1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ExecutionEngine/ExecutionEngine.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ExecutionEngine/GenericValue.h" 20 #include "llvm/ExecutionEngine/JITEventListener.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/ValueHandle.h" 27 #include "llvm/Object/Archive.h" 28 #include "llvm/Object/ObjectFile.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/DynamicLibrary.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/Host.h" 33 #include "llvm/Support/MutexGuard.h" 34 #include "llvm/Support/TargetRegistry.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include <cmath> 38 #include <cstring> 39 using namespace llvm; 40 41 #define DEBUG_TYPE "jit" 42 43 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 44 STATISTIC(NumGlobals , "Number of global vars initialized"); 45 46 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 47 std::unique_ptr<Module> M, std::string *ErrorStr, 48 std::unique_ptr<RTDyldMemoryManager> MCJMM, 49 std::unique_ptr<TargetMachine> TM) = nullptr; 50 51 ExecutionEngine *(*ExecutionEngine::OrcMCJITReplacementCtor)( 52 std::string *ErrorStr, std::unique_ptr<RTDyldMemoryManager> OrcJMM, 53 std::unique_ptr<TargetMachine> TM) = nullptr; 54 55 ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M, 56 std::string *ErrorStr) =nullptr; 57 58 void JITEventListener::anchor() {} 59 60 ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M) 61 : EEState(*this), 62 LazyFunctionCreator(nullptr) { 63 CompilingLazily = false; 64 GVCompilationDisabled = false; 65 SymbolSearchingDisabled = false; 66 67 // IR module verification is enabled by default in debug builds, and disabled 68 // by default in release builds. 69 #ifndef NDEBUG 70 VerifyModules = true; 71 #else 72 VerifyModules = false; 73 #endif 74 75 assert(M && "Module is null?"); 76 Modules.push_back(std::move(M)); 77 } 78 79 ExecutionEngine::~ExecutionEngine() { 80 clearAllGlobalMappings(); 81 } 82 83 namespace { 84 /// \brief Helper class which uses a value handler to automatically deletes the 85 /// memory block when the GlobalVariable is destroyed. 86 class GVMemoryBlock : public CallbackVH { 87 GVMemoryBlock(const GlobalVariable *GV) 88 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 89 90 public: 91 /// \brief Returns the address the GlobalVariable should be written into. The 92 /// GVMemoryBlock object prefixes that. 93 static char *Create(const GlobalVariable *GV, const DataLayout& TD) { 94 Type *ElTy = GV->getType()->getElementType(); 95 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 96 void *RawMemory = ::operator new( 97 RoundUpToAlignment(sizeof(GVMemoryBlock), 98 TD.getPreferredAlignment(GV)) 99 + GVSize); 100 new(RawMemory) GVMemoryBlock(GV); 101 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 102 } 103 104 void deleted() override { 105 // We allocated with operator new and with some extra memory hanging off the 106 // end, so don't just delete this. I'm not sure if this is actually 107 // required. 108 this->~GVMemoryBlock(); 109 ::operator delete(this); 110 } 111 }; 112 } // anonymous namespace 113 114 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 115 return GVMemoryBlock::Create(GV, *getDataLayout()); 116 } 117 118 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { 119 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 120 } 121 122 void 123 ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) { 124 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 125 } 126 127 void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) { 128 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive."); 129 } 130 131 bool ExecutionEngine::removeModule(Module *M) { 132 for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) { 133 Module *Found = I->get(); 134 if (Found == M) { 135 I->release(); 136 Modules.erase(I); 137 clearGlobalMappingsFromModule(M); 138 return true; 139 } 140 } 141 return false; 142 } 143 144 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 145 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 146 Function *F = Modules[i]->getFunction(FnName); 147 if (F && !F->isDeclaration()) 148 return F; 149 } 150 return nullptr; 151 } 152 153 154 void *ExecutionEngineState::RemoveMapping(const GlobalValue *ToUnmap) { 155 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 156 void *OldVal; 157 158 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 159 // GlobalAddressMap. 160 if (I == GlobalAddressMap.end()) 161 OldVal = nullptr; 162 else { 163 OldVal = I->second; 164 GlobalAddressMap.erase(I); 165 } 166 167 GlobalAddressReverseMap.erase(OldVal); 168 return OldVal; 169 } 170 171 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 172 MutexGuard locked(lock); 173 174 DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 175 << "\' to [" << Addr << "]\n";); 176 void *&CurVal = EEState.getGlobalAddressMap()[GV]; 177 assert((!CurVal || !Addr) && "GlobalMapping already established!"); 178 CurVal = Addr; 179 180 // If we are using the reverse mapping, add it too. 181 if (!EEState.getGlobalAddressReverseMap().empty()) { 182 AssertingVH<const GlobalValue> &V = 183 EEState.getGlobalAddressReverseMap()[Addr]; 184 assert((!V || !GV) && "GlobalMapping already established!"); 185 V = GV; 186 } 187 } 188 189 void ExecutionEngine::clearAllGlobalMappings() { 190 MutexGuard locked(lock); 191 192 EEState.getGlobalAddressMap().clear(); 193 EEState.getGlobalAddressReverseMap().clear(); 194 } 195 196 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 197 MutexGuard locked(lock); 198 199 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) 200 EEState.RemoveMapping(FI); 201 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 202 GI != GE; ++GI) 203 EEState.RemoveMapping(GI); 204 } 205 206 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 207 MutexGuard locked(lock); 208 209 ExecutionEngineState::GlobalAddressMapTy &Map = 210 EEState.getGlobalAddressMap(); 211 212 // Deleting from the mapping? 213 if (!Addr) 214 return EEState.RemoveMapping(GV); 215 216 void *&CurVal = Map[GV]; 217 void *OldVal = CurVal; 218 219 if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) 220 EEState.getGlobalAddressReverseMap().erase(CurVal); 221 CurVal = Addr; 222 223 // If we are using the reverse mapping, add it too. 224 if (!EEState.getGlobalAddressReverseMap().empty()) { 225 AssertingVH<const GlobalValue> &V = 226 EEState.getGlobalAddressReverseMap()[Addr]; 227 assert((!V || !GV) && "GlobalMapping already established!"); 228 V = GV; 229 } 230 return OldVal; 231 } 232 233 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 234 MutexGuard locked(lock); 235 236 ExecutionEngineState::GlobalAddressMapTy::iterator I = 237 EEState.getGlobalAddressMap().find(GV); 238 return I != EEState.getGlobalAddressMap().end() ? I->second : nullptr; 239 } 240 241 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 242 MutexGuard locked(lock); 243 244 // If we haven't computed the reverse mapping yet, do so first. 245 if (EEState.getGlobalAddressReverseMap().empty()) { 246 for (ExecutionEngineState::GlobalAddressMapTy::iterator 247 I = EEState.getGlobalAddressMap().begin(), 248 E = EEState.getGlobalAddressMap().end(); I != E; ++I) 249 EEState.getGlobalAddressReverseMap().insert(std::make_pair( 250 I->second, I->first)); 251 } 252 253 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 254 EEState.getGlobalAddressReverseMap().find(Addr); 255 return I != EEState.getGlobalAddressReverseMap().end() ? I->second : nullptr; 256 } 257 258 namespace { 259 class ArgvArray { 260 std::unique_ptr<char[]> Array; 261 std::vector<std::unique_ptr<char[]>> Values; 262 public: 263 /// Turn a vector of strings into a nice argv style array of pointers to null 264 /// terminated strings. 265 void *reset(LLVMContext &C, ExecutionEngine *EE, 266 const std::vector<std::string> &InputArgv); 267 }; 268 } // anonymous namespace 269 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 270 const std::vector<std::string> &InputArgv) { 271 Values.clear(); // Free the old contents. 272 Values.reserve(InputArgv.size()); 273 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 274 Array = make_unique<char[]>((InputArgv.size()+1)*PtrSize); 275 276 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array.get() << "\n"); 277 Type *SBytePtr = Type::getInt8PtrTy(C); 278 279 for (unsigned i = 0; i != InputArgv.size(); ++i) { 280 unsigned Size = InputArgv[i].size()+1; 281 auto Dest = make_unique<char[]>(Size); 282 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest.get() << "\n"); 283 284 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get()); 285 Dest[Size-1] = 0; 286 287 // Endian safe: Array[i] = (PointerTy)Dest; 288 EE->StoreValueToMemory(PTOGV(Dest.get()), 289 (GenericValue*)(&Array[i*PtrSize]), SBytePtr); 290 Values.push_back(std::move(Dest)); 291 } 292 293 // Null terminate it 294 EE->StoreValueToMemory(PTOGV(nullptr), 295 (GenericValue*)(&Array[InputArgv.size()*PtrSize]), 296 SBytePtr); 297 return Array.get(); 298 } 299 300 void ExecutionEngine::runStaticConstructorsDestructors(Module &module, 301 bool isDtors) { 302 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 303 GlobalVariable *GV = module.getNamedGlobal(Name); 304 305 // If this global has internal linkage, or if it has a use, then it must be 306 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 307 // this is the case, don't execute any of the global ctors, __main will do 308 // it. 309 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 310 311 // Should be an array of '{ i32, void ()* }' structs. The first value is 312 // the init priority, which we ignore. 313 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 314 if (!InitList) 315 return; 316 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 317 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 318 if (!CS) continue; 319 320 Constant *FP = CS->getOperand(1); 321 if (FP->isNullValue()) 322 continue; // Found a sentinal value, ignore. 323 324 // Strip off constant expression casts. 325 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 326 if (CE->isCast()) 327 FP = CE->getOperand(0); 328 329 // Execute the ctor/dtor function! 330 if (Function *F = dyn_cast<Function>(FP)) 331 runFunction(F, std::vector<GenericValue>()); 332 333 // FIXME: It is marginally lame that we just do nothing here if we see an 334 // entry we don't recognize. It might not be unreasonable for the verifier 335 // to not even allow this and just assert here. 336 } 337 } 338 339 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 340 // Execute global ctors/dtors for each module in the program. 341 for (std::unique_ptr<Module> &M : Modules) 342 runStaticConstructorsDestructors(*M, isDtors); 343 } 344 345 #ifndef NDEBUG 346 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 347 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 348 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 349 for (unsigned i = 0; i < PtrSize; ++i) 350 if (*(i + (uint8_t*)Loc)) 351 return false; 352 return true; 353 } 354 #endif 355 356 int ExecutionEngine::runFunctionAsMain(Function *Fn, 357 const std::vector<std::string> &argv, 358 const char * const * envp) { 359 std::vector<GenericValue> GVArgs; 360 GenericValue GVArgc; 361 GVArgc.IntVal = APInt(32, argv.size()); 362 363 // Check main() type 364 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 365 FunctionType *FTy = Fn->getFunctionType(); 366 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 367 368 // Check the argument types. 369 if (NumArgs > 3) 370 report_fatal_error("Invalid number of arguments of main() supplied"); 371 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 372 report_fatal_error("Invalid type for third argument of main() supplied"); 373 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 374 report_fatal_error("Invalid type for second argument of main() supplied"); 375 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 376 report_fatal_error("Invalid type for first argument of main() supplied"); 377 if (!FTy->getReturnType()->isIntegerTy() && 378 !FTy->getReturnType()->isVoidTy()) 379 report_fatal_error("Invalid return type of main() supplied"); 380 381 ArgvArray CArgv; 382 ArgvArray CEnv; 383 if (NumArgs) { 384 GVArgs.push_back(GVArgc); // Arg #0 = argc. 385 if (NumArgs > 1) { 386 // Arg #1 = argv. 387 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 388 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 389 "argv[0] was null after CreateArgv"); 390 if (NumArgs > 2) { 391 std::vector<std::string> EnvVars; 392 for (unsigned i = 0; envp[i]; ++i) 393 EnvVars.push_back(envp[i]); 394 // Arg #2 = envp. 395 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 396 } 397 } 398 } 399 400 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 401 } 402 403 EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {} 404 405 EngineBuilder::EngineBuilder(std::unique_ptr<Module> M) 406 : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr), 407 OptLevel(CodeGenOpt::Default), MCJMM(nullptr), RelocModel(Reloc::Default), 408 CMModel(CodeModel::JITDefault), UseOrcMCJITReplacement(false) { 409 // IR module verification is enabled by default in debug builds, and disabled 410 // by default in release builds. 411 #ifndef NDEBUG 412 VerifyModules = true; 413 #else 414 VerifyModules = false; 415 #endif 416 } 417 418 EngineBuilder::~EngineBuilder() = default; 419 420 EngineBuilder &EngineBuilder::setMCJITMemoryManager( 421 std::unique_ptr<RTDyldMemoryManager> mcjmm) { 422 MCJMM = std::move(mcjmm); 423 return *this; 424 } 425 426 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 427 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. 428 429 // Make sure we can resolve symbols in the program as well. The zero arg 430 // to the function tells DynamicLibrary to load the program, not a library. 431 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) 432 return nullptr; 433 434 // If the user specified a memory manager but didn't specify which engine to 435 // create, we assume they only want the JIT, and we fail if they only want 436 // the interpreter. 437 if (MCJMM) { 438 if (WhichEngine & EngineKind::JIT) 439 WhichEngine = EngineKind::JIT; 440 else { 441 if (ErrorStr) 442 *ErrorStr = "Cannot create an interpreter with a memory manager."; 443 return nullptr; 444 } 445 } 446 447 // Unless the interpreter was explicitly selected or the JIT is not linked, 448 // try making a JIT. 449 if ((WhichEngine & EngineKind::JIT) && TheTM) { 450 Triple TT(M->getTargetTriple()); 451 if (!TM->getTarget().hasJIT()) { 452 errs() << "WARNING: This target JIT is not designed for the host" 453 << " you are running. If bad things happen, please choose" 454 << " a different -march switch.\n"; 455 } 456 457 ExecutionEngine *EE = nullptr; 458 if (ExecutionEngine::OrcMCJITReplacementCtor && UseOrcMCJITReplacement) { 459 EE = ExecutionEngine::OrcMCJITReplacementCtor(ErrorStr, std::move(MCJMM), 460 std::move(TheTM)); 461 EE->addModule(std::move(M)); 462 } else if (ExecutionEngine::MCJITCtor) 463 EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MCJMM), 464 std::move(TheTM)); 465 466 if (EE) { 467 EE->setVerifyModules(VerifyModules); 468 return EE; 469 } 470 } 471 472 // If we can't make a JIT and we didn't request one specifically, try making 473 // an interpreter instead. 474 if (WhichEngine & EngineKind::Interpreter) { 475 if (ExecutionEngine::InterpCtor) 476 return ExecutionEngine::InterpCtor(std::move(M), ErrorStr); 477 if (ErrorStr) 478 *ErrorStr = "Interpreter has not been linked in."; 479 return nullptr; 480 } 481 482 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) { 483 if (ErrorStr) 484 *ErrorStr = "JIT has not been linked in."; 485 } 486 487 return nullptr; 488 } 489 490 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 491 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 492 return getPointerToFunction(F); 493 494 MutexGuard locked(lock); 495 if (void *P = EEState.getGlobalAddressMap()[GV]) 496 return P; 497 498 // Global variable might have been added since interpreter started. 499 if (GlobalVariable *GVar = 500 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 501 EmitGlobalVariable(GVar); 502 else 503 llvm_unreachable("Global hasn't had an address allocated yet!"); 504 505 return EEState.getGlobalAddressMap()[GV]; 506 } 507 508 /// \brief Converts a Constant* into a GenericValue, including handling of 509 /// ConstantExpr values. 510 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 511 // If its undefined, return the garbage. 512 if (isa<UndefValue>(C)) { 513 GenericValue Result; 514 switch (C->getType()->getTypeID()) { 515 default: 516 break; 517 case Type::IntegerTyID: 518 case Type::X86_FP80TyID: 519 case Type::FP128TyID: 520 case Type::PPC_FP128TyID: 521 // Although the value is undefined, we still have to construct an APInt 522 // with the correct bit width. 523 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 524 break; 525 case Type::StructTyID: { 526 // if the whole struct is 'undef' just reserve memory for the value. 527 if(StructType *STy = dyn_cast<StructType>(C->getType())) { 528 unsigned int elemNum = STy->getNumElements(); 529 Result.AggregateVal.resize(elemNum); 530 for (unsigned int i = 0; i < elemNum; ++i) { 531 Type *ElemTy = STy->getElementType(i); 532 if (ElemTy->isIntegerTy()) 533 Result.AggregateVal[i].IntVal = 534 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 535 else if (ElemTy->isAggregateType()) { 536 const Constant *ElemUndef = UndefValue::get(ElemTy); 537 Result.AggregateVal[i] = getConstantValue(ElemUndef); 538 } 539 } 540 } 541 } 542 break; 543 case Type::VectorTyID: 544 // if the whole vector is 'undef' just reserve memory for the value. 545 const VectorType* VTy = dyn_cast<VectorType>(C->getType()); 546 const Type *ElemTy = VTy->getElementType(); 547 unsigned int elemNum = VTy->getNumElements(); 548 Result.AggregateVal.resize(elemNum); 549 if (ElemTy->isIntegerTy()) 550 for (unsigned int i = 0; i < elemNum; ++i) 551 Result.AggregateVal[i].IntVal = 552 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 553 break; 554 } 555 return Result; 556 } 557 558 // Otherwise, if the value is a ConstantExpr... 559 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 560 Constant *Op0 = CE->getOperand(0); 561 switch (CE->getOpcode()) { 562 case Instruction::GetElementPtr: { 563 // Compute the index 564 GenericValue Result = getConstantValue(Op0); 565 APInt Offset(DL->getPointerSizeInBits(), 0); 566 cast<GEPOperator>(CE)->accumulateConstantOffset(*DL, Offset); 567 568 char* tmp = (char*) Result.PointerVal; 569 Result = PTOGV(tmp + Offset.getSExtValue()); 570 return Result; 571 } 572 case Instruction::Trunc: { 573 GenericValue GV = getConstantValue(Op0); 574 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 575 GV.IntVal = GV.IntVal.trunc(BitWidth); 576 return GV; 577 } 578 case Instruction::ZExt: { 579 GenericValue GV = getConstantValue(Op0); 580 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 581 GV.IntVal = GV.IntVal.zext(BitWidth); 582 return GV; 583 } 584 case Instruction::SExt: { 585 GenericValue GV = getConstantValue(Op0); 586 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 587 GV.IntVal = GV.IntVal.sext(BitWidth); 588 return GV; 589 } 590 case Instruction::FPTrunc: { 591 // FIXME long double 592 GenericValue GV = getConstantValue(Op0); 593 GV.FloatVal = float(GV.DoubleVal); 594 return GV; 595 } 596 case Instruction::FPExt:{ 597 // FIXME long double 598 GenericValue GV = getConstantValue(Op0); 599 GV.DoubleVal = double(GV.FloatVal); 600 return GV; 601 } 602 case Instruction::UIToFP: { 603 GenericValue GV = getConstantValue(Op0); 604 if (CE->getType()->isFloatTy()) 605 GV.FloatVal = float(GV.IntVal.roundToDouble()); 606 else if (CE->getType()->isDoubleTy()) 607 GV.DoubleVal = GV.IntVal.roundToDouble(); 608 else if (CE->getType()->isX86_FP80Ty()) { 609 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 610 (void)apf.convertFromAPInt(GV.IntVal, 611 false, 612 APFloat::rmNearestTiesToEven); 613 GV.IntVal = apf.bitcastToAPInt(); 614 } 615 return GV; 616 } 617 case Instruction::SIToFP: { 618 GenericValue GV = getConstantValue(Op0); 619 if (CE->getType()->isFloatTy()) 620 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 621 else if (CE->getType()->isDoubleTy()) 622 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 623 else if (CE->getType()->isX86_FP80Ty()) { 624 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 625 (void)apf.convertFromAPInt(GV.IntVal, 626 true, 627 APFloat::rmNearestTiesToEven); 628 GV.IntVal = apf.bitcastToAPInt(); 629 } 630 return GV; 631 } 632 case Instruction::FPToUI: // double->APInt conversion handles sign 633 case Instruction::FPToSI: { 634 GenericValue GV = getConstantValue(Op0); 635 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 636 if (Op0->getType()->isFloatTy()) 637 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 638 else if (Op0->getType()->isDoubleTy()) 639 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 640 else if (Op0->getType()->isX86_FP80Ty()) { 641 APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal); 642 uint64_t v; 643 bool ignored; 644 (void)apf.convertToInteger(&v, BitWidth, 645 CE->getOpcode()==Instruction::FPToSI, 646 APFloat::rmTowardZero, &ignored); 647 GV.IntVal = v; // endian? 648 } 649 return GV; 650 } 651 case Instruction::PtrToInt: { 652 GenericValue GV = getConstantValue(Op0); 653 uint32_t PtrWidth = DL->getTypeSizeInBits(Op0->getType()); 654 assert(PtrWidth <= 64 && "Bad pointer width"); 655 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 656 uint32_t IntWidth = DL->getTypeSizeInBits(CE->getType()); 657 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); 658 return GV; 659 } 660 case Instruction::IntToPtr: { 661 GenericValue GV = getConstantValue(Op0); 662 uint32_t PtrWidth = DL->getTypeSizeInBits(CE->getType()); 663 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 664 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 665 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 666 return GV; 667 } 668 case Instruction::BitCast: { 669 GenericValue GV = getConstantValue(Op0); 670 Type* DestTy = CE->getType(); 671 switch (Op0->getType()->getTypeID()) { 672 default: llvm_unreachable("Invalid bitcast operand"); 673 case Type::IntegerTyID: 674 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 675 if (DestTy->isFloatTy()) 676 GV.FloatVal = GV.IntVal.bitsToFloat(); 677 else if (DestTy->isDoubleTy()) 678 GV.DoubleVal = GV.IntVal.bitsToDouble(); 679 break; 680 case Type::FloatTyID: 681 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 682 GV.IntVal = APInt::floatToBits(GV.FloatVal); 683 break; 684 case Type::DoubleTyID: 685 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 686 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 687 break; 688 case Type::PointerTyID: 689 assert(DestTy->isPointerTy() && "Invalid bitcast"); 690 break; // getConstantValue(Op0) above already converted it 691 } 692 return GV; 693 } 694 case Instruction::Add: 695 case Instruction::FAdd: 696 case Instruction::Sub: 697 case Instruction::FSub: 698 case Instruction::Mul: 699 case Instruction::FMul: 700 case Instruction::UDiv: 701 case Instruction::SDiv: 702 case Instruction::URem: 703 case Instruction::SRem: 704 case Instruction::And: 705 case Instruction::Or: 706 case Instruction::Xor: { 707 GenericValue LHS = getConstantValue(Op0); 708 GenericValue RHS = getConstantValue(CE->getOperand(1)); 709 GenericValue GV; 710 switch (CE->getOperand(0)->getType()->getTypeID()) { 711 default: llvm_unreachable("Bad add type!"); 712 case Type::IntegerTyID: 713 switch (CE->getOpcode()) { 714 default: llvm_unreachable("Invalid integer opcode"); 715 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 716 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 717 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 718 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 719 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 720 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 721 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 722 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 723 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 724 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 725 } 726 break; 727 case Type::FloatTyID: 728 switch (CE->getOpcode()) { 729 default: llvm_unreachable("Invalid float opcode"); 730 case Instruction::FAdd: 731 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 732 case Instruction::FSub: 733 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 734 case Instruction::FMul: 735 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 736 case Instruction::FDiv: 737 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 738 case Instruction::FRem: 739 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 740 } 741 break; 742 case Type::DoubleTyID: 743 switch (CE->getOpcode()) { 744 default: llvm_unreachable("Invalid double opcode"); 745 case Instruction::FAdd: 746 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 747 case Instruction::FSub: 748 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 749 case Instruction::FMul: 750 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 751 case Instruction::FDiv: 752 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 753 case Instruction::FRem: 754 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 755 } 756 break; 757 case Type::X86_FP80TyID: 758 case Type::PPC_FP128TyID: 759 case Type::FP128TyID: { 760 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); 761 APFloat apfLHS = APFloat(Sem, LHS.IntVal); 762 switch (CE->getOpcode()) { 763 default: llvm_unreachable("Invalid long double opcode"); 764 case Instruction::FAdd: 765 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); 766 GV.IntVal = apfLHS.bitcastToAPInt(); 767 break; 768 case Instruction::FSub: 769 apfLHS.subtract(APFloat(Sem, RHS.IntVal), 770 APFloat::rmNearestTiesToEven); 771 GV.IntVal = apfLHS.bitcastToAPInt(); 772 break; 773 case Instruction::FMul: 774 apfLHS.multiply(APFloat(Sem, RHS.IntVal), 775 APFloat::rmNearestTiesToEven); 776 GV.IntVal = apfLHS.bitcastToAPInt(); 777 break; 778 case Instruction::FDiv: 779 apfLHS.divide(APFloat(Sem, RHS.IntVal), 780 APFloat::rmNearestTiesToEven); 781 GV.IntVal = apfLHS.bitcastToAPInt(); 782 break; 783 case Instruction::FRem: 784 apfLHS.mod(APFloat(Sem, RHS.IntVal), 785 APFloat::rmNearestTiesToEven); 786 GV.IntVal = apfLHS.bitcastToAPInt(); 787 break; 788 } 789 } 790 break; 791 } 792 return GV; 793 } 794 default: 795 break; 796 } 797 798 SmallString<256> Msg; 799 raw_svector_ostream OS(Msg); 800 OS << "ConstantExpr not handled: " << *CE; 801 report_fatal_error(OS.str()); 802 } 803 804 // Otherwise, we have a simple constant. 805 GenericValue Result; 806 switch (C->getType()->getTypeID()) { 807 case Type::FloatTyID: 808 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 809 break; 810 case Type::DoubleTyID: 811 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 812 break; 813 case Type::X86_FP80TyID: 814 case Type::FP128TyID: 815 case Type::PPC_FP128TyID: 816 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 817 break; 818 case Type::IntegerTyID: 819 Result.IntVal = cast<ConstantInt>(C)->getValue(); 820 break; 821 case Type::PointerTyID: 822 if (isa<ConstantPointerNull>(C)) 823 Result.PointerVal = nullptr; 824 else if (const Function *F = dyn_cast<Function>(C)) 825 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 826 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 827 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 828 else 829 llvm_unreachable("Unknown constant pointer type!"); 830 break; 831 case Type::VectorTyID: { 832 unsigned elemNum; 833 Type* ElemTy; 834 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); 835 const ConstantVector *CV = dyn_cast<ConstantVector>(C); 836 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); 837 838 if (CDV) { 839 elemNum = CDV->getNumElements(); 840 ElemTy = CDV->getElementType(); 841 } else if (CV || CAZ) { 842 VectorType* VTy = dyn_cast<VectorType>(C->getType()); 843 elemNum = VTy->getNumElements(); 844 ElemTy = VTy->getElementType(); 845 } else { 846 llvm_unreachable("Unknown constant vector type!"); 847 } 848 849 Result.AggregateVal.resize(elemNum); 850 // Check if vector holds floats. 851 if(ElemTy->isFloatTy()) { 852 if (CAZ) { 853 GenericValue floatZero; 854 floatZero.FloatVal = 0.f; 855 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 856 floatZero); 857 break; 858 } 859 if(CV) { 860 for (unsigned i = 0; i < elemNum; ++i) 861 if (!isa<UndefValue>(CV->getOperand(i))) 862 Result.AggregateVal[i].FloatVal = cast<ConstantFP>( 863 CV->getOperand(i))->getValueAPF().convertToFloat(); 864 break; 865 } 866 if(CDV) 867 for (unsigned i = 0; i < elemNum; ++i) 868 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); 869 870 break; 871 } 872 // Check if vector holds doubles. 873 if (ElemTy->isDoubleTy()) { 874 if (CAZ) { 875 GenericValue doubleZero; 876 doubleZero.DoubleVal = 0.0; 877 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 878 doubleZero); 879 break; 880 } 881 if(CV) { 882 for (unsigned i = 0; i < elemNum; ++i) 883 if (!isa<UndefValue>(CV->getOperand(i))) 884 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( 885 CV->getOperand(i))->getValueAPF().convertToDouble(); 886 break; 887 } 888 if(CDV) 889 for (unsigned i = 0; i < elemNum; ++i) 890 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); 891 892 break; 893 } 894 // Check if vector holds integers. 895 if (ElemTy->isIntegerTy()) { 896 if (CAZ) { 897 GenericValue intZero; 898 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); 899 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 900 intZero); 901 break; 902 } 903 if(CV) { 904 for (unsigned i = 0; i < elemNum; ++i) 905 if (!isa<UndefValue>(CV->getOperand(i))) 906 Result.AggregateVal[i].IntVal = cast<ConstantInt>( 907 CV->getOperand(i))->getValue(); 908 else { 909 Result.AggregateVal[i].IntVal = 910 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); 911 } 912 break; 913 } 914 if(CDV) 915 for (unsigned i = 0; i < elemNum; ++i) 916 Result.AggregateVal[i].IntVal = APInt( 917 CDV->getElementType()->getPrimitiveSizeInBits(), 918 CDV->getElementAsInteger(i)); 919 920 break; 921 } 922 llvm_unreachable("Unknown constant pointer type!"); 923 } 924 break; 925 926 default: 927 SmallString<256> Msg; 928 raw_svector_ostream OS(Msg); 929 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 930 report_fatal_error(OS.str()); 931 } 932 933 return Result; 934 } 935 936 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 937 /// with the integer held in IntVal. 938 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 939 unsigned StoreBytes) { 940 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 941 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 942 943 if (sys::IsLittleEndianHost) { 944 // Little-endian host - the source is ordered from LSB to MSB. Order the 945 // destination from LSB to MSB: Do a straight copy. 946 memcpy(Dst, Src, StoreBytes); 947 } else { 948 // Big-endian host - the source is an array of 64 bit words ordered from 949 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 950 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 951 while (StoreBytes > sizeof(uint64_t)) { 952 StoreBytes -= sizeof(uint64_t); 953 // May not be aligned so use memcpy. 954 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 955 Src += sizeof(uint64_t); 956 } 957 958 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 959 } 960 } 961 962 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 963 GenericValue *Ptr, Type *Ty) { 964 const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty); 965 966 switch (Ty->getTypeID()) { 967 default: 968 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 969 break; 970 case Type::IntegerTyID: 971 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 972 break; 973 case Type::FloatTyID: 974 *((float*)Ptr) = Val.FloatVal; 975 break; 976 case Type::DoubleTyID: 977 *((double*)Ptr) = Val.DoubleVal; 978 break; 979 case Type::X86_FP80TyID: 980 memcpy(Ptr, Val.IntVal.getRawData(), 10); 981 break; 982 case Type::PointerTyID: 983 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 984 if (StoreBytes != sizeof(PointerTy)) 985 memset(&(Ptr->PointerVal), 0, StoreBytes); 986 987 *((PointerTy*)Ptr) = Val.PointerVal; 988 break; 989 case Type::VectorTyID: 990 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { 991 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) 992 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; 993 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) 994 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; 995 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { 996 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; 997 StoreIntToMemory(Val.AggregateVal[i].IntVal, 998 (uint8_t*)Ptr + numOfBytes*i, numOfBytes); 999 } 1000 } 1001 break; 1002 } 1003 1004 if (sys::IsLittleEndianHost != getDataLayout()->isLittleEndian()) 1005 // Host and target are different endian - reverse the stored bytes. 1006 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 1007 } 1008 1009 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 1010 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 1011 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 1012 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 1013 uint8_t *Dst = reinterpret_cast<uint8_t *>( 1014 const_cast<uint64_t *>(IntVal.getRawData())); 1015 1016 if (sys::IsLittleEndianHost) 1017 // Little-endian host - the destination must be ordered from LSB to MSB. 1018 // The source is ordered from LSB to MSB: Do a straight copy. 1019 memcpy(Dst, Src, LoadBytes); 1020 else { 1021 // Big-endian - the destination is an array of 64 bit words ordered from 1022 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 1023 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 1024 // a word. 1025 while (LoadBytes > sizeof(uint64_t)) { 1026 LoadBytes -= sizeof(uint64_t); 1027 // May not be aligned so use memcpy. 1028 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 1029 Dst += sizeof(uint64_t); 1030 } 1031 1032 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 1033 } 1034 } 1035 1036 /// FIXME: document 1037 /// 1038 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 1039 GenericValue *Ptr, 1040 Type *Ty) { 1041 const unsigned LoadBytes = getDataLayout()->getTypeStoreSize(Ty); 1042 1043 switch (Ty->getTypeID()) { 1044 case Type::IntegerTyID: 1045 // An APInt with all words initially zero. 1046 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 1047 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 1048 break; 1049 case Type::FloatTyID: 1050 Result.FloatVal = *((float*)Ptr); 1051 break; 1052 case Type::DoubleTyID: 1053 Result.DoubleVal = *((double*)Ptr); 1054 break; 1055 case Type::PointerTyID: 1056 Result.PointerVal = *((PointerTy*)Ptr); 1057 break; 1058 case Type::X86_FP80TyID: { 1059 // This is endian dependent, but it will only work on x86 anyway. 1060 // FIXME: Will not trap if loading a signaling NaN. 1061 uint64_t y[2]; 1062 memcpy(y, Ptr, 10); 1063 Result.IntVal = APInt(80, y); 1064 break; 1065 } 1066 case Type::VectorTyID: { 1067 const VectorType *VT = cast<VectorType>(Ty); 1068 const Type *ElemT = VT->getElementType(); 1069 const unsigned numElems = VT->getNumElements(); 1070 if (ElemT->isFloatTy()) { 1071 Result.AggregateVal.resize(numElems); 1072 for (unsigned i = 0; i < numElems; ++i) 1073 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); 1074 } 1075 if (ElemT->isDoubleTy()) { 1076 Result.AggregateVal.resize(numElems); 1077 for (unsigned i = 0; i < numElems; ++i) 1078 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); 1079 } 1080 if (ElemT->isIntegerTy()) { 1081 GenericValue intZero; 1082 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); 1083 intZero.IntVal = APInt(elemBitWidth, 0); 1084 Result.AggregateVal.resize(numElems, intZero); 1085 for (unsigned i = 0; i < numElems; ++i) 1086 LoadIntFromMemory(Result.AggregateVal[i].IntVal, 1087 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); 1088 } 1089 break; 1090 } 1091 default: 1092 SmallString<256> Msg; 1093 raw_svector_ostream OS(Msg); 1094 OS << "Cannot load value of type " << *Ty << "!"; 1095 report_fatal_error(OS.str()); 1096 } 1097 } 1098 1099 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 1100 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 1101 DEBUG(Init->dump()); 1102 if (isa<UndefValue>(Init)) 1103 return; 1104 1105 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 1106 unsigned ElementSize = 1107 getDataLayout()->getTypeAllocSize(CP->getType()->getElementType()); 1108 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 1109 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 1110 return; 1111 } 1112 1113 if (isa<ConstantAggregateZero>(Init)) { 1114 memset(Addr, 0, (size_t)getDataLayout()->getTypeAllocSize(Init->getType())); 1115 return; 1116 } 1117 1118 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 1119 unsigned ElementSize = 1120 getDataLayout()->getTypeAllocSize(CPA->getType()->getElementType()); 1121 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 1122 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 1123 return; 1124 } 1125 1126 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 1127 const StructLayout *SL = 1128 getDataLayout()->getStructLayout(cast<StructType>(CPS->getType())); 1129 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 1130 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 1131 return; 1132 } 1133 1134 if (const ConstantDataSequential *CDS = 1135 dyn_cast<ConstantDataSequential>(Init)) { 1136 // CDS is already laid out in host memory order. 1137 StringRef Data = CDS->getRawDataValues(); 1138 memcpy(Addr, Data.data(), Data.size()); 1139 return; 1140 } 1141 1142 if (Init->getType()->isFirstClassType()) { 1143 GenericValue Val = getConstantValue(Init); 1144 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 1145 return; 1146 } 1147 1148 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1149 llvm_unreachable("Unknown constant type to initialize memory with!"); 1150 } 1151 1152 /// EmitGlobals - Emit all of the global variables to memory, storing their 1153 /// addresses into GlobalAddress. This must make sure to copy the contents of 1154 /// their initializers into the memory. 1155 void ExecutionEngine::emitGlobals() { 1156 // Loop over all of the global variables in the program, allocating the memory 1157 // to hold them. If there is more than one module, do a prepass over globals 1158 // to figure out how the different modules should link together. 1159 std::map<std::pair<std::string, Type*>, 1160 const GlobalValue*> LinkedGlobalsMap; 1161 1162 if (Modules.size() != 1) { 1163 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1164 Module &M = *Modules[m]; 1165 for (const auto &GV : M.globals()) { 1166 if (GV.hasLocalLinkage() || GV.isDeclaration() || 1167 GV.hasAppendingLinkage() || !GV.hasName()) 1168 continue;// Ignore external globals and globals with internal linkage. 1169 1170 const GlobalValue *&GVEntry = 1171 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]; 1172 1173 // If this is the first time we've seen this global, it is the canonical 1174 // version. 1175 if (!GVEntry) { 1176 GVEntry = &GV; 1177 continue; 1178 } 1179 1180 // If the existing global is strong, never replace it. 1181 if (GVEntry->hasExternalLinkage()) 1182 continue; 1183 1184 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1185 // symbol. FIXME is this right for common? 1186 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1187 GVEntry = &GV; 1188 } 1189 } 1190 } 1191 1192 std::vector<const GlobalValue*> NonCanonicalGlobals; 1193 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1194 Module &M = *Modules[m]; 1195 for (const auto &GV : M.globals()) { 1196 // In the multi-module case, see what this global maps to. 1197 if (!LinkedGlobalsMap.empty()) { 1198 if (const GlobalValue *GVEntry = 1199 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) { 1200 // If something else is the canonical global, ignore this one. 1201 if (GVEntry != &GV) { 1202 NonCanonicalGlobals.push_back(&GV); 1203 continue; 1204 } 1205 } 1206 } 1207 1208 if (!GV.isDeclaration()) { 1209 addGlobalMapping(&GV, getMemoryForGV(&GV)); 1210 } else { 1211 // External variable reference. Try to use the dynamic loader to 1212 // get a pointer to it. 1213 if (void *SymAddr = 1214 sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName())) 1215 addGlobalMapping(&GV, SymAddr); 1216 else { 1217 report_fatal_error("Could not resolve external global address: " 1218 +GV.getName()); 1219 } 1220 } 1221 } 1222 1223 // If there are multiple modules, map the non-canonical globals to their 1224 // canonical location. 1225 if (!NonCanonicalGlobals.empty()) { 1226 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1227 const GlobalValue *GV = NonCanonicalGlobals[i]; 1228 const GlobalValue *CGV = 1229 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1230 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1231 assert(Ptr && "Canonical global wasn't codegen'd!"); 1232 addGlobalMapping(GV, Ptr); 1233 } 1234 } 1235 1236 // Now that all of the globals are set up in memory, loop through them all 1237 // and initialize their contents. 1238 for (const auto &GV : M.globals()) { 1239 if (!GV.isDeclaration()) { 1240 if (!LinkedGlobalsMap.empty()) { 1241 if (const GlobalValue *GVEntry = 1242 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) 1243 if (GVEntry != &GV) // Not the canonical variable. 1244 continue; 1245 } 1246 EmitGlobalVariable(&GV); 1247 } 1248 } 1249 } 1250 } 1251 1252 // EmitGlobalVariable - This method emits the specified global variable to the 1253 // address specified in GlobalAddresses, or allocates new memory if it's not 1254 // already in the map. 1255 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1256 void *GA = getPointerToGlobalIfAvailable(GV); 1257 1258 if (!GA) { 1259 // If it's not already specified, allocate memory for the global. 1260 GA = getMemoryForGV(GV); 1261 1262 // If we failed to allocate memory for this global, return. 1263 if (!GA) return; 1264 1265 addGlobalMapping(GV, GA); 1266 } 1267 1268 // Don't initialize if it's thread local, let the client do it. 1269 if (!GV->isThreadLocal()) 1270 InitializeMemory(GV->getInitializer(), GA); 1271 1272 Type *ElTy = GV->getType()->getElementType(); 1273 size_t GVSize = (size_t)getDataLayout()->getTypeAllocSize(ElTy); 1274 NumInitBytes += (unsigned)GVSize; 1275 ++NumGlobals; 1276 } 1277 1278 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1279 : EE(EE), GlobalAddressMap(this) { 1280 } 1281 1282 sys::Mutex * 1283 ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) { 1284 return &EES->EE.lock; 1285 } 1286 1287 void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES, 1288 const GlobalValue *Old) { 1289 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1290 EES->GlobalAddressReverseMap.erase(OldVal); 1291 } 1292 1293 void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *, 1294 const GlobalValue *, 1295 const GlobalValue *) { 1296 llvm_unreachable("The ExecutionEngine doesn't know how to handle a" 1297 " RAUW on a value it has a global mapping for."); 1298 } 1299