1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/ExecutionEngine/ExecutionEngine.h" 17 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Module.h" 21 #include "llvm/ModuleProvider.h" 22 #include "llvm/ExecutionEngine/GenericValue.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/MutexGuard.h" 27 #include "llvm/Support/ValueHandle.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/System/DynamicLibrary.h" 30 #include "llvm/System/Host.h" 31 #include "llvm/Target/TargetData.h" 32 #include <cmath> 33 #include <cstring> 34 using namespace llvm; 35 36 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 37 STATISTIC(NumGlobals , "Number of global vars initialized"); 38 39 ExecutionEngine *(*ExecutionEngine::JITCtor)(ModuleProvider *MP, 40 std::string *ErrorStr, 41 JITMemoryManager *JMM, 42 CodeGenOpt::Level OptLevel, 43 bool GVsWithCode) = 0; 44 ExecutionEngine *(*ExecutionEngine::InterpCtor)(ModuleProvider *MP, 45 std::string *ErrorStr) = 0; 46 ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0; 47 48 49 ExecutionEngine::ExecutionEngine(ModuleProvider *P) 50 : EEState(*this), 51 LazyFunctionCreator(0) { 52 CompilingLazily = false; 53 GVCompilationDisabled = false; 54 SymbolSearchingDisabled = false; 55 Modules.push_back(P); 56 assert(P && "ModuleProvider is null?"); 57 } 58 59 ExecutionEngine::~ExecutionEngine() { 60 clearAllGlobalMappings(); 61 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 62 delete Modules[i]; 63 } 64 65 char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) { 66 const Type *ElTy = GV->getType()->getElementType(); 67 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 68 return new char[GVSize]; 69 } 70 71 /// removeModuleProvider - Remove a ModuleProvider from the list of modules. 72 /// Relases the Module from the ModuleProvider, materializing it in the 73 /// process, and returns the materialized Module. 74 Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P, 75 std::string *ErrInfo) { 76 for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(), 77 E = Modules.end(); I != E; ++I) { 78 ModuleProvider *MP = *I; 79 if (MP == P) { 80 Modules.erase(I); 81 clearGlobalMappingsFromModule(MP->getModule()); 82 return MP->releaseModule(ErrInfo); 83 } 84 } 85 return NULL; 86 } 87 88 /// deleteModuleProvider - Remove a ModuleProvider from the list of modules, 89 /// and deletes the ModuleProvider and owned Module. Avoids materializing 90 /// the underlying module. 91 void ExecutionEngine::deleteModuleProvider(ModuleProvider *P, 92 std::string *ErrInfo) { 93 for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(), 94 E = Modules.end(); I != E; ++I) { 95 ModuleProvider *MP = *I; 96 if (MP == P) { 97 Modules.erase(I); 98 clearGlobalMappingsFromModule(MP->getModule()); 99 delete MP; 100 return; 101 } 102 } 103 } 104 105 /// FindFunctionNamed - Search all of the active modules to find the one that 106 /// defines FnName. This is very slow operation and shouldn't be used for 107 /// general code. 108 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 109 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 110 if (Function *F = Modules[i]->getModule()->getFunction(FnName)) 111 return F; 112 } 113 return 0; 114 } 115 116 117 void *ExecutionEngineState::RemoveMapping( 118 const MutexGuard &, const GlobalValue *ToUnmap) { 119 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 120 void *OldVal; 121 if (I == GlobalAddressMap.end()) 122 OldVal = 0; 123 else { 124 OldVal = I->second; 125 GlobalAddressMap.erase(I); 126 } 127 128 GlobalAddressReverseMap.erase(OldVal); 129 return OldVal; 130 } 131 132 /// addGlobalMapping - Tell the execution engine that the specified global is 133 /// at the specified location. This is used internally as functions are JIT'd 134 /// and as global variables are laid out in memory. It can and should also be 135 /// used by clients of the EE that want to have an LLVM global overlay 136 /// existing data in memory. 137 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 138 MutexGuard locked(lock); 139 140 DEBUG(errs() << "JIT: Map \'" << GV->getName() 141 << "\' to [" << Addr << "]\n";); 142 void *&CurVal = EEState.getGlobalAddressMap(locked)[GV]; 143 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 144 CurVal = Addr; 145 146 // If we are using the reverse mapping, add it too 147 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 148 AssertingVH<const GlobalValue> &V = 149 EEState.getGlobalAddressReverseMap(locked)[Addr]; 150 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 151 V = GV; 152 } 153 } 154 155 /// clearAllGlobalMappings - Clear all global mappings and start over again 156 /// use in dynamic compilation scenarios when you want to move globals 157 void ExecutionEngine::clearAllGlobalMappings() { 158 MutexGuard locked(lock); 159 160 EEState.getGlobalAddressMap(locked).clear(); 161 EEState.getGlobalAddressReverseMap(locked).clear(); 162 } 163 164 /// clearGlobalMappingsFromModule - Clear all global mappings that came from a 165 /// particular module, because it has been removed from the JIT. 166 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 167 MutexGuard locked(lock); 168 169 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { 170 EEState.RemoveMapping(locked, FI); 171 } 172 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 173 GI != GE; ++GI) { 174 EEState.RemoveMapping(locked, GI); 175 } 176 } 177 178 /// updateGlobalMapping - Replace an existing mapping for GV with a new 179 /// address. This updates both maps as required. If "Addr" is null, the 180 /// entry for the global is removed from the mappings. 181 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 182 MutexGuard locked(lock); 183 184 ExecutionEngineState::GlobalAddressMapTy &Map = 185 EEState.getGlobalAddressMap(locked); 186 187 // Deleting from the mapping? 188 if (Addr == 0) { 189 return EEState.RemoveMapping(locked, GV); 190 } 191 192 void *&CurVal = Map[GV]; 193 void *OldVal = CurVal; 194 195 if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty()) 196 EEState.getGlobalAddressReverseMap(locked).erase(CurVal); 197 CurVal = Addr; 198 199 // If we are using the reverse mapping, add it too 200 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 201 AssertingVH<const GlobalValue> &V = 202 EEState.getGlobalAddressReverseMap(locked)[Addr]; 203 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 204 V = GV; 205 } 206 return OldVal; 207 } 208 209 /// getPointerToGlobalIfAvailable - This returns the address of the specified 210 /// global value if it is has already been codegen'd, otherwise it returns null. 211 /// 212 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 213 MutexGuard locked(lock); 214 215 ExecutionEngineState::GlobalAddressMapTy::iterator I = 216 EEState.getGlobalAddressMap(locked).find(GV); 217 return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0; 218 } 219 220 /// getGlobalValueAtAddress - Return the LLVM global value object that starts 221 /// at the specified address. 222 /// 223 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 224 MutexGuard locked(lock); 225 226 // If we haven't computed the reverse mapping yet, do so first. 227 if (EEState.getGlobalAddressReverseMap(locked).empty()) { 228 for (ExecutionEngineState::GlobalAddressMapTy::iterator 229 I = EEState.getGlobalAddressMap(locked).begin(), 230 E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I) 231 EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, 232 I->first)); 233 } 234 235 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 236 EEState.getGlobalAddressReverseMap(locked).find(Addr); 237 return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 238 } 239 240 // CreateArgv - Turn a vector of strings into a nice argv style array of 241 // pointers to null terminated strings. 242 // 243 static void *CreateArgv(LLVMContext &C, ExecutionEngine *EE, 244 const std::vector<std::string> &InputArgv) { 245 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 246 char *Result = new char[(InputArgv.size()+1)*PtrSize]; 247 248 DEBUG(errs() << "JIT: ARGV = " << (void*)Result << "\n"); 249 const Type *SBytePtr = Type::getInt8PtrTy(C); 250 251 for (unsigned i = 0; i != InputArgv.size(); ++i) { 252 unsigned Size = InputArgv[i].size()+1; 253 char *Dest = new char[Size]; 254 DEBUG(errs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"); 255 256 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 257 Dest[Size-1] = 0; 258 259 // Endian safe: Result[i] = (PointerTy)Dest; 260 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), 261 SBytePtr); 262 } 263 264 // Null terminate it 265 EE->StoreValueToMemory(PTOGV(0), 266 (GenericValue*)(Result+InputArgv.size()*PtrSize), 267 SBytePtr); 268 return Result; 269 } 270 271 272 /// runStaticConstructorsDestructors - This method is used to execute all of 273 /// the static constructors or destructors for a module, depending on the 274 /// value of isDtors. 275 void ExecutionEngine::runStaticConstructorsDestructors(Module *module, 276 bool isDtors) { 277 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 278 279 // Execute global ctors/dtors for each module in the program. 280 281 GlobalVariable *GV = module->getNamedGlobal(Name); 282 283 // If this global has internal linkage, or if it has a use, then it must be 284 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 285 // this is the case, don't execute any of the global ctors, __main will do 286 // it. 287 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 288 289 // Should be an array of '{ int, void ()* }' structs. The first value is 290 // the init priority, which we ignore. 291 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 292 if (!InitList) return; 293 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 294 if (ConstantStruct *CS = 295 dyn_cast<ConstantStruct>(InitList->getOperand(i))) { 296 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 297 298 Constant *FP = CS->getOperand(1); 299 if (FP->isNullValue()) 300 break; // Found a null terminator, exit. 301 302 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 303 if (CE->isCast()) 304 FP = CE->getOperand(0); 305 if (Function *F = dyn_cast<Function>(FP)) { 306 // Execute the ctor/dtor function! 307 runFunction(F, std::vector<GenericValue>()); 308 } 309 } 310 } 311 312 /// runStaticConstructorsDestructors - This method is used to execute all of 313 /// the static constructors or destructors for a program, depending on the 314 /// value of isDtors. 315 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 316 // Execute global ctors/dtors for each module in the program. 317 for (unsigned m = 0, e = Modules.size(); m != e; ++m) 318 runStaticConstructorsDestructors(Modules[m]->getModule(), isDtors); 319 } 320 321 #ifndef NDEBUG 322 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 323 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 324 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 325 for (unsigned i = 0; i < PtrSize; ++i) 326 if (*(i + (uint8_t*)Loc)) 327 return false; 328 return true; 329 } 330 #endif 331 332 /// runFunctionAsMain - This is a helper function which wraps runFunction to 333 /// handle the common task of starting up main with the specified argc, argv, 334 /// and envp parameters. 335 int ExecutionEngine::runFunctionAsMain(Function *Fn, 336 const std::vector<std::string> &argv, 337 const char * const * envp) { 338 std::vector<GenericValue> GVArgs; 339 GenericValue GVArgc; 340 GVArgc.IntVal = APInt(32, argv.size()); 341 342 // Check main() type 343 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 344 const FunctionType *FTy = Fn->getFunctionType(); 345 const Type* PPInt8Ty = 346 PointerType::getUnqual(PointerType::getUnqual( 347 Type::getInt8Ty(Fn->getContext()))); 348 switch (NumArgs) { 349 case 3: 350 if (FTy->getParamType(2) != PPInt8Ty) { 351 llvm_report_error("Invalid type for third argument of main() supplied"); 352 } 353 // FALLS THROUGH 354 case 2: 355 if (FTy->getParamType(1) != PPInt8Ty) { 356 llvm_report_error("Invalid type for second argument of main() supplied"); 357 } 358 // FALLS THROUGH 359 case 1: 360 if (FTy->getParamType(0) != Type::getInt32Ty(Fn->getContext())) { 361 llvm_report_error("Invalid type for first argument of main() supplied"); 362 } 363 // FALLS THROUGH 364 case 0: 365 if (!isa<IntegerType>(FTy->getReturnType()) && 366 FTy->getReturnType() != Type::getVoidTy(FTy->getContext())) { 367 llvm_report_error("Invalid return type of main() supplied"); 368 } 369 break; 370 default: 371 llvm_report_error("Invalid number of arguments of main() supplied"); 372 } 373 374 if (NumArgs) { 375 GVArgs.push_back(GVArgc); // Arg #0 = argc. 376 if (NumArgs > 1) { 377 // Arg #1 = argv. 378 GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, argv))); 379 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 380 "argv[0] was null after CreateArgv"); 381 if (NumArgs > 2) { 382 std::vector<std::string> EnvVars; 383 for (unsigned i = 0; envp[i]; ++i) 384 EnvVars.push_back(envp[i]); 385 // Arg #2 = envp. 386 GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, EnvVars))); 387 } 388 } 389 } 390 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 391 } 392 393 /// If possible, create a JIT, unless the caller specifically requests an 394 /// Interpreter or there's an error. If even an Interpreter cannot be created, 395 /// NULL is returned. 396 /// 397 ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, 398 bool ForceInterpreter, 399 std::string *ErrorStr, 400 CodeGenOpt::Level OptLevel, 401 bool GVsWithCode) { 402 return EngineBuilder(MP) 403 .setEngineKind(ForceInterpreter 404 ? EngineKind::Interpreter 405 : EngineKind::JIT) 406 .setErrorStr(ErrorStr) 407 .setOptLevel(OptLevel) 408 .setAllocateGVsWithCode(GVsWithCode) 409 .create(); 410 } 411 412 ExecutionEngine *ExecutionEngine::create(Module *M) { 413 return EngineBuilder(M).create(); 414 } 415 416 /// EngineBuilder - Overloaded constructor that automatically creates an 417 /// ExistingModuleProvider for an existing module. 418 EngineBuilder::EngineBuilder(Module *m) : MP(new ExistingModuleProvider(m)) { 419 InitEngine(); 420 } 421 422 ExecutionEngine *EngineBuilder::create() { 423 // Make sure we can resolve symbols in the program as well. The zero arg 424 // to the function tells DynamicLibrary to load the program, not a library. 425 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) 426 return 0; 427 428 // If the user specified a memory manager but didn't specify which engine to 429 // create, we assume they only want the JIT, and we fail if they only want 430 // the interpreter. 431 if (JMM) { 432 if (WhichEngine & EngineKind::JIT) 433 WhichEngine = EngineKind::JIT; 434 else { 435 if (ErrorStr) 436 *ErrorStr = "Cannot create an interpreter with a memory manager."; 437 return 0; 438 } 439 } 440 441 // Unless the interpreter was explicitly selected or the JIT is not linked, 442 // try making a JIT. 443 if (WhichEngine & EngineKind::JIT) { 444 if (ExecutionEngine::JITCtor) { 445 ExecutionEngine *EE = 446 ExecutionEngine::JITCtor(MP, ErrorStr, JMM, OptLevel, 447 AllocateGVsWithCode); 448 if (EE) return EE; 449 } 450 } 451 452 // If we can't make a JIT and we didn't request one specifically, try making 453 // an interpreter instead. 454 if (WhichEngine & EngineKind::Interpreter) { 455 if (ExecutionEngine::InterpCtor) 456 return ExecutionEngine::InterpCtor(MP, ErrorStr); 457 if (ErrorStr) 458 *ErrorStr = "Interpreter has not been linked in."; 459 return 0; 460 } 461 462 if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) { 463 if (ErrorStr) 464 *ErrorStr = "JIT has not been linked in."; 465 } 466 return 0; 467 } 468 469 /// getPointerToGlobal - This returns the address of the specified global 470 /// value. This may involve code generation if it's a function. 471 /// 472 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 473 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 474 return getPointerToFunction(F); 475 476 MutexGuard locked(lock); 477 void *p = EEState.getGlobalAddressMap(locked)[GV]; 478 if (p) 479 return p; 480 481 // Global variable might have been added since interpreter started. 482 if (GlobalVariable *GVar = 483 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 484 EmitGlobalVariable(GVar); 485 else 486 llvm_unreachable("Global hasn't had an address allocated yet!"); 487 return EEState.getGlobalAddressMap(locked)[GV]; 488 } 489 490 /// This function converts a Constant* into a GenericValue. The interesting 491 /// part is if C is a ConstantExpr. 492 /// @brief Get a GenericValue for a Constant* 493 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 494 // If its undefined, return the garbage. 495 if (isa<UndefValue>(C)) 496 return GenericValue(); 497 498 // If the value is a ConstantExpr 499 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 500 Constant *Op0 = CE->getOperand(0); 501 switch (CE->getOpcode()) { 502 case Instruction::GetElementPtr: { 503 // Compute the index 504 GenericValue Result = getConstantValue(Op0); 505 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); 506 uint64_t Offset = 507 TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size()); 508 509 char* tmp = (char*) Result.PointerVal; 510 Result = PTOGV(tmp + Offset); 511 return Result; 512 } 513 case Instruction::Trunc: { 514 GenericValue GV = getConstantValue(Op0); 515 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 516 GV.IntVal = GV.IntVal.trunc(BitWidth); 517 return GV; 518 } 519 case Instruction::ZExt: { 520 GenericValue GV = getConstantValue(Op0); 521 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 522 GV.IntVal = GV.IntVal.zext(BitWidth); 523 return GV; 524 } 525 case Instruction::SExt: { 526 GenericValue GV = getConstantValue(Op0); 527 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 528 GV.IntVal = GV.IntVal.sext(BitWidth); 529 return GV; 530 } 531 case Instruction::FPTrunc: { 532 // FIXME long double 533 GenericValue GV = getConstantValue(Op0); 534 GV.FloatVal = float(GV.DoubleVal); 535 return GV; 536 } 537 case Instruction::FPExt:{ 538 // FIXME long double 539 GenericValue GV = getConstantValue(Op0); 540 GV.DoubleVal = double(GV.FloatVal); 541 return GV; 542 } 543 case Instruction::UIToFP: { 544 GenericValue GV = getConstantValue(Op0); 545 if (CE->getType()->isFloatTy()) 546 GV.FloatVal = float(GV.IntVal.roundToDouble()); 547 else if (CE->getType()->isDoubleTy()) 548 GV.DoubleVal = GV.IntVal.roundToDouble(); 549 else if (CE->getType()->isX86_FP80Ty()) { 550 const uint64_t zero[] = {0, 0}; 551 APFloat apf = APFloat(APInt(80, 2, zero)); 552 (void)apf.convertFromAPInt(GV.IntVal, 553 false, 554 APFloat::rmNearestTiesToEven); 555 GV.IntVal = apf.bitcastToAPInt(); 556 } 557 return GV; 558 } 559 case Instruction::SIToFP: { 560 GenericValue GV = getConstantValue(Op0); 561 if (CE->getType()->isFloatTy()) 562 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 563 else if (CE->getType()->isDoubleTy()) 564 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 565 else if (CE->getType()->isX86_FP80Ty()) { 566 const uint64_t zero[] = { 0, 0}; 567 APFloat apf = APFloat(APInt(80, 2, zero)); 568 (void)apf.convertFromAPInt(GV.IntVal, 569 true, 570 APFloat::rmNearestTiesToEven); 571 GV.IntVal = apf.bitcastToAPInt(); 572 } 573 return GV; 574 } 575 case Instruction::FPToUI: // double->APInt conversion handles sign 576 case Instruction::FPToSI: { 577 GenericValue GV = getConstantValue(Op0); 578 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 579 if (Op0->getType()->isFloatTy()) 580 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 581 else if (Op0->getType()->isDoubleTy()) 582 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 583 else if (Op0->getType()->isX86_FP80Ty()) { 584 APFloat apf = APFloat(GV.IntVal); 585 uint64_t v; 586 bool ignored; 587 (void)apf.convertToInteger(&v, BitWidth, 588 CE->getOpcode()==Instruction::FPToSI, 589 APFloat::rmTowardZero, &ignored); 590 GV.IntVal = v; // endian? 591 } 592 return GV; 593 } 594 case Instruction::PtrToInt: { 595 GenericValue GV = getConstantValue(Op0); 596 uint32_t PtrWidth = TD->getPointerSizeInBits(); 597 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 598 return GV; 599 } 600 case Instruction::IntToPtr: { 601 GenericValue GV = getConstantValue(Op0); 602 uint32_t PtrWidth = TD->getPointerSizeInBits(); 603 if (PtrWidth != GV.IntVal.getBitWidth()) 604 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 605 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 606 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 607 return GV; 608 } 609 case Instruction::BitCast: { 610 GenericValue GV = getConstantValue(Op0); 611 const Type* DestTy = CE->getType(); 612 switch (Op0->getType()->getTypeID()) { 613 default: llvm_unreachable("Invalid bitcast operand"); 614 case Type::IntegerTyID: 615 assert(DestTy->isFloatingPoint() && "invalid bitcast"); 616 if (DestTy->isFloatTy()) 617 GV.FloatVal = GV.IntVal.bitsToFloat(); 618 else if (DestTy->isDoubleTy()) 619 GV.DoubleVal = GV.IntVal.bitsToDouble(); 620 break; 621 case Type::FloatTyID: 622 assert(DestTy == Type::getInt32Ty(DestTy->getContext()) && 623 "Invalid bitcast"); 624 GV.IntVal.floatToBits(GV.FloatVal); 625 break; 626 case Type::DoubleTyID: 627 assert(DestTy == Type::getInt64Ty(DestTy->getContext()) && 628 "Invalid bitcast"); 629 GV.IntVal.doubleToBits(GV.DoubleVal); 630 break; 631 case Type::PointerTyID: 632 assert(isa<PointerType>(DestTy) && "Invalid bitcast"); 633 break; // getConstantValue(Op0) above already converted it 634 } 635 return GV; 636 } 637 case Instruction::Add: 638 case Instruction::FAdd: 639 case Instruction::Sub: 640 case Instruction::FSub: 641 case Instruction::Mul: 642 case Instruction::FMul: 643 case Instruction::UDiv: 644 case Instruction::SDiv: 645 case Instruction::URem: 646 case Instruction::SRem: 647 case Instruction::And: 648 case Instruction::Or: 649 case Instruction::Xor: { 650 GenericValue LHS = getConstantValue(Op0); 651 GenericValue RHS = getConstantValue(CE->getOperand(1)); 652 GenericValue GV; 653 switch (CE->getOperand(0)->getType()->getTypeID()) { 654 default: llvm_unreachable("Bad add type!"); 655 case Type::IntegerTyID: 656 switch (CE->getOpcode()) { 657 default: llvm_unreachable("Invalid integer opcode"); 658 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 659 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 660 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 661 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 662 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 663 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 664 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 665 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 666 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 667 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 668 } 669 break; 670 case Type::FloatTyID: 671 switch (CE->getOpcode()) { 672 default: llvm_unreachable("Invalid float opcode"); 673 case Instruction::FAdd: 674 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 675 case Instruction::FSub: 676 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 677 case Instruction::FMul: 678 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 679 case Instruction::FDiv: 680 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 681 case Instruction::FRem: 682 GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break; 683 } 684 break; 685 case Type::DoubleTyID: 686 switch (CE->getOpcode()) { 687 default: llvm_unreachable("Invalid double opcode"); 688 case Instruction::FAdd: 689 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 690 case Instruction::FSub: 691 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 692 case Instruction::FMul: 693 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 694 case Instruction::FDiv: 695 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 696 case Instruction::FRem: 697 GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 698 } 699 break; 700 case Type::X86_FP80TyID: 701 case Type::PPC_FP128TyID: 702 case Type::FP128TyID: { 703 APFloat apfLHS = APFloat(LHS.IntVal); 704 switch (CE->getOpcode()) { 705 default: llvm_unreachable("Invalid long double opcode");llvm_unreachable(0); 706 case Instruction::FAdd: 707 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 708 GV.IntVal = apfLHS.bitcastToAPInt(); 709 break; 710 case Instruction::FSub: 711 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 712 GV.IntVal = apfLHS.bitcastToAPInt(); 713 break; 714 case Instruction::FMul: 715 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 716 GV.IntVal = apfLHS.bitcastToAPInt(); 717 break; 718 case Instruction::FDiv: 719 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 720 GV.IntVal = apfLHS.bitcastToAPInt(); 721 break; 722 case Instruction::FRem: 723 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 724 GV.IntVal = apfLHS.bitcastToAPInt(); 725 break; 726 } 727 } 728 break; 729 } 730 return GV; 731 } 732 default: 733 break; 734 } 735 std::string msg; 736 raw_string_ostream Msg(msg); 737 Msg << "ConstantExpr not handled: " << *CE; 738 llvm_report_error(Msg.str()); 739 } 740 741 GenericValue Result; 742 switch (C->getType()->getTypeID()) { 743 case Type::FloatTyID: 744 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 745 break; 746 case Type::DoubleTyID: 747 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 748 break; 749 case Type::X86_FP80TyID: 750 case Type::FP128TyID: 751 case Type::PPC_FP128TyID: 752 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 753 break; 754 case Type::IntegerTyID: 755 Result.IntVal = cast<ConstantInt>(C)->getValue(); 756 break; 757 case Type::PointerTyID: 758 if (isa<ConstantPointerNull>(C)) 759 Result.PointerVal = 0; 760 else if (const Function *F = dyn_cast<Function>(C)) 761 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 762 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 763 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 764 else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 765 Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>( 766 BA->getBasicBlock()))); 767 else 768 llvm_unreachable("Unknown constant pointer type!"); 769 break; 770 default: 771 std::string msg; 772 raw_string_ostream Msg(msg); 773 Msg << "ERROR: Constant unimplemented for type: " << *C->getType(); 774 llvm_report_error(Msg.str()); 775 } 776 return Result; 777 } 778 779 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 780 /// with the integer held in IntVal. 781 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 782 unsigned StoreBytes) { 783 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 784 uint8_t *Src = (uint8_t *)IntVal.getRawData(); 785 786 if (sys::isLittleEndianHost()) 787 // Little-endian host - the source is ordered from LSB to MSB. Order the 788 // destination from LSB to MSB: Do a straight copy. 789 memcpy(Dst, Src, StoreBytes); 790 else { 791 // Big-endian host - the source is an array of 64 bit words ordered from 792 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 793 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 794 while (StoreBytes > sizeof(uint64_t)) { 795 StoreBytes -= sizeof(uint64_t); 796 // May not be aligned so use memcpy. 797 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 798 Src += sizeof(uint64_t); 799 } 800 801 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 802 } 803 } 804 805 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr 806 /// is the address of the memory at which to store Val, cast to GenericValue *. 807 /// It is not a pointer to a GenericValue containing the address at which to 808 /// store Val. 809 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 810 GenericValue *Ptr, const Type *Ty) { 811 const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty); 812 813 switch (Ty->getTypeID()) { 814 case Type::IntegerTyID: 815 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 816 break; 817 case Type::FloatTyID: 818 *((float*)Ptr) = Val.FloatVal; 819 break; 820 case Type::DoubleTyID: 821 *((double*)Ptr) = Val.DoubleVal; 822 break; 823 case Type::X86_FP80TyID: 824 memcpy(Ptr, Val.IntVal.getRawData(), 10); 825 break; 826 case Type::PointerTyID: 827 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 828 if (StoreBytes != sizeof(PointerTy)) 829 memset(Ptr, 0, StoreBytes); 830 831 *((PointerTy*)Ptr) = Val.PointerVal; 832 break; 833 default: 834 errs() << "Cannot store value of type " << *Ty << "!\n"; 835 } 836 837 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) 838 // Host and target are different endian - reverse the stored bytes. 839 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 840 } 841 842 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 843 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 844 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 845 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 846 uint8_t *Dst = (uint8_t *)IntVal.getRawData(); 847 848 if (sys::isLittleEndianHost()) 849 // Little-endian host - the destination must be ordered from LSB to MSB. 850 // The source is ordered from LSB to MSB: Do a straight copy. 851 memcpy(Dst, Src, LoadBytes); 852 else { 853 // Big-endian - the destination is an array of 64 bit words ordered from 854 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 855 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 856 // a word. 857 while (LoadBytes > sizeof(uint64_t)) { 858 LoadBytes -= sizeof(uint64_t); 859 // May not be aligned so use memcpy. 860 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 861 Dst += sizeof(uint64_t); 862 } 863 864 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 865 } 866 } 867 868 /// FIXME: document 869 /// 870 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 871 GenericValue *Ptr, 872 const Type *Ty) { 873 const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty); 874 875 switch (Ty->getTypeID()) { 876 case Type::IntegerTyID: 877 // An APInt with all words initially zero. 878 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 879 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 880 break; 881 case Type::FloatTyID: 882 Result.FloatVal = *((float*)Ptr); 883 break; 884 case Type::DoubleTyID: 885 Result.DoubleVal = *((double*)Ptr); 886 break; 887 case Type::PointerTyID: 888 Result.PointerVal = *((PointerTy*)Ptr); 889 break; 890 case Type::X86_FP80TyID: { 891 // This is endian dependent, but it will only work on x86 anyway. 892 // FIXME: Will not trap if loading a signaling NaN. 893 uint64_t y[2]; 894 memcpy(y, Ptr, 10); 895 Result.IntVal = APInt(80, 2, y); 896 break; 897 } 898 default: 899 std::string msg; 900 raw_string_ostream Msg(msg); 901 Msg << "Cannot load value of type " << *Ty << "!"; 902 llvm_report_error(Msg.str()); 903 } 904 } 905 906 // InitializeMemory - Recursive function to apply a Constant value into the 907 // specified memory location... 908 // 909 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 910 DEBUG(errs() << "JIT: Initializing " << Addr << " "); 911 DEBUG(Init->dump()); 912 if (isa<UndefValue>(Init)) { 913 return; 914 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 915 unsigned ElementSize = 916 getTargetData()->getTypeAllocSize(CP->getType()->getElementType()); 917 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 918 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 919 return; 920 } else if (isa<ConstantAggregateZero>(Init)) { 921 memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType())); 922 return; 923 } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 924 unsigned ElementSize = 925 getTargetData()->getTypeAllocSize(CPA->getType()->getElementType()); 926 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 927 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 928 return; 929 } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 930 const StructLayout *SL = 931 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 932 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 933 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 934 return; 935 } else if (Init->getType()->isFirstClassType()) { 936 GenericValue Val = getConstantValue(Init); 937 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 938 return; 939 } 940 941 errs() << "Bad Type: " << *Init->getType() << "\n"; 942 llvm_unreachable("Unknown constant type to initialize memory with!"); 943 } 944 945 /// EmitGlobals - Emit all of the global variables to memory, storing their 946 /// addresses into GlobalAddress. This must make sure to copy the contents of 947 /// their initializers into the memory. 948 /// 949 void ExecutionEngine::emitGlobals() { 950 951 // Loop over all of the global variables in the program, allocating the memory 952 // to hold them. If there is more than one module, do a prepass over globals 953 // to figure out how the different modules should link together. 954 // 955 std::map<std::pair<std::string, const Type*>, 956 const GlobalValue*> LinkedGlobalsMap; 957 958 if (Modules.size() != 1) { 959 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 960 Module &M = *Modules[m]->getModule(); 961 for (Module::const_global_iterator I = M.global_begin(), 962 E = M.global_end(); I != E; ++I) { 963 const GlobalValue *GV = I; 964 if (GV->hasLocalLinkage() || GV->isDeclaration() || 965 GV->hasAppendingLinkage() || !GV->hasName()) 966 continue;// Ignore external globals and globals with internal linkage. 967 968 const GlobalValue *&GVEntry = 969 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 970 971 // If this is the first time we've seen this global, it is the canonical 972 // version. 973 if (!GVEntry) { 974 GVEntry = GV; 975 continue; 976 } 977 978 // If the existing global is strong, never replace it. 979 if (GVEntry->hasExternalLinkage() || 980 GVEntry->hasDLLImportLinkage() || 981 GVEntry->hasDLLExportLinkage()) 982 continue; 983 984 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 985 // symbol. FIXME is this right for common? 986 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 987 GVEntry = GV; 988 } 989 } 990 } 991 992 std::vector<const GlobalValue*> NonCanonicalGlobals; 993 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 994 Module &M = *Modules[m]->getModule(); 995 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 996 I != E; ++I) { 997 // In the multi-module case, see what this global maps to. 998 if (!LinkedGlobalsMap.empty()) { 999 if (const GlobalValue *GVEntry = 1000 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 1001 // If something else is the canonical global, ignore this one. 1002 if (GVEntry != &*I) { 1003 NonCanonicalGlobals.push_back(I); 1004 continue; 1005 } 1006 } 1007 } 1008 1009 if (!I->isDeclaration()) { 1010 addGlobalMapping(I, getMemoryForGV(I)); 1011 } else { 1012 // External variable reference. Try to use the dynamic loader to 1013 // get a pointer to it. 1014 if (void *SymAddr = 1015 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName())) 1016 addGlobalMapping(I, SymAddr); 1017 else { 1018 llvm_report_error("Could not resolve external global address: " 1019 +I->getName()); 1020 } 1021 } 1022 } 1023 1024 // If there are multiple modules, map the non-canonical globals to their 1025 // canonical location. 1026 if (!NonCanonicalGlobals.empty()) { 1027 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1028 const GlobalValue *GV = NonCanonicalGlobals[i]; 1029 const GlobalValue *CGV = 1030 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1031 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1032 assert(Ptr && "Canonical global wasn't codegen'd!"); 1033 addGlobalMapping(GV, Ptr); 1034 } 1035 } 1036 1037 // Now that all of the globals are set up in memory, loop through them all 1038 // and initialize their contents. 1039 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1040 I != E; ++I) { 1041 if (!I->isDeclaration()) { 1042 if (!LinkedGlobalsMap.empty()) { 1043 if (const GlobalValue *GVEntry = 1044 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 1045 if (GVEntry != &*I) // Not the canonical variable. 1046 continue; 1047 } 1048 EmitGlobalVariable(I); 1049 } 1050 } 1051 } 1052 } 1053 1054 // EmitGlobalVariable - This method emits the specified global variable to the 1055 // address specified in GlobalAddresses, or allocates new memory if it's not 1056 // already in the map. 1057 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1058 void *GA = getPointerToGlobalIfAvailable(GV); 1059 1060 if (GA == 0) { 1061 // If it's not already specified, allocate memory for the global. 1062 GA = getMemoryForGV(GV); 1063 addGlobalMapping(GV, GA); 1064 } 1065 1066 // Don't initialize if it's thread local, let the client do it. 1067 if (!GV->isThreadLocal()) 1068 InitializeMemory(GV->getInitializer(), GA); 1069 1070 const Type *ElTy = GV->getType()->getElementType(); 1071 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 1072 NumInitBytes += (unsigned)GVSize; 1073 ++NumGlobals; 1074 } 1075 1076 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1077 : EE(EE), GlobalAddressMap(this) { 1078 } 1079 1080 sys::Mutex *ExecutionEngineState::AddressMapConfig::getMutex( 1081 ExecutionEngineState *EES) { 1082 return &EES->EE.lock; 1083 } 1084 void ExecutionEngineState::AddressMapConfig::onDelete( 1085 ExecutionEngineState *EES, const GlobalValue *Old) { 1086 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1087 EES->GlobalAddressReverseMap.erase(OldVal); 1088 } 1089 1090 void ExecutionEngineState::AddressMapConfig::onRAUW( 1091 ExecutionEngineState *, const GlobalValue *, const GlobalValue *) { 1092 assert(false && "The ExecutionEngine doesn't know how to handle a" 1093 " RAUW on a value it has a global mapping for."); 1094 } 1095