1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/Module.h" 19 #include "llvm/ModuleProvider.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ExecutionEngine/ExecutionEngine.h" 22 #include "llvm/ExecutionEngine/GenericValue.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/MutexGuard.h" 25 #include "llvm/System/DynamicLibrary.h" 26 #include "llvm/Target/TargetData.h" 27 #include <iostream> 28 using namespace llvm; 29 30 namespace { 31 Statistic<> NumInitBytes("lli", "Number of bytes of global vars initialized"); 32 Statistic<> NumGlobals ("lli", "Number of global vars initialized"); 33 } 34 35 ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0; 36 ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0; 37 38 ExecutionEngine::ExecutionEngine(ModuleProvider *P) { 39 LazyCompilationDisabled = false; 40 Modules.push_back(P); 41 assert(P && "ModuleProvider is null?"); 42 } 43 44 ExecutionEngine::ExecutionEngine(Module *M) { 45 LazyCompilationDisabled = false; 46 assert(M && "Module is null?"); 47 Modules.push_back(new ExistingModuleProvider(M)); 48 } 49 50 ExecutionEngine::~ExecutionEngine() { 51 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 52 delete Modules[i]; 53 } 54 55 /// FindFunctionNamed - Search all of the active modules to find the one that 56 /// defines FnName. This is very slow operation and shouldn't be used for 57 /// general code. 58 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 59 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 60 if (Function *F = Modules[i]->getModule()->getNamedFunction(FnName)) 61 return F; 62 } 63 return 0; 64 } 65 66 67 /// addGlobalMapping - Tell the execution engine that the specified global is 68 /// at the specified location. This is used internally as functions are JIT'd 69 /// and as global variables are laid out in memory. It can and should also be 70 /// used by clients of the EE that want to have an LLVM global overlay 71 /// existing data in memory. 72 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 73 MutexGuard locked(lock); 74 75 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 76 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 77 CurVal = Addr; 78 79 // If we are using the reverse mapping, add it too 80 if (!state.getGlobalAddressReverseMap(locked).empty()) { 81 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; 82 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 83 V = GV; 84 } 85 } 86 87 /// clearAllGlobalMappings - Clear all global mappings and start over again 88 /// use in dynamic compilation scenarios when you want to move globals 89 void ExecutionEngine::clearAllGlobalMappings() { 90 MutexGuard locked(lock); 91 92 state.getGlobalAddressMap(locked).clear(); 93 state.getGlobalAddressReverseMap(locked).clear(); 94 } 95 96 /// updateGlobalMapping - Replace an existing mapping for GV with a new 97 /// address. This updates both maps as required. If "Addr" is null, the 98 /// entry for the global is removed from the mappings. 99 void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 100 MutexGuard locked(lock); 101 102 // Deleting from the mapping? 103 if (Addr == 0) { 104 state.getGlobalAddressMap(locked).erase(GV); 105 if (!state.getGlobalAddressReverseMap(locked).empty()) 106 state.getGlobalAddressReverseMap(locked).erase(Addr); 107 return; 108 } 109 110 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 111 if (CurVal && !state.getGlobalAddressReverseMap(locked).empty()) 112 state.getGlobalAddressReverseMap(locked).erase(CurVal); 113 CurVal = Addr; 114 115 // If we are using the reverse mapping, add it too 116 if (!state.getGlobalAddressReverseMap(locked).empty()) { 117 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; 118 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 119 V = GV; 120 } 121 } 122 123 /// getPointerToGlobalIfAvailable - This returns the address of the specified 124 /// global value if it is has already been codegen'd, otherwise it returns null. 125 /// 126 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 127 MutexGuard locked(lock); 128 129 std::map<const GlobalValue*, void*>::iterator I = 130 state.getGlobalAddressMap(locked).find(GV); 131 return I != state.getGlobalAddressMap(locked).end() ? I->second : 0; 132 } 133 134 /// getGlobalValueAtAddress - Return the LLVM global value object that starts 135 /// at the specified address. 136 /// 137 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 138 MutexGuard locked(lock); 139 140 // If we haven't computed the reverse mapping yet, do so first. 141 if (state.getGlobalAddressReverseMap(locked).empty()) { 142 for (std::map<const GlobalValue*, void *>::iterator 143 I = state.getGlobalAddressMap(locked).begin(), 144 E = state.getGlobalAddressMap(locked).end(); I != E; ++I) 145 state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, 146 I->first)); 147 } 148 149 std::map<void *, const GlobalValue*>::iterator I = 150 state.getGlobalAddressReverseMap(locked).find(Addr); 151 return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 152 } 153 154 // CreateArgv - Turn a vector of strings into a nice argv style array of 155 // pointers to null terminated strings. 156 // 157 static void *CreateArgv(ExecutionEngine *EE, 158 const std::vector<std::string> &InputArgv) { 159 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 160 char *Result = new char[(InputArgv.size()+1)*PtrSize]; 161 162 DEBUG(std::cerr << "ARGV = " << (void*)Result << "\n"); 163 const Type *SBytePtr = PointerType::get(Type::SByteTy); 164 165 for (unsigned i = 0; i != InputArgv.size(); ++i) { 166 unsigned Size = InputArgv[i].size()+1; 167 char *Dest = new char[Size]; 168 DEBUG(std::cerr << "ARGV[" << i << "] = " << (void*)Dest << "\n"); 169 170 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 171 Dest[Size-1] = 0; 172 173 // Endian safe: Result[i] = (PointerTy)Dest; 174 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), 175 SBytePtr); 176 } 177 178 // Null terminate it 179 EE->StoreValueToMemory(PTOGV(0), 180 (GenericValue*)(Result+InputArgv.size()*PtrSize), 181 SBytePtr); 182 return Result; 183 } 184 185 186 /// runStaticConstructorsDestructors - This method is used to execute all of 187 /// the static constructors or destructors for a program, depending on the 188 /// value of isDtors. 189 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 190 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 191 192 // Execute global ctors/dtors for each module in the program. 193 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 194 GlobalVariable *GV = Modules[m]->getModule()->getNamedGlobal(Name); 195 196 // If this global has internal linkage, or if it has a use, then it must be 197 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 198 // this is the case, don't execute any of the global ctors, __main will do 199 // it. 200 if (!GV || GV->isExternal() || GV->hasInternalLinkage()) continue; 201 202 // Should be an array of '{ int, void ()* }' structs. The first value is 203 // the init priority, which we ignore. 204 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 205 if (!InitList) continue; 206 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 207 if (ConstantStruct *CS = 208 dyn_cast<ConstantStruct>(InitList->getOperand(i))) { 209 if (CS->getNumOperands() != 2) break; // Not array of 2-element structs. 210 211 Constant *FP = CS->getOperand(1); 212 if (FP->isNullValue()) 213 break; // Found a null terminator, exit. 214 215 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 216 if (CE->isCast()) 217 FP = CE->getOperand(0); 218 if (Function *F = dyn_cast<Function>(FP)) { 219 // Execute the ctor/dtor function! 220 runFunction(F, std::vector<GenericValue>()); 221 } 222 } 223 } 224 } 225 226 /// runFunctionAsMain - This is a helper function which wraps runFunction to 227 /// handle the common task of starting up main with the specified argc, argv, 228 /// and envp parameters. 229 int ExecutionEngine::runFunctionAsMain(Function *Fn, 230 const std::vector<std::string> &argv, 231 const char * const * envp) { 232 std::vector<GenericValue> GVArgs; 233 GenericValue GVArgc; 234 GVArgc.IntVal = argv.size(); 235 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 236 if (NumArgs) { 237 GVArgs.push_back(GVArgc); // Arg #0 = argc. 238 if (NumArgs > 1) { 239 GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv. 240 assert(((char **)GVTOP(GVArgs[1]))[0] && 241 "argv[0] was null after CreateArgv"); 242 if (NumArgs > 2) { 243 std::vector<std::string> EnvVars; 244 for (unsigned i = 0; envp[i]; ++i) 245 EnvVars.push_back(envp[i]); 246 GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp. 247 } 248 } 249 } 250 return runFunction(Fn, GVArgs).IntVal; 251 } 252 253 /// If possible, create a JIT, unless the caller specifically requests an 254 /// Interpreter or there's an error. If even an Interpreter cannot be created, 255 /// NULL is returned. 256 /// 257 ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, 258 bool ForceInterpreter) { 259 ExecutionEngine *EE = 0; 260 261 // Unless the interpreter was explicitly selected, try making a JIT. 262 if (!ForceInterpreter && JITCtor) 263 EE = JITCtor(MP); 264 265 // If we can't make a JIT, make an interpreter instead. 266 if (EE == 0 && InterpCtor) 267 EE = InterpCtor(MP); 268 269 if (EE) { 270 // Make sure we can resolve symbols in the program as well. The zero arg 271 // to the function tells DynamicLibrary to load the program, not a library. 272 try { 273 sys::DynamicLibrary::LoadLibraryPermanently(0); 274 } catch (...) { 275 } 276 } 277 278 return EE; 279 } 280 281 /// getPointerToGlobal - This returns the address of the specified global 282 /// value. This may involve code generation if it's a function. 283 /// 284 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 285 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 286 return getPointerToFunction(F); 287 288 MutexGuard locked(lock); 289 void *p = state.getGlobalAddressMap(locked)[GV]; 290 if (p) 291 return p; 292 293 // Global variable might have been added since interpreter started. 294 if (GlobalVariable *GVar = 295 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 296 EmitGlobalVariable(GVar); 297 else 298 assert("Global hasn't had an address allocated yet!"); 299 return state.getGlobalAddressMap(locked)[GV]; 300 } 301 302 /// This function converts a Constant* into a GenericValue. The interesting 303 /// part is if C is a ConstantExpr. 304 /// @brief Get a GenericValue for a Constnat* 305 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 306 // Declare the result as garbage. 307 GenericValue Result; 308 309 // If its undefined, return the garbage. 310 if (isa<UndefValue>(C)) return Result; 311 312 // If the value is a ConstantExpr 313 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 314 switch (CE->getOpcode()) { 315 case Instruction::GetElementPtr: { 316 // Compute the index 317 Result = getConstantValue(CE->getOperand(0)); 318 std::vector<Value*> Indexes(CE->op_begin()+1, CE->op_end()); 319 uint64_t Offset = 320 TD->getIndexedOffset(CE->getOperand(0)->getType(), Indexes); 321 322 if (getTargetData()->getPointerSize() == 4) 323 Result.IntVal += Offset; 324 else 325 Result.LongVal += Offset; 326 return Result; 327 } 328 case Instruction::Trunc: 329 case Instruction::ZExt: 330 case Instruction::SExt: 331 case Instruction::FPTrunc: 332 case Instruction::FPExt: 333 case Instruction::UIToFP: 334 case Instruction::SIToFP: 335 case Instruction::FPToUI: 336 case Instruction::FPToSI: 337 break; 338 case Instruction::PtrToInt: { 339 Constant *Op = CE->getOperand(0); 340 GenericValue GV = getConstantValue(Op); 341 return GV; 342 } 343 case Instruction::BitCast: { 344 // Bit casts are no-ops but we can only return the GV of the operand if 345 // they are the same basic type (pointer->pointer, packed->packed, etc.) 346 Constant *Op = CE->getOperand(0); 347 GenericValue GV = getConstantValue(Op); 348 if (Op->getType()->getTypeID() == C->getType()->getTypeID()) 349 return GV; 350 break; 351 } 352 case Instruction::IntToPtr: { 353 // IntToPtr casts are just so special. Cast to intptr_t first. 354 Constant *Op = CE->getOperand(0); 355 GenericValue GV = getConstantValue(Op); 356 switch (Op->getType()->getTypeID()) { 357 case Type::BoolTyID: return PTOGV((void*)(uintptr_t)GV.BoolVal); 358 case Type::SByteTyID: return PTOGV((void*)( intptr_t)GV.SByteVal); 359 case Type::UByteTyID: return PTOGV((void*)(uintptr_t)GV.UByteVal); 360 case Type::ShortTyID: return PTOGV((void*)( intptr_t)GV.ShortVal); 361 case Type::UShortTyID: return PTOGV((void*)(uintptr_t)GV.UShortVal); 362 case Type::IntTyID: return PTOGV((void*)( intptr_t)GV.IntVal); 363 case Type::UIntTyID: return PTOGV((void*)(uintptr_t)GV.UIntVal); 364 case Type::LongTyID: return PTOGV((void*)( intptr_t)GV.LongVal); 365 case Type::ULongTyID: return PTOGV((void*)(uintptr_t)GV.ULongVal); 366 default: assert(0 && "Unknown integral type!"); 367 } 368 break; 369 } 370 case Instruction::Add: 371 switch (CE->getOperand(0)->getType()->getTypeID()) { 372 default: assert(0 && "Bad add type!"); abort(); 373 case Type::LongTyID: 374 case Type::ULongTyID: 375 Result.LongVal = getConstantValue(CE->getOperand(0)).LongVal + 376 getConstantValue(CE->getOperand(1)).LongVal; 377 break; 378 case Type::IntTyID: 379 case Type::UIntTyID: 380 Result.IntVal = getConstantValue(CE->getOperand(0)).IntVal + 381 getConstantValue(CE->getOperand(1)).IntVal; 382 break; 383 case Type::ShortTyID: 384 case Type::UShortTyID: 385 Result.ShortVal = getConstantValue(CE->getOperand(0)).ShortVal + 386 getConstantValue(CE->getOperand(1)).ShortVal; 387 break; 388 case Type::SByteTyID: 389 case Type::UByteTyID: 390 Result.SByteVal = getConstantValue(CE->getOperand(0)).SByteVal + 391 getConstantValue(CE->getOperand(1)).SByteVal; 392 break; 393 case Type::FloatTyID: 394 Result.FloatVal = getConstantValue(CE->getOperand(0)).FloatVal + 395 getConstantValue(CE->getOperand(1)).FloatVal; 396 break; 397 case Type::DoubleTyID: 398 Result.DoubleVal = getConstantValue(CE->getOperand(0)).DoubleVal + 399 getConstantValue(CE->getOperand(1)).DoubleVal; 400 break; 401 } 402 return Result; 403 default: 404 break; 405 } 406 std::cerr << "ConstantExpr not handled as global var init: " << *CE << "\n"; 407 abort(); 408 } 409 410 switch (C->getType()->getTypeID()) { 411 #define GET_CONST_VAL(TY, CTY, CLASS, GETMETH) \ 412 case Type::TY##TyID: Result.TY##Val = (CTY)cast<CLASS>(C)->GETMETH(); break 413 GET_CONST_VAL(Bool , bool , ConstantBool, getValue); 414 GET_CONST_VAL(UByte , unsigned char , ConstantInt, getZExtValue); 415 GET_CONST_VAL(SByte , signed char , ConstantInt, getSExtValue); 416 GET_CONST_VAL(UShort , unsigned short, ConstantInt, getZExtValue); 417 GET_CONST_VAL(Short , signed short , ConstantInt, getSExtValue); 418 GET_CONST_VAL(UInt , unsigned int , ConstantInt, getZExtValue); 419 GET_CONST_VAL(Int , signed int , ConstantInt, getSExtValue); 420 GET_CONST_VAL(ULong , uint64_t , ConstantInt, getZExtValue); 421 GET_CONST_VAL(Long , int64_t , ConstantInt, getSExtValue); 422 GET_CONST_VAL(Float , float , ConstantFP, getValue); 423 GET_CONST_VAL(Double , double , ConstantFP, getValue); 424 #undef GET_CONST_VAL 425 case Type::PointerTyID: 426 if (isa<ConstantPointerNull>(C)) 427 Result.PointerVal = 0; 428 else if (const Function *F = dyn_cast<Function>(C)) 429 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 430 else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) 431 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 432 else 433 assert(0 && "Unknown constant pointer type!"); 434 break; 435 default: 436 std::cout << "ERROR: Constant unimp for type: " << *C->getType() << "\n"; 437 abort(); 438 } 439 return Result; 440 } 441 442 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr 443 /// is the address of the memory at which to store Val, cast to GenericValue *. 444 /// It is not a pointer to a GenericValue containing the address at which to 445 /// store Val. 446 /// 447 void ExecutionEngine::StoreValueToMemory(GenericValue Val, GenericValue *Ptr, 448 const Type *Ty) { 449 if (getTargetData()->isLittleEndian()) { 450 switch (Ty->getTypeID()) { 451 case Type::BoolTyID: 452 case Type::UByteTyID: 453 case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break; 454 case Type::UShortTyID: 455 case Type::ShortTyID: Ptr->Untyped[0] = Val.UShortVal & 255; 456 Ptr->Untyped[1] = (Val.UShortVal >> 8) & 255; 457 break; 458 Store4BytesLittleEndian: 459 case Type::FloatTyID: 460 case Type::UIntTyID: 461 case Type::IntTyID: Ptr->Untyped[0] = Val.UIntVal & 255; 462 Ptr->Untyped[1] = (Val.UIntVal >> 8) & 255; 463 Ptr->Untyped[2] = (Val.UIntVal >> 16) & 255; 464 Ptr->Untyped[3] = (Val.UIntVal >> 24) & 255; 465 break; 466 case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) 467 goto Store4BytesLittleEndian; 468 case Type::DoubleTyID: 469 case Type::ULongTyID: 470 case Type::LongTyID: 471 Ptr->Untyped[0] = (unsigned char)(Val.ULongVal ); 472 Ptr->Untyped[1] = (unsigned char)(Val.ULongVal >> 8); 473 Ptr->Untyped[2] = (unsigned char)(Val.ULongVal >> 16); 474 Ptr->Untyped[3] = (unsigned char)(Val.ULongVal >> 24); 475 Ptr->Untyped[4] = (unsigned char)(Val.ULongVal >> 32); 476 Ptr->Untyped[5] = (unsigned char)(Val.ULongVal >> 40); 477 Ptr->Untyped[6] = (unsigned char)(Val.ULongVal >> 48); 478 Ptr->Untyped[7] = (unsigned char)(Val.ULongVal >> 56); 479 break; 480 default: 481 std::cout << "Cannot store value of type " << *Ty << "!\n"; 482 } 483 } else { 484 switch (Ty->getTypeID()) { 485 case Type::BoolTyID: 486 case Type::UByteTyID: 487 case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break; 488 case Type::UShortTyID: 489 case Type::ShortTyID: Ptr->Untyped[1] = Val.UShortVal & 255; 490 Ptr->Untyped[0] = (Val.UShortVal >> 8) & 255; 491 break; 492 Store4BytesBigEndian: 493 case Type::FloatTyID: 494 case Type::UIntTyID: 495 case Type::IntTyID: Ptr->Untyped[3] = Val.UIntVal & 255; 496 Ptr->Untyped[2] = (Val.UIntVal >> 8) & 255; 497 Ptr->Untyped[1] = (Val.UIntVal >> 16) & 255; 498 Ptr->Untyped[0] = (Val.UIntVal >> 24) & 255; 499 break; 500 case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) 501 goto Store4BytesBigEndian; 502 case Type::DoubleTyID: 503 case Type::ULongTyID: 504 case Type::LongTyID: 505 Ptr->Untyped[7] = (unsigned char)(Val.ULongVal ); 506 Ptr->Untyped[6] = (unsigned char)(Val.ULongVal >> 8); 507 Ptr->Untyped[5] = (unsigned char)(Val.ULongVal >> 16); 508 Ptr->Untyped[4] = (unsigned char)(Val.ULongVal >> 24); 509 Ptr->Untyped[3] = (unsigned char)(Val.ULongVal >> 32); 510 Ptr->Untyped[2] = (unsigned char)(Val.ULongVal >> 40); 511 Ptr->Untyped[1] = (unsigned char)(Val.ULongVal >> 48); 512 Ptr->Untyped[0] = (unsigned char)(Val.ULongVal >> 56); 513 break; 514 default: 515 std::cout << "Cannot store value of type " << *Ty << "!\n"; 516 } 517 } 518 } 519 520 /// FIXME: document 521 /// 522 GenericValue ExecutionEngine::LoadValueFromMemory(GenericValue *Ptr, 523 const Type *Ty) { 524 GenericValue Result; 525 if (getTargetData()->isLittleEndian()) { 526 switch (Ty->getTypeID()) { 527 case Type::BoolTyID: 528 case Type::UByteTyID: 529 case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break; 530 case Type::UShortTyID: 531 case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[0] | 532 ((unsigned)Ptr->Untyped[1] << 8); 533 break; 534 Load4BytesLittleEndian: 535 case Type::FloatTyID: 536 case Type::UIntTyID: 537 case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[0] | 538 ((unsigned)Ptr->Untyped[1] << 8) | 539 ((unsigned)Ptr->Untyped[2] << 16) | 540 ((unsigned)Ptr->Untyped[3] << 24); 541 break; 542 case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) 543 goto Load4BytesLittleEndian; 544 case Type::DoubleTyID: 545 case Type::ULongTyID: 546 case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[0] | 547 ((uint64_t)Ptr->Untyped[1] << 8) | 548 ((uint64_t)Ptr->Untyped[2] << 16) | 549 ((uint64_t)Ptr->Untyped[3] << 24) | 550 ((uint64_t)Ptr->Untyped[4] << 32) | 551 ((uint64_t)Ptr->Untyped[5] << 40) | 552 ((uint64_t)Ptr->Untyped[6] << 48) | 553 ((uint64_t)Ptr->Untyped[7] << 56); 554 break; 555 default: 556 std::cout << "Cannot load value of type " << *Ty << "!\n"; 557 abort(); 558 } 559 } else { 560 switch (Ty->getTypeID()) { 561 case Type::BoolTyID: 562 case Type::UByteTyID: 563 case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break; 564 case Type::UShortTyID: 565 case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[1] | 566 ((unsigned)Ptr->Untyped[0] << 8); 567 break; 568 Load4BytesBigEndian: 569 case Type::FloatTyID: 570 case Type::UIntTyID: 571 case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[3] | 572 ((unsigned)Ptr->Untyped[2] << 8) | 573 ((unsigned)Ptr->Untyped[1] << 16) | 574 ((unsigned)Ptr->Untyped[0] << 24); 575 break; 576 case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) 577 goto Load4BytesBigEndian; 578 case Type::DoubleTyID: 579 case Type::ULongTyID: 580 case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[7] | 581 ((uint64_t)Ptr->Untyped[6] << 8) | 582 ((uint64_t)Ptr->Untyped[5] << 16) | 583 ((uint64_t)Ptr->Untyped[4] << 24) | 584 ((uint64_t)Ptr->Untyped[3] << 32) | 585 ((uint64_t)Ptr->Untyped[2] << 40) | 586 ((uint64_t)Ptr->Untyped[1] << 48) | 587 ((uint64_t)Ptr->Untyped[0] << 56); 588 break; 589 default: 590 std::cout << "Cannot load value of type " << *Ty << "!\n"; 591 abort(); 592 } 593 } 594 return Result; 595 } 596 597 // InitializeMemory - Recursive function to apply a Constant value into the 598 // specified memory location... 599 // 600 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 601 if (isa<UndefValue>(Init)) { 602 return; 603 } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(Init)) { 604 unsigned ElementSize = 605 getTargetData()->getTypeSize(CP->getType()->getElementType()); 606 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 607 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 608 return; 609 } else if (Init->getType()->isFirstClassType()) { 610 GenericValue Val = getConstantValue(Init); 611 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 612 return; 613 } else if (isa<ConstantAggregateZero>(Init)) { 614 memset(Addr, 0, (size_t)getTargetData()->getTypeSize(Init->getType())); 615 return; 616 } 617 618 switch (Init->getType()->getTypeID()) { 619 case Type::ArrayTyID: { 620 const ConstantArray *CPA = cast<ConstantArray>(Init); 621 unsigned ElementSize = 622 getTargetData()->getTypeSize(CPA->getType()->getElementType()); 623 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 624 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 625 return; 626 } 627 628 case Type::StructTyID: { 629 const ConstantStruct *CPS = cast<ConstantStruct>(Init); 630 const StructLayout *SL = 631 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 632 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 633 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->MemberOffsets[i]); 634 return; 635 } 636 637 default: 638 std::cerr << "Bad Type: " << *Init->getType() << "\n"; 639 assert(0 && "Unknown constant type to initialize memory with!"); 640 } 641 } 642 643 /// EmitGlobals - Emit all of the global variables to memory, storing their 644 /// addresses into GlobalAddress. This must make sure to copy the contents of 645 /// their initializers into the memory. 646 /// 647 void ExecutionEngine::emitGlobals() { 648 const TargetData *TD = getTargetData(); 649 650 // Loop over all of the global variables in the program, allocating the memory 651 // to hold them. If there is more than one module, do a prepass over globals 652 // to figure out how the different modules should link together. 653 // 654 std::map<std::pair<std::string, const Type*>, 655 const GlobalValue*> LinkedGlobalsMap; 656 657 if (Modules.size() != 1) { 658 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 659 Module &M = *Modules[m]->getModule(); 660 for (Module::const_global_iterator I = M.global_begin(), 661 E = M.global_end(); I != E; ++I) { 662 const GlobalValue *GV = I; 663 if (GV->hasInternalLinkage() || GV->isExternal() || 664 GV->hasAppendingLinkage() || !GV->hasName()) 665 continue;// Ignore external globals and globals with internal linkage. 666 667 const GlobalValue *&GVEntry = 668 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 669 670 // If this is the first time we've seen this global, it is the canonical 671 // version. 672 if (!GVEntry) { 673 GVEntry = GV; 674 continue; 675 } 676 677 // If the existing global is strong, never replace it. 678 if (GVEntry->hasExternalLinkage() || 679 GVEntry->hasDLLImportLinkage() || 680 GVEntry->hasDLLExportLinkage()) 681 continue; 682 683 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 684 // symbol. 685 if (GV->hasExternalLinkage()) 686 GVEntry = GV; 687 } 688 } 689 } 690 691 std::vector<const GlobalValue*> NonCanonicalGlobals; 692 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 693 Module &M = *Modules[m]->getModule(); 694 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 695 I != E; ++I) { 696 // In the multi-module case, see what this global maps to. 697 if (!LinkedGlobalsMap.empty()) { 698 if (const GlobalValue *GVEntry = 699 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 700 // If something else is the canonical global, ignore this one. 701 if (GVEntry != &*I) { 702 NonCanonicalGlobals.push_back(I); 703 continue; 704 } 705 } 706 } 707 708 if (!I->isExternal()) { 709 // Get the type of the global. 710 const Type *Ty = I->getType()->getElementType(); 711 712 // Allocate some memory for it! 713 unsigned Size = TD->getTypeSize(Ty); 714 addGlobalMapping(I, new char[Size]); 715 } else { 716 // External variable reference. Try to use the dynamic loader to 717 // get a pointer to it. 718 if (void *SymAddr = 719 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str())) 720 addGlobalMapping(I, SymAddr); 721 else { 722 std::cerr << "Could not resolve external global address: " 723 << I->getName() << "\n"; 724 abort(); 725 } 726 } 727 } 728 729 // If there are multiple modules, map the non-canonical globals to their 730 // canonical location. 731 if (!NonCanonicalGlobals.empty()) { 732 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 733 const GlobalValue *GV = NonCanonicalGlobals[i]; 734 const GlobalValue *CGV = 735 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 736 void *Ptr = getPointerToGlobalIfAvailable(CGV); 737 assert(Ptr && "Canonical global wasn't codegen'd!"); 738 addGlobalMapping(GV, getPointerToGlobalIfAvailable(CGV)); 739 } 740 } 741 742 // Now that all of the globals are set up in memory, loop through them all and 743 // initialize their contents. 744 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 745 I != E; ++I) { 746 if (!I->isExternal()) { 747 if (!LinkedGlobalsMap.empty()) { 748 if (const GlobalValue *GVEntry = 749 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 750 if (GVEntry != &*I) // Not the canonical variable. 751 continue; 752 } 753 EmitGlobalVariable(I); 754 } 755 } 756 } 757 } 758 759 // EmitGlobalVariable - This method emits the specified global variable to the 760 // address specified in GlobalAddresses, or allocates new memory if it's not 761 // already in the map. 762 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 763 void *GA = getPointerToGlobalIfAvailable(GV); 764 DEBUG(std::cerr << "Global '" << GV->getName() << "' -> " << GA << "\n"); 765 766 const Type *ElTy = GV->getType()->getElementType(); 767 size_t GVSize = (size_t)getTargetData()->getTypeSize(ElTy); 768 if (GA == 0) { 769 // If it's not already specified, allocate memory for the global. 770 GA = new char[GVSize]; 771 addGlobalMapping(GV, GA); 772 } 773 774 InitializeMemory(GV->getInitializer(), GA); 775 NumInitBytes += (unsigned)GVSize; 776 ++NumGlobals; 777 } 778