1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/Module.h" 19 #include "llvm/ModuleProvider.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ExecutionEngine/ExecutionEngine.h" 22 #include "llvm/ExecutionEngine/GenericValue.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/MutexGuard.h" 25 #include "llvm/System/DynamicLibrary.h" 26 #include "llvm/Target/TargetData.h" 27 #include <iostream> 28 using namespace llvm; 29 30 namespace { 31 Statistic<> NumInitBytes("lli", "Number of bytes of global vars initialized"); 32 Statistic<> NumGlobals ("lli", "Number of global vars initialized"); 33 } 34 35 ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0; 36 ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0; 37 38 ExecutionEngine::ExecutionEngine(ModuleProvider *P) : 39 CurMod(*P->getModule()), MP(P) { 40 assert(P && "ModuleProvider is null?"); 41 } 42 43 ExecutionEngine::ExecutionEngine(Module *M) : CurMod(*M), MP(0) { 44 assert(M && "Module is null?"); 45 } 46 47 ExecutionEngine::~ExecutionEngine() { 48 delete MP; 49 } 50 51 /// addGlobalMapping - Tell the execution engine that the specified global is 52 /// at the specified location. This is used internally as functions are JIT'd 53 /// and as global variables are laid out in memory. It can and should also be 54 /// used by clients of the EE that want to have an LLVM global overlay 55 /// existing data in memory. 56 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 57 MutexGuard locked(lock); 58 59 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 60 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 61 CurVal = Addr; 62 63 // If we are using the reverse mapping, add it too 64 if (!state.getGlobalAddressReverseMap(locked).empty()) { 65 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; 66 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 67 V = GV; 68 } 69 } 70 71 /// clearAllGlobalMappings - Clear all global mappings and start over again 72 /// use in dynamic compilation scenarios when you want to move globals 73 void ExecutionEngine::clearAllGlobalMappings() { 74 MutexGuard locked(lock); 75 76 state.getGlobalAddressMap(locked).clear(); 77 state.getGlobalAddressReverseMap(locked).clear(); 78 } 79 80 /// updateGlobalMapping - Replace an existing mapping for GV with a new 81 /// address. This updates both maps as required. If "Addr" is null, the 82 /// entry for the global is removed from the mappings. 83 void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 84 MutexGuard locked(lock); 85 86 // Deleting from the mapping? 87 if (Addr == 0) { 88 state.getGlobalAddressMap(locked).erase(GV); 89 if (!state.getGlobalAddressReverseMap(locked).empty()) 90 state.getGlobalAddressReverseMap(locked).erase(Addr); 91 return; 92 } 93 94 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 95 if (CurVal && !state.getGlobalAddressReverseMap(locked).empty()) 96 state.getGlobalAddressReverseMap(locked).erase(CurVal); 97 CurVal = Addr; 98 99 // If we are using the reverse mapping, add it too 100 if (!state.getGlobalAddressReverseMap(locked).empty()) { 101 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; 102 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 103 V = GV; 104 } 105 } 106 107 /// getPointerToGlobalIfAvailable - This returns the address of the specified 108 /// global value if it is has already been codegen'd, otherwise it returns null. 109 /// 110 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 111 MutexGuard locked(lock); 112 113 std::map<const GlobalValue*, void*>::iterator I = 114 state.getGlobalAddressMap(locked).find(GV); 115 return I != state.getGlobalAddressMap(locked).end() ? I->second : 0; 116 } 117 118 /// getGlobalValueAtAddress - Return the LLVM global value object that starts 119 /// at the specified address. 120 /// 121 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 122 MutexGuard locked(lock); 123 124 // If we haven't computed the reverse mapping yet, do so first. 125 if (state.getGlobalAddressReverseMap(locked).empty()) { 126 for (std::map<const GlobalValue*, void *>::iterator 127 I = state.getGlobalAddressMap(locked).begin(), 128 E = state.getGlobalAddressMap(locked).end(); I != E; ++I) 129 state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, 130 I->first)); 131 } 132 133 std::map<void *, const GlobalValue*>::iterator I = 134 state.getGlobalAddressReverseMap(locked).find(Addr); 135 return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 136 } 137 138 // CreateArgv - Turn a vector of strings into a nice argv style array of 139 // pointers to null terminated strings. 140 // 141 static void *CreateArgv(ExecutionEngine *EE, 142 const std::vector<std::string> &InputArgv) { 143 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 144 char *Result = new char[(InputArgv.size()+1)*PtrSize]; 145 146 DEBUG(std::cerr << "ARGV = " << (void*)Result << "\n"); 147 const Type *SBytePtr = PointerType::get(Type::SByteTy); 148 149 for (unsigned i = 0; i != InputArgv.size(); ++i) { 150 unsigned Size = InputArgv[i].size()+1; 151 char *Dest = new char[Size]; 152 DEBUG(std::cerr << "ARGV[" << i << "] = " << (void*)Dest << "\n"); 153 154 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 155 Dest[Size-1] = 0; 156 157 // Endian safe: Result[i] = (PointerTy)Dest; 158 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), 159 SBytePtr); 160 } 161 162 // Null terminate it 163 EE->StoreValueToMemory(PTOGV(0), 164 (GenericValue*)(Result+InputArgv.size()*PtrSize), 165 SBytePtr); 166 return Result; 167 } 168 169 170 /// runStaticConstructorsDestructors - This method is used to execute all of 171 /// the static constructors or destructors for a module, depending on the 172 /// value of isDtors. 173 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 174 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 175 GlobalVariable *GV = CurMod.getNamedGlobal(Name); 176 177 // If this global has internal linkage, or if it has a use, then it must be 178 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 179 // this is the case, don't execute any of the global ctors, __main will do it. 180 if (!GV || GV->isExternal() || GV->hasInternalLinkage()) return; 181 182 // Should be an array of '{ int, void ()* }' structs. The first value is the 183 // init priority, which we ignore. 184 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 185 if (!InitList) return; 186 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 187 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ 188 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 189 190 Constant *FP = CS->getOperand(1); 191 if (FP->isNullValue()) 192 return; // Found a null terminator, exit. 193 194 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 195 if (CE->getOpcode() == Instruction::Cast) 196 FP = CE->getOperand(0); 197 if (Function *F = dyn_cast<Function>(FP)) { 198 // Execute the ctor/dtor function! 199 runFunction(F, std::vector<GenericValue>()); 200 } 201 } 202 } 203 204 /// runFunctionAsMain - This is a helper function which wraps runFunction to 205 /// handle the common task of starting up main with the specified argc, argv, 206 /// and envp parameters. 207 int ExecutionEngine::runFunctionAsMain(Function *Fn, 208 const std::vector<std::string> &argv, 209 const char * const * envp) { 210 std::vector<GenericValue> GVArgs; 211 GenericValue GVArgc; 212 GVArgc.IntVal = argv.size(); 213 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 214 if (NumArgs) { 215 GVArgs.push_back(GVArgc); // Arg #0 = argc. 216 if (NumArgs > 1) { 217 GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv. 218 assert(((char **)GVTOP(GVArgs[1]))[0] && 219 "argv[0] was null after CreateArgv"); 220 if (NumArgs > 2) { 221 std::vector<std::string> EnvVars; 222 for (unsigned i = 0; envp[i]; ++i) 223 EnvVars.push_back(envp[i]); 224 GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp. 225 } 226 } 227 } 228 return runFunction(Fn, GVArgs).IntVal; 229 } 230 231 /// If possible, create a JIT, unless the caller specifically requests an 232 /// Interpreter or there's an error. If even an Interpreter cannot be created, 233 /// NULL is returned. 234 /// 235 ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, 236 bool ForceInterpreter) { 237 ExecutionEngine *EE = 0; 238 239 // Unless the interpreter was explicitly selected, try making a JIT. 240 if (!ForceInterpreter && JITCtor) 241 EE = JITCtor(MP); 242 243 // If we can't make a JIT, make an interpreter instead. 244 if (EE == 0 && InterpCtor) 245 EE = InterpCtor(MP); 246 247 if (EE) { 248 // Make sure we can resolve symbols in the program as well. The zero arg 249 // to the function tells DynamicLibrary to load the program, not a library. 250 sys::DynamicLibrary::LoadLibraryPermanently(0); 251 } 252 253 return EE; 254 } 255 256 /// getPointerToGlobal - This returns the address of the specified global 257 /// value. This may involve code generation if it's a function. 258 /// 259 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 260 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 261 return getPointerToFunction(F); 262 263 MutexGuard locked(lock); 264 void *p = state.getGlobalAddressMap(locked)[GV]; 265 if (p) 266 return p; 267 268 // Global variable might have been added since interpreter started. 269 if (GlobalVariable *GVar = 270 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 271 EmitGlobalVariable(GVar); 272 else 273 assert("Global hasn't had an address allocated yet!"); 274 return state.getGlobalAddressMap(locked)[GV]; 275 } 276 277 /// FIXME: document 278 /// 279 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 280 GenericValue Result; 281 if (isa<UndefValue>(C)) return Result; 282 283 if (ConstantExpr *CE = const_cast<ConstantExpr*>(dyn_cast<ConstantExpr>(C))) { 284 switch (CE->getOpcode()) { 285 case Instruction::GetElementPtr: { 286 Result = getConstantValue(CE->getOperand(0)); 287 std::vector<Value*> Indexes(CE->op_begin()+1, CE->op_end()); 288 uint64_t Offset = 289 TD->getIndexedOffset(CE->getOperand(0)->getType(), Indexes); 290 291 if (getTargetData()->getPointerSize() == 4) 292 Result.IntVal += Offset; 293 else 294 Result.LongVal += Offset; 295 return Result; 296 } 297 case Instruction::Cast: { 298 // We only need to handle a few cases here. Almost all casts will 299 // automatically fold, just the ones involving pointers won't. 300 // 301 Constant *Op = CE->getOperand(0); 302 GenericValue GV = getConstantValue(Op); 303 304 // Handle cast of pointer to pointer... 305 if (Op->getType()->getTypeID() == C->getType()->getTypeID()) 306 return GV; 307 308 // Handle a cast of pointer to any integral type... 309 if (isa<PointerType>(Op->getType()) && C->getType()->isIntegral()) 310 return GV; 311 312 // Handle cast of integer to a pointer... 313 if (isa<PointerType>(C->getType()) && Op->getType()->isIntegral()) 314 switch (Op->getType()->getTypeID()) { 315 case Type::BoolTyID: return PTOGV((void*)(uintptr_t)GV.BoolVal); 316 case Type::SByteTyID: return PTOGV((void*)( intptr_t)GV.SByteVal); 317 case Type::UByteTyID: return PTOGV((void*)(uintptr_t)GV.UByteVal); 318 case Type::ShortTyID: return PTOGV((void*)( intptr_t)GV.ShortVal); 319 case Type::UShortTyID: return PTOGV((void*)(uintptr_t)GV.UShortVal); 320 case Type::IntTyID: return PTOGV((void*)( intptr_t)GV.IntVal); 321 case Type::UIntTyID: return PTOGV((void*)(uintptr_t)GV.UIntVal); 322 case Type::LongTyID: return PTOGV((void*)( intptr_t)GV.LongVal); 323 case Type::ULongTyID: return PTOGV((void*)(uintptr_t)GV.ULongVal); 324 default: assert(0 && "Unknown integral type!"); 325 } 326 break; 327 } 328 329 case Instruction::Add: 330 switch (CE->getOperand(0)->getType()->getTypeID()) { 331 default: assert(0 && "Bad add type!"); abort(); 332 case Type::LongTyID: 333 case Type::ULongTyID: 334 Result.LongVal = getConstantValue(CE->getOperand(0)).LongVal + 335 getConstantValue(CE->getOperand(1)).LongVal; 336 break; 337 case Type::IntTyID: 338 case Type::UIntTyID: 339 Result.IntVal = getConstantValue(CE->getOperand(0)).IntVal + 340 getConstantValue(CE->getOperand(1)).IntVal; 341 break; 342 case Type::ShortTyID: 343 case Type::UShortTyID: 344 Result.ShortVal = getConstantValue(CE->getOperand(0)).ShortVal + 345 getConstantValue(CE->getOperand(1)).ShortVal; 346 break; 347 case Type::SByteTyID: 348 case Type::UByteTyID: 349 Result.SByteVal = getConstantValue(CE->getOperand(0)).SByteVal + 350 getConstantValue(CE->getOperand(1)).SByteVal; 351 break; 352 case Type::FloatTyID: 353 Result.FloatVal = getConstantValue(CE->getOperand(0)).FloatVal + 354 getConstantValue(CE->getOperand(1)).FloatVal; 355 break; 356 case Type::DoubleTyID: 357 Result.DoubleVal = getConstantValue(CE->getOperand(0)).DoubleVal + 358 getConstantValue(CE->getOperand(1)).DoubleVal; 359 break; 360 } 361 return Result; 362 default: 363 break; 364 } 365 std::cerr << "ConstantExpr not handled as global var init: " << *CE << "\n"; 366 abort(); 367 } 368 369 switch (C->getType()->getTypeID()) { 370 #define GET_CONST_VAL(TY, CTY, CLASS) \ 371 case Type::TY##TyID: Result.TY##Val = (CTY)cast<CLASS>(C)->getValue(); break 372 GET_CONST_VAL(Bool , bool , ConstantBool); 373 GET_CONST_VAL(UByte , unsigned char , ConstantUInt); 374 GET_CONST_VAL(SByte , signed char , ConstantSInt); 375 GET_CONST_VAL(UShort , unsigned short, ConstantUInt); 376 GET_CONST_VAL(Short , signed short , ConstantSInt); 377 GET_CONST_VAL(UInt , unsigned int , ConstantUInt); 378 GET_CONST_VAL(Int , signed int , ConstantSInt); 379 GET_CONST_VAL(ULong , uint64_t , ConstantUInt); 380 GET_CONST_VAL(Long , int64_t , ConstantSInt); 381 GET_CONST_VAL(Float , float , ConstantFP); 382 GET_CONST_VAL(Double , double , ConstantFP); 383 #undef GET_CONST_VAL 384 case Type::PointerTyID: 385 if (isa<ConstantPointerNull>(C)) 386 Result.PointerVal = 0; 387 else if (const Function *F = dyn_cast<Function>(C)) 388 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 389 else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) 390 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 391 else 392 assert(0 && "Unknown constant pointer type!"); 393 break; 394 default: 395 std::cout << "ERROR: Constant unimp for type: " << *C->getType() << "\n"; 396 abort(); 397 } 398 return Result; 399 } 400 401 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr 402 /// is the address of the memory at which to store Val, cast to GenericValue *. 403 /// It is not a pointer to a GenericValue containing the address at which to 404 /// store Val. 405 /// 406 void ExecutionEngine::StoreValueToMemory(GenericValue Val, GenericValue *Ptr, 407 const Type *Ty) { 408 if (getTargetData()->isLittleEndian()) { 409 switch (Ty->getTypeID()) { 410 case Type::BoolTyID: 411 case Type::UByteTyID: 412 case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break; 413 case Type::UShortTyID: 414 case Type::ShortTyID: Ptr->Untyped[0] = Val.UShortVal & 255; 415 Ptr->Untyped[1] = (Val.UShortVal >> 8) & 255; 416 break; 417 Store4BytesLittleEndian: 418 case Type::FloatTyID: 419 case Type::UIntTyID: 420 case Type::IntTyID: Ptr->Untyped[0] = Val.UIntVal & 255; 421 Ptr->Untyped[1] = (Val.UIntVal >> 8) & 255; 422 Ptr->Untyped[2] = (Val.UIntVal >> 16) & 255; 423 Ptr->Untyped[3] = (Val.UIntVal >> 24) & 255; 424 break; 425 case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) 426 goto Store4BytesLittleEndian; 427 case Type::DoubleTyID: 428 case Type::ULongTyID: 429 case Type::LongTyID: 430 Ptr->Untyped[0] = (unsigned char)(Val.ULongVal ); 431 Ptr->Untyped[1] = (unsigned char)(Val.ULongVal >> 8); 432 Ptr->Untyped[2] = (unsigned char)(Val.ULongVal >> 16); 433 Ptr->Untyped[3] = (unsigned char)(Val.ULongVal >> 24); 434 Ptr->Untyped[4] = (unsigned char)(Val.ULongVal >> 32); 435 Ptr->Untyped[5] = (unsigned char)(Val.ULongVal >> 40); 436 Ptr->Untyped[6] = (unsigned char)(Val.ULongVal >> 48); 437 Ptr->Untyped[7] = (unsigned char)(Val.ULongVal >> 56); 438 break; 439 default: 440 std::cout << "Cannot store value of type " << *Ty << "!\n"; 441 } 442 } else { 443 switch (Ty->getTypeID()) { 444 case Type::BoolTyID: 445 case Type::UByteTyID: 446 case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break; 447 case Type::UShortTyID: 448 case Type::ShortTyID: Ptr->Untyped[1] = Val.UShortVal & 255; 449 Ptr->Untyped[0] = (Val.UShortVal >> 8) & 255; 450 break; 451 Store4BytesBigEndian: 452 case Type::FloatTyID: 453 case Type::UIntTyID: 454 case Type::IntTyID: Ptr->Untyped[3] = Val.UIntVal & 255; 455 Ptr->Untyped[2] = (Val.UIntVal >> 8) & 255; 456 Ptr->Untyped[1] = (Val.UIntVal >> 16) & 255; 457 Ptr->Untyped[0] = (Val.UIntVal >> 24) & 255; 458 break; 459 case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) 460 goto Store4BytesBigEndian; 461 case Type::DoubleTyID: 462 case Type::ULongTyID: 463 case Type::LongTyID: 464 Ptr->Untyped[7] = (unsigned char)(Val.ULongVal ); 465 Ptr->Untyped[6] = (unsigned char)(Val.ULongVal >> 8); 466 Ptr->Untyped[5] = (unsigned char)(Val.ULongVal >> 16); 467 Ptr->Untyped[4] = (unsigned char)(Val.ULongVal >> 24); 468 Ptr->Untyped[3] = (unsigned char)(Val.ULongVal >> 32); 469 Ptr->Untyped[2] = (unsigned char)(Val.ULongVal >> 40); 470 Ptr->Untyped[1] = (unsigned char)(Val.ULongVal >> 48); 471 Ptr->Untyped[0] = (unsigned char)(Val.ULongVal >> 56); 472 break; 473 default: 474 std::cout << "Cannot store value of type " << *Ty << "!\n"; 475 } 476 } 477 } 478 479 /// FIXME: document 480 /// 481 GenericValue ExecutionEngine::LoadValueFromMemory(GenericValue *Ptr, 482 const Type *Ty) { 483 GenericValue Result; 484 if (getTargetData()->isLittleEndian()) { 485 switch (Ty->getTypeID()) { 486 case Type::BoolTyID: 487 case Type::UByteTyID: 488 case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break; 489 case Type::UShortTyID: 490 case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[0] | 491 ((unsigned)Ptr->Untyped[1] << 8); 492 break; 493 Load4BytesLittleEndian: 494 case Type::FloatTyID: 495 case Type::UIntTyID: 496 case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[0] | 497 ((unsigned)Ptr->Untyped[1] << 8) | 498 ((unsigned)Ptr->Untyped[2] << 16) | 499 ((unsigned)Ptr->Untyped[3] << 24); 500 break; 501 case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) 502 goto Load4BytesLittleEndian; 503 case Type::DoubleTyID: 504 case Type::ULongTyID: 505 case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[0] | 506 ((uint64_t)Ptr->Untyped[1] << 8) | 507 ((uint64_t)Ptr->Untyped[2] << 16) | 508 ((uint64_t)Ptr->Untyped[3] << 24) | 509 ((uint64_t)Ptr->Untyped[4] << 32) | 510 ((uint64_t)Ptr->Untyped[5] << 40) | 511 ((uint64_t)Ptr->Untyped[6] << 48) | 512 ((uint64_t)Ptr->Untyped[7] << 56); 513 break; 514 default: 515 std::cout << "Cannot load value of type " << *Ty << "!\n"; 516 abort(); 517 } 518 } else { 519 switch (Ty->getTypeID()) { 520 case Type::BoolTyID: 521 case Type::UByteTyID: 522 case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break; 523 case Type::UShortTyID: 524 case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[1] | 525 ((unsigned)Ptr->Untyped[0] << 8); 526 break; 527 Load4BytesBigEndian: 528 case Type::FloatTyID: 529 case Type::UIntTyID: 530 case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[3] | 531 ((unsigned)Ptr->Untyped[2] << 8) | 532 ((unsigned)Ptr->Untyped[1] << 16) | 533 ((unsigned)Ptr->Untyped[0] << 24); 534 break; 535 case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) 536 goto Load4BytesBigEndian; 537 case Type::DoubleTyID: 538 case Type::ULongTyID: 539 case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[7] | 540 ((uint64_t)Ptr->Untyped[6] << 8) | 541 ((uint64_t)Ptr->Untyped[5] << 16) | 542 ((uint64_t)Ptr->Untyped[4] << 24) | 543 ((uint64_t)Ptr->Untyped[3] << 32) | 544 ((uint64_t)Ptr->Untyped[2] << 40) | 545 ((uint64_t)Ptr->Untyped[1] << 48) | 546 ((uint64_t)Ptr->Untyped[0] << 56); 547 break; 548 default: 549 std::cout << "Cannot load value of type " << *Ty << "!\n"; 550 abort(); 551 } 552 } 553 return Result; 554 } 555 556 // InitializeMemory - Recursive function to apply a Constant value into the 557 // specified memory location... 558 // 559 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 560 if (isa<UndefValue>(Init)) { 561 return; 562 } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(Init)) { 563 unsigned ElementSize = 564 getTargetData()->getTypeSize(CP->getType()->getElementType()); 565 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 566 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 567 return; 568 } else if (Init->getType()->isFirstClassType()) { 569 GenericValue Val = getConstantValue(Init); 570 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 571 return; 572 } else if (isa<ConstantAggregateZero>(Init)) { 573 memset(Addr, 0, (size_t)getTargetData()->getTypeSize(Init->getType())); 574 return; 575 } 576 577 switch (Init->getType()->getTypeID()) { 578 case Type::ArrayTyID: { 579 const ConstantArray *CPA = cast<ConstantArray>(Init); 580 unsigned ElementSize = 581 getTargetData()->getTypeSize(CPA->getType()->getElementType()); 582 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 583 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 584 return; 585 } 586 587 case Type::StructTyID: { 588 const ConstantStruct *CPS = cast<ConstantStruct>(Init); 589 const StructLayout *SL = 590 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 591 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 592 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->MemberOffsets[i]); 593 return; 594 } 595 596 default: 597 std::cerr << "Bad Type: " << *Init->getType() << "\n"; 598 assert(0 && "Unknown constant type to initialize memory with!"); 599 } 600 } 601 602 /// EmitGlobals - Emit all of the global variables to memory, storing their 603 /// addresses into GlobalAddress. This must make sure to copy the contents of 604 /// their initializers into the memory. 605 /// 606 void ExecutionEngine::emitGlobals() { 607 const TargetData *TD = getTargetData(); 608 609 // Loop over all of the global variables in the program, allocating the memory 610 // to hold them. 611 Module &M = getModule(); 612 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 613 I != E; ++I) 614 if (!I->isExternal()) { 615 // Get the type of the global... 616 const Type *Ty = I->getType()->getElementType(); 617 618 // Allocate some memory for it! 619 unsigned Size = TD->getTypeSize(Ty); 620 addGlobalMapping(I, new char[Size]); 621 } else { 622 // External variable reference. Try to use the dynamic loader to 623 // get a pointer to it. 624 if (void *SymAddr = sys::DynamicLibrary::SearchForAddressOfSymbol( 625 I->getName().c_str())) 626 addGlobalMapping(I, SymAddr); 627 else { 628 std::cerr << "Could not resolve external global address: " 629 << I->getName() << "\n"; 630 abort(); 631 } 632 } 633 634 // Now that all of the globals are set up in memory, loop through them all and 635 // initialize their contents. 636 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 637 I != E; ++I) 638 if (!I->isExternal()) 639 EmitGlobalVariable(I); 640 } 641 642 // EmitGlobalVariable - This method emits the specified global variable to the 643 // address specified in GlobalAddresses, or allocates new memory if it's not 644 // already in the map. 645 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 646 void *GA = getPointerToGlobalIfAvailable(GV); 647 DEBUG(std::cerr << "Global '" << GV->getName() << "' -> " << GA << "\n"); 648 649 const Type *ElTy = GV->getType()->getElementType(); 650 size_t GVSize = (size_t)getTargetData()->getTypeSize(ElTy); 651 if (GA == 0) { 652 // If it's not already specified, allocate memory for the global. 653 GA = new char[GVSize]; 654 addGlobalMapping(GV, GA); 655 } 656 657 InitializeMemory(GV->getInitializer(), GA); 658 NumInitBytes += (unsigned)GVSize; 659 ++NumGlobals; 660 } 661