1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/Module.h" 19 #include "llvm/ModuleProvider.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Config/alloca.h" 22 #include "llvm/ExecutionEngine/ExecutionEngine.h" 23 #include "llvm/ExecutionEngine/GenericValue.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/MutexGuard.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/System/DynamicLibrary.h" 29 #include "llvm/System/Host.h" 30 #include "llvm/Target/TargetData.h" 31 #include <cmath> 32 #include <cstring> 33 using namespace llvm; 34 35 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 36 STATISTIC(NumGlobals , "Number of global vars initialized"); 37 38 ExecutionEngine *(*ExecutionEngine::JITCtor)(ModuleProvider *MP, 39 std::string *ErrorStr, 40 JITMemoryManager *JMM, 41 CodeGenOpt::Level OptLevel, 42 bool GVsWithCode) = 0; 43 ExecutionEngine *(*ExecutionEngine::InterpCtor)(ModuleProvider *MP, 44 std::string *ErrorStr) = 0; 45 ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0; 46 47 48 ExecutionEngine::ExecutionEngine(ModuleProvider *P) : LazyFunctionCreator(0) { 49 LazyCompilationDisabled = false; 50 GVCompilationDisabled = false; 51 SymbolSearchingDisabled = false; 52 DlsymStubsEnabled = false; 53 Modules.push_back(P); 54 assert(P && "ModuleProvider is null?"); 55 } 56 57 ExecutionEngine::~ExecutionEngine() { 58 clearAllGlobalMappings(); 59 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 60 delete Modules[i]; 61 } 62 63 char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) { 64 const Type *ElTy = GV->getType()->getElementType(); 65 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 66 return new char[GVSize]; 67 } 68 69 /// removeModuleProvider - Remove a ModuleProvider from the list of modules. 70 /// Relases the Module from the ModuleProvider, materializing it in the 71 /// process, and returns the materialized Module. 72 Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P, 73 std::string *ErrInfo) { 74 for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(), 75 E = Modules.end(); I != E; ++I) { 76 ModuleProvider *MP = *I; 77 if (MP == P) { 78 Modules.erase(I); 79 clearGlobalMappingsFromModule(MP->getModule()); 80 return MP->releaseModule(ErrInfo); 81 } 82 } 83 return NULL; 84 } 85 86 /// deleteModuleProvider - Remove a ModuleProvider from the list of modules, 87 /// and deletes the ModuleProvider and owned Module. Avoids materializing 88 /// the underlying module. 89 void ExecutionEngine::deleteModuleProvider(ModuleProvider *P, 90 std::string *ErrInfo) { 91 for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(), 92 E = Modules.end(); I != E; ++I) { 93 ModuleProvider *MP = *I; 94 if (MP == P) { 95 Modules.erase(I); 96 clearGlobalMappingsFromModule(MP->getModule()); 97 delete MP; 98 return; 99 } 100 } 101 } 102 103 /// FindFunctionNamed - Search all of the active modules to find the one that 104 /// defines FnName. This is very slow operation and shouldn't be used for 105 /// general code. 106 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 107 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 108 if (Function *F = Modules[i]->getModule()->getFunction(FnName)) 109 return F; 110 } 111 return 0; 112 } 113 114 115 /// addGlobalMapping - Tell the execution engine that the specified global is 116 /// at the specified location. This is used internally as functions are JIT'd 117 /// and as global variables are laid out in memory. It can and should also be 118 /// used by clients of the EE that want to have an LLVM global overlay 119 /// existing data in memory. 120 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 121 MutexGuard locked(lock); 122 123 DOUT << "JIT: Map \'" << GV->getNameStart() << "\' to [" << Addr << "]\n"; 124 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 125 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 126 CurVal = Addr; 127 128 // If we are using the reverse mapping, add it too 129 if (!state.getGlobalAddressReverseMap(locked).empty()) { 130 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; 131 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 132 V = GV; 133 } 134 } 135 136 /// clearAllGlobalMappings - Clear all global mappings and start over again 137 /// use in dynamic compilation scenarios when you want to move globals 138 void ExecutionEngine::clearAllGlobalMappings() { 139 MutexGuard locked(lock); 140 141 state.getGlobalAddressMap(locked).clear(); 142 state.getGlobalAddressReverseMap(locked).clear(); 143 } 144 145 /// clearGlobalMappingsFromModule - Clear all global mappings that came from a 146 /// particular module, because it has been removed from the JIT. 147 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 148 MutexGuard locked(lock); 149 150 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { 151 state.getGlobalAddressMap(locked).erase(FI); 152 state.getGlobalAddressReverseMap(locked).erase(FI); 153 } 154 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 155 GI != GE; ++GI) { 156 state.getGlobalAddressMap(locked).erase(GI); 157 state.getGlobalAddressReverseMap(locked).erase(GI); 158 } 159 } 160 161 /// updateGlobalMapping - Replace an existing mapping for GV with a new 162 /// address. This updates both maps as required. If "Addr" is null, the 163 /// entry for the global is removed from the mappings. 164 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 165 MutexGuard locked(lock); 166 167 std::map<const GlobalValue*, void *> &Map = state.getGlobalAddressMap(locked); 168 169 // Deleting from the mapping? 170 if (Addr == 0) { 171 std::map<const GlobalValue*, void *>::iterator I = Map.find(GV); 172 void *OldVal; 173 if (I == Map.end()) 174 OldVal = 0; 175 else { 176 OldVal = I->second; 177 Map.erase(I); 178 } 179 180 if (!state.getGlobalAddressReverseMap(locked).empty()) 181 state.getGlobalAddressReverseMap(locked).erase(Addr); 182 return OldVal; 183 } 184 185 void *&CurVal = Map[GV]; 186 void *OldVal = CurVal; 187 188 if (CurVal && !state.getGlobalAddressReverseMap(locked).empty()) 189 state.getGlobalAddressReverseMap(locked).erase(CurVal); 190 CurVal = Addr; 191 192 // If we are using the reverse mapping, add it too 193 if (!state.getGlobalAddressReverseMap(locked).empty()) { 194 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; 195 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 196 V = GV; 197 } 198 return OldVal; 199 } 200 201 /// getPointerToGlobalIfAvailable - This returns the address of the specified 202 /// global value if it is has already been codegen'd, otherwise it returns null. 203 /// 204 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 205 MutexGuard locked(lock); 206 207 std::map<const GlobalValue*, void*>::iterator I = 208 state.getGlobalAddressMap(locked).find(GV); 209 return I != state.getGlobalAddressMap(locked).end() ? I->second : 0; 210 } 211 212 /// getGlobalValueAtAddress - Return the LLVM global value object that starts 213 /// at the specified address. 214 /// 215 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 216 MutexGuard locked(lock); 217 218 // If we haven't computed the reverse mapping yet, do so first. 219 if (state.getGlobalAddressReverseMap(locked).empty()) { 220 for (std::map<const GlobalValue*, void *>::iterator 221 I = state.getGlobalAddressMap(locked).begin(), 222 E = state.getGlobalAddressMap(locked).end(); I != E; ++I) 223 state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, 224 I->first)); 225 } 226 227 std::map<void *, const GlobalValue*>::iterator I = 228 state.getGlobalAddressReverseMap(locked).find(Addr); 229 return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 230 } 231 232 // CreateArgv - Turn a vector of strings into a nice argv style array of 233 // pointers to null terminated strings. 234 // 235 static void *CreateArgv(ExecutionEngine *EE, 236 const std::vector<std::string> &InputArgv) { 237 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 238 char *Result = new char[(InputArgv.size()+1)*PtrSize]; 239 240 DOUT << "JIT: ARGV = " << (void*)Result << "\n"; 241 const Type *SBytePtr = PointerType::getUnqual(Type::Int8Ty); 242 243 for (unsigned i = 0; i != InputArgv.size(); ++i) { 244 unsigned Size = InputArgv[i].size()+1; 245 char *Dest = new char[Size]; 246 DOUT << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"; 247 248 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 249 Dest[Size-1] = 0; 250 251 // Endian safe: Result[i] = (PointerTy)Dest; 252 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), 253 SBytePtr); 254 } 255 256 // Null terminate it 257 EE->StoreValueToMemory(PTOGV(0), 258 (GenericValue*)(Result+InputArgv.size()*PtrSize), 259 SBytePtr); 260 return Result; 261 } 262 263 264 /// runStaticConstructorsDestructors - This method is used to execute all of 265 /// the static constructors or destructors for a module, depending on the 266 /// value of isDtors. 267 void ExecutionEngine::runStaticConstructorsDestructors(Module *module, bool isDtors) { 268 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 269 270 // Execute global ctors/dtors for each module in the program. 271 272 GlobalVariable *GV = module->getNamedGlobal(Name); 273 274 // If this global has internal linkage, or if it has a use, then it must be 275 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 276 // this is the case, don't execute any of the global ctors, __main will do 277 // it. 278 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 279 280 // Should be an array of '{ int, void ()* }' structs. The first value is 281 // the init priority, which we ignore. 282 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 283 if (!InitList) return; 284 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 285 if (ConstantStruct *CS = 286 dyn_cast<ConstantStruct>(InitList->getOperand(i))) { 287 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 288 289 Constant *FP = CS->getOperand(1); 290 if (FP->isNullValue()) 291 break; // Found a null terminator, exit. 292 293 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 294 if (CE->isCast()) 295 FP = CE->getOperand(0); 296 if (Function *F = dyn_cast<Function>(FP)) { 297 // Execute the ctor/dtor function! 298 runFunction(F, std::vector<GenericValue>()); 299 } 300 } 301 } 302 303 /// runStaticConstructorsDestructors - This method is used to execute all of 304 /// the static constructors or destructors for a program, depending on the 305 /// value of isDtors. 306 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 307 // Execute global ctors/dtors for each module in the program. 308 for (unsigned m = 0, e = Modules.size(); m != e; ++m) 309 runStaticConstructorsDestructors(Modules[m]->getModule(), isDtors); 310 } 311 312 #ifndef NDEBUG 313 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 314 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 315 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 316 for (unsigned i = 0; i < PtrSize; ++i) 317 if (*(i + (uint8_t*)Loc)) 318 return false; 319 return true; 320 } 321 #endif 322 323 /// runFunctionAsMain - This is a helper function which wraps runFunction to 324 /// handle the common task of starting up main with the specified argc, argv, 325 /// and envp parameters. 326 int ExecutionEngine::runFunctionAsMain(Function *Fn, 327 const std::vector<std::string> &argv, 328 const char * const * envp) { 329 std::vector<GenericValue> GVArgs; 330 GenericValue GVArgc; 331 GVArgc.IntVal = APInt(32, argv.size()); 332 333 // Check main() type 334 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 335 const FunctionType *FTy = Fn->getFunctionType(); 336 const Type* PPInt8Ty = 337 PointerType::getUnqual(PointerType::getUnqual(Type::Int8Ty)); 338 switch (NumArgs) { 339 case 3: 340 if (FTy->getParamType(2) != PPInt8Ty) { 341 llvm_report_error("Invalid type for third argument of main() supplied"); 342 } 343 // FALLS THROUGH 344 case 2: 345 if (FTy->getParamType(1) != PPInt8Ty) { 346 llvm_report_error("Invalid type for second argument of main() supplied"); 347 } 348 // FALLS THROUGH 349 case 1: 350 if (FTy->getParamType(0) != Type::Int32Ty) { 351 llvm_report_error("Invalid type for first argument of main() supplied"); 352 } 353 // FALLS THROUGH 354 case 0: 355 if (!isa<IntegerType>(FTy->getReturnType()) && 356 FTy->getReturnType() != Type::VoidTy) { 357 llvm_report_error("Invalid return type of main() supplied"); 358 } 359 break; 360 default: 361 llvm_report_error("Invalid number of arguments of main() supplied"); 362 } 363 364 if (NumArgs) { 365 GVArgs.push_back(GVArgc); // Arg #0 = argc. 366 if (NumArgs > 1) { 367 GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv. 368 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 369 "argv[0] was null after CreateArgv"); 370 if (NumArgs > 2) { 371 std::vector<std::string> EnvVars; 372 for (unsigned i = 0; envp[i]; ++i) 373 EnvVars.push_back(envp[i]); 374 GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp. 375 } 376 } 377 } 378 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 379 } 380 381 /// If possible, create a JIT, unless the caller specifically requests an 382 /// Interpreter or there's an error. If even an Interpreter cannot be created, 383 /// NULL is returned. 384 /// 385 ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, 386 bool ForceInterpreter, 387 std::string *ErrorStr, 388 CodeGenOpt::Level OptLevel, 389 bool GVsWithCode) { 390 return EngineBuilder(MP) 391 .setEngineKind(ForceInterpreter 392 ? EngineKind::Interpreter 393 : EngineKind::JIT) 394 .setErrorStr(ErrorStr) 395 .setOptLevel(OptLevel) 396 .setAllocateGVsWithCode(GVsWithCode) 397 .create(); 398 } 399 400 ExecutionEngine *ExecutionEngine::create(Module *M) { 401 return EngineBuilder(M).create(); 402 } 403 404 /// EngineBuilder - Overloaded constructor that automatically creates an 405 /// ExistingModuleProvider for an existing module. 406 EngineBuilder::EngineBuilder(Module *m) : MP(new ExistingModuleProvider(m)) { 407 InitEngine(); 408 } 409 410 ExecutionEngine *EngineBuilder::create() { 411 // Make sure we can resolve symbols in the program as well. The zero arg 412 // to the function tells DynamicLibrary to load the program, not a library. 413 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) 414 return 0; 415 416 // If the user specified a memory manager but didn't specify which engine to 417 // create, we assume they only want the JIT, and we fail if they only want 418 // the interpreter. 419 if (JMM) { 420 if (WhichEngine & EngineKind::JIT) { 421 WhichEngine = EngineKind::JIT; 422 } else { 423 *ErrorStr = "Cannot create an interpreter with a memory manager."; 424 } 425 } 426 427 ExecutionEngine *EE = 0; 428 429 // Unless the interpreter was explicitly selected or the JIT is not linked, 430 // try making a JIT. 431 if (WhichEngine & EngineKind::JIT && ExecutionEngine::JITCtor) { 432 EE = ExecutionEngine::JITCtor(MP, ErrorStr, JMM, OptLevel, 433 AllocateGVsWithCode); 434 } 435 436 // If we can't make a JIT and we didn't request one specifically, try making 437 // an interpreter instead. 438 if (WhichEngine & EngineKind::Interpreter && EE == 0 && 439 ExecutionEngine::InterpCtor) { 440 EE = ExecutionEngine::InterpCtor(MP, ErrorStr); 441 } 442 443 return EE; 444 } 445 446 /// getPointerToGlobal - This returns the address of the specified global 447 /// value. This may involve code generation if it's a function. 448 /// 449 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 450 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 451 return getPointerToFunction(F); 452 453 MutexGuard locked(lock); 454 void *p = state.getGlobalAddressMap(locked)[GV]; 455 if (p) 456 return p; 457 458 // Global variable might have been added since interpreter started. 459 if (GlobalVariable *GVar = 460 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 461 EmitGlobalVariable(GVar); 462 else 463 llvm_unreachable("Global hasn't had an address allocated yet!"); 464 return state.getGlobalAddressMap(locked)[GV]; 465 } 466 467 /// This function converts a Constant* into a GenericValue. The interesting 468 /// part is if C is a ConstantExpr. 469 /// @brief Get a GenericValue for a Constant* 470 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 471 // If its undefined, return the garbage. 472 if (isa<UndefValue>(C)) 473 return GenericValue(); 474 475 // If the value is a ConstantExpr 476 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 477 Constant *Op0 = CE->getOperand(0); 478 switch (CE->getOpcode()) { 479 case Instruction::GetElementPtr: { 480 // Compute the index 481 GenericValue Result = getConstantValue(Op0); 482 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); 483 uint64_t Offset = 484 TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size()); 485 486 char* tmp = (char*) Result.PointerVal; 487 Result = PTOGV(tmp + Offset); 488 return Result; 489 } 490 case Instruction::Trunc: { 491 GenericValue GV = getConstantValue(Op0); 492 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 493 GV.IntVal = GV.IntVal.trunc(BitWidth); 494 return GV; 495 } 496 case Instruction::ZExt: { 497 GenericValue GV = getConstantValue(Op0); 498 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 499 GV.IntVal = GV.IntVal.zext(BitWidth); 500 return GV; 501 } 502 case Instruction::SExt: { 503 GenericValue GV = getConstantValue(Op0); 504 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 505 GV.IntVal = GV.IntVal.sext(BitWidth); 506 return GV; 507 } 508 case Instruction::FPTrunc: { 509 // FIXME long double 510 GenericValue GV = getConstantValue(Op0); 511 GV.FloatVal = float(GV.DoubleVal); 512 return GV; 513 } 514 case Instruction::FPExt:{ 515 // FIXME long double 516 GenericValue GV = getConstantValue(Op0); 517 GV.DoubleVal = double(GV.FloatVal); 518 return GV; 519 } 520 case Instruction::UIToFP: { 521 GenericValue GV = getConstantValue(Op0); 522 if (CE->getType() == Type::FloatTy) 523 GV.FloatVal = float(GV.IntVal.roundToDouble()); 524 else if (CE->getType() == Type::DoubleTy) 525 GV.DoubleVal = GV.IntVal.roundToDouble(); 526 else if (CE->getType() == Type::X86_FP80Ty) { 527 const uint64_t zero[] = {0, 0}; 528 APFloat apf = APFloat(APInt(80, 2, zero)); 529 (void)apf.convertFromAPInt(GV.IntVal, 530 false, 531 APFloat::rmNearestTiesToEven); 532 GV.IntVal = apf.bitcastToAPInt(); 533 } 534 return GV; 535 } 536 case Instruction::SIToFP: { 537 GenericValue GV = getConstantValue(Op0); 538 if (CE->getType() == Type::FloatTy) 539 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 540 else if (CE->getType() == Type::DoubleTy) 541 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 542 else if (CE->getType() == Type::X86_FP80Ty) { 543 const uint64_t zero[] = { 0, 0}; 544 APFloat apf = APFloat(APInt(80, 2, zero)); 545 (void)apf.convertFromAPInt(GV.IntVal, 546 true, 547 APFloat::rmNearestTiesToEven); 548 GV.IntVal = apf.bitcastToAPInt(); 549 } 550 return GV; 551 } 552 case Instruction::FPToUI: // double->APInt conversion handles sign 553 case Instruction::FPToSI: { 554 GenericValue GV = getConstantValue(Op0); 555 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 556 if (Op0->getType() == Type::FloatTy) 557 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 558 else if (Op0->getType() == Type::DoubleTy) 559 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 560 else if (Op0->getType() == Type::X86_FP80Ty) { 561 APFloat apf = APFloat(GV.IntVal); 562 uint64_t v; 563 bool ignored; 564 (void)apf.convertToInteger(&v, BitWidth, 565 CE->getOpcode()==Instruction::FPToSI, 566 APFloat::rmTowardZero, &ignored); 567 GV.IntVal = v; // endian? 568 } 569 return GV; 570 } 571 case Instruction::PtrToInt: { 572 GenericValue GV = getConstantValue(Op0); 573 uint32_t PtrWidth = TD->getPointerSizeInBits(); 574 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 575 return GV; 576 } 577 case Instruction::IntToPtr: { 578 GenericValue GV = getConstantValue(Op0); 579 uint32_t PtrWidth = TD->getPointerSizeInBits(); 580 if (PtrWidth != GV.IntVal.getBitWidth()) 581 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 582 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 583 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 584 return GV; 585 } 586 case Instruction::BitCast: { 587 GenericValue GV = getConstantValue(Op0); 588 const Type* DestTy = CE->getType(); 589 switch (Op0->getType()->getTypeID()) { 590 default: llvm_unreachable("Invalid bitcast operand"); 591 case Type::IntegerTyID: 592 assert(DestTy->isFloatingPoint() && "invalid bitcast"); 593 if (DestTy == Type::FloatTy) 594 GV.FloatVal = GV.IntVal.bitsToFloat(); 595 else if (DestTy == Type::DoubleTy) 596 GV.DoubleVal = GV.IntVal.bitsToDouble(); 597 break; 598 case Type::FloatTyID: 599 assert(DestTy == Type::Int32Ty && "Invalid bitcast"); 600 GV.IntVal.floatToBits(GV.FloatVal); 601 break; 602 case Type::DoubleTyID: 603 assert(DestTy == Type::Int64Ty && "Invalid bitcast"); 604 GV.IntVal.doubleToBits(GV.DoubleVal); 605 break; 606 case Type::PointerTyID: 607 assert(isa<PointerType>(DestTy) && "Invalid bitcast"); 608 break; // getConstantValue(Op0) above already converted it 609 } 610 return GV; 611 } 612 case Instruction::Add: 613 case Instruction::FAdd: 614 case Instruction::Sub: 615 case Instruction::FSub: 616 case Instruction::Mul: 617 case Instruction::FMul: 618 case Instruction::UDiv: 619 case Instruction::SDiv: 620 case Instruction::URem: 621 case Instruction::SRem: 622 case Instruction::And: 623 case Instruction::Or: 624 case Instruction::Xor: { 625 GenericValue LHS = getConstantValue(Op0); 626 GenericValue RHS = getConstantValue(CE->getOperand(1)); 627 GenericValue GV; 628 switch (CE->getOperand(0)->getType()->getTypeID()) { 629 default: llvm_unreachable("Bad add type!"); 630 case Type::IntegerTyID: 631 switch (CE->getOpcode()) { 632 default: llvm_unreachable("Invalid integer opcode"); 633 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 634 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 635 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 636 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 637 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 638 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 639 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 640 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 641 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 642 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 643 } 644 break; 645 case Type::FloatTyID: 646 switch (CE->getOpcode()) { 647 default: llvm_unreachable("Invalid float opcode"); 648 case Instruction::FAdd: 649 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 650 case Instruction::FSub: 651 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 652 case Instruction::FMul: 653 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 654 case Instruction::FDiv: 655 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 656 case Instruction::FRem: 657 GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break; 658 } 659 break; 660 case Type::DoubleTyID: 661 switch (CE->getOpcode()) { 662 default: llvm_unreachable("Invalid double opcode"); 663 case Instruction::FAdd: 664 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 665 case Instruction::FSub: 666 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 667 case Instruction::FMul: 668 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 669 case Instruction::FDiv: 670 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 671 case Instruction::FRem: 672 GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 673 } 674 break; 675 case Type::X86_FP80TyID: 676 case Type::PPC_FP128TyID: 677 case Type::FP128TyID: { 678 APFloat apfLHS = APFloat(LHS.IntVal); 679 switch (CE->getOpcode()) { 680 default: llvm_unreachable("Invalid long double opcode");llvm_unreachable(0); 681 case Instruction::FAdd: 682 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 683 GV.IntVal = apfLHS.bitcastToAPInt(); 684 break; 685 case Instruction::FSub: 686 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 687 GV.IntVal = apfLHS.bitcastToAPInt(); 688 break; 689 case Instruction::FMul: 690 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 691 GV.IntVal = apfLHS.bitcastToAPInt(); 692 break; 693 case Instruction::FDiv: 694 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 695 GV.IntVal = apfLHS.bitcastToAPInt(); 696 break; 697 case Instruction::FRem: 698 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 699 GV.IntVal = apfLHS.bitcastToAPInt(); 700 break; 701 } 702 } 703 break; 704 } 705 return GV; 706 } 707 default: 708 break; 709 } 710 std::string msg; 711 raw_string_ostream Msg(msg); 712 Msg << "ConstantExpr not handled: " << *CE; 713 llvm_report_error(Msg.str()); 714 } 715 716 GenericValue Result; 717 switch (C->getType()->getTypeID()) { 718 case Type::FloatTyID: 719 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 720 break; 721 case Type::DoubleTyID: 722 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 723 break; 724 case Type::X86_FP80TyID: 725 case Type::FP128TyID: 726 case Type::PPC_FP128TyID: 727 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 728 break; 729 case Type::IntegerTyID: 730 Result.IntVal = cast<ConstantInt>(C)->getValue(); 731 break; 732 case Type::PointerTyID: 733 if (isa<ConstantPointerNull>(C)) 734 Result.PointerVal = 0; 735 else if (const Function *F = dyn_cast<Function>(C)) 736 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 737 else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) 738 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 739 else 740 llvm_unreachable("Unknown constant pointer type!"); 741 break; 742 default: 743 std::string msg; 744 raw_string_ostream Msg(msg); 745 Msg << "ERROR: Constant unimplemented for type: " << *C->getType(); 746 llvm_report_error(Msg.str()); 747 } 748 return Result; 749 } 750 751 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 752 /// with the integer held in IntVal. 753 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 754 unsigned StoreBytes) { 755 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 756 uint8_t *Src = (uint8_t *)IntVal.getRawData(); 757 758 if (sys::isLittleEndianHost()) 759 // Little-endian host - the source is ordered from LSB to MSB. Order the 760 // destination from LSB to MSB: Do a straight copy. 761 memcpy(Dst, Src, StoreBytes); 762 else { 763 // Big-endian host - the source is an array of 64 bit words ordered from 764 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 765 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 766 while (StoreBytes > sizeof(uint64_t)) { 767 StoreBytes -= sizeof(uint64_t); 768 // May not be aligned so use memcpy. 769 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 770 Src += sizeof(uint64_t); 771 } 772 773 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 774 } 775 } 776 777 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr 778 /// is the address of the memory at which to store Val, cast to GenericValue *. 779 /// It is not a pointer to a GenericValue containing the address at which to 780 /// store Val. 781 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 782 GenericValue *Ptr, const Type *Ty) { 783 const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty); 784 785 switch (Ty->getTypeID()) { 786 case Type::IntegerTyID: 787 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 788 break; 789 case Type::FloatTyID: 790 *((float*)Ptr) = Val.FloatVal; 791 break; 792 case Type::DoubleTyID: 793 *((double*)Ptr) = Val.DoubleVal; 794 break; 795 case Type::X86_FP80TyID: 796 memcpy(Ptr, Val.IntVal.getRawData(), 10); 797 break; 798 case Type::PointerTyID: 799 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 800 if (StoreBytes != sizeof(PointerTy)) 801 memset(Ptr, 0, StoreBytes); 802 803 *((PointerTy*)Ptr) = Val.PointerVal; 804 break; 805 default: 806 cerr << "Cannot store value of type " << *Ty << "!\n"; 807 } 808 809 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) 810 // Host and target are different endian - reverse the stored bytes. 811 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 812 } 813 814 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 815 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 816 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 817 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 818 uint8_t *Dst = (uint8_t *)IntVal.getRawData(); 819 820 if (sys::isLittleEndianHost()) 821 // Little-endian host - the destination must be ordered from LSB to MSB. 822 // The source is ordered from LSB to MSB: Do a straight copy. 823 memcpy(Dst, Src, LoadBytes); 824 else { 825 // Big-endian - the destination is an array of 64 bit words ordered from 826 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 827 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 828 // a word. 829 while (LoadBytes > sizeof(uint64_t)) { 830 LoadBytes -= sizeof(uint64_t); 831 // May not be aligned so use memcpy. 832 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 833 Dst += sizeof(uint64_t); 834 } 835 836 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 837 } 838 } 839 840 /// FIXME: document 841 /// 842 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 843 GenericValue *Ptr, 844 const Type *Ty) { 845 const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty); 846 847 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) { 848 // Host and target are different endian - reverse copy the stored 849 // bytes into a buffer, and load from that. 850 uint8_t *Src = (uint8_t*)Ptr; 851 uint8_t *Buf = (uint8_t*)alloca(LoadBytes); 852 std::reverse_copy(Src, Src + LoadBytes, Buf); 853 Ptr = (GenericValue*)Buf; 854 } 855 856 switch (Ty->getTypeID()) { 857 case Type::IntegerTyID: 858 // An APInt with all words initially zero. 859 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 860 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 861 break; 862 case Type::FloatTyID: 863 Result.FloatVal = *((float*)Ptr); 864 break; 865 case Type::DoubleTyID: 866 Result.DoubleVal = *((double*)Ptr); 867 break; 868 case Type::PointerTyID: 869 Result.PointerVal = *((PointerTy*)Ptr); 870 break; 871 case Type::X86_FP80TyID: { 872 // This is endian dependent, but it will only work on x86 anyway. 873 // FIXME: Will not trap if loading a signaling NaN. 874 uint64_t y[2]; 875 memcpy(y, Ptr, 10); 876 Result.IntVal = APInt(80, 2, y); 877 break; 878 } 879 default: 880 std::string msg; 881 raw_string_ostream Msg(msg); 882 Msg << "Cannot load value of type " << *Ty << "!"; 883 llvm_report_error(Msg.str()); 884 } 885 } 886 887 // InitializeMemory - Recursive function to apply a Constant value into the 888 // specified memory location... 889 // 890 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 891 DOUT << "JIT: Initializing " << Addr << " "; 892 DEBUG(Init->dump()); 893 if (isa<UndefValue>(Init)) { 894 return; 895 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 896 unsigned ElementSize = 897 getTargetData()->getTypeAllocSize(CP->getType()->getElementType()); 898 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 899 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 900 return; 901 } else if (isa<ConstantAggregateZero>(Init)) { 902 memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType())); 903 return; 904 } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 905 unsigned ElementSize = 906 getTargetData()->getTypeAllocSize(CPA->getType()->getElementType()); 907 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 908 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 909 return; 910 } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 911 const StructLayout *SL = 912 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 913 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 914 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 915 return; 916 } else if (Init->getType()->isFirstClassType()) { 917 GenericValue Val = getConstantValue(Init); 918 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 919 return; 920 } 921 922 cerr << "Bad Type: " << *Init->getType() << "\n"; 923 llvm_unreachable("Unknown constant type to initialize memory with!"); 924 } 925 926 /// EmitGlobals - Emit all of the global variables to memory, storing their 927 /// addresses into GlobalAddress. This must make sure to copy the contents of 928 /// their initializers into the memory. 929 /// 930 void ExecutionEngine::emitGlobals() { 931 932 // Loop over all of the global variables in the program, allocating the memory 933 // to hold them. If there is more than one module, do a prepass over globals 934 // to figure out how the different modules should link together. 935 // 936 std::map<std::pair<std::string, const Type*>, 937 const GlobalValue*> LinkedGlobalsMap; 938 939 if (Modules.size() != 1) { 940 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 941 Module &M = *Modules[m]->getModule(); 942 for (Module::const_global_iterator I = M.global_begin(), 943 E = M.global_end(); I != E; ++I) { 944 const GlobalValue *GV = I; 945 if (GV->hasLocalLinkage() || GV->isDeclaration() || 946 GV->hasAppendingLinkage() || !GV->hasName()) 947 continue;// Ignore external globals and globals with internal linkage. 948 949 const GlobalValue *&GVEntry = 950 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 951 952 // If this is the first time we've seen this global, it is the canonical 953 // version. 954 if (!GVEntry) { 955 GVEntry = GV; 956 continue; 957 } 958 959 // If the existing global is strong, never replace it. 960 if (GVEntry->hasExternalLinkage() || 961 GVEntry->hasDLLImportLinkage() || 962 GVEntry->hasDLLExportLinkage()) 963 continue; 964 965 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 966 // symbol. FIXME is this right for common? 967 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 968 GVEntry = GV; 969 } 970 } 971 } 972 973 std::vector<const GlobalValue*> NonCanonicalGlobals; 974 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 975 Module &M = *Modules[m]->getModule(); 976 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 977 I != E; ++I) { 978 // In the multi-module case, see what this global maps to. 979 if (!LinkedGlobalsMap.empty()) { 980 if (const GlobalValue *GVEntry = 981 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 982 // If something else is the canonical global, ignore this one. 983 if (GVEntry != &*I) { 984 NonCanonicalGlobals.push_back(I); 985 continue; 986 } 987 } 988 } 989 990 if (!I->isDeclaration()) { 991 addGlobalMapping(I, getMemoryForGV(I)); 992 } else { 993 // External variable reference. Try to use the dynamic loader to 994 // get a pointer to it. 995 if (void *SymAddr = 996 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName())) 997 addGlobalMapping(I, SymAddr); 998 else { 999 llvm_report_error("Could not resolve external global address: " 1000 +I->getName()); 1001 } 1002 } 1003 } 1004 1005 // If there are multiple modules, map the non-canonical globals to their 1006 // canonical location. 1007 if (!NonCanonicalGlobals.empty()) { 1008 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1009 const GlobalValue *GV = NonCanonicalGlobals[i]; 1010 const GlobalValue *CGV = 1011 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1012 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1013 assert(Ptr && "Canonical global wasn't codegen'd!"); 1014 addGlobalMapping(GV, Ptr); 1015 } 1016 } 1017 1018 // Now that all of the globals are set up in memory, loop through them all 1019 // and initialize their contents. 1020 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1021 I != E; ++I) { 1022 if (!I->isDeclaration()) { 1023 if (!LinkedGlobalsMap.empty()) { 1024 if (const GlobalValue *GVEntry = 1025 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 1026 if (GVEntry != &*I) // Not the canonical variable. 1027 continue; 1028 } 1029 EmitGlobalVariable(I); 1030 } 1031 } 1032 } 1033 } 1034 1035 // EmitGlobalVariable - This method emits the specified global variable to the 1036 // address specified in GlobalAddresses, or allocates new memory if it's not 1037 // already in the map. 1038 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1039 void *GA = getPointerToGlobalIfAvailable(GV); 1040 1041 if (GA == 0) { 1042 // If it's not already specified, allocate memory for the global. 1043 GA = getMemoryForGV(GV); 1044 addGlobalMapping(GV, GA); 1045 } 1046 1047 // Don't initialize if it's thread local, let the client do it. 1048 if (!GV->isThreadLocal()) 1049 InitializeMemory(GV->getInitializer(), GA); 1050 1051 const Type *ElTy = GV->getType()->getElementType(); 1052 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 1053 NumInitBytes += (unsigned)GVSize; 1054 ++NumGlobals; 1055 } 1056