1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ExecutionEngine/ExecutionEngine.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ExecutionEngine/GenericValue.h" 19 #include "llvm/ExecutionEngine/JITEventListener.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/IR/ValueHandle.h" 26 #include "llvm/Object/Archive.h" 27 #include "llvm/Object/ObjectFile.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/DynamicLibrary.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/Host.h" 32 #include "llvm/Support/MutexGuard.h" 33 #include "llvm/Support/TargetRegistry.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include <cmath> 37 #include <cstring> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "jit" 41 42 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 43 STATISTIC(NumGlobals , "Number of global vars initialized"); 44 45 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 46 std::unique_ptr<Module> M, std::string *ErrorStr, 47 std::unique_ptr<RTDyldMemoryManager> MCJMM, 48 std::unique_ptr<TargetMachine> TM) = nullptr; 49 50 ExecutionEngine *(*ExecutionEngine::OrcMCJITReplacementCtor)( 51 std::string *ErrorStr, std::unique_ptr<RTDyldMemoryManager> OrcJMM, 52 std::unique_ptr<TargetMachine> TM) = nullptr; 53 54 ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M, 55 std::string *ErrorStr) =nullptr; 56 57 void JITEventListener::anchor() {} 58 59 ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M) 60 : EEState(*this), 61 LazyFunctionCreator(nullptr) { 62 CompilingLazily = false; 63 GVCompilationDisabled = false; 64 SymbolSearchingDisabled = false; 65 66 // IR module verification is enabled by default in debug builds, and disabled 67 // by default in release builds. 68 #ifndef NDEBUG 69 VerifyModules = true; 70 #else 71 VerifyModules = false; 72 #endif 73 74 assert(M && "Module is null?"); 75 Modules.push_back(std::move(M)); 76 } 77 78 ExecutionEngine::~ExecutionEngine() { 79 clearAllGlobalMappings(); 80 } 81 82 namespace { 83 /// \brief Helper class which uses a value handler to automatically deletes the 84 /// memory block when the GlobalVariable is destroyed. 85 class GVMemoryBlock : public CallbackVH { 86 GVMemoryBlock(const GlobalVariable *GV) 87 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 88 89 public: 90 /// \brief Returns the address the GlobalVariable should be written into. The 91 /// GVMemoryBlock object prefixes that. 92 static char *Create(const GlobalVariable *GV, const DataLayout& TD) { 93 Type *ElTy = GV->getType()->getElementType(); 94 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 95 void *RawMemory = ::operator new( 96 RoundUpToAlignment(sizeof(GVMemoryBlock), 97 TD.getPreferredAlignment(GV)) 98 + GVSize); 99 new(RawMemory) GVMemoryBlock(GV); 100 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 101 } 102 103 void deleted() override { 104 // We allocated with operator new and with some extra memory hanging off the 105 // end, so don't just delete this. I'm not sure if this is actually 106 // required. 107 this->~GVMemoryBlock(); 108 ::operator delete(this); 109 } 110 }; 111 } // anonymous namespace 112 113 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 114 return GVMemoryBlock::Create(GV, *getDataLayout()); 115 } 116 117 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { 118 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 119 } 120 121 void 122 ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) { 123 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 124 } 125 126 void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) { 127 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive."); 128 } 129 130 bool ExecutionEngine::removeModule(Module *M) { 131 for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) { 132 Module *Found = I->get(); 133 if (Found == M) { 134 I->release(); 135 Modules.erase(I); 136 clearGlobalMappingsFromModule(M); 137 return true; 138 } 139 } 140 return false; 141 } 142 143 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 144 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 145 Function *F = Modules[i]->getFunction(FnName); 146 if (F && !F->isDeclaration()) 147 return F; 148 } 149 return nullptr; 150 } 151 152 153 void *ExecutionEngineState::RemoveMapping(const GlobalValue *ToUnmap) { 154 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 155 void *OldVal; 156 157 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 158 // GlobalAddressMap. 159 if (I == GlobalAddressMap.end()) 160 OldVal = nullptr; 161 else { 162 OldVal = I->second; 163 GlobalAddressMap.erase(I); 164 } 165 166 GlobalAddressReverseMap.erase(OldVal); 167 return OldVal; 168 } 169 170 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 171 MutexGuard locked(lock); 172 173 DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 174 << "\' to [" << Addr << "]\n";); 175 void *&CurVal = EEState.getGlobalAddressMap()[GV]; 176 assert((!CurVal || !Addr) && "GlobalMapping already established!"); 177 CurVal = Addr; 178 179 // If we are using the reverse mapping, add it too. 180 if (!EEState.getGlobalAddressReverseMap().empty()) { 181 AssertingVH<const GlobalValue> &V = 182 EEState.getGlobalAddressReverseMap()[Addr]; 183 assert((!V || !GV) && "GlobalMapping already established!"); 184 V = GV; 185 } 186 } 187 188 void ExecutionEngine::clearAllGlobalMappings() { 189 MutexGuard locked(lock); 190 191 EEState.getGlobalAddressMap().clear(); 192 EEState.getGlobalAddressReverseMap().clear(); 193 } 194 195 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 196 MutexGuard locked(lock); 197 198 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) 199 EEState.RemoveMapping(FI); 200 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 201 GI != GE; ++GI) 202 EEState.RemoveMapping(GI); 203 } 204 205 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 206 MutexGuard locked(lock); 207 208 ExecutionEngineState::GlobalAddressMapTy &Map = 209 EEState.getGlobalAddressMap(); 210 211 // Deleting from the mapping? 212 if (!Addr) 213 return EEState.RemoveMapping(GV); 214 215 void *&CurVal = Map[GV]; 216 void *OldVal = CurVal; 217 218 if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) 219 EEState.getGlobalAddressReverseMap().erase(CurVal); 220 CurVal = Addr; 221 222 // If we are using the reverse mapping, add it too. 223 if (!EEState.getGlobalAddressReverseMap().empty()) { 224 AssertingVH<const GlobalValue> &V = 225 EEState.getGlobalAddressReverseMap()[Addr]; 226 assert((!V || !GV) && "GlobalMapping already established!"); 227 V = GV; 228 } 229 return OldVal; 230 } 231 232 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 233 MutexGuard locked(lock); 234 235 ExecutionEngineState::GlobalAddressMapTy::iterator I = 236 EEState.getGlobalAddressMap().find(GV); 237 return I != EEState.getGlobalAddressMap().end() ? I->second : nullptr; 238 } 239 240 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 241 MutexGuard locked(lock); 242 243 // If we haven't computed the reverse mapping yet, do so first. 244 if (EEState.getGlobalAddressReverseMap().empty()) { 245 for (ExecutionEngineState::GlobalAddressMapTy::iterator 246 I = EEState.getGlobalAddressMap().begin(), 247 E = EEState.getGlobalAddressMap().end(); I != E; ++I) 248 EEState.getGlobalAddressReverseMap().insert(std::make_pair( 249 I->second, I->first)); 250 } 251 252 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 253 EEState.getGlobalAddressReverseMap().find(Addr); 254 return I != EEState.getGlobalAddressReverseMap().end() ? I->second : nullptr; 255 } 256 257 namespace { 258 class ArgvArray { 259 std::unique_ptr<char[]> Array; 260 std::vector<std::unique_ptr<char[]>> Values; 261 public: 262 /// Turn a vector of strings into a nice argv style array of pointers to null 263 /// terminated strings. 264 void *reset(LLVMContext &C, ExecutionEngine *EE, 265 const std::vector<std::string> &InputArgv); 266 }; 267 } // anonymous namespace 268 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 269 const std::vector<std::string> &InputArgv) { 270 Values.clear(); // Free the old contents. 271 Values.reserve(InputArgv.size()); 272 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 273 Array = make_unique<char[]>((InputArgv.size()+1)*PtrSize); 274 275 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array.get() << "\n"); 276 Type *SBytePtr = Type::getInt8PtrTy(C); 277 278 for (unsigned i = 0; i != InputArgv.size(); ++i) { 279 unsigned Size = InputArgv[i].size()+1; 280 auto Dest = make_unique<char[]>(Size); 281 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest.get() << "\n"); 282 283 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get()); 284 Dest[Size-1] = 0; 285 286 // Endian safe: Array[i] = (PointerTy)Dest; 287 EE->StoreValueToMemory(PTOGV(Dest.get()), 288 (GenericValue*)(&Array[i*PtrSize]), SBytePtr); 289 Values.push_back(std::move(Dest)); 290 } 291 292 // Null terminate it 293 EE->StoreValueToMemory(PTOGV(nullptr), 294 (GenericValue*)(&Array[InputArgv.size()*PtrSize]), 295 SBytePtr); 296 return Array.get(); 297 } 298 299 void ExecutionEngine::runStaticConstructorsDestructors(Module &module, 300 bool isDtors) { 301 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 302 GlobalVariable *GV = module.getNamedGlobal(Name); 303 304 // If this global has internal linkage, or if it has a use, then it must be 305 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 306 // this is the case, don't execute any of the global ctors, __main will do 307 // it. 308 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 309 310 // Should be an array of '{ i32, void ()* }' structs. The first value is 311 // the init priority, which we ignore. 312 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 313 if (!InitList) 314 return; 315 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 316 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 317 if (!CS) continue; 318 319 Constant *FP = CS->getOperand(1); 320 if (FP->isNullValue()) 321 continue; // Found a sentinal value, ignore. 322 323 // Strip off constant expression casts. 324 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 325 if (CE->isCast()) 326 FP = CE->getOperand(0); 327 328 // Execute the ctor/dtor function! 329 if (Function *F = dyn_cast<Function>(FP)) 330 runFunction(F, std::vector<GenericValue>()); 331 332 // FIXME: It is marginally lame that we just do nothing here if we see an 333 // entry we don't recognize. It might not be unreasonable for the verifier 334 // to not even allow this and just assert here. 335 } 336 } 337 338 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 339 // Execute global ctors/dtors for each module in the program. 340 for (std::unique_ptr<Module> &M : Modules) 341 runStaticConstructorsDestructors(*M, isDtors); 342 } 343 344 #ifndef NDEBUG 345 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 346 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 347 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 348 for (unsigned i = 0; i < PtrSize; ++i) 349 if (*(i + (uint8_t*)Loc)) 350 return false; 351 return true; 352 } 353 #endif 354 355 int ExecutionEngine::runFunctionAsMain(Function *Fn, 356 const std::vector<std::string> &argv, 357 const char * const * envp) { 358 std::vector<GenericValue> GVArgs; 359 GenericValue GVArgc; 360 GVArgc.IntVal = APInt(32, argv.size()); 361 362 // Check main() type 363 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 364 FunctionType *FTy = Fn->getFunctionType(); 365 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 366 367 // Check the argument types. 368 if (NumArgs > 3) 369 report_fatal_error("Invalid number of arguments of main() supplied"); 370 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 371 report_fatal_error("Invalid type for third argument of main() supplied"); 372 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 373 report_fatal_error("Invalid type for second argument of main() supplied"); 374 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 375 report_fatal_error("Invalid type for first argument of main() supplied"); 376 if (!FTy->getReturnType()->isIntegerTy() && 377 !FTy->getReturnType()->isVoidTy()) 378 report_fatal_error("Invalid return type of main() supplied"); 379 380 ArgvArray CArgv; 381 ArgvArray CEnv; 382 if (NumArgs) { 383 GVArgs.push_back(GVArgc); // Arg #0 = argc. 384 if (NumArgs > 1) { 385 // Arg #1 = argv. 386 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 387 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 388 "argv[0] was null after CreateArgv"); 389 if (NumArgs > 2) { 390 std::vector<std::string> EnvVars; 391 for (unsigned i = 0; envp[i]; ++i) 392 EnvVars.push_back(envp[i]); 393 // Arg #2 = envp. 394 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 395 } 396 } 397 } 398 399 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 400 } 401 402 EngineBuilder::EngineBuilder() { 403 InitEngine(); 404 } 405 406 EngineBuilder::EngineBuilder(std::unique_ptr<Module> M) 407 : M(std::move(M)), MCJMM(nullptr) { 408 InitEngine(); 409 } 410 411 EngineBuilder::~EngineBuilder() {} 412 413 EngineBuilder &EngineBuilder::setMCJITMemoryManager( 414 std::unique_ptr<RTDyldMemoryManager> mcjmm) { 415 MCJMM = std::move(mcjmm); 416 return *this; 417 } 418 419 void EngineBuilder::InitEngine() { 420 WhichEngine = EngineKind::Either; 421 ErrorStr = nullptr; 422 OptLevel = CodeGenOpt::Default; 423 MCJMM = nullptr; 424 Options = TargetOptions(); 425 RelocModel = Reloc::Default; 426 CMModel = CodeModel::JITDefault; 427 UseOrcMCJITReplacement = false; 428 429 // IR module verification is enabled by default in debug builds, and disabled 430 // by default in release builds. 431 #ifndef NDEBUG 432 VerifyModules = true; 433 #else 434 VerifyModules = false; 435 #endif 436 } 437 438 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 439 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. 440 441 // Make sure we can resolve symbols in the program as well. The zero arg 442 // to the function tells DynamicLibrary to load the program, not a library. 443 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) 444 return nullptr; 445 446 // If the user specified a memory manager but didn't specify which engine to 447 // create, we assume they only want the JIT, and we fail if they only want 448 // the interpreter. 449 if (MCJMM) { 450 if (WhichEngine & EngineKind::JIT) 451 WhichEngine = EngineKind::JIT; 452 else { 453 if (ErrorStr) 454 *ErrorStr = "Cannot create an interpreter with a memory manager."; 455 return nullptr; 456 } 457 } 458 459 // Unless the interpreter was explicitly selected or the JIT is not linked, 460 // try making a JIT. 461 if ((WhichEngine & EngineKind::JIT) && TheTM) { 462 Triple TT(M->getTargetTriple()); 463 if (!TM->getTarget().hasJIT()) { 464 errs() << "WARNING: This target JIT is not designed for the host" 465 << " you are running. If bad things happen, please choose" 466 << " a different -march switch.\n"; 467 } 468 469 ExecutionEngine *EE = nullptr; 470 if (ExecutionEngine::OrcMCJITReplacementCtor && UseOrcMCJITReplacement) { 471 EE = ExecutionEngine::OrcMCJITReplacementCtor(ErrorStr, std::move(MCJMM), 472 std::move(TheTM)); 473 EE->addModule(std::move(M)); 474 } else if (ExecutionEngine::MCJITCtor) 475 EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MCJMM), 476 std::move(TheTM)); 477 478 if (EE) { 479 EE->setVerifyModules(VerifyModules); 480 return EE; 481 } 482 } 483 484 // If we can't make a JIT and we didn't request one specifically, try making 485 // an interpreter instead. 486 if (WhichEngine & EngineKind::Interpreter) { 487 if (ExecutionEngine::InterpCtor) 488 return ExecutionEngine::InterpCtor(std::move(M), ErrorStr); 489 if (ErrorStr) 490 *ErrorStr = "Interpreter has not been linked in."; 491 return nullptr; 492 } 493 494 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) { 495 if (ErrorStr) 496 *ErrorStr = "JIT has not been linked in."; 497 } 498 499 return nullptr; 500 } 501 502 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 503 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 504 return getPointerToFunction(F); 505 506 MutexGuard locked(lock); 507 if (void *P = EEState.getGlobalAddressMap()[GV]) 508 return P; 509 510 // Global variable might have been added since interpreter started. 511 if (GlobalVariable *GVar = 512 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 513 EmitGlobalVariable(GVar); 514 else 515 llvm_unreachable("Global hasn't had an address allocated yet!"); 516 517 return EEState.getGlobalAddressMap()[GV]; 518 } 519 520 /// \brief Converts a Constant* into a GenericValue, including handling of 521 /// ConstantExpr values. 522 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 523 // If its undefined, return the garbage. 524 if (isa<UndefValue>(C)) { 525 GenericValue Result; 526 switch (C->getType()->getTypeID()) { 527 default: 528 break; 529 case Type::IntegerTyID: 530 case Type::X86_FP80TyID: 531 case Type::FP128TyID: 532 case Type::PPC_FP128TyID: 533 // Although the value is undefined, we still have to construct an APInt 534 // with the correct bit width. 535 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 536 break; 537 case Type::StructTyID: { 538 // if the whole struct is 'undef' just reserve memory for the value. 539 if(StructType *STy = dyn_cast<StructType>(C->getType())) { 540 unsigned int elemNum = STy->getNumElements(); 541 Result.AggregateVal.resize(elemNum); 542 for (unsigned int i = 0; i < elemNum; ++i) { 543 Type *ElemTy = STy->getElementType(i); 544 if (ElemTy->isIntegerTy()) 545 Result.AggregateVal[i].IntVal = 546 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 547 else if (ElemTy->isAggregateType()) { 548 const Constant *ElemUndef = UndefValue::get(ElemTy); 549 Result.AggregateVal[i] = getConstantValue(ElemUndef); 550 } 551 } 552 } 553 } 554 break; 555 case Type::VectorTyID: 556 // if the whole vector is 'undef' just reserve memory for the value. 557 const VectorType* VTy = dyn_cast<VectorType>(C->getType()); 558 const Type *ElemTy = VTy->getElementType(); 559 unsigned int elemNum = VTy->getNumElements(); 560 Result.AggregateVal.resize(elemNum); 561 if (ElemTy->isIntegerTy()) 562 for (unsigned int i = 0; i < elemNum; ++i) 563 Result.AggregateVal[i].IntVal = 564 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 565 break; 566 } 567 return Result; 568 } 569 570 // Otherwise, if the value is a ConstantExpr... 571 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 572 Constant *Op0 = CE->getOperand(0); 573 switch (CE->getOpcode()) { 574 case Instruction::GetElementPtr: { 575 // Compute the index 576 GenericValue Result = getConstantValue(Op0); 577 APInt Offset(DL->getPointerSizeInBits(), 0); 578 cast<GEPOperator>(CE)->accumulateConstantOffset(*DL, Offset); 579 580 char* tmp = (char*) Result.PointerVal; 581 Result = PTOGV(tmp + Offset.getSExtValue()); 582 return Result; 583 } 584 case Instruction::Trunc: { 585 GenericValue GV = getConstantValue(Op0); 586 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 587 GV.IntVal = GV.IntVal.trunc(BitWidth); 588 return GV; 589 } 590 case Instruction::ZExt: { 591 GenericValue GV = getConstantValue(Op0); 592 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 593 GV.IntVal = GV.IntVal.zext(BitWidth); 594 return GV; 595 } 596 case Instruction::SExt: { 597 GenericValue GV = getConstantValue(Op0); 598 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 599 GV.IntVal = GV.IntVal.sext(BitWidth); 600 return GV; 601 } 602 case Instruction::FPTrunc: { 603 // FIXME long double 604 GenericValue GV = getConstantValue(Op0); 605 GV.FloatVal = float(GV.DoubleVal); 606 return GV; 607 } 608 case Instruction::FPExt:{ 609 // FIXME long double 610 GenericValue GV = getConstantValue(Op0); 611 GV.DoubleVal = double(GV.FloatVal); 612 return GV; 613 } 614 case Instruction::UIToFP: { 615 GenericValue GV = getConstantValue(Op0); 616 if (CE->getType()->isFloatTy()) 617 GV.FloatVal = float(GV.IntVal.roundToDouble()); 618 else if (CE->getType()->isDoubleTy()) 619 GV.DoubleVal = GV.IntVal.roundToDouble(); 620 else if (CE->getType()->isX86_FP80Ty()) { 621 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 622 (void)apf.convertFromAPInt(GV.IntVal, 623 false, 624 APFloat::rmNearestTiesToEven); 625 GV.IntVal = apf.bitcastToAPInt(); 626 } 627 return GV; 628 } 629 case Instruction::SIToFP: { 630 GenericValue GV = getConstantValue(Op0); 631 if (CE->getType()->isFloatTy()) 632 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 633 else if (CE->getType()->isDoubleTy()) 634 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 635 else if (CE->getType()->isX86_FP80Ty()) { 636 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 637 (void)apf.convertFromAPInt(GV.IntVal, 638 true, 639 APFloat::rmNearestTiesToEven); 640 GV.IntVal = apf.bitcastToAPInt(); 641 } 642 return GV; 643 } 644 case Instruction::FPToUI: // double->APInt conversion handles sign 645 case Instruction::FPToSI: { 646 GenericValue GV = getConstantValue(Op0); 647 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 648 if (Op0->getType()->isFloatTy()) 649 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 650 else if (Op0->getType()->isDoubleTy()) 651 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 652 else if (Op0->getType()->isX86_FP80Ty()) { 653 APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal); 654 uint64_t v; 655 bool ignored; 656 (void)apf.convertToInteger(&v, BitWidth, 657 CE->getOpcode()==Instruction::FPToSI, 658 APFloat::rmTowardZero, &ignored); 659 GV.IntVal = v; // endian? 660 } 661 return GV; 662 } 663 case Instruction::PtrToInt: { 664 GenericValue GV = getConstantValue(Op0); 665 uint32_t PtrWidth = DL->getTypeSizeInBits(Op0->getType()); 666 assert(PtrWidth <= 64 && "Bad pointer width"); 667 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 668 uint32_t IntWidth = DL->getTypeSizeInBits(CE->getType()); 669 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); 670 return GV; 671 } 672 case Instruction::IntToPtr: { 673 GenericValue GV = getConstantValue(Op0); 674 uint32_t PtrWidth = DL->getTypeSizeInBits(CE->getType()); 675 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 676 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 677 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 678 return GV; 679 } 680 case Instruction::BitCast: { 681 GenericValue GV = getConstantValue(Op0); 682 Type* DestTy = CE->getType(); 683 switch (Op0->getType()->getTypeID()) { 684 default: llvm_unreachable("Invalid bitcast operand"); 685 case Type::IntegerTyID: 686 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 687 if (DestTy->isFloatTy()) 688 GV.FloatVal = GV.IntVal.bitsToFloat(); 689 else if (DestTy->isDoubleTy()) 690 GV.DoubleVal = GV.IntVal.bitsToDouble(); 691 break; 692 case Type::FloatTyID: 693 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 694 GV.IntVal = APInt::floatToBits(GV.FloatVal); 695 break; 696 case Type::DoubleTyID: 697 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 698 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 699 break; 700 case Type::PointerTyID: 701 assert(DestTy->isPointerTy() && "Invalid bitcast"); 702 break; // getConstantValue(Op0) above already converted it 703 } 704 return GV; 705 } 706 case Instruction::Add: 707 case Instruction::FAdd: 708 case Instruction::Sub: 709 case Instruction::FSub: 710 case Instruction::Mul: 711 case Instruction::FMul: 712 case Instruction::UDiv: 713 case Instruction::SDiv: 714 case Instruction::URem: 715 case Instruction::SRem: 716 case Instruction::And: 717 case Instruction::Or: 718 case Instruction::Xor: { 719 GenericValue LHS = getConstantValue(Op0); 720 GenericValue RHS = getConstantValue(CE->getOperand(1)); 721 GenericValue GV; 722 switch (CE->getOperand(0)->getType()->getTypeID()) { 723 default: llvm_unreachable("Bad add type!"); 724 case Type::IntegerTyID: 725 switch (CE->getOpcode()) { 726 default: llvm_unreachable("Invalid integer opcode"); 727 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 728 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 729 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 730 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 731 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 732 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 733 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 734 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 735 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 736 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 737 } 738 break; 739 case Type::FloatTyID: 740 switch (CE->getOpcode()) { 741 default: llvm_unreachable("Invalid float opcode"); 742 case Instruction::FAdd: 743 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 744 case Instruction::FSub: 745 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 746 case Instruction::FMul: 747 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 748 case Instruction::FDiv: 749 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 750 case Instruction::FRem: 751 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 752 } 753 break; 754 case Type::DoubleTyID: 755 switch (CE->getOpcode()) { 756 default: llvm_unreachable("Invalid double opcode"); 757 case Instruction::FAdd: 758 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 759 case Instruction::FSub: 760 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 761 case Instruction::FMul: 762 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 763 case Instruction::FDiv: 764 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 765 case Instruction::FRem: 766 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 767 } 768 break; 769 case Type::X86_FP80TyID: 770 case Type::PPC_FP128TyID: 771 case Type::FP128TyID: { 772 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); 773 APFloat apfLHS = APFloat(Sem, LHS.IntVal); 774 switch (CE->getOpcode()) { 775 default: llvm_unreachable("Invalid long double opcode"); 776 case Instruction::FAdd: 777 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); 778 GV.IntVal = apfLHS.bitcastToAPInt(); 779 break; 780 case Instruction::FSub: 781 apfLHS.subtract(APFloat(Sem, RHS.IntVal), 782 APFloat::rmNearestTiesToEven); 783 GV.IntVal = apfLHS.bitcastToAPInt(); 784 break; 785 case Instruction::FMul: 786 apfLHS.multiply(APFloat(Sem, RHS.IntVal), 787 APFloat::rmNearestTiesToEven); 788 GV.IntVal = apfLHS.bitcastToAPInt(); 789 break; 790 case Instruction::FDiv: 791 apfLHS.divide(APFloat(Sem, RHS.IntVal), 792 APFloat::rmNearestTiesToEven); 793 GV.IntVal = apfLHS.bitcastToAPInt(); 794 break; 795 case Instruction::FRem: 796 apfLHS.mod(APFloat(Sem, RHS.IntVal), 797 APFloat::rmNearestTiesToEven); 798 GV.IntVal = apfLHS.bitcastToAPInt(); 799 break; 800 } 801 } 802 break; 803 } 804 return GV; 805 } 806 default: 807 break; 808 } 809 810 SmallString<256> Msg; 811 raw_svector_ostream OS(Msg); 812 OS << "ConstantExpr not handled: " << *CE; 813 report_fatal_error(OS.str()); 814 } 815 816 // Otherwise, we have a simple constant. 817 GenericValue Result; 818 switch (C->getType()->getTypeID()) { 819 case Type::FloatTyID: 820 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 821 break; 822 case Type::DoubleTyID: 823 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 824 break; 825 case Type::X86_FP80TyID: 826 case Type::FP128TyID: 827 case Type::PPC_FP128TyID: 828 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 829 break; 830 case Type::IntegerTyID: 831 Result.IntVal = cast<ConstantInt>(C)->getValue(); 832 break; 833 case Type::PointerTyID: 834 if (isa<ConstantPointerNull>(C)) 835 Result.PointerVal = nullptr; 836 else if (const Function *F = dyn_cast<Function>(C)) 837 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 838 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 839 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 840 else 841 llvm_unreachable("Unknown constant pointer type!"); 842 break; 843 case Type::VectorTyID: { 844 unsigned elemNum; 845 Type* ElemTy; 846 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); 847 const ConstantVector *CV = dyn_cast<ConstantVector>(C); 848 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); 849 850 if (CDV) { 851 elemNum = CDV->getNumElements(); 852 ElemTy = CDV->getElementType(); 853 } else if (CV || CAZ) { 854 VectorType* VTy = dyn_cast<VectorType>(C->getType()); 855 elemNum = VTy->getNumElements(); 856 ElemTy = VTy->getElementType(); 857 } else { 858 llvm_unreachable("Unknown constant vector type!"); 859 } 860 861 Result.AggregateVal.resize(elemNum); 862 // Check if vector holds floats. 863 if(ElemTy->isFloatTy()) { 864 if (CAZ) { 865 GenericValue floatZero; 866 floatZero.FloatVal = 0.f; 867 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 868 floatZero); 869 break; 870 } 871 if(CV) { 872 for (unsigned i = 0; i < elemNum; ++i) 873 if (!isa<UndefValue>(CV->getOperand(i))) 874 Result.AggregateVal[i].FloatVal = cast<ConstantFP>( 875 CV->getOperand(i))->getValueAPF().convertToFloat(); 876 break; 877 } 878 if(CDV) 879 for (unsigned i = 0; i < elemNum; ++i) 880 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); 881 882 break; 883 } 884 // Check if vector holds doubles. 885 if (ElemTy->isDoubleTy()) { 886 if (CAZ) { 887 GenericValue doubleZero; 888 doubleZero.DoubleVal = 0.0; 889 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 890 doubleZero); 891 break; 892 } 893 if(CV) { 894 for (unsigned i = 0; i < elemNum; ++i) 895 if (!isa<UndefValue>(CV->getOperand(i))) 896 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( 897 CV->getOperand(i))->getValueAPF().convertToDouble(); 898 break; 899 } 900 if(CDV) 901 for (unsigned i = 0; i < elemNum; ++i) 902 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); 903 904 break; 905 } 906 // Check if vector holds integers. 907 if (ElemTy->isIntegerTy()) { 908 if (CAZ) { 909 GenericValue intZero; 910 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); 911 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 912 intZero); 913 break; 914 } 915 if(CV) { 916 for (unsigned i = 0; i < elemNum; ++i) 917 if (!isa<UndefValue>(CV->getOperand(i))) 918 Result.AggregateVal[i].IntVal = cast<ConstantInt>( 919 CV->getOperand(i))->getValue(); 920 else { 921 Result.AggregateVal[i].IntVal = 922 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); 923 } 924 break; 925 } 926 if(CDV) 927 for (unsigned i = 0; i < elemNum; ++i) 928 Result.AggregateVal[i].IntVal = APInt( 929 CDV->getElementType()->getPrimitiveSizeInBits(), 930 CDV->getElementAsInteger(i)); 931 932 break; 933 } 934 llvm_unreachable("Unknown constant pointer type!"); 935 } 936 break; 937 938 default: 939 SmallString<256> Msg; 940 raw_svector_ostream OS(Msg); 941 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 942 report_fatal_error(OS.str()); 943 } 944 945 return Result; 946 } 947 948 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 949 /// with the integer held in IntVal. 950 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 951 unsigned StoreBytes) { 952 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 953 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 954 955 if (sys::IsLittleEndianHost) { 956 // Little-endian host - the source is ordered from LSB to MSB. Order the 957 // destination from LSB to MSB: Do a straight copy. 958 memcpy(Dst, Src, StoreBytes); 959 } else { 960 // Big-endian host - the source is an array of 64 bit words ordered from 961 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 962 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 963 while (StoreBytes > sizeof(uint64_t)) { 964 StoreBytes -= sizeof(uint64_t); 965 // May not be aligned so use memcpy. 966 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 967 Src += sizeof(uint64_t); 968 } 969 970 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 971 } 972 } 973 974 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 975 GenericValue *Ptr, Type *Ty) { 976 const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty); 977 978 switch (Ty->getTypeID()) { 979 default: 980 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 981 break; 982 case Type::IntegerTyID: 983 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 984 break; 985 case Type::FloatTyID: 986 *((float*)Ptr) = Val.FloatVal; 987 break; 988 case Type::DoubleTyID: 989 *((double*)Ptr) = Val.DoubleVal; 990 break; 991 case Type::X86_FP80TyID: 992 memcpy(Ptr, Val.IntVal.getRawData(), 10); 993 break; 994 case Type::PointerTyID: 995 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 996 if (StoreBytes != sizeof(PointerTy)) 997 memset(&(Ptr->PointerVal), 0, StoreBytes); 998 999 *((PointerTy*)Ptr) = Val.PointerVal; 1000 break; 1001 case Type::VectorTyID: 1002 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { 1003 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) 1004 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; 1005 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) 1006 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; 1007 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { 1008 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; 1009 StoreIntToMemory(Val.AggregateVal[i].IntVal, 1010 (uint8_t*)Ptr + numOfBytes*i, numOfBytes); 1011 } 1012 } 1013 break; 1014 } 1015 1016 if (sys::IsLittleEndianHost != getDataLayout()->isLittleEndian()) 1017 // Host and target are different endian - reverse the stored bytes. 1018 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 1019 } 1020 1021 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 1022 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 1023 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 1024 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 1025 uint8_t *Dst = reinterpret_cast<uint8_t *>( 1026 const_cast<uint64_t *>(IntVal.getRawData())); 1027 1028 if (sys::IsLittleEndianHost) 1029 // Little-endian host - the destination must be ordered from LSB to MSB. 1030 // The source is ordered from LSB to MSB: Do a straight copy. 1031 memcpy(Dst, Src, LoadBytes); 1032 else { 1033 // Big-endian - the destination is an array of 64 bit words ordered from 1034 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 1035 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 1036 // a word. 1037 while (LoadBytes > sizeof(uint64_t)) { 1038 LoadBytes -= sizeof(uint64_t); 1039 // May not be aligned so use memcpy. 1040 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 1041 Dst += sizeof(uint64_t); 1042 } 1043 1044 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 1045 } 1046 } 1047 1048 /// FIXME: document 1049 /// 1050 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 1051 GenericValue *Ptr, 1052 Type *Ty) { 1053 const unsigned LoadBytes = getDataLayout()->getTypeStoreSize(Ty); 1054 1055 switch (Ty->getTypeID()) { 1056 case Type::IntegerTyID: 1057 // An APInt with all words initially zero. 1058 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 1059 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 1060 break; 1061 case Type::FloatTyID: 1062 Result.FloatVal = *((float*)Ptr); 1063 break; 1064 case Type::DoubleTyID: 1065 Result.DoubleVal = *((double*)Ptr); 1066 break; 1067 case Type::PointerTyID: 1068 Result.PointerVal = *((PointerTy*)Ptr); 1069 break; 1070 case Type::X86_FP80TyID: { 1071 // This is endian dependent, but it will only work on x86 anyway. 1072 // FIXME: Will not trap if loading a signaling NaN. 1073 uint64_t y[2]; 1074 memcpy(y, Ptr, 10); 1075 Result.IntVal = APInt(80, y); 1076 break; 1077 } 1078 case Type::VectorTyID: { 1079 const VectorType *VT = cast<VectorType>(Ty); 1080 const Type *ElemT = VT->getElementType(); 1081 const unsigned numElems = VT->getNumElements(); 1082 if (ElemT->isFloatTy()) { 1083 Result.AggregateVal.resize(numElems); 1084 for (unsigned i = 0; i < numElems; ++i) 1085 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); 1086 } 1087 if (ElemT->isDoubleTy()) { 1088 Result.AggregateVal.resize(numElems); 1089 for (unsigned i = 0; i < numElems; ++i) 1090 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); 1091 } 1092 if (ElemT->isIntegerTy()) { 1093 GenericValue intZero; 1094 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); 1095 intZero.IntVal = APInt(elemBitWidth, 0); 1096 Result.AggregateVal.resize(numElems, intZero); 1097 for (unsigned i = 0; i < numElems; ++i) 1098 LoadIntFromMemory(Result.AggregateVal[i].IntVal, 1099 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); 1100 } 1101 break; 1102 } 1103 default: 1104 SmallString<256> Msg; 1105 raw_svector_ostream OS(Msg); 1106 OS << "Cannot load value of type " << *Ty << "!"; 1107 report_fatal_error(OS.str()); 1108 } 1109 } 1110 1111 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 1112 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 1113 DEBUG(Init->dump()); 1114 if (isa<UndefValue>(Init)) 1115 return; 1116 1117 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 1118 unsigned ElementSize = 1119 getDataLayout()->getTypeAllocSize(CP->getType()->getElementType()); 1120 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 1121 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 1122 return; 1123 } 1124 1125 if (isa<ConstantAggregateZero>(Init)) { 1126 memset(Addr, 0, (size_t)getDataLayout()->getTypeAllocSize(Init->getType())); 1127 return; 1128 } 1129 1130 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 1131 unsigned ElementSize = 1132 getDataLayout()->getTypeAllocSize(CPA->getType()->getElementType()); 1133 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 1134 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 1135 return; 1136 } 1137 1138 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 1139 const StructLayout *SL = 1140 getDataLayout()->getStructLayout(cast<StructType>(CPS->getType())); 1141 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 1142 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 1143 return; 1144 } 1145 1146 if (const ConstantDataSequential *CDS = 1147 dyn_cast<ConstantDataSequential>(Init)) { 1148 // CDS is already laid out in host memory order. 1149 StringRef Data = CDS->getRawDataValues(); 1150 memcpy(Addr, Data.data(), Data.size()); 1151 return; 1152 } 1153 1154 if (Init->getType()->isFirstClassType()) { 1155 GenericValue Val = getConstantValue(Init); 1156 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 1157 return; 1158 } 1159 1160 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1161 llvm_unreachable("Unknown constant type to initialize memory with!"); 1162 } 1163 1164 /// EmitGlobals - Emit all of the global variables to memory, storing their 1165 /// addresses into GlobalAddress. This must make sure to copy the contents of 1166 /// their initializers into the memory. 1167 void ExecutionEngine::emitGlobals() { 1168 // Loop over all of the global variables in the program, allocating the memory 1169 // to hold them. If there is more than one module, do a prepass over globals 1170 // to figure out how the different modules should link together. 1171 std::map<std::pair<std::string, Type*>, 1172 const GlobalValue*> LinkedGlobalsMap; 1173 1174 if (Modules.size() != 1) { 1175 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1176 Module &M = *Modules[m]; 1177 for (const auto &GV : M.globals()) { 1178 if (GV.hasLocalLinkage() || GV.isDeclaration() || 1179 GV.hasAppendingLinkage() || !GV.hasName()) 1180 continue;// Ignore external globals and globals with internal linkage. 1181 1182 const GlobalValue *&GVEntry = 1183 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]; 1184 1185 // If this is the first time we've seen this global, it is the canonical 1186 // version. 1187 if (!GVEntry) { 1188 GVEntry = &GV; 1189 continue; 1190 } 1191 1192 // If the existing global is strong, never replace it. 1193 if (GVEntry->hasExternalLinkage()) 1194 continue; 1195 1196 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1197 // symbol. FIXME is this right for common? 1198 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1199 GVEntry = &GV; 1200 } 1201 } 1202 } 1203 1204 std::vector<const GlobalValue*> NonCanonicalGlobals; 1205 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1206 Module &M = *Modules[m]; 1207 for (const auto &GV : M.globals()) { 1208 // In the multi-module case, see what this global maps to. 1209 if (!LinkedGlobalsMap.empty()) { 1210 if (const GlobalValue *GVEntry = 1211 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) { 1212 // If something else is the canonical global, ignore this one. 1213 if (GVEntry != &GV) { 1214 NonCanonicalGlobals.push_back(&GV); 1215 continue; 1216 } 1217 } 1218 } 1219 1220 if (!GV.isDeclaration()) { 1221 addGlobalMapping(&GV, getMemoryForGV(&GV)); 1222 } else { 1223 // External variable reference. Try to use the dynamic loader to 1224 // get a pointer to it. 1225 if (void *SymAddr = 1226 sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName())) 1227 addGlobalMapping(&GV, SymAddr); 1228 else { 1229 report_fatal_error("Could not resolve external global address: " 1230 +GV.getName()); 1231 } 1232 } 1233 } 1234 1235 // If there are multiple modules, map the non-canonical globals to their 1236 // canonical location. 1237 if (!NonCanonicalGlobals.empty()) { 1238 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1239 const GlobalValue *GV = NonCanonicalGlobals[i]; 1240 const GlobalValue *CGV = 1241 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1242 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1243 assert(Ptr && "Canonical global wasn't codegen'd!"); 1244 addGlobalMapping(GV, Ptr); 1245 } 1246 } 1247 1248 // Now that all of the globals are set up in memory, loop through them all 1249 // and initialize their contents. 1250 for (const auto &GV : M.globals()) { 1251 if (!GV.isDeclaration()) { 1252 if (!LinkedGlobalsMap.empty()) { 1253 if (const GlobalValue *GVEntry = 1254 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) 1255 if (GVEntry != &GV) // Not the canonical variable. 1256 continue; 1257 } 1258 EmitGlobalVariable(&GV); 1259 } 1260 } 1261 } 1262 } 1263 1264 // EmitGlobalVariable - This method emits the specified global variable to the 1265 // address specified in GlobalAddresses, or allocates new memory if it's not 1266 // already in the map. 1267 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1268 void *GA = getPointerToGlobalIfAvailable(GV); 1269 1270 if (!GA) { 1271 // If it's not already specified, allocate memory for the global. 1272 GA = getMemoryForGV(GV); 1273 1274 // If we failed to allocate memory for this global, return. 1275 if (!GA) return; 1276 1277 addGlobalMapping(GV, GA); 1278 } 1279 1280 // Don't initialize if it's thread local, let the client do it. 1281 if (!GV->isThreadLocal()) 1282 InitializeMemory(GV->getInitializer(), GA); 1283 1284 Type *ElTy = GV->getType()->getElementType(); 1285 size_t GVSize = (size_t)getDataLayout()->getTypeAllocSize(ElTy); 1286 NumInitBytes += (unsigned)GVSize; 1287 ++NumGlobals; 1288 } 1289 1290 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1291 : EE(EE), GlobalAddressMap(this) { 1292 } 1293 1294 sys::Mutex * 1295 ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) { 1296 return &EES->EE.lock; 1297 } 1298 1299 void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES, 1300 const GlobalValue *Old) { 1301 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1302 EES->GlobalAddressReverseMap.erase(OldVal); 1303 } 1304 1305 void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *, 1306 const GlobalValue *, 1307 const GlobalValue *) { 1308 llvm_unreachable("The ExecutionEngine doesn't know how to handle a" 1309 " RAUW on a value it has a global mapping for."); 1310 } 1311