1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ExecutionEngine/ExecutionEngine.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ExecutionEngine/GenericValue.h" 19 #include "llvm/ExecutionEngine/JITMemoryManager.h" 20 #include "llvm/ExecutionEngine/ObjectCache.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/ValueHandle.h" 27 #include "llvm/Object/Archive.h" 28 #include "llvm/Object/ObjectFile.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/DynamicLibrary.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/Host.h" 33 #include "llvm/Support/MutexGuard.h" 34 #include "llvm/Support/TargetRegistry.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include <cmath> 38 #include <cstring> 39 using namespace llvm; 40 41 #define DEBUG_TYPE "jit" 42 43 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 44 STATISTIC(NumGlobals , "Number of global vars initialized"); 45 46 // Pin the vtable to this file. 47 void ObjectCache::anchor() {} 48 void ObjectBuffer::anchor() {} 49 void ObjectBufferStream::anchor() {} 50 51 ExecutionEngine *(*ExecutionEngine::JITCtor)( 52 std::unique_ptr<Module> M, 53 std::string *ErrorStr, 54 JITMemoryManager *JMM, 55 bool GVsWithCode, 56 TargetMachine *TM) = nullptr; 57 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 58 std::unique_ptr<Module >M, 59 std::string *ErrorStr, 60 RTDyldMemoryManager *MCJMM, 61 TargetMachine *TM) = nullptr; 62 ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M, 63 std::string *ErrorStr) =nullptr; 64 65 ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M) 66 : EEState(*this), 67 LazyFunctionCreator(nullptr) { 68 CompilingLazily = false; 69 GVCompilationDisabled = false; 70 SymbolSearchingDisabled = false; 71 72 // IR module verification is enabled by default in debug builds, and disabled 73 // by default in release builds. 74 #ifndef NDEBUG 75 VerifyModules = true; 76 #else 77 VerifyModules = false; 78 #endif 79 80 assert(M && "Module is null?"); 81 Modules.push_back(std::move(M)); 82 } 83 84 ExecutionEngine::~ExecutionEngine() { 85 clearAllGlobalMappings(); 86 } 87 88 namespace { 89 /// \brief Helper class which uses a value handler to automatically deletes the 90 /// memory block when the GlobalVariable is destroyed. 91 class GVMemoryBlock : public CallbackVH { 92 GVMemoryBlock(const GlobalVariable *GV) 93 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 94 95 public: 96 /// \brief Returns the address the GlobalVariable should be written into. The 97 /// GVMemoryBlock object prefixes that. 98 static char *Create(const GlobalVariable *GV, const DataLayout& TD) { 99 Type *ElTy = GV->getType()->getElementType(); 100 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 101 void *RawMemory = ::operator new( 102 DataLayout::RoundUpAlignment(sizeof(GVMemoryBlock), 103 TD.getPreferredAlignment(GV)) 104 + GVSize); 105 new(RawMemory) GVMemoryBlock(GV); 106 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 107 } 108 109 void deleted() override { 110 // We allocated with operator new and with some extra memory hanging off the 111 // end, so don't just delete this. I'm not sure if this is actually 112 // required. 113 this->~GVMemoryBlock(); 114 ::operator delete(this); 115 } 116 }; 117 } // anonymous namespace 118 119 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 120 return GVMemoryBlock::Create(GV, *getDataLayout()); 121 } 122 123 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { 124 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 125 } 126 127 void 128 ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) { 129 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 130 } 131 132 void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) { 133 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive."); 134 } 135 136 bool ExecutionEngine::removeModule(Module *M) { 137 for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) { 138 Module *Found = I->get(); 139 if (Found == M) { 140 I->release(); 141 Modules.erase(I); 142 clearGlobalMappingsFromModule(M); 143 return true; 144 } 145 } 146 return false; 147 } 148 149 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 150 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 151 if (Function *F = Modules[i]->getFunction(FnName)) 152 return F; 153 } 154 return nullptr; 155 } 156 157 158 void *ExecutionEngineState::RemoveMapping(const GlobalValue *ToUnmap) { 159 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 160 void *OldVal; 161 162 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 163 // GlobalAddressMap. 164 if (I == GlobalAddressMap.end()) 165 OldVal = nullptr; 166 else { 167 OldVal = I->second; 168 GlobalAddressMap.erase(I); 169 } 170 171 GlobalAddressReverseMap.erase(OldVal); 172 return OldVal; 173 } 174 175 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 176 MutexGuard locked(lock); 177 178 DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 179 << "\' to [" << Addr << "]\n";); 180 void *&CurVal = EEState.getGlobalAddressMap()[GV]; 181 assert((!CurVal || !Addr) && "GlobalMapping already established!"); 182 CurVal = Addr; 183 184 // If we are using the reverse mapping, add it too. 185 if (!EEState.getGlobalAddressReverseMap().empty()) { 186 AssertingVH<const GlobalValue> &V = 187 EEState.getGlobalAddressReverseMap()[Addr]; 188 assert((!V || !GV) && "GlobalMapping already established!"); 189 V = GV; 190 } 191 } 192 193 void ExecutionEngine::clearAllGlobalMappings() { 194 MutexGuard locked(lock); 195 196 EEState.getGlobalAddressMap().clear(); 197 EEState.getGlobalAddressReverseMap().clear(); 198 } 199 200 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 201 MutexGuard locked(lock); 202 203 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) 204 EEState.RemoveMapping(FI); 205 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 206 GI != GE; ++GI) 207 EEState.RemoveMapping(GI); 208 } 209 210 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 211 MutexGuard locked(lock); 212 213 ExecutionEngineState::GlobalAddressMapTy &Map = 214 EEState.getGlobalAddressMap(); 215 216 // Deleting from the mapping? 217 if (!Addr) 218 return EEState.RemoveMapping(GV); 219 220 void *&CurVal = Map[GV]; 221 void *OldVal = CurVal; 222 223 if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) 224 EEState.getGlobalAddressReverseMap().erase(CurVal); 225 CurVal = Addr; 226 227 // If we are using the reverse mapping, add it too. 228 if (!EEState.getGlobalAddressReverseMap().empty()) { 229 AssertingVH<const GlobalValue> &V = 230 EEState.getGlobalAddressReverseMap()[Addr]; 231 assert((!V || !GV) && "GlobalMapping already established!"); 232 V = GV; 233 } 234 return OldVal; 235 } 236 237 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 238 MutexGuard locked(lock); 239 240 ExecutionEngineState::GlobalAddressMapTy::iterator I = 241 EEState.getGlobalAddressMap().find(GV); 242 return I != EEState.getGlobalAddressMap().end() ? I->second : nullptr; 243 } 244 245 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 246 MutexGuard locked(lock); 247 248 // If we haven't computed the reverse mapping yet, do so first. 249 if (EEState.getGlobalAddressReverseMap().empty()) { 250 for (ExecutionEngineState::GlobalAddressMapTy::iterator 251 I = EEState.getGlobalAddressMap().begin(), 252 E = EEState.getGlobalAddressMap().end(); I != E; ++I) 253 EEState.getGlobalAddressReverseMap().insert(std::make_pair( 254 I->second, I->first)); 255 } 256 257 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 258 EEState.getGlobalAddressReverseMap().find(Addr); 259 return I != EEState.getGlobalAddressReverseMap().end() ? I->second : nullptr; 260 } 261 262 namespace { 263 class ArgvArray { 264 std::unique_ptr<char[]> Array; 265 std::vector<std::unique_ptr<char[]>> Values; 266 public: 267 /// Turn a vector of strings into a nice argv style array of pointers to null 268 /// terminated strings. 269 void *reset(LLVMContext &C, ExecutionEngine *EE, 270 const std::vector<std::string> &InputArgv); 271 }; 272 } // anonymous namespace 273 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 274 const std::vector<std::string> &InputArgv) { 275 Values.clear(); // Free the old contents. 276 Values.reserve(InputArgv.size()); 277 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 278 Array = make_unique<char[]>((InputArgv.size()+1)*PtrSize); 279 280 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array.get() << "\n"); 281 Type *SBytePtr = Type::getInt8PtrTy(C); 282 283 for (unsigned i = 0; i != InputArgv.size(); ++i) { 284 unsigned Size = InputArgv[i].size()+1; 285 auto Dest = make_unique<char[]>(Size); 286 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest.get() << "\n"); 287 288 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get()); 289 Dest[Size-1] = 0; 290 291 // Endian safe: Array[i] = (PointerTy)Dest; 292 EE->StoreValueToMemory(PTOGV(Dest.get()), 293 (GenericValue*)(&Array[i*PtrSize]), SBytePtr); 294 Values.push_back(std::move(Dest)); 295 } 296 297 // Null terminate it 298 EE->StoreValueToMemory(PTOGV(nullptr), 299 (GenericValue*)(&Array[InputArgv.size()*PtrSize]), 300 SBytePtr); 301 return Array.get(); 302 } 303 304 void ExecutionEngine::runStaticConstructorsDestructors(Module &module, 305 bool isDtors) { 306 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 307 GlobalVariable *GV = module.getNamedGlobal(Name); 308 309 // If this global has internal linkage, or if it has a use, then it must be 310 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 311 // this is the case, don't execute any of the global ctors, __main will do 312 // it. 313 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 314 315 // Should be an array of '{ i32, void ()* }' structs. The first value is 316 // the init priority, which we ignore. 317 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 318 if (!InitList) 319 return; 320 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 321 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 322 if (!CS) continue; 323 324 Constant *FP = CS->getOperand(1); 325 if (FP->isNullValue()) 326 continue; // Found a sentinal value, ignore. 327 328 // Strip off constant expression casts. 329 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 330 if (CE->isCast()) 331 FP = CE->getOperand(0); 332 333 // Execute the ctor/dtor function! 334 if (Function *F = dyn_cast<Function>(FP)) 335 runFunction(F, std::vector<GenericValue>()); 336 337 // FIXME: It is marginally lame that we just do nothing here if we see an 338 // entry we don't recognize. It might not be unreasonable for the verifier 339 // to not even allow this and just assert here. 340 } 341 } 342 343 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 344 // Execute global ctors/dtors for each module in the program. 345 for (std::unique_ptr<Module> &M : Modules) 346 runStaticConstructorsDestructors(*M, isDtors); 347 } 348 349 #ifndef NDEBUG 350 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 351 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 352 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 353 for (unsigned i = 0; i < PtrSize; ++i) 354 if (*(i + (uint8_t*)Loc)) 355 return false; 356 return true; 357 } 358 #endif 359 360 int ExecutionEngine::runFunctionAsMain(Function *Fn, 361 const std::vector<std::string> &argv, 362 const char * const * envp) { 363 std::vector<GenericValue> GVArgs; 364 GenericValue GVArgc; 365 GVArgc.IntVal = APInt(32, argv.size()); 366 367 // Check main() type 368 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 369 FunctionType *FTy = Fn->getFunctionType(); 370 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 371 372 // Check the argument types. 373 if (NumArgs > 3) 374 report_fatal_error("Invalid number of arguments of main() supplied"); 375 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 376 report_fatal_error("Invalid type for third argument of main() supplied"); 377 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 378 report_fatal_error("Invalid type for second argument of main() supplied"); 379 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 380 report_fatal_error("Invalid type for first argument of main() supplied"); 381 if (!FTy->getReturnType()->isIntegerTy() && 382 !FTy->getReturnType()->isVoidTy()) 383 report_fatal_error("Invalid return type of main() supplied"); 384 385 ArgvArray CArgv; 386 ArgvArray CEnv; 387 if (NumArgs) { 388 GVArgs.push_back(GVArgc); // Arg #0 = argc. 389 if (NumArgs > 1) { 390 // Arg #1 = argv. 391 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 392 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 393 "argv[0] was null after CreateArgv"); 394 if (NumArgs > 2) { 395 std::vector<std::string> EnvVars; 396 for (unsigned i = 0; envp[i]; ++i) 397 EnvVars.push_back(envp[i]); 398 // Arg #2 = envp. 399 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 400 } 401 } 402 } 403 404 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 405 } 406 407 void EngineBuilder::InitEngine() { 408 WhichEngine = EngineKind::Either; 409 ErrorStr = nullptr; 410 OptLevel = CodeGenOpt::Default; 411 MCJMM = nullptr; 412 JMM = nullptr; 413 Options = TargetOptions(); 414 AllocateGVsWithCode = false; 415 RelocModel = Reloc::Default; 416 CMModel = CodeModel::JITDefault; 417 UseMCJIT = false; 418 419 // IR module verification is enabled by default in debug builds, and disabled 420 // by default in release builds. 421 #ifndef NDEBUG 422 VerifyModules = true; 423 #else 424 VerifyModules = false; 425 #endif 426 } 427 428 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 429 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. 430 431 // Make sure we can resolve symbols in the program as well. The zero arg 432 // to the function tells DynamicLibrary to load the program, not a library. 433 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) 434 return nullptr; 435 436 assert(!(JMM && MCJMM)); 437 438 // If the user specified a memory manager but didn't specify which engine to 439 // create, we assume they only want the JIT, and we fail if they only want 440 // the interpreter. 441 if (JMM || MCJMM) { 442 if (WhichEngine & EngineKind::JIT) 443 WhichEngine = EngineKind::JIT; 444 else { 445 if (ErrorStr) 446 *ErrorStr = "Cannot create an interpreter with a memory manager."; 447 return nullptr; 448 } 449 } 450 451 if (MCJMM && ! UseMCJIT) { 452 if (ErrorStr) 453 *ErrorStr = 454 "Cannot create a legacy JIT with a runtime dyld memory " 455 "manager."; 456 return nullptr; 457 } 458 459 // Unless the interpreter was explicitly selected or the JIT is not linked, 460 // try making a JIT. 461 if ((WhichEngine & EngineKind::JIT) && TheTM) { 462 Triple TT(M->getTargetTriple()); 463 if (!TM->getTarget().hasJIT()) { 464 errs() << "WARNING: This target JIT is not designed for the host" 465 << " you are running. If bad things happen, please choose" 466 << " a different -march switch.\n"; 467 } 468 469 ExecutionEngine *EE = nullptr; 470 if (UseMCJIT && ExecutionEngine::MCJITCtor) 471 EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, 472 MCJMM ? MCJMM : JMM, TheTM.release()); 473 else if (ExecutionEngine::JITCtor) 474 EE = ExecutionEngine::JITCtor(std::move(M), ErrorStr, JMM, 475 AllocateGVsWithCode, TheTM.release()); 476 477 if (EE) { 478 EE->setVerifyModules(VerifyModules); 479 return EE; 480 } 481 } 482 483 // If we can't make a JIT and we didn't request one specifically, try making 484 // an interpreter instead. 485 if (WhichEngine & EngineKind::Interpreter) { 486 if (ExecutionEngine::InterpCtor) 487 return ExecutionEngine::InterpCtor(std::move(M), ErrorStr); 488 if (ErrorStr) 489 *ErrorStr = "Interpreter has not been linked in."; 490 return nullptr; 491 } 492 493 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::JITCtor && 494 !ExecutionEngine::MCJITCtor) { 495 if (ErrorStr) 496 *ErrorStr = "JIT has not been linked in."; 497 } 498 499 return nullptr; 500 } 501 502 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 503 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 504 return getPointerToFunction(F); 505 506 MutexGuard locked(lock); 507 if (void *P = EEState.getGlobalAddressMap()[GV]) 508 return P; 509 510 // Global variable might have been added since interpreter started. 511 if (GlobalVariable *GVar = 512 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 513 EmitGlobalVariable(GVar); 514 else 515 llvm_unreachable("Global hasn't had an address allocated yet!"); 516 517 return EEState.getGlobalAddressMap()[GV]; 518 } 519 520 /// \brief Converts a Constant* into a GenericValue, including handling of 521 /// ConstantExpr values. 522 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 523 // If its undefined, return the garbage. 524 if (isa<UndefValue>(C)) { 525 GenericValue Result; 526 switch (C->getType()->getTypeID()) { 527 default: 528 break; 529 case Type::IntegerTyID: 530 case Type::X86_FP80TyID: 531 case Type::FP128TyID: 532 case Type::PPC_FP128TyID: 533 // Although the value is undefined, we still have to construct an APInt 534 // with the correct bit width. 535 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 536 break; 537 case Type::StructTyID: { 538 // if the whole struct is 'undef' just reserve memory for the value. 539 if(StructType *STy = dyn_cast<StructType>(C->getType())) { 540 unsigned int elemNum = STy->getNumElements(); 541 Result.AggregateVal.resize(elemNum); 542 for (unsigned int i = 0; i < elemNum; ++i) { 543 Type *ElemTy = STy->getElementType(i); 544 if (ElemTy->isIntegerTy()) 545 Result.AggregateVal[i].IntVal = 546 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 547 else if (ElemTy->isAggregateType()) { 548 const Constant *ElemUndef = UndefValue::get(ElemTy); 549 Result.AggregateVal[i] = getConstantValue(ElemUndef); 550 } 551 } 552 } 553 } 554 break; 555 case Type::VectorTyID: 556 // if the whole vector is 'undef' just reserve memory for the value. 557 const VectorType* VTy = dyn_cast<VectorType>(C->getType()); 558 const Type *ElemTy = VTy->getElementType(); 559 unsigned int elemNum = VTy->getNumElements(); 560 Result.AggregateVal.resize(elemNum); 561 if (ElemTy->isIntegerTy()) 562 for (unsigned int i = 0; i < elemNum; ++i) 563 Result.AggregateVal[i].IntVal = 564 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 565 break; 566 } 567 return Result; 568 } 569 570 // Otherwise, if the value is a ConstantExpr... 571 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 572 Constant *Op0 = CE->getOperand(0); 573 switch (CE->getOpcode()) { 574 case Instruction::GetElementPtr: { 575 // Compute the index 576 GenericValue Result = getConstantValue(Op0); 577 APInt Offset(DL->getPointerSizeInBits(), 0); 578 cast<GEPOperator>(CE)->accumulateConstantOffset(*DL, Offset); 579 580 char* tmp = (char*) Result.PointerVal; 581 Result = PTOGV(tmp + Offset.getSExtValue()); 582 return Result; 583 } 584 case Instruction::Trunc: { 585 GenericValue GV = getConstantValue(Op0); 586 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 587 GV.IntVal = GV.IntVal.trunc(BitWidth); 588 return GV; 589 } 590 case Instruction::ZExt: { 591 GenericValue GV = getConstantValue(Op0); 592 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 593 GV.IntVal = GV.IntVal.zext(BitWidth); 594 return GV; 595 } 596 case Instruction::SExt: { 597 GenericValue GV = getConstantValue(Op0); 598 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 599 GV.IntVal = GV.IntVal.sext(BitWidth); 600 return GV; 601 } 602 case Instruction::FPTrunc: { 603 // FIXME long double 604 GenericValue GV = getConstantValue(Op0); 605 GV.FloatVal = float(GV.DoubleVal); 606 return GV; 607 } 608 case Instruction::FPExt:{ 609 // FIXME long double 610 GenericValue GV = getConstantValue(Op0); 611 GV.DoubleVal = double(GV.FloatVal); 612 return GV; 613 } 614 case Instruction::UIToFP: { 615 GenericValue GV = getConstantValue(Op0); 616 if (CE->getType()->isFloatTy()) 617 GV.FloatVal = float(GV.IntVal.roundToDouble()); 618 else if (CE->getType()->isDoubleTy()) 619 GV.DoubleVal = GV.IntVal.roundToDouble(); 620 else if (CE->getType()->isX86_FP80Ty()) { 621 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 622 (void)apf.convertFromAPInt(GV.IntVal, 623 false, 624 APFloat::rmNearestTiesToEven); 625 GV.IntVal = apf.bitcastToAPInt(); 626 } 627 return GV; 628 } 629 case Instruction::SIToFP: { 630 GenericValue GV = getConstantValue(Op0); 631 if (CE->getType()->isFloatTy()) 632 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 633 else if (CE->getType()->isDoubleTy()) 634 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 635 else if (CE->getType()->isX86_FP80Ty()) { 636 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 637 (void)apf.convertFromAPInt(GV.IntVal, 638 true, 639 APFloat::rmNearestTiesToEven); 640 GV.IntVal = apf.bitcastToAPInt(); 641 } 642 return GV; 643 } 644 case Instruction::FPToUI: // double->APInt conversion handles sign 645 case Instruction::FPToSI: { 646 GenericValue GV = getConstantValue(Op0); 647 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 648 if (Op0->getType()->isFloatTy()) 649 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 650 else if (Op0->getType()->isDoubleTy()) 651 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 652 else if (Op0->getType()->isX86_FP80Ty()) { 653 APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal); 654 uint64_t v; 655 bool ignored; 656 (void)apf.convertToInteger(&v, BitWidth, 657 CE->getOpcode()==Instruction::FPToSI, 658 APFloat::rmTowardZero, &ignored); 659 GV.IntVal = v; // endian? 660 } 661 return GV; 662 } 663 case Instruction::PtrToInt: { 664 GenericValue GV = getConstantValue(Op0); 665 uint32_t PtrWidth = DL->getTypeSizeInBits(Op0->getType()); 666 assert(PtrWidth <= 64 && "Bad pointer width"); 667 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 668 uint32_t IntWidth = DL->getTypeSizeInBits(CE->getType()); 669 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); 670 return GV; 671 } 672 case Instruction::IntToPtr: { 673 GenericValue GV = getConstantValue(Op0); 674 uint32_t PtrWidth = DL->getTypeSizeInBits(CE->getType()); 675 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 676 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 677 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 678 return GV; 679 } 680 case Instruction::BitCast: { 681 GenericValue GV = getConstantValue(Op0); 682 Type* DestTy = CE->getType(); 683 switch (Op0->getType()->getTypeID()) { 684 default: llvm_unreachable("Invalid bitcast operand"); 685 case Type::IntegerTyID: 686 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 687 if (DestTy->isFloatTy()) 688 GV.FloatVal = GV.IntVal.bitsToFloat(); 689 else if (DestTy->isDoubleTy()) 690 GV.DoubleVal = GV.IntVal.bitsToDouble(); 691 break; 692 case Type::FloatTyID: 693 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 694 GV.IntVal = APInt::floatToBits(GV.FloatVal); 695 break; 696 case Type::DoubleTyID: 697 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 698 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 699 break; 700 case Type::PointerTyID: 701 assert(DestTy->isPointerTy() && "Invalid bitcast"); 702 break; // getConstantValue(Op0) above already converted it 703 } 704 return GV; 705 } 706 case Instruction::Add: 707 case Instruction::FAdd: 708 case Instruction::Sub: 709 case Instruction::FSub: 710 case Instruction::Mul: 711 case Instruction::FMul: 712 case Instruction::UDiv: 713 case Instruction::SDiv: 714 case Instruction::URem: 715 case Instruction::SRem: 716 case Instruction::And: 717 case Instruction::Or: 718 case Instruction::Xor: { 719 GenericValue LHS = getConstantValue(Op0); 720 GenericValue RHS = getConstantValue(CE->getOperand(1)); 721 GenericValue GV; 722 switch (CE->getOperand(0)->getType()->getTypeID()) { 723 default: llvm_unreachable("Bad add type!"); 724 case Type::IntegerTyID: 725 switch (CE->getOpcode()) { 726 default: llvm_unreachable("Invalid integer opcode"); 727 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 728 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 729 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 730 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 731 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 732 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 733 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 734 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 735 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 736 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 737 } 738 break; 739 case Type::FloatTyID: 740 switch (CE->getOpcode()) { 741 default: llvm_unreachable("Invalid float opcode"); 742 case Instruction::FAdd: 743 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 744 case Instruction::FSub: 745 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 746 case Instruction::FMul: 747 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 748 case Instruction::FDiv: 749 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 750 case Instruction::FRem: 751 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 752 } 753 break; 754 case Type::DoubleTyID: 755 switch (CE->getOpcode()) { 756 default: llvm_unreachable("Invalid double opcode"); 757 case Instruction::FAdd: 758 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 759 case Instruction::FSub: 760 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 761 case Instruction::FMul: 762 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 763 case Instruction::FDiv: 764 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 765 case Instruction::FRem: 766 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 767 } 768 break; 769 case Type::X86_FP80TyID: 770 case Type::PPC_FP128TyID: 771 case Type::FP128TyID: { 772 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); 773 APFloat apfLHS = APFloat(Sem, LHS.IntVal); 774 switch (CE->getOpcode()) { 775 default: llvm_unreachable("Invalid long double opcode"); 776 case Instruction::FAdd: 777 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); 778 GV.IntVal = apfLHS.bitcastToAPInt(); 779 break; 780 case Instruction::FSub: 781 apfLHS.subtract(APFloat(Sem, RHS.IntVal), 782 APFloat::rmNearestTiesToEven); 783 GV.IntVal = apfLHS.bitcastToAPInt(); 784 break; 785 case Instruction::FMul: 786 apfLHS.multiply(APFloat(Sem, RHS.IntVal), 787 APFloat::rmNearestTiesToEven); 788 GV.IntVal = apfLHS.bitcastToAPInt(); 789 break; 790 case Instruction::FDiv: 791 apfLHS.divide(APFloat(Sem, RHS.IntVal), 792 APFloat::rmNearestTiesToEven); 793 GV.IntVal = apfLHS.bitcastToAPInt(); 794 break; 795 case Instruction::FRem: 796 apfLHS.mod(APFloat(Sem, RHS.IntVal), 797 APFloat::rmNearestTiesToEven); 798 GV.IntVal = apfLHS.bitcastToAPInt(); 799 break; 800 } 801 } 802 break; 803 } 804 return GV; 805 } 806 default: 807 break; 808 } 809 810 SmallString<256> Msg; 811 raw_svector_ostream OS(Msg); 812 OS << "ConstantExpr not handled: " << *CE; 813 report_fatal_error(OS.str()); 814 } 815 816 // Otherwise, we have a simple constant. 817 GenericValue Result; 818 switch (C->getType()->getTypeID()) { 819 case Type::FloatTyID: 820 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 821 break; 822 case Type::DoubleTyID: 823 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 824 break; 825 case Type::X86_FP80TyID: 826 case Type::FP128TyID: 827 case Type::PPC_FP128TyID: 828 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 829 break; 830 case Type::IntegerTyID: 831 Result.IntVal = cast<ConstantInt>(C)->getValue(); 832 break; 833 case Type::PointerTyID: 834 if (isa<ConstantPointerNull>(C)) 835 Result.PointerVal = nullptr; 836 else if (const Function *F = dyn_cast<Function>(C)) 837 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 838 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 839 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 840 else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 841 Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>( 842 BA->getBasicBlock()))); 843 else 844 llvm_unreachable("Unknown constant pointer type!"); 845 break; 846 case Type::VectorTyID: { 847 unsigned elemNum; 848 Type* ElemTy; 849 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); 850 const ConstantVector *CV = dyn_cast<ConstantVector>(C); 851 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); 852 853 if (CDV) { 854 elemNum = CDV->getNumElements(); 855 ElemTy = CDV->getElementType(); 856 } else if (CV || CAZ) { 857 VectorType* VTy = dyn_cast<VectorType>(C->getType()); 858 elemNum = VTy->getNumElements(); 859 ElemTy = VTy->getElementType(); 860 } else { 861 llvm_unreachable("Unknown constant vector type!"); 862 } 863 864 Result.AggregateVal.resize(elemNum); 865 // Check if vector holds floats. 866 if(ElemTy->isFloatTy()) { 867 if (CAZ) { 868 GenericValue floatZero; 869 floatZero.FloatVal = 0.f; 870 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 871 floatZero); 872 break; 873 } 874 if(CV) { 875 for (unsigned i = 0; i < elemNum; ++i) 876 if (!isa<UndefValue>(CV->getOperand(i))) 877 Result.AggregateVal[i].FloatVal = cast<ConstantFP>( 878 CV->getOperand(i))->getValueAPF().convertToFloat(); 879 break; 880 } 881 if(CDV) 882 for (unsigned i = 0; i < elemNum; ++i) 883 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); 884 885 break; 886 } 887 // Check if vector holds doubles. 888 if (ElemTy->isDoubleTy()) { 889 if (CAZ) { 890 GenericValue doubleZero; 891 doubleZero.DoubleVal = 0.0; 892 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 893 doubleZero); 894 break; 895 } 896 if(CV) { 897 for (unsigned i = 0; i < elemNum; ++i) 898 if (!isa<UndefValue>(CV->getOperand(i))) 899 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( 900 CV->getOperand(i))->getValueAPF().convertToDouble(); 901 break; 902 } 903 if(CDV) 904 for (unsigned i = 0; i < elemNum; ++i) 905 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); 906 907 break; 908 } 909 // Check if vector holds integers. 910 if (ElemTy->isIntegerTy()) { 911 if (CAZ) { 912 GenericValue intZero; 913 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); 914 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 915 intZero); 916 break; 917 } 918 if(CV) { 919 for (unsigned i = 0; i < elemNum; ++i) 920 if (!isa<UndefValue>(CV->getOperand(i))) 921 Result.AggregateVal[i].IntVal = cast<ConstantInt>( 922 CV->getOperand(i))->getValue(); 923 else { 924 Result.AggregateVal[i].IntVal = 925 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); 926 } 927 break; 928 } 929 if(CDV) 930 for (unsigned i = 0; i < elemNum; ++i) 931 Result.AggregateVal[i].IntVal = APInt( 932 CDV->getElementType()->getPrimitiveSizeInBits(), 933 CDV->getElementAsInteger(i)); 934 935 break; 936 } 937 llvm_unreachable("Unknown constant pointer type!"); 938 } 939 break; 940 941 default: 942 SmallString<256> Msg; 943 raw_svector_ostream OS(Msg); 944 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 945 report_fatal_error(OS.str()); 946 } 947 948 return Result; 949 } 950 951 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 952 /// with the integer held in IntVal. 953 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 954 unsigned StoreBytes) { 955 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 956 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 957 958 if (sys::IsLittleEndianHost) { 959 // Little-endian host - the source is ordered from LSB to MSB. Order the 960 // destination from LSB to MSB: Do a straight copy. 961 memcpy(Dst, Src, StoreBytes); 962 } else { 963 // Big-endian host - the source is an array of 64 bit words ordered from 964 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 965 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 966 while (StoreBytes > sizeof(uint64_t)) { 967 StoreBytes -= sizeof(uint64_t); 968 // May not be aligned so use memcpy. 969 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 970 Src += sizeof(uint64_t); 971 } 972 973 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 974 } 975 } 976 977 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 978 GenericValue *Ptr, Type *Ty) { 979 const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty); 980 981 switch (Ty->getTypeID()) { 982 default: 983 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 984 break; 985 case Type::IntegerTyID: 986 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 987 break; 988 case Type::FloatTyID: 989 *((float*)Ptr) = Val.FloatVal; 990 break; 991 case Type::DoubleTyID: 992 *((double*)Ptr) = Val.DoubleVal; 993 break; 994 case Type::X86_FP80TyID: 995 memcpy(Ptr, Val.IntVal.getRawData(), 10); 996 break; 997 case Type::PointerTyID: 998 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 999 if (StoreBytes != sizeof(PointerTy)) 1000 memset(&(Ptr->PointerVal), 0, StoreBytes); 1001 1002 *((PointerTy*)Ptr) = Val.PointerVal; 1003 break; 1004 case Type::VectorTyID: 1005 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { 1006 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) 1007 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; 1008 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) 1009 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; 1010 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { 1011 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; 1012 StoreIntToMemory(Val.AggregateVal[i].IntVal, 1013 (uint8_t*)Ptr + numOfBytes*i, numOfBytes); 1014 } 1015 } 1016 break; 1017 } 1018 1019 if (sys::IsLittleEndianHost != getDataLayout()->isLittleEndian()) 1020 // Host and target are different endian - reverse the stored bytes. 1021 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 1022 } 1023 1024 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 1025 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 1026 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 1027 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 1028 uint8_t *Dst = reinterpret_cast<uint8_t *>( 1029 const_cast<uint64_t *>(IntVal.getRawData())); 1030 1031 if (sys::IsLittleEndianHost) 1032 // Little-endian host - the destination must be ordered from LSB to MSB. 1033 // The source is ordered from LSB to MSB: Do a straight copy. 1034 memcpy(Dst, Src, LoadBytes); 1035 else { 1036 // Big-endian - the destination is an array of 64 bit words ordered from 1037 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 1038 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 1039 // a word. 1040 while (LoadBytes > sizeof(uint64_t)) { 1041 LoadBytes -= sizeof(uint64_t); 1042 // May not be aligned so use memcpy. 1043 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 1044 Dst += sizeof(uint64_t); 1045 } 1046 1047 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 1048 } 1049 } 1050 1051 /// FIXME: document 1052 /// 1053 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 1054 GenericValue *Ptr, 1055 Type *Ty) { 1056 const unsigned LoadBytes = getDataLayout()->getTypeStoreSize(Ty); 1057 1058 switch (Ty->getTypeID()) { 1059 case Type::IntegerTyID: 1060 // An APInt with all words initially zero. 1061 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 1062 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 1063 break; 1064 case Type::FloatTyID: 1065 Result.FloatVal = *((float*)Ptr); 1066 break; 1067 case Type::DoubleTyID: 1068 Result.DoubleVal = *((double*)Ptr); 1069 break; 1070 case Type::PointerTyID: 1071 Result.PointerVal = *((PointerTy*)Ptr); 1072 break; 1073 case Type::X86_FP80TyID: { 1074 // This is endian dependent, but it will only work on x86 anyway. 1075 // FIXME: Will not trap if loading a signaling NaN. 1076 uint64_t y[2]; 1077 memcpy(y, Ptr, 10); 1078 Result.IntVal = APInt(80, y); 1079 break; 1080 } 1081 case Type::VectorTyID: { 1082 const VectorType *VT = cast<VectorType>(Ty); 1083 const Type *ElemT = VT->getElementType(); 1084 const unsigned numElems = VT->getNumElements(); 1085 if (ElemT->isFloatTy()) { 1086 Result.AggregateVal.resize(numElems); 1087 for (unsigned i = 0; i < numElems; ++i) 1088 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); 1089 } 1090 if (ElemT->isDoubleTy()) { 1091 Result.AggregateVal.resize(numElems); 1092 for (unsigned i = 0; i < numElems; ++i) 1093 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); 1094 } 1095 if (ElemT->isIntegerTy()) { 1096 GenericValue intZero; 1097 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); 1098 intZero.IntVal = APInt(elemBitWidth, 0); 1099 Result.AggregateVal.resize(numElems, intZero); 1100 for (unsigned i = 0; i < numElems; ++i) 1101 LoadIntFromMemory(Result.AggregateVal[i].IntVal, 1102 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); 1103 } 1104 break; 1105 } 1106 default: 1107 SmallString<256> Msg; 1108 raw_svector_ostream OS(Msg); 1109 OS << "Cannot load value of type " << *Ty << "!"; 1110 report_fatal_error(OS.str()); 1111 } 1112 } 1113 1114 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 1115 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 1116 DEBUG(Init->dump()); 1117 if (isa<UndefValue>(Init)) 1118 return; 1119 1120 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 1121 unsigned ElementSize = 1122 getDataLayout()->getTypeAllocSize(CP->getType()->getElementType()); 1123 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 1124 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 1125 return; 1126 } 1127 1128 if (isa<ConstantAggregateZero>(Init)) { 1129 memset(Addr, 0, (size_t)getDataLayout()->getTypeAllocSize(Init->getType())); 1130 return; 1131 } 1132 1133 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 1134 unsigned ElementSize = 1135 getDataLayout()->getTypeAllocSize(CPA->getType()->getElementType()); 1136 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 1137 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 1138 return; 1139 } 1140 1141 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 1142 const StructLayout *SL = 1143 getDataLayout()->getStructLayout(cast<StructType>(CPS->getType())); 1144 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 1145 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 1146 return; 1147 } 1148 1149 if (const ConstantDataSequential *CDS = 1150 dyn_cast<ConstantDataSequential>(Init)) { 1151 // CDS is already laid out in host memory order. 1152 StringRef Data = CDS->getRawDataValues(); 1153 memcpy(Addr, Data.data(), Data.size()); 1154 return; 1155 } 1156 1157 if (Init->getType()->isFirstClassType()) { 1158 GenericValue Val = getConstantValue(Init); 1159 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 1160 return; 1161 } 1162 1163 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1164 llvm_unreachable("Unknown constant type to initialize memory with!"); 1165 } 1166 1167 /// EmitGlobals - Emit all of the global variables to memory, storing their 1168 /// addresses into GlobalAddress. This must make sure to copy the contents of 1169 /// their initializers into the memory. 1170 void ExecutionEngine::emitGlobals() { 1171 // Loop over all of the global variables in the program, allocating the memory 1172 // to hold them. If there is more than one module, do a prepass over globals 1173 // to figure out how the different modules should link together. 1174 std::map<std::pair<std::string, Type*>, 1175 const GlobalValue*> LinkedGlobalsMap; 1176 1177 if (Modules.size() != 1) { 1178 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1179 Module &M = *Modules[m]; 1180 for (const auto &GV : M.globals()) { 1181 if (GV.hasLocalLinkage() || GV.isDeclaration() || 1182 GV.hasAppendingLinkage() || !GV.hasName()) 1183 continue;// Ignore external globals and globals with internal linkage. 1184 1185 const GlobalValue *&GVEntry = 1186 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]; 1187 1188 // If this is the first time we've seen this global, it is the canonical 1189 // version. 1190 if (!GVEntry) { 1191 GVEntry = &GV; 1192 continue; 1193 } 1194 1195 // If the existing global is strong, never replace it. 1196 if (GVEntry->hasExternalLinkage()) 1197 continue; 1198 1199 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1200 // symbol. FIXME is this right for common? 1201 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1202 GVEntry = &GV; 1203 } 1204 } 1205 } 1206 1207 std::vector<const GlobalValue*> NonCanonicalGlobals; 1208 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1209 Module &M = *Modules[m]; 1210 for (const auto &GV : M.globals()) { 1211 // In the multi-module case, see what this global maps to. 1212 if (!LinkedGlobalsMap.empty()) { 1213 if (const GlobalValue *GVEntry = 1214 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) { 1215 // If something else is the canonical global, ignore this one. 1216 if (GVEntry != &GV) { 1217 NonCanonicalGlobals.push_back(&GV); 1218 continue; 1219 } 1220 } 1221 } 1222 1223 if (!GV.isDeclaration()) { 1224 addGlobalMapping(&GV, getMemoryForGV(&GV)); 1225 } else { 1226 // External variable reference. Try to use the dynamic loader to 1227 // get a pointer to it. 1228 if (void *SymAddr = 1229 sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName())) 1230 addGlobalMapping(&GV, SymAddr); 1231 else { 1232 report_fatal_error("Could not resolve external global address: " 1233 +GV.getName()); 1234 } 1235 } 1236 } 1237 1238 // If there are multiple modules, map the non-canonical globals to their 1239 // canonical location. 1240 if (!NonCanonicalGlobals.empty()) { 1241 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1242 const GlobalValue *GV = NonCanonicalGlobals[i]; 1243 const GlobalValue *CGV = 1244 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1245 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1246 assert(Ptr && "Canonical global wasn't codegen'd!"); 1247 addGlobalMapping(GV, Ptr); 1248 } 1249 } 1250 1251 // Now that all of the globals are set up in memory, loop through them all 1252 // and initialize their contents. 1253 for (const auto &GV : M.globals()) { 1254 if (!GV.isDeclaration()) { 1255 if (!LinkedGlobalsMap.empty()) { 1256 if (const GlobalValue *GVEntry = 1257 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) 1258 if (GVEntry != &GV) // Not the canonical variable. 1259 continue; 1260 } 1261 EmitGlobalVariable(&GV); 1262 } 1263 } 1264 } 1265 } 1266 1267 // EmitGlobalVariable - This method emits the specified global variable to the 1268 // address specified in GlobalAddresses, or allocates new memory if it's not 1269 // already in the map. 1270 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1271 void *GA = getPointerToGlobalIfAvailable(GV); 1272 1273 if (!GA) { 1274 // If it's not already specified, allocate memory for the global. 1275 GA = getMemoryForGV(GV); 1276 1277 // If we failed to allocate memory for this global, return. 1278 if (!GA) return; 1279 1280 addGlobalMapping(GV, GA); 1281 } 1282 1283 // Don't initialize if it's thread local, let the client do it. 1284 if (!GV->isThreadLocal()) 1285 InitializeMemory(GV->getInitializer(), GA); 1286 1287 Type *ElTy = GV->getType()->getElementType(); 1288 size_t GVSize = (size_t)getDataLayout()->getTypeAllocSize(ElTy); 1289 NumInitBytes += (unsigned)GVSize; 1290 ++NumGlobals; 1291 } 1292 1293 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1294 : EE(EE), GlobalAddressMap(this) { 1295 } 1296 1297 sys::Mutex * 1298 ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) { 1299 return &EES->EE.lock; 1300 } 1301 1302 void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES, 1303 const GlobalValue *Old) { 1304 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1305 EES->GlobalAddressReverseMap.erase(OldVal); 1306 } 1307 1308 void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *, 1309 const GlobalValue *, 1310 const GlobalValue *) { 1311 llvm_unreachable("The ExecutionEngine doesn't know how to handle a" 1312 " RAUW on a value it has a global mapping for."); 1313 } 1314