1 //===---------------------------- StackMaps.cpp ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #define DEBUG_TYPE "stackmaps" 11 12 #include "llvm/CodeGen/StackMaps.h" 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "llvm/CodeGen/MachineFunction.h" 15 #include "llvm/CodeGen/MachineFrameInfo.h" 16 #include "llvm/CodeGen/MachineInstr.h" 17 #include "llvm/IR/DataLayout.h" 18 #include "llvm/MC/MCContext.h" 19 #include "llvm/MC/MCExpr.h" 20 #include "llvm/MC/MCObjectFileInfo.h" 21 #include "llvm/MC/MCSectionMachO.h" 22 #include "llvm/MC/MCStreamer.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/raw_ostream.h" 25 #include "llvm/Target/TargetMachine.h" 26 #include "llvm/Target/TargetOpcodes.h" 27 #include "llvm/Target/TargetRegisterInfo.h" 28 #include <iterator> 29 30 using namespace llvm; 31 32 PatchPointOpers::PatchPointOpers(const MachineInstr *MI) 33 : MI(MI), 34 HasDef(MI->getOperand(0).isReg() && MI->getOperand(0).isDef() && 35 !MI->getOperand(0).isImplicit()), 36 IsAnyReg(MI->getOperand(getMetaIdx(CCPos)).getImm() == CallingConv::AnyReg) 37 { 38 #ifndef NDEBUG 39 unsigned CheckStartIdx = 0, e = MI->getNumOperands(); 40 while (CheckStartIdx < e && MI->getOperand(CheckStartIdx).isReg() && 41 MI->getOperand(CheckStartIdx).isDef() && 42 !MI->getOperand(CheckStartIdx).isImplicit()) 43 ++CheckStartIdx; 44 45 assert(getMetaIdx() == CheckStartIdx && 46 "Unexpected additional definition in Patchpoint intrinsic."); 47 #endif 48 } 49 50 unsigned PatchPointOpers::getNextScratchIdx(unsigned StartIdx) const { 51 if (!StartIdx) 52 StartIdx = getVarIdx(); 53 54 // Find the next scratch register (implicit def and early clobber) 55 unsigned ScratchIdx = StartIdx, e = MI->getNumOperands(); 56 while (ScratchIdx < e && 57 !(MI->getOperand(ScratchIdx).isReg() && 58 MI->getOperand(ScratchIdx).isDef() && 59 MI->getOperand(ScratchIdx).isImplicit() && 60 MI->getOperand(ScratchIdx).isEarlyClobber())) 61 ++ScratchIdx; 62 63 assert(ScratchIdx != e && "No scratch register available"); 64 return ScratchIdx; 65 } 66 67 MachineInstr::const_mop_iterator 68 StackMaps::parseOperand(MachineInstr::const_mop_iterator MOI, 69 MachineInstr::const_mop_iterator MOE, 70 LocationVec &Locs, LiveOutVec &LiveOuts) const { 71 if (MOI->isImm()) { 72 switch (MOI->getImm()) { 73 default: llvm_unreachable("Unrecognized operand type."); 74 case StackMaps::DirectMemRefOp: { 75 unsigned Size = AP.TM.getDataLayout()->getPointerSizeInBits(); 76 assert((Size % 8) == 0 && "Need pointer size in bytes."); 77 Size /= 8; 78 unsigned Reg = (++MOI)->getReg(); 79 int64_t Imm = (++MOI)->getImm(); 80 Locs.push_back(Location(StackMaps::Location::Direct, Size, Reg, Imm)); 81 break; 82 } 83 case StackMaps::IndirectMemRefOp: { 84 int64_t Size = (++MOI)->getImm(); 85 assert(Size > 0 && "Need a valid size for indirect memory locations."); 86 unsigned Reg = (++MOI)->getReg(); 87 int64_t Imm = (++MOI)->getImm(); 88 Locs.push_back(Location(StackMaps::Location::Indirect, Size, Reg, Imm)); 89 break; 90 } 91 case StackMaps::ConstantOp: { 92 ++MOI; 93 assert(MOI->isImm() && "Expected constant operand."); 94 int64_t Imm = MOI->getImm(); 95 Locs.push_back(Location(Location::Constant, sizeof(int64_t), 0, Imm)); 96 break; 97 } 98 } 99 return ++MOI; 100 } 101 102 // The physical register number will ultimately be encoded as a DWARF regno. 103 // The stack map also records the size of a spill slot that can hold the 104 // register content. (The runtime can track the actual size of the data type 105 // if it needs to.) 106 if (MOI->isReg()) { 107 // Skip implicit registers (this includes our scratch registers) 108 if (MOI->isImplicit()) 109 return ++MOI; 110 111 assert(TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) && 112 "Virtreg operands should have been rewritten before now."); 113 const TargetRegisterClass *RC = 114 AP.TM.getRegisterInfo()->getMinimalPhysRegClass(MOI->getReg()); 115 assert(!MOI->getSubReg() && "Physical subreg still around."); 116 Locs.push_back( 117 Location(Location::Register, RC->getSize(), MOI->getReg(), 0)); 118 return ++MOI; 119 } 120 121 if (MOI->isRegLiveOut()) 122 LiveOuts = parseRegisterLiveOutMask(MOI->getRegLiveOut()); 123 124 return ++MOI; 125 } 126 127 /// Go up the super-register chain until we hit a valid dwarf register number. 128 static unsigned getDwarfRegNum(unsigned Reg, const TargetRegisterInfo *TRI) { 129 int RegNo = TRI->getDwarfRegNum(Reg, false); 130 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid() && RegNo < 0; ++SR) 131 RegNo = TRI->getDwarfRegNum(*SR, false); 132 133 assert(RegNo >= 0 && "Invalid Dwarf register number."); 134 return (unsigned) RegNo; 135 } 136 137 /// Create a live-out register record for the given register Reg. 138 StackMaps::LiveOutReg 139 StackMaps::createLiveOutReg(unsigned Reg, const TargetRegisterInfo *TRI) const { 140 unsigned RegNo = getDwarfRegNum(Reg, TRI); 141 unsigned Size = TRI->getMinimalPhysRegClass(Reg)->getSize(); 142 return LiveOutReg(Reg, RegNo, Size); 143 } 144 145 /// Parse the register live-out mask and return a vector of live-out registers 146 /// that need to be recorded in the stackmap. 147 StackMaps::LiveOutVec 148 StackMaps::parseRegisterLiveOutMask(const uint32_t *Mask) const { 149 assert(Mask && "No register mask specified"); 150 const TargetRegisterInfo *TRI = AP.TM.getRegisterInfo(); 151 LiveOutVec LiveOuts; 152 153 // Create a LiveOutReg for each bit that is set in the register mask. 154 for (unsigned Reg = 0, NumRegs = TRI->getNumRegs(); Reg != NumRegs; ++Reg) 155 if ((Mask[Reg / 32] >> Reg % 32) & 1) 156 LiveOuts.push_back(createLiveOutReg(Reg, TRI)); 157 158 // We don't need to keep track of a register if its super-register is already 159 // in the list. Merge entries that refer to the same dwarf register and use 160 // the maximum size that needs to be spilled. 161 std::sort(LiveOuts.begin(), LiveOuts.end()); 162 for (LiveOutVec::iterator I = LiveOuts.begin(), E = LiveOuts.end(); 163 I != E; ++I) { 164 for (LiveOutVec::iterator II = next(I); II != E; ++II) { 165 if (I->RegNo != II->RegNo) { 166 // Skip all the now invalid entries. 167 I = --II; 168 break; 169 } 170 I->Size = std::max(I->Size, II->Size); 171 if (TRI->isSuperRegister(I->Reg, II->Reg)) 172 I->Reg = II->Reg; 173 II->MarkInvalid(); 174 } 175 } 176 LiveOuts.erase(std::remove_if(LiveOuts.begin(), LiveOuts.end(), 177 LiveOutReg::IsInvalid), LiveOuts.end()); 178 return LiveOuts; 179 } 180 181 void StackMaps::recordStackMapOpers(const MachineInstr &MI, uint64_t ID, 182 MachineInstr::const_mop_iterator MOI, 183 MachineInstr::const_mop_iterator MOE, 184 bool recordResult) { 185 186 MCContext &OutContext = AP.OutStreamer.getContext(); 187 MCSymbol *MILabel = OutContext.CreateTempSymbol(); 188 AP.OutStreamer.EmitLabel(MILabel); 189 190 LocationVec Locations; 191 LiveOutVec LiveOuts; 192 193 if (recordResult) { 194 assert(PatchPointOpers(&MI).hasDef() && "Stackmap has no return value."); 195 parseOperand(MI.operands_begin(), llvm::next(MI.operands_begin()), 196 Locations, LiveOuts); 197 } 198 199 // Parse operands. 200 while (MOI != MOE) { 201 MOI = parseOperand(MOI, MOE, Locations, LiveOuts); 202 } 203 204 // Move large constants into the constant pool. 205 for (LocationVec::iterator I = Locations.begin(), E = Locations.end(); 206 I != E; ++I) { 207 // Constants are encoded as sign-extended integers. 208 // -1 is directly encoded as .long 0xFFFFFFFF with no constant pool. 209 if (I->LocType == Location::Constant && 210 ((I->Offset + (int64_t(1)<<31)) >> 32) != 0) { 211 I->LocType = Location::ConstantIndex; 212 I->Offset = ConstPool.getConstantIndex(I->Offset); 213 } 214 } 215 216 // Create an expression to calculate the offset of the callsite from function 217 // entry. 218 const MCExpr *CSOffsetExpr = MCBinaryExpr::CreateSub( 219 MCSymbolRefExpr::Create(MILabel, OutContext), 220 MCSymbolRefExpr::Create(AP.CurrentFnSym, OutContext), 221 OutContext); 222 223 CSInfos.push_back(CallsiteInfo(CSOffsetExpr, ID, Locations, LiveOuts)); 224 225 // Record the stack size of the current function. 226 const MachineFrameInfo *MFI = AP.MF->getFrameInfo(); 227 FnStackSize[AP.CurrentFnSym] = 228 MFI->hasVarSizedObjects() ? ~0U : MFI->getStackSize(); 229 } 230 231 void StackMaps::recordStackMap(const MachineInstr &MI) { 232 assert(MI.getOpcode() == TargetOpcode::STACKMAP && "expected stackmap"); 233 234 int64_t ID = MI.getOperand(0).getImm(); 235 recordStackMapOpers(MI, ID, llvm::next(MI.operands_begin(), 2), 236 MI.operands_end()); 237 } 238 239 void StackMaps::recordPatchPoint(const MachineInstr &MI) { 240 assert(MI.getOpcode() == TargetOpcode::PATCHPOINT && "expected patchpoint"); 241 242 PatchPointOpers opers(&MI); 243 int64_t ID = opers.getMetaOper(PatchPointOpers::IDPos).getImm(); 244 245 MachineInstr::const_mop_iterator MOI = 246 llvm::next(MI.operands_begin(), opers.getStackMapStartIdx()); 247 recordStackMapOpers(MI, ID, MOI, MI.operands_end(), 248 opers.isAnyReg() && opers.hasDef()); 249 250 #ifndef NDEBUG 251 // verify anyregcc 252 LocationVec &Locations = CSInfos.back().Locations; 253 if (opers.isAnyReg()) { 254 unsigned NArgs = opers.getMetaOper(PatchPointOpers::NArgPos).getImm(); 255 for (unsigned i = 0, e = (opers.hasDef() ? NArgs+1 : NArgs); i != e; ++i) 256 assert(Locations[i].LocType == Location::Register && 257 "anyreg arg must be in reg."); 258 } 259 #endif 260 } 261 262 /// serializeToStackMapSection conceptually populates the following fields: 263 /// 264 /// uint32 : Reserved (header) 265 /// uint32 : NumFunctions 266 /// StkSizeRecord[NumFunctions] { 267 /// uint32 : Function Offset 268 /// uint32 : Stack Size 269 /// } 270 /// uint32 : NumConstants 271 /// int64 : Constants[NumConstants] 272 /// uint32 : NumRecords 273 /// StkMapRecord[NumRecords] { 274 /// uint64 : PatchPoint ID 275 /// uint32 : Instruction Offset 276 /// uint16 : Reserved (record flags) 277 /// uint16 : NumLocations 278 /// Location[NumLocations] { 279 /// uint8 : Register | Direct | Indirect | Constant | ConstantIndex 280 /// uint8 : Size in Bytes 281 /// uint16 : Dwarf RegNum 282 /// int32 : Offset 283 /// } 284 /// uint16 : NumLiveOuts 285 /// LiveOuts[NumLiveOuts] 286 /// uint16 : Dwarf RegNum 287 /// uint8 : Reserved 288 /// uint8 : Size in Bytes 289 /// } 290 /// 291 /// Location Encoding, Type, Value: 292 /// 0x1, Register, Reg (value in register) 293 /// 0x2, Direct, Reg + Offset (frame index) 294 /// 0x3, Indirect, [Reg + Offset] (spilled value) 295 /// 0x4, Constant, Offset (small constant) 296 /// 0x5, ConstIndex, Constants[Offset] (large constant) 297 /// 298 void StackMaps::serializeToStackMapSection() { 299 // Bail out if there's no stack map data. 300 if (CSInfos.empty()) 301 return; 302 303 MCContext &OutContext = AP.OutStreamer.getContext(); 304 const TargetRegisterInfo *TRI = AP.TM.getRegisterInfo(); 305 306 // Create the section. 307 const MCSection *StackMapSection = 308 OutContext.getObjectFileInfo()->getStackMapSection(); 309 AP.OutStreamer.SwitchSection(StackMapSection); 310 311 // Emit a dummy symbol to force section inclusion. 312 AP.OutStreamer.EmitLabel( 313 OutContext.GetOrCreateSymbol(Twine("__LLVM_StackMaps"))); 314 315 // Serialize data. 316 const char *WSMP = "Stack Maps: "; 317 (void)WSMP; 318 319 DEBUG(dbgs() << "********** Stack Map Output **********\n"); 320 321 // Header. 322 AP.OutStreamer.EmitIntValue(0, 4); 323 324 // Num functions. 325 AP.OutStreamer.EmitIntValue(FnStackSize.size(), 4); 326 327 // Stack size entries. 328 for (FnStackSizeMap::iterator I = FnStackSize.begin(), E = FnStackSize.end(); 329 I != E; ++I) { 330 AP.OutStreamer.EmitSymbolValue(I->first, 4); 331 AP.OutStreamer.EmitIntValue(I->second, 4); 332 } 333 334 // Num constants. 335 AP.OutStreamer.EmitIntValue(ConstPool.getNumConstants(), 4); 336 337 // Constant pool entries. 338 for (unsigned i = 0; i < ConstPool.getNumConstants(); ++i) 339 AP.OutStreamer.EmitIntValue(ConstPool.getConstant(i), 8); 340 341 DEBUG(dbgs() << WSMP << "#callsites = " << CSInfos.size() << "\n"); 342 AP.OutStreamer.EmitIntValue(CSInfos.size(), 4); 343 344 for (CallsiteInfoList::const_iterator CSII = CSInfos.begin(), 345 CSIE = CSInfos.end(); 346 CSII != CSIE; ++CSII) { 347 348 uint64_t CallsiteID = CSII->ID; 349 const LocationVec &CSLocs = CSII->Locations; 350 const LiveOutVec &LiveOuts = CSII->LiveOuts; 351 352 DEBUG(dbgs() << WSMP << "callsite " << CallsiteID << "\n"); 353 354 // Verify stack map entry. It's better to communicate a problem to the 355 // runtime than crash in case of in-process compilation. Currently, we do 356 // simple overflow checks, but we may eventually communicate other 357 // compilation errors this way. 358 if (CSLocs.size() > UINT16_MAX || LiveOuts.size() > UINT16_MAX) { 359 AP.OutStreamer.EmitIntValue(UINT64_MAX, 8); // Invalid ID. 360 AP.OutStreamer.EmitValue(CSII->CSOffsetExpr, 4); 361 AP.OutStreamer.EmitIntValue(0, 2); // Reserved. 362 AP.OutStreamer.EmitIntValue(0, 2); // 0 locations. 363 AP.OutStreamer.EmitIntValue(0, 2); // 0 live-out registers. 364 continue; 365 } 366 367 AP.OutStreamer.EmitIntValue(CallsiteID, 8); 368 AP.OutStreamer.EmitValue(CSII->CSOffsetExpr, 4); 369 370 // Reserved for flags. 371 AP.OutStreamer.EmitIntValue(0, 2); 372 373 DEBUG(dbgs() << WSMP << " has " << CSLocs.size() << " locations\n"); 374 375 AP.OutStreamer.EmitIntValue(CSLocs.size(), 2); 376 377 unsigned operIdx = 0; 378 for (LocationVec::const_iterator LocI = CSLocs.begin(), LocE = CSLocs.end(); 379 LocI != LocE; ++LocI, ++operIdx) { 380 const Location &Loc = *LocI; 381 unsigned RegNo = 0; 382 int Offset = Loc.Offset; 383 if(Loc.Reg) { 384 RegNo = getDwarfRegNum(Loc.Reg, TRI); 385 386 // If this is a register location, put the subregister byte offset in 387 // the location offset. 388 if (Loc.LocType == Location::Register) { 389 assert(!Loc.Offset && "Register location should have zero offset"); 390 unsigned LLVMRegNo = TRI->getLLVMRegNum(RegNo, false); 391 unsigned SubRegIdx = TRI->getSubRegIndex(LLVMRegNo, Loc.Reg); 392 if (SubRegIdx) 393 Offset = TRI->getSubRegIdxOffset(SubRegIdx); 394 } 395 } 396 else { 397 assert(Loc.LocType != Location::Register && 398 "Missing location register"); 399 } 400 401 DEBUG( 402 dbgs() << WSMP << " Loc " << operIdx << ": "; 403 switch (Loc.LocType) { 404 case Location::Unprocessed: 405 dbgs() << "<Unprocessed operand>"; 406 break; 407 case Location::Register: 408 dbgs() << "Register " << TRI->getName(Loc.Reg); 409 break; 410 case Location::Direct: 411 dbgs() << "Direct " << TRI->getName(Loc.Reg); 412 if (Loc.Offset) 413 dbgs() << " + " << Loc.Offset; 414 break; 415 case Location::Indirect: 416 dbgs() << "Indirect " << TRI->getName(Loc.Reg) 417 << " + " << Loc.Offset; 418 break; 419 case Location::Constant: 420 dbgs() << "Constant " << Loc.Offset; 421 break; 422 case Location::ConstantIndex: 423 dbgs() << "Constant Index " << Loc.Offset; 424 break; 425 } 426 dbgs() << " [encoding: .byte " << Loc.LocType 427 << ", .byte " << Loc.Size 428 << ", .short " << RegNo 429 << ", .int " << Offset << "]\n"; 430 ); 431 432 AP.OutStreamer.EmitIntValue(Loc.LocType, 1); 433 AP.OutStreamer.EmitIntValue(Loc.Size, 1); 434 AP.OutStreamer.EmitIntValue(RegNo, 2); 435 AP.OutStreamer.EmitIntValue(Offset, 4); 436 } 437 438 DEBUG(dbgs() << WSMP << " has " << LiveOuts.size() 439 << " live-out registers\n"); 440 441 AP.OutStreamer.EmitIntValue(LiveOuts.size(), 2); 442 443 operIdx = 0; 444 for (LiveOutVec::const_iterator LI = LiveOuts.begin(), LE = LiveOuts.end(); 445 LI != LE; ++LI, ++operIdx) { 446 DEBUG(dbgs() << WSMP << " LO " << operIdx << ": " 447 << TRI->getName(LI->Reg) 448 << " [encoding: .short " << LI->RegNo 449 << ", .byte 0, .byte " << LI->Size << "]\n"); 450 451 AP.OutStreamer.EmitIntValue(LI->RegNo, 2); 452 AP.OutStreamer.EmitIntValue(0, 1); 453 AP.OutStreamer.EmitIntValue(LI->Size, 1); 454 } 455 } 456 457 AP.OutStreamer.AddBlankLine(); 458 459 CSInfos.clear(); 460 } 461