1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/Module.h" 19 #include "llvm/ModuleProvider.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ExecutionEngine/ExecutionEngine.h" 22 #include "llvm/ExecutionEngine/GenericValue.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/MutexGuard.h" 25 #include "llvm/System/DynamicLibrary.h" 26 #include "llvm/Target/TargetData.h" 27 using namespace llvm; 28 29 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 30 STATISTIC(NumGlobals , "Number of global vars initialized"); 31 32 ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0; 33 ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0; 34 35 ExecutionEngine::ExecutionEngine(ModuleProvider *P) { 36 LazyCompilationDisabled = false; 37 Modules.push_back(P); 38 assert(P && "ModuleProvider is null?"); 39 } 40 41 ExecutionEngine::ExecutionEngine(Module *M) { 42 LazyCompilationDisabled = false; 43 assert(M && "Module is null?"); 44 Modules.push_back(new ExistingModuleProvider(M)); 45 } 46 47 ExecutionEngine::~ExecutionEngine() { 48 clearAllGlobalMappings(); 49 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 50 delete Modules[i]; 51 } 52 53 /// FindFunctionNamed - Search all of the active modules to find the one that 54 /// defines FnName. This is very slow operation and shouldn't be used for 55 /// general code. 56 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 57 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 58 if (Function *F = Modules[i]->getModule()->getFunction(FnName)) 59 return F; 60 } 61 return 0; 62 } 63 64 65 /// addGlobalMapping - Tell the execution engine that the specified global is 66 /// at the specified location. This is used internally as functions are JIT'd 67 /// and as global variables are laid out in memory. It can and should also be 68 /// used by clients of the EE that want to have an LLVM global overlay 69 /// existing data in memory. 70 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 71 MutexGuard locked(lock); 72 73 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 74 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 75 CurVal = Addr; 76 77 // If we are using the reverse mapping, add it too 78 if (!state.getGlobalAddressReverseMap(locked).empty()) { 79 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; 80 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 81 V = GV; 82 } 83 } 84 85 /// clearAllGlobalMappings - Clear all global mappings and start over again 86 /// use in dynamic compilation scenarios when you want to move globals 87 void ExecutionEngine::clearAllGlobalMappings() { 88 MutexGuard locked(lock); 89 90 state.getGlobalAddressMap(locked).clear(); 91 state.getGlobalAddressReverseMap(locked).clear(); 92 } 93 94 /// updateGlobalMapping - Replace an existing mapping for GV with a new 95 /// address. This updates both maps as required. If "Addr" is null, the 96 /// entry for the global is removed from the mappings. 97 void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 98 MutexGuard locked(lock); 99 100 // Deleting from the mapping? 101 if (Addr == 0) { 102 state.getGlobalAddressMap(locked).erase(GV); 103 if (!state.getGlobalAddressReverseMap(locked).empty()) 104 state.getGlobalAddressReverseMap(locked).erase(Addr); 105 return; 106 } 107 108 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 109 if (CurVal && !state.getGlobalAddressReverseMap(locked).empty()) 110 state.getGlobalAddressReverseMap(locked).erase(CurVal); 111 CurVal = Addr; 112 113 // If we are using the reverse mapping, add it too 114 if (!state.getGlobalAddressReverseMap(locked).empty()) { 115 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; 116 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 117 V = GV; 118 } 119 } 120 121 /// getPointerToGlobalIfAvailable - This returns the address of the specified 122 /// global value if it is has already been codegen'd, otherwise it returns null. 123 /// 124 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 125 MutexGuard locked(lock); 126 127 std::map<const GlobalValue*, void*>::iterator I = 128 state.getGlobalAddressMap(locked).find(GV); 129 return I != state.getGlobalAddressMap(locked).end() ? I->second : 0; 130 } 131 132 /// getGlobalValueAtAddress - Return the LLVM global value object that starts 133 /// at the specified address. 134 /// 135 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 136 MutexGuard locked(lock); 137 138 // If we haven't computed the reverse mapping yet, do so first. 139 if (state.getGlobalAddressReverseMap(locked).empty()) { 140 for (std::map<const GlobalValue*, void *>::iterator 141 I = state.getGlobalAddressMap(locked).begin(), 142 E = state.getGlobalAddressMap(locked).end(); I != E; ++I) 143 state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, 144 I->first)); 145 } 146 147 std::map<void *, const GlobalValue*>::iterator I = 148 state.getGlobalAddressReverseMap(locked).find(Addr); 149 return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 150 } 151 152 // CreateArgv - Turn a vector of strings into a nice argv style array of 153 // pointers to null terminated strings. 154 // 155 static void *CreateArgv(ExecutionEngine *EE, 156 const std::vector<std::string> &InputArgv) { 157 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 158 char *Result = new char[(InputArgv.size()+1)*PtrSize]; 159 160 DOUT << "ARGV = " << (void*)Result << "\n"; 161 const Type *SBytePtr = PointerType::get(Type::Int8Ty); 162 163 for (unsigned i = 0; i != InputArgv.size(); ++i) { 164 unsigned Size = InputArgv[i].size()+1; 165 char *Dest = new char[Size]; 166 DOUT << "ARGV[" << i << "] = " << (void*)Dest << "\n"; 167 168 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 169 Dest[Size-1] = 0; 170 171 // Endian safe: Result[i] = (PointerTy)Dest; 172 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), 173 SBytePtr); 174 } 175 176 // Null terminate it 177 EE->StoreValueToMemory(PTOGV(0), 178 (GenericValue*)(Result+InputArgv.size()*PtrSize), 179 SBytePtr); 180 return Result; 181 } 182 183 184 /// runStaticConstructorsDestructors - This method is used to execute all of 185 /// the static constructors or destructors for a program, depending on the 186 /// value of isDtors. 187 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 188 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 189 190 // Execute global ctors/dtors for each module in the program. 191 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 192 GlobalVariable *GV = Modules[m]->getModule()->getNamedGlobal(Name); 193 194 // If this global has internal linkage, or if it has a use, then it must be 195 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 196 // this is the case, don't execute any of the global ctors, __main will do 197 // it. 198 if (!GV || GV->isDeclaration() || GV->hasInternalLinkage()) continue; 199 200 // Should be an array of '{ int, void ()* }' structs. The first value is 201 // the init priority, which we ignore. 202 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 203 if (!InitList) continue; 204 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 205 if (ConstantStruct *CS = 206 dyn_cast<ConstantStruct>(InitList->getOperand(i))) { 207 if (CS->getNumOperands() != 2) break; // Not array of 2-element structs. 208 209 Constant *FP = CS->getOperand(1); 210 if (FP->isNullValue()) 211 break; // Found a null terminator, exit. 212 213 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 214 if (CE->isCast()) 215 FP = CE->getOperand(0); 216 if (Function *F = dyn_cast<Function>(FP)) { 217 // Execute the ctor/dtor function! 218 runFunction(F, std::vector<GenericValue>()); 219 } 220 } 221 } 222 } 223 224 /// runFunctionAsMain - This is a helper function which wraps runFunction to 225 /// handle the common task of starting up main with the specified argc, argv, 226 /// and envp parameters. 227 int ExecutionEngine::runFunctionAsMain(Function *Fn, 228 const std::vector<std::string> &argv, 229 const char * const * envp) { 230 std::vector<GenericValue> GVArgs; 231 GenericValue GVArgc; 232 GVArgc.IntVal = APInt(32, argv.size()); 233 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 234 if (NumArgs) { 235 GVArgs.push_back(GVArgc); // Arg #0 = argc. 236 if (NumArgs > 1) { 237 GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv. 238 assert(((char **)GVTOP(GVArgs[1]))[0] && 239 "argv[0] was null after CreateArgv"); 240 if (NumArgs > 2) { 241 std::vector<std::string> EnvVars; 242 for (unsigned i = 0; envp[i]; ++i) 243 EnvVars.push_back(envp[i]); 244 GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp. 245 } 246 } 247 } 248 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 249 } 250 251 /// If possible, create a JIT, unless the caller specifically requests an 252 /// Interpreter or there's an error. If even an Interpreter cannot be created, 253 /// NULL is returned. 254 /// 255 ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, 256 bool ForceInterpreter, 257 std::string *ErrorStr) { 258 ExecutionEngine *EE = 0; 259 260 // Unless the interpreter was explicitly selected, try making a JIT. 261 if (!ForceInterpreter && JITCtor) 262 EE = JITCtor(MP, ErrorStr); 263 264 // If we can't make a JIT, make an interpreter instead. 265 if (EE == 0 && InterpCtor) 266 EE = InterpCtor(MP, ErrorStr); 267 268 if (EE) { 269 // Make sure we can resolve symbols in the program as well. The zero arg 270 // to the function tells DynamicLibrary to load the program, not a library. 271 try { 272 sys::DynamicLibrary::LoadLibraryPermanently(0); 273 } catch (...) { 274 } 275 } 276 277 return EE; 278 } 279 280 /// getPointerToGlobal - This returns the address of the specified global 281 /// value. This may involve code generation if it's a function. 282 /// 283 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 284 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 285 return getPointerToFunction(F); 286 287 MutexGuard locked(lock); 288 void *p = state.getGlobalAddressMap(locked)[GV]; 289 if (p) 290 return p; 291 292 // Global variable might have been added since interpreter started. 293 if (GlobalVariable *GVar = 294 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 295 EmitGlobalVariable(GVar); 296 else 297 assert(0 && "Global hasn't had an address allocated yet!"); 298 return state.getGlobalAddressMap(locked)[GV]; 299 } 300 301 /// This function converts a Constant* into a GenericValue. The interesting 302 /// part is if C is a ConstantExpr. 303 /// @brief Get a GenericValue for a Constnat* 304 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 305 // If its undefined, return the garbage. 306 if (isa<UndefValue>(C)) 307 return GenericValue(); 308 309 // If the value is a ConstantExpr 310 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 311 Constant *Op0 = CE->getOperand(0); 312 switch (CE->getOpcode()) { 313 case Instruction::GetElementPtr: { 314 // Compute the index 315 GenericValue Result = getConstantValue(Op0); 316 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); 317 uint64_t Offset = 318 TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size()); 319 320 char* tmp = (char*) Result.PointerVal; 321 Result = PTOGV(tmp + Offset); 322 return Result; 323 } 324 case Instruction::Trunc: { 325 GenericValue GV = getConstantValue(Op0); 326 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 327 GV.IntVal = GV.IntVal.trunc(BitWidth); 328 return GV; 329 } 330 case Instruction::ZExt: { 331 GenericValue GV = getConstantValue(Op0); 332 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 333 GV.IntVal = GV.IntVal.zext(BitWidth); 334 return GV; 335 } 336 case Instruction::SExt: { 337 GenericValue GV = getConstantValue(Op0); 338 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 339 GV.IntVal = GV.IntVal.sext(BitWidth); 340 return GV; 341 } 342 case Instruction::FPTrunc: { 343 GenericValue GV = getConstantValue(Op0); 344 GV.FloatVal = float(GV.DoubleVal); 345 return GV; 346 } 347 case Instruction::FPExt:{ 348 GenericValue GV = getConstantValue(Op0); 349 GV.DoubleVal = double(GV.FloatVal); 350 return GV; 351 } 352 case Instruction::UIToFP: { 353 GenericValue GV = getConstantValue(Op0); 354 if (CE->getType() == Type::FloatTy) 355 GV.FloatVal = float(GV.IntVal.roundToDouble()); 356 else 357 GV.DoubleVal = GV.IntVal.roundToDouble(); 358 return GV; 359 } 360 case Instruction::SIToFP: { 361 GenericValue GV = getConstantValue(Op0); 362 if (CE->getType() == Type::FloatTy) 363 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 364 else 365 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 366 return GV; 367 } 368 case Instruction::FPToUI: // double->APInt conversion handles sign 369 case Instruction::FPToSI: { 370 GenericValue GV = getConstantValue(Op0); 371 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 372 if (Op0->getType() == Type::FloatTy) 373 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 374 else 375 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 376 return GV; 377 } 378 case Instruction::PtrToInt: { 379 GenericValue GV = getConstantValue(Op0); 380 uint32_t PtrWidth = TD->getPointerSizeInBits(); 381 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 382 return GV; 383 } 384 case Instruction::IntToPtr: { 385 GenericValue GV = getConstantValue(Op0); 386 uint32_t PtrWidth = TD->getPointerSizeInBits(); 387 if (PtrWidth != GV.IntVal.getBitWidth()) 388 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 389 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 390 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 391 return GV; 392 } 393 case Instruction::BitCast: { 394 GenericValue GV = getConstantValue(Op0); 395 const Type* DestTy = CE->getType(); 396 switch (Op0->getType()->getTypeID()) { 397 default: assert(0 && "Invalid bitcast operand"); 398 case Type::IntegerTyID: 399 assert(DestTy->isFloatingPoint() && "invalid bitcast"); 400 if (DestTy == Type::FloatTy) 401 GV.FloatVal = GV.IntVal.bitsToFloat(); 402 else if (DestTy == Type::DoubleTy) 403 GV.DoubleVal = GV.IntVal.bitsToDouble(); 404 break; 405 case Type::FloatTyID: 406 assert(DestTy == Type::Int32Ty && "Invalid bitcast"); 407 GV.IntVal.floatToBits(GV.FloatVal); 408 break; 409 case Type::DoubleTyID: 410 assert(DestTy == Type::Int64Ty && "Invalid bitcast"); 411 GV.IntVal.doubleToBits(GV.DoubleVal); 412 break; 413 case Type::PointerTyID: 414 assert(isa<PointerType>(DestTy) && "Invalid bitcast"); 415 break; // getConstantValue(Op0) above already converted it 416 } 417 return GV; 418 } 419 case Instruction::Add: 420 case Instruction::Sub: 421 case Instruction::Mul: 422 case Instruction::UDiv: 423 case Instruction::SDiv: 424 case Instruction::URem: 425 case Instruction::SRem: 426 case Instruction::And: 427 case Instruction::Or: 428 case Instruction::Xor: { 429 GenericValue LHS = getConstantValue(Op0); 430 GenericValue RHS = getConstantValue(CE->getOperand(1)); 431 GenericValue GV; 432 switch (CE->getOperand(0)->getType()->getTypeID()) { 433 default: assert(0 && "Bad add type!"); abort(); 434 case Type::IntegerTyID: 435 switch (CE->getOpcode()) { 436 default: assert(0 && "Invalid integer opcode"); 437 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 438 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 439 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 440 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 441 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 442 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 443 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 444 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 445 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 446 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 447 } 448 break; 449 case Type::FloatTyID: 450 switch (CE->getOpcode()) { 451 default: assert(0 && "Invalid float opcode"); abort(); 452 case Instruction::Add: 453 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 454 case Instruction::Sub: 455 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 456 case Instruction::Mul: 457 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 458 case Instruction::FDiv: 459 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 460 case Instruction::FRem: 461 GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break; 462 } 463 break; 464 case Type::DoubleTyID: 465 switch (CE->getOpcode()) { 466 default: assert(0 && "Invalid double opcode"); abort(); 467 case Instruction::Add: 468 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 469 case Instruction::Sub: 470 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 471 case Instruction::Mul: 472 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 473 case Instruction::FDiv: 474 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 475 case Instruction::FRem: 476 GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 477 } 478 break; 479 } 480 return GV; 481 } 482 default: 483 break; 484 } 485 cerr << "ConstantExpr not handled: " << *CE << "\n"; 486 abort(); 487 } 488 489 GenericValue Result; 490 switch (C->getType()->getTypeID()) { 491 case Type::FloatTyID: 492 Result.FloatVal = (float)cast<ConstantFP>(C)->getValue(); 493 break; 494 case Type::DoubleTyID: 495 Result.DoubleVal = (double)cast<ConstantFP>(C)->getValue(); 496 break; 497 case Type::IntegerTyID: 498 Result.IntVal = cast<ConstantInt>(C)->getValue(); 499 break; 500 case Type::PointerTyID: 501 if (isa<ConstantPointerNull>(C)) 502 Result.PointerVal = 0; 503 else if (const Function *F = dyn_cast<Function>(C)) 504 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 505 else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) 506 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 507 else 508 assert(0 && "Unknown constant pointer type!"); 509 break; 510 default: 511 cerr << "ERROR: Constant unimplemented for type: " << *C->getType() << "\n"; 512 abort(); 513 } 514 return Result; 515 } 516 517 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr 518 /// is the address of the memory at which to store Val, cast to GenericValue *. 519 /// It is not a pointer to a GenericValue containing the address at which to 520 /// store Val. 521 /// 522 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr, 523 const Type *Ty) { 524 switch (Ty->getTypeID()) { 525 case Type::IntegerTyID: { 526 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth(); 527 GenericValue TmpVal = Val; 528 if (BitWidth <= 8) 529 *((uint8_t*)Ptr) = uint8_t(Val.IntVal.getZExtValue()); 530 else if (BitWidth <= 16) { 531 *((uint16_t*)Ptr) = uint16_t(Val.IntVal.getZExtValue()); 532 } else if (BitWidth <= 32) { 533 *((uint32_t*)Ptr) = uint32_t(Val.IntVal.getZExtValue()); 534 } else if (BitWidth <= 64) { 535 *((uint64_t*)Ptr) = uint64_t(Val.IntVal.getZExtValue()); 536 } else { 537 uint64_t *Dest = (uint64_t*)Ptr; 538 const uint64_t *Src = Val.IntVal.getRawData(); 539 for (uint32_t i = 0; i < Val.IntVal.getNumWords(); ++i) 540 Dest[i] = Src[i]; 541 } 542 break; 543 } 544 case Type::FloatTyID: 545 *((float*)Ptr) = Val.FloatVal; 546 break; 547 case Type::DoubleTyID: 548 *((double*)Ptr) = Val.DoubleVal; 549 break; 550 case Type::PointerTyID: 551 *((PointerTy*)Ptr) = Val.PointerVal; 552 break; 553 default: 554 cerr << "Cannot store value of type " << *Ty << "!\n"; 555 } 556 } 557 558 /// FIXME: document 559 /// 560 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 561 GenericValue *Ptr, 562 const Type *Ty) { 563 switch (Ty->getTypeID()) { 564 case Type::IntegerTyID: { 565 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth(); 566 if (BitWidth <= 8) 567 Result.IntVal = APInt(BitWidth, *((uint8_t*)Ptr)); 568 else if (BitWidth <= 16) { 569 Result.IntVal = APInt(BitWidth, *((uint16_t*)Ptr)); 570 } else if (BitWidth <= 32) { 571 Result.IntVal = APInt(BitWidth, *((uint32_t*)Ptr)); 572 } else if (BitWidth <= 64) { 573 Result.IntVal = APInt(BitWidth, *((uint64_t*)Ptr)); 574 } else 575 Result.IntVal = APInt(BitWidth, BitWidth/64, (uint64_t*)Ptr); 576 break; 577 } 578 case Type::FloatTyID: 579 Result.FloatVal = *((float*)Ptr); 580 break; 581 case Type::DoubleTyID: 582 Result.DoubleVal = *((double*)Ptr); 583 break; 584 case Type::PointerTyID: 585 Result.PointerVal = *((PointerTy*)Ptr); 586 break; 587 default: 588 cerr << "Cannot load value of type " << *Ty << "!\n"; 589 abort(); 590 } 591 } 592 593 // InitializeMemory - Recursive function to apply a Constant value into the 594 // specified memory location... 595 // 596 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 597 if (isa<UndefValue>(Init)) { 598 return; 599 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 600 unsigned ElementSize = 601 getTargetData()->getTypeSize(CP->getType()->getElementType()); 602 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 603 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 604 return; 605 } else if (Init->getType()->isFirstClassType()) { 606 GenericValue Val = getConstantValue(Init); 607 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 608 return; 609 } else if (isa<ConstantAggregateZero>(Init)) { 610 memset(Addr, 0, (size_t)getTargetData()->getTypeSize(Init->getType())); 611 return; 612 } 613 614 switch (Init->getType()->getTypeID()) { 615 case Type::ArrayTyID: { 616 const ConstantArray *CPA = cast<ConstantArray>(Init); 617 unsigned ElementSize = 618 getTargetData()->getTypeSize(CPA->getType()->getElementType()); 619 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 620 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 621 return; 622 } 623 624 case Type::StructTyID: { 625 const ConstantStruct *CPS = cast<ConstantStruct>(Init); 626 const StructLayout *SL = 627 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 628 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 629 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 630 return; 631 } 632 633 default: 634 cerr << "Bad Type: " << *Init->getType() << "\n"; 635 assert(0 && "Unknown constant type to initialize memory with!"); 636 } 637 } 638 639 /// EmitGlobals - Emit all of the global variables to memory, storing their 640 /// addresses into GlobalAddress. This must make sure to copy the contents of 641 /// their initializers into the memory. 642 /// 643 void ExecutionEngine::emitGlobals() { 644 const TargetData *TD = getTargetData(); 645 646 // Loop over all of the global variables in the program, allocating the memory 647 // to hold them. If there is more than one module, do a prepass over globals 648 // to figure out how the different modules should link together. 649 // 650 std::map<std::pair<std::string, const Type*>, 651 const GlobalValue*> LinkedGlobalsMap; 652 653 if (Modules.size() != 1) { 654 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 655 Module &M = *Modules[m]->getModule(); 656 for (Module::const_global_iterator I = M.global_begin(), 657 E = M.global_end(); I != E; ++I) { 658 const GlobalValue *GV = I; 659 if (GV->hasInternalLinkage() || GV->isDeclaration() || 660 GV->hasAppendingLinkage() || !GV->hasName()) 661 continue;// Ignore external globals and globals with internal linkage. 662 663 const GlobalValue *&GVEntry = 664 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 665 666 // If this is the first time we've seen this global, it is the canonical 667 // version. 668 if (!GVEntry) { 669 GVEntry = GV; 670 continue; 671 } 672 673 // If the existing global is strong, never replace it. 674 if (GVEntry->hasExternalLinkage() || 675 GVEntry->hasDLLImportLinkage() || 676 GVEntry->hasDLLExportLinkage()) 677 continue; 678 679 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 680 // symbol. 681 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 682 GVEntry = GV; 683 } 684 } 685 } 686 687 std::vector<const GlobalValue*> NonCanonicalGlobals; 688 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 689 Module &M = *Modules[m]->getModule(); 690 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 691 I != E; ++I) { 692 // In the multi-module case, see what this global maps to. 693 if (!LinkedGlobalsMap.empty()) { 694 if (const GlobalValue *GVEntry = 695 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 696 // If something else is the canonical global, ignore this one. 697 if (GVEntry != &*I) { 698 NonCanonicalGlobals.push_back(I); 699 continue; 700 } 701 } 702 } 703 704 if (!I->isDeclaration()) { 705 // Get the type of the global. 706 const Type *Ty = I->getType()->getElementType(); 707 708 // Allocate some memory for it! 709 unsigned Size = TD->getTypeSize(Ty); 710 addGlobalMapping(I, new char[Size]); 711 } else { 712 // External variable reference. Try to use the dynamic loader to 713 // get a pointer to it. 714 if (void *SymAddr = 715 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str())) 716 addGlobalMapping(I, SymAddr); 717 else { 718 cerr << "Could not resolve external global address: " 719 << I->getName() << "\n"; 720 abort(); 721 } 722 } 723 } 724 725 // If there are multiple modules, map the non-canonical globals to their 726 // canonical location. 727 if (!NonCanonicalGlobals.empty()) { 728 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 729 const GlobalValue *GV = NonCanonicalGlobals[i]; 730 const GlobalValue *CGV = 731 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 732 void *Ptr = getPointerToGlobalIfAvailable(CGV); 733 assert(Ptr && "Canonical global wasn't codegen'd!"); 734 addGlobalMapping(GV, getPointerToGlobalIfAvailable(CGV)); 735 } 736 } 737 738 // Now that all of the globals are set up in memory, loop through them all 739 // and initialize their contents. 740 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 741 I != E; ++I) { 742 if (!I->isDeclaration()) { 743 if (!LinkedGlobalsMap.empty()) { 744 if (const GlobalValue *GVEntry = 745 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 746 if (GVEntry != &*I) // Not the canonical variable. 747 continue; 748 } 749 EmitGlobalVariable(I); 750 } 751 } 752 } 753 } 754 755 // EmitGlobalVariable - This method emits the specified global variable to the 756 // address specified in GlobalAddresses, or allocates new memory if it's not 757 // already in the map. 758 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 759 void *GA = getPointerToGlobalIfAvailable(GV); 760 DOUT << "Global '" << GV->getName() << "' -> " << GA << "\n"; 761 762 const Type *ElTy = GV->getType()->getElementType(); 763 size_t GVSize = (size_t)getTargetData()->getTypeSize(ElTy); 764 if (GA == 0) { 765 // If it's not already specified, allocate memory for the global. 766 GA = new char[GVSize]; 767 addGlobalMapping(GV, GA); 768 } 769 770 InitializeMemory(GV->getInitializer(), GA); 771 NumInitBytes += (unsigned)GVSize; 772 ++NumGlobals; 773 } 774