1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/ExecutionEngine/ExecutionEngine.h" 17 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Module.h" 21 #include "llvm/ExecutionEngine/GenericValue.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/MutexGuard.h" 27 #include "llvm/Support/ValueHandle.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Support/DynamicLibrary.h" 30 #include "llvm/Support/Host.h" 31 #include "llvm/Target/TargetData.h" 32 #include <cmath> 33 #include <cstring> 34 using namespace llvm; 35 36 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 37 STATISTIC(NumGlobals , "Number of global vars initialized"); 38 39 ExecutionEngine *(*ExecutionEngine::JITCtor)( 40 Module *M, 41 std::string *ErrorStr, 42 JITMemoryManager *JMM, 43 CodeGenOpt::Level OptLevel, 44 bool GVsWithCode, 45 CodeModel::Model CMM, 46 StringRef MArch, 47 StringRef MCPU, 48 const SmallVectorImpl<std::string>& MAttrs) = 0; 49 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 50 Module *M, 51 std::string *ErrorStr, 52 JITMemoryManager *JMM, 53 CodeGenOpt::Level OptLevel, 54 bool GVsWithCode, 55 CodeModel::Model CMM, 56 StringRef MArch, 57 StringRef MCPU, 58 const SmallVectorImpl<std::string>& MAttrs) = 0; 59 ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M, 60 std::string *ErrorStr) = 0; 61 62 ExecutionEngine::ExecutionEngine(Module *M) 63 : EEState(*this), 64 LazyFunctionCreator(0), 65 ExceptionTableRegister(0), 66 ExceptionTableDeregister(0) { 67 CompilingLazily = false; 68 GVCompilationDisabled = false; 69 SymbolSearchingDisabled = false; 70 Modules.push_back(M); 71 assert(M && "Module is null?"); 72 } 73 74 ExecutionEngine::~ExecutionEngine() { 75 clearAllGlobalMappings(); 76 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 77 delete Modules[i]; 78 } 79 80 void ExecutionEngine::DeregisterAllTables() { 81 if (ExceptionTableDeregister) { 82 DenseMap<const Function*, void*>::iterator it = AllExceptionTables.begin(); 83 DenseMap<const Function*, void*>::iterator ite = AllExceptionTables.end(); 84 for (; it != ite; ++it) 85 ExceptionTableDeregister(it->second); 86 AllExceptionTables.clear(); 87 } 88 } 89 90 namespace { 91 /// \brief Helper class which uses a value handler to automatically deletes the 92 /// memory block when the GlobalVariable is destroyed. 93 class GVMemoryBlock : public CallbackVH { 94 GVMemoryBlock(const GlobalVariable *GV) 95 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 96 97 public: 98 /// \brief Returns the address the GlobalVariable should be written into. The 99 /// GVMemoryBlock object prefixes that. 100 static char *Create(const GlobalVariable *GV, const TargetData& TD) { 101 const Type *ElTy = GV->getType()->getElementType(); 102 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 103 void *RawMemory = ::operator new( 104 TargetData::RoundUpAlignment(sizeof(GVMemoryBlock), 105 TD.getPreferredAlignment(GV)) 106 + GVSize); 107 new(RawMemory) GVMemoryBlock(GV); 108 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 109 } 110 111 virtual void deleted() { 112 // We allocated with operator new and with some extra memory hanging off the 113 // end, so don't just delete this. I'm not sure if this is actually 114 // required. 115 this->~GVMemoryBlock(); 116 ::operator delete(this); 117 } 118 }; 119 } // anonymous namespace 120 121 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 122 return GVMemoryBlock::Create(GV, *getTargetData()); 123 } 124 125 bool ExecutionEngine::removeModule(Module *M) { 126 for(SmallVector<Module *, 1>::iterator I = Modules.begin(), 127 E = Modules.end(); I != E; ++I) { 128 Module *Found = *I; 129 if (Found == M) { 130 Modules.erase(I); 131 clearGlobalMappingsFromModule(M); 132 return true; 133 } 134 } 135 return false; 136 } 137 138 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 139 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 140 if (Function *F = Modules[i]->getFunction(FnName)) 141 return F; 142 } 143 return 0; 144 } 145 146 147 void *ExecutionEngineState::RemoveMapping(const MutexGuard &, 148 const GlobalValue *ToUnmap) { 149 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 150 void *OldVal; 151 152 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 153 // GlobalAddressMap. 154 if (I == GlobalAddressMap.end()) 155 OldVal = 0; 156 else { 157 OldVal = I->second; 158 GlobalAddressMap.erase(I); 159 } 160 161 GlobalAddressReverseMap.erase(OldVal); 162 return OldVal; 163 } 164 165 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 166 MutexGuard locked(lock); 167 168 DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 169 << "\' to [" << Addr << "]\n";); 170 void *&CurVal = EEState.getGlobalAddressMap(locked)[GV]; 171 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 172 CurVal = Addr; 173 174 // If we are using the reverse mapping, add it too. 175 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 176 AssertingVH<const GlobalValue> &V = 177 EEState.getGlobalAddressReverseMap(locked)[Addr]; 178 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 179 V = GV; 180 } 181 } 182 183 void ExecutionEngine::clearAllGlobalMappings() { 184 MutexGuard locked(lock); 185 186 EEState.getGlobalAddressMap(locked).clear(); 187 EEState.getGlobalAddressReverseMap(locked).clear(); 188 } 189 190 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 191 MutexGuard locked(lock); 192 193 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) 194 EEState.RemoveMapping(locked, FI); 195 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 196 GI != GE; ++GI) 197 EEState.RemoveMapping(locked, GI); 198 } 199 200 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 201 MutexGuard locked(lock); 202 203 ExecutionEngineState::GlobalAddressMapTy &Map = 204 EEState.getGlobalAddressMap(locked); 205 206 // Deleting from the mapping? 207 if (Addr == 0) 208 return EEState.RemoveMapping(locked, GV); 209 210 void *&CurVal = Map[GV]; 211 void *OldVal = CurVal; 212 213 if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty()) 214 EEState.getGlobalAddressReverseMap(locked).erase(CurVal); 215 CurVal = Addr; 216 217 // If we are using the reverse mapping, add it too. 218 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 219 AssertingVH<const GlobalValue> &V = 220 EEState.getGlobalAddressReverseMap(locked)[Addr]; 221 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 222 V = GV; 223 } 224 return OldVal; 225 } 226 227 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 228 MutexGuard locked(lock); 229 230 ExecutionEngineState::GlobalAddressMapTy::iterator I = 231 EEState.getGlobalAddressMap(locked).find(GV); 232 return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0; 233 } 234 235 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 236 MutexGuard locked(lock); 237 238 // If we haven't computed the reverse mapping yet, do so first. 239 if (EEState.getGlobalAddressReverseMap(locked).empty()) { 240 for (ExecutionEngineState::GlobalAddressMapTy::iterator 241 I = EEState.getGlobalAddressMap(locked).begin(), 242 E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I) 243 EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair( 244 I->second, I->first)); 245 } 246 247 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 248 EEState.getGlobalAddressReverseMap(locked).find(Addr); 249 return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 250 } 251 252 namespace { 253 class ArgvArray { 254 char *Array; 255 std::vector<char*> Values; 256 public: 257 ArgvArray() : Array(NULL) {} 258 ~ArgvArray() { clear(); } 259 void clear() { 260 delete[] Array; 261 Array = NULL; 262 for (size_t I = 0, E = Values.size(); I != E; ++I) { 263 delete[] Values[I]; 264 } 265 Values.clear(); 266 } 267 /// Turn a vector of strings into a nice argv style array of pointers to null 268 /// terminated strings. 269 void *reset(LLVMContext &C, ExecutionEngine *EE, 270 const std::vector<std::string> &InputArgv); 271 }; 272 } // anonymous namespace 273 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 274 const std::vector<std::string> &InputArgv) { 275 clear(); // Free the old contents. 276 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 277 Array = new char[(InputArgv.size()+1)*PtrSize]; 278 279 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n"); 280 const Type *SBytePtr = Type::getInt8PtrTy(C); 281 282 for (unsigned i = 0; i != InputArgv.size(); ++i) { 283 unsigned Size = InputArgv[i].size()+1; 284 char *Dest = new char[Size]; 285 Values.push_back(Dest); 286 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"); 287 288 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 289 Dest[Size-1] = 0; 290 291 // Endian safe: Array[i] = (PointerTy)Dest; 292 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize), 293 SBytePtr); 294 } 295 296 // Null terminate it 297 EE->StoreValueToMemory(PTOGV(0), 298 (GenericValue*)(Array+InputArgv.size()*PtrSize), 299 SBytePtr); 300 return Array; 301 } 302 303 void ExecutionEngine::runStaticConstructorsDestructors(Module *module, 304 bool isDtors) { 305 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 306 GlobalVariable *GV = module->getNamedGlobal(Name); 307 308 // If this global has internal linkage, or if it has a use, then it must be 309 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 310 // this is the case, don't execute any of the global ctors, __main will do 311 // it. 312 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 313 314 // Should be an array of '{ i32, void ()* }' structs. The first value is 315 // the init priority, which we ignore. 316 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 317 if (!InitList) return; 318 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 319 ConstantStruct *CS = 320 dyn_cast<ConstantStruct>(InitList->getOperand(i)); 321 if (!CS) continue; 322 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 323 324 Constant *FP = CS->getOperand(1); 325 if (FP->isNullValue()) 326 break; // Found a null terminator, exit. 327 328 // Strip off constant expression casts. 329 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 330 if (CE->isCast()) 331 FP = CE->getOperand(0); 332 333 // Execute the ctor/dtor function! 334 if (Function *F = dyn_cast<Function>(FP)) 335 runFunction(F, std::vector<GenericValue>()); 336 337 // FIXME: It is marginally lame that we just do nothing here if we see an 338 // entry we don't recognize. It might not be unreasonable for the verifier 339 // to not even allow this and just assert here. 340 } 341 } 342 343 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 344 // Execute global ctors/dtors for each module in the program. 345 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 346 runStaticConstructorsDestructors(Modules[i], isDtors); 347 } 348 349 #ifndef NDEBUG 350 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 351 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 352 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 353 for (unsigned i = 0; i < PtrSize; ++i) 354 if (*(i + (uint8_t*)Loc)) 355 return false; 356 return true; 357 } 358 #endif 359 360 int ExecutionEngine::runFunctionAsMain(Function *Fn, 361 const std::vector<std::string> &argv, 362 const char * const * envp) { 363 std::vector<GenericValue> GVArgs; 364 GenericValue GVArgc; 365 GVArgc.IntVal = APInt(32, argv.size()); 366 367 // Check main() type 368 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 369 const FunctionType *FTy = Fn->getFunctionType(); 370 const Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 371 372 // Check the argument types. 373 if (NumArgs > 3) 374 report_fatal_error("Invalid number of arguments of main() supplied"); 375 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 376 report_fatal_error("Invalid type for third argument of main() supplied"); 377 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 378 report_fatal_error("Invalid type for second argument of main() supplied"); 379 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 380 report_fatal_error("Invalid type for first argument of main() supplied"); 381 if (!FTy->getReturnType()->isIntegerTy() && 382 !FTy->getReturnType()->isVoidTy()) 383 report_fatal_error("Invalid return type of main() supplied"); 384 385 ArgvArray CArgv; 386 ArgvArray CEnv; 387 if (NumArgs) { 388 GVArgs.push_back(GVArgc); // Arg #0 = argc. 389 if (NumArgs > 1) { 390 // Arg #1 = argv. 391 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 392 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 393 "argv[0] was null after CreateArgv"); 394 if (NumArgs > 2) { 395 std::vector<std::string> EnvVars; 396 for (unsigned i = 0; envp[i]; ++i) 397 EnvVars.push_back(envp[i]); 398 // Arg #2 = envp. 399 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 400 } 401 } 402 } 403 404 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 405 } 406 407 ExecutionEngine *ExecutionEngine::create(Module *M, 408 bool ForceInterpreter, 409 std::string *ErrorStr, 410 CodeGenOpt::Level OptLevel, 411 bool GVsWithCode) { 412 return EngineBuilder(M) 413 .setEngineKind(ForceInterpreter 414 ? EngineKind::Interpreter 415 : EngineKind::JIT) 416 .setErrorStr(ErrorStr) 417 .setOptLevel(OptLevel) 418 .setAllocateGVsWithCode(GVsWithCode) 419 .create(); 420 } 421 422 ExecutionEngine *EngineBuilder::create() { 423 // Make sure we can resolve symbols in the program as well. The zero arg 424 // to the function tells DynamicLibrary to load the program, not a library. 425 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) 426 return 0; 427 428 // If the user specified a memory manager but didn't specify which engine to 429 // create, we assume they only want the JIT, and we fail if they only want 430 // the interpreter. 431 if (JMM) { 432 if (WhichEngine & EngineKind::JIT) 433 WhichEngine = EngineKind::JIT; 434 else { 435 if (ErrorStr) 436 *ErrorStr = "Cannot create an interpreter with a memory manager."; 437 return 0; 438 } 439 } 440 441 // Unless the interpreter was explicitly selected or the JIT is not linked, 442 // try making a JIT. 443 if (WhichEngine & EngineKind::JIT) { 444 if (UseMCJIT && ExecutionEngine::MCJITCtor) { 445 ExecutionEngine *EE = 446 ExecutionEngine::MCJITCtor(M, ErrorStr, JMM, OptLevel, 447 AllocateGVsWithCode, CMModel, 448 MArch, MCPU, MAttrs); 449 if (EE) return EE; 450 } else if (ExecutionEngine::JITCtor) { 451 ExecutionEngine *EE = 452 ExecutionEngine::JITCtor(M, ErrorStr, JMM, OptLevel, 453 AllocateGVsWithCode, CMModel, 454 MArch, MCPU, MAttrs); 455 if (EE) return EE; 456 } 457 } 458 459 // If we can't make a JIT and we didn't request one specifically, try making 460 // an interpreter instead. 461 if (WhichEngine & EngineKind::Interpreter) { 462 if (ExecutionEngine::InterpCtor) 463 return ExecutionEngine::InterpCtor(M, ErrorStr); 464 if (ErrorStr) 465 *ErrorStr = "Interpreter has not been linked in."; 466 return 0; 467 } 468 469 if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) { 470 if (ErrorStr) 471 *ErrorStr = "JIT has not been linked in."; 472 } 473 474 return 0; 475 } 476 477 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 478 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 479 return getPointerToFunction(F); 480 481 MutexGuard locked(lock); 482 if (void *P = EEState.getGlobalAddressMap(locked)[GV]) 483 return P; 484 485 // Global variable might have been added since interpreter started. 486 if (GlobalVariable *GVar = 487 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 488 EmitGlobalVariable(GVar); 489 else 490 llvm_unreachable("Global hasn't had an address allocated yet!"); 491 492 return EEState.getGlobalAddressMap(locked)[GV]; 493 } 494 495 /// \brief Converts a Constant* into a GenericValue, including handling of 496 /// ConstantExpr values. 497 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 498 // If its undefined, return the garbage. 499 if (isa<UndefValue>(C)) { 500 GenericValue Result; 501 switch (C->getType()->getTypeID()) { 502 case Type::IntegerTyID: 503 case Type::X86_FP80TyID: 504 case Type::FP128TyID: 505 case Type::PPC_FP128TyID: 506 // Although the value is undefined, we still have to construct an APInt 507 // with the correct bit width. 508 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 509 break; 510 default: 511 break; 512 } 513 return Result; 514 } 515 516 // Otherwise, if the value is a ConstantExpr... 517 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 518 Constant *Op0 = CE->getOperand(0); 519 switch (CE->getOpcode()) { 520 case Instruction::GetElementPtr: { 521 // Compute the index 522 GenericValue Result = getConstantValue(Op0); 523 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); 524 uint64_t Offset = 525 TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size()); 526 527 char* tmp = (char*) Result.PointerVal; 528 Result = PTOGV(tmp + Offset); 529 return Result; 530 } 531 case Instruction::Trunc: { 532 GenericValue GV = getConstantValue(Op0); 533 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 534 GV.IntVal = GV.IntVal.trunc(BitWidth); 535 return GV; 536 } 537 case Instruction::ZExt: { 538 GenericValue GV = getConstantValue(Op0); 539 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 540 GV.IntVal = GV.IntVal.zext(BitWidth); 541 return GV; 542 } 543 case Instruction::SExt: { 544 GenericValue GV = getConstantValue(Op0); 545 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 546 GV.IntVal = GV.IntVal.sext(BitWidth); 547 return GV; 548 } 549 case Instruction::FPTrunc: { 550 // FIXME long double 551 GenericValue GV = getConstantValue(Op0); 552 GV.FloatVal = float(GV.DoubleVal); 553 return GV; 554 } 555 case Instruction::FPExt:{ 556 // FIXME long double 557 GenericValue GV = getConstantValue(Op0); 558 GV.DoubleVal = double(GV.FloatVal); 559 return GV; 560 } 561 case Instruction::UIToFP: { 562 GenericValue GV = getConstantValue(Op0); 563 if (CE->getType()->isFloatTy()) 564 GV.FloatVal = float(GV.IntVal.roundToDouble()); 565 else if (CE->getType()->isDoubleTy()) 566 GV.DoubleVal = GV.IntVal.roundToDouble(); 567 else if (CE->getType()->isX86_FP80Ty()) { 568 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 569 (void)apf.convertFromAPInt(GV.IntVal, 570 false, 571 APFloat::rmNearestTiesToEven); 572 GV.IntVal = apf.bitcastToAPInt(); 573 } 574 return GV; 575 } 576 case Instruction::SIToFP: { 577 GenericValue GV = getConstantValue(Op0); 578 if (CE->getType()->isFloatTy()) 579 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 580 else if (CE->getType()->isDoubleTy()) 581 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 582 else if (CE->getType()->isX86_FP80Ty()) { 583 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 584 (void)apf.convertFromAPInt(GV.IntVal, 585 true, 586 APFloat::rmNearestTiesToEven); 587 GV.IntVal = apf.bitcastToAPInt(); 588 } 589 return GV; 590 } 591 case Instruction::FPToUI: // double->APInt conversion handles sign 592 case Instruction::FPToSI: { 593 GenericValue GV = getConstantValue(Op0); 594 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 595 if (Op0->getType()->isFloatTy()) 596 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 597 else if (Op0->getType()->isDoubleTy()) 598 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 599 else if (Op0->getType()->isX86_FP80Ty()) { 600 APFloat apf = APFloat(GV.IntVal); 601 uint64_t v; 602 bool ignored; 603 (void)apf.convertToInteger(&v, BitWidth, 604 CE->getOpcode()==Instruction::FPToSI, 605 APFloat::rmTowardZero, &ignored); 606 GV.IntVal = v; // endian? 607 } 608 return GV; 609 } 610 case Instruction::PtrToInt: { 611 GenericValue GV = getConstantValue(Op0); 612 uint32_t PtrWidth = TD->getPointerSizeInBits(); 613 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 614 return GV; 615 } 616 case Instruction::IntToPtr: { 617 GenericValue GV = getConstantValue(Op0); 618 uint32_t PtrWidth = TD->getPointerSizeInBits(); 619 if (PtrWidth != GV.IntVal.getBitWidth()) 620 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 621 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 622 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 623 return GV; 624 } 625 case Instruction::BitCast: { 626 GenericValue GV = getConstantValue(Op0); 627 const Type* DestTy = CE->getType(); 628 switch (Op0->getType()->getTypeID()) { 629 default: llvm_unreachable("Invalid bitcast operand"); 630 case Type::IntegerTyID: 631 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 632 if (DestTy->isFloatTy()) 633 GV.FloatVal = GV.IntVal.bitsToFloat(); 634 else if (DestTy->isDoubleTy()) 635 GV.DoubleVal = GV.IntVal.bitsToDouble(); 636 break; 637 case Type::FloatTyID: 638 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 639 GV.IntVal = APInt::floatToBits(GV.FloatVal); 640 break; 641 case Type::DoubleTyID: 642 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 643 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 644 break; 645 case Type::PointerTyID: 646 assert(DestTy->isPointerTy() && "Invalid bitcast"); 647 break; // getConstantValue(Op0) above already converted it 648 } 649 return GV; 650 } 651 case Instruction::Add: 652 case Instruction::FAdd: 653 case Instruction::Sub: 654 case Instruction::FSub: 655 case Instruction::Mul: 656 case Instruction::FMul: 657 case Instruction::UDiv: 658 case Instruction::SDiv: 659 case Instruction::URem: 660 case Instruction::SRem: 661 case Instruction::And: 662 case Instruction::Or: 663 case Instruction::Xor: { 664 GenericValue LHS = getConstantValue(Op0); 665 GenericValue RHS = getConstantValue(CE->getOperand(1)); 666 GenericValue GV; 667 switch (CE->getOperand(0)->getType()->getTypeID()) { 668 default: llvm_unreachable("Bad add type!"); 669 case Type::IntegerTyID: 670 switch (CE->getOpcode()) { 671 default: llvm_unreachable("Invalid integer opcode"); 672 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 673 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 674 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 675 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 676 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 677 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 678 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 679 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 680 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 681 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 682 } 683 break; 684 case Type::FloatTyID: 685 switch (CE->getOpcode()) { 686 default: llvm_unreachable("Invalid float opcode"); 687 case Instruction::FAdd: 688 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 689 case Instruction::FSub: 690 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 691 case Instruction::FMul: 692 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 693 case Instruction::FDiv: 694 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 695 case Instruction::FRem: 696 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 697 } 698 break; 699 case Type::DoubleTyID: 700 switch (CE->getOpcode()) { 701 default: llvm_unreachable("Invalid double opcode"); 702 case Instruction::FAdd: 703 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 704 case Instruction::FSub: 705 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 706 case Instruction::FMul: 707 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 708 case Instruction::FDiv: 709 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 710 case Instruction::FRem: 711 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 712 } 713 break; 714 case Type::X86_FP80TyID: 715 case Type::PPC_FP128TyID: 716 case Type::FP128TyID: { 717 APFloat apfLHS = APFloat(LHS.IntVal); 718 switch (CE->getOpcode()) { 719 default: llvm_unreachable("Invalid long double opcode"); 720 case Instruction::FAdd: 721 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 722 GV.IntVal = apfLHS.bitcastToAPInt(); 723 break; 724 case Instruction::FSub: 725 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 726 GV.IntVal = apfLHS.bitcastToAPInt(); 727 break; 728 case Instruction::FMul: 729 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 730 GV.IntVal = apfLHS.bitcastToAPInt(); 731 break; 732 case Instruction::FDiv: 733 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 734 GV.IntVal = apfLHS.bitcastToAPInt(); 735 break; 736 case Instruction::FRem: 737 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 738 GV.IntVal = apfLHS.bitcastToAPInt(); 739 break; 740 } 741 } 742 break; 743 } 744 return GV; 745 } 746 default: 747 break; 748 } 749 750 SmallString<256> Msg; 751 raw_svector_ostream OS(Msg); 752 OS << "ConstantExpr not handled: " << *CE; 753 report_fatal_error(OS.str()); 754 } 755 756 // Otherwise, we have a simple constant. 757 GenericValue Result; 758 switch (C->getType()->getTypeID()) { 759 case Type::FloatTyID: 760 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 761 break; 762 case Type::DoubleTyID: 763 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 764 break; 765 case Type::X86_FP80TyID: 766 case Type::FP128TyID: 767 case Type::PPC_FP128TyID: 768 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 769 break; 770 case Type::IntegerTyID: 771 Result.IntVal = cast<ConstantInt>(C)->getValue(); 772 break; 773 case Type::PointerTyID: 774 if (isa<ConstantPointerNull>(C)) 775 Result.PointerVal = 0; 776 else if (const Function *F = dyn_cast<Function>(C)) 777 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 778 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 779 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 780 else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 781 Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>( 782 BA->getBasicBlock()))); 783 else 784 llvm_unreachable("Unknown constant pointer type!"); 785 break; 786 default: 787 SmallString<256> Msg; 788 raw_svector_ostream OS(Msg); 789 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 790 report_fatal_error(OS.str()); 791 } 792 793 return Result; 794 } 795 796 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 797 /// with the integer held in IntVal. 798 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 799 unsigned StoreBytes) { 800 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 801 uint8_t *Src = (uint8_t *)IntVal.getRawData(); 802 803 if (sys::isLittleEndianHost()) { 804 // Little-endian host - the source is ordered from LSB to MSB. Order the 805 // destination from LSB to MSB: Do a straight copy. 806 memcpy(Dst, Src, StoreBytes); 807 } else { 808 // Big-endian host - the source is an array of 64 bit words ordered from 809 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 810 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 811 while (StoreBytes > sizeof(uint64_t)) { 812 StoreBytes -= sizeof(uint64_t); 813 // May not be aligned so use memcpy. 814 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 815 Src += sizeof(uint64_t); 816 } 817 818 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 819 } 820 } 821 822 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 823 GenericValue *Ptr, const Type *Ty) { 824 const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty); 825 826 switch (Ty->getTypeID()) { 827 case Type::IntegerTyID: 828 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 829 break; 830 case Type::FloatTyID: 831 *((float*)Ptr) = Val.FloatVal; 832 break; 833 case Type::DoubleTyID: 834 *((double*)Ptr) = Val.DoubleVal; 835 break; 836 case Type::X86_FP80TyID: 837 memcpy(Ptr, Val.IntVal.getRawData(), 10); 838 break; 839 case Type::PointerTyID: 840 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 841 if (StoreBytes != sizeof(PointerTy)) 842 memset(Ptr, 0, StoreBytes); 843 844 *((PointerTy*)Ptr) = Val.PointerVal; 845 break; 846 default: 847 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 848 } 849 850 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) 851 // Host and target are different endian - reverse the stored bytes. 852 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 853 } 854 855 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 856 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 857 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 858 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 859 uint8_t *Dst = (uint8_t *)IntVal.getRawData(); 860 861 if (sys::isLittleEndianHost()) 862 // Little-endian host - the destination must be ordered from LSB to MSB. 863 // The source is ordered from LSB to MSB: Do a straight copy. 864 memcpy(Dst, Src, LoadBytes); 865 else { 866 // Big-endian - the destination is an array of 64 bit words ordered from 867 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 868 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 869 // a word. 870 while (LoadBytes > sizeof(uint64_t)) { 871 LoadBytes -= sizeof(uint64_t); 872 // May not be aligned so use memcpy. 873 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 874 Dst += sizeof(uint64_t); 875 } 876 877 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 878 } 879 } 880 881 /// FIXME: document 882 /// 883 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 884 GenericValue *Ptr, 885 const Type *Ty) { 886 const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty); 887 888 switch (Ty->getTypeID()) { 889 case Type::IntegerTyID: 890 // An APInt with all words initially zero. 891 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 892 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 893 break; 894 case Type::FloatTyID: 895 Result.FloatVal = *((float*)Ptr); 896 break; 897 case Type::DoubleTyID: 898 Result.DoubleVal = *((double*)Ptr); 899 break; 900 case Type::PointerTyID: 901 Result.PointerVal = *((PointerTy*)Ptr); 902 break; 903 case Type::X86_FP80TyID: { 904 // This is endian dependent, but it will only work on x86 anyway. 905 // FIXME: Will not trap if loading a signaling NaN. 906 uint64_t y[2]; 907 memcpy(y, Ptr, 10); 908 Result.IntVal = APInt(80, 2, y); 909 break; 910 } 911 default: 912 SmallString<256> Msg; 913 raw_svector_ostream OS(Msg); 914 OS << "Cannot load value of type " << *Ty << "!"; 915 report_fatal_error(OS.str()); 916 } 917 } 918 919 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 920 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 921 DEBUG(Init->dump()); 922 if (isa<UndefValue>(Init)) { 923 return; 924 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 925 unsigned ElementSize = 926 getTargetData()->getTypeAllocSize(CP->getType()->getElementType()); 927 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 928 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 929 return; 930 } else if (isa<ConstantAggregateZero>(Init)) { 931 memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType())); 932 return; 933 } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 934 unsigned ElementSize = 935 getTargetData()->getTypeAllocSize(CPA->getType()->getElementType()); 936 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 937 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 938 return; 939 } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 940 const StructLayout *SL = 941 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 942 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 943 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 944 return; 945 } else if (Init->getType()->isFirstClassType()) { 946 GenericValue Val = getConstantValue(Init); 947 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 948 return; 949 } 950 951 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 952 llvm_unreachable("Unknown constant type to initialize memory with!"); 953 } 954 955 /// EmitGlobals - Emit all of the global variables to memory, storing their 956 /// addresses into GlobalAddress. This must make sure to copy the contents of 957 /// their initializers into the memory. 958 void ExecutionEngine::emitGlobals() { 959 // Loop over all of the global variables in the program, allocating the memory 960 // to hold them. If there is more than one module, do a prepass over globals 961 // to figure out how the different modules should link together. 962 std::map<std::pair<std::string, const Type*>, 963 const GlobalValue*> LinkedGlobalsMap; 964 965 if (Modules.size() != 1) { 966 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 967 Module &M = *Modules[m]; 968 for (Module::const_global_iterator I = M.global_begin(), 969 E = M.global_end(); I != E; ++I) { 970 const GlobalValue *GV = I; 971 if (GV->hasLocalLinkage() || GV->isDeclaration() || 972 GV->hasAppendingLinkage() || !GV->hasName()) 973 continue;// Ignore external globals and globals with internal linkage. 974 975 const GlobalValue *&GVEntry = 976 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 977 978 // If this is the first time we've seen this global, it is the canonical 979 // version. 980 if (!GVEntry) { 981 GVEntry = GV; 982 continue; 983 } 984 985 // If the existing global is strong, never replace it. 986 if (GVEntry->hasExternalLinkage() || 987 GVEntry->hasDLLImportLinkage() || 988 GVEntry->hasDLLExportLinkage()) 989 continue; 990 991 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 992 // symbol. FIXME is this right for common? 993 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 994 GVEntry = GV; 995 } 996 } 997 } 998 999 std::vector<const GlobalValue*> NonCanonicalGlobals; 1000 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1001 Module &M = *Modules[m]; 1002 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1003 I != E; ++I) { 1004 // In the multi-module case, see what this global maps to. 1005 if (!LinkedGlobalsMap.empty()) { 1006 if (const GlobalValue *GVEntry = 1007 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 1008 // If something else is the canonical global, ignore this one. 1009 if (GVEntry != &*I) { 1010 NonCanonicalGlobals.push_back(I); 1011 continue; 1012 } 1013 } 1014 } 1015 1016 if (!I->isDeclaration()) { 1017 addGlobalMapping(I, getMemoryForGV(I)); 1018 } else { 1019 // External variable reference. Try to use the dynamic loader to 1020 // get a pointer to it. 1021 if (void *SymAddr = 1022 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName())) 1023 addGlobalMapping(I, SymAddr); 1024 else { 1025 report_fatal_error("Could not resolve external global address: " 1026 +I->getName()); 1027 } 1028 } 1029 } 1030 1031 // If there are multiple modules, map the non-canonical globals to their 1032 // canonical location. 1033 if (!NonCanonicalGlobals.empty()) { 1034 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1035 const GlobalValue *GV = NonCanonicalGlobals[i]; 1036 const GlobalValue *CGV = 1037 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1038 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1039 assert(Ptr && "Canonical global wasn't codegen'd!"); 1040 addGlobalMapping(GV, Ptr); 1041 } 1042 } 1043 1044 // Now that all of the globals are set up in memory, loop through them all 1045 // and initialize their contents. 1046 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1047 I != E; ++I) { 1048 if (!I->isDeclaration()) { 1049 if (!LinkedGlobalsMap.empty()) { 1050 if (const GlobalValue *GVEntry = 1051 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 1052 if (GVEntry != &*I) // Not the canonical variable. 1053 continue; 1054 } 1055 EmitGlobalVariable(I); 1056 } 1057 } 1058 } 1059 } 1060 1061 // EmitGlobalVariable - This method emits the specified global variable to the 1062 // address specified in GlobalAddresses, or allocates new memory if it's not 1063 // already in the map. 1064 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1065 void *GA = getPointerToGlobalIfAvailable(GV); 1066 1067 if (GA == 0) { 1068 // If it's not already specified, allocate memory for the global. 1069 GA = getMemoryForGV(GV); 1070 addGlobalMapping(GV, GA); 1071 } 1072 1073 // Don't initialize if it's thread local, let the client do it. 1074 if (!GV->isThreadLocal()) 1075 InitializeMemory(GV->getInitializer(), GA); 1076 1077 const Type *ElTy = GV->getType()->getElementType(); 1078 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 1079 NumInitBytes += (unsigned)GVSize; 1080 ++NumGlobals; 1081 } 1082 1083 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1084 : EE(EE), GlobalAddressMap(this) { 1085 } 1086 1087 sys::Mutex * 1088 ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) { 1089 return &EES->EE.lock; 1090 } 1091 1092 void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES, 1093 const GlobalValue *Old) { 1094 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1095 EES->GlobalAddressReverseMap.erase(OldVal); 1096 } 1097 1098 void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *, 1099 const GlobalValue *, 1100 const GlobalValue *) { 1101 assert(false && "The ExecutionEngine doesn't know how to handle a" 1102 " RAUW on a value it has a global mapping for."); 1103 } 1104