1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "Interpreter/Interpreter.h" 17 #include "JIT/JIT.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Module.h" 21 #include "llvm/ModuleProvider.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/IntrinsicLowering.h" 24 #include "llvm/ExecutionEngine/ExecutionEngine.h" 25 #include "llvm/ExecutionEngine/GenericValue.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/System/DynamicLibrary.h" 28 #include "llvm/Target/TargetData.h" 29 using namespace llvm; 30 31 namespace { 32 Statistic<> NumInitBytes("lli", "Number of bytes of global vars initialized"); 33 Statistic<> NumGlobals ("lli", "Number of global vars initialized"); 34 } 35 36 ExecutionEngine::ExecutionEngine(ModuleProvider *P) : 37 CurMod(*P->getModule()), MP(P) { 38 assert(P && "ModuleProvider is null?"); 39 } 40 41 ExecutionEngine::ExecutionEngine(Module *M) : CurMod(*M), MP(0) { 42 assert(M && "Module is null?"); 43 } 44 45 ExecutionEngine::~ExecutionEngine() { 46 delete MP; 47 } 48 49 /// getGlobalValueAtAddress - Return the LLVM global value object that starts 50 /// at the specified address. 51 /// 52 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 53 MutexGuard locked(lock); 54 55 // If we haven't computed the reverse mapping yet, do so first. 56 if (state.getGlobalAddressReverseMap(locked).empty()) { 57 for (std::map<const GlobalValue*, void *>::iterator I = 58 state.getGlobalAddressMap(locked).begin(), E = state.getGlobalAddressMap(locked).end(); I != E; ++I) 59 state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, I->first)); 60 } 61 62 std::map<void *, const GlobalValue*>::iterator I = 63 state.getGlobalAddressReverseMap(locked).find(Addr); 64 return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 65 } 66 67 // CreateArgv - Turn a vector of strings into a nice argv style array of 68 // pointers to null terminated strings. 69 // 70 static void *CreateArgv(ExecutionEngine *EE, 71 const std::vector<std::string> &InputArgv) { 72 unsigned PtrSize = EE->getTargetData().getPointerSize(); 73 char *Result = new char[(InputArgv.size()+1)*PtrSize]; 74 75 DEBUG(std::cerr << "ARGV = " << (void*)Result << "\n"); 76 const Type *SBytePtr = PointerType::get(Type::SByteTy); 77 78 for (unsigned i = 0; i != InputArgv.size(); ++i) { 79 unsigned Size = InputArgv[i].size()+1; 80 char *Dest = new char[Size]; 81 DEBUG(std::cerr << "ARGV[" << i << "] = " << (void*)Dest << "\n"); 82 83 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 84 Dest[Size-1] = 0; 85 86 // Endian safe: Result[i] = (PointerTy)Dest; 87 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), 88 SBytePtr); 89 } 90 91 // Null terminate it 92 EE->StoreValueToMemory(PTOGV(0), 93 (GenericValue*)(Result+InputArgv.size()*PtrSize), 94 SBytePtr); 95 return Result; 96 } 97 98 /// runFunctionAsMain - This is a helper function which wraps runFunction to 99 /// handle the common task of starting up main with the specified argc, argv, 100 /// and envp parameters. 101 int ExecutionEngine::runFunctionAsMain(Function *Fn, 102 const std::vector<std::string> &argv, 103 const char * const * envp) { 104 std::vector<GenericValue> GVArgs; 105 GenericValue GVArgc; 106 GVArgc.IntVal = argv.size(); 107 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 108 if (NumArgs) { 109 GVArgs.push_back(GVArgc); // Arg #0 = argc. 110 if (NumArgs > 1) { 111 GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv. 112 assert(((char **)GVTOP(GVArgs[1]))[0] && 113 "argv[0] was null after CreateArgv"); 114 if (NumArgs > 2) { 115 std::vector<std::string> EnvVars; 116 for (unsigned i = 0; envp[i]; ++i) 117 EnvVars.push_back(envp[i]); 118 GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp. 119 } 120 } 121 } 122 return runFunction(Fn, GVArgs).IntVal; 123 } 124 125 126 127 /// If possible, create a JIT, unless the caller specifically requests an 128 /// Interpreter or there's an error. If even an Interpreter cannot be created, 129 /// NULL is returned. 130 /// 131 ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, 132 bool ForceInterpreter, 133 IntrinsicLowering *IL) { 134 ExecutionEngine *EE = 0; 135 136 // Unless the interpreter was explicitly selected, try making a JIT. 137 if (!ForceInterpreter) 138 EE = JIT::create(MP, IL); 139 140 // If we can't make a JIT, make an interpreter instead. 141 if (EE == 0) { 142 try { 143 Module *M = MP->materializeModule(); 144 try { 145 EE = Interpreter::create(M, IL); 146 } catch (...) { 147 std::cerr << "Error creating the interpreter!\n"; 148 } 149 } catch (std::string& errmsg) { 150 std::cerr << "Error reading the bytecode file: " << errmsg << "\n"; 151 } catch (...) { 152 std::cerr << "Error reading the bytecode file!\n"; 153 } 154 } 155 156 if (EE == 0) 157 delete IL; 158 else 159 // Make sure we can resolve symbols in the program as well. The zero arg 160 // to the function tells DynamicLibrary to load the program, not a library. 161 sys::DynamicLibrary::LoadLibraryPermanently(0); 162 163 return EE; 164 } 165 166 /// getPointerToGlobal - This returns the address of the specified global 167 /// value. This may involve code generation if it's a function. 168 /// 169 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 170 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 171 return getPointerToFunction(F); 172 173 MutexGuard locked(lock); 174 assert(state.getGlobalAddressMap(locked)[GV] && "Global hasn't had an address allocated yet?"); 175 return state.getGlobalAddressMap(locked)[GV]; 176 } 177 178 /// FIXME: document 179 /// 180 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 181 GenericValue Result; 182 if (isa<UndefValue>(C)) return Result; 183 184 if (ConstantExpr *CE = const_cast<ConstantExpr*>(dyn_cast<ConstantExpr>(C))) { 185 switch (CE->getOpcode()) { 186 case Instruction::GetElementPtr: { 187 Result = getConstantValue(CE->getOperand(0)); 188 std::vector<Value*> Indexes(CE->op_begin()+1, CE->op_end()); 189 uint64_t Offset = 190 TD->getIndexedOffset(CE->getOperand(0)->getType(), Indexes); 191 192 Result.LongVal += Offset; 193 return Result; 194 } 195 case Instruction::Cast: { 196 // We only need to handle a few cases here. Almost all casts will 197 // automatically fold, just the ones involving pointers won't. 198 // 199 Constant *Op = CE->getOperand(0); 200 GenericValue GV = getConstantValue(Op); 201 202 // Handle cast of pointer to pointer... 203 if (Op->getType()->getTypeID() == C->getType()->getTypeID()) 204 return GV; 205 206 // Handle a cast of pointer to any integral type... 207 if (isa<PointerType>(Op->getType()) && C->getType()->isIntegral()) 208 return GV; 209 210 // Handle cast of integer to a pointer... 211 if (isa<PointerType>(C->getType()) && Op->getType()->isIntegral()) 212 switch (Op->getType()->getTypeID()) { 213 case Type::BoolTyID: return PTOGV((void*)(uintptr_t)GV.BoolVal); 214 case Type::SByteTyID: return PTOGV((void*)( intptr_t)GV.SByteVal); 215 case Type::UByteTyID: return PTOGV((void*)(uintptr_t)GV.UByteVal); 216 case Type::ShortTyID: return PTOGV((void*)( intptr_t)GV.ShortVal); 217 case Type::UShortTyID: return PTOGV((void*)(uintptr_t)GV.UShortVal); 218 case Type::IntTyID: return PTOGV((void*)( intptr_t)GV.IntVal); 219 case Type::UIntTyID: return PTOGV((void*)(uintptr_t)GV.UIntVal); 220 case Type::LongTyID: return PTOGV((void*)( intptr_t)GV.LongVal); 221 case Type::ULongTyID: return PTOGV((void*)(uintptr_t)GV.ULongVal); 222 default: assert(0 && "Unknown integral type!"); 223 } 224 break; 225 } 226 227 case Instruction::Add: 228 switch (CE->getOperand(0)->getType()->getTypeID()) { 229 default: assert(0 && "Bad add type!"); abort(); 230 case Type::LongTyID: 231 case Type::ULongTyID: 232 Result.LongVal = getConstantValue(CE->getOperand(0)).LongVal + 233 getConstantValue(CE->getOperand(1)).LongVal; 234 break; 235 case Type::IntTyID: 236 case Type::UIntTyID: 237 Result.IntVal = getConstantValue(CE->getOperand(0)).IntVal + 238 getConstantValue(CE->getOperand(1)).IntVal; 239 break; 240 case Type::ShortTyID: 241 case Type::UShortTyID: 242 Result.ShortVal = getConstantValue(CE->getOperand(0)).ShortVal + 243 getConstantValue(CE->getOperand(1)).ShortVal; 244 break; 245 case Type::SByteTyID: 246 case Type::UByteTyID: 247 Result.SByteVal = getConstantValue(CE->getOperand(0)).SByteVal + 248 getConstantValue(CE->getOperand(1)).SByteVal; 249 break; 250 case Type::FloatTyID: 251 Result.FloatVal = getConstantValue(CE->getOperand(0)).FloatVal + 252 getConstantValue(CE->getOperand(1)).FloatVal; 253 break; 254 case Type::DoubleTyID: 255 Result.DoubleVal = getConstantValue(CE->getOperand(0)).DoubleVal + 256 getConstantValue(CE->getOperand(1)).DoubleVal; 257 break; 258 } 259 return Result; 260 default: 261 break; 262 } 263 std::cerr << "ConstantExpr not handled as global var init: " << *CE << "\n"; 264 abort(); 265 } 266 267 switch (C->getType()->getTypeID()) { 268 #define GET_CONST_VAL(TY, CTY, CLASS) \ 269 case Type::TY##TyID: Result.TY##Val = (CTY)cast<CLASS>(C)->getValue(); break 270 GET_CONST_VAL(Bool , bool , ConstantBool); 271 GET_CONST_VAL(UByte , unsigned char , ConstantUInt); 272 GET_CONST_VAL(SByte , signed char , ConstantSInt); 273 GET_CONST_VAL(UShort , unsigned short, ConstantUInt); 274 GET_CONST_VAL(Short , signed short , ConstantSInt); 275 GET_CONST_VAL(UInt , unsigned int , ConstantUInt); 276 GET_CONST_VAL(Int , signed int , ConstantSInt); 277 GET_CONST_VAL(ULong , uint64_t , ConstantUInt); 278 GET_CONST_VAL(Long , int64_t , ConstantSInt); 279 GET_CONST_VAL(Float , float , ConstantFP); 280 GET_CONST_VAL(Double , double , ConstantFP); 281 #undef GET_CONST_VAL 282 case Type::PointerTyID: 283 if (isa<ConstantPointerNull>(C)) 284 Result.PointerVal = 0; 285 else if (const Function *F = dyn_cast<Function>(C)) 286 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 287 else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) 288 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 289 else 290 assert(0 && "Unknown constant pointer type!"); 291 break; 292 default: 293 std::cout << "ERROR: Constant unimp for type: " << *C->getType() << "\n"; 294 abort(); 295 } 296 return Result; 297 } 298 299 /// FIXME: document 300 /// 301 void ExecutionEngine::StoreValueToMemory(GenericValue Val, GenericValue *Ptr, 302 const Type *Ty) { 303 if (getTargetData().isLittleEndian()) { 304 switch (Ty->getTypeID()) { 305 case Type::BoolTyID: 306 case Type::UByteTyID: 307 case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break; 308 case Type::UShortTyID: 309 case Type::ShortTyID: Ptr->Untyped[0] = Val.UShortVal & 255; 310 Ptr->Untyped[1] = (Val.UShortVal >> 8) & 255; 311 break; 312 Store4BytesLittleEndian: 313 case Type::FloatTyID: 314 case Type::UIntTyID: 315 case Type::IntTyID: Ptr->Untyped[0] = Val.UIntVal & 255; 316 Ptr->Untyped[1] = (Val.UIntVal >> 8) & 255; 317 Ptr->Untyped[2] = (Val.UIntVal >> 16) & 255; 318 Ptr->Untyped[3] = (Val.UIntVal >> 24) & 255; 319 break; 320 case Type::PointerTyID: if (getTargetData().getPointerSize() == 4) 321 goto Store4BytesLittleEndian; 322 case Type::DoubleTyID: 323 case Type::ULongTyID: 324 case Type::LongTyID: 325 Ptr->Untyped[0] = (unsigned char)(Val.ULongVal ); 326 Ptr->Untyped[1] = (unsigned char)(Val.ULongVal >> 8); 327 Ptr->Untyped[2] = (unsigned char)(Val.ULongVal >> 16); 328 Ptr->Untyped[3] = (unsigned char)(Val.ULongVal >> 24); 329 Ptr->Untyped[4] = (unsigned char)(Val.ULongVal >> 32); 330 Ptr->Untyped[5] = (unsigned char)(Val.ULongVal >> 40); 331 Ptr->Untyped[6] = (unsigned char)(Val.ULongVal >> 48); 332 Ptr->Untyped[7] = (unsigned char)(Val.ULongVal >> 56); 333 break; 334 default: 335 std::cout << "Cannot store value of type " << *Ty << "!\n"; 336 } 337 } else { 338 switch (Ty->getTypeID()) { 339 case Type::BoolTyID: 340 case Type::UByteTyID: 341 case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break; 342 case Type::UShortTyID: 343 case Type::ShortTyID: Ptr->Untyped[1] = Val.UShortVal & 255; 344 Ptr->Untyped[0] = (Val.UShortVal >> 8) & 255; 345 break; 346 Store4BytesBigEndian: 347 case Type::FloatTyID: 348 case Type::UIntTyID: 349 case Type::IntTyID: Ptr->Untyped[3] = Val.UIntVal & 255; 350 Ptr->Untyped[2] = (Val.UIntVal >> 8) & 255; 351 Ptr->Untyped[1] = (Val.UIntVal >> 16) & 255; 352 Ptr->Untyped[0] = (Val.UIntVal >> 24) & 255; 353 break; 354 case Type::PointerTyID: if (getTargetData().getPointerSize() == 4) 355 goto Store4BytesBigEndian; 356 case Type::DoubleTyID: 357 case Type::ULongTyID: 358 case Type::LongTyID: 359 Ptr->Untyped[7] = (unsigned char)(Val.ULongVal ); 360 Ptr->Untyped[6] = (unsigned char)(Val.ULongVal >> 8); 361 Ptr->Untyped[5] = (unsigned char)(Val.ULongVal >> 16); 362 Ptr->Untyped[4] = (unsigned char)(Val.ULongVal >> 24); 363 Ptr->Untyped[3] = (unsigned char)(Val.ULongVal >> 32); 364 Ptr->Untyped[2] = (unsigned char)(Val.ULongVal >> 40); 365 Ptr->Untyped[1] = (unsigned char)(Val.ULongVal >> 48); 366 Ptr->Untyped[0] = (unsigned char)(Val.ULongVal >> 56); 367 break; 368 default: 369 std::cout << "Cannot store value of type " << *Ty << "!\n"; 370 } 371 } 372 } 373 374 /// FIXME: document 375 /// 376 GenericValue ExecutionEngine::LoadValueFromMemory(GenericValue *Ptr, 377 const Type *Ty) { 378 GenericValue Result; 379 if (getTargetData().isLittleEndian()) { 380 switch (Ty->getTypeID()) { 381 case Type::BoolTyID: 382 case Type::UByteTyID: 383 case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break; 384 case Type::UShortTyID: 385 case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[0] | 386 ((unsigned)Ptr->Untyped[1] << 8); 387 break; 388 Load4BytesLittleEndian: 389 case Type::FloatTyID: 390 case Type::UIntTyID: 391 case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[0] | 392 ((unsigned)Ptr->Untyped[1] << 8) | 393 ((unsigned)Ptr->Untyped[2] << 16) | 394 ((unsigned)Ptr->Untyped[3] << 24); 395 break; 396 case Type::PointerTyID: if (getTargetData().getPointerSize() == 4) 397 goto Load4BytesLittleEndian; 398 case Type::DoubleTyID: 399 case Type::ULongTyID: 400 case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[0] | 401 ((uint64_t)Ptr->Untyped[1] << 8) | 402 ((uint64_t)Ptr->Untyped[2] << 16) | 403 ((uint64_t)Ptr->Untyped[3] << 24) | 404 ((uint64_t)Ptr->Untyped[4] << 32) | 405 ((uint64_t)Ptr->Untyped[5] << 40) | 406 ((uint64_t)Ptr->Untyped[6] << 48) | 407 ((uint64_t)Ptr->Untyped[7] << 56); 408 break; 409 default: 410 std::cout << "Cannot load value of type " << *Ty << "!\n"; 411 abort(); 412 } 413 } else { 414 switch (Ty->getTypeID()) { 415 case Type::BoolTyID: 416 case Type::UByteTyID: 417 case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break; 418 case Type::UShortTyID: 419 case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[1] | 420 ((unsigned)Ptr->Untyped[0] << 8); 421 break; 422 Load4BytesBigEndian: 423 case Type::FloatTyID: 424 case Type::UIntTyID: 425 case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[3] | 426 ((unsigned)Ptr->Untyped[2] << 8) | 427 ((unsigned)Ptr->Untyped[1] << 16) | 428 ((unsigned)Ptr->Untyped[0] << 24); 429 break; 430 case Type::PointerTyID: if (getTargetData().getPointerSize() == 4) 431 goto Load4BytesBigEndian; 432 case Type::DoubleTyID: 433 case Type::ULongTyID: 434 case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[7] | 435 ((uint64_t)Ptr->Untyped[6] << 8) | 436 ((uint64_t)Ptr->Untyped[5] << 16) | 437 ((uint64_t)Ptr->Untyped[4] << 24) | 438 ((uint64_t)Ptr->Untyped[3] << 32) | 439 ((uint64_t)Ptr->Untyped[2] << 40) | 440 ((uint64_t)Ptr->Untyped[1] << 48) | 441 ((uint64_t)Ptr->Untyped[0] << 56); 442 break; 443 default: 444 std::cout << "Cannot load value of type " << *Ty << "!\n"; 445 abort(); 446 } 447 } 448 return Result; 449 } 450 451 // InitializeMemory - Recursive function to apply a Constant value into the 452 // specified memory location... 453 // 454 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 455 if (isa<UndefValue>(Init)) { 456 return; 457 } else if (Init->getType()->isFirstClassType()) { 458 GenericValue Val = getConstantValue(Init); 459 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 460 return; 461 } else if (isa<ConstantAggregateZero>(Init)) { 462 memset(Addr, 0, (size_t)getTargetData().getTypeSize(Init->getType())); 463 return; 464 } 465 466 switch (Init->getType()->getTypeID()) { 467 case Type::ArrayTyID: { 468 const ConstantArray *CPA = cast<ConstantArray>(Init); 469 unsigned ElementSize = 470 getTargetData().getTypeSize(CPA->getType()->getElementType()); 471 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 472 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 473 return; 474 } 475 476 case Type::StructTyID: { 477 const ConstantStruct *CPS = cast<ConstantStruct>(Init); 478 const StructLayout *SL = 479 getTargetData().getStructLayout(cast<StructType>(CPS->getType())); 480 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 481 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->MemberOffsets[i]); 482 return; 483 } 484 485 default: 486 std::cerr << "Bad Type: " << *Init->getType() << "\n"; 487 assert(0 && "Unknown constant type to initialize memory with!"); 488 } 489 } 490 491 /// EmitGlobals - Emit all of the global variables to memory, storing their 492 /// addresses into GlobalAddress. This must make sure to copy the contents of 493 /// their initializers into the memory. 494 /// 495 void ExecutionEngine::emitGlobals() { 496 const TargetData &TD = getTargetData(); 497 498 // Loop over all of the global variables in the program, allocating the memory 499 // to hold them. 500 Module &M = getModule(); 501 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 502 I != E; ++I) 503 if (!I->isExternal()) { 504 // Get the type of the global... 505 const Type *Ty = I->getType()->getElementType(); 506 507 // Allocate some memory for it! 508 unsigned Size = TD.getTypeSize(Ty); 509 addGlobalMapping(I, new char[Size]); 510 } else { 511 // External variable reference. Try to use the dynamic loader to 512 // get a pointer to it. 513 if (void *SymAddr = sys::DynamicLibrary::SearchForAddressOfSymbol( 514 I->getName().c_str())) 515 addGlobalMapping(I, SymAddr); 516 else { 517 std::cerr << "Could not resolve external global address: " 518 << I->getName() << "\n"; 519 abort(); 520 } 521 } 522 523 // Now that all of the globals are set up in memory, loop through them all and 524 // initialize their contents. 525 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 526 I != E; ++I) 527 if (!I->isExternal()) 528 EmitGlobalVariable(I); 529 } 530 531 // EmitGlobalVariable - This method emits the specified global variable to the 532 // address specified in GlobalAddresses, or allocates new memory if it's not 533 // already in the map. 534 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 535 void *GA = getPointerToGlobalIfAvailable(GV); 536 DEBUG(std::cerr << "Global '" << GV->getName() << "' -> " << GA << "\n"); 537 538 const Type *ElTy = GV->getType()->getElementType(); 539 size_t GVSize = (size_t)getTargetData().getTypeSize(ElTy); 540 if (GA == 0) { 541 // If it's not already specified, allocate memory for the global. 542 GA = new char[GVSize]; 543 addGlobalMapping(GV, GA); 544 } 545 546 InitializeMemory(GV->getInitializer(), GA); 547 NumInitBytes += (unsigned)GVSize; 548 ++NumGlobals; 549 } 550