1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/ExecutionEngine/ExecutionEngine.h" 17 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Module.h" 21 #include "llvm/ExecutionEngine/GenericValue.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/MutexGuard.h" 26 #include "llvm/Support/ValueHandle.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/System/DynamicLibrary.h" 29 #include "llvm/System/Host.h" 30 #include "llvm/Target/TargetData.h" 31 #include <cmath> 32 #include <cstring> 33 using namespace llvm; 34 35 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 36 STATISTIC(NumGlobals , "Number of global vars initialized"); 37 38 ExecutionEngine *(*ExecutionEngine::JITCtor)(Module *M, 39 std::string *ErrorStr, 40 JITMemoryManager *JMM, 41 CodeGenOpt::Level OptLevel, 42 bool GVsWithCode, 43 CodeModel::Model CMM) = 0; 44 ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M, 45 std::string *ErrorStr) = 0; 46 ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0; 47 48 49 ExecutionEngine::ExecutionEngine(Module *M) 50 : EEState(*this), 51 LazyFunctionCreator(0) { 52 CompilingLazily = false; 53 GVCompilationDisabled = false; 54 SymbolSearchingDisabled = false; 55 Modules.push_back(M); 56 assert(M && "Module is null?"); 57 } 58 59 ExecutionEngine::~ExecutionEngine() { 60 clearAllGlobalMappings(); 61 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 62 delete Modules[i]; 63 } 64 65 char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) { 66 const Type *ElTy = GV->getType()->getElementType(); 67 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 68 return new char[GVSize]; 69 } 70 71 /// removeModule - Remove a Module from the list of modules. 72 bool ExecutionEngine::removeModule(Module *M) { 73 for(SmallVector<Module *, 1>::iterator I = Modules.begin(), 74 E = Modules.end(); I != E; ++I) { 75 Module *Found = *I; 76 if (Found == M) { 77 Modules.erase(I); 78 clearGlobalMappingsFromModule(M); 79 return true; 80 } 81 } 82 return false; 83 } 84 85 /// FindFunctionNamed - Search all of the active modules to find the one that 86 /// defines FnName. This is very slow operation and shouldn't be used for 87 /// general code. 88 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 89 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 90 if (Function *F = Modules[i]->getFunction(FnName)) 91 return F; 92 } 93 return 0; 94 } 95 96 97 void *ExecutionEngineState::RemoveMapping( 98 const MutexGuard &, const GlobalValue *ToUnmap) { 99 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 100 void *OldVal; 101 if (I == GlobalAddressMap.end()) 102 OldVal = 0; 103 else { 104 OldVal = I->second; 105 GlobalAddressMap.erase(I); 106 } 107 108 GlobalAddressReverseMap.erase(OldVal); 109 return OldVal; 110 } 111 112 /// addGlobalMapping - Tell the execution engine that the specified global is 113 /// at the specified location. This is used internally as functions are JIT'd 114 /// and as global variables are laid out in memory. It can and should also be 115 /// used by clients of the EE that want to have an LLVM global overlay 116 /// existing data in memory. 117 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 118 MutexGuard locked(lock); 119 120 DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 121 << "\' to [" << Addr << "]\n";); 122 void *&CurVal = EEState.getGlobalAddressMap(locked)[GV]; 123 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 124 CurVal = Addr; 125 126 // If we are using the reverse mapping, add it too 127 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 128 AssertingVH<const GlobalValue> &V = 129 EEState.getGlobalAddressReverseMap(locked)[Addr]; 130 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 131 V = GV; 132 } 133 } 134 135 /// clearAllGlobalMappings - Clear all global mappings and start over again 136 /// use in dynamic compilation scenarios when you want to move globals 137 void ExecutionEngine::clearAllGlobalMappings() { 138 MutexGuard locked(lock); 139 140 EEState.getGlobalAddressMap(locked).clear(); 141 EEState.getGlobalAddressReverseMap(locked).clear(); 142 } 143 144 /// clearGlobalMappingsFromModule - Clear all global mappings that came from a 145 /// particular module, because it has been removed from the JIT. 146 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 147 MutexGuard locked(lock); 148 149 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { 150 EEState.RemoveMapping(locked, FI); 151 } 152 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 153 GI != GE; ++GI) { 154 EEState.RemoveMapping(locked, GI); 155 } 156 } 157 158 /// updateGlobalMapping - Replace an existing mapping for GV with a new 159 /// address. This updates both maps as required. If "Addr" is null, the 160 /// entry for the global is removed from the mappings. 161 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 162 MutexGuard locked(lock); 163 164 ExecutionEngineState::GlobalAddressMapTy &Map = 165 EEState.getGlobalAddressMap(locked); 166 167 // Deleting from the mapping? 168 if (Addr == 0) { 169 return EEState.RemoveMapping(locked, GV); 170 } 171 172 void *&CurVal = Map[GV]; 173 void *OldVal = CurVal; 174 175 if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty()) 176 EEState.getGlobalAddressReverseMap(locked).erase(CurVal); 177 CurVal = Addr; 178 179 // If we are using the reverse mapping, add it too 180 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 181 AssertingVH<const GlobalValue> &V = 182 EEState.getGlobalAddressReverseMap(locked)[Addr]; 183 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 184 V = GV; 185 } 186 return OldVal; 187 } 188 189 /// getPointerToGlobalIfAvailable - This returns the address of the specified 190 /// global value if it is has already been codegen'd, otherwise it returns null. 191 /// 192 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 193 MutexGuard locked(lock); 194 195 ExecutionEngineState::GlobalAddressMapTy::iterator I = 196 EEState.getGlobalAddressMap(locked).find(GV); 197 return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0; 198 } 199 200 /// getGlobalValueAtAddress - Return the LLVM global value object that starts 201 /// at the specified address. 202 /// 203 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 204 MutexGuard locked(lock); 205 206 // If we haven't computed the reverse mapping yet, do so first. 207 if (EEState.getGlobalAddressReverseMap(locked).empty()) { 208 for (ExecutionEngineState::GlobalAddressMapTy::iterator 209 I = EEState.getGlobalAddressMap(locked).begin(), 210 E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I) 211 EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, 212 I->first)); 213 } 214 215 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 216 EEState.getGlobalAddressReverseMap(locked).find(Addr); 217 return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 218 } 219 220 // CreateArgv - Turn a vector of strings into a nice argv style array of 221 // pointers to null terminated strings. 222 // 223 static void *CreateArgv(LLVMContext &C, ExecutionEngine *EE, 224 const std::vector<std::string> &InputArgv) { 225 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 226 char *Result = new char[(InputArgv.size()+1)*PtrSize]; 227 228 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Result << "\n"); 229 const Type *SBytePtr = Type::getInt8PtrTy(C); 230 231 for (unsigned i = 0; i != InputArgv.size(); ++i) { 232 unsigned Size = InputArgv[i].size()+1; 233 char *Dest = new char[Size]; 234 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"); 235 236 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 237 Dest[Size-1] = 0; 238 239 // Endian safe: Result[i] = (PointerTy)Dest; 240 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), 241 SBytePtr); 242 } 243 244 // Null terminate it 245 EE->StoreValueToMemory(PTOGV(0), 246 (GenericValue*)(Result+InputArgv.size()*PtrSize), 247 SBytePtr); 248 return Result; 249 } 250 251 252 /// runStaticConstructorsDestructors - This method is used to execute all of 253 /// the static constructors or destructors for a module, depending on the 254 /// value of isDtors. 255 void ExecutionEngine::runStaticConstructorsDestructors(Module *module, 256 bool isDtors) { 257 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 258 259 // Execute global ctors/dtors for each module in the program. 260 261 GlobalVariable *GV = module->getNamedGlobal(Name); 262 263 // If this global has internal linkage, or if it has a use, then it must be 264 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 265 // this is the case, don't execute any of the global ctors, __main will do 266 // it. 267 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 268 269 // Should be an array of '{ int, void ()* }' structs. The first value is 270 // the init priority, which we ignore. 271 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 272 if (!InitList) return; 273 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 274 if (ConstantStruct *CS = 275 dyn_cast<ConstantStruct>(InitList->getOperand(i))) { 276 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 277 278 Constant *FP = CS->getOperand(1); 279 if (FP->isNullValue()) 280 break; // Found a null terminator, exit. 281 282 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 283 if (CE->isCast()) 284 FP = CE->getOperand(0); 285 if (Function *F = dyn_cast<Function>(FP)) { 286 // Execute the ctor/dtor function! 287 runFunction(F, std::vector<GenericValue>()); 288 } 289 } 290 } 291 292 /// runStaticConstructorsDestructors - This method is used to execute all of 293 /// the static constructors or destructors for a program, depending on the 294 /// value of isDtors. 295 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 296 // Execute global ctors/dtors for each module in the program. 297 for (unsigned m = 0, e = Modules.size(); m != e; ++m) 298 runStaticConstructorsDestructors(Modules[m], isDtors); 299 } 300 301 #ifndef NDEBUG 302 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 303 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 304 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 305 for (unsigned i = 0; i < PtrSize; ++i) 306 if (*(i + (uint8_t*)Loc)) 307 return false; 308 return true; 309 } 310 #endif 311 312 /// runFunctionAsMain - This is a helper function which wraps runFunction to 313 /// handle the common task of starting up main with the specified argc, argv, 314 /// and envp parameters. 315 int ExecutionEngine::runFunctionAsMain(Function *Fn, 316 const std::vector<std::string> &argv, 317 const char * const * envp) { 318 std::vector<GenericValue> GVArgs; 319 GenericValue GVArgc; 320 GVArgc.IntVal = APInt(32, argv.size()); 321 322 // Check main() type 323 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 324 const FunctionType *FTy = Fn->getFunctionType(); 325 const Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 326 switch (NumArgs) { 327 case 3: 328 if (FTy->getParamType(2) != PPInt8Ty) { 329 llvm_report_error("Invalid type for third argument of main() supplied"); 330 } 331 // FALLS THROUGH 332 case 2: 333 if (FTy->getParamType(1) != PPInt8Ty) { 334 llvm_report_error("Invalid type for second argument of main() supplied"); 335 } 336 // FALLS THROUGH 337 case 1: 338 if (!FTy->getParamType(0)->isInteger(32)) { 339 llvm_report_error("Invalid type for first argument of main() supplied"); 340 } 341 // FALLS THROUGH 342 case 0: 343 if (!isa<IntegerType>(FTy->getReturnType()) && 344 !FTy->getReturnType()->isVoidTy()) { 345 llvm_report_error("Invalid return type of main() supplied"); 346 } 347 break; 348 default: 349 llvm_report_error("Invalid number of arguments of main() supplied"); 350 } 351 352 if (NumArgs) { 353 GVArgs.push_back(GVArgc); // Arg #0 = argc. 354 if (NumArgs > 1) { 355 // Arg #1 = argv. 356 GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, argv))); 357 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 358 "argv[0] was null after CreateArgv"); 359 if (NumArgs > 2) { 360 std::vector<std::string> EnvVars; 361 for (unsigned i = 0; envp[i]; ++i) 362 EnvVars.push_back(envp[i]); 363 // Arg #2 = envp. 364 GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, EnvVars))); 365 } 366 } 367 } 368 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 369 } 370 371 /// If possible, create a JIT, unless the caller specifically requests an 372 /// Interpreter or there's an error. If even an Interpreter cannot be created, 373 /// NULL is returned. 374 /// 375 ExecutionEngine *ExecutionEngine::create(Module *M, 376 bool ForceInterpreter, 377 std::string *ErrorStr, 378 CodeGenOpt::Level OptLevel, 379 bool GVsWithCode) { 380 return EngineBuilder(M) 381 .setEngineKind(ForceInterpreter 382 ? EngineKind::Interpreter 383 : EngineKind::JIT) 384 .setErrorStr(ErrorStr) 385 .setOptLevel(OptLevel) 386 .setAllocateGVsWithCode(GVsWithCode) 387 .create(); 388 } 389 390 ExecutionEngine *ExecutionEngine::create(Module *M) { 391 return EngineBuilder(M).create(); 392 } 393 394 ExecutionEngine *EngineBuilder::create() { 395 // Make sure we can resolve symbols in the program as well. The zero arg 396 // to the function tells DynamicLibrary to load the program, not a library. 397 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) 398 return 0; 399 400 // If the user specified a memory manager but didn't specify which engine to 401 // create, we assume they only want the JIT, and we fail if they only want 402 // the interpreter. 403 if (JMM) { 404 if (WhichEngine & EngineKind::JIT) 405 WhichEngine = EngineKind::JIT; 406 else { 407 if (ErrorStr) 408 *ErrorStr = "Cannot create an interpreter with a memory manager."; 409 return 0; 410 } 411 } 412 413 // Unless the interpreter was explicitly selected or the JIT is not linked, 414 // try making a JIT. 415 if (WhichEngine & EngineKind::JIT) { 416 if (ExecutionEngine::JITCtor) { 417 ExecutionEngine *EE = 418 ExecutionEngine::JITCtor(M, ErrorStr, JMM, OptLevel, 419 AllocateGVsWithCode, CMModel); 420 if (EE) return EE; 421 } 422 } 423 424 // If we can't make a JIT and we didn't request one specifically, try making 425 // an interpreter instead. 426 if (WhichEngine & EngineKind::Interpreter) { 427 if (ExecutionEngine::InterpCtor) 428 return ExecutionEngine::InterpCtor(M, ErrorStr); 429 if (ErrorStr) 430 *ErrorStr = "Interpreter has not been linked in."; 431 return 0; 432 } 433 434 if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) { 435 if (ErrorStr) 436 *ErrorStr = "JIT has not been linked in."; 437 } 438 return 0; 439 } 440 441 /// getPointerToGlobal - This returns the address of the specified global 442 /// value. This may involve code generation if it's a function. 443 /// 444 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 445 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 446 return getPointerToFunction(F); 447 448 MutexGuard locked(lock); 449 void *p = EEState.getGlobalAddressMap(locked)[GV]; 450 if (p) 451 return p; 452 453 // Global variable might have been added since interpreter started. 454 if (GlobalVariable *GVar = 455 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 456 EmitGlobalVariable(GVar); 457 else 458 llvm_unreachable("Global hasn't had an address allocated yet!"); 459 return EEState.getGlobalAddressMap(locked)[GV]; 460 } 461 462 /// This function converts a Constant* into a GenericValue. The interesting 463 /// part is if C is a ConstantExpr. 464 /// @brief Get a GenericValue for a Constant* 465 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 466 // If its undefined, return the garbage. 467 if (isa<UndefValue>(C)) { 468 GenericValue Result; 469 switch (C->getType()->getTypeID()) { 470 case Type::IntegerTyID: 471 case Type::X86_FP80TyID: 472 case Type::FP128TyID: 473 case Type::PPC_FP128TyID: 474 // Although the value is undefined, we still have to construct an APInt 475 // with the correct bit width. 476 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 477 break; 478 default: 479 break; 480 } 481 return Result; 482 } 483 484 // If the value is a ConstantExpr 485 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 486 Constant *Op0 = CE->getOperand(0); 487 switch (CE->getOpcode()) { 488 case Instruction::GetElementPtr: { 489 // Compute the index 490 GenericValue Result = getConstantValue(Op0); 491 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); 492 uint64_t Offset = 493 TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size()); 494 495 char* tmp = (char*) Result.PointerVal; 496 Result = PTOGV(tmp + Offset); 497 return Result; 498 } 499 case Instruction::Trunc: { 500 GenericValue GV = getConstantValue(Op0); 501 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 502 GV.IntVal = GV.IntVal.trunc(BitWidth); 503 return GV; 504 } 505 case Instruction::ZExt: { 506 GenericValue GV = getConstantValue(Op0); 507 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 508 GV.IntVal = GV.IntVal.zext(BitWidth); 509 return GV; 510 } 511 case Instruction::SExt: { 512 GenericValue GV = getConstantValue(Op0); 513 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 514 GV.IntVal = GV.IntVal.sext(BitWidth); 515 return GV; 516 } 517 case Instruction::FPTrunc: { 518 // FIXME long double 519 GenericValue GV = getConstantValue(Op0); 520 GV.FloatVal = float(GV.DoubleVal); 521 return GV; 522 } 523 case Instruction::FPExt:{ 524 // FIXME long double 525 GenericValue GV = getConstantValue(Op0); 526 GV.DoubleVal = double(GV.FloatVal); 527 return GV; 528 } 529 case Instruction::UIToFP: { 530 GenericValue GV = getConstantValue(Op0); 531 if (CE->getType()->isFloatTy()) 532 GV.FloatVal = float(GV.IntVal.roundToDouble()); 533 else if (CE->getType()->isDoubleTy()) 534 GV.DoubleVal = GV.IntVal.roundToDouble(); 535 else if (CE->getType()->isX86_FP80Ty()) { 536 const uint64_t zero[] = {0, 0}; 537 APFloat apf = APFloat(APInt(80, 2, zero)); 538 (void)apf.convertFromAPInt(GV.IntVal, 539 false, 540 APFloat::rmNearestTiesToEven); 541 GV.IntVal = apf.bitcastToAPInt(); 542 } 543 return GV; 544 } 545 case Instruction::SIToFP: { 546 GenericValue GV = getConstantValue(Op0); 547 if (CE->getType()->isFloatTy()) 548 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 549 else if (CE->getType()->isDoubleTy()) 550 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 551 else if (CE->getType()->isX86_FP80Ty()) { 552 const uint64_t zero[] = { 0, 0}; 553 APFloat apf = APFloat(APInt(80, 2, zero)); 554 (void)apf.convertFromAPInt(GV.IntVal, 555 true, 556 APFloat::rmNearestTiesToEven); 557 GV.IntVal = apf.bitcastToAPInt(); 558 } 559 return GV; 560 } 561 case Instruction::FPToUI: // double->APInt conversion handles sign 562 case Instruction::FPToSI: { 563 GenericValue GV = getConstantValue(Op0); 564 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 565 if (Op0->getType()->isFloatTy()) 566 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 567 else if (Op0->getType()->isDoubleTy()) 568 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 569 else if (Op0->getType()->isX86_FP80Ty()) { 570 APFloat apf = APFloat(GV.IntVal); 571 uint64_t v; 572 bool ignored; 573 (void)apf.convertToInteger(&v, BitWidth, 574 CE->getOpcode()==Instruction::FPToSI, 575 APFloat::rmTowardZero, &ignored); 576 GV.IntVal = v; // endian? 577 } 578 return GV; 579 } 580 case Instruction::PtrToInt: { 581 GenericValue GV = getConstantValue(Op0); 582 uint32_t PtrWidth = TD->getPointerSizeInBits(); 583 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 584 return GV; 585 } 586 case Instruction::IntToPtr: { 587 GenericValue GV = getConstantValue(Op0); 588 uint32_t PtrWidth = TD->getPointerSizeInBits(); 589 if (PtrWidth != GV.IntVal.getBitWidth()) 590 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 591 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 592 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 593 return GV; 594 } 595 case Instruction::BitCast: { 596 GenericValue GV = getConstantValue(Op0); 597 const Type* DestTy = CE->getType(); 598 switch (Op0->getType()->getTypeID()) { 599 default: llvm_unreachable("Invalid bitcast operand"); 600 case Type::IntegerTyID: 601 assert(DestTy->isFloatingPoint() && "invalid bitcast"); 602 if (DestTy->isFloatTy()) 603 GV.FloatVal = GV.IntVal.bitsToFloat(); 604 else if (DestTy->isDoubleTy()) 605 GV.DoubleVal = GV.IntVal.bitsToDouble(); 606 break; 607 case Type::FloatTyID: 608 assert(DestTy->isInteger(32) && "Invalid bitcast"); 609 GV.IntVal.floatToBits(GV.FloatVal); 610 break; 611 case Type::DoubleTyID: 612 assert(DestTy->isInteger(64) && "Invalid bitcast"); 613 GV.IntVal.doubleToBits(GV.DoubleVal); 614 break; 615 case Type::PointerTyID: 616 assert(isa<PointerType>(DestTy) && "Invalid bitcast"); 617 break; // getConstantValue(Op0) above already converted it 618 } 619 return GV; 620 } 621 case Instruction::Add: 622 case Instruction::FAdd: 623 case Instruction::Sub: 624 case Instruction::FSub: 625 case Instruction::Mul: 626 case Instruction::FMul: 627 case Instruction::UDiv: 628 case Instruction::SDiv: 629 case Instruction::URem: 630 case Instruction::SRem: 631 case Instruction::And: 632 case Instruction::Or: 633 case Instruction::Xor: { 634 GenericValue LHS = getConstantValue(Op0); 635 GenericValue RHS = getConstantValue(CE->getOperand(1)); 636 GenericValue GV; 637 switch (CE->getOperand(0)->getType()->getTypeID()) { 638 default: llvm_unreachable("Bad add type!"); 639 case Type::IntegerTyID: 640 switch (CE->getOpcode()) { 641 default: llvm_unreachable("Invalid integer opcode"); 642 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 643 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 644 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 645 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 646 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 647 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 648 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 649 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 650 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 651 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 652 } 653 break; 654 case Type::FloatTyID: 655 switch (CE->getOpcode()) { 656 default: llvm_unreachable("Invalid float opcode"); 657 case Instruction::FAdd: 658 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 659 case Instruction::FSub: 660 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 661 case Instruction::FMul: 662 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 663 case Instruction::FDiv: 664 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 665 case Instruction::FRem: 666 GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break; 667 } 668 break; 669 case Type::DoubleTyID: 670 switch (CE->getOpcode()) { 671 default: llvm_unreachable("Invalid double opcode"); 672 case Instruction::FAdd: 673 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 674 case Instruction::FSub: 675 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 676 case Instruction::FMul: 677 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 678 case Instruction::FDiv: 679 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 680 case Instruction::FRem: 681 GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 682 } 683 break; 684 case Type::X86_FP80TyID: 685 case Type::PPC_FP128TyID: 686 case Type::FP128TyID: { 687 APFloat apfLHS = APFloat(LHS.IntVal); 688 switch (CE->getOpcode()) { 689 default: llvm_unreachable("Invalid long double opcode");llvm_unreachable(0); 690 case Instruction::FAdd: 691 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 692 GV.IntVal = apfLHS.bitcastToAPInt(); 693 break; 694 case Instruction::FSub: 695 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 696 GV.IntVal = apfLHS.bitcastToAPInt(); 697 break; 698 case Instruction::FMul: 699 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 700 GV.IntVal = apfLHS.bitcastToAPInt(); 701 break; 702 case Instruction::FDiv: 703 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 704 GV.IntVal = apfLHS.bitcastToAPInt(); 705 break; 706 case Instruction::FRem: 707 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 708 GV.IntVal = apfLHS.bitcastToAPInt(); 709 break; 710 } 711 } 712 break; 713 } 714 return GV; 715 } 716 default: 717 break; 718 } 719 std::string msg; 720 raw_string_ostream Msg(msg); 721 Msg << "ConstantExpr not handled: " << *CE; 722 llvm_report_error(Msg.str()); 723 } 724 725 GenericValue Result; 726 switch (C->getType()->getTypeID()) { 727 case Type::FloatTyID: 728 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 729 break; 730 case Type::DoubleTyID: 731 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 732 break; 733 case Type::X86_FP80TyID: 734 case Type::FP128TyID: 735 case Type::PPC_FP128TyID: 736 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 737 break; 738 case Type::IntegerTyID: 739 Result.IntVal = cast<ConstantInt>(C)->getValue(); 740 break; 741 case Type::PointerTyID: 742 if (isa<ConstantPointerNull>(C)) 743 Result.PointerVal = 0; 744 else if (const Function *F = dyn_cast<Function>(C)) 745 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 746 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 747 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 748 else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 749 Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>( 750 BA->getBasicBlock()))); 751 else 752 llvm_unreachable("Unknown constant pointer type!"); 753 break; 754 default: 755 std::string msg; 756 raw_string_ostream Msg(msg); 757 Msg << "ERROR: Constant unimplemented for type: " << *C->getType(); 758 llvm_report_error(Msg.str()); 759 } 760 return Result; 761 } 762 763 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 764 /// with the integer held in IntVal. 765 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 766 unsigned StoreBytes) { 767 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 768 uint8_t *Src = (uint8_t *)IntVal.getRawData(); 769 770 if (sys::isLittleEndianHost()) 771 // Little-endian host - the source is ordered from LSB to MSB. Order the 772 // destination from LSB to MSB: Do a straight copy. 773 memcpy(Dst, Src, StoreBytes); 774 else { 775 // Big-endian host - the source is an array of 64 bit words ordered from 776 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 777 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 778 while (StoreBytes > sizeof(uint64_t)) { 779 StoreBytes -= sizeof(uint64_t); 780 // May not be aligned so use memcpy. 781 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 782 Src += sizeof(uint64_t); 783 } 784 785 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 786 } 787 } 788 789 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr 790 /// is the address of the memory at which to store Val, cast to GenericValue *. 791 /// It is not a pointer to a GenericValue containing the address at which to 792 /// store Val. 793 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 794 GenericValue *Ptr, const Type *Ty) { 795 const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty); 796 797 switch (Ty->getTypeID()) { 798 case Type::IntegerTyID: 799 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 800 break; 801 case Type::FloatTyID: 802 *((float*)Ptr) = Val.FloatVal; 803 break; 804 case Type::DoubleTyID: 805 *((double*)Ptr) = Val.DoubleVal; 806 break; 807 case Type::X86_FP80TyID: 808 memcpy(Ptr, Val.IntVal.getRawData(), 10); 809 break; 810 case Type::PointerTyID: 811 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 812 if (StoreBytes != sizeof(PointerTy)) 813 memset(Ptr, 0, StoreBytes); 814 815 *((PointerTy*)Ptr) = Val.PointerVal; 816 break; 817 default: 818 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 819 } 820 821 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) 822 // Host and target are different endian - reverse the stored bytes. 823 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 824 } 825 826 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 827 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 828 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 829 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 830 uint8_t *Dst = (uint8_t *)IntVal.getRawData(); 831 832 if (sys::isLittleEndianHost()) 833 // Little-endian host - the destination must be ordered from LSB to MSB. 834 // The source is ordered from LSB to MSB: Do a straight copy. 835 memcpy(Dst, Src, LoadBytes); 836 else { 837 // Big-endian - the destination is an array of 64 bit words ordered from 838 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 839 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 840 // a word. 841 while (LoadBytes > sizeof(uint64_t)) { 842 LoadBytes -= sizeof(uint64_t); 843 // May not be aligned so use memcpy. 844 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 845 Dst += sizeof(uint64_t); 846 } 847 848 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 849 } 850 } 851 852 /// FIXME: document 853 /// 854 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 855 GenericValue *Ptr, 856 const Type *Ty) { 857 const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty); 858 859 switch (Ty->getTypeID()) { 860 case Type::IntegerTyID: 861 // An APInt with all words initially zero. 862 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 863 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 864 break; 865 case Type::FloatTyID: 866 Result.FloatVal = *((float*)Ptr); 867 break; 868 case Type::DoubleTyID: 869 Result.DoubleVal = *((double*)Ptr); 870 break; 871 case Type::PointerTyID: 872 Result.PointerVal = *((PointerTy*)Ptr); 873 break; 874 case Type::X86_FP80TyID: { 875 // This is endian dependent, but it will only work on x86 anyway. 876 // FIXME: Will not trap if loading a signaling NaN. 877 uint64_t y[2]; 878 memcpy(y, Ptr, 10); 879 Result.IntVal = APInt(80, 2, y); 880 break; 881 } 882 default: 883 std::string msg; 884 raw_string_ostream Msg(msg); 885 Msg << "Cannot load value of type " << *Ty << "!"; 886 llvm_report_error(Msg.str()); 887 } 888 } 889 890 // InitializeMemory - Recursive function to apply a Constant value into the 891 // specified memory location... 892 // 893 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 894 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 895 DEBUG(Init->dump()); 896 if (isa<UndefValue>(Init)) { 897 return; 898 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 899 unsigned ElementSize = 900 getTargetData()->getTypeAllocSize(CP->getType()->getElementType()); 901 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 902 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 903 return; 904 } else if (isa<ConstantAggregateZero>(Init)) { 905 memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType())); 906 return; 907 } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 908 unsigned ElementSize = 909 getTargetData()->getTypeAllocSize(CPA->getType()->getElementType()); 910 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 911 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 912 return; 913 } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 914 const StructLayout *SL = 915 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 916 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 917 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 918 return; 919 } else if (Init->getType()->isFirstClassType()) { 920 GenericValue Val = getConstantValue(Init); 921 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 922 return; 923 } 924 925 dbgs() << "Bad Type: " << *Init->getType() << "\n"; 926 llvm_unreachable("Unknown constant type to initialize memory with!"); 927 } 928 929 /// EmitGlobals - Emit all of the global variables to memory, storing their 930 /// addresses into GlobalAddress. This must make sure to copy the contents of 931 /// their initializers into the memory. 932 /// 933 void ExecutionEngine::emitGlobals() { 934 935 // Loop over all of the global variables in the program, allocating the memory 936 // to hold them. If there is more than one module, do a prepass over globals 937 // to figure out how the different modules should link together. 938 // 939 std::map<std::pair<std::string, const Type*>, 940 const GlobalValue*> LinkedGlobalsMap; 941 942 if (Modules.size() != 1) { 943 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 944 Module &M = *Modules[m]; 945 for (Module::const_global_iterator I = M.global_begin(), 946 E = M.global_end(); I != E; ++I) { 947 const GlobalValue *GV = I; 948 if (GV->hasLocalLinkage() || GV->isDeclaration() || 949 GV->hasAppendingLinkage() || !GV->hasName()) 950 continue;// Ignore external globals and globals with internal linkage. 951 952 const GlobalValue *&GVEntry = 953 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 954 955 // If this is the first time we've seen this global, it is the canonical 956 // version. 957 if (!GVEntry) { 958 GVEntry = GV; 959 continue; 960 } 961 962 // If the existing global is strong, never replace it. 963 if (GVEntry->hasExternalLinkage() || 964 GVEntry->hasDLLImportLinkage() || 965 GVEntry->hasDLLExportLinkage()) 966 continue; 967 968 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 969 // symbol. FIXME is this right for common? 970 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 971 GVEntry = GV; 972 } 973 } 974 } 975 976 std::vector<const GlobalValue*> NonCanonicalGlobals; 977 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 978 Module &M = *Modules[m]; 979 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 980 I != E; ++I) { 981 // In the multi-module case, see what this global maps to. 982 if (!LinkedGlobalsMap.empty()) { 983 if (const GlobalValue *GVEntry = 984 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 985 // If something else is the canonical global, ignore this one. 986 if (GVEntry != &*I) { 987 NonCanonicalGlobals.push_back(I); 988 continue; 989 } 990 } 991 } 992 993 if (!I->isDeclaration()) { 994 addGlobalMapping(I, getMemoryForGV(I)); 995 } else { 996 // External variable reference. Try to use the dynamic loader to 997 // get a pointer to it. 998 if (void *SymAddr = 999 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName())) 1000 addGlobalMapping(I, SymAddr); 1001 else { 1002 llvm_report_error("Could not resolve external global address: " 1003 +I->getName()); 1004 } 1005 } 1006 } 1007 1008 // If there are multiple modules, map the non-canonical globals to their 1009 // canonical location. 1010 if (!NonCanonicalGlobals.empty()) { 1011 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1012 const GlobalValue *GV = NonCanonicalGlobals[i]; 1013 const GlobalValue *CGV = 1014 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1015 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1016 assert(Ptr && "Canonical global wasn't codegen'd!"); 1017 addGlobalMapping(GV, Ptr); 1018 } 1019 } 1020 1021 // Now that all of the globals are set up in memory, loop through them all 1022 // and initialize their contents. 1023 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1024 I != E; ++I) { 1025 if (!I->isDeclaration()) { 1026 if (!LinkedGlobalsMap.empty()) { 1027 if (const GlobalValue *GVEntry = 1028 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 1029 if (GVEntry != &*I) // Not the canonical variable. 1030 continue; 1031 } 1032 EmitGlobalVariable(I); 1033 } 1034 } 1035 } 1036 } 1037 1038 // EmitGlobalVariable - This method emits the specified global variable to the 1039 // address specified in GlobalAddresses, or allocates new memory if it's not 1040 // already in the map. 1041 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1042 void *GA = getPointerToGlobalIfAvailable(GV); 1043 1044 if (GA == 0) { 1045 // If it's not already specified, allocate memory for the global. 1046 GA = getMemoryForGV(GV); 1047 addGlobalMapping(GV, GA); 1048 } 1049 1050 // Don't initialize if it's thread local, let the client do it. 1051 if (!GV->isThreadLocal()) 1052 InitializeMemory(GV->getInitializer(), GA); 1053 1054 const Type *ElTy = GV->getType()->getElementType(); 1055 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 1056 NumInitBytes += (unsigned)GVSize; 1057 ++NumGlobals; 1058 } 1059 1060 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1061 : EE(EE), GlobalAddressMap(this) { 1062 } 1063 1064 sys::Mutex *ExecutionEngineState::AddressMapConfig::getMutex( 1065 ExecutionEngineState *EES) { 1066 return &EES->EE.lock; 1067 } 1068 void ExecutionEngineState::AddressMapConfig::onDelete( 1069 ExecutionEngineState *EES, const GlobalValue *Old) { 1070 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1071 EES->GlobalAddressReverseMap.erase(OldVal); 1072 } 1073 1074 void ExecutionEngineState::AddressMapConfig::onRAUW( 1075 ExecutionEngineState *, const GlobalValue *, const GlobalValue *) { 1076 assert(false && "The ExecutionEngine doesn't know how to handle a" 1077 " RAUW on a value it has a global mapping for."); 1078 } 1079