1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ExecutionEngine/ExecutionEngine.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ExecutionEngine/GenericValue.h" 20 #include "llvm/ExecutionEngine/JITEventListener.h" 21 #include "llvm/ExecutionEngine/RTDyldMemoryManager.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Mangler.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/IR/Operator.h" 28 #include "llvm/IR/ValueHandle.h" 29 #include "llvm/Object/Archive.h" 30 #include "llvm/Object/ObjectFile.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/DynamicLibrary.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/Host.h" 35 #include "llvm/Support/MutexGuard.h" 36 #include "llvm/Support/TargetRegistry.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include <cmath> 40 #include <cstring> 41 using namespace llvm; 42 43 #define DEBUG_TYPE "jit" 44 45 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 46 STATISTIC(NumGlobals , "Number of global vars initialized"); 47 48 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 49 std::unique_ptr<Module> M, std::string *ErrorStr, 50 std::shared_ptr<MCJITMemoryManager> MemMgr, 51 std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver, 52 std::unique_ptr<TargetMachine> TM) = nullptr; 53 54 ExecutionEngine *(*ExecutionEngine::OrcMCJITReplacementCtor)( 55 std::string *ErrorStr, std::shared_ptr<MCJITMemoryManager> MemMgr, 56 std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver, 57 std::unique_ptr<TargetMachine> TM) = nullptr; 58 59 ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M, 60 std::string *ErrorStr) =nullptr; 61 62 void JITEventListener::anchor() {} 63 64 void ExecutionEngine::Init(std::unique_ptr<Module> M) { 65 CompilingLazily = false; 66 GVCompilationDisabled = false; 67 SymbolSearchingDisabled = false; 68 69 // IR module verification is enabled by default in debug builds, and disabled 70 // by default in release builds. 71 #ifndef NDEBUG 72 VerifyModules = true; 73 #else 74 VerifyModules = false; 75 #endif 76 77 assert(M && "Module is null?"); 78 Modules.push_back(std::move(M)); 79 } 80 81 ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M) 82 : DL(M->getDataLayout()), LazyFunctionCreator(nullptr) { 83 Init(std::move(M)); 84 } 85 86 ExecutionEngine::ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M) 87 : DL(std::move(DL)), LazyFunctionCreator(nullptr) { 88 Init(std::move(M)); 89 } 90 91 ExecutionEngine::~ExecutionEngine() { 92 clearAllGlobalMappings(); 93 } 94 95 namespace { 96 /// \brief Helper class which uses a value handler to automatically deletes the 97 /// memory block when the GlobalVariable is destroyed. 98 class GVMemoryBlock final : public CallbackVH { 99 GVMemoryBlock(const GlobalVariable *GV) 100 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 101 102 public: 103 /// \brief Returns the address the GlobalVariable should be written into. The 104 /// GVMemoryBlock object prefixes that. 105 static char *Create(const GlobalVariable *GV, const DataLayout& TD) { 106 Type *ElTy = GV->getValueType(); 107 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 108 void *RawMemory = ::operator new( 109 alignTo(sizeof(GVMemoryBlock), TD.getPreferredAlignment(GV)) + GVSize); 110 new(RawMemory) GVMemoryBlock(GV); 111 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 112 } 113 114 void deleted() override { 115 // We allocated with operator new and with some extra memory hanging off the 116 // end, so don't just delete this. I'm not sure if this is actually 117 // required. 118 this->~GVMemoryBlock(); 119 ::operator delete(this); 120 } 121 }; 122 } // anonymous namespace 123 124 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 125 return GVMemoryBlock::Create(GV, getDataLayout()); 126 } 127 128 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { 129 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 130 } 131 132 void 133 ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) { 134 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 135 } 136 137 void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) { 138 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive."); 139 } 140 141 bool ExecutionEngine::removeModule(Module *M) { 142 for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) { 143 Module *Found = I->get(); 144 if (Found == M) { 145 I->release(); 146 Modules.erase(I); 147 clearGlobalMappingsFromModule(M); 148 return true; 149 } 150 } 151 return false; 152 } 153 154 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 155 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 156 Function *F = Modules[i]->getFunction(FnName); 157 if (F && !F->isDeclaration()) 158 return F; 159 } 160 return nullptr; 161 } 162 163 GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(const char *Name, bool AllowInternal) { 164 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 165 GlobalVariable *GV = Modules[i]->getGlobalVariable(Name,AllowInternal); 166 if (GV && !GV->isDeclaration()) 167 return GV; 168 } 169 return nullptr; 170 } 171 172 uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) { 173 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Name); 174 uint64_t OldVal; 175 176 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 177 // GlobalAddressMap. 178 if (I == GlobalAddressMap.end()) 179 OldVal = 0; 180 else { 181 GlobalAddressReverseMap.erase(I->second); 182 OldVal = I->second; 183 GlobalAddressMap.erase(I); 184 } 185 186 return OldVal; 187 } 188 189 std::string ExecutionEngine::getMangledName(const GlobalValue *GV) { 190 assert(GV->hasName() && "Global must have name."); 191 192 MutexGuard locked(lock); 193 SmallString<128> FullName; 194 195 const DataLayout &DL = 196 GV->getParent()->getDataLayout().isDefault() 197 ? getDataLayout() 198 : GV->getParent()->getDataLayout(); 199 200 Mangler::getNameWithPrefix(FullName, GV->getName(), DL); 201 return FullName.str(); 202 } 203 204 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 205 MutexGuard locked(lock); 206 addGlobalMapping(getMangledName(GV), (uint64_t) Addr); 207 } 208 209 void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) { 210 MutexGuard locked(lock); 211 212 assert(!Name.empty() && "Empty GlobalMapping symbol name!"); 213 214 DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n";); 215 uint64_t &CurVal = EEState.getGlobalAddressMap()[Name]; 216 assert((!CurVal || !Addr) && "GlobalMapping already established!"); 217 CurVal = Addr; 218 219 // If we are using the reverse mapping, add it too. 220 if (!EEState.getGlobalAddressReverseMap().empty()) { 221 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; 222 assert((!V.empty() || !Name.empty()) && 223 "GlobalMapping already established!"); 224 V = Name; 225 } 226 } 227 228 void ExecutionEngine::clearAllGlobalMappings() { 229 MutexGuard locked(lock); 230 231 EEState.getGlobalAddressMap().clear(); 232 EEState.getGlobalAddressReverseMap().clear(); 233 } 234 235 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 236 MutexGuard locked(lock); 237 238 for (Function &FI : *M) 239 EEState.RemoveMapping(getMangledName(&FI)); 240 for (GlobalVariable &GI : M->globals()) 241 EEState.RemoveMapping(getMangledName(&GI)); 242 } 243 244 uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, 245 void *Addr) { 246 MutexGuard locked(lock); 247 return updateGlobalMapping(getMangledName(GV), (uint64_t) Addr); 248 } 249 250 uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) { 251 MutexGuard locked(lock); 252 253 ExecutionEngineState::GlobalAddressMapTy &Map = 254 EEState.getGlobalAddressMap(); 255 256 // Deleting from the mapping? 257 if (!Addr) 258 return EEState.RemoveMapping(Name); 259 260 uint64_t &CurVal = Map[Name]; 261 uint64_t OldVal = CurVal; 262 263 if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) 264 EEState.getGlobalAddressReverseMap().erase(CurVal); 265 CurVal = Addr; 266 267 // If we are using the reverse mapping, add it too. 268 if (!EEState.getGlobalAddressReverseMap().empty()) { 269 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; 270 assert((!V.empty() || !Name.empty()) && 271 "GlobalMapping already established!"); 272 V = Name; 273 } 274 return OldVal; 275 } 276 277 uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) { 278 MutexGuard locked(lock); 279 uint64_t Address = 0; 280 ExecutionEngineState::GlobalAddressMapTy::iterator I = 281 EEState.getGlobalAddressMap().find(S); 282 if (I != EEState.getGlobalAddressMap().end()) 283 Address = I->second; 284 return Address; 285 } 286 287 288 void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) { 289 MutexGuard locked(lock); 290 if (void* Address = (void *) getAddressToGlobalIfAvailable(S)) 291 return Address; 292 return nullptr; 293 } 294 295 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 296 MutexGuard locked(lock); 297 return getPointerToGlobalIfAvailable(getMangledName(GV)); 298 } 299 300 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 301 MutexGuard locked(lock); 302 303 // If we haven't computed the reverse mapping yet, do so first. 304 if (EEState.getGlobalAddressReverseMap().empty()) { 305 for (ExecutionEngineState::GlobalAddressMapTy::iterator 306 I = EEState.getGlobalAddressMap().begin(), 307 E = EEState.getGlobalAddressMap().end(); I != E; ++I) { 308 StringRef Name = I->first(); 309 uint64_t Addr = I->second; 310 EEState.getGlobalAddressReverseMap().insert(std::make_pair( 311 Addr, Name)); 312 } 313 } 314 315 std::map<uint64_t, std::string>::iterator I = 316 EEState.getGlobalAddressReverseMap().find((uint64_t) Addr); 317 318 if (I != EEState.getGlobalAddressReverseMap().end()) { 319 StringRef Name = I->second; 320 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 321 if (GlobalValue *GV = Modules[i]->getNamedValue(Name)) 322 return GV; 323 } 324 return nullptr; 325 } 326 327 namespace { 328 class ArgvArray { 329 std::unique_ptr<char[]> Array; 330 std::vector<std::unique_ptr<char[]>> Values; 331 public: 332 /// Turn a vector of strings into a nice argv style array of pointers to null 333 /// terminated strings. 334 void *reset(LLVMContext &C, ExecutionEngine *EE, 335 const std::vector<std::string> &InputArgv); 336 }; 337 } // anonymous namespace 338 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 339 const std::vector<std::string> &InputArgv) { 340 Values.clear(); // Free the old contents. 341 Values.reserve(InputArgv.size()); 342 unsigned PtrSize = EE->getDataLayout().getPointerSize(); 343 Array = make_unique<char[]>((InputArgv.size()+1)*PtrSize); 344 345 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array.get() << "\n"); 346 Type *SBytePtr = Type::getInt8PtrTy(C); 347 348 for (unsigned i = 0; i != InputArgv.size(); ++i) { 349 unsigned Size = InputArgv[i].size()+1; 350 auto Dest = make_unique<char[]>(Size); 351 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest.get() << "\n"); 352 353 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get()); 354 Dest[Size-1] = 0; 355 356 // Endian safe: Array[i] = (PointerTy)Dest; 357 EE->StoreValueToMemory(PTOGV(Dest.get()), 358 (GenericValue*)(&Array[i*PtrSize]), SBytePtr); 359 Values.push_back(std::move(Dest)); 360 } 361 362 // Null terminate it 363 EE->StoreValueToMemory(PTOGV(nullptr), 364 (GenericValue*)(&Array[InputArgv.size()*PtrSize]), 365 SBytePtr); 366 return Array.get(); 367 } 368 369 void ExecutionEngine::runStaticConstructorsDestructors(Module &module, 370 bool isDtors) { 371 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 372 GlobalVariable *GV = module.getNamedGlobal(Name); 373 374 // If this global has internal linkage, or if it has a use, then it must be 375 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 376 // this is the case, don't execute any of the global ctors, __main will do 377 // it. 378 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 379 380 // Should be an array of '{ i32, void ()* }' structs. The first value is 381 // the init priority, which we ignore. 382 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 383 if (!InitList) 384 return; 385 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 386 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 387 if (!CS) continue; 388 389 Constant *FP = CS->getOperand(1); 390 if (FP->isNullValue()) 391 continue; // Found a sentinal value, ignore. 392 393 // Strip off constant expression casts. 394 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 395 if (CE->isCast()) 396 FP = CE->getOperand(0); 397 398 // Execute the ctor/dtor function! 399 if (Function *F = dyn_cast<Function>(FP)) 400 runFunction(F, None); 401 402 // FIXME: It is marginally lame that we just do nothing here if we see an 403 // entry we don't recognize. It might not be unreasonable for the verifier 404 // to not even allow this and just assert here. 405 } 406 } 407 408 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 409 // Execute global ctors/dtors for each module in the program. 410 for (std::unique_ptr<Module> &M : Modules) 411 runStaticConstructorsDestructors(*M, isDtors); 412 } 413 414 #ifndef NDEBUG 415 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 416 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 417 unsigned PtrSize = EE->getDataLayout().getPointerSize(); 418 for (unsigned i = 0; i < PtrSize; ++i) 419 if (*(i + (uint8_t*)Loc)) 420 return false; 421 return true; 422 } 423 #endif 424 425 int ExecutionEngine::runFunctionAsMain(Function *Fn, 426 const std::vector<std::string> &argv, 427 const char * const * envp) { 428 std::vector<GenericValue> GVArgs; 429 GenericValue GVArgc; 430 GVArgc.IntVal = APInt(32, argv.size()); 431 432 // Check main() type 433 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 434 FunctionType *FTy = Fn->getFunctionType(); 435 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 436 437 // Check the argument types. 438 if (NumArgs > 3) 439 report_fatal_error("Invalid number of arguments of main() supplied"); 440 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 441 report_fatal_error("Invalid type for third argument of main() supplied"); 442 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 443 report_fatal_error("Invalid type for second argument of main() supplied"); 444 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 445 report_fatal_error("Invalid type for first argument of main() supplied"); 446 if (!FTy->getReturnType()->isIntegerTy() && 447 !FTy->getReturnType()->isVoidTy()) 448 report_fatal_error("Invalid return type of main() supplied"); 449 450 ArgvArray CArgv; 451 ArgvArray CEnv; 452 if (NumArgs) { 453 GVArgs.push_back(GVArgc); // Arg #0 = argc. 454 if (NumArgs > 1) { 455 // Arg #1 = argv. 456 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 457 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 458 "argv[0] was null after CreateArgv"); 459 if (NumArgs > 2) { 460 std::vector<std::string> EnvVars; 461 for (unsigned i = 0; envp[i]; ++i) 462 EnvVars.emplace_back(envp[i]); 463 // Arg #2 = envp. 464 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 465 } 466 } 467 } 468 469 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 470 } 471 472 EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {} 473 474 EngineBuilder::EngineBuilder(std::unique_ptr<Module> M) 475 : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr), 476 OptLevel(CodeGenOpt::Default), MemMgr(nullptr), Resolver(nullptr), 477 RelocModel(Reloc::Default), CMModel(CodeModel::JITDefault), 478 UseOrcMCJITReplacement(false) { 479 // IR module verification is enabled by default in debug builds, and disabled 480 // by default in release builds. 481 #ifndef NDEBUG 482 VerifyModules = true; 483 #else 484 VerifyModules = false; 485 #endif 486 } 487 488 EngineBuilder::~EngineBuilder() = default; 489 490 EngineBuilder &EngineBuilder::setMCJITMemoryManager( 491 std::unique_ptr<RTDyldMemoryManager> mcjmm) { 492 auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm)); 493 MemMgr = SharedMM; 494 Resolver = SharedMM; 495 return *this; 496 } 497 498 EngineBuilder& 499 EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) { 500 MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM)); 501 return *this; 502 } 503 504 EngineBuilder& 505 EngineBuilder::setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR) { 506 Resolver = std::shared_ptr<RuntimeDyld::SymbolResolver>(std::move(SR)); 507 return *this; 508 } 509 510 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 511 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. 512 513 // Make sure we can resolve symbols in the program as well. The zero arg 514 // to the function tells DynamicLibrary to load the program, not a library. 515 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) 516 return nullptr; 517 518 // If the user specified a memory manager but didn't specify which engine to 519 // create, we assume they only want the JIT, and we fail if they only want 520 // the interpreter. 521 if (MemMgr) { 522 if (WhichEngine & EngineKind::JIT) 523 WhichEngine = EngineKind::JIT; 524 else { 525 if (ErrorStr) 526 *ErrorStr = "Cannot create an interpreter with a memory manager."; 527 return nullptr; 528 } 529 } 530 531 // Unless the interpreter was explicitly selected or the JIT is not linked, 532 // try making a JIT. 533 if ((WhichEngine & EngineKind::JIT) && TheTM) { 534 Triple TT(M->getTargetTriple()); 535 if (!TM->getTarget().hasJIT()) { 536 errs() << "WARNING: This target JIT is not designed for the host" 537 << " you are running. If bad things happen, please choose" 538 << " a different -march switch.\n"; 539 } 540 541 ExecutionEngine *EE = nullptr; 542 if (ExecutionEngine::OrcMCJITReplacementCtor && UseOrcMCJITReplacement) { 543 EE = ExecutionEngine::OrcMCJITReplacementCtor(ErrorStr, std::move(MemMgr), 544 std::move(Resolver), 545 std::move(TheTM)); 546 EE->addModule(std::move(M)); 547 } else if (ExecutionEngine::MCJITCtor) 548 EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr), 549 std::move(Resolver), std::move(TheTM)); 550 551 if (EE) { 552 EE->setVerifyModules(VerifyModules); 553 return EE; 554 } 555 } 556 557 // If we can't make a JIT and we didn't request one specifically, try making 558 // an interpreter instead. 559 if (WhichEngine & EngineKind::Interpreter) { 560 if (ExecutionEngine::InterpCtor) 561 return ExecutionEngine::InterpCtor(std::move(M), ErrorStr); 562 if (ErrorStr) 563 *ErrorStr = "Interpreter has not been linked in."; 564 return nullptr; 565 } 566 567 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) { 568 if (ErrorStr) 569 *ErrorStr = "JIT has not been linked in."; 570 } 571 572 return nullptr; 573 } 574 575 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 576 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 577 return getPointerToFunction(F); 578 579 MutexGuard locked(lock); 580 if (void* P = getPointerToGlobalIfAvailable(GV)) 581 return P; 582 583 // Global variable might have been added since interpreter started. 584 if (GlobalVariable *GVar = 585 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 586 EmitGlobalVariable(GVar); 587 else 588 llvm_unreachable("Global hasn't had an address allocated yet!"); 589 590 return getPointerToGlobalIfAvailable(GV); 591 } 592 593 /// \brief Converts a Constant* into a GenericValue, including handling of 594 /// ConstantExpr values. 595 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 596 // If its undefined, return the garbage. 597 if (isa<UndefValue>(C)) { 598 GenericValue Result; 599 switch (C->getType()->getTypeID()) { 600 default: 601 break; 602 case Type::IntegerTyID: 603 case Type::X86_FP80TyID: 604 case Type::FP128TyID: 605 case Type::PPC_FP128TyID: 606 // Although the value is undefined, we still have to construct an APInt 607 // with the correct bit width. 608 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 609 break; 610 case Type::StructTyID: { 611 // if the whole struct is 'undef' just reserve memory for the value. 612 if(StructType *STy = dyn_cast<StructType>(C->getType())) { 613 unsigned int elemNum = STy->getNumElements(); 614 Result.AggregateVal.resize(elemNum); 615 for (unsigned int i = 0; i < elemNum; ++i) { 616 Type *ElemTy = STy->getElementType(i); 617 if (ElemTy->isIntegerTy()) 618 Result.AggregateVal[i].IntVal = 619 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 620 else if (ElemTy->isAggregateType()) { 621 const Constant *ElemUndef = UndefValue::get(ElemTy); 622 Result.AggregateVal[i] = getConstantValue(ElemUndef); 623 } 624 } 625 } 626 } 627 break; 628 case Type::VectorTyID: 629 // if the whole vector is 'undef' just reserve memory for the value. 630 auto* VTy = dyn_cast<VectorType>(C->getType()); 631 Type *ElemTy = VTy->getElementType(); 632 unsigned int elemNum = VTy->getNumElements(); 633 Result.AggregateVal.resize(elemNum); 634 if (ElemTy->isIntegerTy()) 635 for (unsigned int i = 0; i < elemNum; ++i) 636 Result.AggregateVal[i].IntVal = 637 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 638 break; 639 } 640 return Result; 641 } 642 643 // Otherwise, if the value is a ConstantExpr... 644 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 645 Constant *Op0 = CE->getOperand(0); 646 switch (CE->getOpcode()) { 647 case Instruction::GetElementPtr: { 648 // Compute the index 649 GenericValue Result = getConstantValue(Op0); 650 APInt Offset(DL.getPointerSizeInBits(), 0); 651 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, Offset); 652 653 char* tmp = (char*) Result.PointerVal; 654 Result = PTOGV(tmp + Offset.getSExtValue()); 655 return Result; 656 } 657 case Instruction::Trunc: { 658 GenericValue GV = getConstantValue(Op0); 659 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 660 GV.IntVal = GV.IntVal.trunc(BitWidth); 661 return GV; 662 } 663 case Instruction::ZExt: { 664 GenericValue GV = getConstantValue(Op0); 665 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 666 GV.IntVal = GV.IntVal.zext(BitWidth); 667 return GV; 668 } 669 case Instruction::SExt: { 670 GenericValue GV = getConstantValue(Op0); 671 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 672 GV.IntVal = GV.IntVal.sext(BitWidth); 673 return GV; 674 } 675 case Instruction::FPTrunc: { 676 // FIXME long double 677 GenericValue GV = getConstantValue(Op0); 678 GV.FloatVal = float(GV.DoubleVal); 679 return GV; 680 } 681 case Instruction::FPExt:{ 682 // FIXME long double 683 GenericValue GV = getConstantValue(Op0); 684 GV.DoubleVal = double(GV.FloatVal); 685 return GV; 686 } 687 case Instruction::UIToFP: { 688 GenericValue GV = getConstantValue(Op0); 689 if (CE->getType()->isFloatTy()) 690 GV.FloatVal = float(GV.IntVal.roundToDouble()); 691 else if (CE->getType()->isDoubleTy()) 692 GV.DoubleVal = GV.IntVal.roundToDouble(); 693 else if (CE->getType()->isX86_FP80Ty()) { 694 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 695 (void)apf.convertFromAPInt(GV.IntVal, 696 false, 697 APFloat::rmNearestTiesToEven); 698 GV.IntVal = apf.bitcastToAPInt(); 699 } 700 return GV; 701 } 702 case Instruction::SIToFP: { 703 GenericValue GV = getConstantValue(Op0); 704 if (CE->getType()->isFloatTy()) 705 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 706 else if (CE->getType()->isDoubleTy()) 707 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 708 else if (CE->getType()->isX86_FP80Ty()) { 709 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 710 (void)apf.convertFromAPInt(GV.IntVal, 711 true, 712 APFloat::rmNearestTiesToEven); 713 GV.IntVal = apf.bitcastToAPInt(); 714 } 715 return GV; 716 } 717 case Instruction::FPToUI: // double->APInt conversion handles sign 718 case Instruction::FPToSI: { 719 GenericValue GV = getConstantValue(Op0); 720 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 721 if (Op0->getType()->isFloatTy()) 722 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 723 else if (Op0->getType()->isDoubleTy()) 724 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 725 else if (Op0->getType()->isX86_FP80Ty()) { 726 APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal); 727 uint64_t v; 728 bool ignored; 729 (void)apf.convertToInteger(&v, BitWidth, 730 CE->getOpcode()==Instruction::FPToSI, 731 APFloat::rmTowardZero, &ignored); 732 GV.IntVal = v; // endian? 733 } 734 return GV; 735 } 736 case Instruction::PtrToInt: { 737 GenericValue GV = getConstantValue(Op0); 738 uint32_t PtrWidth = DL.getTypeSizeInBits(Op0->getType()); 739 assert(PtrWidth <= 64 && "Bad pointer width"); 740 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 741 uint32_t IntWidth = DL.getTypeSizeInBits(CE->getType()); 742 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); 743 return GV; 744 } 745 case Instruction::IntToPtr: { 746 GenericValue GV = getConstantValue(Op0); 747 uint32_t PtrWidth = DL.getTypeSizeInBits(CE->getType()); 748 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 749 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 750 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 751 return GV; 752 } 753 case Instruction::BitCast: { 754 GenericValue GV = getConstantValue(Op0); 755 Type* DestTy = CE->getType(); 756 switch (Op0->getType()->getTypeID()) { 757 default: llvm_unreachable("Invalid bitcast operand"); 758 case Type::IntegerTyID: 759 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 760 if (DestTy->isFloatTy()) 761 GV.FloatVal = GV.IntVal.bitsToFloat(); 762 else if (DestTy->isDoubleTy()) 763 GV.DoubleVal = GV.IntVal.bitsToDouble(); 764 break; 765 case Type::FloatTyID: 766 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 767 GV.IntVal = APInt::floatToBits(GV.FloatVal); 768 break; 769 case Type::DoubleTyID: 770 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 771 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 772 break; 773 case Type::PointerTyID: 774 assert(DestTy->isPointerTy() && "Invalid bitcast"); 775 break; // getConstantValue(Op0) above already converted it 776 } 777 return GV; 778 } 779 case Instruction::Add: 780 case Instruction::FAdd: 781 case Instruction::Sub: 782 case Instruction::FSub: 783 case Instruction::Mul: 784 case Instruction::FMul: 785 case Instruction::UDiv: 786 case Instruction::SDiv: 787 case Instruction::URem: 788 case Instruction::SRem: 789 case Instruction::And: 790 case Instruction::Or: 791 case Instruction::Xor: { 792 GenericValue LHS = getConstantValue(Op0); 793 GenericValue RHS = getConstantValue(CE->getOperand(1)); 794 GenericValue GV; 795 switch (CE->getOperand(0)->getType()->getTypeID()) { 796 default: llvm_unreachable("Bad add type!"); 797 case Type::IntegerTyID: 798 switch (CE->getOpcode()) { 799 default: llvm_unreachable("Invalid integer opcode"); 800 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 801 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 802 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 803 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 804 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 805 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 806 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 807 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 808 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 809 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 810 } 811 break; 812 case Type::FloatTyID: 813 switch (CE->getOpcode()) { 814 default: llvm_unreachable("Invalid float opcode"); 815 case Instruction::FAdd: 816 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 817 case Instruction::FSub: 818 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 819 case Instruction::FMul: 820 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 821 case Instruction::FDiv: 822 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 823 case Instruction::FRem: 824 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 825 } 826 break; 827 case Type::DoubleTyID: 828 switch (CE->getOpcode()) { 829 default: llvm_unreachable("Invalid double opcode"); 830 case Instruction::FAdd: 831 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 832 case Instruction::FSub: 833 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 834 case Instruction::FMul: 835 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 836 case Instruction::FDiv: 837 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 838 case Instruction::FRem: 839 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 840 } 841 break; 842 case Type::X86_FP80TyID: 843 case Type::PPC_FP128TyID: 844 case Type::FP128TyID: { 845 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); 846 APFloat apfLHS = APFloat(Sem, LHS.IntVal); 847 switch (CE->getOpcode()) { 848 default: llvm_unreachable("Invalid long double opcode"); 849 case Instruction::FAdd: 850 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); 851 GV.IntVal = apfLHS.bitcastToAPInt(); 852 break; 853 case Instruction::FSub: 854 apfLHS.subtract(APFloat(Sem, RHS.IntVal), 855 APFloat::rmNearestTiesToEven); 856 GV.IntVal = apfLHS.bitcastToAPInt(); 857 break; 858 case Instruction::FMul: 859 apfLHS.multiply(APFloat(Sem, RHS.IntVal), 860 APFloat::rmNearestTiesToEven); 861 GV.IntVal = apfLHS.bitcastToAPInt(); 862 break; 863 case Instruction::FDiv: 864 apfLHS.divide(APFloat(Sem, RHS.IntVal), 865 APFloat::rmNearestTiesToEven); 866 GV.IntVal = apfLHS.bitcastToAPInt(); 867 break; 868 case Instruction::FRem: 869 apfLHS.mod(APFloat(Sem, RHS.IntVal)); 870 GV.IntVal = apfLHS.bitcastToAPInt(); 871 break; 872 } 873 } 874 break; 875 } 876 return GV; 877 } 878 default: 879 break; 880 } 881 882 SmallString<256> Msg; 883 raw_svector_ostream OS(Msg); 884 OS << "ConstantExpr not handled: " << *CE; 885 report_fatal_error(OS.str()); 886 } 887 888 // Otherwise, we have a simple constant. 889 GenericValue Result; 890 switch (C->getType()->getTypeID()) { 891 case Type::FloatTyID: 892 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 893 break; 894 case Type::DoubleTyID: 895 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 896 break; 897 case Type::X86_FP80TyID: 898 case Type::FP128TyID: 899 case Type::PPC_FP128TyID: 900 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 901 break; 902 case Type::IntegerTyID: 903 Result.IntVal = cast<ConstantInt>(C)->getValue(); 904 break; 905 case Type::PointerTyID: 906 if (isa<ConstantPointerNull>(C)) 907 Result.PointerVal = nullptr; 908 else if (const Function *F = dyn_cast<Function>(C)) 909 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 910 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 911 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 912 else 913 llvm_unreachable("Unknown constant pointer type!"); 914 break; 915 case Type::VectorTyID: { 916 unsigned elemNum; 917 Type* ElemTy; 918 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); 919 const ConstantVector *CV = dyn_cast<ConstantVector>(C); 920 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); 921 922 if (CDV) { 923 elemNum = CDV->getNumElements(); 924 ElemTy = CDV->getElementType(); 925 } else if (CV || CAZ) { 926 VectorType* VTy = dyn_cast<VectorType>(C->getType()); 927 elemNum = VTy->getNumElements(); 928 ElemTy = VTy->getElementType(); 929 } else { 930 llvm_unreachable("Unknown constant vector type!"); 931 } 932 933 Result.AggregateVal.resize(elemNum); 934 // Check if vector holds floats. 935 if(ElemTy->isFloatTy()) { 936 if (CAZ) { 937 GenericValue floatZero; 938 floatZero.FloatVal = 0.f; 939 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 940 floatZero); 941 break; 942 } 943 if(CV) { 944 for (unsigned i = 0; i < elemNum; ++i) 945 if (!isa<UndefValue>(CV->getOperand(i))) 946 Result.AggregateVal[i].FloatVal = cast<ConstantFP>( 947 CV->getOperand(i))->getValueAPF().convertToFloat(); 948 break; 949 } 950 if(CDV) 951 for (unsigned i = 0; i < elemNum; ++i) 952 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); 953 954 break; 955 } 956 // Check if vector holds doubles. 957 if (ElemTy->isDoubleTy()) { 958 if (CAZ) { 959 GenericValue doubleZero; 960 doubleZero.DoubleVal = 0.0; 961 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 962 doubleZero); 963 break; 964 } 965 if(CV) { 966 for (unsigned i = 0; i < elemNum; ++i) 967 if (!isa<UndefValue>(CV->getOperand(i))) 968 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( 969 CV->getOperand(i))->getValueAPF().convertToDouble(); 970 break; 971 } 972 if(CDV) 973 for (unsigned i = 0; i < elemNum; ++i) 974 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); 975 976 break; 977 } 978 // Check if vector holds integers. 979 if (ElemTy->isIntegerTy()) { 980 if (CAZ) { 981 GenericValue intZero; 982 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); 983 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 984 intZero); 985 break; 986 } 987 if(CV) { 988 for (unsigned i = 0; i < elemNum; ++i) 989 if (!isa<UndefValue>(CV->getOperand(i))) 990 Result.AggregateVal[i].IntVal = cast<ConstantInt>( 991 CV->getOperand(i))->getValue(); 992 else { 993 Result.AggregateVal[i].IntVal = 994 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); 995 } 996 break; 997 } 998 if(CDV) 999 for (unsigned i = 0; i < elemNum; ++i) 1000 Result.AggregateVal[i].IntVal = APInt( 1001 CDV->getElementType()->getPrimitiveSizeInBits(), 1002 CDV->getElementAsInteger(i)); 1003 1004 break; 1005 } 1006 llvm_unreachable("Unknown constant pointer type!"); 1007 } 1008 break; 1009 1010 default: 1011 SmallString<256> Msg; 1012 raw_svector_ostream OS(Msg); 1013 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 1014 report_fatal_error(OS.str()); 1015 } 1016 1017 return Result; 1018 } 1019 1020 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 1021 /// with the integer held in IntVal. 1022 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 1023 unsigned StoreBytes) { 1024 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 1025 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 1026 1027 if (sys::IsLittleEndianHost) { 1028 // Little-endian host - the source is ordered from LSB to MSB. Order the 1029 // destination from LSB to MSB: Do a straight copy. 1030 memcpy(Dst, Src, StoreBytes); 1031 } else { 1032 // Big-endian host - the source is an array of 64 bit words ordered from 1033 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 1034 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 1035 while (StoreBytes > sizeof(uint64_t)) { 1036 StoreBytes -= sizeof(uint64_t); 1037 // May not be aligned so use memcpy. 1038 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 1039 Src += sizeof(uint64_t); 1040 } 1041 1042 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 1043 } 1044 } 1045 1046 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 1047 GenericValue *Ptr, Type *Ty) { 1048 const unsigned StoreBytes = getDataLayout().getTypeStoreSize(Ty); 1049 1050 switch (Ty->getTypeID()) { 1051 default: 1052 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 1053 break; 1054 case Type::IntegerTyID: 1055 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 1056 break; 1057 case Type::FloatTyID: 1058 *((float*)Ptr) = Val.FloatVal; 1059 break; 1060 case Type::DoubleTyID: 1061 *((double*)Ptr) = Val.DoubleVal; 1062 break; 1063 case Type::X86_FP80TyID: 1064 memcpy(Ptr, Val.IntVal.getRawData(), 10); 1065 break; 1066 case Type::PointerTyID: 1067 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 1068 if (StoreBytes != sizeof(PointerTy)) 1069 memset(&(Ptr->PointerVal), 0, StoreBytes); 1070 1071 *((PointerTy*)Ptr) = Val.PointerVal; 1072 break; 1073 case Type::VectorTyID: 1074 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { 1075 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) 1076 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; 1077 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) 1078 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; 1079 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { 1080 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; 1081 StoreIntToMemory(Val.AggregateVal[i].IntVal, 1082 (uint8_t*)Ptr + numOfBytes*i, numOfBytes); 1083 } 1084 } 1085 break; 1086 } 1087 1088 if (sys::IsLittleEndianHost != getDataLayout().isLittleEndian()) 1089 // Host and target are different endian - reverse the stored bytes. 1090 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 1091 } 1092 1093 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 1094 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 1095 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 1096 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 1097 uint8_t *Dst = reinterpret_cast<uint8_t *>( 1098 const_cast<uint64_t *>(IntVal.getRawData())); 1099 1100 if (sys::IsLittleEndianHost) 1101 // Little-endian host - the destination must be ordered from LSB to MSB. 1102 // The source is ordered from LSB to MSB: Do a straight copy. 1103 memcpy(Dst, Src, LoadBytes); 1104 else { 1105 // Big-endian - the destination is an array of 64 bit words ordered from 1106 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 1107 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 1108 // a word. 1109 while (LoadBytes > sizeof(uint64_t)) { 1110 LoadBytes -= sizeof(uint64_t); 1111 // May not be aligned so use memcpy. 1112 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 1113 Dst += sizeof(uint64_t); 1114 } 1115 1116 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 1117 } 1118 } 1119 1120 /// FIXME: document 1121 /// 1122 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 1123 GenericValue *Ptr, 1124 Type *Ty) { 1125 const unsigned LoadBytes = getDataLayout().getTypeStoreSize(Ty); 1126 1127 switch (Ty->getTypeID()) { 1128 case Type::IntegerTyID: 1129 // An APInt with all words initially zero. 1130 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 1131 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 1132 break; 1133 case Type::FloatTyID: 1134 Result.FloatVal = *((float*)Ptr); 1135 break; 1136 case Type::DoubleTyID: 1137 Result.DoubleVal = *((double*)Ptr); 1138 break; 1139 case Type::PointerTyID: 1140 Result.PointerVal = *((PointerTy*)Ptr); 1141 break; 1142 case Type::X86_FP80TyID: { 1143 // This is endian dependent, but it will only work on x86 anyway. 1144 // FIXME: Will not trap if loading a signaling NaN. 1145 uint64_t y[2]; 1146 memcpy(y, Ptr, 10); 1147 Result.IntVal = APInt(80, y); 1148 break; 1149 } 1150 case Type::VectorTyID: { 1151 auto *VT = cast<VectorType>(Ty); 1152 Type *ElemT = VT->getElementType(); 1153 const unsigned numElems = VT->getNumElements(); 1154 if (ElemT->isFloatTy()) { 1155 Result.AggregateVal.resize(numElems); 1156 for (unsigned i = 0; i < numElems; ++i) 1157 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); 1158 } 1159 if (ElemT->isDoubleTy()) { 1160 Result.AggregateVal.resize(numElems); 1161 for (unsigned i = 0; i < numElems; ++i) 1162 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); 1163 } 1164 if (ElemT->isIntegerTy()) { 1165 GenericValue intZero; 1166 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); 1167 intZero.IntVal = APInt(elemBitWidth, 0); 1168 Result.AggregateVal.resize(numElems, intZero); 1169 for (unsigned i = 0; i < numElems; ++i) 1170 LoadIntFromMemory(Result.AggregateVal[i].IntVal, 1171 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); 1172 } 1173 break; 1174 } 1175 default: 1176 SmallString<256> Msg; 1177 raw_svector_ostream OS(Msg); 1178 OS << "Cannot load value of type " << *Ty << "!"; 1179 report_fatal_error(OS.str()); 1180 } 1181 } 1182 1183 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 1184 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 1185 DEBUG(Init->dump()); 1186 if (isa<UndefValue>(Init)) 1187 return; 1188 1189 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 1190 unsigned ElementSize = 1191 getDataLayout().getTypeAllocSize(CP->getType()->getElementType()); 1192 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 1193 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 1194 return; 1195 } 1196 1197 if (isa<ConstantAggregateZero>(Init)) { 1198 memset(Addr, 0, (size_t)getDataLayout().getTypeAllocSize(Init->getType())); 1199 return; 1200 } 1201 1202 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 1203 unsigned ElementSize = 1204 getDataLayout().getTypeAllocSize(CPA->getType()->getElementType()); 1205 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 1206 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 1207 return; 1208 } 1209 1210 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 1211 const StructLayout *SL = 1212 getDataLayout().getStructLayout(cast<StructType>(CPS->getType())); 1213 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 1214 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 1215 return; 1216 } 1217 1218 if (const ConstantDataSequential *CDS = 1219 dyn_cast<ConstantDataSequential>(Init)) { 1220 // CDS is already laid out in host memory order. 1221 StringRef Data = CDS->getRawDataValues(); 1222 memcpy(Addr, Data.data(), Data.size()); 1223 return; 1224 } 1225 1226 if (Init->getType()->isFirstClassType()) { 1227 GenericValue Val = getConstantValue(Init); 1228 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 1229 return; 1230 } 1231 1232 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1233 llvm_unreachable("Unknown constant type to initialize memory with!"); 1234 } 1235 1236 /// EmitGlobals - Emit all of the global variables to memory, storing their 1237 /// addresses into GlobalAddress. This must make sure to copy the contents of 1238 /// their initializers into the memory. 1239 void ExecutionEngine::emitGlobals() { 1240 // Loop over all of the global variables in the program, allocating the memory 1241 // to hold them. If there is more than one module, do a prepass over globals 1242 // to figure out how the different modules should link together. 1243 std::map<std::pair<std::string, Type*>, 1244 const GlobalValue*> LinkedGlobalsMap; 1245 1246 if (Modules.size() != 1) { 1247 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1248 Module &M = *Modules[m]; 1249 for (const auto &GV : M.globals()) { 1250 if (GV.hasLocalLinkage() || GV.isDeclaration() || 1251 GV.hasAppendingLinkage() || !GV.hasName()) 1252 continue;// Ignore external globals and globals with internal linkage. 1253 1254 const GlobalValue *&GVEntry = 1255 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]; 1256 1257 // If this is the first time we've seen this global, it is the canonical 1258 // version. 1259 if (!GVEntry) { 1260 GVEntry = &GV; 1261 continue; 1262 } 1263 1264 // If the existing global is strong, never replace it. 1265 if (GVEntry->hasExternalLinkage()) 1266 continue; 1267 1268 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1269 // symbol. FIXME is this right for common? 1270 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1271 GVEntry = &GV; 1272 } 1273 } 1274 } 1275 1276 std::vector<const GlobalValue*> NonCanonicalGlobals; 1277 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1278 Module &M = *Modules[m]; 1279 for (const auto &GV : M.globals()) { 1280 // In the multi-module case, see what this global maps to. 1281 if (!LinkedGlobalsMap.empty()) { 1282 if (const GlobalValue *GVEntry = 1283 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) { 1284 // If something else is the canonical global, ignore this one. 1285 if (GVEntry != &GV) { 1286 NonCanonicalGlobals.push_back(&GV); 1287 continue; 1288 } 1289 } 1290 } 1291 1292 if (!GV.isDeclaration()) { 1293 addGlobalMapping(&GV, getMemoryForGV(&GV)); 1294 } else { 1295 // External variable reference. Try to use the dynamic loader to 1296 // get a pointer to it. 1297 if (void *SymAddr = 1298 sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName())) 1299 addGlobalMapping(&GV, SymAddr); 1300 else { 1301 report_fatal_error("Could not resolve external global address: " 1302 +GV.getName()); 1303 } 1304 } 1305 } 1306 1307 // If there are multiple modules, map the non-canonical globals to their 1308 // canonical location. 1309 if (!NonCanonicalGlobals.empty()) { 1310 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1311 const GlobalValue *GV = NonCanonicalGlobals[i]; 1312 const GlobalValue *CGV = 1313 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1314 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1315 assert(Ptr && "Canonical global wasn't codegen'd!"); 1316 addGlobalMapping(GV, Ptr); 1317 } 1318 } 1319 1320 // Now that all of the globals are set up in memory, loop through them all 1321 // and initialize their contents. 1322 for (const auto &GV : M.globals()) { 1323 if (!GV.isDeclaration()) { 1324 if (!LinkedGlobalsMap.empty()) { 1325 if (const GlobalValue *GVEntry = 1326 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) 1327 if (GVEntry != &GV) // Not the canonical variable. 1328 continue; 1329 } 1330 EmitGlobalVariable(&GV); 1331 } 1332 } 1333 } 1334 } 1335 1336 // EmitGlobalVariable - This method emits the specified global variable to the 1337 // address specified in GlobalAddresses, or allocates new memory if it's not 1338 // already in the map. 1339 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1340 void *GA = getPointerToGlobalIfAvailable(GV); 1341 1342 if (!GA) { 1343 // If it's not already specified, allocate memory for the global. 1344 GA = getMemoryForGV(GV); 1345 1346 // If we failed to allocate memory for this global, return. 1347 if (!GA) return; 1348 1349 addGlobalMapping(GV, GA); 1350 } 1351 1352 // Don't initialize if it's thread local, let the client do it. 1353 if (!GV->isThreadLocal()) 1354 InitializeMemory(GV->getInitializer(), GA); 1355 1356 Type *ElTy = GV->getValueType(); 1357 size_t GVSize = (size_t)getDataLayout().getTypeAllocSize(ElTy); 1358 NumInitBytes += (unsigned)GVSize; 1359 ++NumGlobals; 1360 } 1361