op->getType()->getTypeID() == C->getType()->getTypeID()) 331 return GV; 332 333 // Handle a cast of pointer to any integral type... 334 if (isa<PointerType>(Op->getType()) && C->getType()->isIntegral()) 335 return GV; 336 337 // Handle cast of integer to a pointer... 338 if (isa<PointerType>(C->getType()) && Op->getType()->isIntegral()) 339 switch (Op->getType()->getTypeID()) { 340 case Type::BoolTyID: return PTOGV((void*)(uintptr_t)GV.BoolVal); 341 case Type::SByteTyID: return PTOGV((void*)( intptr_t)GV.SByteVal); 342 case Type::UByteTyID: return PTOGV((void*)(uintptr_t)GV.UByteVal); 343 case Type::ShortTyID: return PTOGV((void*)( intptr_t)GV.ShortVal); 344 case Type::UShortTyID: return PTOGV((void*)(uintptr_t)GV.UShortVal); 345 case Type::IntTyID: return PTOGV((void*)( intptr_t)GV.IntVal); 346 case Type::UIntTyID: return PTOGV((void*)(uintptr_t)GV.UIntVal); 347 case Type::LongTyID: return PTOGV((void*)( intptr_t)GV.LongVal); 348 case Type::ULongTyID: return PTOGV((void*)(uintptr_t)GV.ULongVal); 349 default: assert(0 && "Unknown integral type!"); 350 } 351 break; 352 } 353 354 case Instruction::Add: 355 switch (CE->getOperand(0)->getType()->getTypeID()) { 356 default: assert(0 && "Bad add type!"); abort(); 357 case Type::LongTyID: 358 case Type::ULongTyID: 359 Result.LongVal = getConstantValue(CE->getOperand(0)).LongVal + 360 getConstantValue(CE->getOperand(1)).LongVal; 361 break; 362 case Type::IntTyID: 363 case Type::UIntTyID: 364 Result.IntVal = getConstantValue(CE->getOperand(0)).IntVal + 365 getConstantValue(CE->getOperand(1)).IntVal; 366 break; 367 case Type::ShortTyID: 368 case Type::UShortTyID: 369 Result.ShortVal = getConstantValue(CE->getOperand(0)).ShortVal + 370 getConstantValue(CE->getOperand(1)).ShortVal; 371 break; 372 case Type::SByteTyID: 373 case Type::UByteTyID: 374 Result.SByteVal = getConstantValue(CE->getOperand(0)).SByteVal + 375 getConstantValue(CE->getOperand(1)).SByteVal; 376 break; 377 case Type::FloatTyID: 378 Result.FloatVal = getConstantValue(CE->getOperand(0)).FloatVal + 379 getConstantValue(CE->getOperand(1)).FloatVal; 380 break; 381 case Type::DoubleTyID: 382 Result.DoubleVal = getConstantValue(CE->getOperand(0)).DoubleVal + 383 getConstantValue(CE->getOperand(1)).DoubleVal; 384 break; 385 } 386 return Result; 387 default: 388 break; 389 } 390 std::cerr << "ConstantExpr not handled as global var init: " << *CE << "\n"; 391 abort(); 392 } 393 394 switch (C->getType()->getTypeID()) { 395 #define GET_CONST_VAL(TY, CTY, CLASS, GETMETH) \ 396 case Type::TY##TyID: Result.TY##Val = (CTY)cast<CLASS>(C)->GETMETH(); break 397 GET_CONST_VAL(Bool , bool , ConstantBool, getValue); 398 GET_CONST_VAL(UByte , unsigned char , ConstantInt, getZExtValue); 399 GET_CONST_VAL(SByte , signed char , ConstantInt, getSExtValue); 400 GET_CONST_VAL(UShort , unsigned short, ConstantInt, getZExtValue); 401 GET_CONST_VAL(Short , signed short , ConstantInt, getSExtValue); 402 GET_CONST_VAL(UInt , unsigned int , ConstantInt, getZExtValue); 403 GET_CONST_VAL(Int , signed int , ConstantInt, getSExtValue); 404 GET_CONST_VAL(ULong , uint64_t , ConstantInt, getZExtValue); 405 GET_CONST_VAL(Long , int64_t , ConstantInt, getSExtValue); 406 GET_CONST_VAL(Float , float , ConstantFP, getValue); 407 GET_CONST_VAL(Double , double , ConstantFP, getValue); 408 #undef GET_CONST_VAL 409 case Type::PointerTyID: 410 if (isa<ConstantPointerNull>(C)) 411 Result.PointerVal = 0; 412 else if (const Function *F = dyn_cast<Function>(C)) 413 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 414 else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) 415 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 416 else 417 assert(0 && "Unknown constant pointer type!"); 418 break; 419 default: 420 std::cout << "ERROR: Constant unimp for type: " << *C->getType() << "\n"; 421 abort(); 422 } 423 return Result; 424 } 425 426 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr 427 /// is the address of the memory at which to store Val, cast to GenericValue *. 428 /// It is not a pointer to a GenericValue containing the address at which to 429 /// store Val. 430 /// 431 void ExecutionEngine::StoreValueToMemory(GenericValue Val, GenericValue *Ptr, 432 const Type *Ty) { 433 if (getTargetData()->isLittleEndian()) { 434 switch (Ty->getTypeID()) { 435 case Type::BoolTyID: 436 case Type::UByteTyID: 437 case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break; 438 case Type::UShortTyID: 439 case Type::ShortTyID: Ptr->Untyped[0] = Val.UShortVal & 255; 440 Ptr->Untyped[1] = (Val.UShortVal >> 8) & 255; 441 break; 442 Store4BytesLittleEndian: 443 case Type::FloatTyID: 444 case Type::UIntTyID: 445 case Type::IntTyID: Ptr->Untyped[0] = Val.UIntVal & 255; 446 Ptr->Untyped[1] = (Val.UIntVal >> 8) & 255; 447 Ptr->Untyped[2] = (Val.UIntVal >> 16) & 255; 448 Ptr->Untyped[3] = (Val.UIntVal >> 24) & 255; 449 break; 450 case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) 451 goto Store4BytesLittleEndian; 452 case Type::DoubleTyID: 453 case Type::ULongTyID: 454 case Type::LongTyID: 455 Ptr->Untyped[0] = (unsigned char)(Val.ULongVal ); 456 Ptr->Untyped[1] = (unsigned char)(Val.ULongVal >> 8); 457 Ptr->Untyped[2] = (unsigned char)(Val.ULongVal >> 16); 458 Ptr->Untyped[3] = (unsigned char)(Val.ULongVal >> 24); 459 Ptr->Untyped[4] = (unsigned char)(Val.ULongVal >> 32); 460 Ptr->Untyped[5] = (unsigned char)(Val.ULongVal >> 40); 461 Ptr->Untyped[6] = (unsigned char)(Val.ULongVal >> 48); 462 Ptr->Untyped[7] = (unsigned char)(Val.ULongVal >> 56); 463 break; 464 default: 465 std::cout << "Cannot store value of type " << *Ty << "!\n"; 466 } 467 } else { 468 switch (Ty->getTypeID()) { 469 case Type::BoolTyID: 470 case Type::UByteTyID: 471 case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break; 472 case Type::UShortTyID: 473 case Type::ShortTyID: Ptr->Untyped[1] = Val.UShortVal & 255; 474 Ptr->Untyped[0] = (Val.UShortVal >> 8) & 255; 475 break; 476 Store4BytesBigEndian: 477 case Type::FloatTyID: 478 case Type::UIntTyID: 479 case Type::IntTyID: Ptr->Untyped[3] = Val.UIntVal & 255; 480 Ptr->Untyped[2] = (Val.UIntVal >> 8) & 255; 481 Ptr->Untyped[1] = (Val.UIntVal >> 16) & 255; 482 Ptr->Untyped[0] = (Val.UIntVal >> 24) & 255; 483 break; 484 case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) 485 goto Store4BytesBigEndian; 486 case Type::DoubleTyID: 487 case Type::ULongTyID: 488 case Type::LongTyID: 489 Ptr->Untyped[7] = (unsigned char)(Val.ULongVal ); 490 Ptr->Untyped[6] = (unsigned char)(Val.ULongVal >> 8); 491 Ptr->Untyped[5] = (unsigned char)(Val.ULongVal >> 16); 492 Ptr->Untyped[4] = (unsigned char)(Val.ULongVal >> 24); 493 Ptr->Untyped[3] = (unsigned char)(Val.ULongVal >> 32); 494 Ptr->Untyped[2] = (unsigned char)(Val.ULongVal >> 40); 495 Ptr->Untyped[1] = (unsigned char)(Val.ULongVal >> 48); 496 Ptr->Untyped[0] = (unsigned char)(Val.ULongVal >> 56); 497 break; 498 default: 499 std::cout << "Cannot store value of type " << *Ty << "!\n"; 500 } 501 } 502 } 503 504 /// FIXME: document 505 /// 506 GenericValue ExecutionEngine::LoadValueFromMemory(GenericValue *Ptr, 507 const Type *Ty) { 508 GenericValue Result; 509 if (getTargetData()->isLittleEndian()) { 510 switch (Ty->getTypeID()) { 511 case Type::BoolTyID: 512 case Type::UByteTyID: 513 case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break; 514 case Type::UShortTyID: 515 case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[0] | 516 ((unsigned)Ptr->Untyped[1] << 8); 517 break; 518 Load4BytesLittleEndian: 519 case Type::FloatTyID: 520 case Type::UIntTyID: 521 case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[0] | 522 ((unsigned)Ptr->Untyped[1] << 8) | 523 ((unsigned)Ptr->Untyped[2] << 16) | 524 ((unsigned)Ptr->Untyped[3] << 24); 525 break; 526 case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) 527 goto Load4BytesLittleEndian; 528 case Type::DoubleTyID: 529 case Type::ULongTyID: 530 case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[0] | 531 ((uint64_t)Ptr->Untyped[1] << 8) | 532 ((uint64_t)Ptr->Untyped[2] << 16) | 533 ((uint64_t)Ptr->Untyped[3] << 24) | 534 ((uint64_t)Ptr->Untyped[4] << 32) | 535 ((uint64_t)Ptr->Untyped[5] << 40) | 536 ((uint64_t)Ptr->Untyped[6] << 48) | 537 ((uint64_t)Ptr->Untyped[7] << 56); 538 break; 539 default: 540 std::cout << "Cannot load value of type " << *Ty << "!\n"; 541 abort(); 542 } 543 } else { 544 switch (Ty->getTypeID()) { 545 case Type::BoolTyID: 546 case Type::UByteTyID: 547 case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break; 548 case Type::UShortTyID: 549 case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[1] | 550 ((unsigned)Ptr->Untyped[0] << 8); 551 break; 552 Load4BytesBigEndian: 553 case Type::FloatTyID: 554 case Type::UIntTyID: 555 case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[3] | 556 ((unsigned)Ptr->Untyped[2] << 8) | 557 ((unsigned)Ptr->Untyped[1] << 16) | 558 ((unsigned)Ptr->Untyped[0] << 24); 559 break; 560 case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) 561 goto Load4BytesBigEndian; 562 case Type::DoubleTyID: 563 case Type::ULongTyID: 564 case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[7] | 565 ((uint64_t)Ptr->Untyped[6] << 8) | 566 ((uint64_t)Ptr->Untyped[5] << 16) | 567 ((uint64_t)Ptr->Untyped[4] << 24) | 568 ((uint64_t)Ptr->Untyped[3] << 32) | 569 ((uint64_t)Ptr->Untyped[2] << 40) | 570 ((uint64_t)Ptr->Untyped[1] << 48) | 571 ((uint64_t)Ptr->Untyped[0] << 56); 572 break; 573 default: 574 std::cout << "Cannot load value of type " << *Ty << "!\n"; 575 abort(); 576 } 577 } 578 return Result; 579 } 580 581 // InitializeMemory - Recursive function to apply a Constant value into the 582 // specified memory location... 583 // 584 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 585 if (isa<UndefValue>(Init)) { 586 return; 587 } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(Init)) { 588 unsigned ElementSize = 589 getTargetData()->getTypeSize(CP->getType()->getElementType()); 590 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 591 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 592 return; 593 } else if (Init->getType()->isFirstClassType()) { 594 GenericValue Val = getConstantValue(Init); 595 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 596 return; 597 } else if (isa<ConstantAggregateZero>(Init)) { 598 memset(Addr, 0, (size_t)getTargetData()->getTypeSize(Init->getType())); 599 return; 600 } 601 602 switch (Init->getType()->getTypeID()) { 603 case Type::ArrayTyID: { 604 const ConstantArray *CPA = cast<ConstantArray>(Init); 605 unsigned ElementSize = 606 getTargetData()->getTypeSize(CPA->getType()->getElementType()); 607 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 608 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 609 return; 610 } 611 612 case Type::StructTyID: { 613 const ConstantStruct *CPS = cast<ConstantStruct>(Init); 614 const StructLayout *SL = 615 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 616 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 617 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->MemberOffsets[i]); 618 return; 619 } 620 621 default: 622 std::cerr << "Bad Type: " << *Init->getType() << "\n"; 623 assert(0 && "Unknown constant type to initialize memory with!"); 624 } 625 } 626 627 /// EmitGlobals - Emit all of the global variables to memory, storing their 628 /// addresses into GlobalAddress. This must make sure to copy the contents of 629 /// their initializers into the memory. 630 /// 631 void ExecutionEngine::emitGlobals() { 632 const TargetData *TD = getTargetData(); 633 634 // Loop over all of the global variables in the program, allocating the memory 635 // to hold them. If there is more than one module, do a prepass over globals 636 // to figure out how the different modules should link together. 637 // 638 std::map<std::pair<std::string, const Type*>, 639 const GlobalValue*> LinkedGlobalsMap; 640 641 if (Modules.size() != 1) { 642 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 643 Module &M = *Modules[m]->getModule(); 644 for (Module::const_global_iterator I = M.global_begin(), 645 E = M.global_end(); I != E; ++I) { 646 const GlobalValue *GV = I; 647 if (GV->hasInternalLinkage() || GV->isExternal() || 648 GV->hasAppendingLinkage() || !GV->hasName()) 649 continue;// Ignore external globals and globals with internal linkage. 650 651 const GlobalValue *&GVEntry = 652 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 653 654 // If this is the first time we've seen this global, it is the canonical 655 // version. 656 if (!GVEntry) { 657 GVEntry = GV; 658 continue; 659 } 660 661 // If the existing global is strong, never replace it. 662 if (GVEntry->hasExternalLinkage() || 663 GVEntry->hasDLLImportLinkage() || 664 GVEntry->hasDLLExportLinkage()) 665 continue; 666 667 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 668 // symbol. 669 if (GV->hasExternalLinkage()) 670 GVEntry = GV; 671 } 672 } 673 } 674 675 std::vector<const GlobalValue*> NonCanonicalGlobals; 676 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 677 Module &M = *Modules[m]->getModule(); 678 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 679 I != E; ++I) { 680 // In the multi-module case, see what this global maps to. 681 if (!LinkedGlobalsMap.empty()) { 682 if (const GlobalValue *GVEntry = 683 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 684 // If something else is the canonical global, ignore this one. 685 if (GVEntry != &*I) { 686 NonCanonicalGlobals.push_back(I); 687 continue; 688 } 689 } 690 } 691 692 if (!I->isExternal()) { 693 // Get the type of the global. 694 const Type *Ty = I->getType()->getElementType(); 695 696 // Allocate some memory for it! 697 unsigned Size = TD->getTypeSize(Ty); 698 addGlobalMapping(I, new char[Size]); 699 } else { 700 // External variable reference. Try to use the dynamic loader to 701 // get a pointer to it. 702 if (void *SymAddr = 703 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str())) 704 addGlobalMapping(I, SymAddr); 705 else { 706 std::cerr << "Could not resolve external global address: " 707 << I->getName() << "\n"; 708 abort(); 709 } 710 } 711 } 712 713 // If there are multiple modules, map the non-canonical globals to their 714 // canonical location. 715 if (!NonCanonicalGlobals.empty()) { 716 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 717 const GlobalValue *GV = NonCanonicalGlobals[i]; 718 const GlobalValue *CGV = 719 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 720 void *Ptr = getPointerToGlobalIfAvailable(CGV); 721 assert(Ptr && "Canonical global wasn't codegen'd!"); 722 addGlobalMapping(GV, getPointerToGlobalIfAvailable(CGV)); 723 } 724 } 725 726 // Now that all of the globals are set up in memory, loop through them all and 727 // initialize their contents. 728 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 729 I != E; ++I) { 730 if (!I->isExternal()) { 731 if (!LinkedGlobalsMap.empty()) { 732 if (const GlobalValue *GVEntry = 733 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 734 if (GVEntry != &*I) // Not the canonical variable. 735 continue; 736 } 737 EmitGlobalVariable(I); 738 } 739 } 740 } 741 } 742 743 // EmitGlobalVariable - This method emits the specified global variable to the 744 // address specified in GlobalAddresses, or allocates new memory if it's not 745 // already in the map. 746 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 747 void *GA = getPointerToGlobalIfAvailable(GV); 748 DEBUG(std::cerr << "Global '" << GV->getName() << "' -> " << GA << "\n"); 749 750 const Type *ElTy = GV->getType()->getElementType(); 751 size_t GVSize = (size_t)getTargetData()->getTypeSize(ElTy); 752 if (GA == 0) { 753 // If it's not already specified, allocate memory for the global. 754 GA = new char[GVSize]; 755 addGlobalMapping(GV, GA); 756 } 757 758 InitializeMemory(GV->getInitializer(), GA); 759 NumInitBytes += (unsigned)GVSize; 760 ++NumGlobals; 761 } 762