xref: /llvm-project/llvm/lib/CodeGen/TargetSchedule.cpp (revision 735ab61ac828bd61398e6847d60e308fdf2b54ec)
1 //===- llvm/Target/TargetSchedule.cpp - Sched Machine Model ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a wrapper around MCSchedModel that allows the interface
10 // to benefit from information currently only available in TargetInstrInfo.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/TargetSchedule.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/MachineInstr.h"
17 #include "llvm/CodeGen/MachineOperand.h"
18 #include "llvm/CodeGen/TargetInstrInfo.h"
19 #include "llvm/CodeGen/TargetSubtargetInfo.h"
20 #include "llvm/MC/MCInstrDesc.h"
21 #include "llvm/MC/MCInstrItineraries.h"
22 #include "llvm/MC/MCSchedule.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <algorithm>
27 #include <cassert>
28 #include <numeric>
29 
30 using namespace llvm;
31 
32 static cl::opt<bool> EnableSchedModel("schedmodel", cl::Hidden, cl::init(true),
33   cl::desc("Use TargetSchedModel for latency lookup"));
34 
35 static cl::opt<bool> EnableSchedItins("scheditins", cl::Hidden, cl::init(true),
36   cl::desc("Use InstrItineraryData for latency lookup"));
37 
38 static cl::opt<bool> ForceEnableIntervals(
39     "sched-model-force-enable-intervals", cl::Hidden, cl::init(false),
40     cl::desc("Force the use of resource intervals in the schedule model"));
41 
42 bool TargetSchedModel::hasInstrSchedModel() const {
43   return EnableSchedModel && SchedModel.hasInstrSchedModel();
44 }
45 
46 bool TargetSchedModel::hasInstrItineraries() const {
47   return EnableSchedItins && !InstrItins.isEmpty();
48 }
49 
50 void TargetSchedModel::init(const TargetSubtargetInfo *TSInfo) {
51   STI = TSInfo;
52   SchedModel = TSInfo->getSchedModel();
53   TII = TSInfo->getInstrInfo();
54   STI->initInstrItins(InstrItins);
55 
56   unsigned NumRes = SchedModel.getNumProcResourceKinds();
57   ResourceFactors.resize(NumRes);
58   ResourceLCM = SchedModel.IssueWidth;
59   for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
60     unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
61     if (NumUnits > 0)
62       ResourceLCM = std::lcm(ResourceLCM, NumUnits);
63   }
64   MicroOpFactor = ResourceLCM / SchedModel.IssueWidth;
65   for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
66     unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
67     ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0;
68   }
69 }
70 
71 /// Returns true only if instruction is specified as single issue.
72 bool TargetSchedModel::mustBeginGroup(const MachineInstr *MI,
73                                      const MCSchedClassDesc *SC) const {
74   if (hasInstrSchedModel()) {
75     if (!SC)
76       SC = resolveSchedClass(MI);
77     if (SC->isValid())
78       return SC->BeginGroup;
79   }
80   return false;
81 }
82 
83 bool TargetSchedModel::mustEndGroup(const MachineInstr *MI,
84                                      const MCSchedClassDesc *SC) const {
85   if (hasInstrSchedModel()) {
86     if (!SC)
87       SC = resolveSchedClass(MI);
88     if (SC->isValid())
89       return SC->EndGroup;
90   }
91   return false;
92 }
93 
94 unsigned TargetSchedModel::getNumMicroOps(const MachineInstr *MI,
95                                           const MCSchedClassDesc *SC) const {
96   if (hasInstrItineraries()) {
97     int UOps = InstrItins.getNumMicroOps(MI->getDesc().getSchedClass());
98     return (UOps >= 0) ? UOps : TII->getNumMicroOps(&InstrItins, *MI);
99   }
100   if (hasInstrSchedModel()) {
101     if (!SC)
102       SC = resolveSchedClass(MI);
103     if (SC->isValid())
104       return SC->NumMicroOps;
105   }
106   return MI->isTransient() ? 0 : 1;
107 }
108 
109 // The machine model may explicitly specify an invalid latency, which
110 // effectively means infinite latency. Since users of the TargetSchedule API
111 // don't know how to handle this, we convert it to a very large latency that is
112 // easy to distinguish when debugging the DAG but won't induce overflow.
113 static unsigned capLatency(int Cycles) {
114   return Cycles >= 0 ? Cycles : 1000;
115 }
116 
117 /// Return the MCSchedClassDesc for this instruction. Some SchedClasses require
118 /// evaluation of predicates that depend on instruction operands or flags.
119 const MCSchedClassDesc *TargetSchedModel::
120 resolveSchedClass(const MachineInstr *MI) const {
121   // Get the definition's scheduling class descriptor from this machine model.
122   unsigned SchedClass = MI->getDesc().getSchedClass();
123   const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass);
124   if (!SCDesc->isValid())
125     return SCDesc;
126 
127 #ifndef NDEBUG
128   unsigned NIter = 0;
129 #endif
130   while (SCDesc->isVariant()) {
131     assert(++NIter < 6 && "Variants are nested deeper than the magic number");
132 
133     SchedClass = STI->resolveSchedClass(SchedClass, MI, this);
134     SCDesc = SchedModel.getSchedClassDesc(SchedClass);
135   }
136   return SCDesc;
137 }
138 
139 /// Find the def index of this operand. This index maps to the machine model and
140 /// is independent of use operands. Def operands may be reordered with uses or
141 /// merged with uses without affecting the def index (e.g. before/after
142 /// regalloc). However, an instruction's def operands must never be reordered
143 /// with respect to each other.
144 static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) {
145   unsigned DefIdx = 0;
146   for (unsigned i = 0; i != DefOperIdx; ++i) {
147     const MachineOperand &MO = MI->getOperand(i);
148     if (MO.isReg() && MO.isDef())
149       ++DefIdx;
150   }
151   return DefIdx;
152 }
153 
154 /// Find the use index of this operand. This is independent of the instruction's
155 /// def operands.
156 ///
157 /// Note that uses are not determined by the operand's isUse property, which
158 /// is simply the inverse of isDef. Here we consider any readsReg operand to be
159 /// a "use". The machine model allows an operand to be both a Def and Use.
160 static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) {
161   unsigned UseIdx = 0;
162   for (unsigned i = 0; i != UseOperIdx; ++i) {
163     const MachineOperand &MO = MI->getOperand(i);
164     if (MO.isReg() && MO.readsReg() && !MO.isDef())
165       ++UseIdx;
166   }
167   return UseIdx;
168 }
169 
170 // Top-level API for clients that know the operand indices. This doesn't need to
171 // return std::optional<unsigned>, as it always returns a valid latency.
172 unsigned TargetSchedModel::computeOperandLatency(
173   const MachineInstr *DefMI, unsigned DefOperIdx,
174   const MachineInstr *UseMI, unsigned UseOperIdx) const {
175 
176   const unsigned InstrLatency = computeInstrLatency(DefMI);
177   const unsigned DefaultDefLatency = TII->defaultDefLatency(SchedModel, *DefMI);
178 
179   if (!hasInstrSchedModel() && !hasInstrItineraries())
180     return DefaultDefLatency;
181 
182   if (hasInstrItineraries()) {
183     std::optional<unsigned> OperLatency;
184     if (UseMI) {
185       OperLatency = TII->getOperandLatency(&InstrItins, *DefMI, DefOperIdx,
186                                            *UseMI, UseOperIdx);
187     }
188     else {
189       unsigned DefClass = DefMI->getDesc().getSchedClass();
190       OperLatency = InstrItins.getOperandCycle(DefClass, DefOperIdx);
191     }
192 
193     // Expected latency is the max of InstrLatency and DefaultDefLatency, if we
194     // didn't find an operand latency.
195     return OperLatency ? *OperLatency
196                        : std::max(InstrLatency, DefaultDefLatency);
197   }
198 
199   // hasInstrSchedModel()
200   const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
201   unsigned DefIdx = findDefIdx(DefMI, DefOperIdx);
202   if (DefIdx < SCDesc->NumWriteLatencyEntries) {
203     // Lookup the definition's write latency in SubtargetInfo.
204     const MCWriteLatencyEntry *WLEntry =
205       STI->getWriteLatencyEntry(SCDesc, DefIdx);
206     unsigned WriteID = WLEntry->WriteResourceID;
207     unsigned Latency = capLatency(WLEntry->Cycles);
208     if (!UseMI)
209       return Latency;
210 
211     // Lookup the use's latency adjustment in SubtargetInfo.
212     const MCSchedClassDesc *UseDesc = resolveSchedClass(UseMI);
213     if (UseDesc->NumReadAdvanceEntries == 0)
214       return Latency;
215     unsigned UseIdx = findUseIdx(UseMI, UseOperIdx);
216     int Advance = STI->getReadAdvanceCycles(UseDesc, UseIdx, WriteID);
217     if (Advance > 0 && (unsigned)Advance > Latency) // unsigned wrap
218       return 0;
219     return Latency - Advance;
220   }
221   // If DefIdx does not exist in the model (e.g. implicit defs), then return
222   // unit latency (defaultDefLatency may be too conservative).
223 #ifndef NDEBUG
224   if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit() &&
225       !DefMI->getDesc().operands()[DefOperIdx].isOptionalDef() &&
226       SchedModel.isComplete()) {
227     errs() << "DefIdx " << DefIdx << " exceeds machine model writes for "
228            << *DefMI << " (Try with MCSchedModel.CompleteModel set to false)";
229     llvm_unreachable("incomplete machine model");
230   }
231 #endif
232   // FIXME: Automatically giving all implicit defs defaultDefLatency is
233   // undesirable. We should only do it for defs that are known to the MC
234   // desc like flags. Truly implicit defs should get 1 cycle latency.
235   return DefMI->isTransient() ? 0 : DefaultDefLatency;
236 }
237 
238 unsigned
239 TargetSchedModel::computeInstrLatency(const MCSchedClassDesc &SCDesc) const {
240   return capLatency(MCSchedModel::computeInstrLatency(*STI, SCDesc));
241 }
242 
243 unsigned TargetSchedModel::computeInstrLatency(unsigned Opcode) const {
244   assert(hasInstrSchedModel() && "Only call this function with a SchedModel");
245   unsigned SCIdx = TII->get(Opcode).getSchedClass();
246   return capLatency(SchedModel.computeInstrLatency(*STI, SCIdx));
247 }
248 
249 unsigned TargetSchedModel::computeInstrLatency(const MCInst &Inst) const {
250   if (hasInstrSchedModel())
251     return capLatency(SchedModel.computeInstrLatency(*STI, *TII, Inst));
252   return computeInstrLatency(Inst.getOpcode());
253 }
254 
255 unsigned
256 TargetSchedModel::computeInstrLatency(const MachineInstr *MI,
257                                       bool UseDefaultDefLatency) const {
258   // For the itinerary model, fall back to the old subtarget hook.
259   // Allow subtargets to compute Bundle latencies outside the machine model.
260   if (hasInstrItineraries() || MI->isBundle() ||
261       (!hasInstrSchedModel() && !UseDefaultDefLatency))
262     return TII->getInstrLatency(&InstrItins, *MI);
263 
264   if (hasInstrSchedModel()) {
265     const MCSchedClassDesc *SCDesc = resolveSchedClass(MI);
266     if (SCDesc->isValid())
267       return computeInstrLatency(*SCDesc);
268   }
269   return TII->defaultDefLatency(SchedModel, *MI);
270 }
271 
272 unsigned TargetSchedModel::
273 computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx,
274                      const MachineInstr *DepMI) const {
275   if (!SchedModel.isOutOfOrder())
276     return 1;
277 
278   // Out-of-order processor can dispatch WAW dependencies in the same cycle.
279 
280   // Treat predication as a data dependency for out-of-order cpus. In-order
281   // cpus do not need to treat predicated writes specially.
282   //
283   // TODO: The following hack exists because predication passes do not
284   // correctly append imp-use operands, and readsReg() strangely returns false
285   // for predicated defs.
286   Register Reg = DefMI->getOperand(DefOperIdx).getReg();
287   const MachineFunction &MF = *DefMI->getMF();
288   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
289   if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(*DepMI))
290     return computeInstrLatency(DefMI);
291 
292   // If we have a per operand scheduling model, check if this def is writing
293   // an unbuffered resource. If so, it treated like an in-order cpu.
294   if (hasInstrSchedModel()) {
295     const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
296     if (SCDesc->isValid()) {
297       for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SCDesc),
298              *PRE = STI->getWriteProcResEnd(SCDesc); PRI != PRE; ++PRI) {
299         if (!SchedModel.getProcResource(PRI->ProcResourceIdx)->BufferSize)
300           return 1;
301       }
302     }
303   }
304   return 0;
305 }
306 
307 double
308 TargetSchedModel::computeReciprocalThroughput(const MachineInstr *MI) const {
309   if (hasInstrItineraries()) {
310     unsigned SchedClass = MI->getDesc().getSchedClass();
311     return MCSchedModel::getReciprocalThroughput(SchedClass,
312                                                  *getInstrItineraries());
313   }
314 
315   if (hasInstrSchedModel())
316     return MCSchedModel::getReciprocalThroughput(*STI, *resolveSchedClass(MI));
317 
318   return 0.0;
319 }
320 
321 double
322 TargetSchedModel::computeReciprocalThroughput(unsigned Opcode) const {
323   unsigned SchedClass = TII->get(Opcode).getSchedClass();
324   if (hasInstrItineraries())
325     return MCSchedModel::getReciprocalThroughput(SchedClass,
326                                                  *getInstrItineraries());
327   if (hasInstrSchedModel()) {
328     const MCSchedClassDesc &SCDesc = *SchedModel.getSchedClassDesc(SchedClass);
329     if (SCDesc.isValid() && !SCDesc.isVariant())
330       return MCSchedModel::getReciprocalThroughput(*STI, SCDesc);
331   }
332 
333   return 0.0;
334 }
335 
336 double
337 TargetSchedModel::computeReciprocalThroughput(const MCInst &MI) const {
338   if (hasInstrSchedModel())
339     return SchedModel.getReciprocalThroughput(*STI, *TII, MI);
340   return computeReciprocalThroughput(MI.getOpcode());
341 }
342 
343 bool TargetSchedModel::enableIntervals() const {
344   if (ForceEnableIntervals)
345     return true;
346 
347   return SchedModel.EnableIntervals;
348 }
349