1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/ExecutionEngine/ExecutionEngine.h" 17 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Module.h" 21 #include "llvm/ModuleProvider.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Config/alloca.h" 24 #include "llvm/ExecutionEngine/GenericValue.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MutexGuard.h" 28 #include "llvm/Support/ValueHandle.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/System/DynamicLibrary.h" 31 #include "llvm/System/Host.h" 32 #include "llvm/Target/TargetData.h" 33 #include <cmath> 34 #include <cstring> 35 using namespace llvm; 36 37 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 38 STATISTIC(NumGlobals , "Number of global vars initialized"); 39 40 ExecutionEngine *(*ExecutionEngine::JITCtor)(ModuleProvider *MP, 41 std::string *ErrorStr, 42 JITMemoryManager *JMM, 43 CodeGenOpt::Level OptLevel, 44 bool GVsWithCode) = 0; 45 ExecutionEngine *(*ExecutionEngine::InterpCtor)(ModuleProvider *MP, 46 std::string *ErrorStr) = 0; 47 ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0; 48 49 50 ExecutionEngine::ExecutionEngine(ModuleProvider *P) : LazyFunctionCreator(0) { 51 LazyCompilationDisabled = false; 52 GVCompilationDisabled = false; 53 SymbolSearchingDisabled = false; 54 DlsymStubsEnabled = false; 55 Modules.push_back(P); 56 assert(P && "ModuleProvider is null?"); 57 } 58 59 ExecutionEngine::~ExecutionEngine() { 60 clearAllGlobalMappings(); 61 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 62 delete Modules[i]; 63 } 64 65 char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) { 66 const Type *ElTy = GV->getType()->getElementType(); 67 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 68 return new char[GVSize]; 69 } 70 71 /// removeModuleProvider - Remove a ModuleProvider from the list of modules. 72 /// Relases the Module from the ModuleProvider, materializing it in the 73 /// process, and returns the materialized Module. 74 Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P, 75 std::string *ErrInfo) { 76 for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(), 77 E = Modules.end(); I != E; ++I) { 78 ModuleProvider *MP = *I; 79 if (MP == P) { 80 Modules.erase(I); 81 clearGlobalMappingsFromModule(MP->getModule()); 82 return MP->releaseModule(ErrInfo); 83 } 84 } 85 return NULL; 86 } 87 88 /// deleteModuleProvider - Remove a ModuleProvider from the list of modules, 89 /// and deletes the ModuleProvider and owned Module. Avoids materializing 90 /// the underlying module. 91 void ExecutionEngine::deleteModuleProvider(ModuleProvider *P, 92 std::string *ErrInfo) { 93 for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(), 94 E = Modules.end(); I != E; ++I) { 95 ModuleProvider *MP = *I; 96 if (MP == P) { 97 Modules.erase(I); 98 clearGlobalMappingsFromModule(MP->getModule()); 99 delete MP; 100 return; 101 } 102 } 103 } 104 105 /// FindFunctionNamed - Search all of the active modules to find the one that 106 /// defines FnName. This is very slow operation and shouldn't be used for 107 /// general code. 108 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 109 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 110 if (Function *F = Modules[i]->getModule()->getFunction(FnName)) 111 return F; 112 } 113 return 0; 114 } 115 116 117 /// addGlobalMapping - Tell the execution engine that the specified global is 118 /// at the specified location. This is used internally as functions are JIT'd 119 /// and as global variables are laid out in memory. It can and should also be 120 /// used by clients of the EE that want to have an LLVM global overlay 121 /// existing data in memory. 122 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 123 MutexGuard locked(lock); 124 125 DEBUG(errs() << "JIT: Map \'" << GV->getName() 126 << "\' to [" << Addr << "]\n";); 127 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 128 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 129 CurVal = Addr; 130 131 // If we are using the reverse mapping, add it too 132 if (!state.getGlobalAddressReverseMap(locked).empty()) { 133 AssertingVH<const GlobalValue> &V = 134 state.getGlobalAddressReverseMap(locked)[Addr]; 135 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 136 V = GV; 137 } 138 } 139 140 /// clearAllGlobalMappings - Clear all global mappings and start over again 141 /// use in dynamic compilation scenarios when you want to move globals 142 void ExecutionEngine::clearAllGlobalMappings() { 143 MutexGuard locked(lock); 144 145 state.getGlobalAddressMap(locked).clear(); 146 state.getGlobalAddressReverseMap(locked).clear(); 147 } 148 149 /// clearGlobalMappingsFromModule - Clear all global mappings that came from a 150 /// particular module, because it has been removed from the JIT. 151 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 152 MutexGuard locked(lock); 153 154 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { 155 state.getGlobalAddressMap(locked).erase(&*FI); 156 state.getGlobalAddressReverseMap(locked).erase(&*FI); 157 } 158 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 159 GI != GE; ++GI) { 160 state.getGlobalAddressMap(locked).erase(&*GI); 161 state.getGlobalAddressReverseMap(locked).erase(&*GI); 162 } 163 } 164 165 /// updateGlobalMapping - Replace an existing mapping for GV with a new 166 /// address. This updates both maps as required. If "Addr" is null, the 167 /// entry for the global is removed from the mappings. 168 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 169 MutexGuard locked(lock); 170 171 std::map<AssertingVH<const GlobalValue>, void *> &Map = 172 state.getGlobalAddressMap(locked); 173 174 // Deleting from the mapping? 175 if (Addr == 0) { 176 std::map<AssertingVH<const GlobalValue>, void *>::iterator I = Map.find(GV); 177 void *OldVal; 178 if (I == Map.end()) 179 OldVal = 0; 180 else { 181 OldVal = I->second; 182 Map.erase(I); 183 } 184 185 if (!state.getGlobalAddressReverseMap(locked).empty()) 186 state.getGlobalAddressReverseMap(locked).erase(OldVal); 187 return OldVal; 188 } 189 190 void *&CurVal = Map[GV]; 191 void *OldVal = CurVal; 192 193 if (CurVal && !state.getGlobalAddressReverseMap(locked).empty()) 194 state.getGlobalAddressReverseMap(locked).erase(CurVal); 195 CurVal = Addr; 196 197 // If we are using the reverse mapping, add it too 198 if (!state.getGlobalAddressReverseMap(locked).empty()) { 199 AssertingVH<const GlobalValue> &V = 200 state.getGlobalAddressReverseMap(locked)[Addr]; 201 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 202 V = GV; 203 } 204 return OldVal; 205 } 206 207 /// getPointerToGlobalIfAvailable - This returns the address of the specified 208 /// global value if it is has already been codegen'd, otherwise it returns null. 209 /// 210 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 211 MutexGuard locked(lock); 212 213 std::map<AssertingVH<const GlobalValue>, void*>::iterator I = 214 state.getGlobalAddressMap(locked).find(GV); 215 return I != state.getGlobalAddressMap(locked).end() ? I->second : 0; 216 } 217 218 /// getGlobalValueAtAddress - Return the LLVM global value object that starts 219 /// at the specified address. 220 /// 221 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 222 MutexGuard locked(lock); 223 224 // If we haven't computed the reverse mapping yet, do so first. 225 if (state.getGlobalAddressReverseMap(locked).empty()) { 226 for (std::map<AssertingVH<const GlobalValue>, void *>::iterator 227 I = state.getGlobalAddressMap(locked).begin(), 228 E = state.getGlobalAddressMap(locked).end(); I != E; ++I) 229 state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, 230 I->first)); 231 } 232 233 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 234 state.getGlobalAddressReverseMap(locked).find(Addr); 235 return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 236 } 237 238 // CreateArgv - Turn a vector of strings into a nice argv style array of 239 // pointers to null terminated strings. 240 // 241 static void *CreateArgv(LLVMContext &C, ExecutionEngine *EE, 242 const std::vector<std::string> &InputArgv) { 243 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 244 char *Result = new char[(InputArgv.size()+1)*PtrSize]; 245 246 DOUT << "JIT: ARGV = " << (void*)Result << "\n"; 247 const Type *SBytePtr = PointerType::getUnqual(Type::getInt8Ty(C)); 248 249 for (unsigned i = 0; i != InputArgv.size(); ++i) { 250 unsigned Size = InputArgv[i].size()+1; 251 char *Dest = new char[Size]; 252 DOUT << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"; 253 254 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 255 Dest[Size-1] = 0; 256 257 // Endian safe: Result[i] = (PointerTy)Dest; 258 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), 259 SBytePtr); 260 } 261 262 // Null terminate it 263 EE->StoreValueToMemory(PTOGV(0), 264 (GenericValue*)(Result+InputArgv.size()*PtrSize), 265 SBytePtr); 266 return Result; 267 } 268 269 270 /// runStaticConstructorsDestructors - This method is used to execute all of 271 /// the static constructors or destructors for a module, depending on the 272 /// value of isDtors. 273 void ExecutionEngine::runStaticConstructorsDestructors(Module *module, bool isDtors) { 274 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 275 276 // Execute global ctors/dtors for each module in the program. 277 278 GlobalVariable *GV = module->getNamedGlobal(Name); 279 280 // If this global has internal linkage, or if it has a use, then it must be 281 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 282 // this is the case, don't execute any of the global ctors, __main will do 283 // it. 284 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 285 286 // Should be an array of '{ int, void ()* }' structs. The first value is 287 // the init priority, which we ignore. 288 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 289 if (!InitList) return; 290 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 291 if (ConstantStruct *CS = 292 dyn_cast<ConstantStruct>(InitList->getOperand(i))) { 293 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 294 295 Constant *FP = CS->getOperand(1); 296 if (FP->isNullValue()) 297 break; // Found a null terminator, exit. 298 299 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 300 if (CE->isCast()) 301 FP = CE->getOperand(0); 302 if (Function *F = dyn_cast<Function>(FP)) { 303 // Execute the ctor/dtor function! 304 runFunction(F, std::vector<GenericValue>()); 305 } 306 } 307 } 308 309 /// runStaticConstructorsDestructors - This method is used to execute all of 310 /// the static constructors or destructors for a program, depending on the 311 /// value of isDtors. 312 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 313 // Execute global ctors/dtors for each module in the program. 314 for (unsigned m = 0, e = Modules.size(); m != e; ++m) 315 runStaticConstructorsDestructors(Modules[m]->getModule(), isDtors); 316 } 317 318 #ifndef NDEBUG 319 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 320 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 321 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 322 for (unsigned i = 0; i < PtrSize; ++i) 323 if (*(i + (uint8_t*)Loc)) 324 return false; 325 return true; 326 } 327 #endif 328 329 /// runFunctionAsMain - This is a helper function which wraps runFunction to 330 /// handle the common task of starting up main with the specified argc, argv, 331 /// and envp parameters. 332 int ExecutionEngine::runFunctionAsMain(Function *Fn, 333 const std::vector<std::string> &argv, 334 const char * const * envp) { 335 std::vector<GenericValue> GVArgs; 336 GenericValue GVArgc; 337 GVArgc.IntVal = APInt(32, argv.size()); 338 339 // Check main() type 340 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 341 const FunctionType *FTy = Fn->getFunctionType(); 342 const Type* PPInt8Ty = 343 PointerType::getUnqual(PointerType::getUnqual( 344 Type::getInt8Ty(Fn->getContext()))); 345 switch (NumArgs) { 346 case 3: 347 if (FTy->getParamType(2) != PPInt8Ty) { 348 llvm_report_error("Invalid type for third argument of main() supplied"); 349 } 350 // FALLS THROUGH 351 case 2: 352 if (FTy->getParamType(1) != PPInt8Ty) { 353 llvm_report_error("Invalid type for second argument of main() supplied"); 354 } 355 // FALLS THROUGH 356 case 1: 357 if (FTy->getParamType(0) != Type::getInt32Ty(Fn->getContext())) { 358 llvm_report_error("Invalid type for first argument of main() supplied"); 359 } 360 // FALLS THROUGH 361 case 0: 362 if (!isa<IntegerType>(FTy->getReturnType()) && 363 FTy->getReturnType() != Type::getVoidTy(FTy->getContext())) { 364 llvm_report_error("Invalid return type of main() supplied"); 365 } 366 break; 367 default: 368 llvm_report_error("Invalid number of arguments of main() supplied"); 369 } 370 371 if (NumArgs) { 372 GVArgs.push_back(GVArgc); // Arg #0 = argc. 373 if (NumArgs > 1) { 374 // Arg #1 = argv. 375 GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, argv))); 376 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 377 "argv[0] was null after CreateArgv"); 378 if (NumArgs > 2) { 379 std::vector<std::string> EnvVars; 380 for (unsigned i = 0; envp[i]; ++i) 381 EnvVars.push_back(envp[i]); 382 // Arg #2 = envp. 383 GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, EnvVars))); 384 } 385 } 386 } 387 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 388 } 389 390 /// If possible, create a JIT, unless the caller specifically requests an 391 /// Interpreter or there's an error. If even an Interpreter cannot be created, 392 /// NULL is returned. 393 /// 394 ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, 395 bool ForceInterpreter, 396 std::string *ErrorStr, 397 CodeGenOpt::Level OptLevel, 398 bool GVsWithCode) { 399 return EngineBuilder(MP) 400 .setEngineKind(ForceInterpreter 401 ? EngineKind::Interpreter 402 : EngineKind::JIT) 403 .setErrorStr(ErrorStr) 404 .setOptLevel(OptLevel) 405 .setAllocateGVsWithCode(GVsWithCode) 406 .create(); 407 } 408 409 ExecutionEngine *ExecutionEngine::create(Module *M) { 410 return EngineBuilder(M).create(); 411 } 412 413 /// EngineBuilder - Overloaded constructor that automatically creates an 414 /// ExistingModuleProvider for an existing module. 415 EngineBuilder::EngineBuilder(Module *m) : MP(new ExistingModuleProvider(m)) { 416 InitEngine(); 417 } 418 419 ExecutionEngine *EngineBuilder::create() { 420 // Make sure we can resolve symbols in the program as well. The zero arg 421 // to the function tells DynamicLibrary to load the program, not a library. 422 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) 423 return 0; 424 425 // If the user specified a memory manager but didn't specify which engine to 426 // create, we assume they only want the JIT, and we fail if they only want 427 // the interpreter. 428 if (JMM) { 429 if (WhichEngine & EngineKind::JIT) { 430 WhichEngine = EngineKind::JIT; 431 } else { 432 *ErrorStr = "Cannot create an interpreter with a memory manager."; 433 } 434 } 435 436 ExecutionEngine *EE = 0; 437 438 // Unless the interpreter was explicitly selected or the JIT is not linked, 439 // try making a JIT. 440 if (WhichEngine & EngineKind::JIT && ExecutionEngine::JITCtor) { 441 EE = ExecutionEngine::JITCtor(MP, ErrorStr, JMM, OptLevel, 442 AllocateGVsWithCode); 443 } 444 445 // If we can't make a JIT and we didn't request one specifically, try making 446 // an interpreter instead. 447 if (WhichEngine & EngineKind::Interpreter && EE == 0 && 448 ExecutionEngine::InterpCtor) { 449 EE = ExecutionEngine::InterpCtor(MP, ErrorStr); 450 } 451 452 return EE; 453 } 454 455 /// getPointerToGlobal - This returns the address of the specified global 456 /// value. This may involve code generation if it's a function. 457 /// 458 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 459 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 460 return getPointerToFunction(F); 461 462 MutexGuard locked(lock); 463 void *p = state.getGlobalAddressMap(locked)[GV]; 464 if (p) 465 return p; 466 467 // Global variable might have been added since interpreter started. 468 if (GlobalVariable *GVar = 469 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 470 EmitGlobalVariable(GVar); 471 else 472 llvm_unreachable("Global hasn't had an address allocated yet!"); 473 return state.getGlobalAddressMap(locked)[GV]; 474 } 475 476 /// This function converts a Constant* into a GenericValue. The interesting 477 /// part is if C is a ConstantExpr. 478 /// @brief Get a GenericValue for a Constant* 479 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 480 // If its undefined, return the garbage. 481 if (isa<UndefValue>(C)) 482 return GenericValue(); 483 484 // If the value is a ConstantExpr 485 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 486 Constant *Op0 = CE->getOperand(0); 487 switch (CE->getOpcode()) { 488 case Instruction::GetElementPtr: { 489 // Compute the index 490 GenericValue Result = getConstantValue(Op0); 491 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); 492 uint64_t Offset = 493 TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size()); 494 495 char* tmp = (char*) Result.PointerVal; 496 Result = PTOGV(tmp + Offset); 497 return Result; 498 } 499 case Instruction::Trunc: { 500 GenericValue GV = getConstantValue(Op0); 501 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 502 GV.IntVal = GV.IntVal.trunc(BitWidth); 503 return GV; 504 } 505 case Instruction::ZExt: { 506 GenericValue GV = getConstantValue(Op0); 507 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 508 GV.IntVal = GV.IntVal.zext(BitWidth); 509 return GV; 510 } 511 case Instruction::SExt: { 512 GenericValue GV = getConstantValue(Op0); 513 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 514 GV.IntVal = GV.IntVal.sext(BitWidth); 515 return GV; 516 } 517 case Instruction::FPTrunc: { 518 // FIXME long double 519 GenericValue GV = getConstantValue(Op0); 520 GV.FloatVal = float(GV.DoubleVal); 521 return GV; 522 } 523 case Instruction::FPExt:{ 524 // FIXME long double 525 GenericValue GV = getConstantValue(Op0); 526 GV.DoubleVal = double(GV.FloatVal); 527 return GV; 528 } 529 case Instruction::UIToFP: { 530 GenericValue GV = getConstantValue(Op0); 531 if (CE->getType() == Type::getFloatTy(CE->getContext())) 532 GV.FloatVal = float(GV.IntVal.roundToDouble()); 533 else if (CE->getType() == Type::getDoubleTy(CE->getContext())) 534 GV.DoubleVal = GV.IntVal.roundToDouble(); 535 else if (CE->getType() == Type::getX86_FP80Ty(Op0->getContext())) { 536 const uint64_t zero[] = {0, 0}; 537 APFloat apf = APFloat(APInt(80, 2, zero)); 538 (void)apf.convertFromAPInt(GV.IntVal, 539 false, 540 APFloat::rmNearestTiesToEven); 541 GV.IntVal = apf.bitcastToAPInt(); 542 } 543 return GV; 544 } 545 case Instruction::SIToFP: { 546 GenericValue GV = getConstantValue(Op0); 547 if (CE->getType() == Type::getFloatTy(CE->getContext())) 548 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 549 else if (CE->getType() == Type::getDoubleTy(CE->getContext())) 550 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 551 else if (CE->getType() == Type::getX86_FP80Ty(CE->getContext())) { 552 const uint64_t zero[] = { 0, 0}; 553 APFloat apf = APFloat(APInt(80, 2, zero)); 554 (void)apf.convertFromAPInt(GV.IntVal, 555 true, 556 APFloat::rmNearestTiesToEven); 557 GV.IntVal = apf.bitcastToAPInt(); 558 } 559 return GV; 560 } 561 case Instruction::FPToUI: // double->APInt conversion handles sign 562 case Instruction::FPToSI: { 563 GenericValue GV = getConstantValue(Op0); 564 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 565 if (Op0->getType() == Type::getFloatTy(Op0->getContext())) 566 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 567 else if (Op0->getType() == Type::getDoubleTy(Op0->getContext())) 568 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 569 else if (Op0->getType() == Type::getX86_FP80Ty(Op0->getContext())) { 570 APFloat apf = APFloat(GV.IntVal); 571 uint64_t v; 572 bool ignored; 573 (void)apf.convertToInteger(&v, BitWidth, 574 CE->getOpcode()==Instruction::FPToSI, 575 APFloat::rmTowardZero, &ignored); 576 GV.IntVal = v; // endian? 577 } 578 return GV; 579 } 580 case Instruction::PtrToInt: { 581 GenericValue GV = getConstantValue(Op0); 582 uint32_t PtrWidth = TD->getPointerSizeInBits(); 583 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 584 return GV; 585 } 586 case Instruction::IntToPtr: { 587 GenericValue GV = getConstantValue(Op0); 588 uint32_t PtrWidth = TD->getPointerSizeInBits(); 589 if (PtrWidth != GV.IntVal.getBitWidth()) 590 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 591 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 592 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 593 return GV; 594 } 595 case Instruction::BitCast: { 596 GenericValue GV = getConstantValue(Op0); 597 const Type* DestTy = CE->getType(); 598 switch (Op0->getType()->getTypeID()) { 599 default: llvm_unreachable("Invalid bitcast operand"); 600 case Type::IntegerTyID: 601 assert(DestTy->isFloatingPoint() && "invalid bitcast"); 602 if (DestTy == Type::getFloatTy(Op0->getContext())) 603 GV.FloatVal = GV.IntVal.bitsToFloat(); 604 else if (DestTy == Type::getDoubleTy(DestTy->getContext())) 605 GV.DoubleVal = GV.IntVal.bitsToDouble(); 606 break; 607 case Type::FloatTyID: 608 assert(DestTy == Type::getInt32Ty(DestTy->getContext()) && 609 "Invalid bitcast"); 610 GV.IntVal.floatToBits(GV.FloatVal); 611 break; 612 case Type::DoubleTyID: 613 assert(DestTy == Type::getInt64Ty(DestTy->getContext()) && 614 "Invalid bitcast"); 615 GV.IntVal.doubleToBits(GV.DoubleVal); 616 break; 617 case Type::PointerTyID: 618 assert(isa<PointerType>(DestTy) && "Invalid bitcast"); 619 break; // getConstantValue(Op0) above already converted it 620 } 621 return GV; 622 } 623 case Instruction::Add: 624 case Instruction::FAdd: 625 case Instruction::Sub: 626 case Instruction::FSub: 627 case Instruction::Mul: 628 case Instruction::FMul: 629 case Instruction::UDiv: 630 case Instruction::SDiv: 631 case Instruction::URem: 632 case Instruction::SRem: 633 case Instruction::And: 634 case Instruction::Or: 635 case Instruction::Xor: { 636 GenericValue LHS = getConstantValue(Op0); 637 GenericValue RHS = getConstantValue(CE->getOperand(1)); 638 GenericValue GV; 639 switch (CE->getOperand(0)->getType()->getTypeID()) { 640 default: llvm_unreachable("Bad add type!"); 641 case Type::IntegerTyID: 642 switch (CE->getOpcode()) { 643 default: llvm_unreachable("Invalid integer opcode"); 644 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 645 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 646 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 647 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 648 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 649 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 650 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 651 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 652 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 653 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 654 } 655 break; 656 case Type::FloatTyID: 657 switch (CE->getOpcode()) { 658 default: llvm_unreachable("Invalid float opcode"); 659 case Instruction::FAdd: 660 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 661 case Instruction::FSub: 662 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 663 case Instruction::FMul: 664 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 665 case Instruction::FDiv: 666 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 667 case Instruction::FRem: 668 GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break; 669 } 670 break; 671 case Type::DoubleTyID: 672 switch (CE->getOpcode()) { 673 default: llvm_unreachable("Invalid double opcode"); 674 case Instruction::FAdd: 675 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 676 case Instruction::FSub: 677 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 678 case Instruction::FMul: 679 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 680 case Instruction::FDiv: 681 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 682 case Instruction::FRem: 683 GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 684 } 685 break; 686 case Type::X86_FP80TyID: 687 case Type::PPC_FP128TyID: 688 case Type::FP128TyID: { 689 APFloat apfLHS = APFloat(LHS.IntVal); 690 switch (CE->getOpcode()) { 691 default: llvm_unreachable("Invalid long double opcode");llvm_unreachable(0); 692 case Instruction::FAdd: 693 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 694 GV.IntVal = apfLHS.bitcastToAPInt(); 695 break; 696 case Instruction::FSub: 697 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 698 GV.IntVal = apfLHS.bitcastToAPInt(); 699 break; 700 case Instruction::FMul: 701 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 702 GV.IntVal = apfLHS.bitcastToAPInt(); 703 break; 704 case Instruction::FDiv: 705 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 706 GV.IntVal = apfLHS.bitcastToAPInt(); 707 break; 708 case Instruction::FRem: 709 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 710 GV.IntVal = apfLHS.bitcastToAPInt(); 711 break; 712 } 713 } 714 break; 715 } 716 return GV; 717 } 718 default: 719 break; 720 } 721 std::string msg; 722 raw_string_ostream Msg(msg); 723 Msg << "ConstantExpr not handled: " << *CE; 724 llvm_report_error(Msg.str()); 725 } 726 727 GenericValue Result; 728 switch (C->getType()->getTypeID()) { 729 case Type::FloatTyID: 730 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 731 break; 732 case Type::DoubleTyID: 733 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 734 break; 735 case Type::X86_FP80TyID: 736 case Type::FP128TyID: 737 case Type::PPC_FP128TyID: 738 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 739 break; 740 case Type::IntegerTyID: 741 Result.IntVal = cast<ConstantInt>(C)->getValue(); 742 break; 743 case Type::PointerTyID: 744 if (isa<ConstantPointerNull>(C)) 745 Result.PointerVal = 0; 746 else if (const Function *F = dyn_cast<Function>(C)) 747 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 748 else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) 749 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 750 else 751 llvm_unreachable("Unknown constant pointer type!"); 752 break; 753 default: 754 std::string msg; 755 raw_string_ostream Msg(msg); 756 Msg << "ERROR: Constant unimplemented for type: " << *C->getType(); 757 llvm_report_error(Msg.str()); 758 } 759 return Result; 760 } 761 762 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 763 /// with the integer held in IntVal. 764 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 765 unsigned StoreBytes) { 766 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 767 uint8_t *Src = (uint8_t *)IntVal.getRawData(); 768 769 if (sys::isLittleEndianHost()) 770 // Little-endian host - the source is ordered from LSB to MSB. Order the 771 // destination from LSB to MSB: Do a straight copy. 772 memcpy(Dst, Src, StoreBytes); 773 else { 774 // Big-endian host - the source is an array of 64 bit words ordered from 775 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 776 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 777 while (StoreBytes > sizeof(uint64_t)) { 778 StoreBytes -= sizeof(uint64_t); 779 // May not be aligned so use memcpy. 780 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 781 Src += sizeof(uint64_t); 782 } 783 784 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 785 } 786 } 787 788 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr 789 /// is the address of the memory at which to store Val, cast to GenericValue *. 790 /// It is not a pointer to a GenericValue containing the address at which to 791 /// store Val. 792 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 793 GenericValue *Ptr, const Type *Ty) { 794 const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty); 795 796 switch (Ty->getTypeID()) { 797 case Type::IntegerTyID: 798 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 799 break; 800 case Type::FloatTyID: 801 *((float*)Ptr) = Val.FloatVal; 802 break; 803 case Type::DoubleTyID: 804 *((double*)Ptr) = Val.DoubleVal; 805 break; 806 case Type::X86_FP80TyID: 807 memcpy(Ptr, Val.IntVal.getRawData(), 10); 808 break; 809 case Type::PointerTyID: 810 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 811 if (StoreBytes != sizeof(PointerTy)) 812 memset(Ptr, 0, StoreBytes); 813 814 *((PointerTy*)Ptr) = Val.PointerVal; 815 break; 816 default: 817 cerr << "Cannot store value of type " << *Ty << "!\n"; 818 } 819 820 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) 821 // Host and target are different endian - reverse the stored bytes. 822 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 823 } 824 825 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 826 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 827 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 828 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 829 uint8_t *Dst = (uint8_t *)IntVal.getRawData(); 830 831 if (sys::isLittleEndianHost()) 832 // Little-endian host - the destination must be ordered from LSB to MSB. 833 // The source is ordered from LSB to MSB: Do a straight copy. 834 memcpy(Dst, Src, LoadBytes); 835 else { 836 // Big-endian - the destination is an array of 64 bit words ordered from 837 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 838 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 839 // a word. 840 while (LoadBytes > sizeof(uint64_t)) { 841 LoadBytes -= sizeof(uint64_t); 842 // May not be aligned so use memcpy. 843 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 844 Dst += sizeof(uint64_t); 845 } 846 847 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 848 } 849 } 850 851 /// FIXME: document 852 /// 853 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 854 GenericValue *Ptr, 855 const Type *Ty) { 856 const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty); 857 858 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) { 859 // Host and target are different endian - reverse copy the stored 860 // bytes into a buffer, and load from that. 861 uint8_t *Src = (uint8_t*)Ptr; 862 uint8_t *Buf = (uint8_t*)alloca(LoadBytes); 863 std::reverse_copy(Src, Src + LoadBytes, Buf); 864 Ptr = (GenericValue*)Buf; 865 } 866 867 switch (Ty->getTypeID()) { 868 case Type::IntegerTyID: 869 // An APInt with all words initially zero. 870 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 871 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 872 break; 873 case Type::FloatTyID: 874 Result.FloatVal = *((float*)Ptr); 875 break; 876 case Type::DoubleTyID: 877 Result.DoubleVal = *((double*)Ptr); 878 break; 879 case Type::PointerTyID: 880 Result.PointerVal = *((PointerTy*)Ptr); 881 break; 882 case Type::X86_FP80TyID: { 883 // This is endian dependent, but it will only work on x86 anyway. 884 // FIXME: Will not trap if loading a signaling NaN. 885 uint64_t y[2]; 886 memcpy(y, Ptr, 10); 887 Result.IntVal = APInt(80, 2, y); 888 break; 889 } 890 default: 891 std::string msg; 892 raw_string_ostream Msg(msg); 893 Msg << "Cannot load value of type " << *Ty << "!"; 894 llvm_report_error(Msg.str()); 895 } 896 } 897 898 // InitializeMemory - Recursive function to apply a Constant value into the 899 // specified memory location... 900 // 901 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 902 DOUT << "JIT: Initializing " << Addr << " "; 903 DEBUG(Init->dump()); 904 if (isa<UndefValue>(Init)) { 905 return; 906 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 907 unsigned ElementSize = 908 getTargetData()->getTypeAllocSize(CP->getType()->getElementType()); 909 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 910 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 911 return; 912 } else if (isa<ConstantAggregateZero>(Init)) { 913 memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType())); 914 return; 915 } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 916 unsigned ElementSize = 917 getTargetData()->getTypeAllocSize(CPA->getType()->getElementType()); 918 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 919 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 920 return; 921 } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 922 const StructLayout *SL = 923 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 924 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 925 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 926 return; 927 } else if (Init->getType()->isFirstClassType()) { 928 GenericValue Val = getConstantValue(Init); 929 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 930 return; 931 } 932 933 cerr << "Bad Type: " << *Init->getType() << "\n"; 934 llvm_unreachable("Unknown constant type to initialize memory with!"); 935 } 936 937 /// EmitGlobals - Emit all of the global variables to memory, storing their 938 /// addresses into GlobalAddress. This must make sure to copy the contents of 939 /// their initializers into the memory. 940 /// 941 void ExecutionEngine::emitGlobals() { 942 943 // Loop over all of the global variables in the program, allocating the memory 944 // to hold them. If there is more than one module, do a prepass over globals 945 // to figure out how the different modules should link together. 946 // 947 std::map<std::pair<std::string, const Type*>, 948 const GlobalValue*> LinkedGlobalsMap; 949 950 if (Modules.size() != 1) { 951 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 952 Module &M = *Modules[m]->getModule(); 953 for (Module::const_global_iterator I = M.global_begin(), 954 E = M.global_end(); I != E; ++I) { 955 const GlobalValue *GV = I; 956 if (GV->hasLocalLinkage() || GV->isDeclaration() || 957 GV->hasAppendingLinkage() || !GV->hasName()) 958 continue;// Ignore external globals and globals with internal linkage. 959 960 const GlobalValue *&GVEntry = 961 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 962 963 // If this is the first time we've seen this global, it is the canonical 964 // version. 965 if (!GVEntry) { 966 GVEntry = GV; 967 continue; 968 } 969 970 // If the existing global is strong, never replace it. 971 if (GVEntry->hasExternalLinkage() || 972 GVEntry->hasDLLImportLinkage() || 973 GVEntry->hasDLLExportLinkage()) 974 continue; 975 976 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 977 // symbol. FIXME is this right for common? 978 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 979 GVEntry = GV; 980 } 981 } 982 } 983 984 std::vector<const GlobalValue*> NonCanonicalGlobals; 985 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 986 Module &M = *Modules[m]->getModule(); 987 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 988 I != E; ++I) { 989 // In the multi-module case, see what this global maps to. 990 if (!LinkedGlobalsMap.empty()) { 991 if (const GlobalValue *GVEntry = 992 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 993 // If something else is the canonical global, ignore this one. 994 if (GVEntry != &*I) { 995 NonCanonicalGlobals.push_back(I); 996 continue; 997 } 998 } 999 } 1000 1001 if (!I->isDeclaration()) { 1002 addGlobalMapping(I, getMemoryForGV(I)); 1003 } else { 1004 // External variable reference. Try to use the dynamic loader to 1005 // get a pointer to it. 1006 if (void *SymAddr = 1007 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName())) 1008 addGlobalMapping(I, SymAddr); 1009 else { 1010 llvm_report_error("Could not resolve external global address: " 1011 +I->getName()); 1012 } 1013 } 1014 } 1015 1016 // If there are multiple modules, map the non-canonical globals to their 1017 // canonical location. 1018 if (!NonCanonicalGlobals.empty()) { 1019 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1020 const GlobalValue *GV = NonCanonicalGlobals[i]; 1021 const GlobalValue *CGV = 1022 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1023 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1024 assert(Ptr && "Canonical global wasn't codegen'd!"); 1025 addGlobalMapping(GV, Ptr); 1026 } 1027 } 1028 1029 // Now that all of the globals are set up in memory, loop through them all 1030 // and initialize their contents. 1031 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1032 I != E; ++I) { 1033 if (!I->isDeclaration()) { 1034 if (!LinkedGlobalsMap.empty()) { 1035 if (const GlobalValue *GVEntry = 1036 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 1037 if (GVEntry != &*I) // Not the canonical variable. 1038 continue; 1039 } 1040 EmitGlobalVariable(I); 1041 } 1042 } 1043 } 1044 } 1045 1046 // EmitGlobalVariable - This method emits the specified global variable to the 1047 // address specified in GlobalAddresses, or allocates new memory if it's not 1048 // already in the map. 1049 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1050 void *GA = getPointerToGlobalIfAvailable(GV); 1051 1052 if (GA == 0) { 1053 // If it's not already specified, allocate memory for the global. 1054 GA = getMemoryForGV(GV); 1055 addGlobalMapping(GV, GA); 1056 } 1057 1058 // Don't initialize if it's thread local, let the client do it. 1059 if (!GV->isThreadLocal()) 1060 InitializeMemory(GV->getInitializer(), GA); 1061 1062 const Type *ElTy = GV->getType()->getElementType(); 1063 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 1064 NumInitBytes += (unsigned)GVSize; 1065 ++NumGlobals; 1066 } 1067