1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ExecutionEngine/ExecutionEngine.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ExecutionEngine/GenericValue.h" 19 #include "llvm/ExecutionEngine/JITMemoryManager.h" 20 #include "llvm/ExecutionEngine/ObjectCache.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/ValueHandle.h" 27 #include "llvm/Object/ObjectFile.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/DynamicLibrary.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/Host.h" 32 #include "llvm/Support/MutexGuard.h" 33 #include "llvm/Support/TargetRegistry.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include <cmath> 37 #include <cstring> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "jit" 41 42 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 43 STATISTIC(NumGlobals , "Number of global vars initialized"); 44 45 // Pin the vtable to this file. 46 void ObjectCache::anchor() {} 47 void ObjectBuffer::anchor() {} 48 void ObjectBufferStream::anchor() {} 49 50 ExecutionEngine *(*ExecutionEngine::JITCtor)( 51 Module *M, 52 std::string *ErrorStr, 53 JITMemoryManager *JMM, 54 bool GVsWithCode, 55 TargetMachine *TM) = nullptr; 56 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 57 Module *M, 58 std::string *ErrorStr, 59 RTDyldMemoryManager *MCJMM, 60 bool GVsWithCode, 61 TargetMachine *TM) = nullptr; 62 ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M, 63 std::string *ErrorStr) =nullptr; 64 65 ExecutionEngine::ExecutionEngine(Module *M) 66 : EEState(*this), 67 LazyFunctionCreator(nullptr) { 68 CompilingLazily = false; 69 GVCompilationDisabled = false; 70 SymbolSearchingDisabled = false; 71 72 // IR module verification is enabled by default in debug builds, and disabled 73 // by default in release builds. 74 #ifndef NDEBUG 75 VerifyModules = true; 76 #else 77 VerifyModules = false; 78 #endif 79 80 Modules.push_back(M); 81 assert(M && "Module is null?"); 82 } 83 84 ExecutionEngine::~ExecutionEngine() { 85 clearAllGlobalMappings(); 86 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 87 delete Modules[i]; 88 } 89 90 namespace { 91 /// \brief Helper class which uses a value handler to automatically deletes the 92 /// memory block when the GlobalVariable is destroyed. 93 class GVMemoryBlock : public CallbackVH { 94 GVMemoryBlock(const GlobalVariable *GV) 95 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 96 97 public: 98 /// \brief Returns the address the GlobalVariable should be written into. The 99 /// GVMemoryBlock object prefixes that. 100 static char *Create(const GlobalVariable *GV, const DataLayout& TD) { 101 Type *ElTy = GV->getType()->getElementType(); 102 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 103 void *RawMemory = ::operator new( 104 DataLayout::RoundUpAlignment(sizeof(GVMemoryBlock), 105 TD.getPreferredAlignment(GV)) 106 + GVSize); 107 new(RawMemory) GVMemoryBlock(GV); 108 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 109 } 110 111 void deleted() override { 112 // We allocated with operator new and with some extra memory hanging off the 113 // end, so don't just delete this. I'm not sure if this is actually 114 // required. 115 this->~GVMemoryBlock(); 116 ::operator delete(this); 117 } 118 }; 119 } // anonymous namespace 120 121 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 122 return GVMemoryBlock::Create(GV, *getDataLayout()); 123 } 124 125 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { 126 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 127 } 128 129 bool ExecutionEngine::removeModule(Module *M) { 130 for(SmallVectorImpl<Module *>::iterator I = Modules.begin(), 131 E = Modules.end(); I != E; ++I) { 132 Module *Found = *I; 133 if (Found == M) { 134 Modules.erase(I); 135 clearGlobalMappingsFromModule(M); 136 return true; 137 } 138 } 139 return false; 140 } 141 142 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 143 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 144 if (Function *F = Modules[i]->getFunction(FnName)) 145 return F; 146 } 147 return nullptr; 148 } 149 150 151 void *ExecutionEngineState::RemoveMapping(const MutexGuard &, 152 const GlobalValue *ToUnmap) { 153 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 154 void *OldVal; 155 156 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 157 // GlobalAddressMap. 158 if (I == GlobalAddressMap.end()) 159 OldVal = nullptr; 160 else { 161 OldVal = I->second; 162 GlobalAddressMap.erase(I); 163 } 164 165 GlobalAddressReverseMap.erase(OldVal); 166 return OldVal; 167 } 168 169 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 170 MutexGuard locked(lock); 171 172 DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 173 << "\' to [" << Addr << "]\n";); 174 void *&CurVal = EEState.getGlobalAddressMap(locked)[GV]; 175 assert((!CurVal || !Addr) && "GlobalMapping already established!"); 176 CurVal = Addr; 177 178 // If we are using the reverse mapping, add it too. 179 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 180 AssertingVH<const GlobalValue> &V = 181 EEState.getGlobalAddressReverseMap(locked)[Addr]; 182 assert((!V || !GV) && "GlobalMapping already established!"); 183 V = GV; 184 } 185 } 186 187 void ExecutionEngine::clearAllGlobalMappings() { 188 MutexGuard locked(lock); 189 190 EEState.getGlobalAddressMap(locked).clear(); 191 EEState.getGlobalAddressReverseMap(locked).clear(); 192 } 193 194 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 195 MutexGuard locked(lock); 196 197 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) 198 EEState.RemoveMapping(locked, FI); 199 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 200 GI != GE; ++GI) 201 EEState.RemoveMapping(locked, GI); 202 } 203 204 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 205 MutexGuard locked(lock); 206 207 ExecutionEngineState::GlobalAddressMapTy &Map = 208 EEState.getGlobalAddressMap(locked); 209 210 // Deleting from the mapping? 211 if (!Addr) 212 return EEState.RemoveMapping(locked, GV); 213 214 void *&CurVal = Map[GV]; 215 void *OldVal = CurVal; 216 217 if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty()) 218 EEState.getGlobalAddressReverseMap(locked).erase(CurVal); 219 CurVal = Addr; 220 221 // If we are using the reverse mapping, add it too. 222 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 223 AssertingVH<const GlobalValue> &V = 224 EEState.getGlobalAddressReverseMap(locked)[Addr]; 225 assert((!V || !GV) && "GlobalMapping already established!"); 226 V = GV; 227 } 228 return OldVal; 229 } 230 231 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 232 MutexGuard locked(lock); 233 234 ExecutionEngineState::GlobalAddressMapTy::iterator I = 235 EEState.getGlobalAddressMap(locked).find(GV); 236 return I != EEState.getGlobalAddressMap(locked).end() ? I->second : nullptr; 237 } 238 239 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 240 MutexGuard locked(lock); 241 242 // If we haven't computed the reverse mapping yet, do so first. 243 if (EEState.getGlobalAddressReverseMap(locked).empty()) { 244 for (ExecutionEngineState::GlobalAddressMapTy::iterator 245 I = EEState.getGlobalAddressMap(locked).begin(), 246 E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I) 247 EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair( 248 I->second, I->first)); 249 } 250 251 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 252 EEState.getGlobalAddressReverseMap(locked).find(Addr); 253 return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : nullptr; 254 } 255 256 namespace { 257 class ArgvArray { 258 char *Array; 259 std::vector<char*> Values; 260 public: 261 ArgvArray() : Array(nullptr) {} 262 ~ArgvArray() { clear(); } 263 void clear() { 264 delete[] Array; 265 Array = nullptr; 266 for (size_t I = 0, E = Values.size(); I != E; ++I) { 267 delete[] Values[I]; 268 } 269 Values.clear(); 270 } 271 /// Turn a vector of strings into a nice argv style array of pointers to null 272 /// terminated strings. 273 void *reset(LLVMContext &C, ExecutionEngine *EE, 274 const std::vector<std::string> &InputArgv); 275 }; 276 } // anonymous namespace 277 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 278 const std::vector<std::string> &InputArgv) { 279 clear(); // Free the old contents. 280 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 281 Array = new char[(InputArgv.size()+1)*PtrSize]; 282 283 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n"); 284 Type *SBytePtr = Type::getInt8PtrTy(C); 285 286 for (unsigned i = 0; i != InputArgv.size(); ++i) { 287 unsigned Size = InputArgv[i].size()+1; 288 char *Dest = new char[Size]; 289 Values.push_back(Dest); 290 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"); 291 292 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 293 Dest[Size-1] = 0; 294 295 // Endian safe: Array[i] = (PointerTy)Dest; 296 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize), 297 SBytePtr); 298 } 299 300 // Null terminate it 301 EE->StoreValueToMemory(PTOGV(nullptr), 302 (GenericValue*)(Array+InputArgv.size()*PtrSize), 303 SBytePtr); 304 return Array; 305 } 306 307 void ExecutionEngine::runStaticConstructorsDestructors(Module *module, 308 bool isDtors) { 309 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 310 GlobalVariable *GV = module->getNamedGlobal(Name); 311 312 // If this global has internal linkage, or if it has a use, then it must be 313 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 314 // this is the case, don't execute any of the global ctors, __main will do 315 // it. 316 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 317 318 // Should be an array of '{ i32, void ()* }' structs. The first value is 319 // the init priority, which we ignore. 320 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 321 if (!InitList) 322 return; 323 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 324 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 325 if (!CS) continue; 326 327 Constant *FP = CS->getOperand(1); 328 if (FP->isNullValue()) 329 continue; // Found a sentinal value, ignore. 330 331 // Strip off constant expression casts. 332 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 333 if (CE->isCast()) 334 FP = CE->getOperand(0); 335 336 // Execute the ctor/dtor function! 337 if (Function *F = dyn_cast<Function>(FP)) 338 runFunction(F, std::vector<GenericValue>()); 339 340 // FIXME: It is marginally lame that we just do nothing here if we see an 341 // entry we don't recognize. It might not be unreasonable for the verifier 342 // to not even allow this and just assert here. 343 } 344 } 345 346 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 347 // Execute global ctors/dtors for each module in the program. 348 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 349 runStaticConstructorsDestructors(Modules[i], isDtors); 350 } 351 352 #ifndef NDEBUG 353 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 354 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 355 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 356 for (unsigned i = 0; i < PtrSize; ++i) 357 if (*(i + (uint8_t*)Loc)) 358 return false; 359 return true; 360 } 361 #endif 362 363 int ExecutionEngine::runFunctionAsMain(Function *Fn, 364 const std::vector<std::string> &argv, 365 const char * const * envp) { 366 std::vector<GenericValue> GVArgs; 367 GenericValue GVArgc; 368 GVArgc.IntVal = APInt(32, argv.size()); 369 370 // Check main() type 371 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 372 FunctionType *FTy = Fn->getFunctionType(); 373 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 374 375 // Check the argument types. 376 if (NumArgs > 3) 377 report_fatal_error("Invalid number of arguments of main() supplied"); 378 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 379 report_fatal_error("Invalid type for third argument of main() supplied"); 380 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 381 report_fatal_error("Invalid type for second argument of main() supplied"); 382 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 383 report_fatal_error("Invalid type for first argument of main() supplied"); 384 if (!FTy->getReturnType()->isIntegerTy() && 385 !FTy->getReturnType()->isVoidTy()) 386 report_fatal_error("Invalid return type of main() supplied"); 387 388 ArgvArray CArgv; 389 ArgvArray CEnv; 390 if (NumArgs) { 391 GVArgs.push_back(GVArgc); // Arg #0 = argc. 392 if (NumArgs > 1) { 393 // Arg #1 = argv. 394 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 395 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 396 "argv[0] was null after CreateArgv"); 397 if (NumArgs > 2) { 398 std::vector<std::string> EnvVars; 399 for (unsigned i = 0; envp[i]; ++i) 400 EnvVars.push_back(envp[i]); 401 // Arg #2 = envp. 402 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 403 } 404 } 405 } 406 407 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 408 } 409 410 ExecutionEngine *ExecutionEngine::create(Module *M, 411 bool ForceInterpreter, 412 std::string *ErrorStr, 413 CodeGenOpt::Level OptLevel, 414 bool GVsWithCode) { 415 EngineBuilder EB = EngineBuilder(M) 416 .setEngineKind(ForceInterpreter 417 ? EngineKind::Interpreter 418 : EngineKind::JIT) 419 .setErrorStr(ErrorStr) 420 .setOptLevel(OptLevel) 421 .setAllocateGVsWithCode(GVsWithCode); 422 423 return EB.create(); 424 } 425 426 /// createJIT - This is the factory method for creating a JIT for the current 427 /// machine, it does not fall back to the interpreter. This takes ownership 428 /// of the module. 429 ExecutionEngine *ExecutionEngine::createJIT(Module *M, 430 std::string *ErrorStr, 431 JITMemoryManager *JMM, 432 CodeGenOpt::Level OL, 433 bool GVsWithCode, 434 Reloc::Model RM, 435 CodeModel::Model CMM) { 436 if (!ExecutionEngine::JITCtor) { 437 if (ErrorStr) 438 *ErrorStr = "JIT has not been linked in."; 439 return nullptr; 440 } 441 442 // Use the defaults for extra parameters. Users can use EngineBuilder to 443 // set them. 444 EngineBuilder EB(M); 445 EB.setEngineKind(EngineKind::JIT); 446 EB.setErrorStr(ErrorStr); 447 EB.setRelocationModel(RM); 448 EB.setCodeModel(CMM); 449 EB.setAllocateGVsWithCode(GVsWithCode); 450 EB.setOptLevel(OL); 451 EB.setJITMemoryManager(JMM); 452 453 // TODO: permit custom TargetOptions here 454 TargetMachine *TM = EB.selectTarget(); 455 if (!TM || (ErrorStr && ErrorStr->length() > 0)) return nullptr; 456 457 return ExecutionEngine::JITCtor(M, ErrorStr, JMM, GVsWithCode, TM); 458 } 459 460 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 461 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. 462 463 // Make sure we can resolve symbols in the program as well. The zero arg 464 // to the function tells DynamicLibrary to load the program, not a library. 465 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) 466 return nullptr; 467 468 assert(!(JMM && MCJMM)); 469 470 // If the user specified a memory manager but didn't specify which engine to 471 // create, we assume they only want the JIT, and we fail if they only want 472 // the interpreter. 473 if (JMM || MCJMM) { 474 if (WhichEngine & EngineKind::JIT) 475 WhichEngine = EngineKind::JIT; 476 else { 477 if (ErrorStr) 478 *ErrorStr = "Cannot create an interpreter with a memory manager."; 479 return nullptr; 480 } 481 } 482 483 if (MCJMM && ! UseMCJIT) { 484 if (ErrorStr) 485 *ErrorStr = 486 "Cannot create a legacy JIT with a runtime dyld memory " 487 "manager."; 488 return nullptr; 489 } 490 491 // Unless the interpreter was explicitly selected or the JIT is not linked, 492 // try making a JIT. 493 if ((WhichEngine & EngineKind::JIT) && TheTM) { 494 Triple TT(M->getTargetTriple()); 495 if (!TM->getTarget().hasJIT()) { 496 errs() << "WARNING: This target JIT is not designed for the host" 497 << " you are running. If bad things happen, please choose" 498 << " a different -march switch.\n"; 499 } 500 501 ExecutionEngine *EE = nullptr; 502 if (UseMCJIT && ExecutionEngine::MCJITCtor) 503 EE = ExecutionEngine::MCJITCtor(M, ErrorStr, MCJMM ? MCJMM : JMM, 504 AllocateGVsWithCode, TheTM.release()); 505 else if (ExecutionEngine::JITCtor) 506 EE = ExecutionEngine::JITCtor(M, ErrorStr, JMM, 507 AllocateGVsWithCode, TheTM.release()); 508 509 if (EE) { 510 EE->setVerifyModules(VerifyModules); 511 return EE; 512 } 513 } 514 515 // If we can't make a JIT and we didn't request one specifically, try making 516 // an interpreter instead. 517 if (WhichEngine & EngineKind::Interpreter) { 518 if (ExecutionEngine::InterpCtor) 519 return ExecutionEngine::InterpCtor(M, ErrorStr); 520 if (ErrorStr) 521 *ErrorStr = "Interpreter has not been linked in."; 522 return nullptr; 523 } 524 525 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::JITCtor && 526 !ExecutionEngine::MCJITCtor) { 527 if (ErrorStr) 528 *ErrorStr = "JIT has not been linked in."; 529 } 530 531 return nullptr; 532 } 533 534 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 535 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 536 return getPointerToFunction(F); 537 538 MutexGuard locked(lock); 539 if (void *P = EEState.getGlobalAddressMap(locked)[GV]) 540 return P; 541 542 // Global variable might have been added since interpreter started. 543 if (GlobalVariable *GVar = 544 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 545 EmitGlobalVariable(GVar); 546 else 547 llvm_unreachable("Global hasn't had an address allocated yet!"); 548 549 return EEState.getGlobalAddressMap(locked)[GV]; 550 } 551 552 /// \brief Converts a Constant* into a GenericValue, including handling of 553 /// ConstantExpr values. 554 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 555 // If its undefined, return the garbage. 556 if (isa<UndefValue>(C)) { 557 GenericValue Result; 558 switch (C->getType()->getTypeID()) { 559 default: 560 break; 561 case Type::IntegerTyID: 562 case Type::X86_FP80TyID: 563 case Type::FP128TyID: 564 case Type::PPC_FP128TyID: 565 // Although the value is undefined, we still have to construct an APInt 566 // with the correct bit width. 567 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 568 break; 569 case Type::StructTyID: { 570 // if the whole struct is 'undef' just reserve memory for the value. 571 if(StructType *STy = dyn_cast<StructType>(C->getType())) { 572 unsigned int elemNum = STy->getNumElements(); 573 Result.AggregateVal.resize(elemNum); 574 for (unsigned int i = 0; i < elemNum; ++i) { 575 Type *ElemTy = STy->getElementType(i); 576 if (ElemTy->isIntegerTy()) 577 Result.AggregateVal[i].IntVal = 578 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 579 else if (ElemTy->isAggregateType()) { 580 const Constant *ElemUndef = UndefValue::get(ElemTy); 581 Result.AggregateVal[i] = getConstantValue(ElemUndef); 582 } 583 } 584 } 585 } 586 break; 587 case Type::VectorTyID: 588 // if the whole vector is 'undef' just reserve memory for the value. 589 const VectorType* VTy = dyn_cast<VectorType>(C->getType()); 590 const Type *ElemTy = VTy->getElementType(); 591 unsigned int elemNum = VTy->getNumElements(); 592 Result.AggregateVal.resize(elemNum); 593 if (ElemTy->isIntegerTy()) 594 for (unsigned int i = 0; i < elemNum; ++i) 595 Result.AggregateVal[i].IntVal = 596 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 597 break; 598 } 599 return Result; 600 } 601 602 // Otherwise, if the value is a ConstantExpr... 603 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 604 Constant *Op0 = CE->getOperand(0); 605 switch (CE->getOpcode()) { 606 case Instruction::GetElementPtr: { 607 // Compute the index 608 GenericValue Result = getConstantValue(Op0); 609 APInt Offset(DL->getPointerSizeInBits(), 0); 610 cast<GEPOperator>(CE)->accumulateConstantOffset(*DL, Offset); 611 612 char* tmp = (char*) Result.PointerVal; 613 Result = PTOGV(tmp + Offset.getSExtValue()); 614 return Result; 615 } 616 case Instruction::Trunc: { 617 GenericValue GV = getConstantValue(Op0); 618 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 619 GV.IntVal = GV.IntVal.trunc(BitWidth); 620 return GV; 621 } 622 case Instruction::ZExt: { 623 GenericValue GV = getConstantValue(Op0); 624 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 625 GV.IntVal = GV.IntVal.zext(BitWidth); 626 return GV; 627 } 628 case Instruction::SExt: { 629 GenericValue GV = getConstantValue(Op0); 630 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 631 GV.IntVal = GV.IntVal.sext(BitWidth); 632 return GV; 633 } 634 case Instruction::FPTrunc: { 635 // FIXME long double 636 GenericValue GV = getConstantValue(Op0); 637 GV.FloatVal = float(GV.DoubleVal); 638 return GV; 639 } 640 case Instruction::FPExt:{ 641 // FIXME long double 642 GenericValue GV = getConstantValue(Op0); 643 GV.DoubleVal = double(GV.FloatVal); 644 return GV; 645 } 646 case Instruction::UIToFP: { 647 GenericValue GV = getConstantValue(Op0); 648 if (CE->getType()->isFloatTy()) 649 GV.FloatVal = float(GV.IntVal.roundToDouble()); 650 else if (CE->getType()->isDoubleTy()) 651 GV.DoubleVal = GV.IntVal.roundToDouble(); 652 else if (CE->getType()->isX86_FP80Ty()) { 653 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 654 (void)apf.convertFromAPInt(GV.IntVal, 655 false, 656 APFloat::rmNearestTiesToEven); 657 GV.IntVal = apf.bitcastToAPInt(); 658 } 659 return GV; 660 } 661 case Instruction::SIToFP: { 662 GenericValue GV = getConstantValue(Op0); 663 if (CE->getType()->isFloatTy()) 664 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 665 else if (CE->getType()->isDoubleTy()) 666 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 667 else if (CE->getType()->isX86_FP80Ty()) { 668 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 669 (void)apf.convertFromAPInt(GV.IntVal, 670 true, 671 APFloat::rmNearestTiesToEven); 672 GV.IntVal = apf.bitcastToAPInt(); 673 } 674 return GV; 675 } 676 case Instruction::FPToUI: // double->APInt conversion handles sign 677 case Instruction::FPToSI: { 678 GenericValue GV = getConstantValue(Op0); 679 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 680 if (Op0->getType()->isFloatTy()) 681 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 682 else if (Op0->getType()->isDoubleTy()) 683 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 684 else if (Op0->getType()->isX86_FP80Ty()) { 685 APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal); 686 uint64_t v; 687 bool ignored; 688 (void)apf.convertToInteger(&v, BitWidth, 689 CE->getOpcode()==Instruction::FPToSI, 690 APFloat::rmTowardZero, &ignored); 691 GV.IntVal = v; // endian? 692 } 693 return GV; 694 } 695 case Instruction::PtrToInt: { 696 GenericValue GV = getConstantValue(Op0); 697 uint32_t PtrWidth = DL->getTypeSizeInBits(Op0->getType()); 698 assert(PtrWidth <= 64 && "Bad pointer width"); 699 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 700 uint32_t IntWidth = DL->getTypeSizeInBits(CE->getType()); 701 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); 702 return GV; 703 } 704 case Instruction::IntToPtr: { 705 GenericValue GV = getConstantValue(Op0); 706 uint32_t PtrWidth = DL->getTypeSizeInBits(CE->getType()); 707 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 708 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 709 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 710 return GV; 711 } 712 case Instruction::BitCast: { 713 GenericValue GV = getConstantValue(Op0); 714 Type* DestTy = CE->getType(); 715 switch (Op0->getType()->getTypeID()) { 716 default: llvm_unreachable("Invalid bitcast operand"); 717 case Type::IntegerTyID: 718 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 719 if (DestTy->isFloatTy()) 720 GV.FloatVal = GV.IntVal.bitsToFloat(); 721 else if (DestTy->isDoubleTy()) 722 GV.DoubleVal = GV.IntVal.bitsToDouble(); 723 break; 724 case Type::FloatTyID: 725 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 726 GV.IntVal = APInt::floatToBits(GV.FloatVal); 727 break; 728 case Type::DoubleTyID: 729 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 730 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 731 break; 732 case Type::PointerTyID: 733 assert(DestTy->isPointerTy() && "Invalid bitcast"); 734 break; // getConstantValue(Op0) above already converted it 735 } 736 return GV; 737 } 738 case Instruction::Add: 739 case Instruction::FAdd: 740 case Instruction::Sub: 741 case Instruction::FSub: 742 case Instruction::Mul: 743 case Instruction::FMul: 744 case Instruction::UDiv: 745 case Instruction::SDiv: 746 case Instruction::URem: 747 case Instruction::SRem: 748 case Instruction::And: 749 case Instruction::Or: 750 case Instruction::Xor: { 751 GenericValue LHS = getConstantValue(Op0); 752 GenericValue RHS = getConstantValue(CE->getOperand(1)); 753 GenericValue GV; 754 switch (CE->getOperand(0)->getType()->getTypeID()) { 755 default: llvm_unreachable("Bad add type!"); 756 case Type::IntegerTyID: 757 switch (CE->getOpcode()) { 758 default: llvm_unreachable("Invalid integer opcode"); 759 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 760 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 761 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 762 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 763 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 764 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 765 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 766 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 767 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 768 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 769 } 770 break; 771 case Type::FloatTyID: 772 switch (CE->getOpcode()) { 773 default: llvm_unreachable("Invalid float opcode"); 774 case Instruction::FAdd: 775 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 776 case Instruction::FSub: 777 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 778 case Instruction::FMul: 779 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 780 case Instruction::FDiv: 781 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 782 case Instruction::FRem: 783 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 784 } 785 break; 786 case Type::DoubleTyID: 787 switch (CE->getOpcode()) { 788 default: llvm_unreachable("Invalid double opcode"); 789 case Instruction::FAdd: 790 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 791 case Instruction::FSub: 792 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 793 case Instruction::FMul: 794 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 795 case Instruction::FDiv: 796 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 797 case Instruction::FRem: 798 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 799 } 800 break; 801 case Type::X86_FP80TyID: 802 case Type::PPC_FP128TyID: 803 case Type::FP128TyID: { 804 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); 805 APFloat apfLHS = APFloat(Sem, LHS.IntVal); 806 switch (CE->getOpcode()) { 807 default: llvm_unreachable("Invalid long double opcode"); 808 case Instruction::FAdd: 809 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); 810 GV.IntVal = apfLHS.bitcastToAPInt(); 811 break; 812 case Instruction::FSub: 813 apfLHS.subtract(APFloat(Sem, RHS.IntVal), 814 APFloat::rmNearestTiesToEven); 815 GV.IntVal = apfLHS.bitcastToAPInt(); 816 break; 817 case Instruction::FMul: 818 apfLHS.multiply(APFloat(Sem, RHS.IntVal), 819 APFloat::rmNearestTiesToEven); 820 GV.IntVal = apfLHS.bitcastToAPInt(); 821 break; 822 case Instruction::FDiv: 823 apfLHS.divide(APFloat(Sem, RHS.IntVal), 824 APFloat::rmNearestTiesToEven); 825 GV.IntVal = apfLHS.bitcastToAPInt(); 826 break; 827 case Instruction::FRem: 828 apfLHS.mod(APFloat(Sem, RHS.IntVal), 829 APFloat::rmNearestTiesToEven); 830 GV.IntVal = apfLHS.bitcastToAPInt(); 831 break; 832 } 833 } 834 break; 835 } 836 return GV; 837 } 838 default: 839 break; 840 } 841 842 SmallString<256> Msg; 843 raw_svector_ostream OS(Msg); 844 OS << "ConstantExpr not handled: " << *CE; 845 report_fatal_error(OS.str()); 846 } 847 848 // Otherwise, we have a simple constant. 849 GenericValue Result; 850 switch (C->getType()->getTypeID()) { 851 case Type::FloatTyID: 852 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 853 break; 854 case Type::DoubleTyID: 855 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 856 break; 857 case Type::X86_FP80TyID: 858 case Type::FP128TyID: 859 case Type::PPC_FP128TyID: 860 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 861 break; 862 case Type::IntegerTyID: 863 Result.IntVal = cast<ConstantInt>(C)->getValue(); 864 break; 865 case Type::PointerTyID: 866 if (isa<ConstantPointerNull>(C)) 867 Result.PointerVal = nullptr; 868 else if (const Function *F = dyn_cast<Function>(C)) 869 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 870 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 871 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 872 else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 873 Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>( 874 BA->getBasicBlock()))); 875 else 876 llvm_unreachable("Unknown constant pointer type!"); 877 break; 878 case Type::VectorTyID: { 879 unsigned elemNum; 880 Type* ElemTy; 881 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); 882 const ConstantVector *CV = dyn_cast<ConstantVector>(C); 883 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); 884 885 if (CDV) { 886 elemNum = CDV->getNumElements(); 887 ElemTy = CDV->getElementType(); 888 } else if (CV || CAZ) { 889 VectorType* VTy = dyn_cast<VectorType>(C->getType()); 890 elemNum = VTy->getNumElements(); 891 ElemTy = VTy->getElementType(); 892 } else { 893 llvm_unreachable("Unknown constant vector type!"); 894 } 895 896 Result.AggregateVal.resize(elemNum); 897 // Check if vector holds floats. 898 if(ElemTy->isFloatTy()) { 899 if (CAZ) { 900 GenericValue floatZero; 901 floatZero.FloatVal = 0.f; 902 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 903 floatZero); 904 break; 905 } 906 if(CV) { 907 for (unsigned i = 0; i < elemNum; ++i) 908 if (!isa<UndefValue>(CV->getOperand(i))) 909 Result.AggregateVal[i].FloatVal = cast<ConstantFP>( 910 CV->getOperand(i))->getValueAPF().convertToFloat(); 911 break; 912 } 913 if(CDV) 914 for (unsigned i = 0; i < elemNum; ++i) 915 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); 916 917 break; 918 } 919 // Check if vector holds doubles. 920 if (ElemTy->isDoubleTy()) { 921 if (CAZ) { 922 GenericValue doubleZero; 923 doubleZero.DoubleVal = 0.0; 924 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 925 doubleZero); 926 break; 927 } 928 if(CV) { 929 for (unsigned i = 0; i < elemNum; ++i) 930 if (!isa<UndefValue>(CV->getOperand(i))) 931 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( 932 CV->getOperand(i))->getValueAPF().convertToDouble(); 933 break; 934 } 935 if(CDV) 936 for (unsigned i = 0; i < elemNum; ++i) 937 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); 938 939 break; 940 } 941 // Check if vector holds integers. 942 if (ElemTy->isIntegerTy()) { 943 if (CAZ) { 944 GenericValue intZero; 945 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); 946 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 947 intZero); 948 break; 949 } 950 if(CV) { 951 for (unsigned i = 0; i < elemNum; ++i) 952 if (!isa<UndefValue>(CV->getOperand(i))) 953 Result.AggregateVal[i].IntVal = cast<ConstantInt>( 954 CV->getOperand(i))->getValue(); 955 else { 956 Result.AggregateVal[i].IntVal = 957 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); 958 } 959 break; 960 } 961 if(CDV) 962 for (unsigned i = 0; i < elemNum; ++i) 963 Result.AggregateVal[i].IntVal = APInt( 964 CDV->getElementType()->getPrimitiveSizeInBits(), 965 CDV->getElementAsInteger(i)); 966 967 break; 968 } 969 llvm_unreachable("Unknown constant pointer type!"); 970 } 971 break; 972 973 default: 974 SmallString<256> Msg; 975 raw_svector_ostream OS(Msg); 976 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 977 report_fatal_error(OS.str()); 978 } 979 980 return Result; 981 } 982 983 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 984 /// with the integer held in IntVal. 985 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 986 unsigned StoreBytes) { 987 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 988 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 989 990 if (sys::IsLittleEndianHost) { 991 // Little-endian host - the source is ordered from LSB to MSB. Order the 992 // destination from LSB to MSB: Do a straight copy. 993 memcpy(Dst, Src, StoreBytes); 994 } else { 995 // Big-endian host - the source is an array of 64 bit words ordered from 996 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 997 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 998 while (StoreBytes > sizeof(uint64_t)) { 999 StoreBytes -= sizeof(uint64_t); 1000 // May not be aligned so use memcpy. 1001 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 1002 Src += sizeof(uint64_t); 1003 } 1004 1005 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 1006 } 1007 } 1008 1009 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 1010 GenericValue *Ptr, Type *Ty) { 1011 const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty); 1012 1013 switch (Ty->getTypeID()) { 1014 default: 1015 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 1016 break; 1017 case Type::IntegerTyID: 1018 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 1019 break; 1020 case Type::FloatTyID: 1021 *((float*)Ptr) = Val.FloatVal; 1022 break; 1023 case Type::DoubleTyID: 1024 *((double*)Ptr) = Val.DoubleVal; 1025 break; 1026 case Type::X86_FP80TyID: 1027 memcpy(Ptr, Val.IntVal.getRawData(), 10); 1028 break; 1029 case Type::PointerTyID: 1030 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 1031 if (StoreBytes != sizeof(PointerTy)) 1032 memset(&(Ptr->PointerVal), 0, StoreBytes); 1033 1034 *((PointerTy*)Ptr) = Val.PointerVal; 1035 break; 1036 case Type::VectorTyID: 1037 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { 1038 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) 1039 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; 1040 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) 1041 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; 1042 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { 1043 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; 1044 StoreIntToMemory(Val.AggregateVal[i].IntVal, 1045 (uint8_t*)Ptr + numOfBytes*i, numOfBytes); 1046 } 1047 } 1048 break; 1049 } 1050 1051 if (sys::IsLittleEndianHost != getDataLayout()->isLittleEndian()) 1052 // Host and target are different endian - reverse the stored bytes. 1053 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 1054 } 1055 1056 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 1057 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 1058 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 1059 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 1060 uint8_t *Dst = reinterpret_cast<uint8_t *>( 1061 const_cast<uint64_t *>(IntVal.getRawData())); 1062 1063 if (sys::IsLittleEndianHost) 1064 // Little-endian host - the destination must be ordered from LSB to MSB. 1065 // The source is ordered from LSB to MSB: Do a straight copy. 1066 memcpy(Dst, Src, LoadBytes); 1067 else { 1068 // Big-endian - the destination is an array of 64 bit words ordered from 1069 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 1070 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 1071 // a word. 1072 while (LoadBytes > sizeof(uint64_t)) { 1073 LoadBytes -= sizeof(uint64_t); 1074 // May not be aligned so use memcpy. 1075 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 1076 Dst += sizeof(uint64_t); 1077 } 1078 1079 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 1080 } 1081 } 1082 1083 /// FIXME: document 1084 /// 1085 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 1086 GenericValue *Ptr, 1087 Type *Ty) { 1088 const unsigned LoadBytes = getDataLayout()->getTypeStoreSize(Ty); 1089 1090 switch (Ty->getTypeID()) { 1091 case Type::IntegerTyID: 1092 // An APInt with all words initially zero. 1093 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 1094 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 1095 break; 1096 case Type::FloatTyID: 1097 Result.FloatVal = *((float*)Ptr); 1098 break; 1099 case Type::DoubleTyID: 1100 Result.DoubleVal = *((double*)Ptr); 1101 break; 1102 case Type::PointerTyID: 1103 Result.PointerVal = *((PointerTy*)Ptr); 1104 break; 1105 case Type::X86_FP80TyID: { 1106 // This is endian dependent, but it will only work on x86 anyway. 1107 // FIXME: Will not trap if loading a signaling NaN. 1108 uint64_t y[2]; 1109 memcpy(y, Ptr, 10); 1110 Result.IntVal = APInt(80, y); 1111 break; 1112 } 1113 case Type::VectorTyID: { 1114 const VectorType *VT = cast<VectorType>(Ty); 1115 const Type *ElemT = VT->getElementType(); 1116 const unsigned numElems = VT->getNumElements(); 1117 if (ElemT->isFloatTy()) { 1118 Result.AggregateVal.resize(numElems); 1119 for (unsigned i = 0; i < numElems; ++i) 1120 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); 1121 } 1122 if (ElemT->isDoubleTy()) { 1123 Result.AggregateVal.resize(numElems); 1124 for (unsigned i = 0; i < numElems; ++i) 1125 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); 1126 } 1127 if (ElemT->isIntegerTy()) { 1128 GenericValue intZero; 1129 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); 1130 intZero.IntVal = APInt(elemBitWidth, 0); 1131 Result.AggregateVal.resize(numElems, intZero); 1132 for (unsigned i = 0; i < numElems; ++i) 1133 LoadIntFromMemory(Result.AggregateVal[i].IntVal, 1134 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); 1135 } 1136 break; 1137 } 1138 default: 1139 SmallString<256> Msg; 1140 raw_svector_ostream OS(Msg); 1141 OS << "Cannot load value of type " << *Ty << "!"; 1142 report_fatal_error(OS.str()); 1143 } 1144 } 1145 1146 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 1147 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 1148 DEBUG(Init->dump()); 1149 if (isa<UndefValue>(Init)) 1150 return; 1151 1152 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 1153 unsigned ElementSize = 1154 getDataLayout()->getTypeAllocSize(CP->getType()->getElementType()); 1155 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 1156 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 1157 return; 1158 } 1159 1160 if (isa<ConstantAggregateZero>(Init)) { 1161 memset(Addr, 0, (size_t)getDataLayout()->getTypeAllocSize(Init->getType())); 1162 return; 1163 } 1164 1165 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 1166 unsigned ElementSize = 1167 getDataLayout()->getTypeAllocSize(CPA->getType()->getElementType()); 1168 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 1169 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 1170 return; 1171 } 1172 1173 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 1174 const StructLayout *SL = 1175 getDataLayout()->getStructLayout(cast<StructType>(CPS->getType())); 1176 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 1177 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 1178 return; 1179 } 1180 1181 if (const ConstantDataSequential *CDS = 1182 dyn_cast<ConstantDataSequential>(Init)) { 1183 // CDS is already laid out in host memory order. 1184 StringRef Data = CDS->getRawDataValues(); 1185 memcpy(Addr, Data.data(), Data.size()); 1186 return; 1187 } 1188 1189 if (Init->getType()->isFirstClassType()) { 1190 GenericValue Val = getConstantValue(Init); 1191 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 1192 return; 1193 } 1194 1195 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1196 llvm_unreachable("Unknown constant type to initialize memory with!"); 1197 } 1198 1199 /// EmitGlobals - Emit all of the global variables to memory, storing their 1200 /// addresses into GlobalAddress. This must make sure to copy the contents of 1201 /// their initializers into the memory. 1202 void ExecutionEngine::emitGlobals() { 1203 // Loop over all of the global variables in the program, allocating the memory 1204 // to hold them. If there is more than one module, do a prepass over globals 1205 // to figure out how the different modules should link together. 1206 std::map<std::pair<std::string, Type*>, 1207 const GlobalValue*> LinkedGlobalsMap; 1208 1209 if (Modules.size() != 1) { 1210 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1211 Module &M = *Modules[m]; 1212 for (Module::const_global_iterator I = M.global_begin(), 1213 E = M.global_end(); I != E; ++I) { 1214 const GlobalValue *GV = I; 1215 if (GV->hasLocalLinkage() || GV->isDeclaration() || 1216 GV->hasAppendingLinkage() || !GV->hasName()) 1217 continue;// Ignore external globals and globals with internal linkage. 1218 1219 const GlobalValue *&GVEntry = 1220 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1221 1222 // If this is the first time we've seen this global, it is the canonical 1223 // version. 1224 if (!GVEntry) { 1225 GVEntry = GV; 1226 continue; 1227 } 1228 1229 // If the existing global is strong, never replace it. 1230 if (GVEntry->hasExternalLinkage()) 1231 continue; 1232 1233 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1234 // symbol. FIXME is this right for common? 1235 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1236 GVEntry = GV; 1237 } 1238 } 1239 } 1240 1241 std::vector<const GlobalValue*> NonCanonicalGlobals; 1242 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1243 Module &M = *Modules[m]; 1244 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1245 I != E; ++I) { 1246 // In the multi-module case, see what this global maps to. 1247 if (!LinkedGlobalsMap.empty()) { 1248 if (const GlobalValue *GVEntry = 1249 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 1250 // If something else is the canonical global, ignore this one. 1251 if (GVEntry != &*I) { 1252 NonCanonicalGlobals.push_back(I); 1253 continue; 1254 } 1255 } 1256 } 1257 1258 if (!I->isDeclaration()) { 1259 addGlobalMapping(I, getMemoryForGV(I)); 1260 } else { 1261 // External variable reference. Try to use the dynamic loader to 1262 // get a pointer to it. 1263 if (void *SymAddr = 1264 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName())) 1265 addGlobalMapping(I, SymAddr); 1266 else { 1267 report_fatal_error("Could not resolve external global address: " 1268 +I->getName()); 1269 } 1270 } 1271 } 1272 1273 // If there are multiple modules, map the non-canonical globals to their 1274 // canonical location. 1275 if (!NonCanonicalGlobals.empty()) { 1276 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1277 const GlobalValue *GV = NonCanonicalGlobals[i]; 1278 const GlobalValue *CGV = 1279 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1280 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1281 assert(Ptr && "Canonical global wasn't codegen'd!"); 1282 addGlobalMapping(GV, Ptr); 1283 } 1284 } 1285 1286 // Now that all of the globals are set up in memory, loop through them all 1287 // and initialize their contents. 1288 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1289 I != E; ++I) { 1290 if (!I->isDeclaration()) { 1291 if (!LinkedGlobalsMap.empty()) { 1292 if (const GlobalValue *GVEntry = 1293 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 1294 if (GVEntry != &*I) // Not the canonical variable. 1295 continue; 1296 } 1297 EmitGlobalVariable(I); 1298 } 1299 } 1300 } 1301 } 1302 1303 // EmitGlobalVariable - This method emits the specified global variable to the 1304 // address specified in GlobalAddresses, or allocates new memory if it's not 1305 // already in the map. 1306 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1307 void *GA = getPointerToGlobalIfAvailable(GV); 1308 1309 if (!GA) { 1310 // If it's not already specified, allocate memory for the global. 1311 GA = getMemoryForGV(GV); 1312 1313 // If we failed to allocate memory for this global, return. 1314 if (!GA) return; 1315 1316 addGlobalMapping(GV, GA); 1317 } 1318 1319 // Don't initialize if it's thread local, let the client do it. 1320 if (!GV->isThreadLocal()) 1321 InitializeMemory(GV->getInitializer(), GA); 1322 1323 Type *ElTy = GV->getType()->getElementType(); 1324 size_t GVSize = (size_t)getDataLayout()->getTypeAllocSize(ElTy); 1325 NumInitBytes += (unsigned)GVSize; 1326 ++NumGlobals; 1327 } 1328 1329 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1330 : EE(EE), GlobalAddressMap(this) { 1331 } 1332 1333 sys::Mutex * 1334 ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) { 1335 return &EES->EE.lock; 1336 } 1337 1338 void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES, 1339 const GlobalValue *Old) { 1340 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1341 EES->GlobalAddressReverseMap.erase(OldVal); 1342 } 1343 1344 void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *, 1345 const GlobalValue *, 1346 const GlobalValue *) { 1347 llvm_unreachable("The ExecutionEngine doesn't know how to handle a" 1348 " RAUW on a value it has a global mapping for."); 1349 } 1350