1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/ExecutionEngine/ExecutionEngine.h" 17 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Module.h" 21 #include "llvm/ExecutionEngine/GenericValue.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/MutexGuard.h" 26 #include "llvm/Support/ValueHandle.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/System/DynamicLibrary.h" 29 #include "llvm/System/Host.h" 30 #include "llvm/Target/TargetData.h" 31 #include <cmath> 32 #include <cstring> 33 using namespace llvm; 34 35 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 36 STATISTIC(NumGlobals , "Number of global vars initialized"); 37 38 ExecutionEngine *(*ExecutionEngine::JITCtor)(Module *M, 39 std::string *ErrorStr, 40 JITMemoryManager *JMM, 41 CodeGenOpt::Level OptLevel, 42 bool GVsWithCode, 43 CodeModel::Model CMM) = 0; 44 ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M, 45 std::string *ErrorStr) = 0; 46 ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0; 47 48 49 ExecutionEngine::ExecutionEngine(Module *M) 50 : EEState(*this), 51 LazyFunctionCreator(0) { 52 CompilingLazily = false; 53 GVCompilationDisabled = false; 54 SymbolSearchingDisabled = false; 55 Modules.push_back(M); 56 assert(M && "Module is null?"); 57 } 58 59 ExecutionEngine::~ExecutionEngine() { 60 clearAllGlobalMappings(); 61 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 62 delete Modules[i]; 63 } 64 65 char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) { 66 const Type *ElTy = GV->getType()->getElementType(); 67 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 68 return new char[GVSize]; 69 } 70 71 /// removeModule - Remove a Module from the list of modules. 72 bool ExecutionEngine::removeModule(Module *M) { 73 for(SmallVector<Module *, 1>::iterator I = Modules.begin(), 74 E = Modules.end(); I != E; ++I) { 75 Module *Found = *I; 76 if (Found == M) { 77 Modules.erase(I); 78 clearGlobalMappingsFromModule(M); 79 return true; 80 } 81 } 82 return false; 83 } 84 85 /// FindFunctionNamed - Search all of the active modules to find the one that 86 /// defines FnName. This is very slow operation and shouldn't be used for 87 /// general code. 88 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 89 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 90 if (Function *F = Modules[i]->getFunction(FnName)) 91 return F; 92 } 93 return 0; 94 } 95 96 97 void *ExecutionEngineState::RemoveMapping( 98 const MutexGuard &, const GlobalValue *ToUnmap) { 99 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 100 void *OldVal; 101 if (I == GlobalAddressMap.end()) 102 OldVal = 0; 103 else { 104 OldVal = I->second; 105 GlobalAddressMap.erase(I); 106 } 107 108 GlobalAddressReverseMap.erase(OldVal); 109 return OldVal; 110 } 111 112 /// addGlobalMapping - Tell the execution engine that the specified global is 113 /// at the specified location. This is used internally as functions are JIT'd 114 /// and as global variables are laid out in memory. It can and should also be 115 /// used by clients of the EE that want to have an LLVM global overlay 116 /// existing data in memory. 117 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 118 MutexGuard locked(lock); 119 120 DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 121 << "\' to [" << Addr << "]\n";); 122 void *&CurVal = EEState.getGlobalAddressMap(locked)[GV]; 123 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 124 CurVal = Addr; 125 126 // If we are using the reverse mapping, add it too 127 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 128 AssertingVH<const GlobalValue> &V = 129 EEState.getGlobalAddressReverseMap(locked)[Addr]; 130 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 131 V = GV; 132 } 133 } 134 135 /// clearAllGlobalMappings - Clear all global mappings and start over again 136 /// use in dynamic compilation scenarios when you want to move globals 137 void ExecutionEngine::clearAllGlobalMappings() { 138 MutexGuard locked(lock); 139 140 EEState.getGlobalAddressMap(locked).clear(); 141 EEState.getGlobalAddressReverseMap(locked).clear(); 142 } 143 144 /// clearGlobalMappingsFromModule - Clear all global mappings that came from a 145 /// particular module, because it has been removed from the JIT. 146 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 147 MutexGuard locked(lock); 148 149 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { 150 EEState.RemoveMapping(locked, FI); 151 } 152 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 153 GI != GE; ++GI) { 154 EEState.RemoveMapping(locked, GI); 155 } 156 } 157 158 /// updateGlobalMapping - Replace an existing mapping for GV with a new 159 /// address. This updates both maps as required. If "Addr" is null, the 160 /// entry for the global is removed from the mappings. 161 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 162 MutexGuard locked(lock); 163 164 ExecutionEngineState::GlobalAddressMapTy &Map = 165 EEState.getGlobalAddressMap(locked); 166 167 // Deleting from the mapping? 168 if (Addr == 0) { 169 return EEState.RemoveMapping(locked, GV); 170 } 171 172 void *&CurVal = Map[GV]; 173 void *OldVal = CurVal; 174 175 if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty()) 176 EEState.getGlobalAddressReverseMap(locked).erase(CurVal); 177 CurVal = Addr; 178 179 // If we are using the reverse mapping, add it too 180 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 181 AssertingVH<const GlobalValue> &V = 182 EEState.getGlobalAddressReverseMap(locked)[Addr]; 183 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 184 V = GV; 185 } 186 return OldVal; 187 } 188 189 /// getPointerToGlobalIfAvailable - This returns the address of the specified 190 /// global value if it is has already been codegen'd, otherwise it returns null. 191 /// 192 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 193 MutexGuard locked(lock); 194 195 ExecutionEngineState::GlobalAddressMapTy::iterator I = 196 EEState.getGlobalAddressMap(locked).find(GV); 197 return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0; 198 } 199 200 /// getGlobalValueAtAddress - Return the LLVM global value object that starts 201 /// at the specified address. 202 /// 203 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 204 MutexGuard locked(lock); 205 206 // If we haven't computed the reverse mapping yet, do so first. 207 if (EEState.getGlobalAddressReverseMap(locked).empty()) { 208 for (ExecutionEngineState::GlobalAddressMapTy::iterator 209 I = EEState.getGlobalAddressMap(locked).begin(), 210 E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I) 211 EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, 212 I->first)); 213 } 214 215 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 216 EEState.getGlobalAddressReverseMap(locked).find(Addr); 217 return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 218 } 219 220 // CreateArgv - Turn a vector of strings into a nice argv style array of 221 // pointers to null terminated strings. 222 // 223 static void *CreateArgv(LLVMContext &C, ExecutionEngine *EE, 224 const std::vector<std::string> &InputArgv) { 225 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 226 char *Result = new char[(InputArgv.size()+1)*PtrSize]; 227 228 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Result << "\n"); 229 const Type *SBytePtr = Type::getInt8PtrTy(C); 230 231 for (unsigned i = 0; i != InputArgv.size(); ++i) { 232 unsigned Size = InputArgv[i].size()+1; 233 char *Dest = new char[Size]; 234 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"); 235 236 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 237 Dest[Size-1] = 0; 238 239 // Endian safe: Result[i] = (PointerTy)Dest; 240 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), 241 SBytePtr); 242 } 243 244 // Null terminate it 245 EE->StoreValueToMemory(PTOGV(0), 246 (GenericValue*)(Result+InputArgv.size()*PtrSize), 247 SBytePtr); 248 return Result; 249 } 250 251 252 /// runStaticConstructorsDestructors - This method is used to execute all of 253 /// the static constructors or destructors for a module, depending on the 254 /// value of isDtors. 255 void ExecutionEngine::runStaticConstructorsDestructors(Module *module, 256 bool isDtors) { 257 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 258 259 // Execute global ctors/dtors for each module in the program. 260 261 GlobalVariable *GV = module->getNamedGlobal(Name); 262 263 // If this global has internal linkage, or if it has a use, then it must be 264 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 265 // this is the case, don't execute any of the global ctors, __main will do 266 // it. 267 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 268 269 // Should be an array of '{ int, void ()* }' structs. The first value is 270 // the init priority, which we ignore. 271 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 272 if (!InitList) return; 273 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 274 if (ConstantStruct *CS = 275 dyn_cast<ConstantStruct>(InitList->getOperand(i))) { 276 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 277 278 Constant *FP = CS->getOperand(1); 279 if (FP->isNullValue()) 280 break; // Found a null terminator, exit. 281 282 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 283 if (CE->isCast()) 284 FP = CE->getOperand(0); 285 if (Function *F = dyn_cast<Function>(FP)) { 286 // Execute the ctor/dtor function! 287 runFunction(F, std::vector<GenericValue>()); 288 } 289 } 290 } 291 292 /// runStaticConstructorsDestructors - This method is used to execute all of 293 /// the static constructors or destructors for a program, depending on the 294 /// value of isDtors. 295 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 296 // Execute global ctors/dtors for each module in the program. 297 for (unsigned m = 0, e = Modules.size(); m != e; ++m) 298 runStaticConstructorsDestructors(Modules[m], isDtors); 299 } 300 301 #ifndef NDEBUG 302 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 303 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 304 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 305 for (unsigned i = 0; i < PtrSize; ++i) 306 if (*(i + (uint8_t*)Loc)) 307 return false; 308 return true; 309 } 310 #endif 311 312 /// runFunctionAsMain - This is a helper function which wraps runFunction to 313 /// handle the common task of starting up main with the specified argc, argv, 314 /// and envp parameters. 315 int ExecutionEngine::runFunctionAsMain(Function *Fn, 316 const std::vector<std::string> &argv, 317 const char * const * envp) { 318 std::vector<GenericValue> GVArgs; 319 GenericValue GVArgc; 320 GVArgc.IntVal = APInt(32, argv.size()); 321 322 // Check main() type 323 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 324 const FunctionType *FTy = Fn->getFunctionType(); 325 const Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 326 switch (NumArgs) { 327 case 3: 328 if (FTy->getParamType(2) != PPInt8Ty) { 329 llvm_report_error("Invalid type for third argument of main() supplied"); 330 } 331 // FALLS THROUGH 332 case 2: 333 if (FTy->getParamType(1) != PPInt8Ty) { 334 llvm_report_error("Invalid type for second argument of main() supplied"); 335 } 336 // FALLS THROUGH 337 case 1: 338 if (!FTy->getParamType(0)->isInteger(32)) { 339 llvm_report_error("Invalid type for first argument of main() supplied"); 340 } 341 // FALLS THROUGH 342 case 0: 343 if (!isa<IntegerType>(FTy->getReturnType()) && 344 !FTy->getReturnType()->isVoidTy()) { 345 llvm_report_error("Invalid return type of main() supplied"); 346 } 347 break; 348 default: 349 llvm_report_error("Invalid number of arguments of main() supplied"); 350 } 351 352 if (NumArgs) { 353 GVArgs.push_back(GVArgc); // Arg #0 = argc. 354 if (NumArgs > 1) { 355 // Arg #1 = argv. 356 GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, argv))); 357 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 358 "argv[0] was null after CreateArgv"); 359 if (NumArgs > 2) { 360 std::vector<std::string> EnvVars; 361 for (unsigned i = 0; envp[i]; ++i) 362 EnvVars.push_back(envp[i]); 363 // Arg #2 = envp. 364 GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, EnvVars))); 365 } 366 } 367 } 368 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 369 } 370 371 /// If possible, create a JIT, unless the caller specifically requests an 372 /// Interpreter or there's an error. If even an Interpreter cannot be created, 373 /// NULL is returned. 374 /// 375 ExecutionEngine *ExecutionEngine::create(Module *M, 376 bool ForceInterpreter, 377 std::string *ErrorStr, 378 CodeGenOpt::Level OptLevel, 379 bool GVsWithCode) { 380 return EngineBuilder(M) 381 .setEngineKind(ForceInterpreter 382 ? EngineKind::Interpreter 383 : EngineKind::JIT) 384 .setErrorStr(ErrorStr) 385 .setOptLevel(OptLevel) 386 .setAllocateGVsWithCode(GVsWithCode) 387 .create(); 388 } 389 390 ExecutionEngine *EngineBuilder::create() { 391 // Make sure we can resolve symbols in the program as well. The zero arg 392 // to the function tells DynamicLibrary to load the program, not a library. 393 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) 394 return 0; 395 396 // If the user specified a memory manager but didn't specify which engine to 397 // create, we assume they only want the JIT, and we fail if they only want 398 // the interpreter. 399 if (JMM) { 400 if (WhichEngine & EngineKind::JIT) 401 WhichEngine = EngineKind::JIT; 402 else { 403 if (ErrorStr) 404 *ErrorStr = "Cannot create an interpreter with a memory manager."; 405 return 0; 406 } 407 } 408 409 // Unless the interpreter was explicitly selected or the JIT is not linked, 410 // try making a JIT. 411 if (WhichEngine & EngineKind::JIT) { 412 if (ExecutionEngine::JITCtor) { 413 ExecutionEngine *EE = 414 ExecutionEngine::JITCtor(M, ErrorStr, JMM, OptLevel, 415 AllocateGVsWithCode, CMModel); 416 if (EE) return EE; 417 } 418 } 419 420 // If we can't make a JIT and we didn't request one specifically, try making 421 // an interpreter instead. 422 if (WhichEngine & EngineKind::Interpreter) { 423 if (ExecutionEngine::InterpCtor) 424 return ExecutionEngine::InterpCtor(M, ErrorStr); 425 if (ErrorStr) 426 *ErrorStr = "Interpreter has not been linked in."; 427 return 0; 428 } 429 430 if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) { 431 if (ErrorStr) 432 *ErrorStr = "JIT has not been linked in."; 433 } 434 return 0; 435 } 436 437 /// getPointerToGlobal - This returns the address of the specified global 438 /// value. This may involve code generation if it's a function. 439 /// 440 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 441 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 442 return getPointerToFunction(F); 443 444 MutexGuard locked(lock); 445 void *p = EEState.getGlobalAddressMap(locked)[GV]; 446 if (p) 447 return p; 448 449 // Global variable might have been added since interpreter started. 450 if (GlobalVariable *GVar = 451 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 452 EmitGlobalVariable(GVar); 453 else 454 llvm_unreachable("Global hasn't had an address allocated yet!"); 455 return EEState.getGlobalAddressMap(locked)[GV]; 456 } 457 458 /// This function converts a Constant* into a GenericValue. The interesting 459 /// part is if C is a ConstantExpr. 460 /// @brief Get a GenericValue for a Constant* 461 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 462 // If its undefined, return the garbage. 463 if (isa<UndefValue>(C)) { 464 GenericValue Result; 465 switch (C->getType()->getTypeID()) { 466 case Type::IntegerTyID: 467 case Type::X86_FP80TyID: 468 case Type::FP128TyID: 469 case Type::PPC_FP128TyID: 470 // Although the value is undefined, we still have to construct an APInt 471 // with the correct bit width. 472 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 473 break; 474 default: 475 break; 476 } 477 return Result; 478 } 479 480 // If the value is a ConstantExpr 481 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 482 Constant *Op0 = CE->getOperand(0); 483 switch (CE->getOpcode()) { 484 case Instruction::GetElementPtr: { 485 // Compute the index 486 GenericValue Result = getConstantValue(Op0); 487 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); 488 uint64_t Offset = 489 TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size()); 490 491 char* tmp = (char*) Result.PointerVal; 492 Result = PTOGV(tmp + Offset); 493 return Result; 494 } 495 case Instruction::Trunc: { 496 GenericValue GV = getConstantValue(Op0); 497 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 498 GV.IntVal = GV.IntVal.trunc(BitWidth); 499 return GV; 500 } 501 case Instruction::ZExt: { 502 GenericValue GV = getConstantValue(Op0); 503 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 504 GV.IntVal = GV.IntVal.zext(BitWidth); 505 return GV; 506 } 507 case Instruction::SExt: { 508 GenericValue GV = getConstantValue(Op0); 509 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 510 GV.IntVal = GV.IntVal.sext(BitWidth); 511 return GV; 512 } 513 case Instruction::FPTrunc: { 514 // FIXME long double 515 GenericValue GV = getConstantValue(Op0); 516 GV.FloatVal = float(GV.DoubleVal); 517 return GV; 518 } 519 case Instruction::FPExt:{ 520 // FIXME long double 521 GenericValue GV = getConstantValue(Op0); 522 GV.DoubleVal = double(GV.FloatVal); 523 return GV; 524 } 525 case Instruction::UIToFP: { 526 GenericValue GV = getConstantValue(Op0); 527 if (CE->getType()->isFloatTy()) 528 GV.FloatVal = float(GV.IntVal.roundToDouble()); 529 else if (CE->getType()->isDoubleTy()) 530 GV.DoubleVal = GV.IntVal.roundToDouble(); 531 else if (CE->getType()->isX86_FP80Ty()) { 532 const uint64_t zero[] = {0, 0}; 533 APFloat apf = APFloat(APInt(80, 2, zero)); 534 (void)apf.convertFromAPInt(GV.IntVal, 535 false, 536 APFloat::rmNearestTiesToEven); 537 GV.IntVal = apf.bitcastToAPInt(); 538 } 539 return GV; 540 } 541 case Instruction::SIToFP: { 542 GenericValue GV = getConstantValue(Op0); 543 if (CE->getType()->isFloatTy()) 544 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 545 else if (CE->getType()->isDoubleTy()) 546 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 547 else if (CE->getType()->isX86_FP80Ty()) { 548 const uint64_t zero[] = { 0, 0}; 549 APFloat apf = APFloat(APInt(80, 2, zero)); 550 (void)apf.convertFromAPInt(GV.IntVal, 551 true, 552 APFloat::rmNearestTiesToEven); 553 GV.IntVal = apf.bitcastToAPInt(); 554 } 555 return GV; 556 } 557 case Instruction::FPToUI: // double->APInt conversion handles sign 558 case Instruction::FPToSI: { 559 GenericValue GV = getConstantValue(Op0); 560 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 561 if (Op0->getType()->isFloatTy()) 562 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 563 else if (Op0->getType()->isDoubleTy()) 564 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 565 else if (Op0->getType()->isX86_FP80Ty()) { 566 APFloat apf = APFloat(GV.IntVal); 567 uint64_t v; 568 bool ignored; 569 (void)apf.convertToInteger(&v, BitWidth, 570 CE->getOpcode()==Instruction::FPToSI, 571 APFloat::rmTowardZero, &ignored); 572 GV.IntVal = v; // endian? 573 } 574 return GV; 575 } 576 case Instruction::PtrToInt: { 577 GenericValue GV = getConstantValue(Op0); 578 uint32_t PtrWidth = TD->getPointerSizeInBits(); 579 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 580 return GV; 581 } 582 case Instruction::IntToPtr: { 583 GenericValue GV = getConstantValue(Op0); 584 uint32_t PtrWidth = TD->getPointerSizeInBits(); 585 if (PtrWidth != GV.IntVal.getBitWidth()) 586 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 587 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 588 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 589 return GV; 590 } 591 case Instruction::BitCast: { 592 GenericValue GV = getConstantValue(Op0); 593 const Type* DestTy = CE->getType(); 594 switch (Op0->getType()->getTypeID()) { 595 default: llvm_unreachable("Invalid bitcast operand"); 596 case Type::IntegerTyID: 597 assert(DestTy->isFloatingPoint() && "invalid bitcast"); 598 if (DestTy->isFloatTy()) 599 GV.FloatVal = GV.IntVal.bitsToFloat(); 600 else if (DestTy->isDoubleTy()) 601 GV.DoubleVal = GV.IntVal.bitsToDouble(); 602 break; 603 case Type::FloatTyID: 604 assert(DestTy->isInteger(32) && "Invalid bitcast"); 605 GV.IntVal.floatToBits(GV.FloatVal); 606 break; 607 case Type::DoubleTyID: 608 assert(DestTy->isInteger(64) && "Invalid bitcast"); 609 GV.IntVal.doubleToBits(GV.DoubleVal); 610 break; 611 case Type::PointerTyID: 612 assert(isa<PointerType>(DestTy) && "Invalid bitcast"); 613 break; // getConstantValue(Op0) above already converted it 614 } 615 return GV; 616 } 617 case Instruction::Add: 618 case Instruction::FAdd: 619 case Instruction::Sub: 620 case Instruction::FSub: 621 case Instruction::Mul: 622 case Instruction::FMul: 623 case Instruction::UDiv: 624 case Instruction::SDiv: 625 case Instruction::URem: 626 case Instruction::SRem: 627 case Instruction::And: 628 case Instruction::Or: 629 case Instruction::Xor: { 630 GenericValue LHS = getConstantValue(Op0); 631 GenericValue RHS = getConstantValue(CE->getOperand(1)); 632 GenericValue GV; 633 switch (CE->getOperand(0)->getType()->getTypeID()) { 634 default: llvm_unreachable("Bad add type!"); 635 case Type::IntegerTyID: 636 switch (CE->getOpcode()) { 637 default: llvm_unreachable("Invalid integer opcode"); 638 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 639 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 640 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 641 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 642 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 643 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 644 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 645 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 646 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 647 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 648 } 649 break; 650 case Type::FloatTyID: 651 switch (CE->getOpcode()) { 652 default: llvm_unreachable("Invalid float opcode"); 653 case Instruction::FAdd: 654 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 655 case Instruction::FSub: 656 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 657 case Instruction::FMul: 658 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 659 case Instruction::FDiv: 660 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 661 case Instruction::FRem: 662 GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break; 663 } 664 break; 665 case Type::DoubleTyID: 666 switch (CE->getOpcode()) { 667 default: llvm_unreachable("Invalid double opcode"); 668 case Instruction::FAdd: 669 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 670 case Instruction::FSub: 671 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 672 case Instruction::FMul: 673 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 674 case Instruction::FDiv: 675 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 676 case Instruction::FRem: 677 GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 678 } 679 break; 680 case Type::X86_FP80TyID: 681 case Type::PPC_FP128TyID: 682 case Type::FP128TyID: { 683 APFloat apfLHS = APFloat(LHS.IntVal); 684 switch (CE->getOpcode()) { 685 default: llvm_unreachable("Invalid long double opcode");llvm_unreachable(0); 686 case Instruction::FAdd: 687 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 688 GV.IntVal = apfLHS.bitcastToAPInt(); 689 break; 690 case Instruction::FSub: 691 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 692 GV.IntVal = apfLHS.bitcastToAPInt(); 693 break; 694 case Instruction::FMul: 695 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 696 GV.IntVal = apfLHS.bitcastToAPInt(); 697 break; 698 case Instruction::FDiv: 699 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 700 GV.IntVal = apfLHS.bitcastToAPInt(); 701 break; 702 case Instruction::FRem: 703 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 704 GV.IntVal = apfLHS.bitcastToAPInt(); 705 break; 706 } 707 } 708 break; 709 } 710 return GV; 711 } 712 default: 713 break; 714 } 715 std::string msg; 716 raw_string_ostream Msg(msg); 717 Msg << "ConstantExpr not handled: " << *CE; 718 llvm_report_error(Msg.str()); 719 } 720 721 GenericValue Result; 722 switch (C->getType()->getTypeID()) { 723 case Type::FloatTyID: 724 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 725 break; 726 case Type::DoubleTyID: 727 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 728 break; 729 case Type::X86_FP80TyID: 730 case Type::FP128TyID: 731 case Type::PPC_FP128TyID: 732 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 733 break; 734 case Type::IntegerTyID: 735 Result.IntVal = cast<ConstantInt>(C)->getValue(); 736 break; 737 case Type::PointerTyID: 738 if (isa<ConstantPointerNull>(C)) 739 Result.PointerVal = 0; 740 else if (const Function *F = dyn_cast<Function>(C)) 741 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 742 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 743 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 744 else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 745 Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>( 746 BA->getBasicBlock()))); 747 else 748 llvm_unreachable("Unknown constant pointer type!"); 749 break; 750 default: 751 std::string msg; 752 raw_string_ostream Msg(msg); 753 Msg << "ERROR: Constant unimplemented for type: " << *C->getType(); 754 llvm_report_error(Msg.str()); 755 } 756 return Result; 757 } 758 759 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 760 /// with the integer held in IntVal. 761 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 762 unsigned StoreBytes) { 763 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 764 uint8_t *Src = (uint8_t *)IntVal.getRawData(); 765 766 if (sys::isLittleEndianHost()) 767 // Little-endian host - the source is ordered from LSB to MSB. Order the 768 // destination from LSB to MSB: Do a straight copy. 769 memcpy(Dst, Src, StoreBytes); 770 else { 771 // Big-endian host - the source is an array of 64 bit words ordered from 772 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 773 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 774 while (StoreBytes > sizeof(uint64_t)) { 775 StoreBytes -= sizeof(uint64_t); 776 // May not be aligned so use memcpy. 777 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 778 Src += sizeof(uint64_t); 779 } 780 781 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 782 } 783 } 784 785 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr 786 /// is the address of the memory at which to store Val, cast to GenericValue *. 787 /// It is not a pointer to a GenericValue containing the address at which to 788 /// store Val. 789 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 790 GenericValue *Ptr, const Type *Ty) { 791 const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty); 792 793 switch (Ty->getTypeID()) { 794 case Type::IntegerTyID: 795 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 796 break; 797 case Type::FloatTyID: 798 *((float*)Ptr) = Val.FloatVal; 799 break; 800 case Type::DoubleTyID: 801 *((double*)Ptr) = Val.DoubleVal; 802 break; 803 case Type::X86_FP80TyID: 804 memcpy(Ptr, Val.IntVal.getRawData(), 10); 805 break; 806 case Type::PointerTyID: 807 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 808 if (StoreBytes != sizeof(PointerTy)) 809 memset(Ptr, 0, StoreBytes); 810 811 *((PointerTy*)Ptr) = Val.PointerVal; 812 break; 813 default: 814 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 815 } 816 817 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) 818 // Host and target are different endian - reverse the stored bytes. 819 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 820 } 821 822 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 823 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 824 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 825 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 826 uint8_t *Dst = (uint8_t *)IntVal.getRawData(); 827 828 if (sys::isLittleEndianHost()) 829 // Little-endian host - the destination must be ordered from LSB to MSB. 830 // The source is ordered from LSB to MSB: Do a straight copy. 831 memcpy(Dst, Src, LoadBytes); 832 else { 833 // Big-endian - the destination is an array of 64 bit words ordered from 834 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 835 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 836 // a word. 837 while (LoadBytes > sizeof(uint64_t)) { 838 LoadBytes -= sizeof(uint64_t); 839 // May not be aligned so use memcpy. 840 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 841 Dst += sizeof(uint64_t); 842 } 843 844 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 845 } 846 } 847 848 /// FIXME: document 849 /// 850 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 851 GenericValue *Ptr, 852 const Type *Ty) { 853 const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty); 854 855 switch (Ty->getTypeID()) { 856 case Type::IntegerTyID: 857 // An APInt with all words initially zero. 858 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 859 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 860 break; 861 case Type::FloatTyID: 862 Result.FloatVal = *((float*)Ptr); 863 break; 864 case Type::DoubleTyID: 865 Result.DoubleVal = *((double*)Ptr); 866 break; 867 case Type::PointerTyID: 868 Result.PointerVal = *((PointerTy*)Ptr); 869 break; 870 case Type::X86_FP80TyID: { 871 // This is endian dependent, but it will only work on x86 anyway. 872 // FIXME: Will not trap if loading a signaling NaN. 873 uint64_t y[2]; 874 memcpy(y, Ptr, 10); 875 Result.IntVal = APInt(80, 2, y); 876 break; 877 } 878 default: 879 std::string msg; 880 raw_string_ostream Msg(msg); 881 Msg << "Cannot load value of type " << *Ty << "!"; 882 llvm_report_error(Msg.str()); 883 } 884 } 885 886 // InitializeMemory - Recursive function to apply a Constant value into the 887 // specified memory location... 888 // 889 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 890 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 891 DEBUG(Init->dump()); 892 if (isa<UndefValue>(Init)) { 893 return; 894 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 895 unsigned ElementSize = 896 getTargetData()->getTypeAllocSize(CP->getType()->getElementType()); 897 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 898 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 899 return; 900 } else if (isa<ConstantAggregateZero>(Init)) { 901 memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType())); 902 return; 903 } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 904 unsigned ElementSize = 905 getTargetData()->getTypeAllocSize(CPA->getType()->getElementType()); 906 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 907 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 908 return; 909 } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 910 const StructLayout *SL = 911 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 912 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 913 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 914 return; 915 } else if (Init->getType()->isFirstClassType()) { 916 GenericValue Val = getConstantValue(Init); 917 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 918 return; 919 } 920 921 dbgs() << "Bad Type: " << *Init->getType() << "\n"; 922 llvm_unreachable("Unknown constant type to initialize memory with!"); 923 } 924 925 /// EmitGlobals - Emit all of the global variables to memory, storing their 926 /// addresses into GlobalAddress. This must make sure to copy the contents of 927 /// their initializers into the memory. 928 /// 929 void ExecutionEngine::emitGlobals() { 930 931 // Loop over all of the global variables in the program, allocating the memory 932 // to hold them. If there is more than one module, do a prepass over globals 933 // to figure out how the different modules should link together. 934 // 935 std::map<std::pair<std::string, const Type*>, 936 const GlobalValue*> LinkedGlobalsMap; 937 938 if (Modules.size() != 1) { 939 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 940 Module &M = *Modules[m]; 941 for (Module::const_global_iterator I = M.global_begin(), 942 E = M.global_end(); I != E; ++I) { 943 const GlobalValue *GV = I; 944 if (GV->hasLocalLinkage() || GV->isDeclaration() || 945 GV->hasAppendingLinkage() || !GV->hasName()) 946 continue;// Ignore external globals and globals with internal linkage. 947 948 const GlobalValue *&GVEntry = 949 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 950 951 // If this is the first time we've seen this global, it is the canonical 952 // version. 953 if (!GVEntry) { 954 GVEntry = GV; 955 continue; 956 } 957 958 // If the existing global is strong, never replace it. 959 if (GVEntry->hasExternalLinkage() || 960 GVEntry->hasDLLImportLinkage() || 961 GVEntry->hasDLLExportLinkage()) 962 continue; 963 964 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 965 // symbol. FIXME is this right for common? 966 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 967 GVEntry = GV; 968 } 969 } 970 } 971 972 std::vector<const GlobalValue*> NonCanonicalGlobals; 973 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 974 Module &M = *Modules[m]; 975 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 976 I != E; ++I) { 977 // In the multi-module case, see what this global maps to. 978 if (!LinkedGlobalsMap.empty()) { 979 if (const GlobalValue *GVEntry = 980 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 981 // If something else is the canonical global, ignore this one. 982 if (GVEntry != &*I) { 983 NonCanonicalGlobals.push_back(I); 984 continue; 985 } 986 } 987 } 988 989 if (!I->isDeclaration()) { 990 addGlobalMapping(I, getMemoryForGV(I)); 991 } else { 992 // External variable reference. Try to use the dynamic loader to 993 // get a pointer to it. 994 if (void *SymAddr = 995 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName())) 996 addGlobalMapping(I, SymAddr); 997 else { 998 llvm_report_error("Could not resolve external global address: " 999 +I->getName()); 1000 } 1001 } 1002 } 1003 1004 // If there are multiple modules, map the non-canonical globals to their 1005 // canonical location. 1006 if (!NonCanonicalGlobals.empty()) { 1007 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1008 const GlobalValue *GV = NonCanonicalGlobals[i]; 1009 const GlobalValue *CGV = 1010 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1011 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1012 assert(Ptr && "Canonical global wasn't codegen'd!"); 1013 addGlobalMapping(GV, Ptr); 1014 } 1015 } 1016 1017 // Now that all of the globals are set up in memory, loop through them all 1018 // and initialize their contents. 1019 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1020 I != E; ++I) { 1021 if (!I->isDeclaration()) { 1022 if (!LinkedGlobalsMap.empty()) { 1023 if (const GlobalValue *GVEntry = 1024 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 1025 if (GVEntry != &*I) // Not the canonical variable. 1026 continue; 1027 } 1028 EmitGlobalVariable(I); 1029 } 1030 } 1031 } 1032 } 1033 1034 // EmitGlobalVariable - This method emits the specified global variable to the 1035 // address specified in GlobalAddresses, or allocates new memory if it's not 1036 // already in the map. 1037 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1038 void *GA = getPointerToGlobalIfAvailable(GV); 1039 1040 if (GA == 0) { 1041 // If it's not already specified, allocate memory for the global. 1042 GA = getMemoryForGV(GV); 1043 addGlobalMapping(GV, GA); 1044 } 1045 1046 // Don't initialize if it's thread local, let the client do it. 1047 if (!GV->isThreadLocal()) 1048 InitializeMemory(GV->getInitializer(), GA); 1049 1050 const Type *ElTy = GV->getType()->getElementType(); 1051 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 1052 NumInitBytes += (unsigned)GVSize; 1053 ++NumGlobals; 1054 } 1055 1056 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1057 : EE(EE), GlobalAddressMap(this) { 1058 } 1059 1060 sys::Mutex *ExecutionEngineState::AddressMapConfig::getMutex( 1061 ExecutionEngineState *EES) { 1062 return &EES->EE.lock; 1063 } 1064 void ExecutionEngineState::AddressMapConfig::onDelete( 1065 ExecutionEngineState *EES, const GlobalValue *Old) { 1066 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1067 EES->GlobalAddressReverseMap.erase(OldVal); 1068 } 1069 1070 void ExecutionEngineState::AddressMapConfig::onRAUW( 1071 ExecutionEngineState *, const GlobalValue *, const GlobalValue *) { 1072 assert(false && "The ExecutionEngine doesn't know how to handle a" 1073 " RAUW on a value it has a global mapping for."); 1074 } 1075