1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/Module.h" 19 #include "llvm/ModuleProvider.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ExecutionEngine/ExecutionEngine.h" 22 #include "llvm/ExecutionEngine/GenericValue.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/MutexGuard.h" 25 #include "llvm/System/DynamicLibrary.h" 26 #include "llvm/Target/TargetData.h" 27 using namespace llvm; 28 29 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 30 STATISTIC(NumGlobals , "Number of global vars initialized"); 31 32 ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0; 33 ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0; 34 35 ExecutionEngine::ExecutionEngine(ModuleProvider *P) { 36 LazyCompilationDisabled = false; 37 Modules.push_back(P); 38 assert(P && "ModuleProvider is null?"); 39 } 40 41 ExecutionEngine::ExecutionEngine(Module *M) { 42 LazyCompilationDisabled = false; 43 assert(M && "Module is null?"); 44 Modules.push_back(new ExistingModuleProvider(M)); 45 } 46 47 ExecutionEngine::~ExecutionEngine() { 48 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 49 delete Modules[i]; 50 } 51 52 /// FindFunctionNamed - Search all of the active modules to find the one that 53 /// defines FnName. This is very slow operation and shouldn't be used for 54 /// general code. 55 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 56 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 57 if (Function *F = Modules[i]->getModule()->getFunction(FnName)) 58 return F; 59 } 60 return 0; 61 } 62 63 64 /// addGlobalMapping - Tell the execution engine that the specified global is 65 /// at the specified location. This is used internally as functions are JIT'd 66 /// and as global variables are laid out in memory. It can and should also be 67 /// used by clients of the EE that want to have an LLVM global overlay 68 /// existing data in memory. 69 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 70 MutexGuard locked(lock); 71 72 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 73 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 74 CurVal = Addr; 75 76 // If we are using the reverse mapping, add it too 77 if (!state.getGlobalAddressReverseMap(locked).empty()) { 78 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; 79 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 80 V = GV; 81 } 82 } 83 84 /// clearAllGlobalMappings - Clear all global mappings and start over again 85 /// use in dynamic compilation scenarios when you want to move globals 86 void ExecutionEngine::clearAllGlobalMappings() { 87 MutexGuard locked(lock); 88 89 state.getGlobalAddressMap(locked).clear(); 90 state.getGlobalAddressReverseMap(locked).clear(); 91 } 92 93 /// updateGlobalMapping - Replace an existing mapping for GV with a new 94 /// address. This updates both maps as required. If "Addr" is null, the 95 /// entry for the global is removed from the mappings. 96 void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 97 MutexGuard locked(lock); 98 99 // Deleting from the mapping? 100 if (Addr == 0) { 101 state.getGlobalAddressMap(locked).erase(GV); 102 if (!state.getGlobalAddressReverseMap(locked).empty()) 103 state.getGlobalAddressReverseMap(locked).erase(Addr); 104 return; 105 } 106 107 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 108 if (CurVal && !state.getGlobalAddressReverseMap(locked).empty()) 109 state.getGlobalAddressReverseMap(locked).erase(CurVal); 110 CurVal = Addr; 111 112 // If we are using the reverse mapping, add it too 113 if (!state.getGlobalAddressReverseMap(locked).empty()) { 114 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; 115 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 116 V = GV; 117 } 118 } 119 120 /// getPointerToGlobalIfAvailable - This returns the address of the specified 121 /// global value if it is has already been codegen'd, otherwise it returns null. 122 /// 123 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 124 MutexGuard locked(lock); 125 126 std::map<const GlobalValue*, void*>::iterator I = 127 state.getGlobalAddressMap(locked).find(GV); 128 return I != state.getGlobalAddressMap(locked).end() ? I->second : 0; 129 } 130 131 /// getGlobalValueAtAddress - Return the LLVM global value object that starts 132 /// at the specified address. 133 /// 134 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 135 MutexGuard locked(lock); 136 137 // If we haven't computed the reverse mapping yet, do so first. 138 if (state.getGlobalAddressReverseMap(locked).empty()) { 139 for (std::map<const GlobalValue*, void *>::iterator 140 I = state.getGlobalAddressMap(locked).begin(), 141 E = state.getGlobalAddressMap(locked).end(); I != E; ++I) 142 state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, 143 I->first)); 144 } 145 146 std::map<void *, const GlobalValue*>::iterator I = 147 state.getGlobalAddressReverseMap(locked).find(Addr); 148 return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 149 } 150 151 // CreateArgv - Turn a vector of strings into a nice argv style array of 152 // pointers to null terminated strings. 153 // 154 static void *CreateArgv(ExecutionEngine *EE, 155 const std::vector<std::string> &InputArgv) { 156 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 157 char *Result = new char[(InputArgv.size()+1)*PtrSize]; 158 159 DOUT << "ARGV = " << (void*)Result << "\n"; 160 const Type *SBytePtr = PointerType::get(Type::Int8Ty); 161 162 for (unsigned i = 0; i != InputArgv.size(); ++i) { 163 unsigned Size = InputArgv[i].size()+1; 164 char *Dest = new char[Size]; 165 DOUT << "ARGV[" << i << "] = " << (void*)Dest << "\n"; 166 167 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 168 Dest[Size-1] = 0; 169 170 // Endian safe: Result[i] = (PointerTy)Dest; 171 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), 172 SBytePtr); 173 } 174 175 // Null terminate it 176 EE->StoreValueToMemory(PTOGV(0), 177 (GenericValue*)(Result+InputArgv.size()*PtrSize), 178 SBytePtr); 179 return Result; 180 } 181 182 183 /// runStaticConstructorsDestructors - This method is used to execute all of 184 /// the static constructors or destructors for a program, depending on the 185 /// value of isDtors. 186 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 187 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 188 189 // Execute global ctors/dtors for each module in the program. 190 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 191 GlobalVariable *GV = Modules[m]->getModule()->getNamedGlobal(Name); 192 193 // If this global has internal linkage, or if it has a use, then it must be 194 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 195 // this is the case, don't execute any of the global ctors, __main will do 196 // it. 197 if (!GV || GV->isDeclaration() || GV->hasInternalLinkage()) continue; 198 199 // Should be an array of '{ int, void ()* }' structs. The first value is 200 // the init priority, which we ignore. 201 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 202 if (!InitList) continue; 203 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 204 if (ConstantStruct *CS = 205 dyn_cast<ConstantStruct>(InitList->getOperand(i))) { 206 if (CS->getNumOperands() != 2) break; // Not array of 2-element structs. 207 208 Constant *FP = CS->getOperand(1); 209 if (FP->isNullValue()) 210 break; // Found a null terminator, exit. 211 212 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 213 if (CE->isCast()) 214 FP = CE->getOperand(0); 215 if (Function *F = dyn_cast<Function>(FP)) { 216 // Execute the ctor/dtor function! 217 runFunction(F, std::vector<GenericValue>()); 218 } 219 } 220 } 221 } 222 223 /// runFunctionAsMain - This is a helper function which wraps runFunction to 224 /// handle the common task of starting up main with the specified argc, argv, 225 /// and envp parameters. 226 int ExecutionEngine::runFunctionAsMain(Function *Fn, 227 const std::vector<std::string> &argv, 228 const char * const * envp) { 229 std::vector<GenericValue> GVArgs; 230 GenericValue GVArgc; 231 GVArgc.Int32Val = argv.size(); 232 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 233 if (NumArgs) { 234 GVArgs.push_back(GVArgc); // Arg #0 = argc. 235 if (NumArgs > 1) { 236 GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv. 237 assert(((char **)GVTOP(GVArgs[1]))[0] && 238 "argv[0] was null after CreateArgv"); 239 if (NumArgs > 2) { 240 std::vector<std::string> EnvVars; 241 for (unsigned i = 0; envp[i]; ++i) 242 EnvVars.push_back(envp[i]); 243 GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp. 244 } 245 } 246 } 247 return runFunction(Fn, GVArgs).Int32Val; 248 } 249 250 /// If possible, create a JIT, unless the caller specifically requests an 251 /// Interpreter or there's an error. If even an Interpreter cannot be created, 252 /// NULL is returned. 253 /// 254 ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, 255 bool ForceInterpreter) { 256 ExecutionEngine *EE = 0; 257 258 // Unless the interpreter was explicitly selected, try making a JIT. 259 if (!ForceInterpreter && JITCtor) 260 EE = JITCtor(MP); 261 262 // If we can't make a JIT, make an interpreter instead. 263 if (EE == 0 && InterpCtor) 264 EE = InterpCtor(MP); 265 266 if (EE) { 267 // Make sure we can resolve symbols in the program as well. The zero arg 268 // to the function tells DynamicLibrary to load the program, not a library. 269 try { 270 sys::DynamicLibrary::LoadLibraryPermanently(0); 271 } catch (...) { 272 } 273 } 274 275 return EE; 276 } 277 278 /// getPointerToGlobal - This returns the address of the specified global 279 /// value. This may involve code generation if it's a function. 280 /// 281 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 282 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 283 return getPointerToFunction(F); 284 285 MutexGuard locked(lock); 286 void *p = state.getGlobalAddressMap(locked)[GV]; 287 if (p) 288 return p; 289 290 // Global variable might have been added since interpreter started. 291 if (GlobalVariable *GVar = 292 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 293 EmitGlobalVariable(GVar); 294 else 295 assert(0 && "Global hasn't had an address allocated yet!"); 296 return state.getGlobalAddressMap(locked)[GV]; 297 } 298 299 /// This macro is used to handle a variety of situations involing integer 300 /// values where the action should be done to one of the GenericValue members. 301 /// THEINTTY is a const Type * for the integer type. ACTION1 comes before 302 /// the GenericValue, ACTION2 comes after. 303 #define DO_FOR_INTEGER(THEINTTY, ACTION) \ 304 { \ 305 unsigned BitWidth = cast<IntegerType>(THEINTTY)->getBitWidth(); \ 306 if (BitWidth == 1) {\ 307 ACTION(Int1Val); \ 308 } else if (BitWidth <= 8) {\ 309 ACTION(Int8Val); \ 310 } else if (BitWidth <= 16) {\ 311 ACTION(Int16Val); \ 312 } else if (BitWidth <= 32) { \ 313 ACTION(Int32Val); \ 314 } else if (BitWidth <= 64) { \ 315 ACTION(Int64Val); \ 316 } else {\ 317 assert(0 && "Not implemented: integer types > 64 bits"); \ 318 } \ 319 } 320 321 /// This function converts a Constant* into a GenericValue. The interesting 322 /// part is if C is a ConstantExpr. 323 /// @brief Get a GenericValue for a Constnat* 324 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 325 // Declare the result as garbage. 326 GenericValue Result; 327 328 // If its undefined, return the garbage. 329 if (isa<UndefValue>(C)) return Result; 330 331 // If the value is a ConstantExpr 332 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 333 switch (CE->getOpcode()) { 334 case Instruction::GetElementPtr: { 335 // Compute the index 336 Result = getConstantValue(CE->getOperand(0)); 337 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); 338 uint64_t Offset = 339 TD->getIndexedOffset(CE->getOperand(0)->getType(), 340 &Indices[0], Indices.size()); 341 342 if (getTargetData()->getPointerSize() == 4) 343 Result.Int32Val += Offset; 344 else 345 Result.Int64Val += Offset; 346 return Result; 347 } 348 case Instruction::Trunc: 349 case Instruction::ZExt: 350 case Instruction::SExt: 351 case Instruction::FPTrunc: 352 case Instruction::FPExt: 353 case Instruction::UIToFP: 354 case Instruction::SIToFP: 355 case Instruction::FPToUI: 356 case Instruction::FPToSI: 357 break; 358 case Instruction::PtrToInt: { 359 Constant *Op = CE->getOperand(0); 360 GenericValue GV = getConstantValue(Op); 361 return GV; 362 } 363 case Instruction::BitCast: { 364 // Bit casts are no-ops but we can only return the GV of the operand if 365 // they are the same basic type (pointer->pointer, packed->packed, etc.) 366 Constant *Op = CE->getOperand(0); 367 GenericValue GV = getConstantValue(Op); 368 if (Op->getType()->getTypeID() == C->getType()->getTypeID()) 369 return GV; 370 break; 371 } 372 case Instruction::IntToPtr: { 373 // IntToPtr casts are just so special. Cast to intptr_t first. 374 Constant *Op = CE->getOperand(0); 375 GenericValue GV = getConstantValue(Op); 376 #define INT_TO_PTR_ACTION(FIELD) \ 377 return PTOGV((void*)(uintptr_t)GV.FIELD) 378 DO_FOR_INTEGER(Op->getType(), INT_TO_PTR_ACTION) 379 #undef INT_TO_PTR_ACTION 380 break; 381 } 382 case Instruction::Add: 383 switch (CE->getOperand(0)->getType()->getTypeID()) { 384 default: assert(0 && "Bad add type!"); abort(); 385 case Type::IntegerTyID: 386 #define ADD_ACTION(FIELD) \ 387 Result.FIELD = getConstantValue(CE->getOperand(0)).FIELD + \ 388 getConstantValue(CE->getOperand(1)).FIELD; 389 DO_FOR_INTEGER(CE->getOperand(0)->getType(),ADD_ACTION); 390 #undef ADD_ACTION 391 break; 392 case Type::FloatTyID: 393 Result.FloatVal = getConstantValue(CE->getOperand(0)).FloatVal + 394 getConstantValue(CE->getOperand(1)).FloatVal; 395 break; 396 case Type::DoubleTyID: 397 Result.DoubleVal = getConstantValue(CE->getOperand(0)).DoubleVal + 398 getConstantValue(CE->getOperand(1)).DoubleVal; 399 break; 400 } 401 return Result; 402 default: 403 break; 404 } 405 cerr << "ConstantExpr not handled as global var init: " << *CE << "\n"; 406 abort(); 407 } 408 409 switch (C->getType()->getTypeID()) { 410 #define GET_CONST_VAL(TY, CTY, CLASS, GETMETH) \ 411 case Type::TY##TyID: Result.TY##Val = (CTY)cast<CLASS>(C)->GETMETH(); break 412 GET_CONST_VAL(Float , float , ConstantFP, getValue); 413 GET_CONST_VAL(Double, double , ConstantFP, getValue); 414 #undef GET_CONST_VAL 415 case Type::IntegerTyID: { 416 unsigned BitWidth = cast<IntegerType>(C->getType())->getBitWidth(); 417 if (BitWidth == 1) 418 Result.Int1Val = (bool)cast<ConstantInt>(C)->getZExtValue(); 419 else if (BitWidth <= 8) 420 Result.Int8Val = (uint8_t )cast<ConstantInt>(C)->getZExtValue(); 421 else if (BitWidth <= 16) 422 Result.Int16Val = (uint16_t )cast<ConstantInt>(C)->getZExtValue(); 423 else if (BitWidth <= 32) 424 Result.Int32Val = (uint32_t )cast<ConstantInt>(C)->getZExtValue(); 425 else if (BitWidth <= 64) 426 Result.Int64Val = (uint64_t )cast<ConstantInt>(C)->getZExtValue(); 427 else 428 Result.APIntVal = const_cast<APInt*>(&cast<ConstantInt>(C)->getValue()); 429 break; 430 } 431 432 case Type::PointerTyID: 433 if (isa<ConstantPointerNull>(C)) 434 Result.PointerVal = 0; 435 else if (const Function *F = dyn_cast<Function>(C)) 436 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 437 else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) 438 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 439 else 440 assert(0 && "Unknown constant pointer type!"); 441 break; 442 default: 443 cerr << "ERROR: Constant unimp for type: " << *C->getType() << "\n"; 444 abort(); 445 } 446 return Result; 447 } 448 449 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr 450 /// is the address of the memory at which to store Val, cast to GenericValue *. 451 /// It is not a pointer to a GenericValue containing the address at which to 452 /// store Val. 453 /// 454 void ExecutionEngine::StoreValueToMemory(GenericValue Val, GenericValue *Ptr, 455 const Type *Ty) { 456 if (getTargetData()->isLittleEndian()) { 457 switch (Ty->getTypeID()) { 458 case Type::IntegerTyID: { 459 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth(); 460 uint64_t BitMask = cast<IntegerType>(Ty)->getBitMask(); 461 GenericValue TmpVal = Val; 462 if (BitWidth <= 8) 463 Ptr->Untyped[0] = Val.Int8Val & BitMask; 464 else if (BitWidth <= 16) { 465 TmpVal.Int16Val &= BitMask; 466 Ptr->Untyped[0] = TmpVal.Int16Val & 255; 467 Ptr->Untyped[1] = (TmpVal.Int16Val >> 8) & 255; 468 } else if (BitWidth <= 32) { 469 TmpVal.Int32Val &= BitMask; 470 Ptr->Untyped[0] = TmpVal.Int32Val & 255; 471 Ptr->Untyped[1] = (TmpVal.Int32Val >> 8) & 255; 472 Ptr->Untyped[2] = (TmpVal.Int32Val >> 16) & 255; 473 Ptr->Untyped[3] = (TmpVal.Int32Val >> 24) & 255; 474 } else if (BitWidth <= 64) { 475 TmpVal.Int64Val &= BitMask; 476 Ptr->Untyped[0] = (unsigned char)(TmpVal.Int64Val ); 477 Ptr->Untyped[1] = (unsigned char)(TmpVal.Int64Val >> 8); 478 Ptr->Untyped[2] = (unsigned char)(TmpVal.Int64Val >> 16); 479 Ptr->Untyped[3] = (unsigned char)(TmpVal.Int64Val >> 24); 480 Ptr->Untyped[4] = (unsigned char)(TmpVal.Int64Val >> 32); 481 Ptr->Untyped[5] = (unsigned char)(TmpVal.Int64Val >> 40); 482 Ptr->Untyped[6] = (unsigned char)(TmpVal.Int64Val >> 48); 483 Ptr->Untyped[7] = (unsigned char)(TmpVal.Int64Val >> 56); 484 } else { 485 uint64_t *Dest = (uint64_t*)Ptr; 486 const uint64_t *Src = Val.APIntVal->getRawData(); 487 for (uint32_t i = 0; i < Val.APIntVal->getNumWords(); ++i) 488 Dest[i] = Src[i]; 489 } 490 break; 491 } 492 Store4BytesLittleEndian: 493 case Type::FloatTyID: 494 Ptr->Untyped[0] = Val.Int32Val & 255; 495 Ptr->Untyped[1] = (Val.Int32Val >> 8) & 255; 496 Ptr->Untyped[2] = (Val.Int32Val >> 16) & 255; 497 Ptr->Untyped[3] = (Val.Int32Val >> 24) & 255; 498 break; 499 case Type::PointerTyID: 500 if (getTargetData()->getPointerSize() == 4) 501 goto Store4BytesLittleEndian; 502 /* FALL THROUGH */ 503 case Type::DoubleTyID: 504 Ptr->Untyped[0] = (unsigned char)(Val.Int64Val ); 505 Ptr->Untyped[1] = (unsigned char)(Val.Int64Val >> 8); 506 Ptr->Untyped[2] = (unsigned char)(Val.Int64Val >> 16); 507 Ptr->Untyped[3] = (unsigned char)(Val.Int64Val >> 24); 508 Ptr->Untyped[4] = (unsigned char)(Val.Int64Val >> 32); 509 Ptr->Untyped[5] = (unsigned char)(Val.Int64Val >> 40); 510 Ptr->Untyped[6] = (unsigned char)(Val.Int64Val >> 48); 511 Ptr->Untyped[7] = (unsigned char)(Val.Int64Val >> 56); 512 break; 513 default: 514 cerr << "Cannot store value of type " << *Ty << "!\n"; 515 } 516 } else { 517 switch (Ty->getTypeID()) { 518 case Type::IntegerTyID: { 519 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth(); 520 uint64_t BitMask = cast<IntegerType>(Ty)->getBitMask(); 521 GenericValue TmpVal = Val; 522 if (BitWidth <= 8) 523 Ptr->Untyped[0] = Val.Int8Val & BitMask; 524 else if (BitWidth <= 16) { 525 TmpVal.Int16Val &= BitMask; 526 Ptr->Untyped[1] = TmpVal.Int16Val & 255; 527 Ptr->Untyped[0] = (TmpVal.Int16Val >> 8) & 255; 528 } else if (BitWidth <= 32) { 529 TmpVal.Int32Val &= BitMask; 530 Ptr->Untyped[3] = TmpVal.Int32Val & 255; 531 Ptr->Untyped[2] = (TmpVal.Int32Val >> 8) & 255; 532 Ptr->Untyped[1] = (TmpVal.Int32Val >> 16) & 255; 533 Ptr->Untyped[0] = (TmpVal.Int32Val >> 24) & 255; 534 } else if (BitWidth <= 64) { 535 TmpVal.Int64Val &= BitMask; 536 Ptr->Untyped[7] = (unsigned char)(TmpVal.Int64Val ); 537 Ptr->Untyped[6] = (unsigned char)(TmpVal.Int64Val >> 8); 538 Ptr->Untyped[5] = (unsigned char)(TmpVal.Int64Val >> 16); 539 Ptr->Untyped[4] = (unsigned char)(TmpVal.Int64Val >> 24); 540 Ptr->Untyped[3] = (unsigned char)(TmpVal.Int64Val >> 32); 541 Ptr->Untyped[2] = (unsigned char)(TmpVal.Int64Val >> 40); 542 Ptr->Untyped[1] = (unsigned char)(TmpVal.Int64Val >> 48); 543 Ptr->Untyped[0] = (unsigned char)(TmpVal.Int64Val >> 56); 544 } else { 545 uint64_t *Dest = (uint64_t*)Ptr; 546 const uint64_t *Src = Val.APIntVal->getRawData(); 547 for (uint32_t i = 0; i < Val.APIntVal->getNumWords(); ++i) 548 Dest[i] = Src[i]; 549 } 550 break; 551 } 552 Store4BytesBigEndian: 553 case Type::FloatTyID: 554 Ptr->Untyped[3] = Val.Int32Val & 255; 555 Ptr->Untyped[2] = (Val.Int32Val >> 8) & 255; 556 Ptr->Untyped[1] = (Val.Int32Val >> 16) & 255; 557 Ptr->Untyped[0] = (Val.Int32Val >> 24) & 255; 558 break; 559 case Type::PointerTyID: 560 if (getTargetData()->getPointerSize() == 4) 561 goto Store4BytesBigEndian; 562 /* FALL THROUGH */ 563 case Type::DoubleTyID: 564 Ptr->Untyped[7] = (unsigned char)(Val.Int64Val ); 565 Ptr->Untyped[6] = (unsigned char)(Val.Int64Val >> 8); 566 Ptr->Untyped[5] = (unsigned char)(Val.Int64Val >> 16); 567 Ptr->Untyped[4] = (unsigned char)(Val.Int64Val >> 24); 568 Ptr->Untyped[3] = (unsigned char)(Val.Int64Val >> 32); 569 Ptr->Untyped[2] = (unsigned char)(Val.Int64Val >> 40); 570 Ptr->Untyped[1] = (unsigned char)(Val.Int64Val >> 48); 571 Ptr->Untyped[0] = (unsigned char)(Val.Int64Val >> 56); 572 break; 573 default: 574 cerr << "Cannot store value of type " << *Ty << "!\n"; 575 } 576 } 577 } 578 579 /// FIXME: document 580 /// 581 GenericValue ExecutionEngine::LoadValueFromMemory(GenericValue *Ptr, 582 const Type *Ty) { 583 GenericValue Result; 584 if (getTargetData()->isLittleEndian()) { 585 switch (Ty->getTypeID()) { 586 case Type::IntegerTyID: { 587 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth(); 588 if (BitWidth <= 8) 589 Result.Int8Val = Ptr->Untyped[0]; 590 else if (BitWidth <= 16) { 591 Result.Int16Val = (unsigned)Ptr->Untyped[0] | 592 ((unsigned)Ptr->Untyped[1] << 8); 593 } else if (BitWidth <= 32) { 594 Result.Int32Val = (unsigned)Ptr->Untyped[0] | 595 ((unsigned)Ptr->Untyped[1] << 8) | 596 ((unsigned)Ptr->Untyped[2] << 16) | 597 ((unsigned)Ptr->Untyped[3] << 24); 598 } else if (BitWidth <= 64) { 599 Result.Int64Val = (uint64_t)Ptr->Untyped[0] | 600 ((uint64_t)Ptr->Untyped[1] << 8) | 601 ((uint64_t)Ptr->Untyped[2] << 16) | 602 ((uint64_t)Ptr->Untyped[3] << 24) | 603 ((uint64_t)Ptr->Untyped[4] << 32) | 604 ((uint64_t)Ptr->Untyped[5] << 40) | 605 ((uint64_t)Ptr->Untyped[6] << 48) | 606 ((uint64_t)Ptr->Untyped[7] << 56); 607 } else 608 Result.APIntVal = new APInt(BitWidth, BitWidth/64, (uint64_t*)Ptr); 609 break; 610 } 611 Load4BytesLittleEndian: 612 case Type::FloatTyID: 613 Result.Int32Val = (unsigned)Ptr->Untyped[0] | 614 ((unsigned)Ptr->Untyped[1] << 8) | 615 ((unsigned)Ptr->Untyped[2] << 16) | 616 ((unsigned)Ptr->Untyped[3] << 24); 617 break; 618 case Type::PointerTyID: 619 if (getTargetData()->getPointerSize() == 4) 620 goto Load4BytesLittleEndian; 621 /* FALL THROUGH */ 622 case Type::DoubleTyID: 623 Result.Int64Val = (uint64_t)Ptr->Untyped[0] | 624 ((uint64_t)Ptr->Untyped[1] << 8) | 625 ((uint64_t)Ptr->Untyped[2] << 16) | 626 ((uint64_t)Ptr->Untyped[3] << 24) | 627 ((uint64_t)Ptr->Untyped[4] << 32) | 628 ((uint64_t)Ptr->Untyped[5] << 40) | 629 ((uint64_t)Ptr->Untyped[6] << 48) | 630 ((uint64_t)Ptr->Untyped[7] << 56); 631 break; 632 default: 633 cerr << "Cannot load value of type " << *Ty << "!\n"; 634 abort(); 635 } 636 } else { 637 switch (Ty->getTypeID()) { 638 case Type::IntegerTyID: { 639 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth(); 640 if (BitWidth <= 8) 641 Result.Int8Val = Ptr->Untyped[0]; 642 else if (BitWidth <= 16) { 643 Result.Int16Val = (unsigned)Ptr->Untyped[1] | 644 ((unsigned)Ptr->Untyped[0] << 8); 645 } else if (BitWidth <= 32) { 646 Result.Int32Val = (unsigned)Ptr->Untyped[3] | 647 ((unsigned)Ptr->Untyped[2] << 8) | 648 ((unsigned)Ptr->Untyped[1] << 16) | 649 ((unsigned)Ptr->Untyped[0] << 24); 650 } else if (BitWidth <= 64) { 651 Result.Int64Val = (uint64_t)Ptr->Untyped[7] | 652 ((uint64_t)Ptr->Untyped[6] << 8) | 653 ((uint64_t)Ptr->Untyped[5] << 16) | 654 ((uint64_t)Ptr->Untyped[4] << 24) | 655 ((uint64_t)Ptr->Untyped[3] << 32) | 656 ((uint64_t)Ptr->Untyped[2] << 40) | 657 ((uint64_t)Ptr->Untyped[1] << 48) | 658 ((uint64_t)Ptr->Untyped[0] << 56); 659 } else 660 Result.APIntVal = new APInt(BitWidth, BitWidth/64, (uint64_t*)Ptr); 661 break; 662 } 663 Load4BytesBigEndian: 664 case Type::FloatTyID: 665 Result.Int32Val = (unsigned)Ptr->Untyped[3] | 666 ((unsigned)Ptr->Untyped[2] << 8) | 667 ((unsigned)Ptr->Untyped[1] << 16) | 668 ((unsigned)Ptr->Untyped[0] << 24); 669 break; 670 case Type::PointerTyID: 671 if (getTargetData()->getPointerSize() == 4) 672 goto Load4BytesBigEndian; 673 /* FALL THROUGH */ 674 case Type::DoubleTyID: 675 Result.Int64Val = (uint64_t)Ptr->Untyped[7] | 676 ((uint64_t)Ptr->Untyped[6] << 8) | 677 ((uint64_t)Ptr->Untyped[5] << 16) | 678 ((uint64_t)Ptr->Untyped[4] << 24) | 679 ((uint64_t)Ptr->Untyped[3] << 32) | 680 ((uint64_t)Ptr->Untyped[2] << 40) | 681 ((uint64_t)Ptr->Untyped[1] << 48) | 682 ((uint64_t)Ptr->Untyped[0] << 56); 683 break; 684 default: 685 cerr << "Cannot load value of type " << *Ty << "!\n"; 686 abort(); 687 } 688 } 689 return Result; 690 } 691 692 // InitializeMemory - Recursive function to apply a Constant value into the 693 // specified memory location... 694 // 695 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 696 if (isa<UndefValue>(Init)) { 697 return; 698 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 699 unsigned ElementSize = 700 getTargetData()->getTypeSize(CP->getType()->getElementType()); 701 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 702 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 703 return; 704 } else if (Init->getType()->isFirstClassType()) { 705 GenericValue Val = getConstantValue(Init); 706 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 707 return; 708 } else if (isa<ConstantAggregateZero>(Init)) { 709 memset(Addr, 0, (size_t)getTargetData()->getTypeSize(Init->getType())); 710 return; 711 } 712 713 switch (Init->getType()->getTypeID()) { 714 case Type::ArrayTyID: { 715 const ConstantArray *CPA = cast<ConstantArray>(Init); 716 unsigned ElementSize = 717 getTargetData()->getTypeSize(CPA->getType()->getElementType()); 718 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 719 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 720 return; 721 } 722 723 case Type::StructTyID: { 724 const ConstantStruct *CPS = cast<ConstantStruct>(Init); 725 const StructLayout *SL = 726 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 727 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 728 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 729 return; 730 } 731 732 default: 733 cerr << "Bad Type: " << *Init->getType() << "\n"; 734 assert(0 && "Unknown constant type to initialize memory with!"); 735 } 736 } 737 738 /// EmitGlobals - Emit all of the global variables to memory, storing their 739 /// addresses into GlobalAddress. This must make sure to copy the contents of 740 /// their initializers into the memory. 741 /// 742 void ExecutionEngine::emitGlobals() { 743 const TargetData *TD = getTargetData(); 744 745 // Loop over all of the global variables in the program, allocating the memory 746 // to hold them. If there is more than one module, do a prepass over globals 747 // to figure out how the different modules should link together. 748 // 749 std::map<std::pair<std::string, const Type*>, 750 const GlobalValue*> LinkedGlobalsMap; 751 752 if (Modules.size() != 1) { 753 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 754 Module &M = *Modules[m]->getModule(); 755 for (Module::const_global_iterator I = M.global_begin(), 756 E = M.global_end(); I != E; ++I) { 757 const GlobalValue *GV = I; 758 if (GV->hasInternalLinkage() || GV->isDeclaration() || 759 GV->hasAppendingLinkage() || !GV->hasName()) 760 continue;// Ignore external globals and globals with internal linkage. 761 762 const GlobalValue *&GVEntry = 763 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 764 765 // If this is the first time we've seen this global, it is the canonical 766 // version. 767 if (!GVEntry) { 768 GVEntry = GV; 769 continue; 770 } 771 772 // If the existing global is strong, never replace it. 773 if (GVEntry->hasExternalLinkage() || 774 GVEntry->hasDLLImportLinkage() || 775 GVEntry->hasDLLExportLinkage()) 776 continue; 777 778 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 779 // symbol. 780 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 781 GVEntry = GV; 782 } 783 } 784 } 785 786 std::vector<const GlobalValue*> NonCanonicalGlobals; 787 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 788 Module &M = *Modules[m]->getModule(); 789 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 790 I != E; ++I) { 791 // In the multi-module case, see what this global maps to. 792 if (!LinkedGlobalsMap.empty()) { 793 if (const GlobalValue *GVEntry = 794 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 795 // If something else is the canonical global, ignore this one. 796 if (GVEntry != &*I) { 797 NonCanonicalGlobals.push_back(I); 798 continue; 799 } 800 } 801 } 802 803 if (!I->isDeclaration()) { 804 // Get the type of the global. 805 const Type *Ty = I->getType()->getElementType(); 806 807 // Allocate some memory for it! 808 unsigned Size = TD->getTypeSize(Ty); 809 addGlobalMapping(I, new char[Size]); 810 } else { 811 // External variable reference. Try to use the dynamic loader to 812 // get a pointer to it. 813 if (void *SymAddr = 814 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str())) 815 addGlobalMapping(I, SymAddr); 816 else { 817 cerr << "Could not resolve external global address: " 818 << I->getName() << "\n"; 819 abort(); 820 } 821 } 822 } 823 824 // If there are multiple modules, map the non-canonical globals to their 825 // canonical location. 826 if (!NonCanonicalGlobals.empty()) { 827 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 828 const GlobalValue *GV = NonCanonicalGlobals[i]; 829 const GlobalValue *CGV = 830 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 831 void *Ptr = getPointerToGlobalIfAvailable(CGV); 832 assert(Ptr && "Canonical global wasn't codegen'd!"); 833 addGlobalMapping(GV, getPointerToGlobalIfAvailable(CGV)); 834 } 835 } 836 837 // Now that all of the globals are set up in memory, loop through them all 838 // and initialize their contents. 839 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 840 I != E; ++I) { 841 if (!I->isDeclaration()) { 842 if (!LinkedGlobalsMap.empty()) { 843 if (const GlobalValue *GVEntry = 844 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 845 if (GVEntry != &*I) // Not the canonical variable. 846 continue; 847 } 848 EmitGlobalVariable(I); 849 } 850 } 851 } 852 } 853 854 // EmitGlobalVariable - This method emits the specified global variable to the 855 // address specified in GlobalAddresses, or allocates new memory if it's not 856 // already in the map. 857 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 858 void *GA = getPointerToGlobalIfAvailable(GV); 859 DOUT << "Global '" << GV->getName() << "' -> " << GA << "\n"; 860 861 const Type *ElTy = GV->getType()->getElementType(); 862 size_t GVSize = (size_t)getTargetData()->getTypeSize(ElTy); 863 if (GA == 0) { 864 // If it's not already specified, allocate memory for the global. 865 GA = new char[GVSize]; 866 addGlobalMapping(GV, GA); 867 } 868 869 InitializeMemory(GV->getInitializer(), GA); 870 NumInitBytes += (unsigned)GVSize; 871 ++NumGlobals; 872 } 873