1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/ExecutionEngine/ExecutionEngine.h" 17 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Module.h" 21 #include "llvm/ExecutionEngine/GenericValue.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/MutexGuard.h" 26 #include "llvm/Support/ValueHandle.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/System/DynamicLibrary.h" 29 #include "llvm/System/Host.h" 30 #include "llvm/Target/TargetData.h" 31 #include <cmath> 32 #include <cstring> 33 using namespace llvm; 34 35 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 36 STATISTIC(NumGlobals , "Number of global vars initialized"); 37 38 ExecutionEngine *(*ExecutionEngine::JITCtor)( 39 Module *M, 40 std::string *ErrorStr, 41 JITMemoryManager *JMM, 42 CodeGenOpt::Level OptLevel, 43 bool GVsWithCode, 44 CodeModel::Model CMM, 45 StringRef MArch, 46 StringRef MCPU, 47 const SmallVectorImpl<std::string>& MAttrs) = 0; 48 ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M, 49 std::string *ErrorStr) = 0; 50 ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0; 51 52 53 ExecutionEngine::ExecutionEngine(Module *M) 54 : EEState(*this), 55 LazyFunctionCreator(0) { 56 CompilingLazily = false; 57 GVCompilationDisabled = false; 58 SymbolSearchingDisabled = false; 59 Modules.push_back(M); 60 assert(M && "Module is null?"); 61 } 62 63 ExecutionEngine::~ExecutionEngine() { 64 clearAllGlobalMappings(); 65 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 66 delete Modules[i]; 67 } 68 69 namespace { 70 // This class automatically deletes the memory block when the GlobalVariable is 71 // destroyed. 72 class GVMemoryBlock : public CallbackVH { 73 GVMemoryBlock(const GlobalVariable *GV) 74 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 75 76 public: 77 // Returns the address the GlobalVariable should be written into. The 78 // GVMemoryBlock object prefixes that. 79 static char *Create(const GlobalVariable *GV, const TargetData& TD) { 80 const Type *ElTy = GV->getType()->getElementType(); 81 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 82 void *RawMemory = ::operator new( 83 TargetData::RoundUpAlignment(sizeof(GVMemoryBlock), 84 TD.getPreferredAlignment(GV)) 85 + GVSize); 86 new(RawMemory) GVMemoryBlock(GV); 87 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 88 } 89 90 virtual void deleted() { 91 // We allocated with operator new and with some extra memory hanging off the 92 // end, so don't just delete this. I'm not sure if this is actually 93 // required. 94 this->~GVMemoryBlock(); 95 ::operator delete(this); 96 } 97 }; 98 } // anonymous namespace 99 100 char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) { 101 return GVMemoryBlock::Create(GV, *getTargetData()); 102 } 103 104 /// removeModule - Remove a Module from the list of modules. 105 bool ExecutionEngine::removeModule(Module *M) { 106 for(SmallVector<Module *, 1>::iterator I = Modules.begin(), 107 E = Modules.end(); I != E; ++I) { 108 Module *Found = *I; 109 if (Found == M) { 110 Modules.erase(I); 111 clearGlobalMappingsFromModule(M); 112 return true; 113 } 114 } 115 return false; 116 } 117 118 /// FindFunctionNamed - Search all of the active modules to find the one that 119 /// defines FnName. This is very slow operation and shouldn't be used for 120 /// general code. 121 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 122 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 123 if (Function *F = Modules[i]->getFunction(FnName)) 124 return F; 125 } 126 return 0; 127 } 128 129 130 void *ExecutionEngineState::RemoveMapping( 131 const MutexGuard &, const GlobalValue *ToUnmap) { 132 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 133 void *OldVal; 134 if (I == GlobalAddressMap.end()) 135 OldVal = 0; 136 else { 137 OldVal = I->second; 138 GlobalAddressMap.erase(I); 139 } 140 141 GlobalAddressReverseMap.erase(OldVal); 142 return OldVal; 143 } 144 145 /// addGlobalMapping - Tell the execution engine that the specified global is 146 /// at the specified location. This is used internally as functions are JIT'd 147 /// and as global variables are laid out in memory. It can and should also be 148 /// used by clients of the EE that want to have an LLVM global overlay 149 /// existing data in memory. 150 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 151 MutexGuard locked(lock); 152 153 DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 154 << "\' to [" << Addr << "]\n";); 155 void *&CurVal = EEState.getGlobalAddressMap(locked)[GV]; 156 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 157 CurVal = Addr; 158 159 // If we are using the reverse mapping, add it too 160 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 161 AssertingVH<const GlobalValue> &V = 162 EEState.getGlobalAddressReverseMap(locked)[Addr]; 163 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 164 V = GV; 165 } 166 } 167 168 /// clearAllGlobalMappings - Clear all global mappings and start over again 169 /// use in dynamic compilation scenarios when you want to move globals 170 void ExecutionEngine::clearAllGlobalMappings() { 171 MutexGuard locked(lock); 172 173 EEState.getGlobalAddressMap(locked).clear(); 174 EEState.getGlobalAddressReverseMap(locked).clear(); 175 } 176 177 /// clearGlobalMappingsFromModule - Clear all global mappings that came from a 178 /// particular module, because it has been removed from the JIT. 179 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 180 MutexGuard locked(lock); 181 182 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { 183 EEState.RemoveMapping(locked, FI); 184 } 185 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 186 GI != GE; ++GI) { 187 EEState.RemoveMapping(locked, GI); 188 } 189 } 190 191 /// updateGlobalMapping - Replace an existing mapping for GV with a new 192 /// address. This updates both maps as required. If "Addr" is null, the 193 /// entry for the global is removed from the mappings. 194 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 195 MutexGuard locked(lock); 196 197 ExecutionEngineState::GlobalAddressMapTy &Map = 198 EEState.getGlobalAddressMap(locked); 199 200 // Deleting from the mapping? 201 if (Addr == 0) { 202 return EEState.RemoveMapping(locked, GV); 203 } 204 205 void *&CurVal = Map[GV]; 206 void *OldVal = CurVal; 207 208 if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty()) 209 EEState.getGlobalAddressReverseMap(locked).erase(CurVal); 210 CurVal = Addr; 211 212 // If we are using the reverse mapping, add it too 213 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 214 AssertingVH<const GlobalValue> &V = 215 EEState.getGlobalAddressReverseMap(locked)[Addr]; 216 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 217 V = GV; 218 } 219 return OldVal; 220 } 221 222 /// getPointerToGlobalIfAvailable - This returns the address of the specified 223 /// global value if it is has already been codegen'd, otherwise it returns null. 224 /// 225 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 226 MutexGuard locked(lock); 227 228 ExecutionEngineState::GlobalAddressMapTy::iterator I = 229 EEState.getGlobalAddressMap(locked).find(GV); 230 return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0; 231 } 232 233 /// getGlobalValueAtAddress - Return the LLVM global value object that starts 234 /// at the specified address. 235 /// 236 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 237 MutexGuard locked(lock); 238 239 // If we haven't computed the reverse mapping yet, do so first. 240 if (EEState.getGlobalAddressReverseMap(locked).empty()) { 241 for (ExecutionEngineState::GlobalAddressMapTy::iterator 242 I = EEState.getGlobalAddressMap(locked).begin(), 243 E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I) 244 EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, 245 I->first)); 246 } 247 248 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 249 EEState.getGlobalAddressReverseMap(locked).find(Addr); 250 return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 251 } 252 253 namespace { 254 class ArgvArray { 255 char *Array; 256 std::vector<char*> Values; 257 public: 258 ArgvArray() : Array(NULL) {} 259 ~ArgvArray() { clear(); } 260 void clear() { 261 delete[] Array; 262 Array = NULL; 263 for (size_t I = 0, E = Values.size(); I != E; ++I) { 264 delete[] Values[I]; 265 } 266 Values.clear(); 267 } 268 /// Turn a vector of strings into a nice argv style array of pointers to null 269 /// terminated strings. 270 void *reset(LLVMContext &C, ExecutionEngine *EE, 271 const std::vector<std::string> &InputArgv); 272 }; 273 } // anonymous namespace 274 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 275 const std::vector<std::string> &InputArgv) { 276 clear(); // Free the old contents. 277 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 278 Array = new char[(InputArgv.size()+1)*PtrSize]; 279 280 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n"); 281 const Type *SBytePtr = Type::getInt8PtrTy(C); 282 283 for (unsigned i = 0; i != InputArgv.size(); ++i) { 284 unsigned Size = InputArgv[i].size()+1; 285 char *Dest = new char[Size]; 286 Values.push_back(Dest); 287 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"); 288 289 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 290 Dest[Size-1] = 0; 291 292 // Endian safe: Array[i] = (PointerTy)Dest; 293 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize), 294 SBytePtr); 295 } 296 297 // Null terminate it 298 EE->StoreValueToMemory(PTOGV(0), 299 (GenericValue*)(Array+InputArgv.size()*PtrSize), 300 SBytePtr); 301 return Array; 302 } 303 304 305 /// runStaticConstructorsDestructors - This method is used to execute all of 306 /// the static constructors or destructors for a module, depending on the 307 /// value of isDtors. 308 void ExecutionEngine::runStaticConstructorsDestructors(Module *module, 309 bool isDtors) { 310 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 311 312 // Execute global ctors/dtors for each module in the program. 313 314 GlobalVariable *GV = module->getNamedGlobal(Name); 315 316 // If this global has internal linkage, or if it has a use, then it must be 317 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 318 // this is the case, don't execute any of the global ctors, __main will do 319 // it. 320 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 321 322 // Should be an array of '{ int, void ()* }' structs. The first value is 323 // the init priority, which we ignore. 324 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 325 if (!InitList) return; 326 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 327 if (ConstantStruct *CS = 328 dyn_cast<ConstantStruct>(InitList->getOperand(i))) { 329 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 330 331 Constant *FP = CS->getOperand(1); 332 if (FP->isNullValue()) 333 break; // Found a null terminator, exit. 334 335 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 336 if (CE->isCast()) 337 FP = CE->getOperand(0); 338 if (Function *F = dyn_cast<Function>(FP)) { 339 // Execute the ctor/dtor function! 340 runFunction(F, std::vector<GenericValue>()); 341 } 342 } 343 } 344 345 /// runStaticConstructorsDestructors - This method is used to execute all of 346 /// the static constructors or destructors for a program, depending on the 347 /// value of isDtors. 348 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 349 // Execute global ctors/dtors for each module in the program. 350 for (unsigned m = 0, e = Modules.size(); m != e; ++m) 351 runStaticConstructorsDestructors(Modules[m], isDtors); 352 } 353 354 #ifndef NDEBUG 355 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 356 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 357 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 358 for (unsigned i = 0; i < PtrSize; ++i) 359 if (*(i + (uint8_t*)Loc)) 360 return false; 361 return true; 362 } 363 #endif 364 365 /// runFunctionAsMain - This is a helper function which wraps runFunction to 366 /// handle the common task of starting up main with the specified argc, argv, 367 /// and envp parameters. 368 int ExecutionEngine::runFunctionAsMain(Function *Fn, 369 const std::vector<std::string> &argv, 370 const char * const * envp) { 371 std::vector<GenericValue> GVArgs; 372 GenericValue GVArgc; 373 GVArgc.IntVal = APInt(32, argv.size()); 374 375 // Check main() type 376 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 377 const FunctionType *FTy = Fn->getFunctionType(); 378 const Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 379 switch (NumArgs) { 380 case 3: 381 if (FTy->getParamType(2) != PPInt8Ty) { 382 report_fatal_error("Invalid type for third argument of main() supplied"); 383 } 384 // FALLS THROUGH 385 case 2: 386 if (FTy->getParamType(1) != PPInt8Ty) { 387 report_fatal_error("Invalid type for second argument of main() supplied"); 388 } 389 // FALLS THROUGH 390 case 1: 391 if (!FTy->getParamType(0)->isIntegerTy(32)) { 392 report_fatal_error("Invalid type for first argument of main() supplied"); 393 } 394 // FALLS THROUGH 395 case 0: 396 if (!FTy->getReturnType()->isIntegerTy() && 397 !FTy->getReturnType()->isVoidTy()) { 398 report_fatal_error("Invalid return type of main() supplied"); 399 } 400 break; 401 default: 402 report_fatal_error("Invalid number of arguments of main() supplied"); 403 } 404 405 ArgvArray CArgv; 406 ArgvArray CEnv; 407 if (NumArgs) { 408 GVArgs.push_back(GVArgc); // Arg #0 = argc. 409 if (NumArgs > 1) { 410 // Arg #1 = argv. 411 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 412 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 413 "argv[0] was null after CreateArgv"); 414 if (NumArgs > 2) { 415 std::vector<std::string> EnvVars; 416 for (unsigned i = 0; envp[i]; ++i) 417 EnvVars.push_back(envp[i]); 418 // Arg #2 = envp. 419 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 420 } 421 } 422 } 423 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 424 } 425 426 /// If possible, create a JIT, unless the caller specifically requests an 427 /// Interpreter or there's an error. If even an Interpreter cannot be created, 428 /// NULL is returned. 429 /// 430 ExecutionEngine *ExecutionEngine::create(Module *M, 431 bool ForceInterpreter, 432 std::string *ErrorStr, 433 CodeGenOpt::Level OptLevel, 434 bool GVsWithCode) { 435 return EngineBuilder(M) 436 .setEngineKind(ForceInterpreter 437 ? EngineKind::Interpreter 438 : EngineKind::JIT) 439 .setErrorStr(ErrorStr) 440 .setOptLevel(OptLevel) 441 .setAllocateGVsWithCode(GVsWithCode) 442 .create(); 443 } 444 445 ExecutionEngine *EngineBuilder::create() { 446 // Make sure we can resolve symbols in the program as well. The zero arg 447 // to the function tells DynamicLibrary to load the program, not a library. 448 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) 449 return 0; 450 451 // If the user specified a memory manager but didn't specify which engine to 452 // create, we assume they only want the JIT, and we fail if they only want 453 // the interpreter. 454 if (JMM) { 455 if (WhichEngine & EngineKind::JIT) 456 WhichEngine = EngineKind::JIT; 457 else { 458 if (ErrorStr) 459 *ErrorStr = "Cannot create an interpreter with a memory manager."; 460 return 0; 461 } 462 } 463 464 // Unless the interpreter was explicitly selected or the JIT is not linked, 465 // try making a JIT. 466 if (WhichEngine & EngineKind::JIT) { 467 if (ExecutionEngine::JITCtor) { 468 ExecutionEngine *EE = 469 ExecutionEngine::JITCtor(M, ErrorStr, JMM, OptLevel, 470 AllocateGVsWithCode, CMModel, 471 MArch, MCPU, MAttrs); 472 if (EE) return EE; 473 } 474 } 475 476 // If we can't make a JIT and we didn't request one specifically, try making 477 // an interpreter instead. 478 if (WhichEngine & EngineKind::Interpreter) { 479 if (ExecutionEngine::InterpCtor) 480 return ExecutionEngine::InterpCtor(M, ErrorStr); 481 if (ErrorStr) 482 *ErrorStr = "Interpreter has not been linked in."; 483 return 0; 484 } 485 486 if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) { 487 if (ErrorStr) 488 *ErrorStr = "JIT has not been linked in."; 489 } 490 return 0; 491 } 492 493 /// getPointerToGlobal - This returns the address of the specified global 494 /// value. This may involve code generation if it's a function. 495 /// 496 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 497 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 498 return getPointerToFunction(F); 499 500 MutexGuard locked(lock); 501 void *p = EEState.getGlobalAddressMap(locked)[GV]; 502 if (p) 503 return p; 504 505 // Global variable might have been added since interpreter started. 506 if (GlobalVariable *GVar = 507 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 508 EmitGlobalVariable(GVar); 509 else 510 llvm_unreachable("Global hasn't had an address allocated yet!"); 511 return EEState.getGlobalAddressMap(locked)[GV]; 512 } 513 514 /// This function converts a Constant* into a GenericValue. The interesting 515 /// part is if C is a ConstantExpr. 516 /// @brief Get a GenericValue for a Constant* 517 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 518 // If its undefined, return the garbage. 519 if (isa<UndefValue>(C)) { 520 GenericValue Result; 521 switch (C->getType()->getTypeID()) { 522 case Type::IntegerTyID: 523 case Type::X86_FP80TyID: 524 case Type::FP128TyID: 525 case Type::PPC_FP128TyID: 526 // Although the value is undefined, we still have to construct an APInt 527 // with the correct bit width. 528 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 529 break; 530 default: 531 break; 532 } 533 return Result; 534 } 535 536 // If the value is a ConstantExpr 537 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 538 Constant *Op0 = CE->getOperand(0); 539 switch (CE->getOpcode()) { 540 case Instruction::GetElementPtr: { 541 // Compute the index 542 GenericValue Result = getConstantValue(Op0); 543 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); 544 uint64_t Offset = 545 TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size()); 546 547 char* tmp = (char*) Result.PointerVal; 548 Result = PTOGV(tmp + Offset); 549 return Result; 550 } 551 case Instruction::Trunc: { 552 GenericValue GV = getConstantValue(Op0); 553 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 554 GV.IntVal = GV.IntVal.trunc(BitWidth); 555 return GV; 556 } 557 case Instruction::ZExt: { 558 GenericValue GV = getConstantValue(Op0); 559 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 560 GV.IntVal = GV.IntVal.zext(BitWidth); 561 return GV; 562 } 563 case Instruction::SExt: { 564 GenericValue GV = getConstantValue(Op0); 565 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 566 GV.IntVal = GV.IntVal.sext(BitWidth); 567 return GV; 568 } 569 case Instruction::FPTrunc: { 570 // FIXME long double 571 GenericValue GV = getConstantValue(Op0); 572 GV.FloatVal = float(GV.DoubleVal); 573 return GV; 574 } 575 case Instruction::FPExt:{ 576 // FIXME long double 577 GenericValue GV = getConstantValue(Op0); 578 GV.DoubleVal = double(GV.FloatVal); 579 return GV; 580 } 581 case Instruction::UIToFP: { 582 GenericValue GV = getConstantValue(Op0); 583 if (CE->getType()->isFloatTy()) 584 GV.FloatVal = float(GV.IntVal.roundToDouble()); 585 else if (CE->getType()->isDoubleTy()) 586 GV.DoubleVal = GV.IntVal.roundToDouble(); 587 else if (CE->getType()->isX86_FP80Ty()) { 588 const uint64_t zero[] = {0, 0}; 589 APFloat apf = APFloat(APInt(80, 2, zero)); 590 (void)apf.convertFromAPInt(GV.IntVal, 591 false, 592 APFloat::rmNearestTiesToEven); 593 GV.IntVal = apf.bitcastToAPInt(); 594 } 595 return GV; 596 } 597 case Instruction::SIToFP: { 598 GenericValue GV = getConstantValue(Op0); 599 if (CE->getType()->isFloatTy()) 600 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 601 else if (CE->getType()->isDoubleTy()) 602 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 603 else if (CE->getType()->isX86_FP80Ty()) { 604 const uint64_t zero[] = { 0, 0}; 605 APFloat apf = APFloat(APInt(80, 2, zero)); 606 (void)apf.convertFromAPInt(GV.IntVal, 607 true, 608 APFloat::rmNearestTiesToEven); 609 GV.IntVal = apf.bitcastToAPInt(); 610 } 611 return GV; 612 } 613 case Instruction::FPToUI: // double->APInt conversion handles sign 614 case Instruction::FPToSI: { 615 GenericValue GV = getConstantValue(Op0); 616 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 617 if (Op0->getType()->isFloatTy()) 618 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 619 else if (Op0->getType()->isDoubleTy()) 620 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 621 else if (Op0->getType()->isX86_FP80Ty()) { 622 APFloat apf = APFloat(GV.IntVal); 623 uint64_t v; 624 bool ignored; 625 (void)apf.convertToInteger(&v, BitWidth, 626 CE->getOpcode()==Instruction::FPToSI, 627 APFloat::rmTowardZero, &ignored); 628 GV.IntVal = v; // endian? 629 } 630 return GV; 631 } 632 case Instruction::PtrToInt: { 633 GenericValue GV = getConstantValue(Op0); 634 uint32_t PtrWidth = TD->getPointerSizeInBits(); 635 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 636 return GV; 637 } 638 case Instruction::IntToPtr: { 639 GenericValue GV = getConstantValue(Op0); 640 uint32_t PtrWidth = TD->getPointerSizeInBits(); 641 if (PtrWidth != GV.IntVal.getBitWidth()) 642 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 643 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 644 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 645 return GV; 646 } 647 case Instruction::BitCast: { 648 GenericValue GV = getConstantValue(Op0); 649 const Type* DestTy = CE->getType(); 650 switch (Op0->getType()->getTypeID()) { 651 default: llvm_unreachable("Invalid bitcast operand"); 652 case Type::IntegerTyID: 653 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 654 if (DestTy->isFloatTy()) 655 GV.FloatVal = GV.IntVal.bitsToFloat(); 656 else if (DestTy->isDoubleTy()) 657 GV.DoubleVal = GV.IntVal.bitsToDouble(); 658 break; 659 case Type::FloatTyID: 660 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 661 GV.IntVal.floatToBits(GV.FloatVal); 662 break; 663 case Type::DoubleTyID: 664 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 665 GV.IntVal.doubleToBits(GV.DoubleVal); 666 break; 667 case Type::PointerTyID: 668 assert(DestTy->isPointerTy() && "Invalid bitcast"); 669 break; // getConstantValue(Op0) above already converted it 670 } 671 return GV; 672 } 673 case Instruction::Add: 674 case Instruction::FAdd: 675 case Instruction::Sub: 676 case Instruction::FSub: 677 case Instruction::Mul: 678 case Instruction::FMul: 679 case Instruction::UDiv: 680 case Instruction::SDiv: 681 case Instruction::URem: 682 case Instruction::SRem: 683 case Instruction::And: 684 case Instruction::Or: 685 case Instruction::Xor: { 686 GenericValue LHS = getConstantValue(Op0); 687 GenericValue RHS = getConstantValue(CE->getOperand(1)); 688 GenericValue GV; 689 switch (CE->getOperand(0)->getType()->getTypeID()) { 690 default: llvm_unreachable("Bad add type!"); 691 case Type::IntegerTyID: 692 switch (CE->getOpcode()) { 693 default: llvm_unreachable("Invalid integer opcode"); 694 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 695 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 696 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 697 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 698 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 699 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 700 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 701 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 702 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 703 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 704 } 705 break; 706 case Type::FloatTyID: 707 switch (CE->getOpcode()) { 708 default: llvm_unreachable("Invalid float opcode"); 709 case Instruction::FAdd: 710 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 711 case Instruction::FSub: 712 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 713 case Instruction::FMul: 714 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 715 case Instruction::FDiv: 716 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 717 case Instruction::FRem: 718 GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break; 719 } 720 break; 721 case Type::DoubleTyID: 722 switch (CE->getOpcode()) { 723 default: llvm_unreachable("Invalid double opcode"); 724 case Instruction::FAdd: 725 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 726 case Instruction::FSub: 727 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 728 case Instruction::FMul: 729 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 730 case Instruction::FDiv: 731 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 732 case Instruction::FRem: 733 GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 734 } 735 break; 736 case Type::X86_FP80TyID: 737 case Type::PPC_FP128TyID: 738 case Type::FP128TyID: { 739 APFloat apfLHS = APFloat(LHS.IntVal); 740 switch (CE->getOpcode()) { 741 default: llvm_unreachable("Invalid long double opcode");llvm_unreachable(0); 742 case Instruction::FAdd: 743 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 744 GV.IntVal = apfLHS.bitcastToAPInt(); 745 break; 746 case Instruction::FSub: 747 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 748 GV.IntVal = apfLHS.bitcastToAPInt(); 749 break; 750 case Instruction::FMul: 751 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 752 GV.IntVal = apfLHS.bitcastToAPInt(); 753 break; 754 case Instruction::FDiv: 755 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 756 GV.IntVal = apfLHS.bitcastToAPInt(); 757 break; 758 case Instruction::FRem: 759 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 760 GV.IntVal = apfLHS.bitcastToAPInt(); 761 break; 762 } 763 } 764 break; 765 } 766 return GV; 767 } 768 default: 769 break; 770 } 771 std::string msg; 772 raw_string_ostream Msg(msg); 773 Msg << "ConstantExpr not handled: " << *CE; 774 report_fatal_error(Msg.str()); 775 } 776 777 GenericValue Result; 778 switch (C->getType()->getTypeID()) { 779 case Type::FloatTyID: 780 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 781 break; 782 case Type::DoubleTyID: 783 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 784 break; 785 case Type::X86_FP80TyID: 786 case Type::FP128TyID: 787 case Type::PPC_FP128TyID: 788 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 789 break; 790 case Type::IntegerTyID: 791 Result.IntVal = cast<ConstantInt>(C)->getValue(); 792 break; 793 case Type::PointerTyID: 794 if (isa<ConstantPointerNull>(C)) 795 Result.PointerVal = 0; 796 else if (const Function *F = dyn_cast<Function>(C)) 797 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 798 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 799 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 800 else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 801 Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>( 802 BA->getBasicBlock()))); 803 else 804 llvm_unreachable("Unknown constant pointer type!"); 805 break; 806 default: 807 std::string msg; 808 raw_string_ostream Msg(msg); 809 Msg << "ERROR: Constant unimplemented for type: " << *C->getType(); 810 report_fatal_error(Msg.str()); 811 } 812 return Result; 813 } 814 815 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 816 /// with the integer held in IntVal. 817 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 818 unsigned StoreBytes) { 819 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 820 uint8_t *Src = (uint8_t *)IntVal.getRawData(); 821 822 if (sys::isLittleEndianHost()) 823 // Little-endian host - the source is ordered from LSB to MSB. Order the 824 // destination from LSB to MSB: Do a straight copy. 825 memcpy(Dst, Src, StoreBytes); 826 else { 827 // Big-endian host - the source is an array of 64 bit words ordered from 828 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 829 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 830 while (StoreBytes > sizeof(uint64_t)) { 831 StoreBytes -= sizeof(uint64_t); 832 // May not be aligned so use memcpy. 833 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 834 Src += sizeof(uint64_t); 835 } 836 837 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 838 } 839 } 840 841 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr 842 /// is the address of the memory at which to store Val, cast to GenericValue *. 843 /// It is not a pointer to a GenericValue containing the address at which to 844 /// store Val. 845 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 846 GenericValue *Ptr, const Type *Ty) { 847 const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty); 848 849 switch (Ty->getTypeID()) { 850 case Type::IntegerTyID: 851 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 852 break; 853 case Type::FloatTyID: 854 *((float*)Ptr) = Val.FloatVal; 855 break; 856 case Type::DoubleTyID: 857 *((double*)Ptr) = Val.DoubleVal; 858 break; 859 case Type::X86_FP80TyID: 860 memcpy(Ptr, Val.IntVal.getRawData(), 10); 861 break; 862 case Type::PointerTyID: 863 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 864 if (StoreBytes != sizeof(PointerTy)) 865 memset(Ptr, 0, StoreBytes); 866 867 *((PointerTy*)Ptr) = Val.PointerVal; 868 break; 869 default: 870 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 871 } 872 873 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) 874 // Host and target are different endian - reverse the stored bytes. 875 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 876 } 877 878 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 879 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 880 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 881 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 882 uint8_t *Dst = (uint8_t *)IntVal.getRawData(); 883 884 if (sys::isLittleEndianHost()) 885 // Little-endian host - the destination must be ordered from LSB to MSB. 886 // The source is ordered from LSB to MSB: Do a straight copy. 887 memcpy(Dst, Src, LoadBytes); 888 else { 889 // Big-endian - the destination is an array of 64 bit words ordered from 890 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 891 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 892 // a word. 893 while (LoadBytes > sizeof(uint64_t)) { 894 LoadBytes -= sizeof(uint64_t); 895 // May not be aligned so use memcpy. 896 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 897 Dst += sizeof(uint64_t); 898 } 899 900 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 901 } 902 } 903 904 /// FIXME: document 905 /// 906 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 907 GenericValue *Ptr, 908 const Type *Ty) { 909 const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty); 910 911 switch (Ty->getTypeID()) { 912 case Type::IntegerTyID: 913 // An APInt with all words initially zero. 914 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 915 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 916 break; 917 case Type::FloatTyID: 918 Result.FloatVal = *((float*)Ptr); 919 break; 920 case Type::DoubleTyID: 921 Result.DoubleVal = *((double*)Ptr); 922 break; 923 case Type::PointerTyID: 924 Result.PointerVal = *((PointerTy*)Ptr); 925 break; 926 case Type::X86_FP80TyID: { 927 // This is endian dependent, but it will only work on x86 anyway. 928 // FIXME: Will not trap if loading a signaling NaN. 929 uint64_t y[2]; 930 memcpy(y, Ptr, 10); 931 Result.IntVal = APInt(80, 2, y); 932 break; 933 } 934 default: 935 std::string msg; 936 raw_string_ostream Msg(msg); 937 Msg << "Cannot load value of type " << *Ty << "!"; 938 report_fatal_error(Msg.str()); 939 } 940 } 941 942 // InitializeMemory - Recursive function to apply a Constant value into the 943 // specified memory location... 944 // 945 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 946 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 947 DEBUG(Init->dump()); 948 if (isa<UndefValue>(Init)) { 949 return; 950 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 951 unsigned ElementSize = 952 getTargetData()->getTypeAllocSize(CP->getType()->getElementType()); 953 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 954 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 955 return; 956 } else if (isa<ConstantAggregateZero>(Init)) { 957 memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType())); 958 return; 959 } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 960 unsigned ElementSize = 961 getTargetData()->getTypeAllocSize(CPA->getType()->getElementType()); 962 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 963 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 964 return; 965 } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 966 const StructLayout *SL = 967 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 968 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 969 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 970 return; 971 } else if (Init->getType()->isFirstClassType()) { 972 GenericValue Val = getConstantValue(Init); 973 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 974 return; 975 } 976 977 dbgs() << "Bad Type: " << *Init->getType() << "\n"; 978 llvm_unreachable("Unknown constant type to initialize memory with!"); 979 } 980 981 /// EmitGlobals - Emit all of the global variables to memory, storing their 982 /// addresses into GlobalAddress. This must make sure to copy the contents of 983 /// their initializers into the memory. 984 /// 985 void ExecutionEngine::emitGlobals() { 986 987 // Loop over all of the global variables in the program, allocating the memory 988 // to hold them. If there is more than one module, do a prepass over globals 989 // to figure out how the different modules should link together. 990 // 991 std::map<std::pair<std::string, const Type*>, 992 const GlobalValue*> LinkedGlobalsMap; 993 994 if (Modules.size() != 1) { 995 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 996 Module &M = *Modules[m]; 997 for (Module::const_global_iterator I = M.global_begin(), 998 E = M.global_end(); I != E; ++I) { 999 const GlobalValue *GV = I; 1000 if (GV->hasLocalLinkage() || GV->isDeclaration() || 1001 GV->hasAppendingLinkage() || !GV->hasName()) 1002 continue;// Ignore external globals and globals with internal linkage. 1003 1004 const GlobalValue *&GVEntry = 1005 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1006 1007 // If this is the first time we've seen this global, it is the canonical 1008 // version. 1009 if (!GVEntry) { 1010 GVEntry = GV; 1011 continue; 1012 } 1013 1014 // If the existing global is strong, never replace it. 1015 if (GVEntry->hasExternalLinkage() || 1016 GVEntry->hasDLLImportLinkage() || 1017 GVEntry->hasDLLExportLinkage()) 1018 continue; 1019 1020 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1021 // symbol. FIXME is this right for common? 1022 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1023 GVEntry = GV; 1024 } 1025 } 1026 } 1027 1028 std::vector<const GlobalValue*> NonCanonicalGlobals; 1029 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1030 Module &M = *Modules[m]; 1031 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1032 I != E; ++I) { 1033 // In the multi-module case, see what this global maps to. 1034 if (!LinkedGlobalsMap.empty()) { 1035 if (const GlobalValue *GVEntry = 1036 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 1037 // If something else is the canonical global, ignore this one. 1038 if (GVEntry != &*I) { 1039 NonCanonicalGlobals.push_back(I); 1040 continue; 1041 } 1042 } 1043 } 1044 1045 if (!I->isDeclaration()) { 1046 addGlobalMapping(I, getMemoryForGV(I)); 1047 } else { 1048 // External variable reference. Try to use the dynamic loader to 1049 // get a pointer to it. 1050 if (void *SymAddr = 1051 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName())) 1052 addGlobalMapping(I, SymAddr); 1053 else { 1054 report_fatal_error("Could not resolve external global address: " 1055 +I->getName()); 1056 } 1057 } 1058 } 1059 1060 // If there are multiple modules, map the non-canonical globals to their 1061 // canonical location. 1062 if (!NonCanonicalGlobals.empty()) { 1063 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1064 const GlobalValue *GV = NonCanonicalGlobals[i]; 1065 const GlobalValue *CGV = 1066 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1067 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1068 assert(Ptr && "Canonical global wasn't codegen'd!"); 1069 addGlobalMapping(GV, Ptr); 1070 } 1071 } 1072 1073 // Now that all of the globals are set up in memory, loop through them all 1074 // and initialize their contents. 1075 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1076 I != E; ++I) { 1077 if (!I->isDeclaration()) { 1078 if (!LinkedGlobalsMap.empty()) { 1079 if (const GlobalValue *GVEntry = 1080 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 1081 if (GVEntry != &*I) // Not the canonical variable. 1082 continue; 1083 } 1084 EmitGlobalVariable(I); 1085 } 1086 } 1087 } 1088 } 1089 1090 // EmitGlobalVariable - This method emits the specified global variable to the 1091 // address specified in GlobalAddresses, or allocates new memory if it's not 1092 // already in the map. 1093 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1094 void *GA = getPointerToGlobalIfAvailable(GV); 1095 1096 if (GA == 0) { 1097 // If it's not already specified, allocate memory for the global. 1098 GA = getMemoryForGV(GV); 1099 addGlobalMapping(GV, GA); 1100 } 1101 1102 // Don't initialize if it's thread local, let the client do it. 1103 if (!GV->isThreadLocal()) 1104 InitializeMemory(GV->getInitializer(), GA); 1105 1106 const Type *ElTy = GV->getType()->getElementType(); 1107 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 1108 NumInitBytes += (unsigned)GVSize; 1109 ++NumGlobals; 1110 } 1111 1112 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1113 : EE(EE), GlobalAddressMap(this) { 1114 } 1115 1116 sys::Mutex *ExecutionEngineState::AddressMapConfig::getMutex( 1117 ExecutionEngineState *EES) { 1118 return &EES->EE.lock; 1119 } 1120 void ExecutionEngineState::AddressMapConfig::onDelete( 1121 ExecutionEngineState *EES, const GlobalValue *Old) { 1122 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1123 EES->GlobalAddressReverseMap.erase(OldVal); 1124 } 1125 1126 void ExecutionEngineState::AddressMapConfig::onRAUW( 1127 ExecutionEngineState *, const GlobalValue *, const GlobalValue *) { 1128 assert(false && "The ExecutionEngine doesn't know how to handle a" 1129 " RAUW on a value it has a global mapping for."); 1130 } 1131