1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ExecutionEngine/ExecutionEngine.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ExecutionEngine/GenericValue.h" 19 #include "llvm/ExecutionEngine/JITEventListener.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/IR/ValueHandle.h" 26 #include "llvm/Object/Archive.h" 27 #include "llvm/Object/ObjectFile.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/DynamicLibrary.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/Host.h" 32 #include "llvm/Support/MutexGuard.h" 33 #include "llvm/Support/TargetRegistry.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include <cmath> 37 #include <cstring> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "jit" 41 42 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 43 STATISTIC(NumGlobals , "Number of global vars initialized"); 44 45 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 46 std::unique_ptr<Module> M, std::string *ErrorStr, 47 std::unique_ptr<RTDyldMemoryManager> MCJMM, 48 std::unique_ptr<TargetMachine> TM) = nullptr; 49 ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M, 50 std::string *ErrorStr) =nullptr; 51 52 void JITEventListener::anchor() {} 53 54 ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M) 55 : EEState(*this), 56 LazyFunctionCreator(nullptr) { 57 CompilingLazily = false; 58 GVCompilationDisabled = false; 59 SymbolSearchingDisabled = false; 60 61 // IR module verification is enabled by default in debug builds, and disabled 62 // by default in release builds. 63 #ifndef NDEBUG 64 VerifyModules = true; 65 #else 66 VerifyModules = false; 67 #endif 68 69 assert(M && "Module is null?"); 70 Modules.push_back(std::move(M)); 71 } 72 73 ExecutionEngine::~ExecutionEngine() { 74 clearAllGlobalMappings(); 75 } 76 77 namespace { 78 /// \brief Helper class which uses a value handler to automatically deletes the 79 /// memory block when the GlobalVariable is destroyed. 80 class GVMemoryBlock : public CallbackVH { 81 GVMemoryBlock(const GlobalVariable *GV) 82 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 83 84 public: 85 /// \brief Returns the address the GlobalVariable should be written into. The 86 /// GVMemoryBlock object prefixes that. 87 static char *Create(const GlobalVariable *GV, const DataLayout& TD) { 88 Type *ElTy = GV->getType()->getElementType(); 89 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 90 void *RawMemory = ::operator new( 91 RoundUpToAlignment(sizeof(GVMemoryBlock), 92 TD.getPreferredAlignment(GV)) 93 + GVSize); 94 new(RawMemory) GVMemoryBlock(GV); 95 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 96 } 97 98 void deleted() override { 99 // We allocated with operator new and with some extra memory hanging off the 100 // end, so don't just delete this. I'm not sure if this is actually 101 // required. 102 this->~GVMemoryBlock(); 103 ::operator delete(this); 104 } 105 }; 106 } // anonymous namespace 107 108 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 109 return GVMemoryBlock::Create(GV, *getDataLayout()); 110 } 111 112 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { 113 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 114 } 115 116 void 117 ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) { 118 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 119 } 120 121 void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) { 122 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive."); 123 } 124 125 bool ExecutionEngine::removeModule(Module *M) { 126 for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) { 127 Module *Found = I->get(); 128 if (Found == M) { 129 I->release(); 130 Modules.erase(I); 131 clearGlobalMappingsFromModule(M); 132 return true; 133 } 134 } 135 return false; 136 } 137 138 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 139 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 140 if (Function *F = Modules[i]->getFunction(FnName)) 141 return F; 142 } 143 return nullptr; 144 } 145 146 147 void *ExecutionEngineState::RemoveMapping(const GlobalValue *ToUnmap) { 148 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 149 void *OldVal; 150 151 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 152 // GlobalAddressMap. 153 if (I == GlobalAddressMap.end()) 154 OldVal = nullptr; 155 else { 156 OldVal = I->second; 157 GlobalAddressMap.erase(I); 158 } 159 160 GlobalAddressReverseMap.erase(OldVal); 161 return OldVal; 162 } 163 164 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 165 MutexGuard locked(lock); 166 167 DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 168 << "\' to [" << Addr << "]\n";); 169 void *&CurVal = EEState.getGlobalAddressMap()[GV]; 170 assert((!CurVal || !Addr) && "GlobalMapping already established!"); 171 CurVal = Addr; 172 173 // If we are using the reverse mapping, add it too. 174 if (!EEState.getGlobalAddressReverseMap().empty()) { 175 AssertingVH<const GlobalValue> &V = 176 EEState.getGlobalAddressReverseMap()[Addr]; 177 assert((!V || !GV) && "GlobalMapping already established!"); 178 V = GV; 179 } 180 } 181 182 void ExecutionEngine::clearAllGlobalMappings() { 183 MutexGuard locked(lock); 184 185 EEState.getGlobalAddressMap().clear(); 186 EEState.getGlobalAddressReverseMap().clear(); 187 } 188 189 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 190 MutexGuard locked(lock); 191 192 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) 193 EEState.RemoveMapping(FI); 194 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 195 GI != GE; ++GI) 196 EEState.RemoveMapping(GI); 197 } 198 199 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 200 MutexGuard locked(lock); 201 202 ExecutionEngineState::GlobalAddressMapTy &Map = 203 EEState.getGlobalAddressMap(); 204 205 // Deleting from the mapping? 206 if (!Addr) 207 return EEState.RemoveMapping(GV); 208 209 void *&CurVal = Map[GV]; 210 void *OldVal = CurVal; 211 212 if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) 213 EEState.getGlobalAddressReverseMap().erase(CurVal); 214 CurVal = Addr; 215 216 // If we are using the reverse mapping, add it too. 217 if (!EEState.getGlobalAddressReverseMap().empty()) { 218 AssertingVH<const GlobalValue> &V = 219 EEState.getGlobalAddressReverseMap()[Addr]; 220 assert((!V || !GV) && "GlobalMapping already established!"); 221 V = GV; 222 } 223 return OldVal; 224 } 225 226 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 227 MutexGuard locked(lock); 228 229 ExecutionEngineState::GlobalAddressMapTy::iterator I = 230 EEState.getGlobalAddressMap().find(GV); 231 return I != EEState.getGlobalAddressMap().end() ? I->second : nullptr; 232 } 233 234 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 235 MutexGuard locked(lock); 236 237 // If we haven't computed the reverse mapping yet, do so first. 238 if (EEState.getGlobalAddressReverseMap().empty()) { 239 for (ExecutionEngineState::GlobalAddressMapTy::iterator 240 I = EEState.getGlobalAddressMap().begin(), 241 E = EEState.getGlobalAddressMap().end(); I != E; ++I) 242 EEState.getGlobalAddressReverseMap().insert(std::make_pair( 243 I->second, I->first)); 244 } 245 246 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 247 EEState.getGlobalAddressReverseMap().find(Addr); 248 return I != EEState.getGlobalAddressReverseMap().end() ? I->second : nullptr; 249 } 250 251 namespace { 252 class ArgvArray { 253 std::unique_ptr<char[]> Array; 254 std::vector<std::unique_ptr<char[]>> Values; 255 public: 256 /// Turn a vector of strings into a nice argv style array of pointers to null 257 /// terminated strings. 258 void *reset(LLVMContext &C, ExecutionEngine *EE, 259 const std::vector<std::string> &InputArgv); 260 }; 261 } // anonymous namespace 262 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 263 const std::vector<std::string> &InputArgv) { 264 Values.clear(); // Free the old contents. 265 Values.reserve(InputArgv.size()); 266 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 267 Array = make_unique<char[]>((InputArgv.size()+1)*PtrSize); 268 269 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array.get() << "\n"); 270 Type *SBytePtr = Type::getInt8PtrTy(C); 271 272 for (unsigned i = 0; i != InputArgv.size(); ++i) { 273 unsigned Size = InputArgv[i].size()+1; 274 auto Dest = make_unique<char[]>(Size); 275 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest.get() << "\n"); 276 277 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get()); 278 Dest[Size-1] = 0; 279 280 // Endian safe: Array[i] = (PointerTy)Dest; 281 EE->StoreValueToMemory(PTOGV(Dest.get()), 282 (GenericValue*)(&Array[i*PtrSize]), SBytePtr); 283 Values.push_back(std::move(Dest)); 284 } 285 286 // Null terminate it 287 EE->StoreValueToMemory(PTOGV(nullptr), 288 (GenericValue*)(&Array[InputArgv.size()*PtrSize]), 289 SBytePtr); 290 return Array.get(); 291 } 292 293 void ExecutionEngine::runStaticConstructorsDestructors(Module &module, 294 bool isDtors) { 295 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 296 GlobalVariable *GV = module.getNamedGlobal(Name); 297 298 // If this global has internal linkage, or if it has a use, then it must be 299 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 300 // this is the case, don't execute any of the global ctors, __main will do 301 // it. 302 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 303 304 // Should be an array of '{ i32, void ()* }' structs. The first value is 305 // the init priority, which we ignore. 306 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 307 if (!InitList) 308 return; 309 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 310 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 311 if (!CS) continue; 312 313 Constant *FP = CS->getOperand(1); 314 if (FP->isNullValue()) 315 continue; // Found a sentinal value, ignore. 316 317 // Strip off constant expression casts. 318 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 319 if (CE->isCast()) 320 FP = CE->getOperand(0); 321 322 // Execute the ctor/dtor function! 323 if (Function *F = dyn_cast<Function>(FP)) 324 runFunction(F, std::vector<GenericValue>()); 325 326 // FIXME: It is marginally lame that we just do nothing here if we see an 327 // entry we don't recognize. It might not be unreasonable for the verifier 328 // to not even allow this and just assert here. 329 } 330 } 331 332 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 333 // Execute global ctors/dtors for each module in the program. 334 for (std::unique_ptr<Module> &M : Modules) 335 runStaticConstructorsDestructors(*M, isDtors); 336 } 337 338 #ifndef NDEBUG 339 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 340 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 341 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 342 for (unsigned i = 0; i < PtrSize; ++i) 343 if (*(i + (uint8_t*)Loc)) 344 return false; 345 return true; 346 } 347 #endif 348 349 int ExecutionEngine::runFunctionAsMain(Function *Fn, 350 const std::vector<std::string> &argv, 351 const char * const * envp) { 352 std::vector<GenericValue> GVArgs; 353 GenericValue GVArgc; 354 GVArgc.IntVal = APInt(32, argv.size()); 355 356 // Check main() type 357 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 358 FunctionType *FTy = Fn->getFunctionType(); 359 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 360 361 // Check the argument types. 362 if (NumArgs > 3) 363 report_fatal_error("Invalid number of arguments of main() supplied"); 364 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 365 report_fatal_error("Invalid type for third argument of main() supplied"); 366 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 367 report_fatal_error("Invalid type for second argument of main() supplied"); 368 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 369 report_fatal_error("Invalid type for first argument of main() supplied"); 370 if (!FTy->getReturnType()->isIntegerTy() && 371 !FTy->getReturnType()->isVoidTy()) 372 report_fatal_error("Invalid return type of main() supplied"); 373 374 ArgvArray CArgv; 375 ArgvArray CEnv; 376 if (NumArgs) { 377 GVArgs.push_back(GVArgc); // Arg #0 = argc. 378 if (NumArgs > 1) { 379 // Arg #1 = argv. 380 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 381 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 382 "argv[0] was null after CreateArgv"); 383 if (NumArgs > 2) { 384 std::vector<std::string> EnvVars; 385 for (unsigned i = 0; envp[i]; ++i) 386 EnvVars.push_back(envp[i]); 387 // Arg #2 = envp. 388 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 389 } 390 } 391 } 392 393 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 394 } 395 396 EngineBuilder::EngineBuilder(std::unique_ptr<Module> M) 397 : M(std::move(M)), MCJMM(nullptr) { 398 InitEngine(); 399 } 400 401 EngineBuilder::~EngineBuilder() {} 402 403 EngineBuilder &EngineBuilder::setMCJITMemoryManager( 404 std::unique_ptr<RTDyldMemoryManager> mcjmm) { 405 MCJMM = std::move(mcjmm); 406 return *this; 407 } 408 409 void EngineBuilder::InitEngine() { 410 WhichEngine = EngineKind::Either; 411 ErrorStr = nullptr; 412 OptLevel = CodeGenOpt::Default; 413 MCJMM = nullptr; 414 Options = TargetOptions(); 415 RelocModel = Reloc::Default; 416 CMModel = CodeModel::JITDefault; 417 418 // IR module verification is enabled by default in debug builds, and disabled 419 // by default in release builds. 420 #ifndef NDEBUG 421 VerifyModules = true; 422 #else 423 VerifyModules = false; 424 #endif 425 } 426 427 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 428 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. 429 430 // Make sure we can resolve symbols in the program as well. The zero arg 431 // to the function tells DynamicLibrary to load the program, not a library. 432 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) 433 return nullptr; 434 435 // If the user specified a memory manager but didn't specify which engine to 436 // create, we assume they only want the JIT, and we fail if they only want 437 // the interpreter. 438 if (MCJMM) { 439 if (WhichEngine & EngineKind::JIT) 440 WhichEngine = EngineKind::JIT; 441 else { 442 if (ErrorStr) 443 *ErrorStr = "Cannot create an interpreter with a memory manager."; 444 return nullptr; 445 } 446 } 447 448 // Unless the interpreter was explicitly selected or the JIT is not linked, 449 // try making a JIT. 450 if ((WhichEngine & EngineKind::JIT) && TheTM) { 451 Triple TT(M->getTargetTriple()); 452 if (!TM->getTarget().hasJIT()) { 453 errs() << "WARNING: This target JIT is not designed for the host" 454 << " you are running. If bad things happen, please choose" 455 << " a different -march switch.\n"; 456 } 457 458 ExecutionEngine *EE = nullptr; 459 if (ExecutionEngine::MCJITCtor) 460 EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MCJMM), 461 std::move(TheTM)); 462 if (EE) { 463 EE->setVerifyModules(VerifyModules); 464 return EE; 465 } 466 } 467 468 // If we can't make a JIT and we didn't request one specifically, try making 469 // an interpreter instead. 470 if (WhichEngine & EngineKind::Interpreter) { 471 if (ExecutionEngine::InterpCtor) 472 return ExecutionEngine::InterpCtor(std::move(M), ErrorStr); 473 if (ErrorStr) 474 *ErrorStr = "Interpreter has not been linked in."; 475 return nullptr; 476 } 477 478 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) { 479 if (ErrorStr) 480 *ErrorStr = "JIT has not been linked in."; 481 } 482 483 return nullptr; 484 } 485 486 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 487 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 488 return getPointerToFunction(F); 489 490 MutexGuard locked(lock); 491 if (void *P = EEState.getGlobalAddressMap()[GV]) 492 return P; 493 494 // Global variable might have been added since interpreter started. 495 if (GlobalVariable *GVar = 496 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 497 EmitGlobalVariable(GVar); 498 else 499 llvm_unreachable("Global hasn't had an address allocated yet!"); 500 501 return EEState.getGlobalAddressMap()[GV]; 502 } 503 504 /// \brief Converts a Constant* into a GenericValue, including handling of 505 /// ConstantExpr values. 506 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 507 // If its undefined, return the garbage. 508 if (isa<UndefValue>(C)) { 509 GenericValue Result; 510 switch (C->getType()->getTypeID()) { 511 default: 512 break; 513 case Type::IntegerTyID: 514 case Type::X86_FP80TyID: 515 case Type::FP128TyID: 516 case Type::PPC_FP128TyID: 517 // Although the value is undefined, we still have to construct an APInt 518 // with the correct bit width. 519 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 520 break; 521 case Type::StructTyID: { 522 // if the whole struct is 'undef' just reserve memory for the value. 523 if(StructType *STy = dyn_cast<StructType>(C->getType())) { 524 unsigned int elemNum = STy->getNumElements(); 525 Result.AggregateVal.resize(elemNum); 526 for (unsigned int i = 0; i < elemNum; ++i) { 527 Type *ElemTy = STy->getElementType(i); 528 if (ElemTy->isIntegerTy()) 529 Result.AggregateVal[i].IntVal = 530 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 531 else if (ElemTy->isAggregateType()) { 532 const Constant *ElemUndef = UndefValue::get(ElemTy); 533 Result.AggregateVal[i] = getConstantValue(ElemUndef); 534 } 535 } 536 } 537 } 538 break; 539 case Type::VectorTyID: 540 // if the whole vector is 'undef' just reserve memory for the value. 541 const VectorType* VTy = dyn_cast<VectorType>(C->getType()); 542 const Type *ElemTy = VTy->getElementType(); 543 unsigned int elemNum = VTy->getNumElements(); 544 Result.AggregateVal.resize(elemNum); 545 if (ElemTy->isIntegerTy()) 546 for (unsigned int i = 0; i < elemNum; ++i) 547 Result.AggregateVal[i].IntVal = 548 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 549 break; 550 } 551 return Result; 552 } 553 554 // Otherwise, if the value is a ConstantExpr... 555 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 556 Constant *Op0 = CE->getOperand(0); 557 switch (CE->getOpcode()) { 558 case Instruction::GetElementPtr: { 559 // Compute the index 560 GenericValue Result = getConstantValue(Op0); 561 APInt Offset(DL->getPointerSizeInBits(), 0); 562 cast<GEPOperator>(CE)->accumulateConstantOffset(*DL, Offset); 563 564 char* tmp = (char*) Result.PointerVal; 565 Result = PTOGV(tmp + Offset.getSExtValue()); 566 return Result; 567 } 568 case Instruction::Trunc: { 569 GenericValue GV = getConstantValue(Op0); 570 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 571 GV.IntVal = GV.IntVal.trunc(BitWidth); 572 return GV; 573 } 574 case Instruction::ZExt: { 575 GenericValue GV = getConstantValue(Op0); 576 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 577 GV.IntVal = GV.IntVal.zext(BitWidth); 578 return GV; 579 } 580 case Instruction::SExt: { 581 GenericValue GV = getConstantValue(Op0); 582 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 583 GV.IntVal = GV.IntVal.sext(BitWidth); 584 return GV; 585 } 586 case Instruction::FPTrunc: { 587 // FIXME long double 588 GenericValue GV = getConstantValue(Op0); 589 GV.FloatVal = float(GV.DoubleVal); 590 return GV; 591 } 592 case Instruction::FPExt:{ 593 // FIXME long double 594 GenericValue GV = getConstantValue(Op0); 595 GV.DoubleVal = double(GV.FloatVal); 596 return GV; 597 } 598 case Instruction::UIToFP: { 599 GenericValue GV = getConstantValue(Op0); 600 if (CE->getType()->isFloatTy()) 601 GV.FloatVal = float(GV.IntVal.roundToDouble()); 602 else if (CE->getType()->isDoubleTy()) 603 GV.DoubleVal = GV.IntVal.roundToDouble(); 604 else if (CE->getType()->isX86_FP80Ty()) { 605 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 606 (void)apf.convertFromAPInt(GV.IntVal, 607 false, 608 APFloat::rmNearestTiesToEven); 609 GV.IntVal = apf.bitcastToAPInt(); 610 } 611 return GV; 612 } 613 case Instruction::SIToFP: { 614 GenericValue GV = getConstantValue(Op0); 615 if (CE->getType()->isFloatTy()) 616 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 617 else if (CE->getType()->isDoubleTy()) 618 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 619 else if (CE->getType()->isX86_FP80Ty()) { 620 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 621 (void)apf.convertFromAPInt(GV.IntVal, 622 true, 623 APFloat::rmNearestTiesToEven); 624 GV.IntVal = apf.bitcastToAPInt(); 625 } 626 return GV; 627 } 628 case Instruction::FPToUI: // double->APInt conversion handles sign 629 case Instruction::FPToSI: { 630 GenericValue GV = getConstantValue(Op0); 631 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 632 if (Op0->getType()->isFloatTy()) 633 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 634 else if (Op0->getType()->isDoubleTy()) 635 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 636 else if (Op0->getType()->isX86_FP80Ty()) { 637 APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal); 638 uint64_t v; 639 bool ignored; 640 (void)apf.convertToInteger(&v, BitWidth, 641 CE->getOpcode()==Instruction::FPToSI, 642 APFloat::rmTowardZero, &ignored); 643 GV.IntVal = v; // endian? 644 } 645 return GV; 646 } 647 case Instruction::PtrToInt: { 648 GenericValue GV = getConstantValue(Op0); 649 uint32_t PtrWidth = DL->getTypeSizeInBits(Op0->getType()); 650 assert(PtrWidth <= 64 && "Bad pointer width"); 651 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 652 uint32_t IntWidth = DL->getTypeSizeInBits(CE->getType()); 653 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); 654 return GV; 655 } 656 case Instruction::IntToPtr: { 657 GenericValue GV = getConstantValue(Op0); 658 uint32_t PtrWidth = DL->getTypeSizeInBits(CE->getType()); 659 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 660 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 661 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 662 return GV; 663 } 664 case Instruction::BitCast: { 665 GenericValue GV = getConstantValue(Op0); 666 Type* DestTy = CE->getType(); 667 switch (Op0->getType()->getTypeID()) { 668 default: llvm_unreachable("Invalid bitcast operand"); 669 case Type::IntegerTyID: 670 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 671 if (DestTy->isFloatTy()) 672 GV.FloatVal = GV.IntVal.bitsToFloat(); 673 else if (DestTy->isDoubleTy()) 674 GV.DoubleVal = GV.IntVal.bitsToDouble(); 675 break; 676 case Type::FloatTyID: 677 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 678 GV.IntVal = APInt::floatToBits(GV.FloatVal); 679 break; 680 case Type::DoubleTyID: 681 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 682 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 683 break; 684 case Type::PointerTyID: 685 assert(DestTy->isPointerTy() && "Invalid bitcast"); 686 break; // getConstantValue(Op0) above already converted it 687 } 688 return GV; 689 } 690 case Instruction::Add: 691 case Instruction::FAdd: 692 case Instruction::Sub: 693 case Instruction::FSub: 694 case Instruction::Mul: 695 case Instruction::FMul: 696 case Instruction::UDiv: 697 case Instruction::SDiv: 698 case Instruction::URem: 699 case Instruction::SRem: 700 case Instruction::And: 701 case Instruction::Or: 702 case Instruction::Xor: { 703 GenericValue LHS = getConstantValue(Op0); 704 GenericValue RHS = getConstantValue(CE->getOperand(1)); 705 GenericValue GV; 706 switch (CE->getOperand(0)->getType()->getTypeID()) { 707 default: llvm_unreachable("Bad add type!"); 708 case Type::IntegerTyID: 709 switch (CE->getOpcode()) { 710 default: llvm_unreachable("Invalid integer opcode"); 711 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 712 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 713 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 714 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 715 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 716 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 717 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 718 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 719 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 720 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 721 } 722 break; 723 case Type::FloatTyID: 724 switch (CE->getOpcode()) { 725 default: llvm_unreachable("Invalid float opcode"); 726 case Instruction::FAdd: 727 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 728 case Instruction::FSub: 729 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 730 case Instruction::FMul: 731 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 732 case Instruction::FDiv: 733 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 734 case Instruction::FRem: 735 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 736 } 737 break; 738 case Type::DoubleTyID: 739 switch (CE->getOpcode()) { 740 default: llvm_unreachable("Invalid double opcode"); 741 case Instruction::FAdd: 742 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 743 case Instruction::FSub: 744 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 745 case Instruction::FMul: 746 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 747 case Instruction::FDiv: 748 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 749 case Instruction::FRem: 750 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 751 } 752 break; 753 case Type::X86_FP80TyID: 754 case Type::PPC_FP128TyID: 755 case Type::FP128TyID: { 756 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); 757 APFloat apfLHS = APFloat(Sem, LHS.IntVal); 758 switch (CE->getOpcode()) { 759 default: llvm_unreachable("Invalid long double opcode"); 760 case Instruction::FAdd: 761 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); 762 GV.IntVal = apfLHS.bitcastToAPInt(); 763 break; 764 case Instruction::FSub: 765 apfLHS.subtract(APFloat(Sem, RHS.IntVal), 766 APFloat::rmNearestTiesToEven); 767 GV.IntVal = apfLHS.bitcastToAPInt(); 768 break; 769 case Instruction::FMul: 770 apfLHS.multiply(APFloat(Sem, RHS.IntVal), 771 APFloat::rmNearestTiesToEven); 772 GV.IntVal = apfLHS.bitcastToAPInt(); 773 break; 774 case Instruction::FDiv: 775 apfLHS.divide(APFloat(Sem, RHS.IntVal), 776 APFloat::rmNearestTiesToEven); 777 GV.IntVal = apfLHS.bitcastToAPInt(); 778 break; 779 case Instruction::FRem: 780 apfLHS.mod(APFloat(Sem, RHS.IntVal), 781 APFloat::rmNearestTiesToEven); 782 GV.IntVal = apfLHS.bitcastToAPInt(); 783 break; 784 } 785 } 786 break; 787 } 788 return GV; 789 } 790 default: 791 break; 792 } 793 794 SmallString<256> Msg; 795 raw_svector_ostream OS(Msg); 796 OS << "ConstantExpr not handled: " << *CE; 797 report_fatal_error(OS.str()); 798 } 799 800 // Otherwise, we have a simple constant. 801 GenericValue Result; 802 switch (C->getType()->getTypeID()) { 803 case Type::FloatTyID: 804 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 805 break; 806 case Type::DoubleTyID: 807 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 808 break; 809 case Type::X86_FP80TyID: 810 case Type::FP128TyID: 811 case Type::PPC_FP128TyID: 812 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 813 break; 814 case Type::IntegerTyID: 815 Result.IntVal = cast<ConstantInt>(C)->getValue(); 816 break; 817 case Type::PointerTyID: 818 if (isa<ConstantPointerNull>(C)) 819 Result.PointerVal = nullptr; 820 else if (const Function *F = dyn_cast<Function>(C)) 821 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 822 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 823 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 824 else 825 llvm_unreachable("Unknown constant pointer type!"); 826 break; 827 case Type::VectorTyID: { 828 unsigned elemNum; 829 Type* ElemTy; 830 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); 831 const ConstantVector *CV = dyn_cast<ConstantVector>(C); 832 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); 833 834 if (CDV) { 835 elemNum = CDV->getNumElements(); 836 ElemTy = CDV->getElementType(); 837 } else if (CV || CAZ) { 838 VectorType* VTy = dyn_cast<VectorType>(C->getType()); 839 elemNum = VTy->getNumElements(); 840 ElemTy = VTy->getElementType(); 841 } else { 842 llvm_unreachable("Unknown constant vector type!"); 843 } 844 845 Result.AggregateVal.resize(elemNum); 846 // Check if vector holds floats. 847 if(ElemTy->isFloatTy()) { 848 if (CAZ) { 849 GenericValue floatZero; 850 floatZero.FloatVal = 0.f; 851 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 852 floatZero); 853 break; 854 } 855 if(CV) { 856 for (unsigned i = 0; i < elemNum; ++i) 857 if (!isa<UndefValue>(CV->getOperand(i))) 858 Result.AggregateVal[i].FloatVal = cast<ConstantFP>( 859 CV->getOperand(i))->getValueAPF().convertToFloat(); 860 break; 861 } 862 if(CDV) 863 for (unsigned i = 0; i < elemNum; ++i) 864 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); 865 866 break; 867 } 868 // Check if vector holds doubles. 869 if (ElemTy->isDoubleTy()) { 870 if (CAZ) { 871 GenericValue doubleZero; 872 doubleZero.DoubleVal = 0.0; 873 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 874 doubleZero); 875 break; 876 } 877 if(CV) { 878 for (unsigned i = 0; i < elemNum; ++i) 879 if (!isa<UndefValue>(CV->getOperand(i))) 880 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( 881 CV->getOperand(i))->getValueAPF().convertToDouble(); 882 break; 883 } 884 if(CDV) 885 for (unsigned i = 0; i < elemNum; ++i) 886 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); 887 888 break; 889 } 890 // Check if vector holds integers. 891 if (ElemTy->isIntegerTy()) { 892 if (CAZ) { 893 GenericValue intZero; 894 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); 895 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 896 intZero); 897 break; 898 } 899 if(CV) { 900 for (unsigned i = 0; i < elemNum; ++i) 901 if (!isa<UndefValue>(CV->getOperand(i))) 902 Result.AggregateVal[i].IntVal = cast<ConstantInt>( 903 CV->getOperand(i))->getValue(); 904 else { 905 Result.AggregateVal[i].IntVal = 906 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); 907 } 908 break; 909 } 910 if(CDV) 911 for (unsigned i = 0; i < elemNum; ++i) 912 Result.AggregateVal[i].IntVal = APInt( 913 CDV->getElementType()->getPrimitiveSizeInBits(), 914 CDV->getElementAsInteger(i)); 915 916 break; 917 } 918 llvm_unreachable("Unknown constant pointer type!"); 919 } 920 break; 921 922 default: 923 SmallString<256> Msg; 924 raw_svector_ostream OS(Msg); 925 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 926 report_fatal_error(OS.str()); 927 } 928 929 return Result; 930 } 931 932 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 933 /// with the integer held in IntVal. 934 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 935 unsigned StoreBytes) { 936 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 937 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 938 939 if (sys::IsLittleEndianHost) { 940 // Little-endian host - the source is ordered from LSB to MSB. Order the 941 // destination from LSB to MSB: Do a straight copy. 942 memcpy(Dst, Src, StoreBytes); 943 } else { 944 // Big-endian host - the source is an array of 64 bit words ordered from 945 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 946 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 947 while (StoreBytes > sizeof(uint64_t)) { 948 StoreBytes -= sizeof(uint64_t); 949 // May not be aligned so use memcpy. 950 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 951 Src += sizeof(uint64_t); 952 } 953 954 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 955 } 956 } 957 958 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 959 GenericValue *Ptr, Type *Ty) { 960 const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty); 961 962 switch (Ty->getTypeID()) { 963 default: 964 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 965 break; 966 case Type::IntegerTyID: 967 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 968 break; 969 case Type::FloatTyID: 970 *((float*)Ptr) = Val.FloatVal; 971 break; 972 case Type::DoubleTyID: 973 *((double*)Ptr) = Val.DoubleVal; 974 break; 975 case Type::X86_FP80TyID: 976 memcpy(Ptr, Val.IntVal.getRawData(), 10); 977 break; 978 case Type::PointerTyID: 979 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 980 if (StoreBytes != sizeof(PointerTy)) 981 memset(&(Ptr->PointerVal), 0, StoreBytes); 982 983 *((PointerTy*)Ptr) = Val.PointerVal; 984 break; 985 case Type::VectorTyID: 986 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { 987 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) 988 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; 989 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) 990 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; 991 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { 992 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; 993 StoreIntToMemory(Val.AggregateVal[i].IntVal, 994 (uint8_t*)Ptr + numOfBytes*i, numOfBytes); 995 } 996 } 997 break; 998 } 999 1000 if (sys::IsLittleEndianHost != getDataLayout()->isLittleEndian()) 1001 // Host and target are different endian - reverse the stored bytes. 1002 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 1003 } 1004 1005 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 1006 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 1007 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 1008 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 1009 uint8_t *Dst = reinterpret_cast<uint8_t *>( 1010 const_cast<uint64_t *>(IntVal.getRawData())); 1011 1012 if (sys::IsLittleEndianHost) 1013 // Little-endian host - the destination must be ordered from LSB to MSB. 1014 // The source is ordered from LSB to MSB: Do a straight copy. 1015 memcpy(Dst, Src, LoadBytes); 1016 else { 1017 // Big-endian - the destination is an array of 64 bit words ordered from 1018 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 1019 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 1020 // a word. 1021 while (LoadBytes > sizeof(uint64_t)) { 1022 LoadBytes -= sizeof(uint64_t); 1023 // May not be aligned so use memcpy. 1024 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 1025 Dst += sizeof(uint64_t); 1026 } 1027 1028 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 1029 } 1030 } 1031 1032 /// FIXME: document 1033 /// 1034 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 1035 GenericValue *Ptr, 1036 Type *Ty) { 1037 const unsigned LoadBytes = getDataLayout()->getTypeStoreSize(Ty); 1038 1039 switch (Ty->getTypeID()) { 1040 case Type::IntegerTyID: 1041 // An APInt with all words initially zero. 1042 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 1043 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 1044 break; 1045 case Type::FloatTyID: 1046 Result.FloatVal = *((float*)Ptr); 1047 break; 1048 case Type::DoubleTyID: 1049 Result.DoubleVal = *((double*)Ptr); 1050 break; 1051 case Type::PointerTyID: 1052 Result.PointerVal = *((PointerTy*)Ptr); 1053 break; 1054 case Type::X86_FP80TyID: { 1055 // This is endian dependent, but it will only work on x86 anyway. 1056 // FIXME: Will not trap if loading a signaling NaN. 1057 uint64_t y[2]; 1058 memcpy(y, Ptr, 10); 1059 Result.IntVal = APInt(80, y); 1060 break; 1061 } 1062 case Type::VectorTyID: { 1063 const VectorType *VT = cast<VectorType>(Ty); 1064 const Type *ElemT = VT->getElementType(); 1065 const unsigned numElems = VT->getNumElements(); 1066 if (ElemT->isFloatTy()) { 1067 Result.AggregateVal.resize(numElems); 1068 for (unsigned i = 0; i < numElems; ++i) 1069 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); 1070 } 1071 if (ElemT->isDoubleTy()) { 1072 Result.AggregateVal.resize(numElems); 1073 for (unsigned i = 0; i < numElems; ++i) 1074 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); 1075 } 1076 if (ElemT->isIntegerTy()) { 1077 GenericValue intZero; 1078 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); 1079 intZero.IntVal = APInt(elemBitWidth, 0); 1080 Result.AggregateVal.resize(numElems, intZero); 1081 for (unsigned i = 0; i < numElems; ++i) 1082 LoadIntFromMemory(Result.AggregateVal[i].IntVal, 1083 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); 1084 } 1085 break; 1086 } 1087 default: 1088 SmallString<256> Msg; 1089 raw_svector_ostream OS(Msg); 1090 OS << "Cannot load value of type " << *Ty << "!"; 1091 report_fatal_error(OS.str()); 1092 } 1093 } 1094 1095 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 1096 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 1097 DEBUG(Init->dump()); 1098 if (isa<UndefValue>(Init)) 1099 return; 1100 1101 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 1102 unsigned ElementSize = 1103 getDataLayout()->getTypeAllocSize(CP->getType()->getElementType()); 1104 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 1105 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 1106 return; 1107 } 1108 1109 if (isa<ConstantAggregateZero>(Init)) { 1110 memset(Addr, 0, (size_t)getDataLayout()->getTypeAllocSize(Init->getType())); 1111 return; 1112 } 1113 1114 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 1115 unsigned ElementSize = 1116 getDataLayout()->getTypeAllocSize(CPA->getType()->getElementType()); 1117 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 1118 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 1119 return; 1120 } 1121 1122 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 1123 const StructLayout *SL = 1124 getDataLayout()->getStructLayout(cast<StructType>(CPS->getType())); 1125 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 1126 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 1127 return; 1128 } 1129 1130 if (const ConstantDataSequential *CDS = 1131 dyn_cast<ConstantDataSequential>(Init)) { 1132 // CDS is already laid out in host memory order. 1133 StringRef Data = CDS->getRawDataValues(); 1134 memcpy(Addr, Data.data(), Data.size()); 1135 return; 1136 } 1137 1138 if (Init->getType()->isFirstClassType()) { 1139 GenericValue Val = getConstantValue(Init); 1140 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 1141 return; 1142 } 1143 1144 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1145 llvm_unreachable("Unknown constant type to initialize memory with!"); 1146 } 1147 1148 /// EmitGlobals - Emit all of the global variables to memory, storing their 1149 /// addresses into GlobalAddress. This must make sure to copy the contents of 1150 /// their initializers into the memory. 1151 void ExecutionEngine::emitGlobals() { 1152 // Loop over all of the global variables in the program, allocating the memory 1153 // to hold them. If there is more than one module, do a prepass over globals 1154 // to figure out how the different modules should link together. 1155 std::map<std::pair<std::string, Type*>, 1156 const GlobalValue*> LinkedGlobalsMap; 1157 1158 if (Modules.size() != 1) { 1159 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1160 Module &M = *Modules[m]; 1161 for (const auto &GV : M.globals()) { 1162 if (GV.hasLocalLinkage() || GV.isDeclaration() || 1163 GV.hasAppendingLinkage() || !GV.hasName()) 1164 continue;// Ignore external globals and globals with internal linkage. 1165 1166 const GlobalValue *&GVEntry = 1167 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]; 1168 1169 // If this is the first time we've seen this global, it is the canonical 1170 // version. 1171 if (!GVEntry) { 1172 GVEntry = &GV; 1173 continue; 1174 } 1175 1176 // If the existing global is strong, never replace it. 1177 if (GVEntry->hasExternalLinkage()) 1178 continue; 1179 1180 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1181 // symbol. FIXME is this right for common? 1182 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1183 GVEntry = &GV; 1184 } 1185 } 1186 } 1187 1188 std::vector<const GlobalValue*> NonCanonicalGlobals; 1189 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1190 Module &M = *Modules[m]; 1191 for (const auto &GV : M.globals()) { 1192 // In the multi-module case, see what this global maps to. 1193 if (!LinkedGlobalsMap.empty()) { 1194 if (const GlobalValue *GVEntry = 1195 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) { 1196 // If something else is the canonical global, ignore this one. 1197 if (GVEntry != &GV) { 1198 NonCanonicalGlobals.push_back(&GV); 1199 continue; 1200 } 1201 } 1202 } 1203 1204 if (!GV.isDeclaration()) { 1205 addGlobalMapping(&GV, getMemoryForGV(&GV)); 1206 } else { 1207 // External variable reference. Try to use the dynamic loader to 1208 // get a pointer to it. 1209 if (void *SymAddr = 1210 sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName())) 1211 addGlobalMapping(&GV, SymAddr); 1212 else { 1213 report_fatal_error("Could not resolve external global address: " 1214 +GV.getName()); 1215 } 1216 } 1217 } 1218 1219 // If there are multiple modules, map the non-canonical globals to their 1220 // canonical location. 1221 if (!NonCanonicalGlobals.empty()) { 1222 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1223 const GlobalValue *GV = NonCanonicalGlobals[i]; 1224 const GlobalValue *CGV = 1225 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1226 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1227 assert(Ptr && "Canonical global wasn't codegen'd!"); 1228 addGlobalMapping(GV, Ptr); 1229 } 1230 } 1231 1232 // Now that all of the globals are set up in memory, loop through them all 1233 // and initialize their contents. 1234 for (const auto &GV : M.globals()) { 1235 if (!GV.isDeclaration()) { 1236 if (!LinkedGlobalsMap.empty()) { 1237 if (const GlobalValue *GVEntry = 1238 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) 1239 if (GVEntry != &GV) // Not the canonical variable. 1240 continue; 1241 } 1242 EmitGlobalVariable(&GV); 1243 } 1244 } 1245 } 1246 } 1247 1248 // EmitGlobalVariable - This method emits the specified global variable to the 1249 // address specified in GlobalAddresses, or allocates new memory if it's not 1250 // already in the map. 1251 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1252 void *GA = getPointerToGlobalIfAvailable(GV); 1253 1254 if (!GA) { 1255 // If it's not already specified, allocate memory for the global. 1256 GA = getMemoryForGV(GV); 1257 1258 // If we failed to allocate memory for this global, return. 1259 if (!GA) return; 1260 1261 addGlobalMapping(GV, GA); 1262 } 1263 1264 // Don't initialize if it's thread local, let the client do it. 1265 if (!GV->isThreadLocal()) 1266 InitializeMemory(GV->getInitializer(), GA); 1267 1268 Type *ElTy = GV->getType()->getElementType(); 1269 size_t GVSize = (size_t)getDataLayout()->getTypeAllocSize(ElTy); 1270 NumInitBytes += (unsigned)GVSize; 1271 ++NumGlobals; 1272 } 1273 1274 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1275 : EE(EE), GlobalAddressMap(this) { 1276 } 1277 1278 sys::Mutex * 1279 ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) { 1280 return &EES->EE.lock; 1281 } 1282 1283 void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES, 1284 const GlobalValue *Old) { 1285 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1286 EES->GlobalAddressReverseMap.erase(OldVal); 1287 } 1288 1289 void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *, 1290 const GlobalValue *, 1291 const GlobalValue *) { 1292 llvm_unreachable("The ExecutionEngine doesn't know how to handle a" 1293 " RAUW on a value it has a global mapping for."); 1294 } 1295