1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ExecutionEngine/ExecutionEngine.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ExecutionEngine/GenericValue.h" 20 #include "llvm/ExecutionEngine/JITEventListener.h" 21 #include "llvm/ExecutionEngine/RTDyldMemoryManager.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/IR/Operator.h" 27 #include "llvm/IR/ValueHandle.h" 28 #include "llvm/Object/Archive.h" 29 #include "llvm/Object/ObjectFile.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/DynamicLibrary.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/Host.h" 34 #include "llvm/Support/MutexGuard.h" 35 #include "llvm/Support/TargetRegistry.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include <cmath> 39 #include <cstring> 40 using namespace llvm; 41 42 #define DEBUG_TYPE "jit" 43 44 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 45 STATISTIC(NumGlobals , "Number of global vars initialized"); 46 47 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 48 std::unique_ptr<Module> M, std::string *ErrorStr, 49 std::shared_ptr<MCJITMemoryManager> MemMgr, 50 std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver, 51 std::unique_ptr<TargetMachine> TM) = nullptr; 52 53 ExecutionEngine *(*ExecutionEngine::OrcMCJITReplacementCtor)( 54 std::string *ErrorStr, std::shared_ptr<MCJITMemoryManager> MemMgr, 55 std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver, 56 std::unique_ptr<TargetMachine> TM) = nullptr; 57 58 ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M, 59 std::string *ErrorStr) =nullptr; 60 61 void JITEventListener::anchor() {} 62 63 ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M) 64 : EEState(*this), 65 LazyFunctionCreator(nullptr) { 66 CompilingLazily = false; 67 GVCompilationDisabled = false; 68 SymbolSearchingDisabled = false; 69 70 // IR module verification is enabled by default in debug builds, and disabled 71 // by default in release builds. 72 #ifndef NDEBUG 73 VerifyModules = true; 74 #else 75 VerifyModules = false; 76 #endif 77 78 assert(M && "Module is null?"); 79 Modules.push_back(std::move(M)); 80 } 81 82 ExecutionEngine::~ExecutionEngine() { 83 clearAllGlobalMappings(); 84 } 85 86 namespace { 87 /// \brief Helper class which uses a value handler to automatically deletes the 88 /// memory block when the GlobalVariable is destroyed. 89 class GVMemoryBlock : public CallbackVH { 90 GVMemoryBlock(const GlobalVariable *GV) 91 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 92 93 public: 94 /// \brief Returns the address the GlobalVariable should be written into. The 95 /// GVMemoryBlock object prefixes that. 96 static char *Create(const GlobalVariable *GV, const DataLayout& TD) { 97 Type *ElTy = GV->getType()->getElementType(); 98 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 99 void *RawMemory = ::operator new( 100 RoundUpToAlignment(sizeof(GVMemoryBlock), 101 TD.getPreferredAlignment(GV)) 102 + GVSize); 103 new(RawMemory) GVMemoryBlock(GV); 104 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 105 } 106 107 void deleted() override { 108 // We allocated with operator new and with some extra memory hanging off the 109 // end, so don't just delete this. I'm not sure if this is actually 110 // required. 111 this->~GVMemoryBlock(); 112 ::operator delete(this); 113 } 114 }; 115 } // anonymous namespace 116 117 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 118 return GVMemoryBlock::Create(GV, *getDataLayout()); 119 } 120 121 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { 122 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 123 } 124 125 void 126 ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) { 127 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 128 } 129 130 void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) { 131 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive."); 132 } 133 134 bool ExecutionEngine::removeModule(Module *M) { 135 for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) { 136 Module *Found = I->get(); 137 if (Found == M) { 138 I->release(); 139 Modules.erase(I); 140 clearGlobalMappingsFromModule(M); 141 return true; 142 } 143 } 144 return false; 145 } 146 147 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 148 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 149 Function *F = Modules[i]->getFunction(FnName); 150 if (F && !F->isDeclaration()) 151 return F; 152 } 153 return nullptr; 154 } 155 156 157 void *ExecutionEngineState::RemoveMapping(const GlobalValue *ToUnmap) { 158 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 159 void *OldVal; 160 161 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 162 // GlobalAddressMap. 163 if (I == GlobalAddressMap.end()) 164 OldVal = nullptr; 165 else { 166 OldVal = I->second; 167 GlobalAddressMap.erase(I); 168 } 169 170 GlobalAddressReverseMap.erase(OldVal); 171 return OldVal; 172 } 173 174 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 175 MutexGuard locked(lock); 176 177 DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 178 << "\' to [" << Addr << "]\n";); 179 void *&CurVal = EEState.getGlobalAddressMap()[GV]; 180 assert((!CurVal || !Addr) && "GlobalMapping already established!"); 181 CurVal = Addr; 182 183 // If we are using the reverse mapping, add it too. 184 if (!EEState.getGlobalAddressReverseMap().empty()) { 185 AssertingVH<const GlobalValue> &V = 186 EEState.getGlobalAddressReverseMap()[Addr]; 187 assert((!V || !GV) && "GlobalMapping already established!"); 188 V = GV; 189 } 190 } 191 192 void ExecutionEngine::clearAllGlobalMappings() { 193 MutexGuard locked(lock); 194 195 EEState.getGlobalAddressMap().clear(); 196 EEState.getGlobalAddressReverseMap().clear(); 197 } 198 199 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 200 MutexGuard locked(lock); 201 202 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) 203 EEState.RemoveMapping(FI); 204 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 205 GI != GE; ++GI) 206 EEState.RemoveMapping(GI); 207 } 208 209 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 210 MutexGuard locked(lock); 211 212 ExecutionEngineState::GlobalAddressMapTy &Map = 213 EEState.getGlobalAddressMap(); 214 215 // Deleting from the mapping? 216 if (!Addr) 217 return EEState.RemoveMapping(GV); 218 219 void *&CurVal = Map[GV]; 220 void *OldVal = CurVal; 221 222 if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) 223 EEState.getGlobalAddressReverseMap().erase(CurVal); 224 CurVal = Addr; 225 226 // If we are using the reverse mapping, add it too. 227 if (!EEState.getGlobalAddressReverseMap().empty()) { 228 AssertingVH<const GlobalValue> &V = 229 EEState.getGlobalAddressReverseMap()[Addr]; 230 assert((!V || !GV) && "GlobalMapping already established!"); 231 V = GV; 232 } 233 return OldVal; 234 } 235 236 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 237 MutexGuard locked(lock); 238 239 ExecutionEngineState::GlobalAddressMapTy::iterator I = 240 EEState.getGlobalAddressMap().find(GV); 241 return I != EEState.getGlobalAddressMap().end() ? I->second : nullptr; 242 } 243 244 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 245 MutexGuard locked(lock); 246 247 // If we haven't computed the reverse mapping yet, do so first. 248 if (EEState.getGlobalAddressReverseMap().empty()) { 249 for (ExecutionEngineState::GlobalAddressMapTy::iterator 250 I = EEState.getGlobalAddressMap().begin(), 251 E = EEState.getGlobalAddressMap().end(); I != E; ++I) 252 EEState.getGlobalAddressReverseMap().insert(std::make_pair( 253 I->second, I->first)); 254 } 255 256 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 257 EEState.getGlobalAddressReverseMap().find(Addr); 258 return I != EEState.getGlobalAddressReverseMap().end() ? I->second : nullptr; 259 } 260 261 namespace { 262 class ArgvArray { 263 std::unique_ptr<char[]> Array; 264 std::vector<std::unique_ptr<char[]>> Values; 265 public: 266 /// Turn a vector of strings into a nice argv style array of pointers to null 267 /// terminated strings. 268 void *reset(LLVMContext &C, ExecutionEngine *EE, 269 const std::vector<std::string> &InputArgv); 270 }; 271 } // anonymous namespace 272 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 273 const std::vector<std::string> &InputArgv) { 274 Values.clear(); // Free the old contents. 275 Values.reserve(InputArgv.size()); 276 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 277 Array = make_unique<char[]>((InputArgv.size()+1)*PtrSize); 278 279 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array.get() << "\n"); 280 Type *SBytePtr = Type::getInt8PtrTy(C); 281 282 for (unsigned i = 0; i != InputArgv.size(); ++i) { 283 unsigned Size = InputArgv[i].size()+1; 284 auto Dest = make_unique<char[]>(Size); 285 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest.get() << "\n"); 286 287 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get()); 288 Dest[Size-1] = 0; 289 290 // Endian safe: Array[i] = (PointerTy)Dest; 291 EE->StoreValueToMemory(PTOGV(Dest.get()), 292 (GenericValue*)(&Array[i*PtrSize]), SBytePtr); 293 Values.push_back(std::move(Dest)); 294 } 295 296 // Null terminate it 297 EE->StoreValueToMemory(PTOGV(nullptr), 298 (GenericValue*)(&Array[InputArgv.size()*PtrSize]), 299 SBytePtr); 300 return Array.get(); 301 } 302 303 void ExecutionEngine::runStaticConstructorsDestructors(Module &module, 304 bool isDtors) { 305 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 306 GlobalVariable *GV = module.getNamedGlobal(Name); 307 308 // If this global has internal linkage, or if it has a use, then it must be 309 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 310 // this is the case, don't execute any of the global ctors, __main will do 311 // it. 312 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 313 314 // Should be an array of '{ i32, void ()* }' structs. The first value is 315 // the init priority, which we ignore. 316 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 317 if (!InitList) 318 return; 319 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 320 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 321 if (!CS) continue; 322 323 Constant *FP = CS->getOperand(1); 324 if (FP->isNullValue()) 325 continue; // Found a sentinal value, ignore. 326 327 // Strip off constant expression casts. 328 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 329 if (CE->isCast()) 330 FP = CE->getOperand(0); 331 332 // Execute the ctor/dtor function! 333 if (Function *F = dyn_cast<Function>(FP)) 334 runFunction(F, std::vector<GenericValue>()); 335 336 // FIXME: It is marginally lame that we just do nothing here if we see an 337 // entry we don't recognize. It might not be unreasonable for the verifier 338 // to not even allow this and just assert here. 339 } 340 } 341 342 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 343 // Execute global ctors/dtors for each module in the program. 344 for (std::unique_ptr<Module> &M : Modules) 345 runStaticConstructorsDestructors(*M, isDtors); 346 } 347 348 #ifndef NDEBUG 349 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 350 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 351 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 352 for (unsigned i = 0; i < PtrSize; ++i) 353 if (*(i + (uint8_t*)Loc)) 354 return false; 355 return true; 356 } 357 #endif 358 359 int ExecutionEngine::runFunctionAsMain(Function *Fn, 360 const std::vector<std::string> &argv, 361 const char * const * envp) { 362 std::vector<GenericValue> GVArgs; 363 GenericValue GVArgc; 364 GVArgc.IntVal = APInt(32, argv.size()); 365 366 // Check main() type 367 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 368 FunctionType *FTy = Fn->getFunctionType(); 369 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 370 371 // Check the argument types. 372 if (NumArgs > 3) 373 report_fatal_error("Invalid number of arguments of main() supplied"); 374 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 375 report_fatal_error("Invalid type for third argument of main() supplied"); 376 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 377 report_fatal_error("Invalid type for second argument of main() supplied"); 378 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 379 report_fatal_error("Invalid type for first argument of main() supplied"); 380 if (!FTy->getReturnType()->isIntegerTy() && 381 !FTy->getReturnType()->isVoidTy()) 382 report_fatal_error("Invalid return type of main() supplied"); 383 384 ArgvArray CArgv; 385 ArgvArray CEnv; 386 if (NumArgs) { 387 GVArgs.push_back(GVArgc); // Arg #0 = argc. 388 if (NumArgs > 1) { 389 // Arg #1 = argv. 390 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 391 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 392 "argv[0] was null after CreateArgv"); 393 if (NumArgs > 2) { 394 std::vector<std::string> EnvVars; 395 for (unsigned i = 0; envp[i]; ++i) 396 EnvVars.push_back(envp[i]); 397 // Arg #2 = envp. 398 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 399 } 400 } 401 } 402 403 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 404 } 405 406 EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {} 407 408 EngineBuilder::EngineBuilder(std::unique_ptr<Module> M) 409 : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr), 410 OptLevel(CodeGenOpt::Default), MemMgr(nullptr), Resolver(nullptr), 411 RelocModel(Reloc::Default), CMModel(CodeModel::JITDefault), 412 UseOrcMCJITReplacement(false) { 413 // IR module verification is enabled by default in debug builds, and disabled 414 // by default in release builds. 415 #ifndef NDEBUG 416 VerifyModules = true; 417 #else 418 VerifyModules = false; 419 #endif 420 } 421 422 EngineBuilder::~EngineBuilder() = default; 423 424 EngineBuilder &EngineBuilder::setMCJITMemoryManager( 425 std::unique_ptr<RTDyldMemoryManager> mcjmm) { 426 auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm)); 427 MemMgr = SharedMM; 428 Resolver = SharedMM; 429 return *this; 430 } 431 432 EngineBuilder& 433 EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) { 434 MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM)); 435 return *this; 436 } 437 438 EngineBuilder& 439 EngineBuilder::setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR) { 440 Resolver = std::shared_ptr<RuntimeDyld::SymbolResolver>(std::move(SR)); 441 return *this; 442 } 443 444 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 445 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. 446 447 // Make sure we can resolve symbols in the program as well. The zero arg 448 // to the function tells DynamicLibrary to load the program, not a library. 449 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) 450 return nullptr; 451 452 // If the user specified a memory manager but didn't specify which engine to 453 // create, we assume they only want the JIT, and we fail if they only want 454 // the interpreter. 455 if (MemMgr) { 456 if (WhichEngine & EngineKind::JIT) 457 WhichEngine = EngineKind::JIT; 458 else { 459 if (ErrorStr) 460 *ErrorStr = "Cannot create an interpreter with a memory manager."; 461 return nullptr; 462 } 463 } 464 465 // Unless the interpreter was explicitly selected or the JIT is not linked, 466 // try making a JIT. 467 if ((WhichEngine & EngineKind::JIT) && TheTM) { 468 Triple TT(M->getTargetTriple()); 469 if (!TM->getTarget().hasJIT()) { 470 errs() << "WARNING: This target JIT is not designed for the host" 471 << " you are running. If bad things happen, please choose" 472 << " a different -march switch.\n"; 473 } 474 475 ExecutionEngine *EE = nullptr; 476 if (ExecutionEngine::OrcMCJITReplacementCtor && UseOrcMCJITReplacement) { 477 EE = ExecutionEngine::OrcMCJITReplacementCtor(ErrorStr, std::move(MemMgr), 478 std::move(Resolver), 479 std::move(TheTM)); 480 EE->addModule(std::move(M)); 481 } else if (ExecutionEngine::MCJITCtor) 482 EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr), 483 std::move(Resolver), std::move(TheTM)); 484 485 if (EE) { 486 EE->setVerifyModules(VerifyModules); 487 return EE; 488 } 489 } 490 491 // If we can't make a JIT and we didn't request one specifically, try making 492 // an interpreter instead. 493 if (WhichEngine & EngineKind::Interpreter) { 494 if (ExecutionEngine::InterpCtor) 495 return ExecutionEngine::InterpCtor(std::move(M), ErrorStr); 496 if (ErrorStr) 497 *ErrorStr = "Interpreter has not been linked in."; 498 return nullptr; 499 } 500 501 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) { 502 if (ErrorStr) 503 *ErrorStr = "JIT has not been linked in."; 504 } 505 506 return nullptr; 507 } 508 509 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 510 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 511 return getPointerToFunction(F); 512 513 MutexGuard locked(lock); 514 if (void *P = EEState.getGlobalAddressMap()[GV]) 515 return P; 516 517 // Global variable might have been added since interpreter started. 518 if (GlobalVariable *GVar = 519 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 520 EmitGlobalVariable(GVar); 521 else 522 llvm_unreachable("Global hasn't had an address allocated yet!"); 523 524 return EEState.getGlobalAddressMap()[GV]; 525 } 526 527 /// \brief Converts a Constant* into a GenericValue, including handling of 528 /// ConstantExpr values. 529 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 530 // If its undefined, return the garbage. 531 if (isa<UndefValue>(C)) { 532 GenericValue Result; 533 switch (C->getType()->getTypeID()) { 534 default: 535 break; 536 case Type::IntegerTyID: 537 case Type::X86_FP80TyID: 538 case Type::FP128TyID: 539 case Type::PPC_FP128TyID: 540 // Although the value is undefined, we still have to construct an APInt 541 // with the correct bit width. 542 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 543 break; 544 case Type::StructTyID: { 545 // if the whole struct is 'undef' just reserve memory for the value. 546 if(StructType *STy = dyn_cast<StructType>(C->getType())) { 547 unsigned int elemNum = STy->getNumElements(); 548 Result.AggregateVal.resize(elemNum); 549 for (unsigned int i = 0; i < elemNum; ++i) { 550 Type *ElemTy = STy->getElementType(i); 551 if (ElemTy->isIntegerTy()) 552 Result.AggregateVal[i].IntVal = 553 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 554 else if (ElemTy->isAggregateType()) { 555 const Constant *ElemUndef = UndefValue::get(ElemTy); 556 Result.AggregateVal[i] = getConstantValue(ElemUndef); 557 } 558 } 559 } 560 } 561 break; 562 case Type::VectorTyID: 563 // if the whole vector is 'undef' just reserve memory for the value. 564 const VectorType* VTy = dyn_cast<VectorType>(C->getType()); 565 const Type *ElemTy = VTy->getElementType(); 566 unsigned int elemNum = VTy->getNumElements(); 567 Result.AggregateVal.resize(elemNum); 568 if (ElemTy->isIntegerTy()) 569 for (unsigned int i = 0; i < elemNum; ++i) 570 Result.AggregateVal[i].IntVal = 571 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 572 break; 573 } 574 return Result; 575 } 576 577 // Otherwise, if the value is a ConstantExpr... 578 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 579 Constant *Op0 = CE->getOperand(0); 580 switch (CE->getOpcode()) { 581 case Instruction::GetElementPtr: { 582 // Compute the index 583 GenericValue Result = getConstantValue(Op0); 584 APInt Offset(DL->getPointerSizeInBits(), 0); 585 cast<GEPOperator>(CE)->accumulateConstantOffset(*DL, Offset); 586 587 char* tmp = (char*) Result.PointerVal; 588 Result = PTOGV(tmp + Offset.getSExtValue()); 589 return Result; 590 } 591 case Instruction::Trunc: { 592 GenericValue GV = getConstantValue(Op0); 593 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 594 GV.IntVal = GV.IntVal.trunc(BitWidth); 595 return GV; 596 } 597 case Instruction::ZExt: { 598 GenericValue GV = getConstantValue(Op0); 599 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 600 GV.IntVal = GV.IntVal.zext(BitWidth); 601 return GV; 602 } 603 case Instruction::SExt: { 604 GenericValue GV = getConstantValue(Op0); 605 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 606 GV.IntVal = GV.IntVal.sext(BitWidth); 607 return GV; 608 } 609 case Instruction::FPTrunc: { 610 // FIXME long double 611 GenericValue GV = getConstantValue(Op0); 612 GV.FloatVal = float(GV.DoubleVal); 613 return GV; 614 } 615 case Instruction::FPExt:{ 616 // FIXME long double 617 GenericValue GV = getConstantValue(Op0); 618 GV.DoubleVal = double(GV.FloatVal); 619 return GV; 620 } 621 case Instruction::UIToFP: { 622 GenericValue GV = getConstantValue(Op0); 623 if (CE->getType()->isFloatTy()) 624 GV.FloatVal = float(GV.IntVal.roundToDouble()); 625 else if (CE->getType()->isDoubleTy()) 626 GV.DoubleVal = GV.IntVal.roundToDouble(); 627 else if (CE->getType()->isX86_FP80Ty()) { 628 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 629 (void)apf.convertFromAPInt(GV.IntVal, 630 false, 631 APFloat::rmNearestTiesToEven); 632 GV.IntVal = apf.bitcastToAPInt(); 633 } 634 return GV; 635 } 636 case Instruction::SIToFP: { 637 GenericValue GV = getConstantValue(Op0); 638 if (CE->getType()->isFloatTy()) 639 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 640 else if (CE->getType()->isDoubleTy()) 641 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 642 else if (CE->getType()->isX86_FP80Ty()) { 643 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 644 (void)apf.convertFromAPInt(GV.IntVal, 645 true, 646 APFloat::rmNearestTiesToEven); 647 GV.IntVal = apf.bitcastToAPInt(); 648 } 649 return GV; 650 } 651 case Instruction::FPToUI: // double->APInt conversion handles sign 652 case Instruction::FPToSI: { 653 GenericValue GV = getConstantValue(Op0); 654 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 655 if (Op0->getType()->isFloatTy()) 656 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 657 else if (Op0->getType()->isDoubleTy()) 658 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 659 else if (Op0->getType()->isX86_FP80Ty()) { 660 APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal); 661 uint64_t v; 662 bool ignored; 663 (void)apf.convertToInteger(&v, BitWidth, 664 CE->getOpcode()==Instruction::FPToSI, 665 APFloat::rmTowardZero, &ignored); 666 GV.IntVal = v; // endian? 667 } 668 return GV; 669 } 670 case Instruction::PtrToInt: { 671 GenericValue GV = getConstantValue(Op0); 672 uint32_t PtrWidth = DL->getTypeSizeInBits(Op0->getType()); 673 assert(PtrWidth <= 64 && "Bad pointer width"); 674 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 675 uint32_t IntWidth = DL->getTypeSizeInBits(CE->getType()); 676 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); 677 return GV; 678 } 679 case Instruction::IntToPtr: { 680 GenericValue GV = getConstantValue(Op0); 681 uint32_t PtrWidth = DL->getTypeSizeInBits(CE->getType()); 682 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 683 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 684 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 685 return GV; 686 } 687 case Instruction::BitCast: { 688 GenericValue GV = getConstantValue(Op0); 689 Type* DestTy = CE->getType(); 690 switch (Op0->getType()->getTypeID()) { 691 default: llvm_unreachable("Invalid bitcast operand"); 692 case Type::IntegerTyID: 693 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 694 if (DestTy->isFloatTy()) 695 GV.FloatVal = GV.IntVal.bitsToFloat(); 696 else if (DestTy->isDoubleTy()) 697 GV.DoubleVal = GV.IntVal.bitsToDouble(); 698 break; 699 case Type::FloatTyID: 700 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 701 GV.IntVal = APInt::floatToBits(GV.FloatVal); 702 break; 703 case Type::DoubleTyID: 704 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 705 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 706 break; 707 case Type::PointerTyID: 708 assert(DestTy->isPointerTy() && "Invalid bitcast"); 709 break; // getConstantValue(Op0) above already converted it 710 } 711 return GV; 712 } 713 case Instruction::Add: 714 case Instruction::FAdd: 715 case Instruction::Sub: 716 case Instruction::FSub: 717 case Instruction::Mul: 718 case Instruction::FMul: 719 case Instruction::UDiv: 720 case Instruction::SDiv: 721 case Instruction::URem: 722 case Instruction::SRem: 723 case Instruction::And: 724 case Instruction::Or: 725 case Instruction::Xor: { 726 GenericValue LHS = getConstantValue(Op0); 727 GenericValue RHS = getConstantValue(CE->getOperand(1)); 728 GenericValue GV; 729 switch (CE->getOperand(0)->getType()->getTypeID()) { 730 default: llvm_unreachable("Bad add type!"); 731 case Type::IntegerTyID: 732 switch (CE->getOpcode()) { 733 default: llvm_unreachable("Invalid integer opcode"); 734 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 735 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 736 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 737 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 738 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 739 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 740 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 741 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 742 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 743 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 744 } 745 break; 746 case Type::FloatTyID: 747 switch (CE->getOpcode()) { 748 default: llvm_unreachable("Invalid float opcode"); 749 case Instruction::FAdd: 750 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 751 case Instruction::FSub: 752 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 753 case Instruction::FMul: 754 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 755 case Instruction::FDiv: 756 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 757 case Instruction::FRem: 758 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 759 } 760 break; 761 case Type::DoubleTyID: 762 switch (CE->getOpcode()) { 763 default: llvm_unreachable("Invalid double opcode"); 764 case Instruction::FAdd: 765 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 766 case Instruction::FSub: 767 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 768 case Instruction::FMul: 769 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 770 case Instruction::FDiv: 771 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 772 case Instruction::FRem: 773 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 774 } 775 break; 776 case Type::X86_FP80TyID: 777 case Type::PPC_FP128TyID: 778 case Type::FP128TyID: { 779 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); 780 APFloat apfLHS = APFloat(Sem, LHS.IntVal); 781 switch (CE->getOpcode()) { 782 default: llvm_unreachable("Invalid long double opcode"); 783 case Instruction::FAdd: 784 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); 785 GV.IntVal = apfLHS.bitcastToAPInt(); 786 break; 787 case Instruction::FSub: 788 apfLHS.subtract(APFloat(Sem, RHS.IntVal), 789 APFloat::rmNearestTiesToEven); 790 GV.IntVal = apfLHS.bitcastToAPInt(); 791 break; 792 case Instruction::FMul: 793 apfLHS.multiply(APFloat(Sem, RHS.IntVal), 794 APFloat::rmNearestTiesToEven); 795 GV.IntVal = apfLHS.bitcastToAPInt(); 796 break; 797 case Instruction::FDiv: 798 apfLHS.divide(APFloat(Sem, RHS.IntVal), 799 APFloat::rmNearestTiesToEven); 800 GV.IntVal = apfLHS.bitcastToAPInt(); 801 break; 802 case Instruction::FRem: 803 apfLHS.mod(APFloat(Sem, RHS.IntVal), 804 APFloat::rmNearestTiesToEven); 805 GV.IntVal = apfLHS.bitcastToAPInt(); 806 break; 807 } 808 } 809 break; 810 } 811 return GV; 812 } 813 default: 814 break; 815 } 816 817 SmallString<256> Msg; 818 raw_svector_ostream OS(Msg); 819 OS << "ConstantExpr not handled: " << *CE; 820 report_fatal_error(OS.str()); 821 } 822 823 // Otherwise, we have a simple constant. 824 GenericValue Result; 825 switch (C->getType()->getTypeID()) { 826 case Type::FloatTyID: 827 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 828 break; 829 case Type::DoubleTyID: 830 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 831 break; 832 case Type::X86_FP80TyID: 833 case Type::FP128TyID: 834 case Type::PPC_FP128TyID: 835 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 836 break; 837 case Type::IntegerTyID: 838 Result.IntVal = cast<ConstantInt>(C)->getValue(); 839 break; 840 case Type::PointerTyID: 841 if (isa<ConstantPointerNull>(C)) 842 Result.PointerVal = nullptr; 843 else if (const Function *F = dyn_cast<Function>(C)) 844 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 845 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 846 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 847 else 848 llvm_unreachable("Unknown constant pointer type!"); 849 break; 850 case Type::VectorTyID: { 851 unsigned elemNum; 852 Type* ElemTy; 853 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); 854 const ConstantVector *CV = dyn_cast<ConstantVector>(C); 855 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); 856 857 if (CDV) { 858 elemNum = CDV->getNumElements(); 859 ElemTy = CDV->getElementType(); 860 } else if (CV || CAZ) { 861 VectorType* VTy = dyn_cast<VectorType>(C->getType()); 862 elemNum = VTy->getNumElements(); 863 ElemTy = VTy->getElementType(); 864 } else { 865 llvm_unreachable("Unknown constant vector type!"); 866 } 867 868 Result.AggregateVal.resize(elemNum); 869 // Check if vector holds floats. 870 if(ElemTy->isFloatTy()) { 871 if (CAZ) { 872 GenericValue floatZero; 873 floatZero.FloatVal = 0.f; 874 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 875 floatZero); 876 break; 877 } 878 if(CV) { 879 for (unsigned i = 0; i < elemNum; ++i) 880 if (!isa<UndefValue>(CV->getOperand(i))) 881 Result.AggregateVal[i].FloatVal = cast<ConstantFP>( 882 CV->getOperand(i))->getValueAPF().convertToFloat(); 883 break; 884 } 885 if(CDV) 886 for (unsigned i = 0; i < elemNum; ++i) 887 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); 888 889 break; 890 } 891 // Check if vector holds doubles. 892 if (ElemTy->isDoubleTy()) { 893 if (CAZ) { 894 GenericValue doubleZero; 895 doubleZero.DoubleVal = 0.0; 896 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 897 doubleZero); 898 break; 899 } 900 if(CV) { 901 for (unsigned i = 0; i < elemNum; ++i) 902 if (!isa<UndefValue>(CV->getOperand(i))) 903 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( 904 CV->getOperand(i))->getValueAPF().convertToDouble(); 905 break; 906 } 907 if(CDV) 908 for (unsigned i = 0; i < elemNum; ++i) 909 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); 910 911 break; 912 } 913 // Check if vector holds integers. 914 if (ElemTy->isIntegerTy()) { 915 if (CAZ) { 916 GenericValue intZero; 917 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); 918 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 919 intZero); 920 break; 921 } 922 if(CV) { 923 for (unsigned i = 0; i < elemNum; ++i) 924 if (!isa<UndefValue>(CV->getOperand(i))) 925 Result.AggregateVal[i].IntVal = cast<ConstantInt>( 926 CV->getOperand(i))->getValue(); 927 else { 928 Result.AggregateVal[i].IntVal = 929 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); 930 } 931 break; 932 } 933 if(CDV) 934 for (unsigned i = 0; i < elemNum; ++i) 935 Result.AggregateVal[i].IntVal = APInt( 936 CDV->getElementType()->getPrimitiveSizeInBits(), 937 CDV->getElementAsInteger(i)); 938 939 break; 940 } 941 llvm_unreachable("Unknown constant pointer type!"); 942 } 943 break; 944 945 default: 946 SmallString<256> Msg; 947 raw_svector_ostream OS(Msg); 948 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 949 report_fatal_error(OS.str()); 950 } 951 952 return Result; 953 } 954 955 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 956 /// with the integer held in IntVal. 957 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 958 unsigned StoreBytes) { 959 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 960 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 961 962 if (sys::IsLittleEndianHost) { 963 // Little-endian host - the source is ordered from LSB to MSB. Order the 964 // destination from LSB to MSB: Do a straight copy. 965 memcpy(Dst, Src, StoreBytes); 966 } else { 967 // Big-endian host - the source is an array of 64 bit words ordered from 968 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 969 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 970 while (StoreBytes > sizeof(uint64_t)) { 971 StoreBytes -= sizeof(uint64_t); 972 // May not be aligned so use memcpy. 973 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 974 Src += sizeof(uint64_t); 975 } 976 977 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 978 } 979 } 980 981 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 982 GenericValue *Ptr, Type *Ty) { 983 const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty); 984 985 switch (Ty->getTypeID()) { 986 default: 987 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 988 break; 989 case Type::IntegerTyID: 990 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 991 break; 992 case Type::FloatTyID: 993 *((float*)Ptr) = Val.FloatVal; 994 break; 995 case Type::DoubleTyID: 996 *((double*)Ptr) = Val.DoubleVal; 997 break; 998 case Type::X86_FP80TyID: 999 memcpy(Ptr, Val.IntVal.getRawData(), 10); 1000 break; 1001 case Type::PointerTyID: 1002 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 1003 if (StoreBytes != sizeof(PointerTy)) 1004 memset(&(Ptr->PointerVal), 0, StoreBytes); 1005 1006 *((PointerTy*)Ptr) = Val.PointerVal; 1007 break; 1008 case Type::VectorTyID: 1009 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { 1010 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) 1011 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; 1012 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) 1013 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; 1014 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { 1015 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; 1016 StoreIntToMemory(Val.AggregateVal[i].IntVal, 1017 (uint8_t*)Ptr + numOfBytes*i, numOfBytes); 1018 } 1019 } 1020 break; 1021 } 1022 1023 if (sys::IsLittleEndianHost != getDataLayout()->isLittleEndian()) 1024 // Host and target are different endian - reverse the stored bytes. 1025 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 1026 } 1027 1028 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 1029 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 1030 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 1031 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 1032 uint8_t *Dst = reinterpret_cast<uint8_t *>( 1033 const_cast<uint64_t *>(IntVal.getRawData())); 1034 1035 if (sys::IsLittleEndianHost) 1036 // Little-endian host - the destination must be ordered from LSB to MSB. 1037 // The source is ordered from LSB to MSB: Do a straight copy. 1038 memcpy(Dst, Src, LoadBytes); 1039 else { 1040 // Big-endian - the destination is an array of 64 bit words ordered from 1041 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 1042 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 1043 // a word. 1044 while (LoadBytes > sizeof(uint64_t)) { 1045 LoadBytes -= sizeof(uint64_t); 1046 // May not be aligned so use memcpy. 1047 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 1048 Dst += sizeof(uint64_t); 1049 } 1050 1051 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 1052 } 1053 } 1054 1055 /// FIXME: document 1056 /// 1057 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 1058 GenericValue *Ptr, 1059 Type *Ty) { 1060 const unsigned LoadBytes = getDataLayout()->getTypeStoreSize(Ty); 1061 1062 switch (Ty->getTypeID()) { 1063 case Type::IntegerTyID: 1064 // An APInt with all words initially zero. 1065 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 1066 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 1067 break; 1068 case Type::FloatTyID: 1069 Result.FloatVal = *((float*)Ptr); 1070 break; 1071 case Type::DoubleTyID: 1072 Result.DoubleVal = *((double*)Ptr); 1073 break; 1074 case Type::PointerTyID: 1075 Result.PointerVal = *((PointerTy*)Ptr); 1076 break; 1077 case Type::X86_FP80TyID: { 1078 // This is endian dependent, but it will only work on x86 anyway. 1079 // FIXME: Will not trap if loading a signaling NaN. 1080 uint64_t y[2]; 1081 memcpy(y, Ptr, 10); 1082 Result.IntVal = APInt(80, y); 1083 break; 1084 } 1085 case Type::VectorTyID: { 1086 const VectorType *VT = cast<VectorType>(Ty); 1087 const Type *ElemT = VT->getElementType(); 1088 const unsigned numElems = VT->getNumElements(); 1089 if (ElemT->isFloatTy()) { 1090 Result.AggregateVal.resize(numElems); 1091 for (unsigned i = 0; i < numElems; ++i) 1092 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); 1093 } 1094 if (ElemT->isDoubleTy()) { 1095 Result.AggregateVal.resize(numElems); 1096 for (unsigned i = 0; i < numElems; ++i) 1097 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); 1098 } 1099 if (ElemT->isIntegerTy()) { 1100 GenericValue intZero; 1101 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); 1102 intZero.IntVal = APInt(elemBitWidth, 0); 1103 Result.AggregateVal.resize(numElems, intZero); 1104 for (unsigned i = 0; i < numElems; ++i) 1105 LoadIntFromMemory(Result.AggregateVal[i].IntVal, 1106 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); 1107 } 1108 break; 1109 } 1110 default: 1111 SmallString<256> Msg; 1112 raw_svector_ostream OS(Msg); 1113 OS << "Cannot load value of type " << *Ty << "!"; 1114 report_fatal_error(OS.str()); 1115 } 1116 } 1117 1118 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 1119 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 1120 DEBUG(Init->dump()); 1121 if (isa<UndefValue>(Init)) 1122 return; 1123 1124 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 1125 unsigned ElementSize = 1126 getDataLayout()->getTypeAllocSize(CP->getType()->getElementType()); 1127 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 1128 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 1129 return; 1130 } 1131 1132 if (isa<ConstantAggregateZero>(Init)) { 1133 memset(Addr, 0, (size_t)getDataLayout()->getTypeAllocSize(Init->getType())); 1134 return; 1135 } 1136 1137 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 1138 unsigned ElementSize = 1139 getDataLayout()->getTypeAllocSize(CPA->getType()->getElementType()); 1140 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 1141 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 1142 return; 1143 } 1144 1145 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 1146 const StructLayout *SL = 1147 getDataLayout()->getStructLayout(cast<StructType>(CPS->getType())); 1148 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 1149 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 1150 return; 1151 } 1152 1153 if (const ConstantDataSequential *CDS = 1154 dyn_cast<ConstantDataSequential>(Init)) { 1155 // CDS is already laid out in host memory order. 1156 StringRef Data = CDS->getRawDataValues(); 1157 memcpy(Addr, Data.data(), Data.size()); 1158 return; 1159 } 1160 1161 if (Init->getType()->isFirstClassType()) { 1162 GenericValue Val = getConstantValue(Init); 1163 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 1164 return; 1165 } 1166 1167 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1168 llvm_unreachable("Unknown constant type to initialize memory with!"); 1169 } 1170 1171 /// EmitGlobals - Emit all of the global variables to memory, storing their 1172 /// addresses into GlobalAddress. This must make sure to copy the contents of 1173 /// their initializers into the memory. 1174 void ExecutionEngine::emitGlobals() { 1175 // Loop over all of the global variables in the program, allocating the memory 1176 // to hold them. If there is more than one module, do a prepass over globals 1177 // to figure out how the different modules should link together. 1178 std::map<std::pair<std::string, Type*>, 1179 const GlobalValue*> LinkedGlobalsMap; 1180 1181 if (Modules.size() != 1) { 1182 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1183 Module &M = *Modules[m]; 1184 for (const auto &GV : M.globals()) { 1185 if (GV.hasLocalLinkage() || GV.isDeclaration() || 1186 GV.hasAppendingLinkage() || !GV.hasName()) 1187 continue;// Ignore external globals and globals with internal linkage. 1188 1189 const GlobalValue *&GVEntry = 1190 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]; 1191 1192 // If this is the first time we've seen this global, it is the canonical 1193 // version. 1194 if (!GVEntry) { 1195 GVEntry = &GV; 1196 continue; 1197 } 1198 1199 // If the existing global is strong, never replace it. 1200 if (GVEntry->hasExternalLinkage()) 1201 continue; 1202 1203 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1204 // symbol. FIXME is this right for common? 1205 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1206 GVEntry = &GV; 1207 } 1208 } 1209 } 1210 1211 std::vector<const GlobalValue*> NonCanonicalGlobals; 1212 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1213 Module &M = *Modules[m]; 1214 for (const auto &GV : M.globals()) { 1215 // In the multi-module case, see what this global maps to. 1216 if (!LinkedGlobalsMap.empty()) { 1217 if (const GlobalValue *GVEntry = 1218 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) { 1219 // If something else is the canonical global, ignore this one. 1220 if (GVEntry != &GV) { 1221 NonCanonicalGlobals.push_back(&GV); 1222 continue; 1223 } 1224 } 1225 } 1226 1227 if (!GV.isDeclaration()) { 1228 addGlobalMapping(&GV, getMemoryForGV(&GV)); 1229 } else { 1230 // External variable reference. Try to use the dynamic loader to 1231 // get a pointer to it. 1232 if (void *SymAddr = 1233 sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName())) 1234 addGlobalMapping(&GV, SymAddr); 1235 else { 1236 report_fatal_error("Could not resolve external global address: " 1237 +GV.getName()); 1238 } 1239 } 1240 } 1241 1242 // If there are multiple modules, map the non-canonical globals to their 1243 // canonical location. 1244 if (!NonCanonicalGlobals.empty()) { 1245 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1246 const GlobalValue *GV = NonCanonicalGlobals[i]; 1247 const GlobalValue *CGV = 1248 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1249 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1250 assert(Ptr && "Canonical global wasn't codegen'd!"); 1251 addGlobalMapping(GV, Ptr); 1252 } 1253 } 1254 1255 // Now that all of the globals are set up in memory, loop through them all 1256 // and initialize their contents. 1257 for (const auto &GV : M.globals()) { 1258 if (!GV.isDeclaration()) { 1259 if (!LinkedGlobalsMap.empty()) { 1260 if (const GlobalValue *GVEntry = 1261 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) 1262 if (GVEntry != &GV) // Not the canonical variable. 1263 continue; 1264 } 1265 EmitGlobalVariable(&GV); 1266 } 1267 } 1268 } 1269 } 1270 1271 // EmitGlobalVariable - This method emits the specified global variable to the 1272 // address specified in GlobalAddresses, or allocates new memory if it's not 1273 // already in the map. 1274 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1275 void *GA = getPointerToGlobalIfAvailable(GV); 1276 1277 if (!GA) { 1278 // If it's not already specified, allocate memory for the global. 1279 GA = getMemoryForGV(GV); 1280 1281 // If we failed to allocate memory for this global, return. 1282 if (!GA) return; 1283 1284 addGlobalMapping(GV, GA); 1285 } 1286 1287 // Don't initialize if it's thread local, let the client do it. 1288 if (!GV->isThreadLocal()) 1289 InitializeMemory(GV->getInitializer(), GA); 1290 1291 Type *ElTy = GV->getType()->getElementType(); 1292 size_t GVSize = (size_t)getDataLayout()->getTypeAllocSize(ElTy); 1293 NumInitBytes += (unsigned)GVSize; 1294 ++NumGlobals; 1295 } 1296 1297 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1298 : EE(EE), GlobalAddressMap(this) { 1299 } 1300 1301 sys::Mutex * 1302 ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) { 1303 return &EES->EE.lock; 1304 } 1305 1306 void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES, 1307 const GlobalValue *Old) { 1308 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1309 EES->GlobalAddressReverseMap.erase(OldVal); 1310 } 1311 1312 void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *, 1313 const GlobalValue *, 1314 const GlobalValue *) { 1315 llvm_unreachable("The ExecutionEngine doesn't know how to handle a" 1316 " RAUW on a value it has a global mapping for."); 1317 } 1318