1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ExecutionEngine/ExecutionEngine.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ExecutionEngine/GenericValue.h" 19 #include "llvm/ExecutionEngine/JITEventListener.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/IR/ValueHandle.h" 26 #include "llvm/Object/Archive.h" 27 #include "llvm/Object/ObjectFile.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/DynamicLibrary.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/Host.h" 32 #include "llvm/Support/MutexGuard.h" 33 #include "llvm/Support/TargetRegistry.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include <cmath> 37 #include <cstring> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "jit" 41 42 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 43 STATISTIC(NumGlobals , "Number of global vars initialized"); 44 45 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 46 std::unique_ptr<Module> M, std::string *ErrorStr, 47 RTDyldMemoryManager *MCJMM, std::unique_ptr<TargetMachine> TM) = nullptr; 48 ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M, 49 std::string *ErrorStr) =nullptr; 50 51 void JITEventListener::anchor() {} 52 53 ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M) 54 : EEState(*this), 55 LazyFunctionCreator(nullptr) { 56 CompilingLazily = false; 57 GVCompilationDisabled = false; 58 SymbolSearchingDisabled = false; 59 60 // IR module verification is enabled by default in debug builds, and disabled 61 // by default in release builds. 62 #ifndef NDEBUG 63 VerifyModules = true; 64 #else 65 VerifyModules = false; 66 #endif 67 68 assert(M && "Module is null?"); 69 Modules.push_back(std::move(M)); 70 } 71 72 ExecutionEngine::~ExecutionEngine() { 73 clearAllGlobalMappings(); 74 } 75 76 namespace { 77 /// \brief Helper class which uses a value handler to automatically deletes the 78 /// memory block when the GlobalVariable is destroyed. 79 class GVMemoryBlock : public CallbackVH { 80 GVMemoryBlock(const GlobalVariable *GV) 81 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 82 83 public: 84 /// \brief Returns the address the GlobalVariable should be written into. The 85 /// GVMemoryBlock object prefixes that. 86 static char *Create(const GlobalVariable *GV, const DataLayout& TD) { 87 Type *ElTy = GV->getType()->getElementType(); 88 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 89 void *RawMemory = ::operator new( 90 RoundUpToAlignment(sizeof(GVMemoryBlock), 91 TD.getPreferredAlignment(GV)) 92 + GVSize); 93 new(RawMemory) GVMemoryBlock(GV); 94 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 95 } 96 97 void deleted() override { 98 // We allocated with operator new and with some extra memory hanging off the 99 // end, so don't just delete this. I'm not sure if this is actually 100 // required. 101 this->~GVMemoryBlock(); 102 ::operator delete(this); 103 } 104 }; 105 } // anonymous namespace 106 107 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 108 return GVMemoryBlock::Create(GV, *getDataLayout()); 109 } 110 111 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { 112 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 113 } 114 115 void 116 ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) { 117 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 118 } 119 120 void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) { 121 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive."); 122 } 123 124 bool ExecutionEngine::removeModule(Module *M) { 125 for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) { 126 Module *Found = I->get(); 127 if (Found == M) { 128 I->release(); 129 Modules.erase(I); 130 clearGlobalMappingsFromModule(M); 131 return true; 132 } 133 } 134 return false; 135 } 136 137 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 138 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 139 if (Function *F = Modules[i]->getFunction(FnName)) 140 return F; 141 } 142 return nullptr; 143 } 144 145 146 void *ExecutionEngineState::RemoveMapping(const GlobalValue *ToUnmap) { 147 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 148 void *OldVal; 149 150 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 151 // GlobalAddressMap. 152 if (I == GlobalAddressMap.end()) 153 OldVal = nullptr; 154 else { 155 OldVal = I->second; 156 GlobalAddressMap.erase(I); 157 } 158 159 GlobalAddressReverseMap.erase(OldVal); 160 return OldVal; 161 } 162 163 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 164 MutexGuard locked(lock); 165 166 DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 167 << "\' to [" << Addr << "]\n";); 168 void *&CurVal = EEState.getGlobalAddressMap()[GV]; 169 assert((!CurVal || !Addr) && "GlobalMapping already established!"); 170 CurVal = Addr; 171 172 // If we are using the reverse mapping, add it too. 173 if (!EEState.getGlobalAddressReverseMap().empty()) { 174 AssertingVH<const GlobalValue> &V = 175 EEState.getGlobalAddressReverseMap()[Addr]; 176 assert((!V || !GV) && "GlobalMapping already established!"); 177 V = GV; 178 } 179 } 180 181 void ExecutionEngine::clearAllGlobalMappings() { 182 MutexGuard locked(lock); 183 184 EEState.getGlobalAddressMap().clear(); 185 EEState.getGlobalAddressReverseMap().clear(); 186 } 187 188 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 189 MutexGuard locked(lock); 190 191 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) 192 EEState.RemoveMapping(FI); 193 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 194 GI != GE; ++GI) 195 EEState.RemoveMapping(GI); 196 } 197 198 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 199 MutexGuard locked(lock); 200 201 ExecutionEngineState::GlobalAddressMapTy &Map = 202 EEState.getGlobalAddressMap(); 203 204 // Deleting from the mapping? 205 if (!Addr) 206 return EEState.RemoveMapping(GV); 207 208 void *&CurVal = Map[GV]; 209 void *OldVal = CurVal; 210 211 if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) 212 EEState.getGlobalAddressReverseMap().erase(CurVal); 213 CurVal = Addr; 214 215 // If we are using the reverse mapping, add it too. 216 if (!EEState.getGlobalAddressReverseMap().empty()) { 217 AssertingVH<const GlobalValue> &V = 218 EEState.getGlobalAddressReverseMap()[Addr]; 219 assert((!V || !GV) && "GlobalMapping already established!"); 220 V = GV; 221 } 222 return OldVal; 223 } 224 225 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 226 MutexGuard locked(lock); 227 228 ExecutionEngineState::GlobalAddressMapTy::iterator I = 229 EEState.getGlobalAddressMap().find(GV); 230 return I != EEState.getGlobalAddressMap().end() ? I->second : nullptr; 231 } 232 233 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 234 MutexGuard locked(lock); 235 236 // If we haven't computed the reverse mapping yet, do so first. 237 if (EEState.getGlobalAddressReverseMap().empty()) { 238 for (ExecutionEngineState::GlobalAddressMapTy::iterator 239 I = EEState.getGlobalAddressMap().begin(), 240 E = EEState.getGlobalAddressMap().end(); I != E; ++I) 241 EEState.getGlobalAddressReverseMap().insert(std::make_pair( 242 I->second, I->first)); 243 } 244 245 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 246 EEState.getGlobalAddressReverseMap().find(Addr); 247 return I != EEState.getGlobalAddressReverseMap().end() ? I->second : nullptr; 248 } 249 250 namespace { 251 class ArgvArray { 252 std::unique_ptr<char[]> Array; 253 std::vector<std::unique_ptr<char[]>> Values; 254 public: 255 /// Turn a vector of strings into a nice argv style array of pointers to null 256 /// terminated strings. 257 void *reset(LLVMContext &C, ExecutionEngine *EE, 258 const std::vector<std::string> &InputArgv); 259 }; 260 } // anonymous namespace 261 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 262 const std::vector<std::string> &InputArgv) { 263 Values.clear(); // Free the old contents. 264 Values.reserve(InputArgv.size()); 265 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 266 Array = make_unique<char[]>((InputArgv.size()+1)*PtrSize); 267 268 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array.get() << "\n"); 269 Type *SBytePtr = Type::getInt8PtrTy(C); 270 271 for (unsigned i = 0; i != InputArgv.size(); ++i) { 272 unsigned Size = InputArgv[i].size()+1; 273 auto Dest = make_unique<char[]>(Size); 274 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest.get() << "\n"); 275 276 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get()); 277 Dest[Size-1] = 0; 278 279 // Endian safe: Array[i] = (PointerTy)Dest; 280 EE->StoreValueToMemory(PTOGV(Dest.get()), 281 (GenericValue*)(&Array[i*PtrSize]), SBytePtr); 282 Values.push_back(std::move(Dest)); 283 } 284 285 // Null terminate it 286 EE->StoreValueToMemory(PTOGV(nullptr), 287 (GenericValue*)(&Array[InputArgv.size()*PtrSize]), 288 SBytePtr); 289 return Array.get(); 290 } 291 292 void ExecutionEngine::runStaticConstructorsDestructors(Module &module, 293 bool isDtors) { 294 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 295 GlobalVariable *GV = module.getNamedGlobal(Name); 296 297 // If this global has internal linkage, or if it has a use, then it must be 298 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 299 // this is the case, don't execute any of the global ctors, __main will do 300 // it. 301 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 302 303 // Should be an array of '{ i32, void ()* }' structs. The first value is 304 // the init priority, which we ignore. 305 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 306 if (!InitList) 307 return; 308 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 309 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 310 if (!CS) continue; 311 312 Constant *FP = CS->getOperand(1); 313 if (FP->isNullValue()) 314 continue; // Found a sentinal value, ignore. 315 316 // Strip off constant expression casts. 317 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 318 if (CE->isCast()) 319 FP = CE->getOperand(0); 320 321 // Execute the ctor/dtor function! 322 if (Function *F = dyn_cast<Function>(FP)) 323 runFunction(F, std::vector<GenericValue>()); 324 325 // FIXME: It is marginally lame that we just do nothing here if we see an 326 // entry we don't recognize. It might not be unreasonable for the verifier 327 // to not even allow this and just assert here. 328 } 329 } 330 331 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 332 // Execute global ctors/dtors for each module in the program. 333 for (std::unique_ptr<Module> &M : Modules) 334 runStaticConstructorsDestructors(*M, isDtors); 335 } 336 337 #ifndef NDEBUG 338 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 339 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 340 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 341 for (unsigned i = 0; i < PtrSize; ++i) 342 if (*(i + (uint8_t*)Loc)) 343 return false; 344 return true; 345 } 346 #endif 347 348 int ExecutionEngine::runFunctionAsMain(Function *Fn, 349 const std::vector<std::string> &argv, 350 const char * const * envp) { 351 std::vector<GenericValue> GVArgs; 352 GenericValue GVArgc; 353 GVArgc.IntVal = APInt(32, argv.size()); 354 355 // Check main() type 356 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 357 FunctionType *FTy = Fn->getFunctionType(); 358 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 359 360 // Check the argument types. 361 if (NumArgs > 3) 362 report_fatal_error("Invalid number of arguments of main() supplied"); 363 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 364 report_fatal_error("Invalid type for third argument of main() supplied"); 365 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 366 report_fatal_error("Invalid type for second argument of main() supplied"); 367 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 368 report_fatal_error("Invalid type for first argument of main() supplied"); 369 if (!FTy->getReturnType()->isIntegerTy() && 370 !FTy->getReturnType()->isVoidTy()) 371 report_fatal_error("Invalid return type of main() supplied"); 372 373 ArgvArray CArgv; 374 ArgvArray CEnv; 375 if (NumArgs) { 376 GVArgs.push_back(GVArgc); // Arg #0 = argc. 377 if (NumArgs > 1) { 378 // Arg #1 = argv. 379 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 380 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 381 "argv[0] was null after CreateArgv"); 382 if (NumArgs > 2) { 383 std::vector<std::string> EnvVars; 384 for (unsigned i = 0; envp[i]; ++i) 385 EnvVars.push_back(envp[i]); 386 // Arg #2 = envp. 387 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 388 } 389 } 390 } 391 392 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 393 } 394 395 void EngineBuilder::InitEngine() { 396 WhichEngine = EngineKind::Either; 397 ErrorStr = nullptr; 398 OptLevel = CodeGenOpt::Default; 399 MCJMM = nullptr; 400 Options = TargetOptions(); 401 RelocModel = Reloc::Default; 402 CMModel = CodeModel::JITDefault; 403 404 // IR module verification is enabled by default in debug builds, and disabled 405 // by default in release builds. 406 #ifndef NDEBUG 407 VerifyModules = true; 408 #else 409 VerifyModules = false; 410 #endif 411 } 412 413 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 414 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. 415 416 // Make sure we can resolve symbols in the program as well. The zero arg 417 // to the function tells DynamicLibrary to load the program, not a library. 418 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) 419 return nullptr; 420 421 // If the user specified a memory manager but didn't specify which engine to 422 // create, we assume they only want the JIT, and we fail if they only want 423 // the interpreter. 424 if (MCJMM) { 425 if (WhichEngine & EngineKind::JIT) 426 WhichEngine = EngineKind::JIT; 427 else { 428 if (ErrorStr) 429 *ErrorStr = "Cannot create an interpreter with a memory manager."; 430 return nullptr; 431 } 432 } 433 434 // Unless the interpreter was explicitly selected or the JIT is not linked, 435 // try making a JIT. 436 if ((WhichEngine & EngineKind::JIT) && TheTM) { 437 Triple TT(M->getTargetTriple()); 438 if (!TM->getTarget().hasJIT()) { 439 errs() << "WARNING: This target JIT is not designed for the host" 440 << " you are running. If bad things happen, please choose" 441 << " a different -march switch.\n"; 442 } 443 444 ExecutionEngine *EE = nullptr; 445 if (ExecutionEngine::MCJITCtor) 446 EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, MCJMM, 447 std::move(TheTM)); 448 if (EE) { 449 EE->setVerifyModules(VerifyModules); 450 return EE; 451 } 452 } 453 454 // If we can't make a JIT and we didn't request one specifically, try making 455 // an interpreter instead. 456 if (WhichEngine & EngineKind::Interpreter) { 457 if (ExecutionEngine::InterpCtor) 458 return ExecutionEngine::InterpCtor(std::move(M), ErrorStr); 459 if (ErrorStr) 460 *ErrorStr = "Interpreter has not been linked in."; 461 return nullptr; 462 } 463 464 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) { 465 if (ErrorStr) 466 *ErrorStr = "JIT has not been linked in."; 467 } 468 469 return nullptr; 470 } 471 472 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 473 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 474 return getPointerToFunction(F); 475 476 MutexGuard locked(lock); 477 if (void *P = EEState.getGlobalAddressMap()[GV]) 478 return P; 479 480 // Global variable might have been added since interpreter started. 481 if (GlobalVariable *GVar = 482 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 483 EmitGlobalVariable(GVar); 484 else 485 llvm_unreachable("Global hasn't had an address allocated yet!"); 486 487 return EEState.getGlobalAddressMap()[GV]; 488 } 489 490 /// \brief Converts a Constant* into a GenericValue, including handling of 491 /// ConstantExpr values. 492 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 493 // If its undefined, return the garbage. 494 if (isa<UndefValue>(C)) { 495 GenericValue Result; 496 switch (C->getType()->getTypeID()) { 497 default: 498 break; 499 case Type::IntegerTyID: 500 case Type::X86_FP80TyID: 501 case Type::FP128TyID: 502 case Type::PPC_FP128TyID: 503 // Although the value is undefined, we still have to construct an APInt 504 // with the correct bit width. 505 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 506 break; 507 case Type::StructTyID: { 508 // if the whole struct is 'undef' just reserve memory for the value. 509 if(StructType *STy = dyn_cast<StructType>(C->getType())) { 510 unsigned int elemNum = STy->getNumElements(); 511 Result.AggregateVal.resize(elemNum); 512 for (unsigned int i = 0; i < elemNum; ++i) { 513 Type *ElemTy = STy->getElementType(i); 514 if (ElemTy->isIntegerTy()) 515 Result.AggregateVal[i].IntVal = 516 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 517 else if (ElemTy->isAggregateType()) { 518 const Constant *ElemUndef = UndefValue::get(ElemTy); 519 Result.AggregateVal[i] = getConstantValue(ElemUndef); 520 } 521 } 522 } 523 } 524 break; 525 case Type::VectorTyID: 526 // if the whole vector is 'undef' just reserve memory for the value. 527 const VectorType* VTy = dyn_cast<VectorType>(C->getType()); 528 const Type *ElemTy = VTy->getElementType(); 529 unsigned int elemNum = VTy->getNumElements(); 530 Result.AggregateVal.resize(elemNum); 531 if (ElemTy->isIntegerTy()) 532 for (unsigned int i = 0; i < elemNum; ++i) 533 Result.AggregateVal[i].IntVal = 534 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 535 break; 536 } 537 return Result; 538 } 539 540 // Otherwise, if the value is a ConstantExpr... 541 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 542 Constant *Op0 = CE->getOperand(0); 543 switch (CE->getOpcode()) { 544 case Instruction::GetElementPtr: { 545 // Compute the index 546 GenericValue Result = getConstantValue(Op0); 547 APInt Offset(DL->getPointerSizeInBits(), 0); 548 cast<GEPOperator>(CE)->accumulateConstantOffset(*DL, Offset); 549 550 char* tmp = (char*) Result.PointerVal; 551 Result = PTOGV(tmp + Offset.getSExtValue()); 552 return Result; 553 } 554 case Instruction::Trunc: { 555 GenericValue GV = getConstantValue(Op0); 556 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 557 GV.IntVal = GV.IntVal.trunc(BitWidth); 558 return GV; 559 } 560 case Instruction::ZExt: { 561 GenericValue GV = getConstantValue(Op0); 562 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 563 GV.IntVal = GV.IntVal.zext(BitWidth); 564 return GV; 565 } 566 case Instruction::SExt: { 567 GenericValue GV = getConstantValue(Op0); 568 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 569 GV.IntVal = GV.IntVal.sext(BitWidth); 570 return GV; 571 } 572 case Instruction::FPTrunc: { 573 // FIXME long double 574 GenericValue GV = getConstantValue(Op0); 575 GV.FloatVal = float(GV.DoubleVal); 576 return GV; 577 } 578 case Instruction::FPExt:{ 579 // FIXME long double 580 GenericValue GV = getConstantValue(Op0); 581 GV.DoubleVal = double(GV.FloatVal); 582 return GV; 583 } 584 case Instruction::UIToFP: { 585 GenericValue GV = getConstantValue(Op0); 586 if (CE->getType()->isFloatTy()) 587 GV.FloatVal = float(GV.IntVal.roundToDouble()); 588 else if (CE->getType()->isDoubleTy()) 589 GV.DoubleVal = GV.IntVal.roundToDouble(); 590 else if (CE->getType()->isX86_FP80Ty()) { 591 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 592 (void)apf.convertFromAPInt(GV.IntVal, 593 false, 594 APFloat::rmNearestTiesToEven); 595 GV.IntVal = apf.bitcastToAPInt(); 596 } 597 return GV; 598 } 599 case Instruction::SIToFP: { 600 GenericValue GV = getConstantValue(Op0); 601 if (CE->getType()->isFloatTy()) 602 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 603 else if (CE->getType()->isDoubleTy()) 604 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 605 else if (CE->getType()->isX86_FP80Ty()) { 606 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 607 (void)apf.convertFromAPInt(GV.IntVal, 608 true, 609 APFloat::rmNearestTiesToEven); 610 GV.IntVal = apf.bitcastToAPInt(); 611 } 612 return GV; 613 } 614 case Instruction::FPToUI: // double->APInt conversion handles sign 615 case Instruction::FPToSI: { 616 GenericValue GV = getConstantValue(Op0); 617 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 618 if (Op0->getType()->isFloatTy()) 619 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 620 else if (Op0->getType()->isDoubleTy()) 621 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 622 else if (Op0->getType()->isX86_FP80Ty()) { 623 APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal); 624 uint64_t v; 625 bool ignored; 626 (void)apf.convertToInteger(&v, BitWidth, 627 CE->getOpcode()==Instruction::FPToSI, 628 APFloat::rmTowardZero, &ignored); 629 GV.IntVal = v; // endian? 630 } 631 return GV; 632 } 633 case Instruction::PtrToInt: { 634 GenericValue GV = getConstantValue(Op0); 635 uint32_t PtrWidth = DL->getTypeSizeInBits(Op0->getType()); 636 assert(PtrWidth <= 64 && "Bad pointer width"); 637 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 638 uint32_t IntWidth = DL->getTypeSizeInBits(CE->getType()); 639 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); 640 return GV; 641 } 642 case Instruction::IntToPtr: { 643 GenericValue GV = getConstantValue(Op0); 644 uint32_t PtrWidth = DL->getTypeSizeInBits(CE->getType()); 645 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 646 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 647 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 648 return GV; 649 } 650 case Instruction::BitCast: { 651 GenericValue GV = getConstantValue(Op0); 652 Type* DestTy = CE->getType(); 653 switch (Op0->getType()->getTypeID()) { 654 default: llvm_unreachable("Invalid bitcast operand"); 655 case Type::IntegerTyID: 656 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 657 if (DestTy->isFloatTy()) 658 GV.FloatVal = GV.IntVal.bitsToFloat(); 659 else if (DestTy->isDoubleTy()) 660 GV.DoubleVal = GV.IntVal.bitsToDouble(); 661 break; 662 case Type::FloatTyID: 663 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 664 GV.IntVal = APInt::floatToBits(GV.FloatVal); 665 break; 666 case Type::DoubleTyID: 667 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 668 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 669 break; 670 case Type::PointerTyID: 671 assert(DestTy->isPointerTy() && "Invalid bitcast"); 672 break; // getConstantValue(Op0) above already converted it 673 } 674 return GV; 675 } 676 case Instruction::Add: 677 case Instruction::FAdd: 678 case Instruction::Sub: 679 case Instruction::FSub: 680 case Instruction::Mul: 681 case Instruction::FMul: 682 case Instruction::UDiv: 683 case Instruction::SDiv: 684 case Instruction::URem: 685 case Instruction::SRem: 686 case Instruction::And: 687 case Instruction::Or: 688 case Instruction::Xor: { 689 GenericValue LHS = getConstantValue(Op0); 690 GenericValue RHS = getConstantValue(CE->getOperand(1)); 691 GenericValue GV; 692 switch (CE->getOperand(0)->getType()->getTypeID()) { 693 default: llvm_unreachable("Bad add type!"); 694 case Type::IntegerTyID: 695 switch (CE->getOpcode()) { 696 default: llvm_unreachable("Invalid integer opcode"); 697 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 698 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 699 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 700 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 701 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 702 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 703 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 704 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 705 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 706 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 707 } 708 break; 709 case Type::FloatTyID: 710 switch (CE->getOpcode()) { 711 default: llvm_unreachable("Invalid float opcode"); 712 case Instruction::FAdd: 713 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 714 case Instruction::FSub: 715 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 716 case Instruction::FMul: 717 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 718 case Instruction::FDiv: 719 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 720 case Instruction::FRem: 721 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 722 } 723 break; 724 case Type::DoubleTyID: 725 switch (CE->getOpcode()) { 726 default: llvm_unreachable("Invalid double opcode"); 727 case Instruction::FAdd: 728 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 729 case Instruction::FSub: 730 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 731 case Instruction::FMul: 732 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 733 case Instruction::FDiv: 734 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 735 case Instruction::FRem: 736 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 737 } 738 break; 739 case Type::X86_FP80TyID: 740 case Type::PPC_FP128TyID: 741 case Type::FP128TyID: { 742 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); 743 APFloat apfLHS = APFloat(Sem, LHS.IntVal); 744 switch (CE->getOpcode()) { 745 default: llvm_unreachable("Invalid long double opcode"); 746 case Instruction::FAdd: 747 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); 748 GV.IntVal = apfLHS.bitcastToAPInt(); 749 break; 750 case Instruction::FSub: 751 apfLHS.subtract(APFloat(Sem, RHS.IntVal), 752 APFloat::rmNearestTiesToEven); 753 GV.IntVal = apfLHS.bitcastToAPInt(); 754 break; 755 case Instruction::FMul: 756 apfLHS.multiply(APFloat(Sem, RHS.IntVal), 757 APFloat::rmNearestTiesToEven); 758 GV.IntVal = apfLHS.bitcastToAPInt(); 759 break; 760 case Instruction::FDiv: 761 apfLHS.divide(APFloat(Sem, RHS.IntVal), 762 APFloat::rmNearestTiesToEven); 763 GV.IntVal = apfLHS.bitcastToAPInt(); 764 break; 765 case Instruction::FRem: 766 apfLHS.mod(APFloat(Sem, RHS.IntVal), 767 APFloat::rmNearestTiesToEven); 768 GV.IntVal = apfLHS.bitcastToAPInt(); 769 break; 770 } 771 } 772 break; 773 } 774 return GV; 775 } 776 default: 777 break; 778 } 779 780 SmallString<256> Msg; 781 raw_svector_ostream OS(Msg); 782 OS << "ConstantExpr not handled: " << *CE; 783 report_fatal_error(OS.str()); 784 } 785 786 // Otherwise, we have a simple constant. 787 GenericValue Result; 788 switch (C->getType()->getTypeID()) { 789 case Type::FloatTyID: 790 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 791 break; 792 case Type::DoubleTyID: 793 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 794 break; 795 case Type::X86_FP80TyID: 796 case Type::FP128TyID: 797 case Type::PPC_FP128TyID: 798 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 799 break; 800 case Type::IntegerTyID: 801 Result.IntVal = cast<ConstantInt>(C)->getValue(); 802 break; 803 case Type::PointerTyID: 804 if (isa<ConstantPointerNull>(C)) 805 Result.PointerVal = nullptr; 806 else if (const Function *F = dyn_cast<Function>(C)) 807 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 808 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 809 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 810 else 811 llvm_unreachable("Unknown constant pointer type!"); 812 break; 813 case Type::VectorTyID: { 814 unsigned elemNum; 815 Type* ElemTy; 816 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); 817 const ConstantVector *CV = dyn_cast<ConstantVector>(C); 818 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); 819 820 if (CDV) { 821 elemNum = CDV->getNumElements(); 822 ElemTy = CDV->getElementType(); 823 } else if (CV || CAZ) { 824 VectorType* VTy = dyn_cast<VectorType>(C->getType()); 825 elemNum = VTy->getNumElements(); 826 ElemTy = VTy->getElementType(); 827 } else { 828 llvm_unreachable("Unknown constant vector type!"); 829 } 830 831 Result.AggregateVal.resize(elemNum); 832 // Check if vector holds floats. 833 if(ElemTy->isFloatTy()) { 834 if (CAZ) { 835 GenericValue floatZero; 836 floatZero.FloatVal = 0.f; 837 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 838 floatZero); 839 break; 840 } 841 if(CV) { 842 for (unsigned i = 0; i < elemNum; ++i) 843 if (!isa<UndefValue>(CV->getOperand(i))) 844 Result.AggregateVal[i].FloatVal = cast<ConstantFP>( 845 CV->getOperand(i))->getValueAPF().convertToFloat(); 846 break; 847 } 848 if(CDV) 849 for (unsigned i = 0; i < elemNum; ++i) 850 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); 851 852 break; 853 } 854 // Check if vector holds doubles. 855 if (ElemTy->isDoubleTy()) { 856 if (CAZ) { 857 GenericValue doubleZero; 858 doubleZero.DoubleVal = 0.0; 859 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 860 doubleZero); 861 break; 862 } 863 if(CV) { 864 for (unsigned i = 0; i < elemNum; ++i) 865 if (!isa<UndefValue>(CV->getOperand(i))) 866 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( 867 CV->getOperand(i))->getValueAPF().convertToDouble(); 868 break; 869 } 870 if(CDV) 871 for (unsigned i = 0; i < elemNum; ++i) 872 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); 873 874 break; 875 } 876 // Check if vector holds integers. 877 if (ElemTy->isIntegerTy()) { 878 if (CAZ) { 879 GenericValue intZero; 880 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); 881 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 882 intZero); 883 break; 884 } 885 if(CV) { 886 for (unsigned i = 0; i < elemNum; ++i) 887 if (!isa<UndefValue>(CV->getOperand(i))) 888 Result.AggregateVal[i].IntVal = cast<ConstantInt>( 889 CV->getOperand(i))->getValue(); 890 else { 891 Result.AggregateVal[i].IntVal = 892 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); 893 } 894 break; 895 } 896 if(CDV) 897 for (unsigned i = 0; i < elemNum; ++i) 898 Result.AggregateVal[i].IntVal = APInt( 899 CDV->getElementType()->getPrimitiveSizeInBits(), 900 CDV->getElementAsInteger(i)); 901 902 break; 903 } 904 llvm_unreachable("Unknown constant pointer type!"); 905 } 906 break; 907 908 default: 909 SmallString<256> Msg; 910 raw_svector_ostream OS(Msg); 911 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 912 report_fatal_error(OS.str()); 913 } 914 915 return Result; 916 } 917 918 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 919 /// with the integer held in IntVal. 920 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 921 unsigned StoreBytes) { 922 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 923 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 924 925 if (sys::IsLittleEndianHost) { 926 // Little-endian host - the source is ordered from LSB to MSB. Order the 927 // destination from LSB to MSB: Do a straight copy. 928 memcpy(Dst, Src, StoreBytes); 929 } else { 930 // Big-endian host - the source is an array of 64 bit words ordered from 931 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 932 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 933 while (StoreBytes > sizeof(uint64_t)) { 934 StoreBytes -= sizeof(uint64_t); 935 // May not be aligned so use memcpy. 936 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 937 Src += sizeof(uint64_t); 938 } 939 940 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 941 } 942 } 943 944 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 945 GenericValue *Ptr, Type *Ty) { 946 const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty); 947 948 switch (Ty->getTypeID()) { 949 default: 950 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 951 break; 952 case Type::IntegerTyID: 953 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 954 break; 955 case Type::FloatTyID: 956 *((float*)Ptr) = Val.FloatVal; 957 break; 958 case Type::DoubleTyID: 959 *((double*)Ptr) = Val.DoubleVal; 960 break; 961 case Type::X86_FP80TyID: 962 memcpy(Ptr, Val.IntVal.getRawData(), 10); 963 break; 964 case Type::PointerTyID: 965 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 966 if (StoreBytes != sizeof(PointerTy)) 967 memset(&(Ptr->PointerVal), 0, StoreBytes); 968 969 *((PointerTy*)Ptr) = Val.PointerVal; 970 break; 971 case Type::VectorTyID: 972 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { 973 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) 974 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; 975 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) 976 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; 977 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { 978 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; 979 StoreIntToMemory(Val.AggregateVal[i].IntVal, 980 (uint8_t*)Ptr + numOfBytes*i, numOfBytes); 981 } 982 } 983 break; 984 } 985 986 if (sys::IsLittleEndianHost != getDataLayout()->isLittleEndian()) 987 // Host and target are different endian - reverse the stored bytes. 988 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 989 } 990 991 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 992 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 993 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 994 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 995 uint8_t *Dst = reinterpret_cast<uint8_t *>( 996 const_cast<uint64_t *>(IntVal.getRawData())); 997 998 if (sys::IsLittleEndianHost) 999 // Little-endian host - the destination must be ordered from LSB to MSB. 1000 // The source is ordered from LSB to MSB: Do a straight copy. 1001 memcpy(Dst, Src, LoadBytes); 1002 else { 1003 // Big-endian - the destination is an array of 64 bit words ordered from 1004 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 1005 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 1006 // a word. 1007 while (LoadBytes > sizeof(uint64_t)) { 1008 LoadBytes -= sizeof(uint64_t); 1009 // May not be aligned so use memcpy. 1010 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 1011 Dst += sizeof(uint64_t); 1012 } 1013 1014 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 1015 } 1016 } 1017 1018 /// FIXME: document 1019 /// 1020 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 1021 GenericValue *Ptr, 1022 Type *Ty) { 1023 const unsigned LoadBytes = getDataLayout()->getTypeStoreSize(Ty); 1024 1025 switch (Ty->getTypeID()) { 1026 case Type::IntegerTyID: 1027 // An APInt with all words initially zero. 1028 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 1029 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 1030 break; 1031 case Type::FloatTyID: 1032 Result.FloatVal = *((float*)Ptr); 1033 break; 1034 case Type::DoubleTyID: 1035 Result.DoubleVal = *((double*)Ptr); 1036 break; 1037 case Type::PointerTyID: 1038 Result.PointerVal = *((PointerTy*)Ptr); 1039 break; 1040 case Type::X86_FP80TyID: { 1041 // This is endian dependent, but it will only work on x86 anyway. 1042 // FIXME: Will not trap if loading a signaling NaN. 1043 uint64_t y[2]; 1044 memcpy(y, Ptr, 10); 1045 Result.IntVal = APInt(80, y); 1046 break; 1047 } 1048 case Type::VectorTyID: { 1049 const VectorType *VT = cast<VectorType>(Ty); 1050 const Type *ElemT = VT->getElementType(); 1051 const unsigned numElems = VT->getNumElements(); 1052 if (ElemT->isFloatTy()) { 1053 Result.AggregateVal.resize(numElems); 1054 for (unsigned i = 0; i < numElems; ++i) 1055 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); 1056 } 1057 if (ElemT->isDoubleTy()) { 1058 Result.AggregateVal.resize(numElems); 1059 for (unsigned i = 0; i < numElems; ++i) 1060 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); 1061 } 1062 if (ElemT->isIntegerTy()) { 1063 GenericValue intZero; 1064 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); 1065 intZero.IntVal = APInt(elemBitWidth, 0); 1066 Result.AggregateVal.resize(numElems, intZero); 1067 for (unsigned i = 0; i < numElems; ++i) 1068 LoadIntFromMemory(Result.AggregateVal[i].IntVal, 1069 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); 1070 } 1071 break; 1072 } 1073 default: 1074 SmallString<256> Msg; 1075 raw_svector_ostream OS(Msg); 1076 OS << "Cannot load value of type " << *Ty << "!"; 1077 report_fatal_error(OS.str()); 1078 } 1079 } 1080 1081 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 1082 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 1083 DEBUG(Init->dump()); 1084 if (isa<UndefValue>(Init)) 1085 return; 1086 1087 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 1088 unsigned ElementSize = 1089 getDataLayout()->getTypeAllocSize(CP->getType()->getElementType()); 1090 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 1091 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 1092 return; 1093 } 1094 1095 if (isa<ConstantAggregateZero>(Init)) { 1096 memset(Addr, 0, (size_t)getDataLayout()->getTypeAllocSize(Init->getType())); 1097 return; 1098 } 1099 1100 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 1101 unsigned ElementSize = 1102 getDataLayout()->getTypeAllocSize(CPA->getType()->getElementType()); 1103 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 1104 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 1105 return; 1106 } 1107 1108 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 1109 const StructLayout *SL = 1110 getDataLayout()->getStructLayout(cast<StructType>(CPS->getType())); 1111 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 1112 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 1113 return; 1114 } 1115 1116 if (const ConstantDataSequential *CDS = 1117 dyn_cast<ConstantDataSequential>(Init)) { 1118 // CDS is already laid out in host memory order. 1119 StringRef Data = CDS->getRawDataValues(); 1120 memcpy(Addr, Data.data(), Data.size()); 1121 return; 1122 } 1123 1124 if (Init->getType()->isFirstClassType()) { 1125 GenericValue Val = getConstantValue(Init); 1126 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 1127 return; 1128 } 1129 1130 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1131 llvm_unreachable("Unknown constant type to initialize memory with!"); 1132 } 1133 1134 /// EmitGlobals - Emit all of the global variables to memory, storing their 1135 /// addresses into GlobalAddress. This must make sure to copy the contents of 1136 /// their initializers into the memory. 1137 void ExecutionEngine::emitGlobals() { 1138 // Loop over all of the global variables in the program, allocating the memory 1139 // to hold them. If there is more than one module, do a prepass over globals 1140 // to figure out how the different modules should link together. 1141 std::map<std::pair<std::string, Type*>, 1142 const GlobalValue*> LinkedGlobalsMap; 1143 1144 if (Modules.size() != 1) { 1145 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1146 Module &M = *Modules[m]; 1147 for (const auto &GV : M.globals()) { 1148 if (GV.hasLocalLinkage() || GV.isDeclaration() || 1149 GV.hasAppendingLinkage() || !GV.hasName()) 1150 continue;// Ignore external globals and globals with internal linkage. 1151 1152 const GlobalValue *&GVEntry = 1153 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]; 1154 1155 // If this is the first time we've seen this global, it is the canonical 1156 // version. 1157 if (!GVEntry) { 1158 GVEntry = &GV; 1159 continue; 1160 } 1161 1162 // If the existing global is strong, never replace it. 1163 if (GVEntry->hasExternalLinkage()) 1164 continue; 1165 1166 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1167 // symbol. FIXME is this right for common? 1168 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1169 GVEntry = &GV; 1170 } 1171 } 1172 } 1173 1174 std::vector<const GlobalValue*> NonCanonicalGlobals; 1175 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1176 Module &M = *Modules[m]; 1177 for (const auto &GV : M.globals()) { 1178 // In the multi-module case, see what this global maps to. 1179 if (!LinkedGlobalsMap.empty()) { 1180 if (const GlobalValue *GVEntry = 1181 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) { 1182 // If something else is the canonical global, ignore this one. 1183 if (GVEntry != &GV) { 1184 NonCanonicalGlobals.push_back(&GV); 1185 continue; 1186 } 1187 } 1188 } 1189 1190 if (!GV.isDeclaration()) { 1191 addGlobalMapping(&GV, getMemoryForGV(&GV)); 1192 } else { 1193 // External variable reference. Try to use the dynamic loader to 1194 // get a pointer to it. 1195 if (void *SymAddr = 1196 sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName())) 1197 addGlobalMapping(&GV, SymAddr); 1198 else { 1199 report_fatal_error("Could not resolve external global address: " 1200 +GV.getName()); 1201 } 1202 } 1203 } 1204 1205 // If there are multiple modules, map the non-canonical globals to their 1206 // canonical location. 1207 if (!NonCanonicalGlobals.empty()) { 1208 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1209 const GlobalValue *GV = NonCanonicalGlobals[i]; 1210 const GlobalValue *CGV = 1211 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1212 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1213 assert(Ptr && "Canonical global wasn't codegen'd!"); 1214 addGlobalMapping(GV, Ptr); 1215 } 1216 } 1217 1218 // Now that all of the globals are set up in memory, loop through them all 1219 // and initialize their contents. 1220 for (const auto &GV : M.globals()) { 1221 if (!GV.isDeclaration()) { 1222 if (!LinkedGlobalsMap.empty()) { 1223 if (const GlobalValue *GVEntry = 1224 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) 1225 if (GVEntry != &GV) // Not the canonical variable. 1226 continue; 1227 } 1228 EmitGlobalVariable(&GV); 1229 } 1230 } 1231 } 1232 } 1233 1234 // EmitGlobalVariable - This method emits the specified global variable to the 1235 // address specified in GlobalAddresses, or allocates new memory if it's not 1236 // already in the map. 1237 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1238 void *GA = getPointerToGlobalIfAvailable(GV); 1239 1240 if (!GA) { 1241 // If it's not already specified, allocate memory for the global. 1242 GA = getMemoryForGV(GV); 1243 1244 // If we failed to allocate memory for this global, return. 1245 if (!GA) return; 1246 1247 addGlobalMapping(GV, GA); 1248 } 1249 1250 // Don't initialize if it's thread local, let the client do it. 1251 if (!GV->isThreadLocal()) 1252 InitializeMemory(GV->getInitializer(), GA); 1253 1254 Type *ElTy = GV->getType()->getElementType(); 1255 size_t GVSize = (size_t)getDataLayout()->getTypeAllocSize(ElTy); 1256 NumInitBytes += (unsigned)GVSize; 1257 ++NumGlobals; 1258 } 1259 1260 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1261 : EE(EE), GlobalAddressMap(this) { 1262 } 1263 1264 sys::Mutex * 1265 ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) { 1266 return &EES->EE.lock; 1267 } 1268 1269 void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES, 1270 const GlobalValue *Old) { 1271 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1272 EES->GlobalAddressReverseMap.erase(OldVal); 1273 } 1274 1275 void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *, 1276 const GlobalValue *, 1277 const GlobalValue *) { 1278 llvm_unreachable("The ExecutionEngine doesn't know how to handle a" 1279 " RAUW on a value it has a global mapping for."); 1280 } 1281