1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/Module.h" 19 #include "llvm/ModuleProvider.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ExecutionEngine/ExecutionEngine.h" 22 #include "llvm/ExecutionEngine/GenericValue.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/MutexGuard.h" 25 #include "llvm/System/DynamicLibrary.h" 26 #include "llvm/Target/TargetData.h" 27 #include <iostream> 28 using namespace llvm; 29 30 namespace { 31 Statistic<> NumInitBytes("lli", "Number of bytes of global vars initialized"); 32 Statistic<> NumGlobals ("lli", "Number of global vars initialized"); 33 } 34 35 ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0; 36 ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0; 37 38 ExecutionEngine::ExecutionEngine(ModuleProvider *P) : 39 CurMod(*P->getModule()), MP(P) { 40 assert(P && "ModuleProvider is null?"); 41 } 42 43 ExecutionEngine::ExecutionEngine(Module *M) : CurMod(*M), MP(0) { 44 assert(M && "Module is null?"); 45 } 46 47 ExecutionEngine::~ExecutionEngine() { 48 delete MP; 49 } 50 51 /// addGlobalMapping - Tell the execution engine that the specified global is 52 /// at the specified location. This is used internally as functions are JIT'd 53 /// and as global variables are laid out in memory. It can and should also be 54 /// used by clients of the EE that want to have an LLVM global overlay 55 /// existing data in memory. 56 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 57 MutexGuard locked(lock); 58 59 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 60 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 61 CurVal = Addr; 62 63 // If we are using the reverse mapping, add it too 64 if (!state.getGlobalAddressReverseMap(locked).empty()) { 65 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; 66 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 67 V = GV; 68 } 69 } 70 71 /// clearAllGlobalMappings - Clear all global mappings and start over again 72 /// use in dynamic compilation scenarios when you want to move globals 73 void ExecutionEngine::clearAllGlobalMappings() { 74 MutexGuard locked(lock); 75 76 state.getGlobalAddressMap(locked).clear(); 77 state.getGlobalAddressReverseMap(locked).clear(); 78 } 79 80 /// updateGlobalMapping - Replace an existing mapping for GV with a new 81 /// address. This updates both maps as required. If "Addr" is null, the 82 /// entry for the global is removed from the mappings. 83 void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 84 MutexGuard locked(lock); 85 86 // Deleting from the mapping? 87 if (Addr == 0) { 88 state.getGlobalAddressMap(locked).erase(GV); 89 if (!state.getGlobalAddressReverseMap(locked).empty()) 90 state.getGlobalAddressReverseMap(locked).erase(Addr); 91 return; 92 } 93 94 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 95 if (CurVal && !state.getGlobalAddressReverseMap(locked).empty()) 96 state.getGlobalAddressReverseMap(locked).erase(CurVal); 97 CurVal = Addr; 98 99 // If we are using the reverse mapping, add it too 100 if (!state.getGlobalAddressReverseMap(locked).empty()) { 101 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; 102 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 103 V = GV; 104 } 105 } 106 107 /// getPointerToGlobalIfAvailable - This returns the address of the specified 108 /// global value if it is has already been codegen'd, otherwise it returns null. 109 /// 110 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 111 MutexGuard locked(lock); 112 113 std::map<const GlobalValue*, void*>::iterator I = 114 state.getGlobalAddressMap(locked).find(GV); 115 return I != state.getGlobalAddressMap(locked).end() ? I->second : 0; 116 } 117 118 /// getGlobalValueAtAddress - Return the LLVM global value object that starts 119 /// at the specified address. 120 /// 121 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 122 MutexGuard locked(lock); 123 124 // If we haven't computed the reverse mapping yet, do so first. 125 if (state.getGlobalAddressReverseMap(locked).empty()) { 126 for (std::map<const GlobalValue*, void *>::iterator 127 I = state.getGlobalAddressMap(locked).begin(), 128 E = state.getGlobalAddressMap(locked).end(); I != E; ++I) 129 state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, 130 I->first)); 131 } 132 133 std::map<void *, const GlobalValue*>::iterator I = 134 state.getGlobalAddressReverseMap(locked).find(Addr); 135 return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 136 } 137 138 // CreateArgv - Turn a vector of strings into a nice argv style array of 139 // pointers to null terminated strings. 140 // 141 static void *CreateArgv(ExecutionEngine *EE, 142 const std::vector<std::string> &InputArgv) { 143 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 144 char *Result = new char[(InputArgv.size()+1)*PtrSize]; 145 146 DEBUG(std::cerr << "ARGV = " << (void*)Result << "\n"); 147 const Type *SBytePtr = PointerType::get(Type::SByteTy); 148 149 for (unsigned i = 0; i != InputArgv.size(); ++i) { 150 unsigned Size = InputArgv[i].size()+1; 151 char *Dest = new char[Size]; 152 DEBUG(std::cerr << "ARGV[" << i << "] = " << (void*)Dest << "\n"); 153 154 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 155 Dest[Size-1] = 0; 156 157 // Endian safe: Result[i] = (PointerTy)Dest; 158 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), 159 SBytePtr); 160 } 161 162 // Null terminate it 163 EE->StoreValueToMemory(PTOGV(0), 164 (GenericValue*)(Result+InputArgv.size()*PtrSize), 165 SBytePtr); 166 return Result; 167 } 168 169 170 /// runStaticConstructorsDestructors - This method is used to execute all of 171 /// the static constructors or destructors for a module, depending on the 172 /// value of isDtors. 173 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 174 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 175 GlobalVariable *GV = CurMod.getNamedGlobal(Name); 176 177 // If this global has internal linkage, or if it has a use, then it must be 178 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 179 // this is the case, don't execute any of the global ctors, __main will do it. 180 if (!GV || GV->isExternal() || GV->hasInternalLinkage()) return; 181 182 // Should be an array of '{ int, void ()* }' structs. The first value is the 183 // init priority, which we ignore. 184 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 185 if (!InitList) return; 186 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 187 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ 188 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 189 190 Constant *FP = CS->getOperand(1); 191 if (FP->isNullValue()) 192 return; // Found a null terminator, exit. 193 194 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 195 if (CE->getOpcode() == Instruction::Cast) 196 FP = CE->getOperand(0); 197 if (Function *F = dyn_cast<Function>(FP)) { 198 // Execute the ctor/dtor function! 199 runFunction(F, std::vector<GenericValue>()); 200 } 201 } 202 } 203 204 /// runFunctionAsMain - This is a helper function which wraps runFunction to 205 /// handle the common task of starting up main with the specified argc, argv, 206 /// and envp parameters. 207 int ExecutionEngine::runFunctionAsMain(Function *Fn, 208 const std::vector<std::string> &argv, 209 const char * const * envp) { 210 std::vector<GenericValue> GVArgs; 211 GenericValue GVArgc; 212 GVArgc.IntVal = argv.size(); 213 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 214 if (NumArgs) { 215 GVArgs.push_back(GVArgc); // Arg #0 = argc. 216 if (NumArgs > 1) { 217 GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv. 218 assert(((char **)GVTOP(GVArgs[1]))[0] && 219 "argv[0] was null after CreateArgv"); 220 if (NumArgs > 2) { 221 std::vector<std::string> EnvVars; 222 for (unsigned i = 0; envp[i]; ++i) 223 EnvVars.push_back(envp[i]); 224 GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp. 225 } 226 } 227 } 228 return runFunction(Fn, GVArgs).IntVal; 229 } 230 231 /// If possible, create a JIT, unless the caller specifically requests an 232 /// Interpreter or there's an error. If even an Interpreter cannot be created, 233 /// NULL is returned. 234 /// 235 ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, 236 bool ForceInterpreter) { 237 ExecutionEngine *EE = 0; 238 239 // Unless the interpreter was explicitly selected, try making a JIT. 240 if (!ForceInterpreter && JITCtor) 241 EE = JITCtor(MP); 242 243 // If we can't make a JIT, make an interpreter instead. 244 if (EE == 0 && InterpCtor) 245 EE = InterpCtor(MP); 246 247 if (EE) { 248 // Make sure we can resolve symbols in the program as well. The zero arg 249 // to the function tells DynamicLibrary to load the program, not a library. 250 try { 251 sys::DynamicLibrary::LoadLibraryPermanently(0); 252 } catch (...) { 253 } 254 } 255 256 return EE; 257 } 258 259 /// getPointerToGlobal - This returns the address of the specified global 260 /// value. This may involve code generation if it's a function. 261 /// 262 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 263 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 264 return getPointerToFunction(F); 265 266 MutexGuard locked(lock); 267 void *p = state.getGlobalAddressMap(locked)[GV]; 268 if (p) 269 return p; 270 271 // Global variable might have been added since interpreter started. 272 if (GlobalVariable *GVar = 273 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 274 EmitGlobalVariable(GVar); 275 else 276 assert("Global hasn't had an address allocated yet!"); 277 return state.getGlobalAddressMap(locked)[GV]; 278 } 279 280 /// FIXME: document 281 /// 282 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 283 GenericValue Result; 284 if (isa<UndefValue>(C)) return Result; 285 286 if (ConstantExpr *CE = const_cast<ConstantExpr*>(dyn_cast<ConstantExpr>(C))) { 287 switch (CE->getOpcode()) { 288 case Instruction::GetElementPtr: { 289 Result = getConstantValue(CE->getOperand(0)); 290 std::vector<Value*> Indexes(CE->op_begin()+1, CE->op_end()); 291 uint64_t Offset = 292 TD->getIndexedOffset(CE->getOperand(0)->getType(), Indexes); 293 294 if (getTargetData()->getPointerSize() == 4) 295 Result.IntVal += Offset; 296 else 297 Result.LongVal += Offset; 298 return Result; 299 } 300 case Instruction::Cast: { 301 // We only need to handle a few cases here. Almost all casts will 302 // automatically fold, just the ones involving pointers won't. 303 // 304 Constant *Op = CE->getOperand(0); 305 GenericValue GV = getConstantValue(Op); 306 307 // Handle cast of pointer to pointer... 308 if (Op->getType()->getTypeID() == C->getType()->getTypeID()) 309 return GV; 310 311 // Handle a cast of pointer to any integral type... 312 if (isa<PointerType>(Op->getType()) && C->getType()->isIntegral()) 313 return GV; 314 315 // Handle cast of integer to a pointer... 316 if (isa<PointerType>(C->getType()) && Op->getType()->isIntegral()) 317 switch (Op->getType()->getTypeID()) { 318 case Type::BoolTyID: return PTOGV((void*)(uintptr_t)GV.BoolVal); 319 case Type::SByteTyID: return PTOGV((void*)( intptr_t)GV.SByteVal); 320 case Type::UByteTyID: return PTOGV((void*)(uintptr_t)GV.UByteVal); 321 case Type::ShortTyID: return PTOGV((void*)( intptr_t)GV.ShortVal); 322 case Type::UShortTyID: return PTOGV((void*)(uintptr_t)GV.UShortVal); 323 case Type::IntTyID: return PTOGV((void*)( intptr_t)GV.IntVal); 324 case Type::UIntTyID: return PTOGV((void*)(uintptr_t)GV.UIntVal); 325 case Type::LongTyID: return PTOGV((void*)( intptr_t)GV.LongVal); 326 case Type::ULongTyID: return PTOGV((void*)(uintptr_t)GV.ULongVal); 327 default: assert(0 && "Unknown integral type!"); 328 } 329 break; 330 } 331 332 case Instruction::Add: 333 switch (CE->getOperand(0)->getType()->getTypeID()) { 334 default: assert(0 && "Bad add type!"); abort(); 335 case Type::LongTyID: 336 case Type::ULongTyID: 337 Result.LongVal = getConstantValue(CE->getOperand(0)).LongVal + 338 getConstantValue(CE->getOperand(1)).LongVal; 339 break; 340 case Type::IntTyID: 341 case Type::UIntTyID: 342 Result.IntVal = getConstantValue(CE->getOperand(0)).IntVal + 343 getConstantValue(CE->getOperand(1)).IntVal; 344 break; 345 case Type::ShortTyID: 346 case Type::UShortTyID: 347 Result.ShortVal = getConstantValue(CE->getOperand(0)).ShortVal + 348 getConstantValue(CE->getOperand(1)).ShortVal; 349 break; 350 case Type::SByteTyID: 351 case Type::UByteTyID: 352 Result.SByteVal = getConstantValue(CE->getOperand(0)).SByteVal + 353 getConstantValue(CE->getOperand(1)).SByteVal; 354 break; 355 case Type::FloatTyID: 356 Result.FloatVal = getConstantValue(CE->getOperand(0)).FloatVal + 357 getConstantValue(CE->getOperand(1)).FloatVal; 358 break; 359 case Type::DoubleTyID: 360 Result.DoubleVal = getConstantValue(CE->getOperand(0)).DoubleVal + 361 getConstantValue(CE->getOperand(1)).DoubleVal; 362 break; 363 } 364 return Result; 365 default: 366 break; 367 } 368 std::cerr << "ConstantExpr not handled as global var init: " << *CE << "\n"; 369 abort(); 370 } 371 372 switch (C->getType()->getTypeID()) { 373 #define GET_CONST_VAL(TY, CTY, CLASS) \ 374 case Type::TY##TyID: Result.TY##Val = (CTY)cast<CLASS>(C)->getValue(); break 375 GET_CONST_VAL(Bool , bool , ConstantBool); 376 GET_CONST_VAL(UByte , unsigned char , ConstantUInt); 377 GET_CONST_VAL(SByte , signed char , ConstantSInt); 378 GET_CONST_VAL(UShort , unsigned short, ConstantUInt); 379 GET_CONST_VAL(Short , signed short , ConstantSInt); 380 GET_CONST_VAL(UInt , unsigned int , ConstantUInt); 381 GET_CONST_VAL(Int , signed int , ConstantSInt); 382 GET_CONST_VAL(ULong , uint64_t , ConstantUInt); 383 GET_CONST_VAL(Long , int64_t , ConstantSInt); 384 GET_CONST_VAL(Float , float , ConstantFP); 385 GET_CONST_VAL(Double , double , ConstantFP); 386 #undef GET_CONST_VAL 387 case Type::PointerTyID: 388 if (isa<ConstantPointerNull>(C)) 389 Result.PointerVal = 0; 390 else if (const Function *F = dyn_cast<Function>(C)) 391 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 392 else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) 393 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 394 else 395 assert(0 && "Unknown constant pointer type!"); 396 break; 397 default: 398 std::cout << "ERROR: Constant unimp for type: " << *C->getType() << "\n"; 399 abort(); 400 } 401 return Result; 402 } 403 404 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr 405 /// is the address of the memory at which to store Val, cast to GenericValue *. 406 /// It is not a pointer to a GenericValue containing the address at which to 407 /// store Val. 408 /// 409 void ExecutionEngine::StoreValueToMemory(GenericValue Val, GenericValue *Ptr, 410 const Type *Ty) { 411 if (getTargetData()->isLittleEndian()) { 412 switch (Ty->getTypeID()) { 413 case Type::BoolTyID: 414 case Type::UByteTyID: 415 case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break; 416 case Type::UShortTyID: 417 case Type::ShortTyID: Ptr->Untyped[0] = Val.UShortVal & 255; 418 Ptr->Untyped[1] = (Val.UShortVal >> 8) & 255; 419 break; 420 Store4BytesLittleEndian: 421 case Type::FloatTyID: 422 case Type::UIntTyID: 423 case Type::IntTyID: Ptr->Untyped[0] = Val.UIntVal & 255; 424 Ptr->Untyped[1] = (Val.UIntVal >> 8) & 255; 425 Ptr->Untyped[2] = (Val.UIntVal >> 16) & 255; 426 Ptr->Untyped[3] = (Val.UIntVal >> 24) & 255; 427 break; 428 case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) 429 goto Store4BytesLittleEndian; 430 case Type::DoubleTyID: 431 case Type::ULongTyID: 432 case Type::LongTyID: 433 Ptr->Untyped[0] = (unsigned char)(Val.ULongVal ); 434 Ptr->Untyped[1] = (unsigned char)(Val.ULongVal >> 8); 435 Ptr->Untyped[2] = (unsigned char)(Val.ULongVal >> 16); 436 Ptr->Untyped[3] = (unsigned char)(Val.ULongVal >> 24); 437 Ptr->Untyped[4] = (unsigned char)(Val.ULongVal >> 32); 438 Ptr->Untyped[5] = (unsigned char)(Val.ULongVal >> 40); 439 Ptr->Untyped[6] = (unsigned char)(Val.ULongVal >> 48); 440 Ptr->Untyped[7] = (unsigned char)(Val.ULongVal >> 56); 441 break; 442 default: 443 std::cout << "Cannot store value of type " << *Ty << "!\n"; 444 } 445 } else { 446 switch (Ty->getTypeID()) { 447 case Type::BoolTyID: 448 case Type::UByteTyID: 449 case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break; 450 case Type::UShortTyID: 451 case Type::ShortTyID: Ptr->Untyped[1] = Val.UShortVal & 255; 452 Ptr->Untyped[0] = (Val.UShortVal >> 8) & 255; 453 break; 454 Store4BytesBigEndian: 455 case Type::FloatTyID: 456 case Type::UIntTyID: 457 case Type::IntTyID: Ptr->Untyped[3] = Val.UIntVal & 255; 458 Ptr->Untyped[2] = (Val.UIntVal >> 8) & 255; 459 Ptr->Untyped[1] = (Val.UIntVal >> 16) & 255; 460 Ptr->Untyped[0] = (Val.UIntVal >> 24) & 255; 461 break; 462 case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) 463 goto Store4BytesBigEndian; 464 case Type::DoubleTyID: 465 case Type::ULongTyID: 466 case Type::LongTyID: 467 Ptr->Untyped[7] = (unsigned char)(Val.ULongVal ); 468 Ptr->Untyped[6] = (unsigned char)(Val.ULongVal >> 8); 469 Ptr->Untyped[5] = (unsigned char)(Val.ULongVal >> 16); 470 Ptr->Untyped[4] = (unsigned char)(Val.ULongVal >> 24); 471 Ptr->Untyped[3] = (unsigned char)(Val.ULongVal >> 32); 472 Ptr->Untyped[2] = (unsigned char)(Val.ULongVal >> 40); 473 Ptr->Untyped[1] = (unsigned char)(Val.ULongVal >> 48); 474 Ptr->Untyped[0] = (unsigned char)(Val.ULongVal >> 56); 475 break; 476 default: 477 std::cout << "Cannot store value of type " << *Ty << "!\n"; 478 } 479 } 480 } 481 482 /// FIXME: document 483 /// 484 GenericValue ExecutionEngine::LoadValueFromMemory(GenericValue *Ptr, 485 const Type *Ty) { 486 GenericValue Result; 487 if (getTargetData()->isLittleEndian()) { 488 switch (Ty->getTypeID()) { 489 case Type::BoolTyID: 490 case Type::UByteTyID: 491 case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break; 492 case Type::UShortTyID: 493 case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[0] | 494 ((unsigned)Ptr->Untyped[1] << 8); 495 break; 496 Load4BytesLittleEndian: 497 case Type::FloatTyID: 498 case Type::UIntTyID: 499 case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[0] | 500 ((unsigned)Ptr->Untyped[1] << 8) | 501 ((unsigned)Ptr->Untyped[2] << 16) | 502 ((unsigned)Ptr->Untyped[3] << 24); 503 break; 504 case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) 505 goto Load4BytesLittleEndian; 506 case Type::DoubleTyID: 507 case Type::ULongTyID: 508 case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[0] | 509 ((uint64_t)Ptr->Untyped[1] << 8) | 510 ((uint64_t)Ptr->Untyped[2] << 16) | 511 ((uint64_t)Ptr->Untyped[3] << 24) | 512 ((uint64_t)Ptr->Untyped[4] << 32) | 513 ((uint64_t)Ptr->Untyped[5] << 40) | 514 ((uint64_t)Ptr->Untyped[6] << 48) | 515 ((uint64_t)Ptr->Untyped[7] << 56); 516 break; 517 default: 518 std::cout << "Cannot load value of type " << *Ty << "!\n"; 519 abort(); 520 } 521 } else { 522 switch (Ty->getTypeID()) { 523 case Type::BoolTyID: 524 case Type::UByteTyID: 525 case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break; 526 case Type::UShortTyID: 527 case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[1] | 528 ((unsigned)Ptr->Untyped[0] << 8); 529 break; 530 Load4BytesBigEndian: 531 case Type::FloatTyID: 532 case Type::UIntTyID: 533 case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[3] | 534 ((unsigned)Ptr->Untyped[2] << 8) | 535 ((unsigned)Ptr->Untyped[1] << 16) | 536 ((unsigned)Ptr->Untyped[0] << 24); 537 break; 538 case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) 539 goto Load4BytesBigEndian; 540 case Type::DoubleTyID: 541 case Type::ULongTyID: 542 case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[7] | 543 ((uint64_t)Ptr->Untyped[6] << 8) | 544 ((uint64_t)Ptr->Untyped[5] << 16) | 545 ((uint64_t)Ptr->Untyped[4] << 24) | 546 ((uint64_t)Ptr->Untyped[3] << 32) | 547 ((uint64_t)Ptr->Untyped[2] << 40) | 548 ((uint64_t)Ptr->Untyped[1] << 48) | 549 ((uint64_t)Ptr->Untyped[0] << 56); 550 break; 551 default: 552 std::cout << "Cannot load value of type " << *Ty << "!\n"; 553 abort(); 554 } 555 } 556 return Result; 557 } 558 559 // InitializeMemory - Recursive function to apply a Constant value into the 560 // specified memory location... 561 // 562 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 563 if (isa<UndefValue>(Init)) { 564 return; 565 } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(Init)) { 566 unsigned ElementSize = 567 getTargetData()->getTypeSize(CP->getType()->getElementType()); 568 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 569 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 570 return; 571 } else if (Init->getType()->isFirstClassType()) { 572 GenericValue Val = getConstantValue(Init); 573 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 574 return; 575 } else if (isa<ConstantAggregateZero>(Init)) { 576 memset(Addr, 0, (size_t)getTargetData()->getTypeSize(Init->getType())); 577 return; 578 } 579 580 switch (Init->getType()->getTypeID()) { 581 case Type::ArrayTyID: { 582 const ConstantArray *CPA = cast<ConstantArray>(Init); 583 unsigned ElementSize = 584 getTargetData()->getTypeSize(CPA->getType()->getElementType()); 585 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 586 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 587 return; 588 } 589 590 case Type::StructTyID: { 591 const ConstantStruct *CPS = cast<ConstantStruct>(Init); 592 const StructLayout *SL = 593 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 594 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 595 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->MemberOffsets[i]); 596 return; 597 } 598 599 default: 600 std::cerr << "Bad Type: " << *Init->getType() << "\n"; 601 assert(0 && "Unknown constant type to initialize memory with!"); 602 } 603 } 604 605 /// EmitGlobals - Emit all of the global variables to memory, storing their 606 /// addresses into GlobalAddress. This must make sure to copy the contents of 607 /// their initializers into the memory. 608 /// 609 void ExecutionEngine::emitGlobals() { 610 const TargetData *TD = getTargetData(); 611 612 // Loop over all of the global variables in the program, allocating the memory 613 // to hold them. 614 Module &M = getModule(); 615 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 616 I != E; ++I) 617 if (!I->isExternal()) { 618 // Get the type of the global... 619 const Type *Ty = I->getType()->getElementType(); 620 621 // Allocate some memory for it! 622 unsigned Size = TD->getTypeSize(Ty); 623 addGlobalMapping(I, new char[Size]); 624 } else { 625 // External variable reference. Try to use the dynamic loader to 626 // get a pointer to it. 627 if (void *SymAddr = sys::DynamicLibrary::SearchForAddressOfSymbol( 628 I->getName().c_str())) 629 addGlobalMapping(I, SymAddr); 630 else { 631 std::cerr << "Could not resolve external global address: " 632 << I->getName() << "\n"; 633 abort(); 634 } 635 } 636 637 // Now that all of the globals are set up in memory, loop through them all and 638 // initialize their contents. 639 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 640 I != E; ++I) 641 if (!I->isExternal()) 642 EmitGlobalVariable(I); 643 } 644 645 // EmitGlobalVariable - This method emits the specified global variable to the 646 // address specified in GlobalAddresses, or allocates new memory if it's not 647 // already in the map. 648 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 649 void *GA = getPointerToGlobalIfAvailable(GV); 650 DEBUG(std::cerr << "Global '" << GV->getName() << "' -> " << GA << "\n"); 651 652 const Type *ElTy = GV->getType()->getElementType(); 653 size_t GVSize = (size_t)getTargetData()->getTypeSize(ElTy); 654 if (GA == 0) { 655 // If it's not already specified, allocate memory for the global. 656 GA = new char[GVSize]; 657 addGlobalMapping(GV, GA); 658 } 659 660 InitializeMemory(GV->getInitializer(), GA); 661 NumInitBytes += (unsigned)GVSize; 662 ++NumGlobals; 663 } 664