1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ExecutionEngine/ExecutionEngine.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ExecutionEngine/GenericValue.h" 20 #include "llvm/ExecutionEngine/JITEventListener.h" 21 #include "llvm/ExecutionEngine/ObjectCache.h" 22 #include "llvm/ExecutionEngine/RTDyldMemoryManager.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Mangler.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/ValueHandle.h" 30 #include "llvm/Object/Archive.h" 31 #include "llvm/Object/ObjectFile.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/DynamicLibrary.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/Host.h" 36 #include "llvm/Support/MutexGuard.h" 37 #include "llvm/Support/TargetRegistry.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Target/TargetMachine.h" 40 #include <cmath> 41 #include <cstring> 42 using namespace llvm; 43 44 #define DEBUG_TYPE "jit" 45 46 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 47 STATISTIC(NumGlobals , "Number of global vars initialized"); 48 49 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 50 std::unique_ptr<Module> M, std::string *ErrorStr, 51 std::shared_ptr<MCJITMemoryManager> MemMgr, 52 53 std::shared_ptr<JITSymbolResolver> Resolver, 54 std::unique_ptr<TargetMachine> TM) = nullptr; 55 56 ExecutionEngine *(*ExecutionEngine::OrcMCJITReplacementCtor)( 57 std::string *ErrorStr, std::shared_ptr<MCJITMemoryManager> MemMgr, 58 std::shared_ptr<JITSymbolResolver> Resolver, 59 std::unique_ptr<TargetMachine> TM) = nullptr; 60 61 ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M, 62 std::string *ErrorStr) =nullptr; 63 64 void JITEventListener::anchor() {} 65 66 void ObjectCache::anchor() {} 67 68 void ExecutionEngine::Init(std::unique_ptr<Module> M) { 69 CompilingLazily = false; 70 GVCompilationDisabled = false; 71 SymbolSearchingDisabled = false; 72 73 // IR module verification is enabled by default in debug builds, and disabled 74 // by default in release builds. 75 #ifndef NDEBUG 76 VerifyModules = true; 77 #else 78 VerifyModules = false; 79 #endif 80 81 assert(M && "Module is null?"); 82 Modules.push_back(std::move(M)); 83 } 84 85 ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M) 86 : DL(M->getDataLayout()), LazyFunctionCreator(nullptr) { 87 Init(std::move(M)); 88 } 89 90 ExecutionEngine::ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M) 91 : DL(std::move(DL)), LazyFunctionCreator(nullptr) { 92 Init(std::move(M)); 93 } 94 95 ExecutionEngine::~ExecutionEngine() { 96 clearAllGlobalMappings(); 97 } 98 99 namespace { 100 /// \brief Helper class which uses a value handler to automatically deletes the 101 /// memory block when the GlobalVariable is destroyed. 102 class GVMemoryBlock final : public CallbackVH { 103 GVMemoryBlock(const GlobalVariable *GV) 104 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 105 106 public: 107 /// \brief Returns the address the GlobalVariable should be written into. The 108 /// GVMemoryBlock object prefixes that. 109 static char *Create(const GlobalVariable *GV, const DataLayout& TD) { 110 Type *ElTy = GV->getValueType(); 111 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 112 void *RawMemory = ::operator new( 113 alignTo(sizeof(GVMemoryBlock), TD.getPreferredAlignment(GV)) + GVSize); 114 new(RawMemory) GVMemoryBlock(GV); 115 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 116 } 117 118 void deleted() override { 119 // We allocated with operator new and with some extra memory hanging off the 120 // end, so don't just delete this. I'm not sure if this is actually 121 // required. 122 this->~GVMemoryBlock(); 123 ::operator delete(this); 124 } 125 }; 126 } // anonymous namespace 127 128 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 129 return GVMemoryBlock::Create(GV, getDataLayout()); 130 } 131 132 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { 133 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 134 } 135 136 void 137 ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) { 138 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 139 } 140 141 void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) { 142 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive."); 143 } 144 145 bool ExecutionEngine::removeModule(Module *M) { 146 for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) { 147 Module *Found = I->get(); 148 if (Found == M) { 149 I->release(); 150 Modules.erase(I); 151 clearGlobalMappingsFromModule(M); 152 return true; 153 } 154 } 155 return false; 156 } 157 158 Function *ExecutionEngine::FindFunctionNamed(StringRef FnName) { 159 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 160 Function *F = Modules[i]->getFunction(FnName); 161 if (F && !F->isDeclaration()) 162 return F; 163 } 164 return nullptr; 165 } 166 167 GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(StringRef Name, bool AllowInternal) { 168 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 169 GlobalVariable *GV = Modules[i]->getGlobalVariable(Name,AllowInternal); 170 if (GV && !GV->isDeclaration()) 171 return GV; 172 } 173 return nullptr; 174 } 175 176 uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) { 177 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Name); 178 uint64_t OldVal; 179 180 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 181 // GlobalAddressMap. 182 if (I == GlobalAddressMap.end()) 183 OldVal = 0; 184 else { 185 GlobalAddressReverseMap.erase(I->second); 186 OldVal = I->second; 187 GlobalAddressMap.erase(I); 188 } 189 190 return OldVal; 191 } 192 193 std::string ExecutionEngine::getMangledName(const GlobalValue *GV) { 194 assert(GV->hasName() && "Global must have name."); 195 196 MutexGuard locked(lock); 197 SmallString<128> FullName; 198 199 const DataLayout &DL = 200 GV->getParent()->getDataLayout().isDefault() 201 ? getDataLayout() 202 : GV->getParent()->getDataLayout(); 203 204 Mangler::getNameWithPrefix(FullName, GV->getName(), DL); 205 return FullName.str(); 206 } 207 208 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 209 MutexGuard locked(lock); 210 addGlobalMapping(getMangledName(GV), (uint64_t) Addr); 211 } 212 213 void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) { 214 MutexGuard locked(lock); 215 216 assert(!Name.empty() && "Empty GlobalMapping symbol name!"); 217 218 DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n";); 219 uint64_t &CurVal = EEState.getGlobalAddressMap()[Name]; 220 assert((!CurVal || !Addr) && "GlobalMapping already established!"); 221 CurVal = Addr; 222 223 // If we are using the reverse mapping, add it too. 224 if (!EEState.getGlobalAddressReverseMap().empty()) { 225 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; 226 assert((!V.empty() || !Name.empty()) && 227 "GlobalMapping already established!"); 228 V = Name; 229 } 230 } 231 232 void ExecutionEngine::clearAllGlobalMappings() { 233 MutexGuard locked(lock); 234 235 EEState.getGlobalAddressMap().clear(); 236 EEState.getGlobalAddressReverseMap().clear(); 237 } 238 239 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 240 MutexGuard locked(lock); 241 242 for (GlobalObject &GO : M->global_objects()) 243 EEState.RemoveMapping(getMangledName(&GO)); 244 } 245 246 uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, 247 void *Addr) { 248 MutexGuard locked(lock); 249 return updateGlobalMapping(getMangledName(GV), (uint64_t) Addr); 250 } 251 252 uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) { 253 MutexGuard locked(lock); 254 255 ExecutionEngineState::GlobalAddressMapTy &Map = 256 EEState.getGlobalAddressMap(); 257 258 // Deleting from the mapping? 259 if (!Addr) 260 return EEState.RemoveMapping(Name); 261 262 uint64_t &CurVal = Map[Name]; 263 uint64_t OldVal = CurVal; 264 265 if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) 266 EEState.getGlobalAddressReverseMap().erase(CurVal); 267 CurVal = Addr; 268 269 // If we are using the reverse mapping, add it too. 270 if (!EEState.getGlobalAddressReverseMap().empty()) { 271 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; 272 assert((!V.empty() || !Name.empty()) && 273 "GlobalMapping already established!"); 274 V = Name; 275 } 276 return OldVal; 277 } 278 279 uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) { 280 MutexGuard locked(lock); 281 uint64_t Address = 0; 282 ExecutionEngineState::GlobalAddressMapTy::iterator I = 283 EEState.getGlobalAddressMap().find(S); 284 if (I != EEState.getGlobalAddressMap().end()) 285 Address = I->second; 286 return Address; 287 } 288 289 290 void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) { 291 MutexGuard locked(lock); 292 if (void* Address = (void *) getAddressToGlobalIfAvailable(S)) 293 return Address; 294 return nullptr; 295 } 296 297 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 298 MutexGuard locked(lock); 299 return getPointerToGlobalIfAvailable(getMangledName(GV)); 300 } 301 302 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 303 MutexGuard locked(lock); 304 305 // If we haven't computed the reverse mapping yet, do so first. 306 if (EEState.getGlobalAddressReverseMap().empty()) { 307 for (ExecutionEngineState::GlobalAddressMapTy::iterator 308 I = EEState.getGlobalAddressMap().begin(), 309 E = EEState.getGlobalAddressMap().end(); I != E; ++I) { 310 StringRef Name = I->first(); 311 uint64_t Addr = I->second; 312 EEState.getGlobalAddressReverseMap().insert(std::make_pair( 313 Addr, Name)); 314 } 315 } 316 317 std::map<uint64_t, std::string>::iterator I = 318 EEState.getGlobalAddressReverseMap().find((uint64_t) Addr); 319 320 if (I != EEState.getGlobalAddressReverseMap().end()) { 321 StringRef Name = I->second; 322 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 323 if (GlobalValue *GV = Modules[i]->getNamedValue(Name)) 324 return GV; 325 } 326 return nullptr; 327 } 328 329 namespace { 330 class ArgvArray { 331 std::unique_ptr<char[]> Array; 332 std::vector<std::unique_ptr<char[]>> Values; 333 public: 334 /// Turn a vector of strings into a nice argv style array of pointers to null 335 /// terminated strings. 336 void *reset(LLVMContext &C, ExecutionEngine *EE, 337 const std::vector<std::string> &InputArgv); 338 }; 339 } // anonymous namespace 340 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 341 const std::vector<std::string> &InputArgv) { 342 Values.clear(); // Free the old contents. 343 Values.reserve(InputArgv.size()); 344 unsigned PtrSize = EE->getDataLayout().getPointerSize(); 345 Array = make_unique<char[]>((InputArgv.size()+1)*PtrSize); 346 347 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array.get() << "\n"); 348 Type *SBytePtr = Type::getInt8PtrTy(C); 349 350 for (unsigned i = 0; i != InputArgv.size(); ++i) { 351 unsigned Size = InputArgv[i].size()+1; 352 auto Dest = make_unique<char[]>(Size); 353 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest.get() << "\n"); 354 355 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get()); 356 Dest[Size-1] = 0; 357 358 // Endian safe: Array[i] = (PointerTy)Dest; 359 EE->StoreValueToMemory(PTOGV(Dest.get()), 360 (GenericValue*)(&Array[i*PtrSize]), SBytePtr); 361 Values.push_back(std::move(Dest)); 362 } 363 364 // Null terminate it 365 EE->StoreValueToMemory(PTOGV(nullptr), 366 (GenericValue*)(&Array[InputArgv.size()*PtrSize]), 367 SBytePtr); 368 return Array.get(); 369 } 370 371 void ExecutionEngine::runStaticConstructorsDestructors(Module &module, 372 bool isDtors) { 373 StringRef Name(isDtors ? "llvm.global_dtors" : "llvm.global_ctors"); 374 GlobalVariable *GV = module.getNamedGlobal(Name); 375 376 // If this global has internal linkage, or if it has a use, then it must be 377 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 378 // this is the case, don't execute any of the global ctors, __main will do 379 // it. 380 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 381 382 // Should be an array of '{ i32, void ()* }' structs. The first value is 383 // the init priority, which we ignore. 384 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 385 if (!InitList) 386 return; 387 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 388 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 389 if (!CS) continue; 390 391 Constant *FP = CS->getOperand(1); 392 if (FP->isNullValue()) 393 continue; // Found a sentinal value, ignore. 394 395 // Strip off constant expression casts. 396 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 397 if (CE->isCast()) 398 FP = CE->getOperand(0); 399 400 // Execute the ctor/dtor function! 401 if (Function *F = dyn_cast<Function>(FP)) 402 runFunction(F, None); 403 404 // FIXME: It is marginally lame that we just do nothing here if we see an 405 // entry we don't recognize. It might not be unreasonable for the verifier 406 // to not even allow this and just assert here. 407 } 408 } 409 410 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 411 // Execute global ctors/dtors for each module in the program. 412 for (std::unique_ptr<Module> &M : Modules) 413 runStaticConstructorsDestructors(*M, isDtors); 414 } 415 416 #ifndef NDEBUG 417 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 418 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 419 unsigned PtrSize = EE->getDataLayout().getPointerSize(); 420 for (unsigned i = 0; i < PtrSize; ++i) 421 if (*(i + (uint8_t*)Loc)) 422 return false; 423 return true; 424 } 425 #endif 426 427 int ExecutionEngine::runFunctionAsMain(Function *Fn, 428 const std::vector<std::string> &argv, 429 const char * const * envp) { 430 std::vector<GenericValue> GVArgs; 431 GenericValue GVArgc; 432 GVArgc.IntVal = APInt(32, argv.size()); 433 434 // Check main() type 435 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 436 FunctionType *FTy = Fn->getFunctionType(); 437 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 438 439 // Check the argument types. 440 if (NumArgs > 3) 441 report_fatal_error("Invalid number of arguments of main() supplied"); 442 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 443 report_fatal_error("Invalid type for third argument of main() supplied"); 444 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 445 report_fatal_error("Invalid type for second argument of main() supplied"); 446 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 447 report_fatal_error("Invalid type for first argument of main() supplied"); 448 if (!FTy->getReturnType()->isIntegerTy() && 449 !FTy->getReturnType()->isVoidTy()) 450 report_fatal_error("Invalid return type of main() supplied"); 451 452 ArgvArray CArgv; 453 ArgvArray CEnv; 454 if (NumArgs) { 455 GVArgs.push_back(GVArgc); // Arg #0 = argc. 456 if (NumArgs > 1) { 457 // Arg #1 = argv. 458 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 459 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 460 "argv[0] was null after CreateArgv"); 461 if (NumArgs > 2) { 462 std::vector<std::string> EnvVars; 463 for (unsigned i = 0; envp[i]; ++i) 464 EnvVars.emplace_back(envp[i]); 465 // Arg #2 = envp. 466 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 467 } 468 } 469 } 470 471 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 472 } 473 474 EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {} 475 476 EngineBuilder::EngineBuilder(std::unique_ptr<Module> M) 477 : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr), 478 OptLevel(CodeGenOpt::Default), MemMgr(nullptr), Resolver(nullptr), 479 CMModel(CodeModel::JITDefault), UseOrcMCJITReplacement(false) { 480 // IR module verification is enabled by default in debug builds, and disabled 481 // by default in release builds. 482 #ifndef NDEBUG 483 VerifyModules = true; 484 #else 485 VerifyModules = false; 486 #endif 487 } 488 489 EngineBuilder::~EngineBuilder() = default; 490 491 EngineBuilder &EngineBuilder::setMCJITMemoryManager( 492 std::unique_ptr<RTDyldMemoryManager> mcjmm) { 493 auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm)); 494 MemMgr = SharedMM; 495 Resolver = SharedMM; 496 return *this; 497 } 498 499 EngineBuilder& 500 EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) { 501 MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM)); 502 return *this; 503 } 504 505 EngineBuilder& 506 EngineBuilder::setSymbolResolver(std::unique_ptr<JITSymbolResolver> SR) { 507 Resolver = std::shared_ptr<JITSymbolResolver>(std::move(SR)); 508 return *this; 509 } 510 511 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 512 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. 513 514 // Make sure we can resolve symbols in the program as well. The zero arg 515 // to the function tells DynamicLibrary to load the program, not a library. 516 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) 517 return nullptr; 518 519 // If the user specified a memory manager but didn't specify which engine to 520 // create, we assume they only want the JIT, and we fail if they only want 521 // the interpreter. 522 if (MemMgr) { 523 if (WhichEngine & EngineKind::JIT) 524 WhichEngine = EngineKind::JIT; 525 else { 526 if (ErrorStr) 527 *ErrorStr = "Cannot create an interpreter with a memory manager."; 528 return nullptr; 529 } 530 } 531 532 // Unless the interpreter was explicitly selected or the JIT is not linked, 533 // try making a JIT. 534 if ((WhichEngine & EngineKind::JIT) && TheTM) { 535 Triple TT(M->getTargetTriple()); 536 if (!TM->getTarget().hasJIT()) { 537 errs() << "WARNING: This target JIT is not designed for the host" 538 << " you are running. If bad things happen, please choose" 539 << " a different -march switch.\n"; 540 } 541 542 ExecutionEngine *EE = nullptr; 543 if (ExecutionEngine::OrcMCJITReplacementCtor && UseOrcMCJITReplacement) { 544 EE = ExecutionEngine::OrcMCJITReplacementCtor(ErrorStr, std::move(MemMgr), 545 std::move(Resolver), 546 std::move(TheTM)); 547 EE->addModule(std::move(M)); 548 } else if (ExecutionEngine::MCJITCtor) 549 EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr), 550 std::move(Resolver), std::move(TheTM)); 551 552 if (EE) { 553 EE->setVerifyModules(VerifyModules); 554 return EE; 555 } 556 } 557 558 // If we can't make a JIT and we didn't request one specifically, try making 559 // an interpreter instead. 560 if (WhichEngine & EngineKind::Interpreter) { 561 if (ExecutionEngine::InterpCtor) 562 return ExecutionEngine::InterpCtor(std::move(M), ErrorStr); 563 if (ErrorStr) 564 *ErrorStr = "Interpreter has not been linked in."; 565 return nullptr; 566 } 567 568 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) { 569 if (ErrorStr) 570 *ErrorStr = "JIT has not been linked in."; 571 } 572 573 return nullptr; 574 } 575 576 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 577 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 578 return getPointerToFunction(F); 579 580 MutexGuard locked(lock); 581 if (void* P = getPointerToGlobalIfAvailable(GV)) 582 return P; 583 584 // Global variable might have been added since interpreter started. 585 if (GlobalVariable *GVar = 586 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 587 EmitGlobalVariable(GVar); 588 else 589 llvm_unreachable("Global hasn't had an address allocated yet!"); 590 591 return getPointerToGlobalIfAvailable(GV); 592 } 593 594 /// \brief Converts a Constant* into a GenericValue, including handling of 595 /// ConstantExpr values. 596 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 597 // If its undefined, return the garbage. 598 if (isa<UndefValue>(C)) { 599 GenericValue Result; 600 switch (C->getType()->getTypeID()) { 601 default: 602 break; 603 case Type::IntegerTyID: 604 case Type::X86_FP80TyID: 605 case Type::FP128TyID: 606 case Type::PPC_FP128TyID: 607 // Although the value is undefined, we still have to construct an APInt 608 // with the correct bit width. 609 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 610 break; 611 case Type::StructTyID: { 612 // if the whole struct is 'undef' just reserve memory for the value. 613 if(StructType *STy = dyn_cast<StructType>(C->getType())) { 614 unsigned int elemNum = STy->getNumElements(); 615 Result.AggregateVal.resize(elemNum); 616 for (unsigned int i = 0; i < elemNum; ++i) { 617 Type *ElemTy = STy->getElementType(i); 618 if (ElemTy->isIntegerTy()) 619 Result.AggregateVal[i].IntVal = 620 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 621 else if (ElemTy->isAggregateType()) { 622 const Constant *ElemUndef = UndefValue::get(ElemTy); 623 Result.AggregateVal[i] = getConstantValue(ElemUndef); 624 } 625 } 626 } 627 } 628 break; 629 case Type::VectorTyID: 630 // if the whole vector is 'undef' just reserve memory for the value. 631 auto* VTy = dyn_cast<VectorType>(C->getType()); 632 Type *ElemTy = VTy->getElementType(); 633 unsigned int elemNum = VTy->getNumElements(); 634 Result.AggregateVal.resize(elemNum); 635 if (ElemTy->isIntegerTy()) 636 for (unsigned int i = 0; i < elemNum; ++i) 637 Result.AggregateVal[i].IntVal = 638 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 639 break; 640 } 641 return Result; 642 } 643 644 // Otherwise, if the value is a ConstantExpr... 645 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 646 Constant *Op0 = CE->getOperand(0); 647 switch (CE->getOpcode()) { 648 case Instruction::GetElementPtr: { 649 // Compute the index 650 GenericValue Result = getConstantValue(Op0); 651 APInt Offset(DL.getPointerSizeInBits(), 0); 652 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, Offset); 653 654 char* tmp = (char*) Result.PointerVal; 655 Result = PTOGV(tmp + Offset.getSExtValue()); 656 return Result; 657 } 658 case Instruction::Trunc: { 659 GenericValue GV = getConstantValue(Op0); 660 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 661 GV.IntVal = GV.IntVal.trunc(BitWidth); 662 return GV; 663 } 664 case Instruction::ZExt: { 665 GenericValue GV = getConstantValue(Op0); 666 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 667 GV.IntVal = GV.IntVal.zext(BitWidth); 668 return GV; 669 } 670 case Instruction::SExt: { 671 GenericValue GV = getConstantValue(Op0); 672 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 673 GV.IntVal = GV.IntVal.sext(BitWidth); 674 return GV; 675 } 676 case Instruction::FPTrunc: { 677 // FIXME long double 678 GenericValue GV = getConstantValue(Op0); 679 GV.FloatVal = float(GV.DoubleVal); 680 return GV; 681 } 682 case Instruction::FPExt:{ 683 // FIXME long double 684 GenericValue GV = getConstantValue(Op0); 685 GV.DoubleVal = double(GV.FloatVal); 686 return GV; 687 } 688 case Instruction::UIToFP: { 689 GenericValue GV = getConstantValue(Op0); 690 if (CE->getType()->isFloatTy()) 691 GV.FloatVal = float(GV.IntVal.roundToDouble()); 692 else if (CE->getType()->isDoubleTy()) 693 GV.DoubleVal = GV.IntVal.roundToDouble(); 694 else if (CE->getType()->isX86_FP80Ty()) { 695 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended()); 696 (void)apf.convertFromAPInt(GV.IntVal, 697 false, 698 APFloat::rmNearestTiesToEven); 699 GV.IntVal = apf.bitcastToAPInt(); 700 } 701 return GV; 702 } 703 case Instruction::SIToFP: { 704 GenericValue GV = getConstantValue(Op0); 705 if (CE->getType()->isFloatTy()) 706 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 707 else if (CE->getType()->isDoubleTy()) 708 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 709 else if (CE->getType()->isX86_FP80Ty()) { 710 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended()); 711 (void)apf.convertFromAPInt(GV.IntVal, 712 true, 713 APFloat::rmNearestTiesToEven); 714 GV.IntVal = apf.bitcastToAPInt(); 715 } 716 return GV; 717 } 718 case Instruction::FPToUI: // double->APInt conversion handles sign 719 case Instruction::FPToSI: { 720 GenericValue GV = getConstantValue(Op0); 721 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 722 if (Op0->getType()->isFloatTy()) 723 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 724 else if (Op0->getType()->isDoubleTy()) 725 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 726 else if (Op0->getType()->isX86_FP80Ty()) { 727 APFloat apf = APFloat(APFloat::x87DoubleExtended(), GV.IntVal); 728 uint64_t v; 729 bool ignored; 730 (void)apf.convertToInteger(makeMutableArrayRef(v), BitWidth, 731 CE->getOpcode()==Instruction::FPToSI, 732 APFloat::rmTowardZero, &ignored); 733 GV.IntVal = v; // endian? 734 } 735 return GV; 736 } 737 case Instruction::PtrToInt: { 738 GenericValue GV = getConstantValue(Op0); 739 uint32_t PtrWidth = DL.getTypeSizeInBits(Op0->getType()); 740 assert(PtrWidth <= 64 && "Bad pointer width"); 741 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 742 uint32_t IntWidth = DL.getTypeSizeInBits(CE->getType()); 743 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); 744 return GV; 745 } 746 case Instruction::IntToPtr: { 747 GenericValue GV = getConstantValue(Op0); 748 uint32_t PtrWidth = DL.getTypeSizeInBits(CE->getType()); 749 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 750 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 751 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 752 return GV; 753 } 754 case Instruction::BitCast: { 755 GenericValue GV = getConstantValue(Op0); 756 Type* DestTy = CE->getType(); 757 switch (Op0->getType()->getTypeID()) { 758 default: llvm_unreachable("Invalid bitcast operand"); 759 case Type::IntegerTyID: 760 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 761 if (DestTy->isFloatTy()) 762 GV.FloatVal = GV.IntVal.bitsToFloat(); 763 else if (DestTy->isDoubleTy()) 764 GV.DoubleVal = GV.IntVal.bitsToDouble(); 765 break; 766 case Type::FloatTyID: 767 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 768 GV.IntVal = APInt::floatToBits(GV.FloatVal); 769 break; 770 case Type::DoubleTyID: 771 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 772 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 773 break; 774 case Type::PointerTyID: 775 assert(DestTy->isPointerTy() && "Invalid bitcast"); 776 break; // getConstantValue(Op0) above already converted it 777 } 778 return GV; 779 } 780 case Instruction::Add: 781 case Instruction::FAdd: 782 case Instruction::Sub: 783 case Instruction::FSub: 784 case Instruction::Mul: 785 case Instruction::FMul: 786 case Instruction::UDiv: 787 case Instruction::SDiv: 788 case Instruction::URem: 789 case Instruction::SRem: 790 case Instruction::And: 791 case Instruction::Or: 792 case Instruction::Xor: { 793 GenericValue LHS = getConstantValue(Op0); 794 GenericValue RHS = getConstantValue(CE->getOperand(1)); 795 GenericValue GV; 796 switch (CE->getOperand(0)->getType()->getTypeID()) { 797 default: llvm_unreachable("Bad add type!"); 798 case Type::IntegerTyID: 799 switch (CE->getOpcode()) { 800 default: llvm_unreachable("Invalid integer opcode"); 801 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 802 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 803 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 804 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 805 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 806 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 807 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 808 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 809 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 810 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 811 } 812 break; 813 case Type::FloatTyID: 814 switch (CE->getOpcode()) { 815 default: llvm_unreachable("Invalid float opcode"); 816 case Instruction::FAdd: 817 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 818 case Instruction::FSub: 819 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 820 case Instruction::FMul: 821 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 822 case Instruction::FDiv: 823 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 824 case Instruction::FRem: 825 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 826 } 827 break; 828 case Type::DoubleTyID: 829 switch (CE->getOpcode()) { 830 default: llvm_unreachable("Invalid double opcode"); 831 case Instruction::FAdd: 832 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 833 case Instruction::FSub: 834 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 835 case Instruction::FMul: 836 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 837 case Instruction::FDiv: 838 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 839 case Instruction::FRem: 840 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 841 } 842 break; 843 case Type::X86_FP80TyID: 844 case Type::PPC_FP128TyID: 845 case Type::FP128TyID: { 846 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); 847 APFloat apfLHS = APFloat(Sem, LHS.IntVal); 848 switch (CE->getOpcode()) { 849 default: llvm_unreachable("Invalid long double opcode"); 850 case Instruction::FAdd: 851 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); 852 GV.IntVal = apfLHS.bitcastToAPInt(); 853 break; 854 case Instruction::FSub: 855 apfLHS.subtract(APFloat(Sem, RHS.IntVal), 856 APFloat::rmNearestTiesToEven); 857 GV.IntVal = apfLHS.bitcastToAPInt(); 858 break; 859 case Instruction::FMul: 860 apfLHS.multiply(APFloat(Sem, RHS.IntVal), 861 APFloat::rmNearestTiesToEven); 862 GV.IntVal = apfLHS.bitcastToAPInt(); 863 break; 864 case Instruction::FDiv: 865 apfLHS.divide(APFloat(Sem, RHS.IntVal), 866 APFloat::rmNearestTiesToEven); 867 GV.IntVal = apfLHS.bitcastToAPInt(); 868 break; 869 case Instruction::FRem: 870 apfLHS.mod(APFloat(Sem, RHS.IntVal)); 871 GV.IntVal = apfLHS.bitcastToAPInt(); 872 break; 873 } 874 } 875 break; 876 } 877 return GV; 878 } 879 default: 880 break; 881 } 882 883 SmallString<256> Msg; 884 raw_svector_ostream OS(Msg); 885 OS << "ConstantExpr not handled: " << *CE; 886 report_fatal_error(OS.str()); 887 } 888 889 // Otherwise, we have a simple constant. 890 GenericValue Result; 891 switch (C->getType()->getTypeID()) { 892 case Type::FloatTyID: 893 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 894 break; 895 case Type::DoubleTyID: 896 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 897 break; 898 case Type::X86_FP80TyID: 899 case Type::FP128TyID: 900 case Type::PPC_FP128TyID: 901 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 902 break; 903 case Type::IntegerTyID: 904 Result.IntVal = cast<ConstantInt>(C)->getValue(); 905 break; 906 case Type::PointerTyID: 907 if (isa<ConstantPointerNull>(C)) 908 Result.PointerVal = nullptr; 909 else if (const Function *F = dyn_cast<Function>(C)) 910 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 911 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 912 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 913 else 914 llvm_unreachable("Unknown constant pointer type!"); 915 break; 916 case Type::VectorTyID: { 917 unsigned elemNum; 918 Type* ElemTy; 919 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); 920 const ConstantVector *CV = dyn_cast<ConstantVector>(C); 921 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); 922 923 if (CDV) { 924 elemNum = CDV->getNumElements(); 925 ElemTy = CDV->getElementType(); 926 } else if (CV || CAZ) { 927 VectorType* VTy = dyn_cast<VectorType>(C->getType()); 928 elemNum = VTy->getNumElements(); 929 ElemTy = VTy->getElementType(); 930 } else { 931 llvm_unreachable("Unknown constant vector type!"); 932 } 933 934 Result.AggregateVal.resize(elemNum); 935 // Check if vector holds floats. 936 if(ElemTy->isFloatTy()) { 937 if (CAZ) { 938 GenericValue floatZero; 939 floatZero.FloatVal = 0.f; 940 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 941 floatZero); 942 break; 943 } 944 if(CV) { 945 for (unsigned i = 0; i < elemNum; ++i) 946 if (!isa<UndefValue>(CV->getOperand(i))) 947 Result.AggregateVal[i].FloatVal = cast<ConstantFP>( 948 CV->getOperand(i))->getValueAPF().convertToFloat(); 949 break; 950 } 951 if(CDV) 952 for (unsigned i = 0; i < elemNum; ++i) 953 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); 954 955 break; 956 } 957 // Check if vector holds doubles. 958 if (ElemTy->isDoubleTy()) { 959 if (CAZ) { 960 GenericValue doubleZero; 961 doubleZero.DoubleVal = 0.0; 962 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 963 doubleZero); 964 break; 965 } 966 if(CV) { 967 for (unsigned i = 0; i < elemNum; ++i) 968 if (!isa<UndefValue>(CV->getOperand(i))) 969 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( 970 CV->getOperand(i))->getValueAPF().convertToDouble(); 971 break; 972 } 973 if(CDV) 974 for (unsigned i = 0; i < elemNum; ++i) 975 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); 976 977 break; 978 } 979 // Check if vector holds integers. 980 if (ElemTy->isIntegerTy()) { 981 if (CAZ) { 982 GenericValue intZero; 983 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); 984 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 985 intZero); 986 break; 987 } 988 if(CV) { 989 for (unsigned i = 0; i < elemNum; ++i) 990 if (!isa<UndefValue>(CV->getOperand(i))) 991 Result.AggregateVal[i].IntVal = cast<ConstantInt>( 992 CV->getOperand(i))->getValue(); 993 else { 994 Result.AggregateVal[i].IntVal = 995 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); 996 } 997 break; 998 } 999 if(CDV) 1000 for (unsigned i = 0; i < elemNum; ++i) 1001 Result.AggregateVal[i].IntVal = APInt( 1002 CDV->getElementType()->getPrimitiveSizeInBits(), 1003 CDV->getElementAsInteger(i)); 1004 1005 break; 1006 } 1007 llvm_unreachable("Unknown constant pointer type!"); 1008 } 1009 break; 1010 1011 default: 1012 SmallString<256> Msg; 1013 raw_svector_ostream OS(Msg); 1014 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 1015 report_fatal_error(OS.str()); 1016 } 1017 1018 return Result; 1019 } 1020 1021 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 1022 /// with the integer held in IntVal. 1023 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 1024 unsigned StoreBytes) { 1025 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 1026 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 1027 1028 if (sys::IsLittleEndianHost) { 1029 // Little-endian host - the source is ordered from LSB to MSB. Order the 1030 // destination from LSB to MSB: Do a straight copy. 1031 memcpy(Dst, Src, StoreBytes); 1032 } else { 1033 // Big-endian host - the source is an array of 64 bit words ordered from 1034 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 1035 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 1036 while (StoreBytes > sizeof(uint64_t)) { 1037 StoreBytes -= sizeof(uint64_t); 1038 // May not be aligned so use memcpy. 1039 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 1040 Src += sizeof(uint64_t); 1041 } 1042 1043 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 1044 } 1045 } 1046 1047 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 1048 GenericValue *Ptr, Type *Ty) { 1049 const unsigned StoreBytes = getDataLayout().getTypeStoreSize(Ty); 1050 1051 switch (Ty->getTypeID()) { 1052 default: 1053 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 1054 break; 1055 case Type::IntegerTyID: 1056 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 1057 break; 1058 case Type::FloatTyID: 1059 *((float*)Ptr) = Val.FloatVal; 1060 break; 1061 case Type::DoubleTyID: 1062 *((double*)Ptr) = Val.DoubleVal; 1063 break; 1064 case Type::X86_FP80TyID: 1065 memcpy(Ptr, Val.IntVal.getRawData(), 10); 1066 break; 1067 case Type::PointerTyID: 1068 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 1069 if (StoreBytes != sizeof(PointerTy)) 1070 memset(&(Ptr->PointerVal), 0, StoreBytes); 1071 1072 *((PointerTy*)Ptr) = Val.PointerVal; 1073 break; 1074 case Type::VectorTyID: 1075 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { 1076 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) 1077 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; 1078 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) 1079 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; 1080 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { 1081 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; 1082 StoreIntToMemory(Val.AggregateVal[i].IntVal, 1083 (uint8_t*)Ptr + numOfBytes*i, numOfBytes); 1084 } 1085 } 1086 break; 1087 } 1088 1089 if (sys::IsLittleEndianHost != getDataLayout().isLittleEndian()) 1090 // Host and target are different endian - reverse the stored bytes. 1091 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 1092 } 1093 1094 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 1095 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 1096 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 1097 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 1098 uint8_t *Dst = reinterpret_cast<uint8_t *>( 1099 const_cast<uint64_t *>(IntVal.getRawData())); 1100 1101 if (sys::IsLittleEndianHost) 1102 // Little-endian host - the destination must be ordered from LSB to MSB. 1103 // The source is ordered from LSB to MSB: Do a straight copy. 1104 memcpy(Dst, Src, LoadBytes); 1105 else { 1106 // Big-endian - the destination is an array of 64 bit words ordered from 1107 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 1108 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 1109 // a word. 1110 while (LoadBytes > sizeof(uint64_t)) { 1111 LoadBytes -= sizeof(uint64_t); 1112 // May not be aligned so use memcpy. 1113 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 1114 Dst += sizeof(uint64_t); 1115 } 1116 1117 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 1118 } 1119 } 1120 1121 /// FIXME: document 1122 /// 1123 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 1124 GenericValue *Ptr, 1125 Type *Ty) { 1126 const unsigned LoadBytes = getDataLayout().getTypeStoreSize(Ty); 1127 1128 switch (Ty->getTypeID()) { 1129 case Type::IntegerTyID: 1130 // An APInt with all words initially zero. 1131 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 1132 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 1133 break; 1134 case Type::FloatTyID: 1135 Result.FloatVal = *((float*)Ptr); 1136 break; 1137 case Type::DoubleTyID: 1138 Result.DoubleVal = *((double*)Ptr); 1139 break; 1140 case Type::PointerTyID: 1141 Result.PointerVal = *((PointerTy*)Ptr); 1142 break; 1143 case Type::X86_FP80TyID: { 1144 // This is endian dependent, but it will only work on x86 anyway. 1145 // FIXME: Will not trap if loading a signaling NaN. 1146 uint64_t y[2]; 1147 memcpy(y, Ptr, 10); 1148 Result.IntVal = APInt(80, y); 1149 break; 1150 } 1151 case Type::VectorTyID: { 1152 auto *VT = cast<VectorType>(Ty); 1153 Type *ElemT = VT->getElementType(); 1154 const unsigned numElems = VT->getNumElements(); 1155 if (ElemT->isFloatTy()) { 1156 Result.AggregateVal.resize(numElems); 1157 for (unsigned i = 0; i < numElems; ++i) 1158 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); 1159 } 1160 if (ElemT->isDoubleTy()) { 1161 Result.AggregateVal.resize(numElems); 1162 for (unsigned i = 0; i < numElems; ++i) 1163 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); 1164 } 1165 if (ElemT->isIntegerTy()) { 1166 GenericValue intZero; 1167 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); 1168 intZero.IntVal = APInt(elemBitWidth, 0); 1169 Result.AggregateVal.resize(numElems, intZero); 1170 for (unsigned i = 0; i < numElems; ++i) 1171 LoadIntFromMemory(Result.AggregateVal[i].IntVal, 1172 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); 1173 } 1174 break; 1175 } 1176 default: 1177 SmallString<256> Msg; 1178 raw_svector_ostream OS(Msg); 1179 OS << "Cannot load value of type " << *Ty << "!"; 1180 report_fatal_error(OS.str()); 1181 } 1182 } 1183 1184 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 1185 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 1186 DEBUG(Init->dump()); 1187 if (isa<UndefValue>(Init)) 1188 return; 1189 1190 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 1191 unsigned ElementSize = 1192 getDataLayout().getTypeAllocSize(CP->getType()->getElementType()); 1193 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 1194 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 1195 return; 1196 } 1197 1198 if (isa<ConstantAggregateZero>(Init)) { 1199 memset(Addr, 0, (size_t)getDataLayout().getTypeAllocSize(Init->getType())); 1200 return; 1201 } 1202 1203 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 1204 unsigned ElementSize = 1205 getDataLayout().getTypeAllocSize(CPA->getType()->getElementType()); 1206 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 1207 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 1208 return; 1209 } 1210 1211 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 1212 const StructLayout *SL = 1213 getDataLayout().getStructLayout(cast<StructType>(CPS->getType())); 1214 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 1215 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 1216 return; 1217 } 1218 1219 if (const ConstantDataSequential *CDS = 1220 dyn_cast<ConstantDataSequential>(Init)) { 1221 // CDS is already laid out in host memory order. 1222 StringRef Data = CDS->getRawDataValues(); 1223 memcpy(Addr, Data.data(), Data.size()); 1224 return; 1225 } 1226 1227 if (Init->getType()->isFirstClassType()) { 1228 GenericValue Val = getConstantValue(Init); 1229 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 1230 return; 1231 } 1232 1233 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1234 llvm_unreachable("Unknown constant type to initialize memory with!"); 1235 } 1236 1237 /// EmitGlobals - Emit all of the global variables to memory, storing their 1238 /// addresses into GlobalAddress. This must make sure to copy the contents of 1239 /// their initializers into the memory. 1240 void ExecutionEngine::emitGlobals() { 1241 // Loop over all of the global variables in the program, allocating the memory 1242 // to hold them. If there is more than one module, do a prepass over globals 1243 // to figure out how the different modules should link together. 1244 std::map<std::pair<std::string, Type*>, 1245 const GlobalValue*> LinkedGlobalsMap; 1246 1247 if (Modules.size() != 1) { 1248 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1249 Module &M = *Modules[m]; 1250 for (const auto &GV : M.globals()) { 1251 if (GV.hasLocalLinkage() || GV.isDeclaration() || 1252 GV.hasAppendingLinkage() || !GV.hasName()) 1253 continue;// Ignore external globals and globals with internal linkage. 1254 1255 const GlobalValue *&GVEntry = 1256 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]; 1257 1258 // If this is the first time we've seen this global, it is the canonical 1259 // version. 1260 if (!GVEntry) { 1261 GVEntry = &GV; 1262 continue; 1263 } 1264 1265 // If the existing global is strong, never replace it. 1266 if (GVEntry->hasExternalLinkage()) 1267 continue; 1268 1269 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1270 // symbol. FIXME is this right for common? 1271 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1272 GVEntry = &GV; 1273 } 1274 } 1275 } 1276 1277 std::vector<const GlobalValue*> NonCanonicalGlobals; 1278 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1279 Module &M = *Modules[m]; 1280 for (const auto &GV : M.globals()) { 1281 // In the multi-module case, see what this global maps to. 1282 if (!LinkedGlobalsMap.empty()) { 1283 if (const GlobalValue *GVEntry = 1284 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) { 1285 // If something else is the canonical global, ignore this one. 1286 if (GVEntry != &GV) { 1287 NonCanonicalGlobals.push_back(&GV); 1288 continue; 1289 } 1290 } 1291 } 1292 1293 if (!GV.isDeclaration()) { 1294 addGlobalMapping(&GV, getMemoryForGV(&GV)); 1295 } else { 1296 // External variable reference. Try to use the dynamic loader to 1297 // get a pointer to it. 1298 if (void *SymAddr = 1299 sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName())) 1300 addGlobalMapping(&GV, SymAddr); 1301 else { 1302 report_fatal_error("Could not resolve external global address: " 1303 +GV.getName()); 1304 } 1305 } 1306 } 1307 1308 // If there are multiple modules, map the non-canonical globals to their 1309 // canonical location. 1310 if (!NonCanonicalGlobals.empty()) { 1311 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1312 const GlobalValue *GV = NonCanonicalGlobals[i]; 1313 const GlobalValue *CGV = 1314 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1315 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1316 assert(Ptr && "Canonical global wasn't codegen'd!"); 1317 addGlobalMapping(GV, Ptr); 1318 } 1319 } 1320 1321 // Now that all of the globals are set up in memory, loop through them all 1322 // and initialize their contents. 1323 for (const auto &GV : M.globals()) { 1324 if (!GV.isDeclaration()) { 1325 if (!LinkedGlobalsMap.empty()) { 1326 if (const GlobalValue *GVEntry = 1327 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) 1328 if (GVEntry != &GV) // Not the canonical variable. 1329 continue; 1330 } 1331 EmitGlobalVariable(&GV); 1332 } 1333 } 1334 } 1335 } 1336 1337 // EmitGlobalVariable - This method emits the specified global variable to the 1338 // address specified in GlobalAddresses, or allocates new memory if it's not 1339 // already in the map. 1340 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1341 void *GA = getPointerToGlobalIfAvailable(GV); 1342 1343 if (!GA) { 1344 // If it's not already specified, allocate memory for the global. 1345 GA = getMemoryForGV(GV); 1346 1347 // If we failed to allocate memory for this global, return. 1348 if (!GA) return; 1349 1350 addGlobalMapping(GV, GA); 1351 } 1352 1353 // Don't initialize if it's thread local, let the client do it. 1354 if (!GV->isThreadLocal()) 1355 InitializeMemory(GV->getInitializer(), GA); 1356 1357 Type *ElTy = GV->getValueType(); 1358 size_t GVSize = (size_t)getDataLayout().getTypeAllocSize(ElTy); 1359 NumInitBytes += (unsigned)GVSize; 1360 ++NumGlobals; 1361 } 1362