1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/ExecutionEngine/ExecutionEngine.h" 17 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Module.h" 21 #include "llvm/ModuleProvider.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Config/alloca.h" 24 #include "llvm/ExecutionEngine/GenericValue.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MutexGuard.h" 28 #include "llvm/Support/ValueHandle.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/System/DynamicLibrary.h" 31 #include "llvm/System/Host.h" 32 #include "llvm/Target/TargetData.h" 33 #include <cmath> 34 #include <cstring> 35 using namespace llvm; 36 37 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 38 STATISTIC(NumGlobals , "Number of global vars initialized"); 39 40 ExecutionEngine *(*ExecutionEngine::JITCtor)(ModuleProvider *MP, 41 std::string *ErrorStr, 42 JITMemoryManager *JMM, 43 CodeGenOpt::Level OptLevel, 44 bool GVsWithCode) = 0; 45 ExecutionEngine *(*ExecutionEngine::InterpCtor)(ModuleProvider *MP, 46 std::string *ErrorStr) = 0; 47 ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0; 48 49 50 ExecutionEngine::ExecutionEngine(ModuleProvider *P) : LazyFunctionCreator(0) { 51 LazyCompilationDisabled = false; 52 GVCompilationDisabled = false; 53 SymbolSearchingDisabled = false; 54 DlsymStubsEnabled = false; 55 Modules.push_back(P); 56 assert(P && "ModuleProvider is null?"); 57 } 58 59 ExecutionEngine::~ExecutionEngine() { 60 clearAllGlobalMappings(); 61 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 62 delete Modules[i]; 63 } 64 65 char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) { 66 const Type *ElTy = GV->getType()->getElementType(); 67 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 68 return new char[GVSize]; 69 } 70 71 /// removeModuleProvider - Remove a ModuleProvider from the list of modules. 72 /// Relases the Module from the ModuleProvider, materializing it in the 73 /// process, and returns the materialized Module. 74 Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P, 75 std::string *ErrInfo) { 76 for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(), 77 E = Modules.end(); I != E; ++I) { 78 ModuleProvider *MP = *I; 79 if (MP == P) { 80 Modules.erase(I); 81 clearGlobalMappingsFromModule(MP->getModule()); 82 return MP->releaseModule(ErrInfo); 83 } 84 } 85 return NULL; 86 } 87 88 /// deleteModuleProvider - Remove a ModuleProvider from the list of modules, 89 /// and deletes the ModuleProvider and owned Module. Avoids materializing 90 /// the underlying module. 91 void ExecutionEngine::deleteModuleProvider(ModuleProvider *P, 92 std::string *ErrInfo) { 93 for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(), 94 E = Modules.end(); I != E; ++I) { 95 ModuleProvider *MP = *I; 96 if (MP == P) { 97 Modules.erase(I); 98 clearGlobalMappingsFromModule(MP->getModule()); 99 delete MP; 100 return; 101 } 102 } 103 } 104 105 /// FindFunctionNamed - Search all of the active modules to find the one that 106 /// defines FnName. This is very slow operation and shouldn't be used for 107 /// general code. 108 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 109 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 110 if (Function *F = Modules[i]->getModule()->getFunction(FnName)) 111 return F; 112 } 113 return 0; 114 } 115 116 117 /// addGlobalMapping - Tell the execution engine that the specified global is 118 /// at the specified location. This is used internally as functions are JIT'd 119 /// and as global variables are laid out in memory. It can and should also be 120 /// used by clients of the EE that want to have an LLVM global overlay 121 /// existing data in memory. 122 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 123 MutexGuard locked(lock); 124 125 DEBUG(errs() << "JIT: Map \'" << GV->getName() 126 << "\' to [" << Addr << "]\n";); 127 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 128 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 129 CurVal = Addr; 130 131 // If we are using the reverse mapping, add it too 132 if (!state.getGlobalAddressReverseMap(locked).empty()) { 133 AssertingVH<const GlobalValue> &V = 134 state.getGlobalAddressReverseMap(locked)[Addr]; 135 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 136 V = GV; 137 } 138 } 139 140 /// clearAllGlobalMappings - Clear all global mappings and start over again 141 /// use in dynamic compilation scenarios when you want to move globals 142 void ExecutionEngine::clearAllGlobalMappings() { 143 MutexGuard locked(lock); 144 145 state.getGlobalAddressMap(locked).clear(); 146 state.getGlobalAddressReverseMap(locked).clear(); 147 } 148 149 /// clearGlobalMappingsFromModule - Clear all global mappings that came from a 150 /// particular module, because it has been removed from the JIT. 151 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 152 MutexGuard locked(lock); 153 154 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { 155 state.getGlobalAddressMap(locked).erase(&*FI); 156 state.getGlobalAddressReverseMap(locked).erase(&*FI); 157 } 158 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 159 GI != GE; ++GI) { 160 state.getGlobalAddressMap(locked).erase(&*GI); 161 state.getGlobalAddressReverseMap(locked).erase(&*GI); 162 } 163 } 164 165 /// updateGlobalMapping - Replace an existing mapping for GV with a new 166 /// address. This updates both maps as required. If "Addr" is null, the 167 /// entry for the global is removed from the mappings. 168 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 169 MutexGuard locked(lock); 170 171 std::map<AssertingVH<const GlobalValue>, void *> &Map = 172 state.getGlobalAddressMap(locked); 173 174 // Deleting from the mapping? 175 if (Addr == 0) { 176 std::map<AssertingVH<const GlobalValue>, void *>::iterator I = Map.find(GV); 177 void *OldVal; 178 if (I == Map.end()) 179 OldVal = 0; 180 else { 181 OldVal = I->second; 182 Map.erase(I); 183 } 184 185 if (!state.getGlobalAddressReverseMap(locked).empty()) 186 state.getGlobalAddressReverseMap(locked).erase(OldVal); 187 return OldVal; 188 } 189 190 void *&CurVal = Map[GV]; 191 void *OldVal = CurVal; 192 193 if (CurVal && !state.getGlobalAddressReverseMap(locked).empty()) 194 state.getGlobalAddressReverseMap(locked).erase(CurVal); 195 CurVal = Addr; 196 197 // If we are using the reverse mapping, add it too 198 if (!state.getGlobalAddressReverseMap(locked).empty()) { 199 AssertingVH<const GlobalValue> &V = 200 state.getGlobalAddressReverseMap(locked)[Addr]; 201 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 202 V = GV; 203 } 204 return OldVal; 205 } 206 207 /// getPointerToGlobalIfAvailable - This returns the address of the specified 208 /// global value if it is has already been codegen'd, otherwise it returns null. 209 /// 210 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 211 MutexGuard locked(lock); 212 213 std::map<AssertingVH<const GlobalValue>, void*>::iterator I = 214 state.getGlobalAddressMap(locked).find(GV); 215 return I != state.getGlobalAddressMap(locked).end() ? I->second : 0; 216 } 217 218 /// getGlobalValueAtAddress - Return the LLVM global value object that starts 219 /// at the specified address. 220 /// 221 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 222 MutexGuard locked(lock); 223 224 // If we haven't computed the reverse mapping yet, do so first. 225 if (state.getGlobalAddressReverseMap(locked).empty()) { 226 for (std::map<AssertingVH<const GlobalValue>, void *>::iterator 227 I = state.getGlobalAddressMap(locked).begin(), 228 E = state.getGlobalAddressMap(locked).end(); I != E; ++I) 229 state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, 230 I->first)); 231 } 232 233 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 234 state.getGlobalAddressReverseMap(locked).find(Addr); 235 return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 236 } 237 238 // CreateArgv - Turn a vector of strings into a nice argv style array of 239 // pointers to null terminated strings. 240 // 241 static void *CreateArgv(ExecutionEngine *EE, 242 const std::vector<std::string> &InputArgv) { 243 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 244 char *Result = new char[(InputArgv.size()+1)*PtrSize]; 245 246 DOUT << "JIT: ARGV = " << (void*)Result << "\n"; 247 const Type *SBytePtr = PointerType::getUnqual(Type::Int8Ty); 248 249 for (unsigned i = 0; i != InputArgv.size(); ++i) { 250 unsigned Size = InputArgv[i].size()+1; 251 char *Dest = new char[Size]; 252 DOUT << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"; 253 254 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 255 Dest[Size-1] = 0; 256 257 // Endian safe: Result[i] = (PointerTy)Dest; 258 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), 259 SBytePtr); 260 } 261 262 // Null terminate it 263 EE->StoreValueToMemory(PTOGV(0), 264 (GenericValue*)(Result+InputArgv.size()*PtrSize), 265 SBytePtr); 266 return Result; 267 } 268 269 270 /// runStaticConstructorsDestructors - This method is used to execute all of 271 /// the static constructors or destructors for a module, depending on the 272 /// value of isDtors. 273 void ExecutionEngine::runStaticConstructorsDestructors(Module *module, bool isDtors) { 274 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 275 276 // Execute global ctors/dtors for each module in the program. 277 278 GlobalVariable *GV = module->getNamedGlobal(Name); 279 280 // If this global has internal linkage, or if it has a use, then it must be 281 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 282 // this is the case, don't execute any of the global ctors, __main will do 283 // it. 284 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 285 286 // Should be an array of '{ int, void ()* }' structs. The first value is 287 // the init priority, which we ignore. 288 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 289 if (!InitList) return; 290 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 291 if (ConstantStruct *CS = 292 dyn_cast<ConstantStruct>(InitList->getOperand(i))) { 293 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 294 295 Constant *FP = CS->getOperand(1); 296 if (FP->isNullValue()) 297 break; // Found a null terminator, exit. 298 299 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 300 if (CE->isCast()) 301 FP = CE->getOperand(0); 302 if (Function *F = dyn_cast<Function>(FP)) { 303 // Execute the ctor/dtor function! 304 runFunction(F, std::vector<GenericValue>()); 305 } 306 } 307 } 308 309 /// runStaticConstructorsDestructors - This method is used to execute all of 310 /// the static constructors or destructors for a program, depending on the 311 /// value of isDtors. 312 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 313 // Execute global ctors/dtors for each module in the program. 314 for (unsigned m = 0, e = Modules.size(); m != e; ++m) 315 runStaticConstructorsDestructors(Modules[m]->getModule(), isDtors); 316 } 317 318 #ifndef NDEBUG 319 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 320 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 321 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 322 for (unsigned i = 0; i < PtrSize; ++i) 323 if (*(i + (uint8_t*)Loc)) 324 return false; 325 return true; 326 } 327 #endif 328 329 /// runFunctionAsMain - This is a helper function which wraps runFunction to 330 /// handle the common task of starting up main with the specified argc, argv, 331 /// and envp parameters. 332 int ExecutionEngine::runFunctionAsMain(Function *Fn, 333 const std::vector<std::string> &argv, 334 const char * const * envp) { 335 std::vector<GenericValue> GVArgs; 336 GenericValue GVArgc; 337 GVArgc.IntVal = APInt(32, argv.size()); 338 339 // Check main() type 340 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 341 const FunctionType *FTy = Fn->getFunctionType(); 342 const Type* PPInt8Ty = 343 PointerType::getUnqual(PointerType::getUnqual(Type::Int8Ty)); 344 switch (NumArgs) { 345 case 3: 346 if (FTy->getParamType(2) != PPInt8Ty) { 347 llvm_report_error("Invalid type for third argument of main() supplied"); 348 } 349 // FALLS THROUGH 350 case 2: 351 if (FTy->getParamType(1) != PPInt8Ty) { 352 llvm_report_error("Invalid type for second argument of main() supplied"); 353 } 354 // FALLS THROUGH 355 case 1: 356 if (FTy->getParamType(0) != Type::Int32Ty) { 357 llvm_report_error("Invalid type for first argument of main() supplied"); 358 } 359 // FALLS THROUGH 360 case 0: 361 if (!isa<IntegerType>(FTy->getReturnType()) && 362 FTy->getReturnType() != Type::VoidTy) { 363 llvm_report_error("Invalid return type of main() supplied"); 364 } 365 break; 366 default: 367 llvm_report_error("Invalid number of arguments of main() supplied"); 368 } 369 370 if (NumArgs) { 371 GVArgs.push_back(GVArgc); // Arg #0 = argc. 372 if (NumArgs > 1) { 373 GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv. 374 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 375 "argv[0] was null after CreateArgv"); 376 if (NumArgs > 2) { 377 std::vector<std::string> EnvVars; 378 for (unsigned i = 0; envp[i]; ++i) 379 EnvVars.push_back(envp[i]); 380 GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp. 381 } 382 } 383 } 384 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 385 } 386 387 /// If possible, create a JIT, unless the caller specifically requests an 388 /// Interpreter or there's an error. If even an Interpreter cannot be created, 389 /// NULL is returned. 390 /// 391 ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, 392 bool ForceInterpreter, 393 std::string *ErrorStr, 394 CodeGenOpt::Level OptLevel, 395 bool GVsWithCode) { 396 return EngineBuilder(MP) 397 .setEngineKind(ForceInterpreter 398 ? EngineKind::Interpreter 399 : EngineKind::JIT) 400 .setErrorStr(ErrorStr) 401 .setOptLevel(OptLevel) 402 .setAllocateGVsWithCode(GVsWithCode) 403 .create(); 404 } 405 406 ExecutionEngine *ExecutionEngine::create(Module *M) { 407 return EngineBuilder(M).create(); 408 } 409 410 /// EngineBuilder - Overloaded constructor that automatically creates an 411 /// ExistingModuleProvider for an existing module. 412 EngineBuilder::EngineBuilder(Module *m) : MP(new ExistingModuleProvider(m)) { 413 InitEngine(); 414 } 415 416 ExecutionEngine *EngineBuilder::create() { 417 // Make sure we can resolve symbols in the program as well. The zero arg 418 // to the function tells DynamicLibrary to load the program, not a library. 419 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) 420 return 0; 421 422 // If the user specified a memory manager but didn't specify which engine to 423 // create, we assume they only want the JIT, and we fail if they only want 424 // the interpreter. 425 if (JMM) { 426 if (WhichEngine & EngineKind::JIT) { 427 WhichEngine = EngineKind::JIT; 428 } else { 429 *ErrorStr = "Cannot create an interpreter with a memory manager."; 430 } 431 } 432 433 ExecutionEngine *EE = 0; 434 435 // Unless the interpreter was explicitly selected or the JIT is not linked, 436 // try making a JIT. 437 if (WhichEngine & EngineKind::JIT && ExecutionEngine::JITCtor) { 438 EE = ExecutionEngine::JITCtor(MP, ErrorStr, JMM, OptLevel, 439 AllocateGVsWithCode); 440 } 441 442 // If we can't make a JIT and we didn't request one specifically, try making 443 // an interpreter instead. 444 if (WhichEngine & EngineKind::Interpreter && EE == 0 && 445 ExecutionEngine::InterpCtor) { 446 EE = ExecutionEngine::InterpCtor(MP, ErrorStr); 447 } 448 449 return EE; 450 } 451 452 /// getPointerToGlobal - This returns the address of the specified global 453 /// value. This may involve code generation if it's a function. 454 /// 455 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 456 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 457 return getPointerToFunction(F); 458 459 MutexGuard locked(lock); 460 void *p = state.getGlobalAddressMap(locked)[GV]; 461 if (p) 462 return p; 463 464 // Global variable might have been added since interpreter started. 465 if (GlobalVariable *GVar = 466 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 467 EmitGlobalVariable(GVar); 468 else 469 llvm_unreachable("Global hasn't had an address allocated yet!"); 470 return state.getGlobalAddressMap(locked)[GV]; 471 } 472 473 /// This function converts a Constant* into a GenericValue. The interesting 474 /// part is if C is a ConstantExpr. 475 /// @brief Get a GenericValue for a Constant* 476 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 477 // If its undefined, return the garbage. 478 if (isa<UndefValue>(C)) 479 return GenericValue(); 480 481 // If the value is a ConstantExpr 482 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 483 Constant *Op0 = CE->getOperand(0); 484 switch (CE->getOpcode()) { 485 case Instruction::GetElementPtr: { 486 // Compute the index 487 GenericValue Result = getConstantValue(Op0); 488 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); 489 uint64_t Offset = 490 TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size()); 491 492 char* tmp = (char*) Result.PointerVal; 493 Result = PTOGV(tmp + Offset); 494 return Result; 495 } 496 case Instruction::Trunc: { 497 GenericValue GV = getConstantValue(Op0); 498 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 499 GV.IntVal = GV.IntVal.trunc(BitWidth); 500 return GV; 501 } 502 case Instruction::ZExt: { 503 GenericValue GV = getConstantValue(Op0); 504 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 505 GV.IntVal = GV.IntVal.zext(BitWidth); 506 return GV; 507 } 508 case Instruction::SExt: { 509 GenericValue GV = getConstantValue(Op0); 510 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 511 GV.IntVal = GV.IntVal.sext(BitWidth); 512 return GV; 513 } 514 case Instruction::FPTrunc: { 515 // FIXME long double 516 GenericValue GV = getConstantValue(Op0); 517 GV.FloatVal = float(GV.DoubleVal); 518 return GV; 519 } 520 case Instruction::FPExt:{ 521 // FIXME long double 522 GenericValue GV = getConstantValue(Op0); 523 GV.DoubleVal = double(GV.FloatVal); 524 return GV; 525 } 526 case Instruction::UIToFP: { 527 GenericValue GV = getConstantValue(Op0); 528 if (CE->getType() == Type::FloatTy) 529 GV.FloatVal = float(GV.IntVal.roundToDouble()); 530 else if (CE->getType() == Type::DoubleTy) 531 GV.DoubleVal = GV.IntVal.roundToDouble(); 532 else if (CE->getType() == Type::X86_FP80Ty) { 533 const uint64_t zero[] = {0, 0}; 534 APFloat apf = APFloat(APInt(80, 2, zero)); 535 (void)apf.convertFromAPInt(GV.IntVal, 536 false, 537 APFloat::rmNearestTiesToEven); 538 GV.IntVal = apf.bitcastToAPInt(); 539 } 540 return GV; 541 } 542 case Instruction::SIToFP: { 543 GenericValue GV = getConstantValue(Op0); 544 if (CE->getType() == Type::FloatTy) 545 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 546 else if (CE->getType() == Type::DoubleTy) 547 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 548 else if (CE->getType() == Type::X86_FP80Ty) { 549 const uint64_t zero[] = { 0, 0}; 550 APFloat apf = APFloat(APInt(80, 2, zero)); 551 (void)apf.convertFromAPInt(GV.IntVal, 552 true, 553 APFloat::rmNearestTiesToEven); 554 GV.IntVal = apf.bitcastToAPInt(); 555 } 556 return GV; 557 } 558 case Instruction::FPToUI: // double->APInt conversion handles sign 559 case Instruction::FPToSI: { 560 GenericValue GV = getConstantValue(Op0); 561 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 562 if (Op0->getType() == Type::FloatTy) 563 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 564 else if (Op0->getType() == Type::DoubleTy) 565 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 566 else if (Op0->getType() == Type::X86_FP80Ty) { 567 APFloat apf = APFloat(GV.IntVal); 568 uint64_t v; 569 bool ignored; 570 (void)apf.convertToInteger(&v, BitWidth, 571 CE->getOpcode()==Instruction::FPToSI, 572 APFloat::rmTowardZero, &ignored); 573 GV.IntVal = v; // endian? 574 } 575 return GV; 576 } 577 case Instruction::PtrToInt: { 578 GenericValue GV = getConstantValue(Op0); 579 uint32_t PtrWidth = TD->getPointerSizeInBits(); 580 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 581 return GV; 582 } 583 case Instruction::IntToPtr: { 584 GenericValue GV = getConstantValue(Op0); 585 uint32_t PtrWidth = TD->getPointerSizeInBits(); 586 if (PtrWidth != GV.IntVal.getBitWidth()) 587 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 588 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 589 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 590 return GV; 591 } 592 case Instruction::BitCast: { 593 GenericValue GV = getConstantValue(Op0); 594 const Type* DestTy = CE->getType(); 595 switch (Op0->getType()->getTypeID()) { 596 default: llvm_unreachable("Invalid bitcast operand"); 597 case Type::IntegerTyID: 598 assert(DestTy->isFloatingPoint() && "invalid bitcast"); 599 if (DestTy == Type::FloatTy) 600 GV.FloatVal = GV.IntVal.bitsToFloat(); 601 else if (DestTy == Type::DoubleTy) 602 GV.DoubleVal = GV.IntVal.bitsToDouble(); 603 break; 604 case Type::FloatTyID: 605 assert(DestTy == Type::Int32Ty && "Invalid bitcast"); 606 GV.IntVal.floatToBits(GV.FloatVal); 607 break; 608 case Type::DoubleTyID: 609 assert(DestTy == Type::Int64Ty && "Invalid bitcast"); 610 GV.IntVal.doubleToBits(GV.DoubleVal); 611 break; 612 case Type::PointerTyID: 613 assert(isa<PointerType>(DestTy) && "Invalid bitcast"); 614 break; // getConstantValue(Op0) above already converted it 615 } 616 return GV; 617 } 618 case Instruction::Add: 619 case Instruction::FAdd: 620 case Instruction::Sub: 621 case Instruction::FSub: 622 case Instruction::Mul: 623 case Instruction::FMul: 624 case Instruction::UDiv: 625 case Instruction::SDiv: 626 case Instruction::URem: 627 case Instruction::SRem: 628 case Instruction::And: 629 case Instruction::Or: 630 case Instruction::Xor: { 631 GenericValue LHS = getConstantValue(Op0); 632 GenericValue RHS = getConstantValue(CE->getOperand(1)); 633 GenericValue GV; 634 switch (CE->getOperand(0)->getType()->getTypeID()) { 635 default: llvm_unreachable("Bad add type!"); 636 case Type::IntegerTyID: 637 switch (CE->getOpcode()) { 638 default: llvm_unreachable("Invalid integer opcode"); 639 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 640 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 641 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 642 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 643 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 644 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 645 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 646 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 647 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 648 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 649 } 650 break; 651 case Type::FloatTyID: 652 switch (CE->getOpcode()) { 653 default: llvm_unreachable("Invalid float opcode"); 654 case Instruction::FAdd: 655 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 656 case Instruction::FSub: 657 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 658 case Instruction::FMul: 659 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 660 case Instruction::FDiv: 661 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 662 case Instruction::FRem: 663 GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break; 664 } 665 break; 666 case Type::DoubleTyID: 667 switch (CE->getOpcode()) { 668 default: llvm_unreachable("Invalid double opcode"); 669 case Instruction::FAdd: 670 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 671 case Instruction::FSub: 672 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 673 case Instruction::FMul: 674 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 675 case Instruction::FDiv: 676 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 677 case Instruction::FRem: 678 GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 679 } 680 break; 681 case Type::X86_FP80TyID: 682 case Type::PPC_FP128TyID: 683 case Type::FP128TyID: { 684 APFloat apfLHS = APFloat(LHS.IntVal); 685 switch (CE->getOpcode()) { 686 default: llvm_unreachable("Invalid long double opcode");llvm_unreachable(0); 687 case Instruction::FAdd: 688 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 689 GV.IntVal = apfLHS.bitcastToAPInt(); 690 break; 691 case Instruction::FSub: 692 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 693 GV.IntVal = apfLHS.bitcastToAPInt(); 694 break; 695 case Instruction::FMul: 696 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 697 GV.IntVal = apfLHS.bitcastToAPInt(); 698 break; 699 case Instruction::FDiv: 700 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 701 GV.IntVal = apfLHS.bitcastToAPInt(); 702 break; 703 case Instruction::FRem: 704 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 705 GV.IntVal = apfLHS.bitcastToAPInt(); 706 break; 707 } 708 } 709 break; 710 } 711 return GV; 712 } 713 default: 714 break; 715 } 716 std::string msg; 717 raw_string_ostream Msg(msg); 718 Msg << "ConstantExpr not handled: " << *CE; 719 llvm_report_error(Msg.str()); 720 } 721 722 GenericValue Result; 723 switch (C->getType()->getTypeID()) { 724 case Type::FloatTyID: 725 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 726 break; 727 case Type::DoubleTyID: 728 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 729 break; 730 case Type::X86_FP80TyID: 731 case Type::FP128TyID: 732 case Type::PPC_FP128TyID: 733 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 734 break; 735 case Type::IntegerTyID: 736 Result.IntVal = cast<ConstantInt>(C)->getValue(); 737 break; 738 case Type::PointerTyID: 739 if (isa<ConstantPointerNull>(C)) 740 Result.PointerVal = 0; 741 else if (const Function *F = dyn_cast<Function>(C)) 742 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 743 else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) 744 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 745 else 746 llvm_unreachable("Unknown constant pointer type!"); 747 break; 748 default: 749 std::string msg; 750 raw_string_ostream Msg(msg); 751 Msg << "ERROR: Constant unimplemented for type: " << *C->getType(); 752 llvm_report_error(Msg.str()); 753 } 754 return Result; 755 } 756 757 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 758 /// with the integer held in IntVal. 759 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 760 unsigned StoreBytes) { 761 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 762 uint8_t *Src = (uint8_t *)IntVal.getRawData(); 763 764 if (sys::isLittleEndianHost()) 765 // Little-endian host - the source is ordered from LSB to MSB. Order the 766 // destination from LSB to MSB: Do a straight copy. 767 memcpy(Dst, Src, StoreBytes); 768 else { 769 // Big-endian host - the source is an array of 64 bit words ordered from 770 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 771 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 772 while (StoreBytes > sizeof(uint64_t)) { 773 StoreBytes -= sizeof(uint64_t); 774 // May not be aligned so use memcpy. 775 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 776 Src += sizeof(uint64_t); 777 } 778 779 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 780 } 781 } 782 783 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr 784 /// is the address of the memory at which to store Val, cast to GenericValue *. 785 /// It is not a pointer to a GenericValue containing the address at which to 786 /// store Val. 787 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 788 GenericValue *Ptr, const Type *Ty) { 789 const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty); 790 791 switch (Ty->getTypeID()) { 792 case Type::IntegerTyID: 793 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 794 break; 795 case Type::FloatTyID: 796 *((float*)Ptr) = Val.FloatVal; 797 break; 798 case Type::DoubleTyID: 799 *((double*)Ptr) = Val.DoubleVal; 800 break; 801 case Type::X86_FP80TyID: 802 memcpy(Ptr, Val.IntVal.getRawData(), 10); 803 break; 804 case Type::PointerTyID: 805 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 806 if (StoreBytes != sizeof(PointerTy)) 807 memset(Ptr, 0, StoreBytes); 808 809 *((PointerTy*)Ptr) = Val.PointerVal; 810 break; 811 default: 812 cerr << "Cannot store value of type " << *Ty << "!\n"; 813 } 814 815 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) 816 // Host and target are different endian - reverse the stored bytes. 817 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 818 } 819 820 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 821 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 822 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 823 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 824 uint8_t *Dst = (uint8_t *)IntVal.getRawData(); 825 826 if (sys::isLittleEndianHost()) 827 // Little-endian host - the destination must be ordered from LSB to MSB. 828 // The source is ordered from LSB to MSB: Do a straight copy. 829 memcpy(Dst, Src, LoadBytes); 830 else { 831 // Big-endian - the destination is an array of 64 bit words ordered from 832 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 833 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 834 // a word. 835 while (LoadBytes > sizeof(uint64_t)) { 836 LoadBytes -= sizeof(uint64_t); 837 // May not be aligned so use memcpy. 838 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 839 Dst += sizeof(uint64_t); 840 } 841 842 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 843 } 844 } 845 846 /// FIXME: document 847 /// 848 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 849 GenericValue *Ptr, 850 const Type *Ty) { 851 const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty); 852 853 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) { 854 // Host and target are different endian - reverse copy the stored 855 // bytes into a buffer, and load from that. 856 uint8_t *Src = (uint8_t*)Ptr; 857 uint8_t *Buf = (uint8_t*)alloca(LoadBytes); 858 std::reverse_copy(Src, Src + LoadBytes, Buf); 859 Ptr = (GenericValue*)Buf; 860 } 861 862 switch (Ty->getTypeID()) { 863 case Type::IntegerTyID: 864 // An APInt with all words initially zero. 865 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 866 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 867 break; 868 case Type::FloatTyID: 869 Result.FloatVal = *((float*)Ptr); 870 break; 871 case Type::DoubleTyID: 872 Result.DoubleVal = *((double*)Ptr); 873 break; 874 case Type::PointerTyID: 875 Result.PointerVal = *((PointerTy*)Ptr); 876 break; 877 case Type::X86_FP80TyID: { 878 // This is endian dependent, but it will only work on x86 anyway. 879 // FIXME: Will not trap if loading a signaling NaN. 880 uint64_t y[2]; 881 memcpy(y, Ptr, 10); 882 Result.IntVal = APInt(80, 2, y); 883 break; 884 } 885 default: 886 std::string msg; 887 raw_string_ostream Msg(msg); 888 Msg << "Cannot load value of type " << *Ty << "!"; 889 llvm_report_error(Msg.str()); 890 } 891 } 892 893 // InitializeMemory - Recursive function to apply a Constant value into the 894 // specified memory location... 895 // 896 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 897 DOUT << "JIT: Initializing " << Addr << " "; 898 DEBUG(Init->dump()); 899 if (isa<UndefValue>(Init)) { 900 return; 901 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 902 unsigned ElementSize = 903 getTargetData()->getTypeAllocSize(CP->getType()->getElementType()); 904 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 905 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 906 return; 907 } else if (isa<ConstantAggregateZero>(Init)) { 908 memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType())); 909 return; 910 } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 911 unsigned ElementSize = 912 getTargetData()->getTypeAllocSize(CPA->getType()->getElementType()); 913 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 914 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 915 return; 916 } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 917 const StructLayout *SL = 918 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 919 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 920 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 921 return; 922 } else if (Init->getType()->isFirstClassType()) { 923 GenericValue Val = getConstantValue(Init); 924 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 925 return; 926 } 927 928 cerr << "Bad Type: " << *Init->getType() << "\n"; 929 llvm_unreachable("Unknown constant type to initialize memory with!"); 930 } 931 932 /// EmitGlobals - Emit all of the global variables to memory, storing their 933 /// addresses into GlobalAddress. This must make sure to copy the contents of 934 /// their initializers into the memory. 935 /// 936 void ExecutionEngine::emitGlobals() { 937 938 // Loop over all of the global variables in the program, allocating the memory 939 // to hold them. If there is more than one module, do a prepass over globals 940 // to figure out how the different modules should link together. 941 // 942 std::map<std::pair<std::string, const Type*>, 943 const GlobalValue*> LinkedGlobalsMap; 944 945 if (Modules.size() != 1) { 946 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 947 Module &M = *Modules[m]->getModule(); 948 for (Module::const_global_iterator I = M.global_begin(), 949 E = M.global_end(); I != E; ++I) { 950 const GlobalValue *GV = I; 951 if (GV->hasLocalLinkage() || GV->isDeclaration() || 952 GV->hasAppendingLinkage() || !GV->hasName()) 953 continue;// Ignore external globals and globals with internal linkage. 954 955 const GlobalValue *&GVEntry = 956 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 957 958 // If this is the first time we've seen this global, it is the canonical 959 // version. 960 if (!GVEntry) { 961 GVEntry = GV; 962 continue; 963 } 964 965 // If the existing global is strong, never replace it. 966 if (GVEntry->hasExternalLinkage() || 967 GVEntry->hasDLLImportLinkage() || 968 GVEntry->hasDLLExportLinkage()) 969 continue; 970 971 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 972 // symbol. FIXME is this right for common? 973 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 974 GVEntry = GV; 975 } 976 } 977 } 978 979 std::vector<const GlobalValue*> NonCanonicalGlobals; 980 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 981 Module &M = *Modules[m]->getModule(); 982 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 983 I != E; ++I) { 984 // In the multi-module case, see what this global maps to. 985 if (!LinkedGlobalsMap.empty()) { 986 if (const GlobalValue *GVEntry = 987 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 988 // If something else is the canonical global, ignore this one. 989 if (GVEntry != &*I) { 990 NonCanonicalGlobals.push_back(I); 991 continue; 992 } 993 } 994 } 995 996 if (!I->isDeclaration()) { 997 addGlobalMapping(I, getMemoryForGV(I)); 998 } else { 999 // External variable reference. Try to use the dynamic loader to 1000 // get a pointer to it. 1001 if (void *SymAddr = 1002 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName())) 1003 addGlobalMapping(I, SymAddr); 1004 else { 1005 llvm_report_error("Could not resolve external global address: " 1006 +I->getName()); 1007 } 1008 } 1009 } 1010 1011 // If there are multiple modules, map the non-canonical globals to their 1012 // canonical location. 1013 if (!NonCanonicalGlobals.empty()) { 1014 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1015 const GlobalValue *GV = NonCanonicalGlobals[i]; 1016 const GlobalValue *CGV = 1017 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1018 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1019 assert(Ptr && "Canonical global wasn't codegen'd!"); 1020 addGlobalMapping(GV, Ptr); 1021 } 1022 } 1023 1024 // Now that all of the globals are set up in memory, loop through them all 1025 // and initialize their contents. 1026 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1027 I != E; ++I) { 1028 if (!I->isDeclaration()) { 1029 if (!LinkedGlobalsMap.empty()) { 1030 if (const GlobalValue *GVEntry = 1031 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 1032 if (GVEntry != &*I) // Not the canonical variable. 1033 continue; 1034 } 1035 EmitGlobalVariable(I); 1036 } 1037 } 1038 } 1039 } 1040 1041 // EmitGlobalVariable - This method emits the specified global variable to the 1042 // address specified in GlobalAddresses, or allocates new memory if it's not 1043 // already in the map. 1044 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1045 void *GA = getPointerToGlobalIfAvailable(GV); 1046 1047 if (GA == 0) { 1048 // If it's not already specified, allocate memory for the global. 1049 GA = getMemoryForGV(GV); 1050 addGlobalMapping(GV, GA); 1051 } 1052 1053 // Don't initialize if it's thread local, let the client do it. 1054 if (!GV->isThreadLocal()) 1055 InitializeMemory(GV->getInitializer(), GA); 1056 1057 const Type *ElTy = GV->getType()->getElementType(); 1058 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 1059 NumInitBytes += (unsigned)GVSize; 1060 ++NumGlobals; 1061 } 1062