1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "Interpreter/Interpreter.h" 17 #include "JIT/JIT.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Module.h" 21 #include "llvm/ModuleProvider.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/IntrinsicLowering.h" 24 #include "llvm/ExecutionEngine/ExecutionEngine.h" 25 #include "llvm/ExecutionEngine/GenericValue.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/System/DynamicLibrary.h" 28 #include "llvm/Target/TargetData.h" 29 using namespace llvm; 30 31 namespace { 32 Statistic<> NumInitBytes("lli", "Number of bytes of global vars initialized"); 33 Statistic<> NumGlobals ("lli", "Number of global vars initialized"); 34 } 35 36 ExecutionEngine::ExecutionEngine(ModuleProvider *P) : 37 CurMod(*P->getModule()), MP(P) { 38 assert(P && "ModuleProvider is null?"); 39 } 40 41 ExecutionEngine::ExecutionEngine(Module *M) : CurMod(*M), MP(0) { 42 assert(M && "Module is null?"); 43 } 44 45 ExecutionEngine::~ExecutionEngine() { 46 delete MP; 47 } 48 49 /// getGlobalValueAtAddress - Return the LLVM global value object that starts 50 /// at the specified address. 51 /// 52 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 53 MutexGuard locked(lock); 54 55 // If we haven't computed the reverse mapping yet, do so first. 56 if (state.getGlobalAddressReverseMap(locked).empty()) { 57 for (std::map<const GlobalValue*, void *>::iterator I = 58 state.getGlobalAddressMap(locked).begin(), E = state.getGlobalAddressMap(locked).end(); I != E; ++I) 59 state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, I->first)); 60 } 61 62 std::map<void *, const GlobalValue*>::iterator I = 63 state.getGlobalAddressReverseMap(locked).find(Addr); 64 return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 65 } 66 67 // CreateArgv - Turn a vector of strings into a nice argv style array of 68 // pointers to null terminated strings. 69 // 70 static void *CreateArgv(ExecutionEngine *EE, 71 const std::vector<std::string> &InputArgv) { 72 unsigned PtrSize = EE->getTargetData().getPointerSize(); 73 char *Result = new char[(InputArgv.size()+1)*PtrSize]; 74 75 DEBUG(std::cerr << "ARGV = " << (void*)Result << "\n"); 76 const Type *SBytePtr = PointerType::get(Type::SByteTy); 77 78 for (unsigned i = 0; i != InputArgv.size(); ++i) { 79 unsigned Size = InputArgv[i].size()+1; 80 char *Dest = new char[Size]; 81 DEBUG(std::cerr << "ARGV[" << i << "] = " << (void*)Dest << "\n"); 82 83 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 84 Dest[Size-1] = 0; 85 86 // Endian safe: Result[i] = (PointerTy)Dest; 87 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), 88 SBytePtr); 89 } 90 91 // Null terminate it 92 EE->StoreValueToMemory(PTOGV(0), 93 (GenericValue*)(Result+InputArgv.size()*PtrSize), 94 SBytePtr); 95 return Result; 96 } 97 98 /// runFunctionAsMain - This is a helper function which wraps runFunction to 99 /// handle the common task of starting up main with the specified argc, argv, 100 /// and envp parameters. 101 int ExecutionEngine::runFunctionAsMain(Function *Fn, 102 const std::vector<std::string> &argv, 103 const char * const * envp) { 104 std::vector<GenericValue> GVArgs; 105 GenericValue GVArgc; 106 GVArgc.IntVal = argv.size(); 107 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 108 if (NumArgs) { 109 GVArgs.push_back(GVArgc); // Arg #0 = argc. 110 if (NumArgs > 1) { 111 GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv. 112 assert(((char **)GVTOP(GVArgs[1]))[0] && 113 "argv[0] was null after CreateArgv"); 114 if (NumArgs > 2) { 115 std::vector<std::string> EnvVars; 116 for (unsigned i = 0; envp[i]; ++i) 117 EnvVars.push_back(envp[i]); 118 GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp. 119 } 120 } 121 } 122 return runFunction(Fn, GVArgs).IntVal; 123 } 124 125 126 127 /// If possible, create a JIT, unless the caller specifically requests an 128 /// Interpreter or there's an error. If even an Interpreter cannot be created, 129 /// NULL is returned. 130 /// 131 ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, 132 bool ForceInterpreter, 133 IntrinsicLowering *IL) { 134 ExecutionEngine *EE = 0; 135 136 // Unless the interpreter was explicitly selected, try making a JIT. 137 if (!ForceInterpreter) 138 EE = JIT::create(MP, IL); 139 140 // If we can't make a JIT, make an interpreter instead. 141 if (EE == 0) { 142 try { 143 Module *M = MP->materializeModule(); 144 try { 145 EE = Interpreter::create(M, IL); 146 } catch (...) { 147 std::cerr << "Error creating the interpreter!\n"; 148 } 149 } catch (std::string& errmsg) { 150 std::cerr << "Error reading the bytecode file: " << errmsg << "\n"; 151 } catch (...) { 152 std::cerr << "Error reading the bytecode file!\n"; 153 } 154 } 155 156 if (EE == 0) 157 delete IL; 158 else 159 // Make sure we can resolve symbols in the program as well. The zero arg 160 // to the function tells DynamicLibrary to load the program, not a library. 161 sys::DynamicLibrary::LoadLibraryPermanently(0); 162 163 return EE; 164 } 165 166 /// getPointerToGlobal - This returns the address of the specified global 167 /// value. This may involve code generation if it's a function. 168 /// 169 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 170 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 171 return getPointerToFunction(F); 172 173 MutexGuard locked(lock); 174 void *p = state.getGlobalAddressMap(locked)[GV]; 175 if (p) 176 return p; 177 178 // Global variable might have been added since interpreter started. 179 if (GlobalVariable *GVar = 180 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 181 EmitGlobalVariable(GVar); 182 else 183 assert("Global hasn't had an address allocated yet!"); 184 return state.getGlobalAddressMap(locked)[GV]; 185 } 186 187 /// FIXME: document 188 /// 189 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 190 GenericValue Result; 191 if (isa<UndefValue>(C)) return Result; 192 193 if (ConstantExpr *CE = const_cast<ConstantExpr*>(dyn_cast<ConstantExpr>(C))) { 194 switch (CE->getOpcode()) { 195 case Instruction::GetElementPtr: { 196 Result = getConstantValue(CE->getOperand(0)); 197 std::vector<Value*> Indexes(CE->op_begin()+1, CE->op_end()); 198 uint64_t Offset = 199 TD->getIndexedOffset(CE->getOperand(0)->getType(), Indexes); 200 201 if (getTargetData().getPointerSize() == 4) 202 Result.IntVal += Offset; 203 else 204 Result.LongVal += Offset; 205 return Result; 206 } 207 case Instruction::Cast: { 208 // We only need to handle a few cases here. Almost all casts will 209 // automatically fold, just the ones involving pointers won't. 210 // 211 Constant *Op = CE->getOperand(0); 212 GenericValue GV = getConstantValue(Op); 213 214 // Handle cast of pointer to pointer... 215 if (Op->getType()->getTypeID() == C->getType()->getTypeID()) 216 return GV; 217 218 // Handle a cast of pointer to any integral type... 219 if (isa<PointerType>(Op->getType()) && C->getType()->isIntegral()) 220 return GV; 221 222 // Handle cast of integer to a pointer... 223 if (isa<PointerType>(C->getType()) && Op->getType()->isIntegral()) 224 switch (Op->getType()->getTypeID()) { 225 case Type::BoolTyID: return PTOGV((void*)(uintptr_t)GV.BoolVal); 226 case Type::SByteTyID: return PTOGV((void*)( intptr_t)GV.SByteVal); 227 case Type::UByteTyID: return PTOGV((void*)(uintptr_t)GV.UByteVal); 228 case Type::ShortTyID: return PTOGV((void*)( intptr_t)GV.ShortVal); 229 case Type::UShortTyID: return PTOGV((void*)(uintptr_t)GV.UShortVal); 230 case Type::IntTyID: return PTOGV((void*)( intptr_t)GV.IntVal); 231 case Type::UIntTyID: return PTOGV((void*)(uintptr_t)GV.UIntVal); 232 case Type::LongTyID: return PTOGV((void*)( intptr_t)GV.LongVal); 233 case Type::ULongTyID: return PTOGV((void*)(uintptr_t)GV.ULongVal); 234 default: assert(0 && "Unknown integral type!"); 235 } 236 break; 237 } 238 239 case Instruction::Add: 240 switch (CE->getOperand(0)->getType()->getTypeID()) { 241 default: assert(0 && "Bad add type!"); abort(); 242 case Type::LongTyID: 243 case Type::ULongTyID: 244 Result.LongVal = getConstantValue(CE->getOperand(0)).LongVal + 245 getConstantValue(CE->getOperand(1)).LongVal; 246 break; 247 case Type::IntTyID: 248 case Type::UIntTyID: 249 Result.IntVal = getConstantValue(CE->getOperand(0)).IntVal + 250 getConstantValue(CE->getOperand(1)).IntVal; 251 break; 252 case Type::ShortTyID: 253 case Type::UShortTyID: 254 Result.ShortVal = getConstantValue(CE->getOperand(0)).ShortVal + 255 getConstantValue(CE->getOperand(1)).ShortVal; 256 break; 257 case Type::SByteTyID: 258 case Type::UByteTyID: 259 Result.SByteVal = getConstantValue(CE->getOperand(0)).SByteVal + 260 getConstantValue(CE->getOperand(1)).SByteVal; 261 break; 262 case Type::FloatTyID: 263 Result.FloatVal = getConstantValue(CE->getOperand(0)).FloatVal + 264 getConstantValue(CE->getOperand(1)).FloatVal; 265 break; 266 case Type::DoubleTyID: 267 Result.DoubleVal = getConstantValue(CE->getOperand(0)).DoubleVal + 268 getConstantValue(CE->getOperand(1)).DoubleVal; 269 break; 270 } 271 return Result; 272 default: 273 break; 274 } 275 std::cerr << "ConstantExpr not handled as global var init: " << *CE << "\n"; 276 abort(); 277 } 278 279 switch (C->getType()->getTypeID()) { 280 #define GET_CONST_VAL(TY, CTY, CLASS) \ 281 case Type::TY##TyID: Result.TY##Val = (CTY)cast<CLASS>(C)->getValue(); break 282 GET_CONST_VAL(Bool , bool , ConstantBool); 283 GET_CONST_VAL(UByte , unsigned char , ConstantUInt); 284 GET_CONST_VAL(SByte , signed char , ConstantSInt); 285 GET_CONST_VAL(UShort , unsigned short, ConstantUInt); 286 GET_CONST_VAL(Short , signed short , ConstantSInt); 287 GET_CONST_VAL(UInt , unsigned int , ConstantUInt); 288 GET_CONST_VAL(Int , signed int , ConstantSInt); 289 GET_CONST_VAL(ULong , uint64_t , ConstantUInt); 290 GET_CONST_VAL(Long , int64_t , ConstantSInt); 291 GET_CONST_VAL(Float , float , ConstantFP); 292 GET_CONST_VAL(Double , double , ConstantFP); 293 #undef GET_CONST_VAL 294 case Type::PointerTyID: 295 if (isa<ConstantPointerNull>(C)) 296 Result.PointerVal = 0; 297 else if (const Function *F = dyn_cast<Function>(C)) 298 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 299 else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) 300 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 301 else 302 assert(0 && "Unknown constant pointer type!"); 303 break; 304 default: 305 std::cout << "ERROR: Constant unimp for type: " << *C->getType() << "\n"; 306 abort(); 307 } 308 return Result; 309 } 310 311 /// FIXME: document 312 /// 313 void ExecutionEngine::StoreValueToMemory(GenericValue Val, GenericValue *Ptr, 314 const Type *Ty) { 315 if (getTargetData().isLittleEndian()) { 316 switch (Ty->getTypeID()) { 317 case Type::BoolTyID: 318 case Type::UByteTyID: 319 case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break; 320 case Type::UShortTyID: 321 case Type::ShortTyID: Ptr->Untyped[0] = Val.UShortVal & 255; 322 Ptr->Untyped[1] = (Val.UShortVal >> 8) & 255; 323 break; 324 Store4BytesLittleEndian: 325 case Type::FloatTyID: 326 case Type::UIntTyID: 327 case Type::IntTyID: Ptr->Untyped[0] = Val.UIntVal & 255; 328 Ptr->Untyped[1] = (Val.UIntVal >> 8) & 255; 329 Ptr->Untyped[2] = (Val.UIntVal >> 16) & 255; 330 Ptr->Untyped[3] = (Val.UIntVal >> 24) & 255; 331 break; 332 case Type::PointerTyID: if (getTargetData().getPointerSize() == 4) 333 goto Store4BytesLittleEndian; 334 case Type::DoubleTyID: 335 case Type::ULongTyID: 336 case Type::LongTyID: 337 Ptr->Untyped[0] = (unsigned char)(Val.ULongVal ); 338 Ptr->Untyped[1] = (unsigned char)(Val.ULongVal >> 8); 339 Ptr->Untyped[2] = (unsigned char)(Val.ULongVal >> 16); 340 Ptr->Untyped[3] = (unsigned char)(Val.ULongVal >> 24); 341 Ptr->Untyped[4] = (unsigned char)(Val.ULongVal >> 32); 342 Ptr->Untyped[5] = (unsigned char)(Val.ULongVal >> 40); 343 Ptr->Untyped[6] = (unsigned char)(Val.ULongVal >> 48); 344 Ptr->Untyped[7] = (unsigned char)(Val.ULongVal >> 56); 345 break; 346 default: 347 std::cout << "Cannot store value of type " << *Ty << "!\n"; 348 } 349 } else { 350 switch (Ty->getTypeID()) { 351 case Type::BoolTyID: 352 case Type::UByteTyID: 353 case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break; 354 case Type::UShortTyID: 355 case Type::ShortTyID: Ptr->Untyped[1] = Val.UShortVal & 255; 356 Ptr->Untyped[0] = (Val.UShortVal >> 8) & 255; 357 break; 358 Store4BytesBigEndian: 359 case Type::FloatTyID: 360 case Type::UIntTyID: 361 case Type::IntTyID: Ptr->Untyped[3] = Val.UIntVal & 255; 362 Ptr->Untyped[2] = (Val.UIntVal >> 8) & 255; 363 Ptr->Untyped[1] = (Val.UIntVal >> 16) & 255; 364 Ptr->Untyped[0] = (Val.UIntVal >> 24) & 255; 365 break; 366 case Type::PointerTyID: if (getTargetData().getPointerSize() == 4) 367 goto Store4BytesBigEndian; 368 case Type::DoubleTyID: 369 case Type::ULongTyID: 370 case Type::LongTyID: 371 Ptr->Untyped[7] = (unsigned char)(Val.ULongVal ); 372 Ptr->Untyped[6] = (unsigned char)(Val.ULongVal >> 8); 373 Ptr->Untyped[5] = (unsigned char)(Val.ULongVal >> 16); 374 Ptr->Untyped[4] = (unsigned char)(Val.ULongVal >> 24); 375 Ptr->Untyped[3] = (unsigned char)(Val.ULongVal >> 32); 376 Ptr->Untyped[2] = (unsigned char)(Val.ULongVal >> 40); 377 Ptr->Untyped[1] = (unsigned char)(Val.ULongVal >> 48); 378 Ptr->Untyped[0] = (unsigned char)(Val.ULongVal >> 56); 379 break; 380 default: 381 std::cout << "Cannot store value of type " << *Ty << "!\n"; 382 } 383 } 384 } 385 386 /// FIXME: document 387 /// 388 GenericValue ExecutionEngine::LoadValueFromMemory(GenericValue *Ptr, 389 const Type *Ty) { 390 GenericValue Result; 391 if (getTargetData().isLittleEndian()) { 392 switch (Ty->getTypeID()) { 393 case Type::BoolTyID: 394 case Type::UByteTyID: 395 case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break; 396 case Type::UShortTyID: 397 case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[0] | 398 ((unsigned)Ptr->Untyped[1] << 8); 399 break; 400 Load4BytesLittleEndian: 401 case Type::FloatTyID: 402 case Type::UIntTyID: 403 case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[0] | 404 ((unsigned)Ptr->Untyped[1] << 8) | 405 ((unsigned)Ptr->Untyped[2] << 16) | 406 ((unsigned)Ptr->Untyped[3] << 24); 407 break; 408 case Type::PointerTyID: if (getTargetData().getPointerSize() == 4) 409 goto Load4BytesLittleEndian; 410 case Type::DoubleTyID: 411 case Type::ULongTyID: 412 case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[0] | 413 ((uint64_t)Ptr->Untyped[1] << 8) | 414 ((uint64_t)Ptr->Untyped[2] << 16) | 415 ((uint64_t)Ptr->Untyped[3] << 24) | 416 ((uint64_t)Ptr->Untyped[4] << 32) | 417 ((uint64_t)Ptr->Untyped[5] << 40) | 418 ((uint64_t)Ptr->Untyped[6] << 48) | 419 ((uint64_t)Ptr->Untyped[7] << 56); 420 break; 421 default: 422 std::cout << "Cannot load value of type " << *Ty << "!\n"; 423 abort(); 424 } 425 } else { 426 switch (Ty->getTypeID()) { 427 case Type::BoolTyID: 428 case Type::UByteTyID: 429 case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break; 430 case Type::UShortTyID: 431 case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[1] | 432 ((unsigned)Ptr->Untyped[0] << 8); 433 break; 434 Load4BytesBigEndian: 435 case Type::FloatTyID: 436 case Type::UIntTyID: 437 case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[3] | 438 ((unsigned)Ptr->Untyped[2] << 8) | 439 ((unsigned)Ptr->Untyped[1] << 16) | 440 ((unsigned)Ptr->Untyped[0] << 24); 441 break; 442 case Type::PointerTyID: if (getTargetData().getPointerSize() == 4) 443 goto Load4BytesBigEndian; 444 case Type::DoubleTyID: 445 case Type::ULongTyID: 446 case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[7] | 447 ((uint64_t)Ptr->Untyped[6] << 8) | 448 ((uint64_t)Ptr->Untyped[5] << 16) | 449 ((uint64_t)Ptr->Untyped[4] << 24) | 450 ((uint64_t)Ptr->Untyped[3] << 32) | 451 ((uint64_t)Ptr->Untyped[2] << 40) | 452 ((uint64_t)Ptr->Untyped[1] << 48) | 453 ((uint64_t)Ptr->Untyped[0] << 56); 454 break; 455 default: 456 std::cout << "Cannot load value of type " << *Ty << "!\n"; 457 abort(); 458 } 459 } 460 return Result; 461 } 462 463 // InitializeMemory - Recursive function to apply a Constant value into the 464 // specified memory location... 465 // 466 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 467 if (isa<UndefValue>(Init)) { 468 return; 469 } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(Init)) { 470 unsigned ElementSize = 471 getTargetData().getTypeSize(CP->getType()->getElementType()); 472 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 473 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 474 return; 475 } else if (Init->getType()->isFirstClassType()) { 476 GenericValue Val = getConstantValue(Init); 477 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 478 return; 479 } else if (isa<ConstantAggregateZero>(Init)) { 480 memset(Addr, 0, (size_t)getTargetData().getTypeSize(Init->getType())); 481 return; 482 } 483 484 switch (Init->getType()->getTypeID()) { 485 case Type::ArrayTyID: { 486 const ConstantArray *CPA = cast<ConstantArray>(Init); 487 unsigned ElementSize = 488 getTargetData().getTypeSize(CPA->getType()->getElementType()); 489 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 490 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 491 return; 492 } 493 494 case Type::StructTyID: { 495 const ConstantStruct *CPS = cast<ConstantStruct>(Init); 496 const StructLayout *SL = 497 getTargetData().getStructLayout(cast<StructType>(CPS->getType())); 498 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 499 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->MemberOffsets[i]); 500 return; 501 } 502 503 default: 504 std::cerr << "Bad Type: " << *Init->getType() << "\n"; 505 assert(0 && "Unknown constant type to initialize memory with!"); 506 } 507 } 508 509 /// EmitGlobals - Emit all of the global variables to memory, storing their 510 /// addresses into GlobalAddress. This must make sure to copy the contents of 511 /// their initializers into the memory. 512 /// 513 void ExecutionEngine::emitGlobals() { 514 const TargetData &TD = getTargetData(); 515 516 // Loop over all of the global variables in the program, allocating the memory 517 // to hold them. 518 Module &M = getModule(); 519 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 520 I != E; ++I) 521 if (!I->isExternal()) { 522 // Get the type of the global... 523 const Type *Ty = I->getType()->getElementType(); 524 525 // Allocate some memory for it! 526 unsigned Size = TD.getTypeSize(Ty); 527 addGlobalMapping(I, new char[Size]); 528 } else { 529 // External variable reference. Try to use the dynamic loader to 530 // get a pointer to it. 531 if (void *SymAddr = sys::DynamicLibrary::SearchForAddressOfSymbol( 532 I->getName().c_str())) 533 addGlobalMapping(I, SymAddr); 534 else { 535 std::cerr << "Could not resolve external global address: " 536 << I->getName() << "\n"; 537 abort(); 538 } 539 } 540 541 // Now that all of the globals are set up in memory, loop through them all and 542 // initialize their contents. 543 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 544 I != E; ++I) 545 if (!I->isExternal()) 546 EmitGlobalVariable(I); 547 } 548 549 // EmitGlobalVariable - This method emits the specified global variable to the 550 // address specified in GlobalAddresses, or allocates new memory if it's not 551 // already in the map. 552 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 553 void *GA = getPointerToGlobalIfAvailable(GV); 554 DEBUG(std::cerr << "Global '" << GV->getName() << "' -> " << GA << "\n"); 555 556 const Type *ElTy = GV->getType()->getElementType(); 557 size_t GVSize = (size_t)getTargetData().getTypeSize(ElTy); 558 if (GA == 0) { 559 // If it's not already specified, allocate memory for the global. 560 GA = new char[GVSize]; 561 addGlobalMapping(GV, GA); 562 } 563 564 InitializeMemory(GV->getInitializer(), GA); 565 NumInitBytes += (unsigned)GVSize; 566 ++NumGlobals; 567 } 568