1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/Module.h" 19 #include "llvm/ModuleProvider.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ExecutionEngine/ExecutionEngine.h" 22 #include "llvm/ExecutionEngine/GenericValue.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/MutexGuard.h" 25 #include "llvm/System/DynamicLibrary.h" 26 #include "llvm/Target/TargetData.h" 27 using namespace llvm; 28 29 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 30 STATISTIC(NumGlobals , "Number of global vars initialized"); 31 32 ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0; 33 ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0; 34 35 ExecutionEngine::ExecutionEngine(ModuleProvider *P) { 36 LazyCompilationDisabled = false; 37 Modules.push_back(P); 38 assert(P && "ModuleProvider is null?"); 39 } 40 41 ExecutionEngine::ExecutionEngine(Module *M) { 42 LazyCompilationDisabled = false; 43 assert(M && "Module is null?"); 44 Modules.push_back(new ExistingModuleProvider(M)); 45 } 46 47 ExecutionEngine::~ExecutionEngine() { 48 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 49 delete Modules[i]; 50 } 51 52 /// FindFunctionNamed - Search all of the active modules to find the one that 53 /// defines FnName. This is very slow operation and shouldn't be used for 54 /// general code. 55 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 56 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 57 if (Function *F = Modules[i]->getModule()->getNamedFunction(FnName)) 58 return F; 59 } 60 return 0; 61 } 62 63 64 /// addGlobalMapping - Tell the execution engine that the specified global is 65 /// at the specified location. This is used internally as functions are JIT'd 66 /// and as global variables are laid out in memory. It can and should also be 67 /// used by clients of the EE that want to have an LLVM global overlay 68 /// existing data in memory. 69 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 70 MutexGuard locked(lock); 71 72 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 73 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 74 CurVal = Addr; 75 76 // If we are using the reverse mapping, add it too 77 if (!state.getGlobalAddressReverseMap(locked).empty()) { 78 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; 79 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 80 V = GV; 81 } 82 } 83 84 /// clearAllGlobalMappings - Clear all global mappings and start over again 85 /// use in dynamic compilation scenarios when you want to move globals 86 void ExecutionEngine::clearAllGlobalMappings() { 87 MutexGuard locked(lock); 88 89 state.getGlobalAddressMap(locked).clear(); 90 state.getGlobalAddressReverseMap(locked).clear(); 91 } 92 93 /// updateGlobalMapping - Replace an existing mapping for GV with a new 94 /// address. This updates both maps as required. If "Addr" is null, the 95 /// entry for the global is removed from the mappings. 96 void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 97 MutexGuard locked(lock); 98 99 // Deleting from the mapping? 100 if (Addr == 0) { 101 state.getGlobalAddressMap(locked).erase(GV); 102 if (!state.getGlobalAddressReverseMap(locked).empty()) 103 state.getGlobalAddressReverseMap(locked).erase(Addr); 104 return; 105 } 106 107 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 108 if (CurVal && !state.getGlobalAddressReverseMap(locked).empty()) 109 state.getGlobalAddressReverseMap(locked).erase(CurVal); 110 CurVal = Addr; 111 112 // If we are using the reverse mapping, add it too 113 if (!state.getGlobalAddressReverseMap(locked).empty()) { 114 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; 115 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 116 V = GV; 117 } 118 } 119 120 /// getPointerToGlobalIfAvailable - This returns the address of the specified 121 /// global value if it is has already been codegen'd, otherwise it returns null. 122 /// 123 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 124 MutexGuard locked(lock); 125 126 std::map<const GlobalValue*, void*>::iterator I = 127 state.getGlobalAddressMap(locked).find(GV); 128 return I != state.getGlobalAddressMap(locked).end() ? I->second : 0; 129 } 130 131 /// getGlobalValueAtAddress - Return the LLVM global value object that starts 132 /// at the specified address. 133 /// 134 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 135 MutexGuard locked(lock); 136 137 // If we haven't computed the reverse mapping yet, do so first. 138 if (state.getGlobalAddressReverseMap(locked).empty()) { 139 for (std::map<const GlobalValue*, void *>::iterator 140 I = state.getGlobalAddressMap(locked).begin(), 141 E = state.getGlobalAddressMap(locked).end(); I != E; ++I) 142 state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, 143 I->first)); 144 } 145 146 std::map<void *, const GlobalValue*>::iterator I = 147 state.getGlobalAddressReverseMap(locked).find(Addr); 148 return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 149 } 150 151 // CreateArgv - Turn a vector of strings into a nice argv style array of 152 // pointers to null terminated strings. 153 // 154 static void *CreateArgv(ExecutionEngine *EE, 155 const std::vector<std::string> &InputArgv) { 156 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 157 char *Result = new char[(InputArgv.size()+1)*PtrSize]; 158 159 DOUT << "ARGV = " << (void*)Result << "\n"; 160 const Type *SBytePtr = PointerType::get(Type::Int8Ty); 161 162 for (unsigned i = 0; i != InputArgv.size(); ++i) { 163 unsigned Size = InputArgv[i].size()+1; 164 char *Dest = new char[Size]; 165 DOUT << "ARGV[" << i << "] = " << (void*)Dest << "\n"; 166 167 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 168 Dest[Size-1] = 0; 169 170 // Endian safe: Result[i] = (PointerTy)Dest; 171 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), 172 SBytePtr); 173 } 174 175 // Null terminate it 176 EE->StoreValueToMemory(PTOGV(0), 177 (GenericValue*)(Result+InputArgv.size()*PtrSize), 178 SBytePtr); 179 return Result; 180 } 181 182 183 /// runStaticConstructorsDestructors - This method is used to execute all of 184 /// the static constructors or destructors for a program, depending on the 185 /// value of isDtors. 186 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 187 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 188 189 // Execute global ctors/dtors for each module in the program. 190 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 191 GlobalVariable *GV = Modules[m]->getModule()->getNamedGlobal(Name); 192 193 // If this global has internal linkage, or if it has a use, then it must be 194 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 195 // this is the case, don't execute any of the global ctors, __main will do 196 // it. 197 if (!GV || GV->isExternal() || GV->hasInternalLinkage()) continue; 198 199 // Should be an array of '{ int, void ()* }' structs. The first value is 200 // the init priority, which we ignore. 201 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 202 if (!InitList) continue; 203 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 204 if (ConstantStruct *CS = 205 dyn_cast<ConstantStruct>(InitList->getOperand(i))) { 206 if (CS->getNumOperands() != 2) break; // Not array of 2-element structs. 207 208 Constant *FP = CS->getOperand(1); 209 if (FP->isNullValue()) 210 break; // Found a null terminator, exit. 211 212 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 213 if (CE->isCast()) 214 FP = CE->getOperand(0); 215 if (Function *F = dyn_cast<Function>(FP)) { 216 // Execute the ctor/dtor function! 217 runFunction(F, std::vector<GenericValue>()); 218 } 219 } 220 } 221 } 222 223 /// runFunctionAsMain - This is a helper function which wraps runFunction to 224 /// handle the common task of starting up main with the specified argc, argv, 225 /// and envp parameters. 226 int ExecutionEngine::runFunctionAsMain(Function *Fn, 227 const std::vector<std::string> &argv, 228 const char * const * envp) { 229 std::vector<GenericValue> GVArgs; 230 GenericValue GVArgc; 231 GVArgc.Int32Val = argv.size(); 232 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 233 if (NumArgs) { 234 GVArgs.push_back(GVArgc); // Arg #0 = argc. 235 if (NumArgs > 1) { 236 GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv. 237 assert(((char **)GVTOP(GVArgs[1]))[0] && 238 "argv[0] was null after CreateArgv"); 239 if (NumArgs > 2) { 240 std::vector<std::string> EnvVars; 241 for (unsigned i = 0; envp[i]; ++i) 242 EnvVars.push_back(envp[i]); 243 GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp. 244 } 245 } 246 } 247 return runFunction(Fn, GVArgs).Int32Val; 248 } 249 250 /// If possible, create a JIT, unless the caller specifically requests an 251 /// Interpreter or there's an error. If even an Interpreter cannot be created, 252 /// NULL is returned. 253 /// 254 ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, 255 bool ForceInterpreter) { 256 ExecutionEngine *EE = 0; 257 258 // Unless the interpreter was explicitly selected, try making a JIT. 259 if (!ForceInterpreter && JITCtor) 260 EE = JITCtor(MP); 261 262 // If we can't make a JIT, make an interpreter instead. 263 if (EE == 0 && InterpCtor) 264 EE = InterpCtor(MP); 265 266 if (EE) { 267 // Make sure we can resolve symbols in the program as well. The zero arg 268 // to the function tells DynamicLibrary to load the program, not a library. 269 try { 270 sys::DynamicLibrary::LoadLibraryPermanently(0); 271 } catch (...) { 272 } 273 } 274 275 return EE; 276 } 277 278 /// getPointerToGlobal - This returns the address of the specified global 279 /// value. This may involve code generation if it's a function. 280 /// 281 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 282 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 283 return getPointerToFunction(F); 284 285 MutexGuard locked(lock); 286 void *p = state.getGlobalAddressMap(locked)[GV]; 287 if (p) 288 return p; 289 290 // Global variable might have been added since interpreter started. 291 if (GlobalVariable *GVar = 292 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 293 EmitGlobalVariable(GVar); 294 else 295 assert("Global hasn't had an address allocated yet!"); 296 return state.getGlobalAddressMap(locked)[GV]; 297 } 298 299 /// This macro is used to handle a variety of situations involing integer 300 /// values where the action should be done to one of the GenericValue members. 301 /// THEINTTY is a const Type * for the integer type. ACTION1 comes before 302 /// the GenericValue, ACTION2 comes after. 303 #define DO_FOR_INTEGER(THEINTTY, ACTION) \ 304 { \ 305 unsigned BitWidth = cast<IntegerType>(THEINTTY)->getBitWidth(); \ 306 if (BitWidth == 1) {\ 307 ACTION(Int1Val); \ 308 } else if (BitWidth <= 8) {\ 309 ACTION(Int8Val); \ 310 } else if (BitWidth <= 16) {\ 311 ACTION(Int16Val); \ 312 } else if (BitWidth <= 32) { \ 313 ACTION(Int32Val); \ 314 } else if (BitWidth <= 64) { \ 315 ACTION(Int64Val); \ 316 } else {\ 317 assert(0 && "Not implemented: integer types > 64 bits"); \ 318 } \ 319 } 320 321 /// This function converts a Constant* into a GenericValue. The interesting 322 /// part is if C is a ConstantExpr. 323 /// @brief Get a GenericValue for a Constnat* 324 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 325 // Declare the result as garbage. 326 GenericValue Result; 327 328 // If its undefined, return the garbage. 329 if (isa<UndefValue>(C)) return Result; 330 331 // If the value is a ConstantExpr 332 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 333 switch (CE->getOpcode()) { 334 case Instruction::GetElementPtr: { 335 // Compute the index 336 Result = getConstantValue(CE->getOperand(0)); 337 std::vector<Value*> Indexes(CE->op_begin()+1, CE->op_end()); 338 uint64_t Offset = 339 TD->getIndexedOffset(CE->getOperand(0)->getType(), Indexes); 340 341 if (getTargetData()->getPointerSize() == 4) 342 Result.Int32Val += Offset; 343 else 344 Result.Int64Val += Offset; 345 return Result; 346 } 347 case Instruction::Trunc: 348 case Instruction::ZExt: 349 case Instruction::SExt: 350 case Instruction::FPTrunc: 351 case Instruction::FPExt: 352 case Instruction::UIToFP: 353 case Instruction::SIToFP: 354 case Instruction::FPToUI: 355 case Instruction::FPToSI: 356 break; 357 case Instruction::PtrToInt: { 358 Constant *Op = CE->getOperand(0); 359 GenericValue GV = getConstantValue(Op); 360 return GV; 361 } 362 case Instruction::BitCast: { 363 // Bit casts are no-ops but we can only return the GV of the operand if 364 // they are the same basic type (pointer->pointer, packed->packed, etc.) 365 Constant *Op = CE->getOperand(0); 366 GenericValue GV = getConstantValue(Op); 367 if (Op->getType()->getTypeID() == C->getType()->getTypeID()) 368 return GV; 369 break; 370 } 371 case Instruction::IntToPtr: { 372 // IntToPtr casts are just so special. Cast to intptr_t first. 373 Constant *Op = CE->getOperand(0); 374 GenericValue GV = getConstantValue(Op); 375 #define INT_TO_PTR_ACTION(FIELD) \ 376 return PTOGV((void*)(uintptr_t)GV.FIELD) 377 DO_FOR_INTEGER(Op->getType(), INT_TO_PTR_ACTION) 378 #undef INT_TO_PTR_ACTION 379 break; 380 } 381 case Instruction::Add: 382 switch (CE->getOperand(0)->getType()->getTypeID()) { 383 default: assert(0 && "Bad add type!"); abort(); 384 case Type::IntegerTyID: 385 #define ADD_ACTION(FIELD) \ 386 Result.FIELD = getConstantValue(CE->getOperand(0)).FIELD + \ 387 getConstantValue(CE->getOperand(1)).FIELD; 388 DO_FOR_INTEGER(CE->getOperand(0)->getType(),ADD_ACTION); 389 #undef ADD_ACTION 390 break; 391 case Type::FloatTyID: 392 Result.FloatVal = getConstantValue(CE->getOperand(0)).FloatVal + 393 getConstantValue(CE->getOperand(1)).FloatVal; 394 break; 395 case Type::DoubleTyID: 396 Result.DoubleVal = getConstantValue(CE->getOperand(0)).DoubleVal + 397 getConstantValue(CE->getOperand(1)).DoubleVal; 398 break; 399 } 400 return Result; 401 default: 402 break; 403 } 404 cerr << "ConstantExpr not handled as global var init: " << *CE << "\n"; 405 abort(); 406 } 407 408 switch (C->getType()->getTypeID()) { 409 #define GET_CONST_VAL(TY, CTY, CLASS, GETMETH) \ 410 case Type::TY##TyID: Result.TY##Val = (CTY)cast<CLASS>(C)->GETMETH(); break 411 GET_CONST_VAL(Float , float , ConstantFP, getValue); 412 GET_CONST_VAL(Double, double , ConstantFP, getValue); 413 #undef GET_CONST_VAL 414 case Type::IntegerTyID: { 415 unsigned BitWidth = cast<IntegerType>(C->getType())->getBitWidth(); 416 if (BitWidth == 1) 417 Result.Int1Val = (bool)cast<ConstantInt>(C)->getZExtValue(); 418 else if (BitWidth <= 8) 419 Result.Int8Val = (uint8_t )cast<ConstantInt>(C)->getZExtValue(); 420 else if (BitWidth <= 16) 421 Result.Int16Val = (uint16_t )cast<ConstantInt>(C)->getZExtValue(); 422 else if (BitWidth <= 32) 423 Result.Int32Val = (uint32_t )cast<ConstantInt>(C)->getZExtValue(); 424 else if (BitWidth <= 64) 425 Result.Int64Val = (uint64_t )cast<ConstantInt>(C)->getZExtValue(); 426 else 427 assert("Integers with > 64-bits not implemented"); 428 break; 429 } 430 431 case Type::PointerTyID: 432 if (isa<ConstantPointerNull>(C)) 433 Result.PointerVal = 0; 434 else if (const Function *F = dyn_cast<Function>(C)) 435 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 436 else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) 437 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 438 else 439 assert(0 && "Unknown constant pointer type!"); 440 break; 441 default: 442 cerr << "ERROR: Constant unimp for type: " << *C->getType() << "\n"; 443 abort(); 444 } 445 return Result; 446 } 447 448 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr 449 /// is the address of the memory at which to store Val, cast to GenericValue *. 450 /// It is not a pointer to a GenericValue containing the address at which to 451 /// store Val. 452 /// 453 void ExecutionEngine::StoreValueToMemory(GenericValue Val, GenericValue *Ptr, 454 const Type *Ty) { 455 if (getTargetData()->isLittleEndian()) { 456 switch (Ty->getTypeID()) { 457 case Type::IntegerTyID: { 458 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth(); 459 uint64_t BitMask = (1ull << BitWidth) - 1; 460 if (BitWidth >= 64) 461 BitMask = (uint64_t)-1; 462 GenericValue TmpVal = Val; 463 if (BitWidth <= 8) 464 Ptr->Untyped[0] = Val.Int8Val & BitMask; 465 else if (BitWidth <= 16) { 466 TmpVal.Int16Val &= BitMask; 467 Ptr->Untyped[0] = TmpVal.Int16Val & 255; 468 Ptr->Untyped[1] = (TmpVal.Int16Val >> 8) & 255; 469 } else if (BitWidth <= 32) { 470 TmpVal.Int32Val &= BitMask; 471 Ptr->Untyped[0] = TmpVal.Int32Val & 255; 472 Ptr->Untyped[1] = (TmpVal.Int32Val >> 8) & 255; 473 Ptr->Untyped[2] = (TmpVal.Int32Val >> 16) & 255; 474 Ptr->Untyped[3] = (TmpVal.Int32Val >> 24) & 255; 475 } else if (BitWidth <= 64) { 476 TmpVal.Int64Val &= BitMask; 477 Ptr->Untyped[0] = (unsigned char)(TmpVal.Int64Val ); 478 Ptr->Untyped[1] = (unsigned char)(TmpVal.Int64Val >> 8); 479 Ptr->Untyped[2] = (unsigned char)(TmpVal.Int64Val >> 16); 480 Ptr->Untyped[3] = (unsigned char)(TmpVal.Int64Val >> 24); 481 Ptr->Untyped[4] = (unsigned char)(TmpVal.Int64Val >> 32); 482 Ptr->Untyped[5] = (unsigned char)(TmpVal.Int64Val >> 40); 483 Ptr->Untyped[6] = (unsigned char)(TmpVal.Int64Val >> 48); 484 Ptr->Untyped[7] = (unsigned char)(TmpVal.Int64Val >> 56); 485 } else 486 assert(0 && "Integer types > 64 bits not supported"); 487 break; 488 } 489 Store4BytesLittleEndian: 490 case Type::FloatTyID: 491 Ptr->Untyped[0] = Val.Int32Val & 255; 492 Ptr->Untyped[1] = (Val.Int32Val >> 8) & 255; 493 Ptr->Untyped[2] = (Val.Int32Val >> 16) & 255; 494 Ptr->Untyped[3] = (Val.Int32Val >> 24) & 255; 495 break; 496 case Type::PointerTyID: 497 if (getTargetData()->getPointerSize() == 4) 498 goto Store4BytesLittleEndian; 499 /* FALL THROUGH */ 500 case Type::DoubleTyID: 501 Ptr->Untyped[0] = (unsigned char)(Val.Int64Val ); 502 Ptr->Untyped[1] = (unsigned char)(Val.Int64Val >> 8); 503 Ptr->Untyped[2] = (unsigned char)(Val.Int64Val >> 16); 504 Ptr->Untyped[3] = (unsigned char)(Val.Int64Val >> 24); 505 Ptr->Untyped[4] = (unsigned char)(Val.Int64Val >> 32); 506 Ptr->Untyped[5] = (unsigned char)(Val.Int64Val >> 40); 507 Ptr->Untyped[6] = (unsigned char)(Val.Int64Val >> 48); 508 Ptr->Untyped[7] = (unsigned char)(Val.Int64Val >> 56); 509 break; 510 default: 511 cerr << "Cannot store value of type " << *Ty << "!\n"; 512 } 513 } else { 514 switch (Ty->getTypeID()) { 515 case Type::IntegerTyID: { 516 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth(); 517 uint64_t BitMask = (1ull << BitWidth) - 1; 518 if (BitWidth >= 64) 519 BitMask = (uint64_t)-1; 520 GenericValue TmpVal = Val; 521 if (BitWidth <= 8) 522 Ptr->Untyped[0] = Val.Int8Val & BitMask; 523 else if (BitWidth <= 16) { 524 TmpVal.Int16Val &= BitMask; 525 Ptr->Untyped[1] = TmpVal.Int16Val & 255; 526 Ptr->Untyped[0] = (TmpVal.Int16Val >> 8) & 255; 527 } else if (BitWidth <= 32) { 528 TmpVal.Int32Val &= BitMask; 529 Ptr->Untyped[3] = TmpVal.Int32Val & 255; 530 Ptr->Untyped[2] = (TmpVal.Int32Val >> 8) & 255; 531 Ptr->Untyped[1] = (TmpVal.Int32Val >> 16) & 255; 532 Ptr->Untyped[0] = (TmpVal.Int32Val >> 24) & 255; 533 } else if (BitWidth <= 64) { 534 TmpVal.Int64Val &= BitMask; 535 Ptr->Untyped[7] = (unsigned char)(TmpVal.Int64Val ); 536 Ptr->Untyped[6] = (unsigned char)(TmpVal.Int64Val >> 8); 537 Ptr->Untyped[5] = (unsigned char)(TmpVal.Int64Val >> 16); 538 Ptr->Untyped[4] = (unsigned char)(TmpVal.Int64Val >> 24); 539 Ptr->Untyped[3] = (unsigned char)(TmpVal.Int64Val >> 32); 540 Ptr->Untyped[2] = (unsigned char)(TmpVal.Int64Val >> 40); 541 Ptr->Untyped[1] = (unsigned char)(TmpVal.Int64Val >> 48); 542 Ptr->Untyped[0] = (unsigned char)(TmpVal.Int64Val >> 56); 543 } else 544 assert(0 && "Integer types > 64 bits not supported"); 545 break; 546 } 547 Store4BytesBigEndian: 548 case Type::FloatTyID: 549 Ptr->Untyped[3] = Val.Int32Val & 255; 550 Ptr->Untyped[2] = (Val.Int32Val >> 8) & 255; 551 Ptr->Untyped[1] = (Val.Int32Val >> 16) & 255; 552 Ptr->Untyped[0] = (Val.Int32Val >> 24) & 255; 553 break; 554 case Type::PointerTyID: 555 if (getTargetData()->getPointerSize() == 4) 556 goto Store4BytesBigEndian; 557 /* FALL THROUGH */ 558 case Type::DoubleTyID: 559 Ptr->Untyped[7] = (unsigned char)(Val.Int64Val ); 560 Ptr->Untyped[6] = (unsigned char)(Val.Int64Val >> 8); 561 Ptr->Untyped[5] = (unsigned char)(Val.Int64Val >> 16); 562 Ptr->Untyped[4] = (unsigned char)(Val.Int64Val >> 24); 563 Ptr->Untyped[3] = (unsigned char)(Val.Int64Val >> 32); 564 Ptr->Untyped[2] = (unsigned char)(Val.Int64Val >> 40); 565 Ptr->Untyped[1] = (unsigned char)(Val.Int64Val >> 48); 566 Ptr->Untyped[0] = (unsigned char)(Val.Int64Val >> 56); 567 break; 568 default: 569 cerr << "Cannot store value of type " << *Ty << "!\n"; 570 } 571 } 572 } 573 574 /// FIXME: document 575 /// 576 GenericValue ExecutionEngine::LoadValueFromMemory(GenericValue *Ptr, 577 const Type *Ty) { 578 GenericValue Result; 579 if (getTargetData()->isLittleEndian()) { 580 switch (Ty->getTypeID()) { 581 case Type::IntegerTyID: { 582 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth(); 583 if (BitWidth <= 8) 584 Result.Int8Val = Ptr->Untyped[0]; 585 else if (BitWidth <= 16) { 586 Result.Int16Val = (unsigned)Ptr->Untyped[0] | 587 ((unsigned)Ptr->Untyped[1] << 8); 588 } else if (BitWidth <= 32) { 589 Result.Int32Val = (unsigned)Ptr->Untyped[0] | 590 ((unsigned)Ptr->Untyped[1] << 8) | 591 ((unsigned)Ptr->Untyped[2] << 16) | 592 ((unsigned)Ptr->Untyped[3] << 24); 593 } else if (BitWidth <= 64) { 594 Result.Int64Val = (uint64_t)Ptr->Untyped[0] | 595 ((uint64_t)Ptr->Untyped[1] << 8) | 596 ((uint64_t)Ptr->Untyped[2] << 16) | 597 ((uint64_t)Ptr->Untyped[3] << 24) | 598 ((uint64_t)Ptr->Untyped[4] << 32) | 599 ((uint64_t)Ptr->Untyped[5] << 40) | 600 ((uint64_t)Ptr->Untyped[6] << 48) | 601 ((uint64_t)Ptr->Untyped[7] << 56); 602 } else 603 assert(0 && "Integer types > 64 bits not supported"); 604 break; 605 } 606 Load4BytesLittleEndian: 607 case Type::FloatTyID: 608 Result.Int32Val = (unsigned)Ptr->Untyped[0] | 609 ((unsigned)Ptr->Untyped[1] << 8) | 610 ((unsigned)Ptr->Untyped[2] << 16) | 611 ((unsigned)Ptr->Untyped[3] << 24); 612 break; 613 case Type::PointerTyID: 614 if (getTargetData()->getPointerSize() == 4) 615 goto Load4BytesLittleEndian; 616 /* FALL THROUGH */ 617 case Type::DoubleTyID: 618 Result.Int64Val = (uint64_t)Ptr->Untyped[0] | 619 ((uint64_t)Ptr->Untyped[1] << 8) | 620 ((uint64_t)Ptr->Untyped[2] << 16) | 621 ((uint64_t)Ptr->Untyped[3] << 24) | 622 ((uint64_t)Ptr->Untyped[4] << 32) | 623 ((uint64_t)Ptr->Untyped[5] << 40) | 624 ((uint64_t)Ptr->Untyped[6] << 48) | 625 ((uint64_t)Ptr->Untyped[7] << 56); 626 break; 627 default: 628 cerr << "Cannot load value of type " << *Ty << "!\n"; 629 abort(); 630 } 631 } else { 632 switch (Ty->getTypeID()) { 633 case Type::IntegerTyID: { 634 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth(); 635 if (BitWidth <= 8) 636 Result.Int8Val = Ptr->Untyped[0]; 637 else if (BitWidth <= 16) { 638 Result.Int16Val = (unsigned)Ptr->Untyped[1] | 639 ((unsigned)Ptr->Untyped[0] << 8); 640 } else if (BitWidth <= 32) { 641 Result.Int32Val = (unsigned)Ptr->Untyped[3] | 642 ((unsigned)Ptr->Untyped[2] << 8) | 643 ((unsigned)Ptr->Untyped[1] << 16) | 644 ((unsigned)Ptr->Untyped[0] << 24); 645 } else if (BitWidth <= 64) { 646 Result.Int64Val = (uint64_t)Ptr->Untyped[7] | 647 ((uint64_t)Ptr->Untyped[6] << 8) | 648 ((uint64_t)Ptr->Untyped[5] << 16) | 649 ((uint64_t)Ptr->Untyped[4] << 24) | 650 ((uint64_t)Ptr->Untyped[3] << 32) | 651 ((uint64_t)Ptr->Untyped[2] << 40) | 652 ((uint64_t)Ptr->Untyped[1] << 48) | 653 ((uint64_t)Ptr->Untyped[0] << 56); 654 } else 655 assert(0 && "Integer types > 64 bits not supported"); 656 break; 657 } 658 Load4BytesBigEndian: 659 case Type::FloatTyID: 660 Result.Int32Val = (unsigned)Ptr->Untyped[3] | 661 ((unsigned)Ptr->Untyped[2] << 8) | 662 ((unsigned)Ptr->Untyped[1] << 16) | 663 ((unsigned)Ptr->Untyped[0] << 24); 664 break; 665 case Type::PointerTyID: 666 if (getTargetData()->getPointerSize() == 4) 667 goto Load4BytesBigEndian; 668 /* FALL THROUGH */ 669 case Type::DoubleTyID: 670 Result.Int64Val = (uint64_t)Ptr->Untyped[7] | 671 ((uint64_t)Ptr->Untyped[6] << 8) | 672 ((uint64_t)Ptr->Untyped[5] << 16) | 673 ((uint64_t)Ptr->Untyped[4] << 24) | 674 ((uint64_t)Ptr->Untyped[3] << 32) | 675 ((uint64_t)Ptr->Untyped[2] << 40) | 676 ((uint64_t)Ptr->Untyped[1] << 48) | 677 ((uint64_t)Ptr->Untyped[0] << 56); 678 break; 679 default: 680 cerr << "Cannot load value of type " << *Ty << "!\n"; 681 abort(); 682 } 683 } 684 return Result; 685 } 686 687 // InitializeMemory - Recursive function to apply a Constant value into the 688 // specified memory location... 689 // 690 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 691 if (isa<UndefValue>(Init)) { 692 return; 693 } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(Init)) { 694 unsigned ElementSize = 695 getTargetData()->getTypeSize(CP->getType()->getElementType()); 696 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 697 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 698 return; 699 } else if (Init->getType()->isFirstClassType()) { 700 GenericValue Val = getConstantValue(Init); 701 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 702 return; 703 } else if (isa<ConstantAggregateZero>(Init)) { 704 memset(Addr, 0, (size_t)getTargetData()->getTypeSize(Init->getType())); 705 return; 706 } 707 708 switch (Init->getType()->getTypeID()) { 709 case Type::ArrayTyID: { 710 const ConstantArray *CPA = cast<ConstantArray>(Init); 711 unsigned ElementSize = 712 getTargetData()->getTypeSize(CPA->getType()->getElementType()); 713 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 714 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 715 return; 716 } 717 718 case Type::StructTyID: { 719 const ConstantStruct *CPS = cast<ConstantStruct>(Init); 720 const StructLayout *SL = 721 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 722 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 723 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->MemberOffsets[i]); 724 return; 725 } 726 727 default: 728 cerr << "Bad Type: " << *Init->getType() << "\n"; 729 assert(0 && "Unknown constant type to initialize memory with!"); 730 } 731 } 732 733 /// EmitGlobals - Emit all of the global variables to memory, storing their 734 /// addresses into GlobalAddress. This must make sure to copy the contents of 735 /// their initializers into the memory. 736 /// 737 void ExecutionEngine::emitGlobals() { 738 const TargetData *TD = getTargetData(); 739 740 // Loop over all of the global variables in the program, allocating the memory 741 // to hold them. If there is more than one module, do a prepass over globals 742 // to figure out how the different modules should link together. 743 // 744 std::map<std::pair<std::string, const Type*>, 745 const GlobalValue*> LinkedGlobalsMap; 746 747 if (Modules.size() != 1) { 748 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 749 Module &M = *Modules[m]->getModule(); 750 for (Module::const_global_iterator I = M.global_begin(), 751 E = M.global_end(); I != E; ++I) { 752 const GlobalValue *GV = I; 753 if (GV->hasInternalLinkage() || GV->isExternal() || 754 GV->hasAppendingLinkage() || !GV->hasName()) 755 continue;// Ignore external globals and globals with internal linkage. 756 757 const GlobalValue *&GVEntry = 758 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 759 760 // If this is the first time we've seen this global, it is the canonical 761 // version. 762 if (!GVEntry) { 763 GVEntry = GV; 764 continue; 765 } 766 767 // If the existing global is strong, never replace it. 768 if (GVEntry->hasExternalLinkage() || 769 GVEntry->hasDLLImportLinkage() || 770 GVEntry->hasDLLExportLinkage()) 771 continue; 772 773 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 774 // symbol. 775 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 776 GVEntry = GV; 777 } 778 } 779 } 780 781 std::vector<const GlobalValue*> NonCanonicalGlobals; 782 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 783 Module &M = *Modules[m]->getModule(); 784 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 785 I != E; ++I) { 786 // In the multi-module case, see what this global maps to. 787 if (!LinkedGlobalsMap.empty()) { 788 if (const GlobalValue *GVEntry = 789 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 790 // If something else is the canonical global, ignore this one. 791 if (GVEntry != &*I) { 792 NonCanonicalGlobals.push_back(I); 793 continue; 794 } 795 } 796 } 797 798 if (!I->isExternal()) { 799 // Get the type of the global. 800 const Type *Ty = I->getType()->getElementType(); 801 802 // Allocate some memory for it! 803 unsigned Size = TD->getTypeSize(Ty); 804 addGlobalMapping(I, new char[Size]); 805 } else { 806 // External variable reference. Try to use the dynamic loader to 807 // get a pointer to it. 808 if (void *SymAddr = 809 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str())) 810 addGlobalMapping(I, SymAddr); 811 else { 812 cerr << "Could not resolve external global address: " 813 << I->getName() << "\n"; 814 abort(); 815 } 816 } 817 } 818 819 // If there are multiple modules, map the non-canonical globals to their 820 // canonical location. 821 if (!NonCanonicalGlobals.empty()) { 822 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 823 const GlobalValue *GV = NonCanonicalGlobals[i]; 824 const GlobalValue *CGV = 825 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 826 void *Ptr = getPointerToGlobalIfAvailable(CGV); 827 assert(Ptr && "Canonical global wasn't codegen'd!"); 828 addGlobalMapping(GV, getPointerToGlobalIfAvailable(CGV)); 829 } 830 } 831 832 // Now that all of the globals are set up in memory, loop through them all 833 // and initialize their contents. 834 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 835 I != E; ++I) { 836 if (!I->isExternal()) { 837 if (!LinkedGlobalsMap.empty()) { 838 if (const GlobalValue *GVEntry = 839 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 840 if (GVEntry != &*I) // Not the canonical variable. 841 continue; 842 } 843 EmitGlobalVariable(I); 844 } 845 } 846 } 847 } 848 849 // EmitGlobalVariable - This method emits the specified global variable to the 850 // address specified in GlobalAddresses, or allocates new memory if it's not 851 // already in the map. 852 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 853 void *GA = getPointerToGlobalIfAvailable(GV); 854 DOUT << "Global '" << GV->getName() << "' -> " << GA << "\n"; 855 856 const Type *ElTy = GV->getType()->getElementType(); 857 size_t GVSize = (size_t)getTargetData()->getTypeSize(ElTy); 858 if (GA == 0) { 859 // If it's not already specified, allocate memory for the global. 860 GA = new char[GVSize]; 861 addGlobalMapping(GV, GA); 862 } 863 864 InitializeMemory(GV->getInitializer(), GA); 865 NumInitBytes += (unsigned)GVSize; 866 ++NumGlobals; 867 } 868