1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the common interface used by the various execution engine 10 // subclasses. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ExecutionEngine/ExecutionEngine.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ExecutionEngine/GenericValue.h" 19 #include "llvm/ExecutionEngine/JITEventListener.h" 20 #include "llvm/ExecutionEngine/ObjectCache.h" 21 #include "llvm/ExecutionEngine/RTDyldMemoryManager.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Mangler.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/IR/Operator.h" 28 #include "llvm/IR/ValueHandle.h" 29 #include "llvm/Object/Archive.h" 30 #include "llvm/Object/ObjectFile.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/DynamicLibrary.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/Host.h" 35 #include "llvm/Support/MutexGuard.h" 36 #include "llvm/Support/TargetRegistry.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include <cmath> 40 #include <cstring> 41 using namespace llvm; 42 43 #define DEBUG_TYPE "jit" 44 45 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 46 STATISTIC(NumGlobals , "Number of global vars initialized"); 47 48 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 49 std::unique_ptr<Module> M, std::string *ErrorStr, 50 std::shared_ptr<MCJITMemoryManager> MemMgr, 51 std::shared_ptr<LegacyJITSymbolResolver> Resolver, 52 std::unique_ptr<TargetMachine> TM) = nullptr; 53 54 ExecutionEngine *(*ExecutionEngine::OrcMCJITReplacementCtor)( 55 std::string *ErrorStr, std::shared_ptr<MCJITMemoryManager> MemMgr, 56 std::shared_ptr<LegacyJITSymbolResolver> Resolver, 57 std::unique_ptr<TargetMachine> TM) = nullptr; 58 59 ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M, 60 std::string *ErrorStr) =nullptr; 61 62 void JITEventListener::anchor() {} 63 64 void ObjectCache::anchor() {} 65 66 void ExecutionEngine::Init(std::unique_ptr<Module> M) { 67 CompilingLazily = false; 68 GVCompilationDisabled = false; 69 SymbolSearchingDisabled = false; 70 71 // IR module verification is enabled by default in debug builds, and disabled 72 // by default in release builds. 73 #ifndef NDEBUG 74 VerifyModules = true; 75 #else 76 VerifyModules = false; 77 #endif 78 79 assert(M && "Module is null?"); 80 Modules.push_back(std::move(M)); 81 } 82 83 ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M) 84 : DL(M->getDataLayout()), LazyFunctionCreator(nullptr) { 85 Init(std::move(M)); 86 } 87 88 ExecutionEngine::ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M) 89 : DL(std::move(DL)), LazyFunctionCreator(nullptr) { 90 Init(std::move(M)); 91 } 92 93 ExecutionEngine::~ExecutionEngine() { 94 clearAllGlobalMappings(); 95 } 96 97 namespace { 98 /// Helper class which uses a value handler to automatically deletes the 99 /// memory block when the GlobalVariable is destroyed. 100 class GVMemoryBlock final : public CallbackVH { 101 GVMemoryBlock(const GlobalVariable *GV) 102 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 103 104 public: 105 /// Returns the address the GlobalVariable should be written into. The 106 /// GVMemoryBlock object prefixes that. 107 static char *Create(const GlobalVariable *GV, const DataLayout& TD) { 108 Type *ElTy = GV->getValueType(); 109 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 110 void *RawMemory = ::operator new( 111 alignTo(sizeof(GVMemoryBlock), TD.getPreferredAlignment(GV)) + GVSize); 112 new(RawMemory) GVMemoryBlock(GV); 113 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 114 } 115 116 void deleted() override { 117 // We allocated with operator new and with some extra memory hanging off the 118 // end, so don't just delete this. I'm not sure if this is actually 119 // required. 120 this->~GVMemoryBlock(); 121 ::operator delete(this); 122 } 123 }; 124 } // anonymous namespace 125 126 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 127 return GVMemoryBlock::Create(GV, getDataLayout()); 128 } 129 130 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { 131 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 132 } 133 134 void 135 ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) { 136 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 137 } 138 139 void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) { 140 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive."); 141 } 142 143 bool ExecutionEngine::removeModule(Module *M) { 144 for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) { 145 Module *Found = I->get(); 146 if (Found == M) { 147 I->release(); 148 Modules.erase(I); 149 clearGlobalMappingsFromModule(M); 150 return true; 151 } 152 } 153 return false; 154 } 155 156 Function *ExecutionEngine::FindFunctionNamed(StringRef FnName) { 157 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 158 Function *F = Modules[i]->getFunction(FnName); 159 if (F && !F->isDeclaration()) 160 return F; 161 } 162 return nullptr; 163 } 164 165 GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(StringRef Name, bool AllowInternal) { 166 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 167 GlobalVariable *GV = Modules[i]->getGlobalVariable(Name,AllowInternal); 168 if (GV && !GV->isDeclaration()) 169 return GV; 170 } 171 return nullptr; 172 } 173 174 uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) { 175 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Name); 176 uint64_t OldVal; 177 178 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 179 // GlobalAddressMap. 180 if (I == GlobalAddressMap.end()) 181 OldVal = 0; 182 else { 183 GlobalAddressReverseMap.erase(I->second); 184 OldVal = I->second; 185 GlobalAddressMap.erase(I); 186 } 187 188 return OldVal; 189 } 190 191 std::string ExecutionEngine::getMangledName(const GlobalValue *GV) { 192 assert(GV->hasName() && "Global must have name."); 193 194 MutexGuard locked(lock); 195 SmallString<128> FullName; 196 197 const DataLayout &DL = 198 GV->getParent()->getDataLayout().isDefault() 199 ? getDataLayout() 200 : GV->getParent()->getDataLayout(); 201 202 Mangler::getNameWithPrefix(FullName, GV->getName(), DL); 203 return FullName.str(); 204 } 205 206 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 207 MutexGuard locked(lock); 208 addGlobalMapping(getMangledName(GV), (uint64_t) Addr); 209 } 210 211 void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) { 212 MutexGuard locked(lock); 213 214 assert(!Name.empty() && "Empty GlobalMapping symbol name!"); 215 216 LLVM_DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n";); 217 uint64_t &CurVal = EEState.getGlobalAddressMap()[Name]; 218 assert((!CurVal || !Addr) && "GlobalMapping already established!"); 219 CurVal = Addr; 220 221 // If we are using the reverse mapping, add it too. 222 if (!EEState.getGlobalAddressReverseMap().empty()) { 223 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; 224 assert((!V.empty() || !Name.empty()) && 225 "GlobalMapping already established!"); 226 V = Name; 227 } 228 } 229 230 void ExecutionEngine::clearAllGlobalMappings() { 231 MutexGuard locked(lock); 232 233 EEState.getGlobalAddressMap().clear(); 234 EEState.getGlobalAddressReverseMap().clear(); 235 } 236 237 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 238 MutexGuard locked(lock); 239 240 for (GlobalObject &GO : M->global_objects()) 241 EEState.RemoveMapping(getMangledName(&GO)); 242 } 243 244 uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, 245 void *Addr) { 246 MutexGuard locked(lock); 247 return updateGlobalMapping(getMangledName(GV), (uint64_t) Addr); 248 } 249 250 uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) { 251 MutexGuard locked(lock); 252 253 ExecutionEngineState::GlobalAddressMapTy &Map = 254 EEState.getGlobalAddressMap(); 255 256 // Deleting from the mapping? 257 if (!Addr) 258 return EEState.RemoveMapping(Name); 259 260 uint64_t &CurVal = Map[Name]; 261 uint64_t OldVal = CurVal; 262 263 if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) 264 EEState.getGlobalAddressReverseMap().erase(CurVal); 265 CurVal = Addr; 266 267 // If we are using the reverse mapping, add it too. 268 if (!EEState.getGlobalAddressReverseMap().empty()) { 269 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; 270 assert((!V.empty() || !Name.empty()) && 271 "GlobalMapping already established!"); 272 V = Name; 273 } 274 return OldVal; 275 } 276 277 uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) { 278 MutexGuard locked(lock); 279 uint64_t Address = 0; 280 ExecutionEngineState::GlobalAddressMapTy::iterator I = 281 EEState.getGlobalAddressMap().find(S); 282 if (I != EEState.getGlobalAddressMap().end()) 283 Address = I->second; 284 return Address; 285 } 286 287 288 void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) { 289 MutexGuard locked(lock); 290 if (void* Address = (void *) getAddressToGlobalIfAvailable(S)) 291 return Address; 292 return nullptr; 293 } 294 295 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 296 MutexGuard locked(lock); 297 return getPointerToGlobalIfAvailable(getMangledName(GV)); 298 } 299 300 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 301 MutexGuard locked(lock); 302 303 // If we haven't computed the reverse mapping yet, do so first. 304 if (EEState.getGlobalAddressReverseMap().empty()) { 305 for (ExecutionEngineState::GlobalAddressMapTy::iterator 306 I = EEState.getGlobalAddressMap().begin(), 307 E = EEState.getGlobalAddressMap().end(); I != E; ++I) { 308 StringRef Name = I->first(); 309 uint64_t Addr = I->second; 310 EEState.getGlobalAddressReverseMap().insert(std::make_pair( 311 Addr, Name)); 312 } 313 } 314 315 std::map<uint64_t, std::string>::iterator I = 316 EEState.getGlobalAddressReverseMap().find((uint64_t) Addr); 317 318 if (I != EEState.getGlobalAddressReverseMap().end()) { 319 StringRef Name = I->second; 320 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 321 if (GlobalValue *GV = Modules[i]->getNamedValue(Name)) 322 return GV; 323 } 324 return nullptr; 325 } 326 327 namespace { 328 class ArgvArray { 329 std::unique_ptr<char[]> Array; 330 std::vector<std::unique_ptr<char[]>> Values; 331 public: 332 /// Turn a vector of strings into a nice argv style array of pointers to null 333 /// terminated strings. 334 void *reset(LLVMContext &C, ExecutionEngine *EE, 335 const std::vector<std::string> &InputArgv); 336 }; 337 } // anonymous namespace 338 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 339 const std::vector<std::string> &InputArgv) { 340 Values.clear(); // Free the old contents. 341 Values.reserve(InputArgv.size()); 342 unsigned PtrSize = EE->getDataLayout().getPointerSize(); 343 Array = make_unique<char[]>((InputArgv.size()+1)*PtrSize); 344 345 LLVM_DEBUG(dbgs() << "JIT: ARGV = " << (void *)Array.get() << "\n"); 346 Type *SBytePtr = Type::getInt8PtrTy(C); 347 348 for (unsigned i = 0; i != InputArgv.size(); ++i) { 349 unsigned Size = InputArgv[i].size()+1; 350 auto Dest = make_unique<char[]>(Size); 351 LLVM_DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void *)Dest.get() 352 << "\n"); 353 354 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get()); 355 Dest[Size-1] = 0; 356 357 // Endian safe: Array[i] = (PointerTy)Dest; 358 EE->StoreValueToMemory(PTOGV(Dest.get()), 359 (GenericValue*)(&Array[i*PtrSize]), SBytePtr); 360 Values.push_back(std::move(Dest)); 361 } 362 363 // Null terminate it 364 EE->StoreValueToMemory(PTOGV(nullptr), 365 (GenericValue*)(&Array[InputArgv.size()*PtrSize]), 366 SBytePtr); 367 return Array.get(); 368 } 369 370 void ExecutionEngine::runStaticConstructorsDestructors(Module &module, 371 bool isDtors) { 372 StringRef Name(isDtors ? "llvm.global_dtors" : "llvm.global_ctors"); 373 GlobalVariable *GV = module.getNamedGlobal(Name); 374 375 // If this global has internal linkage, or if it has a use, then it must be 376 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 377 // this is the case, don't execute any of the global ctors, __main will do 378 // it. 379 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 380 381 // Should be an array of '{ i32, void ()* }' structs. The first value is 382 // the init priority, which we ignore. 383 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 384 if (!InitList) 385 return; 386 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 387 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 388 if (!CS) continue; 389 390 Constant *FP = CS->getOperand(1); 391 if (FP->isNullValue()) 392 continue; // Found a sentinal value, ignore. 393 394 // Strip off constant expression casts. 395 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 396 if (CE->isCast()) 397 FP = CE->getOperand(0); 398 399 // Execute the ctor/dtor function! 400 if (Function *F = dyn_cast<Function>(FP)) 401 runFunction(F, None); 402 403 // FIXME: It is marginally lame that we just do nothing here if we see an 404 // entry we don't recognize. It might not be unreasonable for the verifier 405 // to not even allow this and just assert here. 406 } 407 } 408 409 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 410 // Execute global ctors/dtors for each module in the program. 411 for (std::unique_ptr<Module> &M : Modules) 412 runStaticConstructorsDestructors(*M, isDtors); 413 } 414 415 #ifndef NDEBUG 416 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 417 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 418 unsigned PtrSize = EE->getDataLayout().getPointerSize(); 419 for (unsigned i = 0; i < PtrSize; ++i) 420 if (*(i + (uint8_t*)Loc)) 421 return false; 422 return true; 423 } 424 #endif 425 426 int ExecutionEngine::runFunctionAsMain(Function *Fn, 427 const std::vector<std::string> &argv, 428 const char * const * envp) { 429 std::vector<GenericValue> GVArgs; 430 GenericValue GVArgc; 431 GVArgc.IntVal = APInt(32, argv.size()); 432 433 // Check main() type 434 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 435 FunctionType *FTy = Fn->getFunctionType(); 436 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 437 438 // Check the argument types. 439 if (NumArgs > 3) 440 report_fatal_error("Invalid number of arguments of main() supplied"); 441 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 442 report_fatal_error("Invalid type for third argument of main() supplied"); 443 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 444 report_fatal_error("Invalid type for second argument of main() supplied"); 445 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 446 report_fatal_error("Invalid type for first argument of main() supplied"); 447 if (!FTy->getReturnType()->isIntegerTy() && 448 !FTy->getReturnType()->isVoidTy()) 449 report_fatal_error("Invalid return type of main() supplied"); 450 451 ArgvArray CArgv; 452 ArgvArray CEnv; 453 if (NumArgs) { 454 GVArgs.push_back(GVArgc); // Arg #0 = argc. 455 if (NumArgs > 1) { 456 // Arg #1 = argv. 457 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 458 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 459 "argv[0] was null after CreateArgv"); 460 if (NumArgs > 2) { 461 std::vector<std::string> EnvVars; 462 for (unsigned i = 0; envp[i]; ++i) 463 EnvVars.emplace_back(envp[i]); 464 // Arg #2 = envp. 465 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 466 } 467 } 468 } 469 470 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 471 } 472 473 EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {} 474 475 EngineBuilder::EngineBuilder(std::unique_ptr<Module> M) 476 : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr), 477 OptLevel(CodeGenOpt::Default), MemMgr(nullptr), Resolver(nullptr), 478 UseOrcMCJITReplacement(false) { 479 // IR module verification is enabled by default in debug builds, and disabled 480 // by default in release builds. 481 #ifndef NDEBUG 482 VerifyModules = true; 483 #else 484 VerifyModules = false; 485 #endif 486 } 487 488 EngineBuilder::~EngineBuilder() = default; 489 490 EngineBuilder &EngineBuilder::setMCJITMemoryManager( 491 std::unique_ptr<RTDyldMemoryManager> mcjmm) { 492 auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm)); 493 MemMgr = SharedMM; 494 Resolver = SharedMM; 495 return *this; 496 } 497 498 EngineBuilder& 499 EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) { 500 MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM)); 501 return *this; 502 } 503 504 EngineBuilder & 505 EngineBuilder::setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR) { 506 Resolver = std::shared_ptr<LegacyJITSymbolResolver>(std::move(SR)); 507 return *this; 508 } 509 510 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 511 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. 512 513 // Make sure we can resolve symbols in the program as well. The zero arg 514 // to the function tells DynamicLibrary to load the program, not a library. 515 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) 516 return nullptr; 517 518 // If the user specified a memory manager but didn't specify which engine to 519 // create, we assume they only want the JIT, and we fail if they only want 520 // the interpreter. 521 if (MemMgr) { 522 if (WhichEngine & EngineKind::JIT) 523 WhichEngine = EngineKind::JIT; 524 else { 525 if (ErrorStr) 526 *ErrorStr = "Cannot create an interpreter with a memory manager."; 527 return nullptr; 528 } 529 } 530 531 // Unless the interpreter was explicitly selected or the JIT is not linked, 532 // try making a JIT. 533 if ((WhichEngine & EngineKind::JIT) && TheTM) { 534 if (!TM->getTarget().hasJIT()) { 535 errs() << "WARNING: This target JIT is not designed for the host" 536 << " you are running. If bad things happen, please choose" 537 << " a different -march switch.\n"; 538 } 539 540 ExecutionEngine *EE = nullptr; 541 if (ExecutionEngine::OrcMCJITReplacementCtor && UseOrcMCJITReplacement) { 542 EE = ExecutionEngine::OrcMCJITReplacementCtor(ErrorStr, std::move(MemMgr), 543 std::move(Resolver), 544 std::move(TheTM)); 545 EE->addModule(std::move(M)); 546 } else if (ExecutionEngine::MCJITCtor) 547 EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr), 548 std::move(Resolver), std::move(TheTM)); 549 550 if (EE) { 551 EE->setVerifyModules(VerifyModules); 552 return EE; 553 } 554 } 555 556 // If we can't make a JIT and we didn't request one specifically, try making 557 // an interpreter instead. 558 if (WhichEngine & EngineKind::Interpreter) { 559 if (ExecutionEngine::InterpCtor) 560 return ExecutionEngine::InterpCtor(std::move(M), ErrorStr); 561 if (ErrorStr) 562 *ErrorStr = "Interpreter has not been linked in."; 563 return nullptr; 564 } 565 566 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) { 567 if (ErrorStr) 568 *ErrorStr = "JIT has not been linked in."; 569 } 570 571 return nullptr; 572 } 573 574 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 575 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 576 return getPointerToFunction(F); 577 578 MutexGuard locked(lock); 579 if (void* P = getPointerToGlobalIfAvailable(GV)) 580 return P; 581 582 // Global variable might have been added since interpreter started. 583 if (GlobalVariable *GVar = 584 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 585 EmitGlobalVariable(GVar); 586 else 587 llvm_unreachable("Global hasn't had an address allocated yet!"); 588 589 return getPointerToGlobalIfAvailable(GV); 590 } 591 592 /// Converts a Constant* into a GenericValue, including handling of 593 /// ConstantExpr values. 594 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 595 // If its undefined, return the garbage. 596 if (isa<UndefValue>(C)) { 597 GenericValue Result; 598 switch (C->getType()->getTypeID()) { 599 default: 600 break; 601 case Type::IntegerTyID: 602 case Type::X86_FP80TyID: 603 case Type::FP128TyID: 604 case Type::PPC_FP128TyID: 605 // Although the value is undefined, we still have to construct an APInt 606 // with the correct bit width. 607 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 608 break; 609 case Type::StructTyID: { 610 // if the whole struct is 'undef' just reserve memory for the value. 611 if(StructType *STy = dyn_cast<StructType>(C->getType())) { 612 unsigned int elemNum = STy->getNumElements(); 613 Result.AggregateVal.resize(elemNum); 614 for (unsigned int i = 0; i < elemNum; ++i) { 615 Type *ElemTy = STy->getElementType(i); 616 if (ElemTy->isIntegerTy()) 617 Result.AggregateVal[i].IntVal = 618 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 619 else if (ElemTy->isAggregateType()) { 620 const Constant *ElemUndef = UndefValue::get(ElemTy); 621 Result.AggregateVal[i] = getConstantValue(ElemUndef); 622 } 623 } 624 } 625 } 626 break; 627 case Type::VectorTyID: 628 // if the whole vector is 'undef' just reserve memory for the value. 629 auto* VTy = dyn_cast<VectorType>(C->getType()); 630 Type *ElemTy = VTy->getElementType(); 631 unsigned int elemNum = VTy->getNumElements(); 632 Result.AggregateVal.resize(elemNum); 633 if (ElemTy->isIntegerTy()) 634 for (unsigned int i = 0; i < elemNum; ++i) 635 Result.AggregateVal[i].IntVal = 636 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 637 break; 638 } 639 return Result; 640 } 641 642 // Otherwise, if the value is a ConstantExpr... 643 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 644 Constant *Op0 = CE->getOperand(0); 645 switch (CE->getOpcode()) { 646 case Instruction::GetElementPtr: { 647 // Compute the index 648 GenericValue Result = getConstantValue(Op0); 649 APInt Offset(DL.getPointerSizeInBits(), 0); 650 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, Offset); 651 652 char* tmp = (char*) Result.PointerVal; 653 Result = PTOGV(tmp + Offset.getSExtValue()); 654 return Result; 655 } 656 case Instruction::Trunc: { 657 GenericValue GV = getConstantValue(Op0); 658 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 659 GV.IntVal = GV.IntVal.trunc(BitWidth); 660 return GV; 661 } 662 case Instruction::ZExt: { 663 GenericValue GV = getConstantValue(Op0); 664 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 665 GV.IntVal = GV.IntVal.zext(BitWidth); 666 return GV; 667 } 668 case Instruction::SExt: { 669 GenericValue GV = getConstantValue(Op0); 670 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 671 GV.IntVal = GV.IntVal.sext(BitWidth); 672 return GV; 673 } 674 case Instruction::FPTrunc: { 675 // FIXME long double 676 GenericValue GV = getConstantValue(Op0); 677 GV.FloatVal = float(GV.DoubleVal); 678 return GV; 679 } 680 case Instruction::FPExt:{ 681 // FIXME long double 682 GenericValue GV = getConstantValue(Op0); 683 GV.DoubleVal = double(GV.FloatVal); 684 return GV; 685 } 686 case Instruction::UIToFP: { 687 GenericValue GV = getConstantValue(Op0); 688 if (CE->getType()->isFloatTy()) 689 GV.FloatVal = float(GV.IntVal.roundToDouble()); 690 else if (CE->getType()->isDoubleTy()) 691 GV.DoubleVal = GV.IntVal.roundToDouble(); 692 else if (CE->getType()->isX86_FP80Ty()) { 693 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended()); 694 (void)apf.convertFromAPInt(GV.IntVal, 695 false, 696 APFloat::rmNearestTiesToEven); 697 GV.IntVal = apf.bitcastToAPInt(); 698 } 699 return GV; 700 } 701 case Instruction::SIToFP: { 702 GenericValue GV = getConstantValue(Op0); 703 if (CE->getType()->isFloatTy()) 704 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 705 else if (CE->getType()->isDoubleTy()) 706 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 707 else if (CE->getType()->isX86_FP80Ty()) { 708 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended()); 709 (void)apf.convertFromAPInt(GV.IntVal, 710 true, 711 APFloat::rmNearestTiesToEven); 712 GV.IntVal = apf.bitcastToAPInt(); 713 } 714 return GV; 715 } 716 case Instruction::FPToUI: // double->APInt conversion handles sign 717 case Instruction::FPToSI: { 718 GenericValue GV = getConstantValue(Op0); 719 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 720 if (Op0->getType()->isFloatTy()) 721 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 722 else if (Op0->getType()->isDoubleTy()) 723 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 724 else if (Op0->getType()->isX86_FP80Ty()) { 725 APFloat apf = APFloat(APFloat::x87DoubleExtended(), GV.IntVal); 726 uint64_t v; 727 bool ignored; 728 (void)apf.convertToInteger(makeMutableArrayRef(v), BitWidth, 729 CE->getOpcode()==Instruction::FPToSI, 730 APFloat::rmTowardZero, &ignored); 731 GV.IntVal = v; // endian? 732 } 733 return GV; 734 } 735 case Instruction::PtrToInt: { 736 GenericValue GV = getConstantValue(Op0); 737 uint32_t PtrWidth = DL.getTypeSizeInBits(Op0->getType()); 738 assert(PtrWidth <= 64 && "Bad pointer width"); 739 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 740 uint32_t IntWidth = DL.getTypeSizeInBits(CE->getType()); 741 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); 742 return GV; 743 } 744 case Instruction::IntToPtr: { 745 GenericValue GV = getConstantValue(Op0); 746 uint32_t PtrWidth = DL.getTypeSizeInBits(CE->getType()); 747 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 748 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 749 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 750 return GV; 751 } 752 case Instruction::BitCast: { 753 GenericValue GV = getConstantValue(Op0); 754 Type* DestTy = CE->getType(); 755 switch (Op0->getType()->getTypeID()) { 756 default: llvm_unreachable("Invalid bitcast operand"); 757 case Type::IntegerTyID: 758 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 759 if (DestTy->isFloatTy()) 760 GV.FloatVal = GV.IntVal.bitsToFloat(); 761 else if (DestTy->isDoubleTy()) 762 GV.DoubleVal = GV.IntVal.bitsToDouble(); 763 break; 764 case Type::FloatTyID: 765 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 766 GV.IntVal = APInt::floatToBits(GV.FloatVal); 767 break; 768 case Type::DoubleTyID: 769 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 770 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 771 break; 772 case Type::PointerTyID: 773 assert(DestTy->isPointerTy() && "Invalid bitcast"); 774 break; // getConstantValue(Op0) above already converted it 775 } 776 return GV; 777 } 778 case Instruction::Add: 779 case Instruction::FAdd: 780 case Instruction::Sub: 781 case Instruction::FSub: 782 case Instruction::Mul: 783 case Instruction::FMul: 784 case Instruction::UDiv: 785 case Instruction::SDiv: 786 case Instruction::URem: 787 case Instruction::SRem: 788 case Instruction::And: 789 case Instruction::Or: 790 case Instruction::Xor: { 791 GenericValue LHS = getConstantValue(Op0); 792 GenericValue RHS = getConstantValue(CE->getOperand(1)); 793 GenericValue GV; 794 switch (CE->getOperand(0)->getType()->getTypeID()) { 795 default: llvm_unreachable("Bad add type!"); 796 case Type::IntegerTyID: 797 switch (CE->getOpcode()) { 798 default: llvm_unreachable("Invalid integer opcode"); 799 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 800 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 801 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 802 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 803 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 804 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 805 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 806 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 807 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 808 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 809 } 810 break; 811 case Type::FloatTyID: 812 switch (CE->getOpcode()) { 813 default: llvm_unreachable("Invalid float opcode"); 814 case Instruction::FAdd: 815 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 816 case Instruction::FSub: 817 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 818 case Instruction::FMul: 819 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 820 case Instruction::FDiv: 821 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 822 case Instruction::FRem: 823 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 824 } 825 break; 826 case Type::DoubleTyID: 827 switch (CE->getOpcode()) { 828 default: llvm_unreachable("Invalid double opcode"); 829 case Instruction::FAdd: 830 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 831 case Instruction::FSub: 832 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 833 case Instruction::FMul: 834 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 835 case Instruction::FDiv: 836 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 837 case Instruction::FRem: 838 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 839 } 840 break; 841 case Type::X86_FP80TyID: 842 case Type::PPC_FP128TyID: 843 case Type::FP128TyID: { 844 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); 845 APFloat apfLHS = APFloat(Sem, LHS.IntVal); 846 switch (CE->getOpcode()) { 847 default: llvm_unreachable("Invalid long double opcode"); 848 case Instruction::FAdd: 849 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); 850 GV.IntVal = apfLHS.bitcastToAPInt(); 851 break; 852 case Instruction::FSub: 853 apfLHS.subtract(APFloat(Sem, RHS.IntVal), 854 APFloat::rmNearestTiesToEven); 855 GV.IntVal = apfLHS.bitcastToAPInt(); 856 break; 857 case Instruction::FMul: 858 apfLHS.multiply(APFloat(Sem, RHS.IntVal), 859 APFloat::rmNearestTiesToEven); 860 GV.IntVal = apfLHS.bitcastToAPInt(); 861 break; 862 case Instruction::FDiv: 863 apfLHS.divide(APFloat(Sem, RHS.IntVal), 864 APFloat::rmNearestTiesToEven); 865 GV.IntVal = apfLHS.bitcastToAPInt(); 866 break; 867 case Instruction::FRem: 868 apfLHS.mod(APFloat(Sem, RHS.IntVal)); 869 GV.IntVal = apfLHS.bitcastToAPInt(); 870 break; 871 } 872 } 873 break; 874 } 875 return GV; 876 } 877 default: 878 break; 879 } 880 881 SmallString<256> Msg; 882 raw_svector_ostream OS(Msg); 883 OS << "ConstantExpr not handled: " << *CE; 884 report_fatal_error(OS.str()); 885 } 886 887 // Otherwise, we have a simple constant. 888 GenericValue Result; 889 switch (C->getType()->getTypeID()) { 890 case Type::FloatTyID: 891 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 892 break; 893 case Type::DoubleTyID: 894 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 895 break; 896 case Type::X86_FP80TyID: 897 case Type::FP128TyID: 898 case Type::PPC_FP128TyID: 899 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 900 break; 901 case Type::IntegerTyID: 902 Result.IntVal = cast<ConstantInt>(C)->getValue(); 903 break; 904 case Type::PointerTyID: 905 while (auto *A = dyn_cast<GlobalAlias>(C)) { 906 C = A->getAliasee(); 907 } 908 if (isa<ConstantPointerNull>(C)) 909 Result.PointerVal = nullptr; 910 else if (const Function *F = dyn_cast<Function>(C)) 911 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 912 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 913 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 914 else 915 llvm_unreachable("Unknown constant pointer type!"); 916 break; 917 case Type::VectorTyID: { 918 unsigned elemNum; 919 Type* ElemTy; 920 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); 921 const ConstantVector *CV = dyn_cast<ConstantVector>(C); 922 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); 923 924 if (CDV) { 925 elemNum = CDV->getNumElements(); 926 ElemTy = CDV->getElementType(); 927 } else if (CV || CAZ) { 928 VectorType* VTy = dyn_cast<VectorType>(C->getType()); 929 elemNum = VTy->getNumElements(); 930 ElemTy = VTy->getElementType(); 931 } else { 932 llvm_unreachable("Unknown constant vector type!"); 933 } 934 935 Result.AggregateVal.resize(elemNum); 936 // Check if vector holds floats. 937 if(ElemTy->isFloatTy()) { 938 if (CAZ) { 939 GenericValue floatZero; 940 floatZero.FloatVal = 0.f; 941 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 942 floatZero); 943 break; 944 } 945 if(CV) { 946 for (unsigned i = 0; i < elemNum; ++i) 947 if (!isa<UndefValue>(CV->getOperand(i))) 948 Result.AggregateVal[i].FloatVal = cast<ConstantFP>( 949 CV->getOperand(i))->getValueAPF().convertToFloat(); 950 break; 951 } 952 if(CDV) 953 for (unsigned i = 0; i < elemNum; ++i) 954 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); 955 956 break; 957 } 958 // Check if vector holds doubles. 959 if (ElemTy->isDoubleTy()) { 960 if (CAZ) { 961 GenericValue doubleZero; 962 doubleZero.DoubleVal = 0.0; 963 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 964 doubleZero); 965 break; 966 } 967 if(CV) { 968 for (unsigned i = 0; i < elemNum; ++i) 969 if (!isa<UndefValue>(CV->getOperand(i))) 970 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( 971 CV->getOperand(i))->getValueAPF().convertToDouble(); 972 break; 973 } 974 if(CDV) 975 for (unsigned i = 0; i < elemNum; ++i) 976 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); 977 978 break; 979 } 980 // Check if vector holds integers. 981 if (ElemTy->isIntegerTy()) { 982 if (CAZ) { 983 GenericValue intZero; 984 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); 985 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 986 intZero); 987 break; 988 } 989 if(CV) { 990 for (unsigned i = 0; i < elemNum; ++i) 991 if (!isa<UndefValue>(CV->getOperand(i))) 992 Result.AggregateVal[i].IntVal = cast<ConstantInt>( 993 CV->getOperand(i))->getValue(); 994 else { 995 Result.AggregateVal[i].IntVal = 996 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); 997 } 998 break; 999 } 1000 if(CDV) 1001 for (unsigned i = 0; i < elemNum; ++i) 1002 Result.AggregateVal[i].IntVal = APInt( 1003 CDV->getElementType()->getPrimitiveSizeInBits(), 1004 CDV->getElementAsInteger(i)); 1005 1006 break; 1007 } 1008 llvm_unreachable("Unknown constant pointer type!"); 1009 } 1010 break; 1011 1012 default: 1013 SmallString<256> Msg; 1014 raw_svector_ostream OS(Msg); 1015 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 1016 report_fatal_error(OS.str()); 1017 } 1018 1019 return Result; 1020 } 1021 1022 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 1023 /// with the integer held in IntVal. 1024 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 1025 unsigned StoreBytes) { 1026 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 1027 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 1028 1029 if (sys::IsLittleEndianHost) { 1030 // Little-endian host - the source is ordered from LSB to MSB. Order the 1031 // destination from LSB to MSB: Do a straight copy. 1032 memcpy(Dst, Src, StoreBytes); 1033 } else { 1034 // Big-endian host - the source is an array of 64 bit words ordered from 1035 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 1036 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 1037 while (StoreBytes > sizeof(uint64_t)) { 1038 StoreBytes -= sizeof(uint64_t); 1039 // May not be aligned so use memcpy. 1040 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 1041 Src += sizeof(uint64_t); 1042 } 1043 1044 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 1045 } 1046 } 1047 1048 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 1049 GenericValue *Ptr, Type *Ty) { 1050 const unsigned StoreBytes = getDataLayout().getTypeStoreSize(Ty); 1051 1052 switch (Ty->getTypeID()) { 1053 default: 1054 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 1055 break; 1056 case Type::IntegerTyID: 1057 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 1058 break; 1059 case Type::FloatTyID: 1060 *((float*)Ptr) = Val.FloatVal; 1061 break; 1062 case Type::DoubleTyID: 1063 *((double*)Ptr) = Val.DoubleVal; 1064 break; 1065 case Type::X86_FP80TyID: 1066 memcpy(Ptr, Val.IntVal.getRawData(), 10); 1067 break; 1068 case Type::PointerTyID: 1069 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 1070 if (StoreBytes != sizeof(PointerTy)) 1071 memset(&(Ptr->PointerVal), 0, StoreBytes); 1072 1073 *((PointerTy*)Ptr) = Val.PointerVal; 1074 break; 1075 case Type::VectorTyID: 1076 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { 1077 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) 1078 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; 1079 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) 1080 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; 1081 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { 1082 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; 1083 StoreIntToMemory(Val.AggregateVal[i].IntVal, 1084 (uint8_t*)Ptr + numOfBytes*i, numOfBytes); 1085 } 1086 } 1087 break; 1088 } 1089 1090 if (sys::IsLittleEndianHost != getDataLayout().isLittleEndian()) 1091 // Host and target are different endian - reverse the stored bytes. 1092 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 1093 } 1094 1095 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 1096 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 1097 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 1098 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 1099 uint8_t *Dst = reinterpret_cast<uint8_t *>( 1100 const_cast<uint64_t *>(IntVal.getRawData())); 1101 1102 if (sys::IsLittleEndianHost) 1103 // Little-endian host - the destination must be ordered from LSB to MSB. 1104 // The source is ordered from LSB to MSB: Do a straight copy. 1105 memcpy(Dst, Src, LoadBytes); 1106 else { 1107 // Big-endian - the destination is an array of 64 bit words ordered from 1108 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 1109 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 1110 // a word. 1111 while (LoadBytes > sizeof(uint64_t)) { 1112 LoadBytes -= sizeof(uint64_t); 1113 // May not be aligned so use memcpy. 1114 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 1115 Dst += sizeof(uint64_t); 1116 } 1117 1118 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 1119 } 1120 } 1121 1122 /// FIXME: document 1123 /// 1124 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 1125 GenericValue *Ptr, 1126 Type *Ty) { 1127 const unsigned LoadBytes = getDataLayout().getTypeStoreSize(Ty); 1128 1129 switch (Ty->getTypeID()) { 1130 case Type::IntegerTyID: 1131 // An APInt with all words initially zero. 1132 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 1133 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 1134 break; 1135 case Type::FloatTyID: 1136 Result.FloatVal = *((float*)Ptr); 1137 break; 1138 case Type::DoubleTyID: 1139 Result.DoubleVal = *((double*)Ptr); 1140 break; 1141 case Type::PointerTyID: 1142 Result.PointerVal = *((PointerTy*)Ptr); 1143 break; 1144 case Type::X86_FP80TyID: { 1145 // This is endian dependent, but it will only work on x86 anyway. 1146 // FIXME: Will not trap if loading a signaling NaN. 1147 uint64_t y[2]; 1148 memcpy(y, Ptr, 10); 1149 Result.IntVal = APInt(80, y); 1150 break; 1151 } 1152 case Type::VectorTyID: { 1153 auto *VT = cast<VectorType>(Ty); 1154 Type *ElemT = VT->getElementType(); 1155 const unsigned numElems = VT->getNumElements(); 1156 if (ElemT->isFloatTy()) { 1157 Result.AggregateVal.resize(numElems); 1158 for (unsigned i = 0; i < numElems; ++i) 1159 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); 1160 } 1161 if (ElemT->isDoubleTy()) { 1162 Result.AggregateVal.resize(numElems); 1163 for (unsigned i = 0; i < numElems; ++i) 1164 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); 1165 } 1166 if (ElemT->isIntegerTy()) { 1167 GenericValue intZero; 1168 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); 1169 intZero.IntVal = APInt(elemBitWidth, 0); 1170 Result.AggregateVal.resize(numElems, intZero); 1171 for (unsigned i = 0; i < numElems; ++i) 1172 LoadIntFromMemory(Result.AggregateVal[i].IntVal, 1173 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); 1174 } 1175 break; 1176 } 1177 default: 1178 SmallString<256> Msg; 1179 raw_svector_ostream OS(Msg); 1180 OS << "Cannot load value of type " << *Ty << "!"; 1181 report_fatal_error(OS.str()); 1182 } 1183 } 1184 1185 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 1186 LLVM_DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 1187 LLVM_DEBUG(Init->dump()); 1188 if (isa<UndefValue>(Init)) 1189 return; 1190 1191 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 1192 unsigned ElementSize = 1193 getDataLayout().getTypeAllocSize(CP->getType()->getElementType()); 1194 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 1195 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 1196 return; 1197 } 1198 1199 if (isa<ConstantAggregateZero>(Init)) { 1200 memset(Addr, 0, (size_t)getDataLayout().getTypeAllocSize(Init->getType())); 1201 return; 1202 } 1203 1204 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 1205 unsigned ElementSize = 1206 getDataLayout().getTypeAllocSize(CPA->getType()->getElementType()); 1207 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 1208 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 1209 return; 1210 } 1211 1212 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 1213 const StructLayout *SL = 1214 getDataLayout().getStructLayout(cast<StructType>(CPS->getType())); 1215 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 1216 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 1217 return; 1218 } 1219 1220 if (const ConstantDataSequential *CDS = 1221 dyn_cast<ConstantDataSequential>(Init)) { 1222 // CDS is already laid out in host memory order. 1223 StringRef Data = CDS->getRawDataValues(); 1224 memcpy(Addr, Data.data(), Data.size()); 1225 return; 1226 } 1227 1228 if (Init->getType()->isFirstClassType()) { 1229 GenericValue Val = getConstantValue(Init); 1230 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 1231 return; 1232 } 1233 1234 LLVM_DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1235 llvm_unreachable("Unknown constant type to initialize memory with!"); 1236 } 1237 1238 /// EmitGlobals - Emit all of the global variables to memory, storing their 1239 /// addresses into GlobalAddress. This must make sure to copy the contents of 1240 /// their initializers into the memory. 1241 void ExecutionEngine::emitGlobals() { 1242 // Loop over all of the global variables in the program, allocating the memory 1243 // to hold them. If there is more than one module, do a prepass over globals 1244 // to figure out how the different modules should link together. 1245 std::map<std::pair<std::string, Type*>, 1246 const GlobalValue*> LinkedGlobalsMap; 1247 1248 if (Modules.size() != 1) { 1249 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1250 Module &M = *Modules[m]; 1251 for (const auto &GV : M.globals()) { 1252 if (GV.hasLocalLinkage() || GV.isDeclaration() || 1253 GV.hasAppendingLinkage() || !GV.hasName()) 1254 continue;// Ignore external globals and globals with internal linkage. 1255 1256 const GlobalValue *&GVEntry = 1257 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]; 1258 1259 // If this is the first time we've seen this global, it is the canonical 1260 // version. 1261 if (!GVEntry) { 1262 GVEntry = &GV; 1263 continue; 1264 } 1265 1266 // If the existing global is strong, never replace it. 1267 if (GVEntry->hasExternalLinkage()) 1268 continue; 1269 1270 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1271 // symbol. FIXME is this right for common? 1272 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1273 GVEntry = &GV; 1274 } 1275 } 1276 } 1277 1278 std::vector<const GlobalValue*> NonCanonicalGlobals; 1279 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1280 Module &M = *Modules[m]; 1281 for (const auto &GV : M.globals()) { 1282 // In the multi-module case, see what this global maps to. 1283 if (!LinkedGlobalsMap.empty()) { 1284 if (const GlobalValue *GVEntry = 1285 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) { 1286 // If something else is the canonical global, ignore this one. 1287 if (GVEntry != &GV) { 1288 NonCanonicalGlobals.push_back(&GV); 1289 continue; 1290 } 1291 } 1292 } 1293 1294 if (!GV.isDeclaration()) { 1295 addGlobalMapping(&GV, getMemoryForGV(&GV)); 1296 } else { 1297 // External variable reference. Try to use the dynamic loader to 1298 // get a pointer to it. 1299 if (void *SymAddr = 1300 sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName())) 1301 addGlobalMapping(&GV, SymAddr); 1302 else { 1303 report_fatal_error("Could not resolve external global address: " 1304 +GV.getName()); 1305 } 1306 } 1307 } 1308 1309 // If there are multiple modules, map the non-canonical globals to their 1310 // canonical location. 1311 if (!NonCanonicalGlobals.empty()) { 1312 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1313 const GlobalValue *GV = NonCanonicalGlobals[i]; 1314 const GlobalValue *CGV = 1315 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1316 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1317 assert(Ptr && "Canonical global wasn't codegen'd!"); 1318 addGlobalMapping(GV, Ptr); 1319 } 1320 } 1321 1322 // Now that all of the globals are set up in memory, loop through them all 1323 // and initialize their contents. 1324 for (const auto &GV : M.globals()) { 1325 if (!GV.isDeclaration()) { 1326 if (!LinkedGlobalsMap.empty()) { 1327 if (const GlobalValue *GVEntry = 1328 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) 1329 if (GVEntry != &GV) // Not the canonical variable. 1330 continue; 1331 } 1332 EmitGlobalVariable(&GV); 1333 } 1334 } 1335 } 1336 } 1337 1338 // EmitGlobalVariable - This method emits the specified global variable to the 1339 // address specified in GlobalAddresses, or allocates new memory if it's not 1340 // already in the map. 1341 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1342 void *GA = getPointerToGlobalIfAvailable(GV); 1343 1344 if (!GA) { 1345 // If it's not already specified, allocate memory for the global. 1346 GA = getMemoryForGV(GV); 1347 1348 // If we failed to allocate memory for this global, return. 1349 if (!GA) return; 1350 1351 addGlobalMapping(GV, GA); 1352 } 1353 1354 // Don't initialize if it's thread local, let the client do it. 1355 if (!GV->isThreadLocal()) 1356 InitializeMemory(GV->getInitializer(), GA); 1357 1358 Type *ElTy = GV->getValueType(); 1359 size_t GVSize = (size_t)getDataLayout().getTypeAllocSize(ElTy); 1360 NumInitBytes += (unsigned)GVSize; 1361 ++NumGlobals; 1362 } 1363