1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ExecutionEngine/ExecutionEngine.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ExecutionEngine/GenericValue.h" 19 #include "llvm/ExecutionEngine/JITEventListener.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/IR/ValueHandle.h" 26 #include "llvm/Object/Archive.h" 27 #include "llvm/Object/ObjectFile.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/DynamicLibrary.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/Host.h" 32 #include "llvm/Support/MutexGuard.h" 33 #include "llvm/Support/TargetRegistry.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include <cmath> 37 #include <cstring> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "jit" 41 42 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 43 STATISTIC(NumGlobals , "Number of global vars initialized"); 44 45 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 46 std::unique_ptr<Module> M, std::string *ErrorStr, 47 RTDyldMemoryManager *MCJMM, std::unique_ptr<TargetMachine> TM) = nullptr; 48 ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M, 49 std::string *ErrorStr) =nullptr; 50 51 // Anchor for the JITEventListener class. 52 void JITEventListener::anchor() {} 53 54 ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M) 55 : EEState(*this), 56 LazyFunctionCreator(nullptr) { 57 CompilingLazily = false; 58 GVCompilationDisabled = false; 59 SymbolSearchingDisabled = false; 60 61 // IR module verification is enabled by default in debug builds, and disabled 62 // by default in release builds. 63 #ifndef NDEBUG 64 VerifyModules = true; 65 #else 66 VerifyModules = false; 67 #endif 68 69 assert(M && "Module is null?"); 70 Modules.push_back(std::move(M)); 71 } 72 73 ExecutionEngine::~ExecutionEngine() { 74 clearAllGlobalMappings(); 75 } 76 77 namespace { 78 /// \brief Helper class which uses a value handler to automatically deletes the 79 /// memory block when the GlobalVariable is destroyed. 80 class GVMemoryBlock : public CallbackVH { 81 GVMemoryBlock(const GlobalVariable *GV) 82 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 83 84 public: 85 /// \brief Returns the address the GlobalVariable should be written into. The 86 /// GVMemoryBlock object prefixes that. 87 static char *Create(const GlobalVariable *GV, const DataLayout& TD) { 88 Type *ElTy = GV->getType()->getElementType(); 89 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 90 void *RawMemory = ::operator new( 91 RoundUpToAlignment(sizeof(GVMemoryBlock), 92 TD.getPreferredAlignment(GV)) 93 + GVSize); 94 new(RawMemory) GVMemoryBlock(GV); 95 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 96 } 97 98 void deleted() override { 99 // We allocated with operator new and with some extra memory hanging off the 100 // end, so don't just delete this. I'm not sure if this is actually 101 // required. 102 this->~GVMemoryBlock(); 103 ::operator delete(this); 104 } 105 }; 106 } // anonymous namespace 107 108 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 109 return GVMemoryBlock::Create(GV, *getDataLayout()); 110 } 111 112 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { 113 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 114 } 115 116 void 117 ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) { 118 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 119 } 120 121 void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) { 122 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive."); 123 } 124 125 bool ExecutionEngine::removeModule(Module *M) { 126 for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) { 127 Module *Found = I->get(); 128 if (Found == M) { 129 I->release(); 130 Modules.erase(I); 131 clearGlobalMappingsFromModule(M); 132 return true; 133 } 134 } 135 return false; 136 } 137 138 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 139 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 140 if (Function *F = Modules[i]->getFunction(FnName)) 141 return F; 142 } 143 return nullptr; 144 } 145 146 147 void *ExecutionEngineState::RemoveMapping(const GlobalValue *ToUnmap) { 148 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 149 void *OldVal; 150 151 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 152 // GlobalAddressMap. 153 if (I == GlobalAddressMap.end()) 154 OldVal = nullptr; 155 else { 156 OldVal = I->second; 157 GlobalAddressMap.erase(I); 158 } 159 160 GlobalAddressReverseMap.erase(OldVal); 161 return OldVal; 162 } 163 164 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 165 MutexGuard locked(lock); 166 167 DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 168 << "\' to [" << Addr << "]\n";); 169 void *&CurVal = EEState.getGlobalAddressMap()[GV]; 170 assert((!CurVal || !Addr) && "GlobalMapping already established!"); 171 CurVal = Addr; 172 173 // If we are using the reverse mapping, add it too. 174 if (!EEState.getGlobalAddressReverseMap().empty()) { 175 AssertingVH<const GlobalValue> &V = 176 EEState.getGlobalAddressReverseMap()[Addr]; 177 assert((!V || !GV) && "GlobalMapping already established!"); 178 V = GV; 179 } 180 } 181 182 void ExecutionEngine::clearAllGlobalMappings() { 183 MutexGuard locked(lock); 184 185 EEState.getGlobalAddressMap().clear(); 186 EEState.getGlobalAddressReverseMap().clear(); 187 } 188 189 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 190 MutexGuard locked(lock); 191 192 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) 193 EEState.RemoveMapping(FI); 194 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 195 GI != GE; ++GI) 196 EEState.RemoveMapping(GI); 197 } 198 199 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 200 MutexGuard locked(lock); 201 202 ExecutionEngineState::GlobalAddressMapTy &Map = 203 EEState.getGlobalAddressMap(); 204 205 // Deleting from the mapping? 206 if (!Addr) 207 return EEState.RemoveMapping(GV); 208 209 void *&CurVal = Map[GV]; 210 void *OldVal = CurVal; 211 212 if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) 213 EEState.getGlobalAddressReverseMap().erase(CurVal); 214 CurVal = Addr; 215 216 // If we are using the reverse mapping, add it too. 217 if (!EEState.getGlobalAddressReverseMap().empty()) { 218 AssertingVH<const GlobalValue> &V = 219 EEState.getGlobalAddressReverseMap()[Addr]; 220 assert((!V || !GV) && "GlobalMapping already established!"); 221 V = GV; 222 } 223 return OldVal; 224 } 225 226 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 227 MutexGuard locked(lock); 228 229 ExecutionEngineState::GlobalAddressMapTy::iterator I = 230 EEState.getGlobalAddressMap().find(GV); 231 return I != EEState.getGlobalAddressMap().end() ? I->second : nullptr; 232 } 233 234 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 235 MutexGuard locked(lock); 236 237 // If we haven't computed the reverse mapping yet, do so first. 238 if (EEState.getGlobalAddressReverseMap().empty()) { 239 for (ExecutionEngineState::GlobalAddressMapTy::iterator 240 I = EEState.getGlobalAddressMap().begin(), 241 E = EEState.getGlobalAddressMap().end(); I != E; ++I) 242 EEState.getGlobalAddressReverseMap().insert(std::make_pair( 243 I->second, I->first)); 244 } 245 246 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 247 EEState.getGlobalAddressReverseMap().find(Addr); 248 return I != EEState.getGlobalAddressReverseMap().end() ? I->second : nullptr; 249 } 250 251 namespace { 252 class ArgvArray { 253 std::unique_ptr<char[]> Array; 254 std::vector<std::unique_ptr<char[]>> Values; 255 public: 256 /// Turn a vector of strings into a nice argv style array of pointers to null 257 /// terminated strings. 258 void *reset(LLVMContext &C, ExecutionEngine *EE, 259 const std::vector<std::string> &InputArgv); 260 }; 261 } // anonymous namespace 262 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 263 const std::vector<std::string> &InputArgv) { 264 Values.clear(); // Free the old contents. 265 Values.reserve(InputArgv.size()); 266 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 267 Array = make_unique<char[]>((InputArgv.size()+1)*PtrSize); 268 269 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array.get() << "\n"); 270 Type *SBytePtr = Type::getInt8PtrTy(C); 271 272 for (unsigned i = 0; i != InputArgv.size(); ++i) { 273 unsigned Size = InputArgv[i].size()+1; 274 auto Dest = make_unique<char[]>(Size); 275 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest.get() << "\n"); 276 277 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get()); 278 Dest[Size-1] = 0; 279 280 // Endian safe: Array[i] = (PointerTy)Dest; 281 EE->StoreValueToMemory(PTOGV(Dest.get()), 282 (GenericValue*)(&Array[i*PtrSize]), SBytePtr); 283 Values.push_back(std::move(Dest)); 284 } 285 286 // Null terminate it 287 EE->StoreValueToMemory(PTOGV(nullptr), 288 (GenericValue*)(&Array[InputArgv.size()*PtrSize]), 289 SBytePtr); 290 return Array.get(); 291 } 292 293 void ExecutionEngine::runStaticConstructorsDestructors(Module &module, 294 bool isDtors) { 295 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 296 GlobalVariable *GV = module.getNamedGlobal(Name); 297 298 // If this global has internal linkage, or if it has a use, then it must be 299 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 300 // this is the case, don't execute any of the global ctors, __main will do 301 // it. 302 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 303 304 // Should be an array of '{ i32, void ()* }' structs. The first value is 305 // the init priority, which we ignore. 306 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 307 if (!InitList) 308 return; 309 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 310 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 311 if (!CS) continue; 312 313 Constant *FP = CS->getOperand(1); 314 if (FP->isNullValue()) 315 continue; // Found a sentinal value, ignore. 316 317 // Strip off constant expression casts. 318 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 319 if (CE->isCast()) 320 FP = CE->getOperand(0); 321 322 // Execute the ctor/dtor function! 323 if (Function *F = dyn_cast<Function>(FP)) 324 runFunction(F, std::vector<GenericValue>()); 325 326 // FIXME: It is marginally lame that we just do nothing here if we see an 327 // entry we don't recognize. It might not be unreasonable for the verifier 328 // to not even allow this and just assert here. 329 } 330 } 331 332 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 333 // Execute global ctors/dtors for each module in the program. 334 for (std::unique_ptr<Module> &M : Modules) 335 runStaticConstructorsDestructors(*M, isDtors); 336 } 337 338 #ifndef NDEBUG 339 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 340 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 341 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 342 for (unsigned i = 0; i < PtrSize; ++i) 343 if (*(i + (uint8_t*)Loc)) 344 return false; 345 return true; 346 } 347 #endif 348 349 int ExecutionEngine::runFunctionAsMain(Function *Fn, 350 const std::vector<std::string> &argv, 351 const char * const * envp) { 352 std::vector<GenericValue> GVArgs; 353 GenericValue GVArgc; 354 GVArgc.IntVal = APInt(32, argv.size()); 355 356 // Check main() type 357 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 358 FunctionType *FTy = Fn->getFunctionType(); 359 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 360 361 // Check the argument types. 362 if (NumArgs > 3) 363 report_fatal_error("Invalid number of arguments of main() supplied"); 364 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 365 report_fatal_error("Invalid type for third argument of main() supplied"); 366 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 367 report_fatal_error("Invalid type for second argument of main() supplied"); 368 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 369 report_fatal_error("Invalid type for first argument of main() supplied"); 370 if (!FTy->getReturnType()->isIntegerTy() && 371 !FTy->getReturnType()->isVoidTy()) 372 report_fatal_error("Invalid return type of main() supplied"); 373 374 ArgvArray CArgv; 375 ArgvArray CEnv; 376 if (NumArgs) { 377 GVArgs.push_back(GVArgc); // Arg #0 = argc. 378 if (NumArgs > 1) { 379 // Arg #1 = argv. 380 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 381 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 382 "argv[0] was null after CreateArgv"); 383 if (NumArgs > 2) { 384 std::vector<std::string> EnvVars; 385 for (unsigned i = 0; envp[i]; ++i) 386 EnvVars.push_back(envp[i]); 387 // Arg #2 = envp. 388 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 389 } 390 } 391 } 392 393 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 394 } 395 396 void EngineBuilder::InitEngine() { 397 WhichEngine = EngineKind::Either; 398 ErrorStr = nullptr; 399 OptLevel = CodeGenOpt::Default; 400 MCJMM = nullptr; 401 Options = TargetOptions(); 402 RelocModel = Reloc::Default; 403 CMModel = CodeModel::JITDefault; 404 405 // IR module verification is enabled by default in debug builds, and disabled 406 // by default in release builds. 407 #ifndef NDEBUG 408 VerifyModules = true; 409 #else 410 VerifyModules = false; 411 #endif 412 } 413 414 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 415 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. 416 417 // Make sure we can resolve symbols in the program as well. The zero arg 418 // to the function tells DynamicLibrary to load the program, not a library. 419 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) 420 return nullptr; 421 422 // If the user specified a memory manager but didn't specify which engine to 423 // create, we assume they only want the JIT, and we fail if they only want 424 // the interpreter. 425 if (MCJMM) { 426 if (WhichEngine & EngineKind::JIT) 427 WhichEngine = EngineKind::JIT; 428 else { 429 if (ErrorStr) 430 *ErrorStr = "Cannot create an interpreter with a memory manager."; 431 return nullptr; 432 } 433 } 434 435 // Unless the interpreter was explicitly selected or the JIT is not linked, 436 // try making a JIT. 437 if ((WhichEngine & EngineKind::JIT) && TheTM) { 438 Triple TT(M->getTargetTriple()); 439 if (!TM->getTarget().hasJIT()) { 440 errs() << "WARNING: This target JIT is not designed for the host" 441 << " you are running. If bad things happen, please choose" 442 << " a different -march switch.\n"; 443 } 444 445 ExecutionEngine *EE = nullptr; 446 if (ExecutionEngine::MCJITCtor) 447 EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, MCJMM, 448 std::move(TheTM)); 449 if (EE) { 450 EE->setVerifyModules(VerifyModules); 451 return EE; 452 } 453 } 454 455 // If we can't make a JIT and we didn't request one specifically, try making 456 // an interpreter instead. 457 if (WhichEngine & EngineKind::Interpreter) { 458 if (ExecutionEngine::InterpCtor) 459 return ExecutionEngine::InterpCtor(std::move(M), ErrorStr); 460 if (ErrorStr) 461 *ErrorStr = "Interpreter has not been linked in."; 462 return nullptr; 463 } 464 465 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) { 466 if (ErrorStr) 467 *ErrorStr = "JIT has not been linked in."; 468 } 469 470 return nullptr; 471 } 472 473 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 474 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 475 return getPointerToFunction(F); 476 477 MutexGuard locked(lock); 478 if (void *P = EEState.getGlobalAddressMap()[GV]) 479 return P; 480 481 // Global variable might have been added since interpreter started. 482 if (GlobalVariable *GVar = 483 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 484 EmitGlobalVariable(GVar); 485 else 486 llvm_unreachable("Global hasn't had an address allocated yet!"); 487 488 return EEState.getGlobalAddressMap()[GV]; 489 } 490 491 /// \brief Converts a Constant* into a GenericValue, including handling of 492 /// ConstantExpr values. 493 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 494 // If its undefined, return the garbage. 495 if (isa<UndefValue>(C)) { 496 GenericValue Result; 497 switch (C->getType()->getTypeID()) { 498 default: 499 break; 500 case Type::IntegerTyID: 501 case Type::X86_FP80TyID: 502 case Type::FP128TyID: 503 case Type::PPC_FP128TyID: 504 // Although the value is undefined, we still have to construct an APInt 505 // with the correct bit width. 506 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 507 break; 508 case Type::StructTyID: { 509 // if the whole struct is 'undef' just reserve memory for the value. 510 if(StructType *STy = dyn_cast<StructType>(C->getType())) { 511 unsigned int elemNum = STy->getNumElements(); 512 Result.AggregateVal.resize(elemNum); 513 for (unsigned int i = 0; i < elemNum; ++i) { 514 Type *ElemTy = STy->getElementType(i); 515 if (ElemTy->isIntegerTy()) 516 Result.AggregateVal[i].IntVal = 517 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 518 else if (ElemTy->isAggregateType()) { 519 const Constant *ElemUndef = UndefValue::get(ElemTy); 520 Result.AggregateVal[i] = getConstantValue(ElemUndef); 521 } 522 } 523 } 524 } 525 break; 526 case Type::VectorTyID: 527 // if the whole vector is 'undef' just reserve memory for the value. 528 const VectorType* VTy = dyn_cast<VectorType>(C->getType()); 529 const Type *ElemTy = VTy->getElementType(); 530 unsigned int elemNum = VTy->getNumElements(); 531 Result.AggregateVal.resize(elemNum); 532 if (ElemTy->isIntegerTy()) 533 for (unsigned int i = 0; i < elemNum; ++i) 534 Result.AggregateVal[i].IntVal = 535 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 536 break; 537 } 538 return Result; 539 } 540 541 // Otherwise, if the value is a ConstantExpr... 542 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 543 Constant *Op0 = CE->getOperand(0); 544 switch (CE->getOpcode()) { 545 case Instruction::GetElementPtr: { 546 // Compute the index 547 GenericValue Result = getConstantValue(Op0); 548 APInt Offset(DL->getPointerSizeInBits(), 0); 549 cast<GEPOperator>(CE)->accumulateConstantOffset(*DL, Offset); 550 551 char* tmp = (char*) Result.PointerVal; 552 Result = PTOGV(tmp + Offset.getSExtValue()); 553 return Result; 554 } 555 case Instruction::Trunc: { 556 GenericValue GV = getConstantValue(Op0); 557 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 558 GV.IntVal = GV.IntVal.trunc(BitWidth); 559 return GV; 560 } 561 case Instruction::ZExt: { 562 GenericValue GV = getConstantValue(Op0); 563 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 564 GV.IntVal = GV.IntVal.zext(BitWidth); 565 return GV; 566 } 567 case Instruction::SExt: { 568 GenericValue GV = getConstantValue(Op0); 569 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 570 GV.IntVal = GV.IntVal.sext(BitWidth); 571 return GV; 572 } 573 case Instruction::FPTrunc: { 574 // FIXME long double 575 GenericValue GV = getConstantValue(Op0); 576 GV.FloatVal = float(GV.DoubleVal); 577 return GV; 578 } 579 case Instruction::FPExt:{ 580 // FIXME long double 581 GenericValue GV = getConstantValue(Op0); 582 GV.DoubleVal = double(GV.FloatVal); 583 return GV; 584 } 585 case Instruction::UIToFP: { 586 GenericValue GV = getConstantValue(Op0); 587 if (CE->getType()->isFloatTy()) 588 GV.FloatVal = float(GV.IntVal.roundToDouble()); 589 else if (CE->getType()->isDoubleTy()) 590 GV.DoubleVal = GV.IntVal.roundToDouble(); 591 else if (CE->getType()->isX86_FP80Ty()) { 592 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 593 (void)apf.convertFromAPInt(GV.IntVal, 594 false, 595 APFloat::rmNearestTiesToEven); 596 GV.IntVal = apf.bitcastToAPInt(); 597 } 598 return GV; 599 } 600 case Instruction::SIToFP: { 601 GenericValue GV = getConstantValue(Op0); 602 if (CE->getType()->isFloatTy()) 603 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 604 else if (CE->getType()->isDoubleTy()) 605 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 606 else if (CE->getType()->isX86_FP80Ty()) { 607 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 608 (void)apf.convertFromAPInt(GV.IntVal, 609 true, 610 APFloat::rmNearestTiesToEven); 611 GV.IntVal = apf.bitcastToAPInt(); 612 } 613 return GV; 614 } 615 case Instruction::FPToUI: // double->APInt conversion handles sign 616 case Instruction::FPToSI: { 617 GenericValue GV = getConstantValue(Op0); 618 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 619 if (Op0->getType()->isFloatTy()) 620 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 621 else if (Op0->getType()->isDoubleTy()) 622 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 623 else if (Op0->getType()->isX86_FP80Ty()) { 624 APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal); 625 uint64_t v; 626 bool ignored; 627 (void)apf.convertToInteger(&v, BitWidth, 628 CE->getOpcode()==Instruction::FPToSI, 629 APFloat::rmTowardZero, &ignored); 630 GV.IntVal = v; // endian? 631 } 632 return GV; 633 } 634 case Instruction::PtrToInt: { 635 GenericValue GV = getConstantValue(Op0); 636 uint32_t PtrWidth = DL->getTypeSizeInBits(Op0->getType()); 637 assert(PtrWidth <= 64 && "Bad pointer width"); 638 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 639 uint32_t IntWidth = DL->getTypeSizeInBits(CE->getType()); 640 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); 641 return GV; 642 } 643 case Instruction::IntToPtr: { 644 GenericValue GV = getConstantValue(Op0); 645 uint32_t PtrWidth = DL->getTypeSizeInBits(CE->getType()); 646 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 647 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 648 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 649 return GV; 650 } 651 case Instruction::BitCast: { 652 GenericValue GV = getConstantValue(Op0); 653 Type* DestTy = CE->getType(); 654 switch (Op0->getType()->getTypeID()) { 655 default: llvm_unreachable("Invalid bitcast operand"); 656 case Type::IntegerTyID: 657 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 658 if (DestTy->isFloatTy()) 659 GV.FloatVal = GV.IntVal.bitsToFloat(); 660 else if (DestTy->isDoubleTy()) 661 GV.DoubleVal = GV.IntVal.bitsToDouble(); 662 break; 663 case Type::FloatTyID: 664 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 665 GV.IntVal = APInt::floatToBits(GV.FloatVal); 666 break; 667 case Type::DoubleTyID: 668 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 669 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 670 break; 671 case Type::PointerTyID: 672 assert(DestTy->isPointerTy() && "Invalid bitcast"); 673 break; // getConstantValue(Op0) above already converted it 674 } 675 return GV; 676 } 677 case Instruction::Add: 678 case Instruction::FAdd: 679 case Instruction::Sub: 680 case Instruction::FSub: 681 case Instruction::Mul: 682 case Instruction::FMul: 683 case Instruction::UDiv: 684 case Instruction::SDiv: 685 case Instruction::URem: 686 case Instruction::SRem: 687 case Instruction::And: 688 case Instruction::Or: 689 case Instruction::Xor: { 690 GenericValue LHS = getConstantValue(Op0); 691 GenericValue RHS = getConstantValue(CE->getOperand(1)); 692 GenericValue GV; 693 switch (CE->getOperand(0)->getType()->getTypeID()) { 694 default: llvm_unreachable("Bad add type!"); 695 case Type::IntegerTyID: 696 switch (CE->getOpcode()) { 697 default: llvm_unreachable("Invalid integer opcode"); 698 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 699 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 700 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 701 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 702 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 703 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 704 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 705 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 706 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 707 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 708 } 709 break; 710 case Type::FloatTyID: 711 switch (CE->getOpcode()) { 712 default: llvm_unreachable("Invalid float opcode"); 713 case Instruction::FAdd: 714 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 715 case Instruction::FSub: 716 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 717 case Instruction::FMul: 718 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 719 case Instruction::FDiv: 720 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 721 case Instruction::FRem: 722 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 723 } 724 break; 725 case Type::DoubleTyID: 726 switch (CE->getOpcode()) { 727 default: llvm_unreachable("Invalid double opcode"); 728 case Instruction::FAdd: 729 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 730 case Instruction::FSub: 731 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 732 case Instruction::FMul: 733 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 734 case Instruction::FDiv: 735 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 736 case Instruction::FRem: 737 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 738 } 739 break; 740 case Type::X86_FP80TyID: 741 case Type::PPC_FP128TyID: 742 case Type::FP128TyID: { 743 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); 744 APFloat apfLHS = APFloat(Sem, LHS.IntVal); 745 switch (CE->getOpcode()) { 746 default: llvm_unreachable("Invalid long double opcode"); 747 case Instruction::FAdd: 748 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); 749 GV.IntVal = apfLHS.bitcastToAPInt(); 750 break; 751 case Instruction::FSub: 752 apfLHS.subtract(APFloat(Sem, RHS.IntVal), 753 APFloat::rmNearestTiesToEven); 754 GV.IntVal = apfLHS.bitcastToAPInt(); 755 break; 756 case Instruction::FMul: 757 apfLHS.multiply(APFloat(Sem, RHS.IntVal), 758 APFloat::rmNearestTiesToEven); 759 GV.IntVal = apfLHS.bitcastToAPInt(); 760 break; 761 case Instruction::FDiv: 762 apfLHS.divide(APFloat(Sem, RHS.IntVal), 763 APFloat::rmNearestTiesToEven); 764 GV.IntVal = apfLHS.bitcastToAPInt(); 765 break; 766 case Instruction::FRem: 767 apfLHS.mod(APFloat(Sem, RHS.IntVal), 768 APFloat::rmNearestTiesToEven); 769 GV.IntVal = apfLHS.bitcastToAPInt(); 770 break; 771 } 772 } 773 break; 774 } 775 return GV; 776 } 777 default: 778 break; 779 } 780 781 SmallString<256> Msg; 782 raw_svector_ostream OS(Msg); 783 OS << "ConstantExpr not handled: " << *CE; 784 report_fatal_error(OS.str()); 785 } 786 787 // Otherwise, we have a simple constant. 788 GenericValue Result; 789 switch (C->getType()->getTypeID()) { 790 case Type::FloatTyID: 791 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 792 break; 793 case Type::DoubleTyID: 794 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 795 break; 796 case Type::X86_FP80TyID: 797 case Type::FP128TyID: 798 case Type::PPC_FP128TyID: 799 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 800 break; 801 case Type::IntegerTyID: 802 Result.IntVal = cast<ConstantInt>(C)->getValue(); 803 break; 804 case Type::PointerTyID: 805 if (isa<ConstantPointerNull>(C)) 806 Result.PointerVal = nullptr; 807 else if (const Function *F = dyn_cast<Function>(C)) 808 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 809 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 810 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 811 else 812 llvm_unreachable("Unknown constant pointer type!"); 813 break; 814 case Type::VectorTyID: { 815 unsigned elemNum; 816 Type* ElemTy; 817 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); 818 const ConstantVector *CV = dyn_cast<ConstantVector>(C); 819 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); 820 821 if (CDV) { 822 elemNum = CDV->getNumElements(); 823 ElemTy = CDV->getElementType(); 824 } else if (CV || CAZ) { 825 VectorType* VTy = dyn_cast<VectorType>(C->getType()); 826 elemNum = VTy->getNumElements(); 827 ElemTy = VTy->getElementType(); 828 } else { 829 llvm_unreachable("Unknown constant vector type!"); 830 } 831 832 Result.AggregateVal.resize(elemNum); 833 // Check if vector holds floats. 834 if(ElemTy->isFloatTy()) { 835 if (CAZ) { 836 GenericValue floatZero; 837 floatZero.FloatVal = 0.f; 838 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 839 floatZero); 840 break; 841 } 842 if(CV) { 843 for (unsigned i = 0; i < elemNum; ++i) 844 if (!isa<UndefValue>(CV->getOperand(i))) 845 Result.AggregateVal[i].FloatVal = cast<ConstantFP>( 846 CV->getOperand(i))->getValueAPF().convertToFloat(); 847 break; 848 } 849 if(CDV) 850 for (unsigned i = 0; i < elemNum; ++i) 851 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); 852 853 break; 854 } 855 // Check if vector holds doubles. 856 if (ElemTy->isDoubleTy()) { 857 if (CAZ) { 858 GenericValue doubleZero; 859 doubleZero.DoubleVal = 0.0; 860 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 861 doubleZero); 862 break; 863 } 864 if(CV) { 865 for (unsigned i = 0; i < elemNum; ++i) 866 if (!isa<UndefValue>(CV->getOperand(i))) 867 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( 868 CV->getOperand(i))->getValueAPF().convertToDouble(); 869 break; 870 } 871 if(CDV) 872 for (unsigned i = 0; i < elemNum; ++i) 873 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); 874 875 break; 876 } 877 // Check if vector holds integers. 878 if (ElemTy->isIntegerTy()) { 879 if (CAZ) { 880 GenericValue intZero; 881 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); 882 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 883 intZero); 884 break; 885 } 886 if(CV) { 887 for (unsigned i = 0; i < elemNum; ++i) 888 if (!isa<UndefValue>(CV->getOperand(i))) 889 Result.AggregateVal[i].IntVal = cast<ConstantInt>( 890 CV->getOperand(i))->getValue(); 891 else { 892 Result.AggregateVal[i].IntVal = 893 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); 894 } 895 break; 896 } 897 if(CDV) 898 for (unsigned i = 0; i < elemNum; ++i) 899 Result.AggregateVal[i].IntVal = APInt( 900 CDV->getElementType()->getPrimitiveSizeInBits(), 901 CDV->getElementAsInteger(i)); 902 903 break; 904 } 905 llvm_unreachable("Unknown constant pointer type!"); 906 } 907 break; 908 909 default: 910 SmallString<256> Msg; 911 raw_svector_ostream OS(Msg); 912 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 913 report_fatal_error(OS.str()); 914 } 915 916 return Result; 917 } 918 919 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 920 /// with the integer held in IntVal. 921 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 922 unsigned StoreBytes) { 923 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 924 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 925 926 if (sys::IsLittleEndianHost) { 927 // Little-endian host - the source is ordered from LSB to MSB. Order the 928 // destination from LSB to MSB: Do a straight copy. 929 memcpy(Dst, Src, StoreBytes); 930 } else { 931 // Big-endian host - the source is an array of 64 bit words ordered from 932 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 933 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 934 while (StoreBytes > sizeof(uint64_t)) { 935 StoreBytes -= sizeof(uint64_t); 936 // May not be aligned so use memcpy. 937 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 938 Src += sizeof(uint64_t); 939 } 940 941 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 942 } 943 } 944 945 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 946 GenericValue *Ptr, Type *Ty) { 947 const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty); 948 949 switch (Ty->getTypeID()) { 950 default: 951 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 952 break; 953 case Type::IntegerTyID: 954 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 955 break; 956 case Type::FloatTyID: 957 *((float*)Ptr) = Val.FloatVal; 958 break; 959 case Type::DoubleTyID: 960 *((double*)Ptr) = Val.DoubleVal; 961 break; 962 case Type::X86_FP80TyID: 963 memcpy(Ptr, Val.IntVal.getRawData(), 10); 964 break; 965 case Type::PointerTyID: 966 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 967 if (StoreBytes != sizeof(PointerTy)) 968 memset(&(Ptr->PointerVal), 0, StoreBytes); 969 970 *((PointerTy*)Ptr) = Val.PointerVal; 971 break; 972 case Type::VectorTyID: 973 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { 974 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) 975 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; 976 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) 977 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; 978 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { 979 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; 980 StoreIntToMemory(Val.AggregateVal[i].IntVal, 981 (uint8_t*)Ptr + numOfBytes*i, numOfBytes); 982 } 983 } 984 break; 985 } 986 987 if (sys::IsLittleEndianHost != getDataLayout()->isLittleEndian()) 988 // Host and target are different endian - reverse the stored bytes. 989 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 990 } 991 992 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 993 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 994 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 995 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 996 uint8_t *Dst = reinterpret_cast<uint8_t *>( 997 const_cast<uint64_t *>(IntVal.getRawData())); 998 999 if (sys::IsLittleEndianHost) 1000 // Little-endian host - the destination must be ordered from LSB to MSB. 1001 // The source is ordered from LSB to MSB: Do a straight copy. 1002 memcpy(Dst, Src, LoadBytes); 1003 else { 1004 // Big-endian - the destination is an array of 64 bit words ordered from 1005 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 1006 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 1007 // a word. 1008 while (LoadBytes > sizeof(uint64_t)) { 1009 LoadBytes -= sizeof(uint64_t); 1010 // May not be aligned so use memcpy. 1011 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 1012 Dst += sizeof(uint64_t); 1013 } 1014 1015 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 1016 } 1017 } 1018 1019 /// FIXME: document 1020 /// 1021 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 1022 GenericValue *Ptr, 1023 Type *Ty) { 1024 const unsigned LoadBytes = getDataLayout()->getTypeStoreSize(Ty); 1025 1026 switch (Ty->getTypeID()) { 1027 case Type::IntegerTyID: 1028 // An APInt with all words initially zero. 1029 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 1030 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 1031 break; 1032 case Type::FloatTyID: 1033 Result.FloatVal = *((float*)Ptr); 1034 break; 1035 case Type::DoubleTyID: 1036 Result.DoubleVal = *((double*)Ptr); 1037 break; 1038 case Type::PointerTyID: 1039 Result.PointerVal = *((PointerTy*)Ptr); 1040 break; 1041 case Type::X86_FP80TyID: { 1042 // This is endian dependent, but it will only work on x86 anyway. 1043 // FIXME: Will not trap if loading a signaling NaN. 1044 uint64_t y[2]; 1045 memcpy(y, Ptr, 10); 1046 Result.IntVal = APInt(80, y); 1047 break; 1048 } 1049 case Type::VectorTyID: { 1050 const VectorType *VT = cast<VectorType>(Ty); 1051 const Type *ElemT = VT->getElementType(); 1052 const unsigned numElems = VT->getNumElements(); 1053 if (ElemT->isFloatTy()) { 1054 Result.AggregateVal.resize(numElems); 1055 for (unsigned i = 0; i < numElems; ++i) 1056 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); 1057 } 1058 if (ElemT->isDoubleTy()) { 1059 Result.AggregateVal.resize(numElems); 1060 for (unsigned i = 0; i < numElems; ++i) 1061 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); 1062 } 1063 if (ElemT->isIntegerTy()) { 1064 GenericValue intZero; 1065 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); 1066 intZero.IntVal = APInt(elemBitWidth, 0); 1067 Result.AggregateVal.resize(numElems, intZero); 1068 for (unsigned i = 0; i < numElems; ++i) 1069 LoadIntFromMemory(Result.AggregateVal[i].IntVal, 1070 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); 1071 } 1072 break; 1073 } 1074 default: 1075 SmallString<256> Msg; 1076 raw_svector_ostream OS(Msg); 1077 OS << "Cannot load value of type " << *Ty << "!"; 1078 report_fatal_error(OS.str()); 1079 } 1080 } 1081 1082 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 1083 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 1084 DEBUG(Init->dump()); 1085 if (isa<UndefValue>(Init)) 1086 return; 1087 1088 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 1089 unsigned ElementSize = 1090 getDataLayout()->getTypeAllocSize(CP->getType()->getElementType()); 1091 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 1092 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 1093 return; 1094 } 1095 1096 if (isa<ConstantAggregateZero>(Init)) { 1097 memset(Addr, 0, (size_t)getDataLayout()->getTypeAllocSize(Init->getType())); 1098 return; 1099 } 1100 1101 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 1102 unsigned ElementSize = 1103 getDataLayout()->getTypeAllocSize(CPA->getType()->getElementType()); 1104 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 1105 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 1106 return; 1107 } 1108 1109 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 1110 const StructLayout *SL = 1111 getDataLayout()->getStructLayout(cast<StructType>(CPS->getType())); 1112 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 1113 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 1114 return; 1115 } 1116 1117 if (const ConstantDataSequential *CDS = 1118 dyn_cast<ConstantDataSequential>(Init)) { 1119 // CDS is already laid out in host memory order. 1120 StringRef Data = CDS->getRawDataValues(); 1121 memcpy(Addr, Data.data(), Data.size()); 1122 return; 1123 } 1124 1125 if (Init->getType()->isFirstClassType()) { 1126 GenericValue Val = getConstantValue(Init); 1127 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 1128 return; 1129 } 1130 1131 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1132 llvm_unreachable("Unknown constant type to initialize memory with!"); 1133 } 1134 1135 /// EmitGlobals - Emit all of the global variables to memory, storing their 1136 /// addresses into GlobalAddress. This must make sure to copy the contents of 1137 /// their initializers into the memory. 1138 void ExecutionEngine::emitGlobals() { 1139 // Loop over all of the global variables in the program, allocating the memory 1140 // to hold them. If there is more than one module, do a prepass over globals 1141 // to figure out how the different modules should link together. 1142 std::map<std::pair<std::string, Type*>, 1143 const GlobalValue*> LinkedGlobalsMap; 1144 1145 if (Modules.size() != 1) { 1146 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1147 Module &M = *Modules[m]; 1148 for (const auto &GV : M.globals()) { 1149 if (GV.hasLocalLinkage() || GV.isDeclaration() || 1150 GV.hasAppendingLinkage() || !GV.hasName()) 1151 continue;// Ignore external globals and globals with internal linkage. 1152 1153 const GlobalValue *&GVEntry = 1154 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]; 1155 1156 // If this is the first time we've seen this global, it is the canonical 1157 // version. 1158 if (!GVEntry) { 1159 GVEntry = &GV; 1160 continue; 1161 } 1162 1163 // If the existing global is strong, never replace it. 1164 if (GVEntry->hasExternalLinkage()) 1165 continue; 1166 1167 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1168 // symbol. FIXME is this right for common? 1169 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1170 GVEntry = &GV; 1171 } 1172 } 1173 } 1174 1175 std::vector<const GlobalValue*> NonCanonicalGlobals; 1176 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1177 Module &M = *Modules[m]; 1178 for (const auto &GV : M.globals()) { 1179 // In the multi-module case, see what this global maps to. 1180 if (!LinkedGlobalsMap.empty()) { 1181 if (const GlobalValue *GVEntry = 1182 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) { 1183 // If something else is the canonical global, ignore this one. 1184 if (GVEntry != &GV) { 1185 NonCanonicalGlobals.push_back(&GV); 1186 continue; 1187 } 1188 } 1189 } 1190 1191 if (!GV.isDeclaration()) { 1192 addGlobalMapping(&GV, getMemoryForGV(&GV)); 1193 } else { 1194 // External variable reference. Try to use the dynamic loader to 1195 // get a pointer to it. 1196 if (void *SymAddr = 1197 sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName())) 1198 addGlobalMapping(&GV, SymAddr); 1199 else { 1200 report_fatal_error("Could not resolve external global address: " 1201 +GV.getName()); 1202 } 1203 } 1204 } 1205 1206 // If there are multiple modules, map the non-canonical globals to their 1207 // canonical location. 1208 if (!NonCanonicalGlobals.empty()) { 1209 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1210 const GlobalValue *GV = NonCanonicalGlobals[i]; 1211 const GlobalValue *CGV = 1212 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1213 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1214 assert(Ptr && "Canonical global wasn't codegen'd!"); 1215 addGlobalMapping(GV, Ptr); 1216 } 1217 } 1218 1219 // Now that all of the globals are set up in memory, loop through them all 1220 // and initialize their contents. 1221 for (const auto &GV : M.globals()) { 1222 if (!GV.isDeclaration()) { 1223 if (!LinkedGlobalsMap.empty()) { 1224 if (const GlobalValue *GVEntry = 1225 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) 1226 if (GVEntry != &GV) // Not the canonical variable. 1227 continue; 1228 } 1229 EmitGlobalVariable(&GV); 1230 } 1231 } 1232 } 1233 } 1234 1235 // EmitGlobalVariable - This method emits the specified global variable to the 1236 // address specified in GlobalAddresses, or allocates new memory if it's not 1237 // already in the map. 1238 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1239 void *GA = getPointerToGlobalIfAvailable(GV); 1240 1241 if (!GA) { 1242 // If it's not already specified, allocate memory for the global. 1243 GA = getMemoryForGV(GV); 1244 1245 // If we failed to allocate memory for this global, return. 1246 if (!GA) return; 1247 1248 addGlobalMapping(GV, GA); 1249 } 1250 1251 // Don't initialize if it's thread local, let the client do it. 1252 if (!GV->isThreadLocal()) 1253 InitializeMemory(GV->getInitializer(), GA); 1254 1255 Type *ElTy = GV->getType()->getElementType(); 1256 size_t GVSize = (size_t)getDataLayout()->getTypeAllocSize(ElTy); 1257 NumInitBytes += (unsigned)GVSize; 1258 ++NumGlobals; 1259 } 1260 1261 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1262 : EE(EE), GlobalAddressMap(this) { 1263 } 1264 1265 sys::Mutex * 1266 ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) { 1267 return &EES->EE.lock; 1268 } 1269 1270 void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES, 1271 const GlobalValue *Old) { 1272 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1273 EES->GlobalAddressReverseMap.erase(OldVal); 1274 } 1275 1276 void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *, 1277 const GlobalValue *, 1278 const GlobalValue *) { 1279 llvm_unreachable("The ExecutionEngine doesn't know how to handle a" 1280 " RAUW on a value it has a global mapping for."); 1281 } 1282