xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp (revision f74aed793819bf9e0509e802f33c5e29c350540c)
1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/Analysis/VectorUtils.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/CodeGenCommonISel.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/TargetRegisterInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCExpr.h"
30 #include "llvm/Support/DivisionByConstantInfo.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/KnownBits.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40     : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function &F = DAG.getMachineFunction().getFunction();
55 
56   // First, check if tail calls have been disabled in this function.
57   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
58     return false;
59 
60   // Conservatively require the attributes of the call to match those of
61   // the return. Ignore following attributes because they don't affect the
62   // call sequence.
63   AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
64   for (const auto &Attr :
65        {Attribute::Alignment, Attribute::Dereferenceable,
66         Attribute::DereferenceableOrNull, Attribute::NoAlias,
67         Attribute::NonNull, Attribute::NoUndef, Attribute::Range})
68     CallerAttrs.removeAttribute(Attr);
69 
70   if (CallerAttrs.hasAttributes())
71     return false;
72 
73   // It's not safe to eliminate the sign / zero extension of the return value.
74   if (CallerAttrs.contains(Attribute::ZExt) ||
75       CallerAttrs.contains(Attribute::SExt))
76     return false;
77 
78   // Check if the only use is a function return node.
79   return isUsedByReturnOnly(Node, Chain);
80 }
81 
82 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
83     const uint32_t *CallerPreservedMask,
84     const SmallVectorImpl<CCValAssign> &ArgLocs,
85     const SmallVectorImpl<SDValue> &OutVals) const {
86   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
87     const CCValAssign &ArgLoc = ArgLocs[I];
88     if (!ArgLoc.isRegLoc())
89       continue;
90     MCRegister Reg = ArgLoc.getLocReg();
91     // Only look at callee saved registers.
92     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
93       continue;
94     // Check that we pass the value used for the caller.
95     // (We look for a CopyFromReg reading a virtual register that is used
96     //  for the function live-in value of register Reg)
97     SDValue Value = OutVals[I];
98     if (Value->getOpcode() == ISD::AssertZext)
99       Value = Value.getOperand(0);
100     if (Value->getOpcode() != ISD::CopyFromReg)
101       return false;
102     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
103     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
104       return false;
105   }
106   return true;
107 }
108 
109 /// Set CallLoweringInfo attribute flags based on a call instruction
110 /// and called function attributes.
111 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
112                                                      unsigned ArgIdx) {
113   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
114   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
115   IsNoExt = Call->paramHasAttr(ArgIdx, Attribute::NoExt);
116   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
117   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
118   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
119   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
120   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
121   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
122   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
123   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
124   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
125   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
126   Alignment = Call->getParamStackAlign(ArgIdx);
127   IndirectType = nullptr;
128   assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 &&
129          "multiple ABI attributes?");
130   if (IsByVal) {
131     IndirectType = Call->getParamByValType(ArgIdx);
132     if (!Alignment)
133       Alignment = Call->getParamAlign(ArgIdx);
134   }
135   if (IsPreallocated)
136     IndirectType = Call->getParamPreallocatedType(ArgIdx);
137   if (IsInAlloca)
138     IndirectType = Call->getParamInAllocaType(ArgIdx);
139   if (IsSRet)
140     IndirectType = Call->getParamStructRetType(ArgIdx);
141 }
142 
143 /// Generate a libcall taking the given operands as arguments and returning a
144 /// result of type RetVT.
145 std::pair<SDValue, SDValue>
146 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
147                             ArrayRef<SDValue> Ops,
148                             MakeLibCallOptions CallOptions,
149                             const SDLoc &dl,
150                             SDValue InChain) const {
151   if (!InChain)
152     InChain = DAG.getEntryNode();
153 
154   TargetLowering::ArgListTy Args;
155   Args.reserve(Ops.size());
156 
157   TargetLowering::ArgListEntry Entry;
158   for (unsigned i = 0; i < Ops.size(); ++i) {
159     SDValue NewOp = Ops[i];
160     Entry.Node = NewOp;
161     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
162     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
163                                                  CallOptions.IsSExt);
164     Entry.IsZExt = !Entry.IsSExt;
165 
166     if (CallOptions.IsSoften &&
167         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
168       Entry.IsSExt = Entry.IsZExt = false;
169     }
170     Args.push_back(Entry);
171   }
172 
173   if (LC == RTLIB::UNKNOWN_LIBCALL)
174     report_fatal_error("Unsupported library call operation!");
175   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
176                                          getPointerTy(DAG.getDataLayout()));
177 
178   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
179   TargetLowering::CallLoweringInfo CLI(DAG);
180   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
181   bool zeroExtend = !signExtend;
182 
183   if (CallOptions.IsSoften &&
184       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
185     signExtend = zeroExtend = false;
186   }
187 
188   CLI.setDebugLoc(dl)
189       .setChain(InChain)
190       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
191       .setNoReturn(CallOptions.DoesNotReturn)
192       .setDiscardResult(!CallOptions.IsReturnValueUsed)
193       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
194       .setSExtResult(signExtend)
195       .setZExtResult(zeroExtend);
196   return LowerCallTo(CLI);
197 }
198 
199 bool TargetLowering::findOptimalMemOpLowering(
200     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
201     unsigned SrcAS, const AttributeList &FuncAttributes) const {
202   if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() &&
203       Op.getSrcAlign() < Op.getDstAlign())
204     return false;
205 
206   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
207 
208   if (VT == MVT::Other) {
209     // Use the largest integer type whose alignment constraints are satisfied.
210     // We only need to check DstAlign here as SrcAlign is always greater or
211     // equal to DstAlign (or zero).
212     VT = MVT::LAST_INTEGER_VALUETYPE;
213     if (Op.isFixedDstAlign())
214       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
215              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
216         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
217     assert(VT.isInteger());
218 
219     // Find the largest legal integer type.
220     MVT LVT = MVT::LAST_INTEGER_VALUETYPE;
221     while (!isTypeLegal(LVT))
222       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
223     assert(LVT.isInteger());
224 
225     // If the type we've chosen is larger than the largest legal integer type
226     // then use that instead.
227     if (VT.bitsGT(LVT))
228       VT = LVT;
229   }
230 
231   unsigned NumMemOps = 0;
232   uint64_t Size = Op.size();
233   while (Size) {
234     unsigned VTSize = VT.getSizeInBits() / 8;
235     while (VTSize > Size) {
236       // For now, only use non-vector load / store's for the left-over pieces.
237       EVT NewVT = VT;
238       unsigned NewVTSize;
239 
240       bool Found = false;
241       if (VT.isVector() || VT.isFloatingPoint()) {
242         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
243         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
244             isSafeMemOpType(NewVT.getSimpleVT()))
245           Found = true;
246         else if (NewVT == MVT::i64 &&
247                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
248                  isSafeMemOpType(MVT::f64)) {
249           // i64 is usually not legal on 32-bit targets, but f64 may be.
250           NewVT = MVT::f64;
251           Found = true;
252         }
253       }
254 
255       if (!Found) {
256         do {
257           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
258           if (NewVT == MVT::i8)
259             break;
260         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
261       }
262       NewVTSize = NewVT.getSizeInBits() / 8;
263 
264       // If the new VT cannot cover all of the remaining bits, then consider
265       // issuing a (or a pair of) unaligned and overlapping load / store.
266       unsigned Fast;
267       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
268           allowsMisalignedMemoryAccesses(
269               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
270               MachineMemOperand::MONone, &Fast) &&
271           Fast)
272         VTSize = Size;
273       else {
274         VT = NewVT;
275         VTSize = NewVTSize;
276       }
277     }
278 
279     if (++NumMemOps > Limit)
280       return false;
281 
282     MemOps.push_back(VT);
283     Size -= VTSize;
284   }
285 
286   return true;
287 }
288 
289 /// Soften the operands of a comparison. This code is shared among BR_CC,
290 /// SELECT_CC, and SETCC handlers.
291 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
292                                          SDValue &NewLHS, SDValue &NewRHS,
293                                          ISD::CondCode &CCCode,
294                                          const SDLoc &dl, const SDValue OldLHS,
295                                          const SDValue OldRHS) const {
296   SDValue Chain;
297   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
298                              OldRHS, Chain);
299 }
300 
301 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
302                                          SDValue &NewLHS, SDValue &NewRHS,
303                                          ISD::CondCode &CCCode,
304                                          const SDLoc &dl, const SDValue OldLHS,
305                                          const SDValue OldRHS,
306                                          SDValue &Chain,
307                                          bool IsSignaling) const {
308   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
309   // not supporting it. We can update this code when libgcc provides such
310   // functions.
311 
312   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
313          && "Unsupported setcc type!");
314 
315   // Expand into one or more soft-fp libcall(s).
316   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
317   bool ShouldInvertCC = false;
318   switch (CCCode) {
319   case ISD::SETEQ:
320   case ISD::SETOEQ:
321     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
322           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
323           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
324     break;
325   case ISD::SETNE:
326   case ISD::SETUNE:
327     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
328           (VT == MVT::f64) ? RTLIB::UNE_F64 :
329           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
330     break;
331   case ISD::SETGE:
332   case ISD::SETOGE:
333     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
334           (VT == MVT::f64) ? RTLIB::OGE_F64 :
335           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
336     break;
337   case ISD::SETLT:
338   case ISD::SETOLT:
339     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
340           (VT == MVT::f64) ? RTLIB::OLT_F64 :
341           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
342     break;
343   case ISD::SETLE:
344   case ISD::SETOLE:
345     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
346           (VT == MVT::f64) ? RTLIB::OLE_F64 :
347           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
348     break;
349   case ISD::SETGT:
350   case ISD::SETOGT:
351     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
352           (VT == MVT::f64) ? RTLIB::OGT_F64 :
353           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
354     break;
355   case ISD::SETO:
356     ShouldInvertCC = true;
357     [[fallthrough]];
358   case ISD::SETUO:
359     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
360           (VT == MVT::f64) ? RTLIB::UO_F64 :
361           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
362     break;
363   case ISD::SETONE:
364     // SETONE = O && UNE
365     ShouldInvertCC = true;
366     [[fallthrough]];
367   case ISD::SETUEQ:
368     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
369           (VT == MVT::f64) ? RTLIB::UO_F64 :
370           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
371     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
372           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
373           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
374     break;
375   default:
376     // Invert CC for unordered comparisons
377     ShouldInvertCC = true;
378     switch (CCCode) {
379     case ISD::SETULT:
380       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
381             (VT == MVT::f64) ? RTLIB::OGE_F64 :
382             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
383       break;
384     case ISD::SETULE:
385       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
386             (VT == MVT::f64) ? RTLIB::OGT_F64 :
387             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
388       break;
389     case ISD::SETUGT:
390       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
391             (VT == MVT::f64) ? RTLIB::OLE_F64 :
392             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
393       break;
394     case ISD::SETUGE:
395       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
396             (VT == MVT::f64) ? RTLIB::OLT_F64 :
397             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
398       break;
399     default: llvm_unreachable("Do not know how to soften this setcc!");
400     }
401   }
402 
403   // Use the target specific return value for comparison lib calls.
404   EVT RetVT = getCmpLibcallReturnType();
405   SDValue Ops[2] = {NewLHS, NewRHS};
406   TargetLowering::MakeLibCallOptions CallOptions;
407   EVT OpsVT[2] = { OldLHS.getValueType(),
408                    OldRHS.getValueType() };
409   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
410   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
411   NewLHS = Call.first;
412   NewRHS = DAG.getConstant(0, dl, RetVT);
413 
414   CCCode = getCmpLibcallCC(LC1);
415   if (ShouldInvertCC) {
416     assert(RetVT.isInteger());
417     CCCode = getSetCCInverse(CCCode, RetVT);
418   }
419 
420   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
421     // Update Chain.
422     Chain = Call.second;
423   } else {
424     EVT SetCCVT =
425         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
426     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
427     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
428     CCCode = getCmpLibcallCC(LC2);
429     if (ShouldInvertCC)
430       CCCode = getSetCCInverse(CCCode, RetVT);
431     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
432     if (Chain)
433       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
434                           Call2.second);
435     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
436                          Tmp.getValueType(), Tmp, NewLHS);
437     NewRHS = SDValue();
438   }
439 }
440 
441 /// Return the entry encoding for a jump table in the current function. The
442 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
443 unsigned TargetLowering::getJumpTableEncoding() const {
444   // In non-pic modes, just use the address of a block.
445   if (!isPositionIndependent())
446     return MachineJumpTableInfo::EK_BlockAddress;
447 
448   // In PIC mode, if the target supports a GPRel32 directive, use it.
449   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
450     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
451 
452   // Otherwise, use a label difference.
453   return MachineJumpTableInfo::EK_LabelDifference32;
454 }
455 
456 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
457                                                  SelectionDAG &DAG) const {
458   // If our PIC model is GP relative, use the global offset table as the base.
459   unsigned JTEncoding = getJumpTableEncoding();
460 
461   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
462       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
463     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
464 
465   return Table;
466 }
467 
468 /// This returns the relocation base for the given PIC jumptable, the same as
469 /// getPICJumpTableRelocBase, but as an MCExpr.
470 const MCExpr *
471 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
472                                              unsigned JTI,MCContext &Ctx) const{
473   // The normal PIC reloc base is the label at the start of the jump table.
474   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
475 }
476 
477 SDValue TargetLowering::expandIndirectJTBranch(const SDLoc &dl, SDValue Value,
478                                                SDValue Addr, int JTI,
479                                                SelectionDAG &DAG) const {
480   SDValue Chain = Value;
481   // Jump table debug info is only needed if CodeView is enabled.
482   if (DAG.getTarget().getTargetTriple().isOSBinFormatCOFF()) {
483     Chain = DAG.getJumpTableDebugInfo(JTI, Chain, dl);
484   }
485   return DAG.getNode(ISD::BRIND, dl, MVT::Other, Chain, Addr);
486 }
487 
488 bool
489 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
490   const TargetMachine &TM = getTargetMachine();
491   const GlobalValue *GV = GA->getGlobal();
492 
493   // If the address is not even local to this DSO we will have to load it from
494   // a got and then add the offset.
495   if (!TM.shouldAssumeDSOLocal(GV))
496     return false;
497 
498   // If the code is position independent we will have to add a base register.
499   if (isPositionIndependent())
500     return false;
501 
502   // Otherwise we can do it.
503   return true;
504 }
505 
506 //===----------------------------------------------------------------------===//
507 //  Optimization Methods
508 //===----------------------------------------------------------------------===//
509 
510 /// If the specified instruction has a constant integer operand and there are
511 /// bits set in that constant that are not demanded, then clear those bits and
512 /// return true.
513 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
514                                             const APInt &DemandedBits,
515                                             const APInt &DemandedElts,
516                                             TargetLoweringOpt &TLO) const {
517   SDLoc DL(Op);
518   unsigned Opcode = Op.getOpcode();
519 
520   // Early-out if we've ended up calling an undemanded node, leave this to
521   // constant folding.
522   if (DemandedBits.isZero() || DemandedElts.isZero())
523     return false;
524 
525   // Do target-specific constant optimization.
526   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
527     return TLO.New.getNode();
528 
529   // FIXME: ISD::SELECT, ISD::SELECT_CC
530   switch (Opcode) {
531   default:
532     break;
533   case ISD::XOR:
534   case ISD::AND:
535   case ISD::OR: {
536     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
537     if (!Op1C || Op1C->isOpaque())
538       return false;
539 
540     // If this is a 'not' op, don't touch it because that's a canonical form.
541     const APInt &C = Op1C->getAPIntValue();
542     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
543       return false;
544 
545     if (!C.isSubsetOf(DemandedBits)) {
546       EVT VT = Op.getValueType();
547       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
548       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC,
549                                       Op->getFlags());
550       return TLO.CombineTo(Op, NewOp);
551     }
552 
553     break;
554   }
555   }
556 
557   return false;
558 }
559 
560 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
561                                             const APInt &DemandedBits,
562                                             TargetLoweringOpt &TLO) const {
563   EVT VT = Op.getValueType();
564   APInt DemandedElts = VT.isVector()
565                            ? APInt::getAllOnes(VT.getVectorNumElements())
566                            : APInt(1, 1);
567   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
568 }
569 
570 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
571 /// This uses isTruncateFree/isZExtFree and ANY_EXTEND for the widening cast,
572 /// but it could be generalized for targets with other types of implicit
573 /// widening casts.
574 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
575                                       const APInt &DemandedBits,
576                                       TargetLoweringOpt &TLO) const {
577   assert(Op.getNumOperands() == 2 &&
578          "ShrinkDemandedOp only supports binary operators!");
579   assert(Op.getNode()->getNumValues() == 1 &&
580          "ShrinkDemandedOp only supports nodes with one result!");
581 
582   EVT VT = Op.getValueType();
583   SelectionDAG &DAG = TLO.DAG;
584   SDLoc dl(Op);
585 
586   // Early return, as this function cannot handle vector types.
587   if (VT.isVector())
588     return false;
589 
590   assert(Op.getOperand(0).getValueType().getScalarSizeInBits() == BitWidth &&
591          Op.getOperand(1).getValueType().getScalarSizeInBits() == BitWidth &&
592          "ShrinkDemandedOp only supports operands that have the same size!");
593 
594   // Don't do this if the node has another user, which may require the
595   // full value.
596   if (!Op.getNode()->hasOneUse())
597     return false;
598 
599   // Search for the smallest integer type with free casts to and from
600   // Op's type. For expedience, just check power-of-2 integer types.
601   unsigned DemandedSize = DemandedBits.getActiveBits();
602   for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize);
603        SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
604     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
605     if (isTruncateFree(VT, SmallVT) && isZExtFree(SmallVT, VT)) {
606       // We found a type with free casts.
607 
608       // If the operation has the 'disjoint' flag, then the
609       // operands on the new node are also disjoint.
610       SDNodeFlags Flags(Op->getFlags().hasDisjoint() ? SDNodeFlags::Disjoint
611                                                      : SDNodeFlags::None);
612       SDValue X = DAG.getNode(
613           Op.getOpcode(), dl, SmallVT,
614           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
615           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)), Flags);
616       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
617       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, VT, X);
618       return TLO.CombineTo(Op, Z);
619     }
620   }
621   return false;
622 }
623 
624 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
625                                           DAGCombinerInfo &DCI) const {
626   SelectionDAG &DAG = DCI.DAG;
627   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
628                         !DCI.isBeforeLegalizeOps());
629   KnownBits Known;
630 
631   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
632   if (Simplified) {
633     DCI.AddToWorklist(Op.getNode());
634     DCI.CommitTargetLoweringOpt(TLO);
635   }
636   return Simplified;
637 }
638 
639 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
640                                           const APInt &DemandedElts,
641                                           DAGCombinerInfo &DCI) const {
642   SelectionDAG &DAG = DCI.DAG;
643   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
644                         !DCI.isBeforeLegalizeOps());
645   KnownBits Known;
646 
647   bool Simplified =
648       SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
649   if (Simplified) {
650     DCI.AddToWorklist(Op.getNode());
651     DCI.CommitTargetLoweringOpt(TLO);
652   }
653   return Simplified;
654 }
655 
656 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
657                                           KnownBits &Known,
658                                           TargetLoweringOpt &TLO,
659                                           unsigned Depth,
660                                           bool AssumeSingleUse) const {
661   EVT VT = Op.getValueType();
662 
663   // Since the number of lanes in a scalable vector is unknown at compile time,
664   // we track one bit which is implicitly broadcast to all lanes.  This means
665   // that all lanes in a scalable vector are considered demanded.
666   APInt DemandedElts = VT.isFixedLengthVector()
667                            ? APInt::getAllOnes(VT.getVectorNumElements())
668                            : APInt(1, 1);
669   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
670                               AssumeSingleUse);
671 }
672 
673 // TODO: Under what circumstances can we create nodes? Constant folding?
674 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
675     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
676     SelectionDAG &DAG, unsigned Depth) const {
677   EVT VT = Op.getValueType();
678 
679   // Limit search depth.
680   if (Depth >= SelectionDAG::MaxRecursionDepth)
681     return SDValue();
682 
683   // Ignore UNDEFs.
684   if (Op.isUndef())
685     return SDValue();
686 
687   // Not demanding any bits/elts from Op.
688   if (DemandedBits == 0 || DemandedElts == 0)
689     return DAG.getUNDEF(VT);
690 
691   bool IsLE = DAG.getDataLayout().isLittleEndian();
692   unsigned NumElts = DemandedElts.getBitWidth();
693   unsigned BitWidth = DemandedBits.getBitWidth();
694   KnownBits LHSKnown, RHSKnown;
695   switch (Op.getOpcode()) {
696   case ISD::BITCAST: {
697     if (VT.isScalableVector())
698       return SDValue();
699 
700     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
701     EVT SrcVT = Src.getValueType();
702     EVT DstVT = Op.getValueType();
703     if (SrcVT == DstVT)
704       return Src;
705 
706     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
707     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
708     if (NumSrcEltBits == NumDstEltBits)
709       if (SDValue V = SimplifyMultipleUseDemandedBits(
710               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
711         return DAG.getBitcast(DstVT, V);
712 
713     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
714       unsigned Scale = NumDstEltBits / NumSrcEltBits;
715       unsigned NumSrcElts = SrcVT.getVectorNumElements();
716       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
717       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
718       for (unsigned i = 0; i != Scale; ++i) {
719         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
720         unsigned BitOffset = EltOffset * NumSrcEltBits;
721         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
722         if (!Sub.isZero()) {
723           DemandedSrcBits |= Sub;
724           for (unsigned j = 0; j != NumElts; ++j)
725             if (DemandedElts[j])
726               DemandedSrcElts.setBit((j * Scale) + i);
727         }
728       }
729 
730       if (SDValue V = SimplifyMultipleUseDemandedBits(
731               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
732         return DAG.getBitcast(DstVT, V);
733     }
734 
735     // TODO - bigendian once we have test coverage.
736     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
737       unsigned Scale = NumSrcEltBits / NumDstEltBits;
738       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
739       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
740       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
741       for (unsigned i = 0; i != NumElts; ++i)
742         if (DemandedElts[i]) {
743           unsigned Offset = (i % Scale) * NumDstEltBits;
744           DemandedSrcBits.insertBits(DemandedBits, Offset);
745           DemandedSrcElts.setBit(i / Scale);
746         }
747 
748       if (SDValue V = SimplifyMultipleUseDemandedBits(
749               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
750         return DAG.getBitcast(DstVT, V);
751     }
752 
753     break;
754   }
755   case ISD::FREEZE: {
756     SDValue N0 = Op.getOperand(0);
757     if (DAG.isGuaranteedNotToBeUndefOrPoison(N0, DemandedElts,
758                                              /*PoisonOnly=*/false))
759       return N0;
760     break;
761   }
762   case ISD::AND: {
763     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
764     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
765 
766     // If all of the demanded bits are known 1 on one side, return the other.
767     // These bits cannot contribute to the result of the 'and' in this
768     // context.
769     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
770       return Op.getOperand(0);
771     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
772       return Op.getOperand(1);
773     break;
774   }
775   case ISD::OR: {
776     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
777     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
778 
779     // If all of the demanded bits are known zero on one side, return the
780     // other.  These bits cannot contribute to the result of the 'or' in this
781     // context.
782     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
783       return Op.getOperand(0);
784     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
785       return Op.getOperand(1);
786     break;
787   }
788   case ISD::XOR: {
789     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
790     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
791 
792     // If all of the demanded bits are known zero on one side, return the
793     // other.
794     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
795       return Op.getOperand(0);
796     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
797       return Op.getOperand(1);
798     break;
799   }
800   case ISD::ADD: {
801     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
802     if (RHSKnown.isZero())
803       return Op.getOperand(0);
804 
805     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
806     if (LHSKnown.isZero())
807       return Op.getOperand(1);
808     break;
809   }
810   case ISD::SHL: {
811     // If we are only demanding sign bits then we can use the shift source
812     // directly.
813     if (std::optional<uint64_t> MaxSA =
814             DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
815       SDValue Op0 = Op.getOperand(0);
816       unsigned ShAmt = *MaxSA;
817       unsigned NumSignBits =
818           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
819       unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero();
820       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
821         return Op0;
822     }
823     break;
824   }
825   case ISD::SRL: {
826     // If we are only demanding sign bits then we can use the shift source
827     // directly.
828     if (std::optional<uint64_t> MaxSA =
829             DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
830       SDValue Op0 = Op.getOperand(0);
831       unsigned ShAmt = *MaxSA;
832       // Must already be signbits in DemandedBits bounds, and can't demand any
833       // shifted in zeroes.
834       if (DemandedBits.countl_zero() >= ShAmt) {
835         unsigned NumSignBits =
836             DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
837         if (DemandedBits.countr_zero() >= (BitWidth - NumSignBits))
838           return Op0;
839       }
840     }
841     break;
842   }
843   case ISD::SETCC: {
844     SDValue Op0 = Op.getOperand(0);
845     SDValue Op1 = Op.getOperand(1);
846     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
847     // If (1) we only need the sign-bit, (2) the setcc operands are the same
848     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
849     // -1, we may be able to bypass the setcc.
850     if (DemandedBits.isSignMask() &&
851         Op0.getScalarValueSizeInBits() == BitWidth &&
852         getBooleanContents(Op0.getValueType()) ==
853             BooleanContent::ZeroOrNegativeOneBooleanContent) {
854       // If we're testing X < 0, then this compare isn't needed - just use X!
855       // FIXME: We're limiting to integer types here, but this should also work
856       // if we don't care about FP signed-zero. The use of SETLT with FP means
857       // that we don't care about NaNs.
858       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
859           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
860         return Op0;
861     }
862     break;
863   }
864   case ISD::SIGN_EXTEND_INREG: {
865     // If none of the extended bits are demanded, eliminate the sextinreg.
866     SDValue Op0 = Op.getOperand(0);
867     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
868     unsigned ExBits = ExVT.getScalarSizeInBits();
869     if (DemandedBits.getActiveBits() <= ExBits &&
870         shouldRemoveRedundantExtend(Op))
871       return Op0;
872     // If the input is already sign extended, just drop the extension.
873     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
874     if (NumSignBits >= (BitWidth - ExBits + 1))
875       return Op0;
876     break;
877   }
878   case ISD::ANY_EXTEND_VECTOR_INREG:
879   case ISD::SIGN_EXTEND_VECTOR_INREG:
880   case ISD::ZERO_EXTEND_VECTOR_INREG: {
881     if (VT.isScalableVector())
882       return SDValue();
883 
884     // If we only want the lowest element and none of extended bits, then we can
885     // return the bitcasted source vector.
886     SDValue Src = Op.getOperand(0);
887     EVT SrcVT = Src.getValueType();
888     EVT DstVT = Op.getValueType();
889     if (IsLE && DemandedElts == 1 &&
890         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
891         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
892       return DAG.getBitcast(DstVT, Src);
893     }
894     break;
895   }
896   case ISD::INSERT_VECTOR_ELT: {
897     if (VT.isScalableVector())
898       return SDValue();
899 
900     // If we don't demand the inserted element, return the base vector.
901     SDValue Vec = Op.getOperand(0);
902     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
903     EVT VecVT = Vec.getValueType();
904     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
905         !DemandedElts[CIdx->getZExtValue()])
906       return Vec;
907     break;
908   }
909   case ISD::INSERT_SUBVECTOR: {
910     if (VT.isScalableVector())
911       return SDValue();
912 
913     SDValue Vec = Op.getOperand(0);
914     SDValue Sub = Op.getOperand(1);
915     uint64_t Idx = Op.getConstantOperandVal(2);
916     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
917     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
918     // If we don't demand the inserted subvector, return the base vector.
919     if (DemandedSubElts == 0)
920       return Vec;
921     break;
922   }
923   case ISD::VECTOR_SHUFFLE: {
924     assert(!VT.isScalableVector());
925     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
926 
927     // If all the demanded elts are from one operand and are inline,
928     // then we can use the operand directly.
929     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
930     for (unsigned i = 0; i != NumElts; ++i) {
931       int M = ShuffleMask[i];
932       if (M < 0 || !DemandedElts[i])
933         continue;
934       AllUndef = false;
935       IdentityLHS &= (M == (int)i);
936       IdentityRHS &= ((M - NumElts) == i);
937     }
938 
939     if (AllUndef)
940       return DAG.getUNDEF(Op.getValueType());
941     if (IdentityLHS)
942       return Op.getOperand(0);
943     if (IdentityRHS)
944       return Op.getOperand(1);
945     break;
946   }
947   default:
948     // TODO: Probably okay to remove after audit; here to reduce change size
949     // in initial enablement patch for scalable vectors
950     if (VT.isScalableVector())
951       return SDValue();
952 
953     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
954       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
955               Op, DemandedBits, DemandedElts, DAG, Depth))
956         return V;
957     break;
958   }
959   return SDValue();
960 }
961 
962 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
963     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
964     unsigned Depth) const {
965   EVT VT = Op.getValueType();
966   // Since the number of lanes in a scalable vector is unknown at compile time,
967   // we track one bit which is implicitly broadcast to all lanes.  This means
968   // that all lanes in a scalable vector are considered demanded.
969   APInt DemandedElts = VT.isFixedLengthVector()
970                            ? APInt::getAllOnes(VT.getVectorNumElements())
971                            : APInt(1, 1);
972   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
973                                          Depth);
974 }
975 
976 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
977     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
978     unsigned Depth) const {
979   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
980   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
981                                          Depth);
982 }
983 
984 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
985 //      or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
986 static SDValue combineShiftToAVG(SDValue Op,
987                                  TargetLowering::TargetLoweringOpt &TLO,
988                                  const TargetLowering &TLI,
989                                  const APInt &DemandedBits,
990                                  const APInt &DemandedElts, unsigned Depth) {
991   assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
992          "SRL or SRA node is required here!");
993   // Is the right shift using an immediate value of 1?
994   ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
995   if (!N1C || !N1C->isOne())
996     return SDValue();
997 
998   // We are looking for an avgfloor
999   // add(ext, ext)
1000   // or one of these as a avgceil
1001   // add(add(ext, ext), 1)
1002   // add(add(ext, 1), ext)
1003   // add(ext, add(ext, 1))
1004   SDValue Add = Op.getOperand(0);
1005   if (Add.getOpcode() != ISD::ADD)
1006     return SDValue();
1007 
1008   SDValue ExtOpA = Add.getOperand(0);
1009   SDValue ExtOpB = Add.getOperand(1);
1010   SDValue Add2;
1011   auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3, SDValue A) {
1012     ConstantSDNode *ConstOp;
1013     if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
1014         ConstOp->isOne()) {
1015       ExtOpA = Op1;
1016       ExtOpB = Op3;
1017       Add2 = A;
1018       return true;
1019     }
1020     if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
1021         ConstOp->isOne()) {
1022       ExtOpA = Op1;
1023       ExtOpB = Op2;
1024       Add2 = A;
1025       return true;
1026     }
1027     return false;
1028   };
1029   bool IsCeil =
1030       (ExtOpA.getOpcode() == ISD::ADD &&
1031        MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB, ExtOpA)) ||
1032       (ExtOpB.getOpcode() == ISD::ADD &&
1033        MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA, ExtOpB));
1034 
1035   // If the shift is signed (sra):
1036   //  - Needs >= 2 sign bit for both operands.
1037   //  - Needs >= 2 zero bits.
1038   // If the shift is unsigned (srl):
1039   //  - Needs >= 1 zero bit for both operands.
1040   //  - Needs 1 demanded bit zero and >= 2 sign bits.
1041   SelectionDAG &DAG = TLO.DAG;
1042   unsigned ShiftOpc = Op.getOpcode();
1043   bool IsSigned = false;
1044   unsigned KnownBits;
1045   unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
1046   unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
1047   unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
1048   unsigned NumZeroA =
1049       DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
1050   unsigned NumZeroB =
1051       DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
1052   unsigned NumZero = std::min(NumZeroA, NumZeroB);
1053 
1054   switch (ShiftOpc) {
1055   default:
1056     llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
1057   case ISD::SRA: {
1058     if (NumZero >= 2 && NumSigned < NumZero) {
1059       IsSigned = false;
1060       KnownBits = NumZero;
1061       break;
1062     }
1063     if (NumSigned >= 1) {
1064       IsSigned = true;
1065       KnownBits = NumSigned;
1066       break;
1067     }
1068     return SDValue();
1069   }
1070   case ISD::SRL: {
1071     if (NumZero >= 1 && NumSigned < NumZero) {
1072       IsSigned = false;
1073       KnownBits = NumZero;
1074       break;
1075     }
1076     if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
1077       IsSigned = true;
1078       KnownBits = NumSigned;
1079       break;
1080     }
1081     return SDValue();
1082   }
1083   }
1084 
1085   unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
1086                            : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
1087 
1088   // Find the smallest power-2 type that is legal for this vector size and
1089   // operation, given the original type size and the number of known sign/zero
1090   // bits.
1091   EVT VT = Op.getValueType();
1092   unsigned MinWidth =
1093       std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
1094   EVT NVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_ceil(MinWidth));
1095   if (NVT.getScalarSizeInBits() > VT.getScalarSizeInBits())
1096     return SDValue();
1097   if (VT.isVector())
1098     NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
1099   if (TLO.LegalTypes() && !TLI.isOperationLegal(AVGOpc, NVT)) {
1100     // If we could not transform, and (both) adds are nuw/nsw, we can use the
1101     // larger type size to do the transform.
1102     if (TLO.LegalOperations() && !TLI.isOperationLegal(AVGOpc, VT))
1103       return SDValue();
1104     if (DAG.willNotOverflowAdd(IsSigned, Add.getOperand(0),
1105                                Add.getOperand(1)) &&
1106         (!Add2 || DAG.willNotOverflowAdd(IsSigned, Add2.getOperand(0),
1107                                          Add2.getOperand(1))))
1108       NVT = VT;
1109     else
1110       return SDValue();
1111   }
1112 
1113   // Don't create a AVGFLOOR node with a scalar constant unless its legal as
1114   // this is likely to stop other folds (reassociation, value tracking etc.)
1115   if (!IsCeil && !TLI.isOperationLegal(AVGOpc, NVT) &&
1116       (isa<ConstantSDNode>(ExtOpA) || isa<ConstantSDNode>(ExtOpB)))
1117     return SDValue();
1118 
1119   SDLoc DL(Op);
1120   SDValue ResultAVG =
1121       DAG.getNode(AVGOpc, DL, NVT, DAG.getExtOrTrunc(IsSigned, ExtOpA, DL, NVT),
1122                   DAG.getExtOrTrunc(IsSigned, ExtOpB, DL, NVT));
1123   return DAG.getExtOrTrunc(IsSigned, ResultAVG, DL, VT);
1124 }
1125 
1126 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
1127 /// result of Op are ever used downstream. If we can use this information to
1128 /// simplify Op, create a new simplified DAG node and return true, returning the
1129 /// original and new nodes in Old and New. Otherwise, analyze the expression and
1130 /// return a mask of Known bits for the expression (used to simplify the
1131 /// caller).  The Known bits may only be accurate for those bits in the
1132 /// OriginalDemandedBits and OriginalDemandedElts.
1133 bool TargetLowering::SimplifyDemandedBits(
1134     SDValue Op, const APInt &OriginalDemandedBits,
1135     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
1136     unsigned Depth, bool AssumeSingleUse) const {
1137   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
1138   assert(Op.getScalarValueSizeInBits() == BitWidth &&
1139          "Mask size mismatches value type size!");
1140 
1141   // Don't know anything.
1142   Known = KnownBits(BitWidth);
1143 
1144   EVT VT = Op.getValueType();
1145   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
1146   unsigned NumElts = OriginalDemandedElts.getBitWidth();
1147   assert((!VT.isFixedLengthVector() || NumElts == VT.getVectorNumElements()) &&
1148          "Unexpected vector size");
1149 
1150   APInt DemandedBits = OriginalDemandedBits;
1151   APInt DemandedElts = OriginalDemandedElts;
1152   SDLoc dl(Op);
1153 
1154   // Undef operand.
1155   if (Op.isUndef())
1156     return false;
1157 
1158   // We can't simplify target constants.
1159   if (Op.getOpcode() == ISD::TargetConstant)
1160     return false;
1161 
1162   if (Op.getOpcode() == ISD::Constant) {
1163     // We know all of the bits for a constant!
1164     Known = KnownBits::makeConstant(Op->getAsAPIntVal());
1165     return false;
1166   }
1167 
1168   if (Op.getOpcode() == ISD::ConstantFP) {
1169     // We know all of the bits for a floating point constant!
1170     Known = KnownBits::makeConstant(
1171         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
1172     return false;
1173   }
1174 
1175   // Other users may use these bits.
1176   bool HasMultiUse = false;
1177   if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) {
1178     if (Depth >= SelectionDAG::MaxRecursionDepth) {
1179       // Limit search depth.
1180       return false;
1181     }
1182     // Allow multiple uses, just set the DemandedBits/Elts to all bits.
1183     DemandedBits = APInt::getAllOnes(BitWidth);
1184     DemandedElts = APInt::getAllOnes(NumElts);
1185     HasMultiUse = true;
1186   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1187     // Not demanding any bits/elts from Op.
1188     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1189   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
1190     // Limit search depth.
1191     return false;
1192   }
1193 
1194   KnownBits Known2;
1195   switch (Op.getOpcode()) {
1196   case ISD::SCALAR_TO_VECTOR: {
1197     if (VT.isScalableVector())
1198       return false;
1199     if (!DemandedElts[0])
1200       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1201 
1202     KnownBits SrcKnown;
1203     SDValue Src = Op.getOperand(0);
1204     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1205     APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth);
1206     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
1207       return true;
1208 
1209     // Upper elements are undef, so only get the knownbits if we just demand
1210     // the bottom element.
1211     if (DemandedElts == 1)
1212       Known = SrcKnown.anyextOrTrunc(BitWidth);
1213     break;
1214   }
1215   case ISD::BUILD_VECTOR:
1216     // Collect the known bits that are shared by every demanded element.
1217     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
1218     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1219     return false; // Don't fall through, will infinitely loop.
1220   case ISD::SPLAT_VECTOR: {
1221     SDValue Scl = Op.getOperand(0);
1222     APInt DemandedSclBits = DemandedBits.zextOrTrunc(Scl.getValueSizeInBits());
1223     KnownBits KnownScl;
1224     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1225       return true;
1226 
1227     // Implicitly truncate the bits to match the official semantics of
1228     // SPLAT_VECTOR.
1229     Known = KnownScl.trunc(BitWidth);
1230     break;
1231   }
1232   case ISD::LOAD: {
1233     auto *LD = cast<LoadSDNode>(Op);
1234     if (getTargetConstantFromLoad(LD)) {
1235       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1236       return false; // Don't fall through, will infinitely loop.
1237     }
1238     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1239       // If this is a ZEXTLoad and we are looking at the loaded value.
1240       EVT MemVT = LD->getMemoryVT();
1241       unsigned MemBits = MemVT.getScalarSizeInBits();
1242       Known.Zero.setBitsFrom(MemBits);
1243       return false; // Don't fall through, will infinitely loop.
1244     }
1245     break;
1246   }
1247   case ISD::INSERT_VECTOR_ELT: {
1248     if (VT.isScalableVector())
1249       return false;
1250     SDValue Vec = Op.getOperand(0);
1251     SDValue Scl = Op.getOperand(1);
1252     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1253     EVT VecVT = Vec.getValueType();
1254 
1255     // If index isn't constant, assume we need all vector elements AND the
1256     // inserted element.
1257     APInt DemandedVecElts(DemandedElts);
1258     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1259       unsigned Idx = CIdx->getZExtValue();
1260       DemandedVecElts.clearBit(Idx);
1261 
1262       // Inserted element is not required.
1263       if (!DemandedElts[Idx])
1264         return TLO.CombineTo(Op, Vec);
1265     }
1266 
1267     KnownBits KnownScl;
1268     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1269     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1270     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1271       return true;
1272 
1273     Known = KnownScl.anyextOrTrunc(BitWidth);
1274 
1275     KnownBits KnownVec;
1276     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1277                              Depth + 1))
1278       return true;
1279 
1280     if (!!DemandedVecElts)
1281       Known = Known.intersectWith(KnownVec);
1282 
1283     return false;
1284   }
1285   case ISD::INSERT_SUBVECTOR: {
1286     if (VT.isScalableVector())
1287       return false;
1288     // Demand any elements from the subvector and the remainder from the src its
1289     // inserted into.
1290     SDValue Src = Op.getOperand(0);
1291     SDValue Sub = Op.getOperand(1);
1292     uint64_t Idx = Op.getConstantOperandVal(2);
1293     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1294     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1295     APInt DemandedSrcElts = DemandedElts;
1296     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1297 
1298     KnownBits KnownSub, KnownSrc;
1299     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1300                              Depth + 1))
1301       return true;
1302     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1303                              Depth + 1))
1304       return true;
1305 
1306     Known.Zero.setAllBits();
1307     Known.One.setAllBits();
1308     if (!!DemandedSubElts)
1309       Known = Known.intersectWith(KnownSub);
1310     if (!!DemandedSrcElts)
1311       Known = Known.intersectWith(KnownSrc);
1312 
1313     // Attempt to avoid multi-use src if we don't need anything from it.
1314     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1315         !DemandedSrcElts.isAllOnes()) {
1316       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1317           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1318       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1319           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1320       if (NewSub || NewSrc) {
1321         NewSub = NewSub ? NewSub : Sub;
1322         NewSrc = NewSrc ? NewSrc : Src;
1323         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1324                                         Op.getOperand(2));
1325         return TLO.CombineTo(Op, NewOp);
1326       }
1327     }
1328     break;
1329   }
1330   case ISD::EXTRACT_SUBVECTOR: {
1331     if (VT.isScalableVector())
1332       return false;
1333     // Offset the demanded elts by the subvector index.
1334     SDValue Src = Op.getOperand(0);
1335     if (Src.getValueType().isScalableVector())
1336       break;
1337     uint64_t Idx = Op.getConstantOperandVal(1);
1338     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1339     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
1340 
1341     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1342                              Depth + 1))
1343       return true;
1344 
1345     // Attempt to avoid multi-use src if we don't need anything from it.
1346     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1347       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1348           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1349       if (DemandedSrc) {
1350         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1351                                         Op.getOperand(1));
1352         return TLO.CombineTo(Op, NewOp);
1353       }
1354     }
1355     break;
1356   }
1357   case ISD::CONCAT_VECTORS: {
1358     if (VT.isScalableVector())
1359       return false;
1360     Known.Zero.setAllBits();
1361     Known.One.setAllBits();
1362     EVT SubVT = Op.getOperand(0).getValueType();
1363     unsigned NumSubVecs = Op.getNumOperands();
1364     unsigned NumSubElts = SubVT.getVectorNumElements();
1365     for (unsigned i = 0; i != NumSubVecs; ++i) {
1366       APInt DemandedSubElts =
1367           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1368       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1369                                Known2, TLO, Depth + 1))
1370         return true;
1371       // Known bits are shared by every demanded subvector element.
1372       if (!!DemandedSubElts)
1373         Known = Known.intersectWith(Known2);
1374     }
1375     break;
1376   }
1377   case ISD::VECTOR_SHUFFLE: {
1378     assert(!VT.isScalableVector());
1379     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1380 
1381     // Collect demanded elements from shuffle operands..
1382     APInt DemandedLHS, DemandedRHS;
1383     if (!getShuffleDemandedElts(NumElts, ShuffleMask, DemandedElts, DemandedLHS,
1384                                 DemandedRHS))
1385       break;
1386 
1387     if (!!DemandedLHS || !!DemandedRHS) {
1388       SDValue Op0 = Op.getOperand(0);
1389       SDValue Op1 = Op.getOperand(1);
1390 
1391       Known.Zero.setAllBits();
1392       Known.One.setAllBits();
1393       if (!!DemandedLHS) {
1394         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1395                                  Depth + 1))
1396           return true;
1397         Known = Known.intersectWith(Known2);
1398       }
1399       if (!!DemandedRHS) {
1400         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1401                                  Depth + 1))
1402           return true;
1403         Known = Known.intersectWith(Known2);
1404       }
1405 
1406       // Attempt to avoid multi-use ops if we don't need anything from them.
1407       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1408           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1409       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1410           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1411       if (DemandedOp0 || DemandedOp1) {
1412         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1413         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1414         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1415         return TLO.CombineTo(Op, NewOp);
1416       }
1417     }
1418     break;
1419   }
1420   case ISD::AND: {
1421     SDValue Op0 = Op.getOperand(0);
1422     SDValue Op1 = Op.getOperand(1);
1423 
1424     // If the RHS is a constant, check to see if the LHS would be zero without
1425     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1426     // simplify the LHS, here we're using information from the LHS to simplify
1427     // the RHS.
1428     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1, DemandedElts)) {
1429       // Do not increment Depth here; that can cause an infinite loop.
1430       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1431       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1432       if ((LHSKnown.Zero & DemandedBits) ==
1433           (~RHSC->getAPIntValue() & DemandedBits))
1434         return TLO.CombineTo(Op, Op0);
1435 
1436       // If any of the set bits in the RHS are known zero on the LHS, shrink
1437       // the constant.
1438       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1439                                  DemandedElts, TLO))
1440         return true;
1441 
1442       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1443       // constant, but if this 'and' is only clearing bits that were just set by
1444       // the xor, then this 'and' can be eliminated by shrinking the mask of
1445       // the xor. For example, for a 32-bit X:
1446       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1447       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1448           LHSKnown.One == ~RHSC->getAPIntValue()) {
1449         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1450         return TLO.CombineTo(Op, Xor);
1451       }
1452     }
1453 
1454     // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I)
1455     // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits).
1456     if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR && !VT.isScalableVector() &&
1457         (Op0.getOperand(0).isUndef() ||
1458          ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) &&
1459         Op0->hasOneUse()) {
1460       unsigned NumSubElts =
1461           Op0.getOperand(1).getValueType().getVectorNumElements();
1462       unsigned SubIdx = Op0.getConstantOperandVal(2);
1463       APInt DemandedSub =
1464           APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts);
1465       KnownBits KnownSubMask =
1466           TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1);
1467       if (DemandedBits.isSubsetOf(KnownSubMask.One)) {
1468         SDValue NewAnd =
1469             TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1);
1470         SDValue NewInsert =
1471             TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd,
1472                             Op0.getOperand(1), Op0.getOperand(2));
1473         return TLO.CombineTo(Op, NewInsert);
1474       }
1475     }
1476 
1477     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1478                              Depth + 1))
1479       return true;
1480     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1481                              Known2, TLO, Depth + 1))
1482       return true;
1483 
1484     // If all of the demanded bits are known one on one side, return the other.
1485     // These bits cannot contribute to the result of the 'and'.
1486     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1487       return TLO.CombineTo(Op, Op0);
1488     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1489       return TLO.CombineTo(Op, Op1);
1490     // If all of the demanded bits in the inputs are known zeros, return zero.
1491     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1492       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1493     // If the RHS is a constant, see if we can simplify it.
1494     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1495                                TLO))
1496       return true;
1497     // If the operation can be done in a smaller type, do so.
1498     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1499       return true;
1500 
1501     // Attempt to avoid multi-use ops if we don't need anything from them.
1502     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1503       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1504           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1505       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1506           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1507       if (DemandedOp0 || DemandedOp1) {
1508         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1509         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1510         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1511         return TLO.CombineTo(Op, NewOp);
1512       }
1513     }
1514 
1515     Known &= Known2;
1516     break;
1517   }
1518   case ISD::OR: {
1519     SDValue Op0 = Op.getOperand(0);
1520     SDValue Op1 = Op.getOperand(1);
1521     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1522                              Depth + 1)) {
1523       Op->dropFlags(SDNodeFlags::Disjoint);
1524       return true;
1525     }
1526 
1527     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1528                              Known2, TLO, Depth + 1)) {
1529       Op->dropFlags(SDNodeFlags::Disjoint);
1530       return true;
1531     }
1532 
1533     // If all of the demanded bits are known zero on one side, return the other.
1534     // These bits cannot contribute to the result of the 'or'.
1535     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1536       return TLO.CombineTo(Op, Op0);
1537     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1538       return TLO.CombineTo(Op, Op1);
1539     // If the RHS is a constant, see if we can simplify it.
1540     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1541       return true;
1542     // If the operation can be done in a smaller type, do so.
1543     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1544       return true;
1545 
1546     // Attempt to avoid multi-use ops if we don't need anything from them.
1547     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1548       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1549           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1550       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1551           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1552       if (DemandedOp0 || DemandedOp1) {
1553         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1554         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1555         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1556         return TLO.CombineTo(Op, NewOp);
1557       }
1558     }
1559 
1560     // (or (and X, C1), (and (or X, Y), C2)) -> (or (and X, C1|C2), (and Y, C2))
1561     // TODO: Use SimplifyMultipleUseDemandedBits to peek through masks.
1562     if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::AND &&
1563         Op0->hasOneUse() && Op1->hasOneUse()) {
1564       // Attempt to match all commutations - m_c_Or would've been useful!
1565       for (int I = 0; I != 2; ++I) {
1566         SDValue X = Op.getOperand(I).getOperand(0);
1567         SDValue C1 = Op.getOperand(I).getOperand(1);
1568         SDValue Alt = Op.getOperand(1 - I).getOperand(0);
1569         SDValue C2 = Op.getOperand(1 - I).getOperand(1);
1570         if (Alt.getOpcode() == ISD::OR) {
1571           for (int J = 0; J != 2; ++J) {
1572             if (X == Alt.getOperand(J)) {
1573               SDValue Y = Alt.getOperand(1 - J);
1574               if (SDValue C12 = TLO.DAG.FoldConstantArithmetic(ISD::OR, dl, VT,
1575                                                                {C1, C2})) {
1576                 SDValue MaskX = TLO.DAG.getNode(ISD::AND, dl, VT, X, C12);
1577                 SDValue MaskY = TLO.DAG.getNode(ISD::AND, dl, VT, Y, C2);
1578                 return TLO.CombineTo(
1579                     Op, TLO.DAG.getNode(ISD::OR, dl, VT, MaskX, MaskY));
1580               }
1581             }
1582           }
1583         }
1584       }
1585     }
1586 
1587     Known |= Known2;
1588     break;
1589   }
1590   case ISD::XOR: {
1591     SDValue Op0 = Op.getOperand(0);
1592     SDValue Op1 = Op.getOperand(1);
1593 
1594     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1595                              Depth + 1))
1596       return true;
1597     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1598                              Depth + 1))
1599       return true;
1600 
1601     // If all of the demanded bits are known zero on one side, return the other.
1602     // These bits cannot contribute to the result of the 'xor'.
1603     if (DemandedBits.isSubsetOf(Known.Zero))
1604       return TLO.CombineTo(Op, Op0);
1605     if (DemandedBits.isSubsetOf(Known2.Zero))
1606       return TLO.CombineTo(Op, Op1);
1607     // If the operation can be done in a smaller type, do so.
1608     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1609       return true;
1610 
1611     // If all of the unknown bits are known to be zero on one side or the other
1612     // turn this into an *inclusive* or.
1613     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1614     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1615       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1616 
1617     ConstantSDNode *C = isConstOrConstSplat(Op1, DemandedElts);
1618     if (C) {
1619       // If one side is a constant, and all of the set bits in the constant are
1620       // also known set on the other side, turn this into an AND, as we know
1621       // the bits will be cleared.
1622       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1623       // NB: it is okay if more bits are known than are requested
1624       if (C->getAPIntValue() == Known2.One) {
1625         SDValue ANDC =
1626             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1627         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1628       }
1629 
1630       // If the RHS is a constant, see if we can change it. Don't alter a -1
1631       // constant because that's a 'not' op, and that is better for combining
1632       // and codegen.
1633       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1634         // We're flipping all demanded bits. Flip the undemanded bits too.
1635         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1636         return TLO.CombineTo(Op, New);
1637       }
1638 
1639       unsigned Op0Opcode = Op0.getOpcode();
1640       if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) {
1641         if (ConstantSDNode *ShiftC =
1642                 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1643           // Don't crash on an oversized shift. We can not guarantee that a
1644           // bogus shift has been simplified to undef.
1645           if (ShiftC->getAPIntValue().ult(BitWidth)) {
1646             uint64_t ShiftAmt = ShiftC->getZExtValue();
1647             APInt Ones = APInt::getAllOnes(BitWidth);
1648             Ones = Op0Opcode == ISD::SHL ? Ones.shl(ShiftAmt)
1649                                          : Ones.lshr(ShiftAmt);
1650             if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) &&
1651                 isDesirableToCommuteXorWithShift(Op.getNode())) {
1652               // If the xor constant is a demanded mask, do a 'not' before the
1653               // shift:
1654               // xor (X << ShiftC), XorC --> (not X) << ShiftC
1655               // xor (X >> ShiftC), XorC --> (not X) >> ShiftC
1656               SDValue Not = TLO.DAG.getNOT(dl, Op0.getOperand(0), VT);
1657               return TLO.CombineTo(Op, TLO.DAG.getNode(Op0Opcode, dl, VT, Not,
1658                                                        Op0.getOperand(1)));
1659             }
1660           }
1661         }
1662       }
1663     }
1664 
1665     // If we can't turn this into a 'not', try to shrink the constant.
1666     if (!C || !C->isAllOnes())
1667       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1668         return true;
1669 
1670     // Attempt to avoid multi-use ops if we don't need anything from them.
1671     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1672       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1673           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1674       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1675           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1676       if (DemandedOp0 || DemandedOp1) {
1677         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1678         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1679         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1680         return TLO.CombineTo(Op, NewOp);
1681       }
1682     }
1683 
1684     Known ^= Known2;
1685     break;
1686   }
1687   case ISD::SELECT:
1688     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1689                              Known, TLO, Depth + 1))
1690       return true;
1691     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
1692                              Known2, TLO, Depth + 1))
1693       return true;
1694 
1695     // If the operands are constants, see if we can simplify them.
1696     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1697       return true;
1698 
1699     // Only known if known in both the LHS and RHS.
1700     Known = Known.intersectWith(Known2);
1701     break;
1702   case ISD::VSELECT:
1703     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1704                              Known, TLO, Depth + 1))
1705       return true;
1706     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
1707                              Known2, TLO, Depth + 1))
1708       return true;
1709 
1710     // Only known if known in both the LHS and RHS.
1711     Known = Known.intersectWith(Known2);
1712     break;
1713   case ISD::SELECT_CC:
1714     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, DemandedElts,
1715                              Known, TLO, Depth + 1))
1716       return true;
1717     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1718                              Known2, TLO, Depth + 1))
1719       return true;
1720 
1721     // If the operands are constants, see if we can simplify them.
1722     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1723       return true;
1724 
1725     // Only known if known in both the LHS and RHS.
1726     Known = Known.intersectWith(Known2);
1727     break;
1728   case ISD::SETCC: {
1729     SDValue Op0 = Op.getOperand(0);
1730     SDValue Op1 = Op.getOperand(1);
1731     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1732     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1733     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1734     // -1, we may be able to bypass the setcc.
1735     if (DemandedBits.isSignMask() &&
1736         Op0.getScalarValueSizeInBits() == BitWidth &&
1737         getBooleanContents(Op0.getValueType()) ==
1738             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1739       // If we're testing X < 0, then this compare isn't needed - just use X!
1740       // FIXME: We're limiting to integer types here, but this should also work
1741       // if we don't care about FP signed-zero. The use of SETLT with FP means
1742       // that we don't care about NaNs.
1743       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1744           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1745         return TLO.CombineTo(Op, Op0);
1746 
1747       // TODO: Should we check for other forms of sign-bit comparisons?
1748       // Examples: X <= -1, X >= 0
1749     }
1750     if (getBooleanContents(Op0.getValueType()) ==
1751             TargetLowering::ZeroOrOneBooleanContent &&
1752         BitWidth > 1)
1753       Known.Zero.setBitsFrom(1);
1754     break;
1755   }
1756   case ISD::SHL: {
1757     SDValue Op0 = Op.getOperand(0);
1758     SDValue Op1 = Op.getOperand(1);
1759     EVT ShiftVT = Op1.getValueType();
1760 
1761     if (std::optional<uint64_t> KnownSA =
1762             TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) {
1763       unsigned ShAmt = *KnownSA;
1764       if (ShAmt == 0)
1765         return TLO.CombineTo(Op, Op0);
1766 
1767       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1768       // single shift.  We can do this if the bottom bits (which are shifted
1769       // out) are never demanded.
1770       // TODO - support non-uniform vector amounts.
1771       if (Op0.getOpcode() == ISD::SRL) {
1772         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1773           if (std::optional<uint64_t> InnerSA =
1774                   TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
1775             unsigned C1 = *InnerSA;
1776             unsigned Opc = ISD::SHL;
1777             int Diff = ShAmt - C1;
1778             if (Diff < 0) {
1779               Diff = -Diff;
1780               Opc = ISD::SRL;
1781             }
1782             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1783             return TLO.CombineTo(
1784                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1785           }
1786         }
1787       }
1788 
1789       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1790       // are not demanded. This will likely allow the anyext to be folded away.
1791       // TODO - support non-uniform vector amounts.
1792       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1793         SDValue InnerOp = Op0.getOperand(0);
1794         EVT InnerVT = InnerOp.getValueType();
1795         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1796         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1797             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1798           SDValue NarrowShl = TLO.DAG.getNode(
1799               ISD::SHL, dl, InnerVT, InnerOp,
1800               TLO.DAG.getShiftAmountConstant(ShAmt, InnerVT, dl));
1801           return TLO.CombineTo(
1802               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1803         }
1804 
1805         // Repeat the SHL optimization above in cases where an extension
1806         // intervenes: (shl (anyext (shr x, c1)), c2) to
1807         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1808         // aren't demanded (as above) and that the shifted upper c1 bits of
1809         // x aren't demanded.
1810         // TODO - support non-uniform vector amounts.
1811         if (InnerOp.getOpcode() == ISD::SRL && Op0.hasOneUse() &&
1812             InnerOp.hasOneUse()) {
1813           if (std::optional<uint64_t> SA2 = TLO.DAG.getValidShiftAmount(
1814                   InnerOp, DemandedElts, Depth + 2)) {
1815             unsigned InnerShAmt = *SA2;
1816             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1817                 DemandedBits.getActiveBits() <=
1818                     (InnerBits - InnerShAmt + ShAmt) &&
1819                 DemandedBits.countr_zero() >= ShAmt) {
1820               SDValue NewSA =
1821                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1822               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1823                                                InnerOp.getOperand(0));
1824               return TLO.CombineTo(
1825                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1826             }
1827           }
1828         }
1829       }
1830 
1831       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1832       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1833                                Depth + 1)) {
1834         // Disable the nsw and nuw flags. We can no longer guarantee that we
1835         // won't wrap after simplification.
1836         Op->dropFlags(SDNodeFlags::NoWrap);
1837         return true;
1838       }
1839       Known.Zero <<= ShAmt;
1840       Known.One <<= ShAmt;
1841       // low bits known zero.
1842       Known.Zero.setLowBits(ShAmt);
1843 
1844       // Attempt to avoid multi-use ops if we don't need anything from them.
1845       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1846         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1847             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1848         if (DemandedOp0) {
1849           SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1);
1850           return TLO.CombineTo(Op, NewOp);
1851         }
1852       }
1853 
1854       // TODO: Can we merge this fold with the one below?
1855       // Try shrinking the operation as long as the shift amount will still be
1856       // in range.
1857       if (ShAmt < DemandedBits.getActiveBits() && !VT.isVector() &&
1858           Op.getNode()->hasOneUse()) {
1859         // Search for the smallest integer type with free casts to and from
1860         // Op's type. For expedience, just check power-of-2 integer types.
1861         unsigned DemandedSize = DemandedBits.getActiveBits();
1862         for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize);
1863              SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1864           EVT SmallVT = EVT::getIntegerVT(*TLO.DAG.getContext(), SmallVTBits);
1865           if (isNarrowingProfitable(Op.getNode(), VT, SmallVT) &&
1866               isTypeDesirableForOp(ISD::SHL, SmallVT) &&
1867               isTruncateFree(VT, SmallVT) && isZExtFree(SmallVT, VT) &&
1868               (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, SmallVT))) {
1869             assert(DemandedSize <= SmallVTBits &&
1870                    "Narrowed below demanded bits?");
1871             // We found a type with free casts.
1872             SDValue NarrowShl = TLO.DAG.getNode(
1873                 ISD::SHL, dl, SmallVT,
1874                 TLO.DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
1875                 TLO.DAG.getShiftAmountConstant(ShAmt, SmallVT, dl));
1876             return TLO.CombineTo(
1877                 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1878           }
1879         }
1880       }
1881 
1882       // Narrow shift to lower half - similar to ShrinkDemandedOp.
1883       // (shl i64:x, K) -> (i64 zero_extend (shl (i32 (trunc i64:x)), K))
1884       // Only do this if we demand the upper half so the knownbits are correct.
1885       unsigned HalfWidth = BitWidth / 2;
1886       if ((BitWidth % 2) == 0 && !VT.isVector() && ShAmt < HalfWidth &&
1887           DemandedBits.countLeadingOnes() >= HalfWidth) {
1888         EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), HalfWidth);
1889         if (isNarrowingProfitable(Op.getNode(), VT, HalfVT) &&
1890             isTypeDesirableForOp(ISD::SHL, HalfVT) &&
1891             isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) &&
1892             (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, HalfVT))) {
1893           // If we're demanding the upper bits at all, we must ensure
1894           // that the upper bits of the shift result are known to be zero,
1895           // which is equivalent to the narrow shift being NUW.
1896           if (bool IsNUW = (Known.countMinLeadingZeros() >= HalfWidth)) {
1897             bool IsNSW = Known.countMinSignBits() > HalfWidth;
1898             SDNodeFlags Flags;
1899             Flags.setNoSignedWrap(IsNSW);
1900             Flags.setNoUnsignedWrap(IsNUW);
1901             SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0);
1902             SDValue NewShiftAmt =
1903                 TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl);
1904             SDValue NewShift = TLO.DAG.getNode(ISD::SHL, dl, HalfVT, NewOp,
1905                                                NewShiftAmt, Flags);
1906             SDValue NewExt =
1907                 TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift);
1908             return TLO.CombineTo(Op, NewExt);
1909           }
1910         }
1911       }
1912     } else {
1913       // This is a variable shift, so we can't shift the demand mask by a known
1914       // amount. But if we are not demanding high bits, then we are not
1915       // demanding those bits from the pre-shifted operand either.
1916       if (unsigned CTLZ = DemandedBits.countl_zero()) {
1917         APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ));
1918         if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO,
1919                                  Depth + 1)) {
1920           // Disable the nsw and nuw flags. We can no longer guarantee that we
1921           // won't wrap after simplification.
1922           Op->dropFlags(SDNodeFlags::NoWrap);
1923           return true;
1924         }
1925         Known.resetAll();
1926       }
1927     }
1928 
1929     // If we are only demanding sign bits then we can use the shift source
1930     // directly.
1931     if (std::optional<uint64_t> MaxSA =
1932             TLO.DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
1933       unsigned ShAmt = *MaxSA;
1934       unsigned NumSignBits =
1935           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1936       unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero();
1937       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1938         return TLO.CombineTo(Op, Op0);
1939     }
1940     break;
1941   }
1942   case ISD::SRL: {
1943     SDValue Op0 = Op.getOperand(0);
1944     SDValue Op1 = Op.getOperand(1);
1945     EVT ShiftVT = Op1.getValueType();
1946 
1947     if (std::optional<uint64_t> KnownSA =
1948             TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) {
1949       unsigned ShAmt = *KnownSA;
1950       if (ShAmt == 0)
1951         return TLO.CombineTo(Op, Op0);
1952 
1953       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1954       // single shift.  We can do this if the top bits (which are shifted out)
1955       // are never demanded.
1956       // TODO - support non-uniform vector amounts.
1957       if (Op0.getOpcode() == ISD::SHL) {
1958         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1959           if (std::optional<uint64_t> InnerSA =
1960                   TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
1961             unsigned C1 = *InnerSA;
1962             unsigned Opc = ISD::SRL;
1963             int Diff = ShAmt - C1;
1964             if (Diff < 0) {
1965               Diff = -Diff;
1966               Opc = ISD::SHL;
1967             }
1968             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1969             return TLO.CombineTo(
1970                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1971           }
1972         }
1973       }
1974 
1975       // If this is (srl (sra X, C1), ShAmt), see if we can combine this into a
1976       // single sra. We can do this if the top bits are never demanded.
1977       if (Op0.getOpcode() == ISD::SRA && Op0.hasOneUse()) {
1978         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1979           if (std::optional<uint64_t> InnerSA =
1980                   TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
1981             unsigned C1 = *InnerSA;
1982             // Clamp the combined shift amount if it exceeds the bit width.
1983             unsigned Combined = std::min(C1 + ShAmt, BitWidth - 1);
1984             SDValue NewSA = TLO.DAG.getConstant(Combined, dl, ShiftVT);
1985             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRA, dl, VT,
1986                                                      Op0.getOperand(0), NewSA));
1987           }
1988         }
1989       }
1990 
1991       APInt InDemandedMask = (DemandedBits << ShAmt);
1992 
1993       // If the shift is exact, then it does demand the low bits (and knows that
1994       // they are zero).
1995       if (Op->getFlags().hasExact())
1996         InDemandedMask.setLowBits(ShAmt);
1997 
1998       // Narrow shift to lower half - similar to ShrinkDemandedOp.
1999       // (srl i64:x, K) -> (i64 zero_extend (srl (i32 (trunc i64:x)), K))
2000       if ((BitWidth % 2) == 0 && !VT.isVector()) {
2001         APInt HiBits = APInt::getHighBitsSet(BitWidth, BitWidth / 2);
2002         EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), BitWidth / 2);
2003         if (isNarrowingProfitable(Op.getNode(), VT, HalfVT) &&
2004             isTypeDesirableForOp(ISD::SRL, HalfVT) &&
2005             isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) &&
2006             (!TLO.LegalOperations() || isOperationLegal(ISD::SRL, HalfVT)) &&
2007             ((InDemandedMask.countLeadingZeros() >= (BitWidth / 2)) ||
2008              TLO.DAG.MaskedValueIsZero(Op0, HiBits))) {
2009           SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0);
2010           SDValue NewShiftAmt =
2011               TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl);
2012           SDValue NewShift =
2013               TLO.DAG.getNode(ISD::SRL, dl, HalfVT, NewOp, NewShiftAmt);
2014           return TLO.CombineTo(
2015               Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift));
2016         }
2017       }
2018 
2019       // Compute the new bits that are at the top now.
2020       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
2021                                Depth + 1))
2022         return true;
2023       Known.Zero.lshrInPlace(ShAmt);
2024       Known.One.lshrInPlace(ShAmt);
2025       // High bits known zero.
2026       Known.Zero.setHighBits(ShAmt);
2027 
2028       // Attempt to avoid multi-use ops if we don't need anything from them.
2029       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2030         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2031             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
2032         if (DemandedOp0) {
2033           SDValue NewOp = TLO.DAG.getNode(ISD::SRL, dl, VT, DemandedOp0, Op1);
2034           return TLO.CombineTo(Op, NewOp);
2035         }
2036       }
2037     } else {
2038       // Use generic knownbits computation as it has support for non-uniform
2039       // shift amounts.
2040       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2041     }
2042 
2043     // If we are only demanding sign bits then we can use the shift source
2044     // directly.
2045     if (std::optional<uint64_t> MaxSA =
2046             TLO.DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
2047       unsigned ShAmt = *MaxSA;
2048       // Must already be signbits in DemandedBits bounds, and can't demand any
2049       // shifted in zeroes.
2050       if (DemandedBits.countl_zero() >= ShAmt) {
2051         unsigned NumSignBits =
2052             TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
2053         if (DemandedBits.countr_zero() >= (BitWidth - NumSignBits))
2054           return TLO.CombineTo(Op, Op0);
2055       }
2056     }
2057 
2058     // Try to match AVG patterns (after shift simplification).
2059     if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits,
2060                                         DemandedElts, Depth + 1))
2061       return TLO.CombineTo(Op, AVG);
2062 
2063     break;
2064   }
2065   case ISD::SRA: {
2066     SDValue Op0 = Op.getOperand(0);
2067     SDValue Op1 = Op.getOperand(1);
2068     EVT ShiftVT = Op1.getValueType();
2069 
2070     // If we only want bits that already match the signbit then we don't need
2071     // to shift.
2072     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countr_zero();
2073     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
2074         NumHiDemandedBits)
2075       return TLO.CombineTo(Op, Op0);
2076 
2077     // If this is an arithmetic shift right and only the low-bit is set, we can
2078     // always convert this into a logical shr, even if the shift amount is
2079     // variable.  The low bit of the shift cannot be an input sign bit unless
2080     // the shift amount is >= the size of the datatype, which is undefined.
2081     if (DemandedBits.isOne())
2082       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
2083 
2084     if (std::optional<uint64_t> KnownSA =
2085             TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) {
2086       unsigned ShAmt = *KnownSA;
2087       if (ShAmt == 0)
2088         return TLO.CombineTo(Op, Op0);
2089 
2090       // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target
2091       // supports sext_inreg.
2092       if (Op0.getOpcode() == ISD::SHL) {
2093         if (std::optional<uint64_t> InnerSA =
2094                 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
2095           unsigned LowBits = BitWidth - ShAmt;
2096           EVT ExtVT = EVT::getIntegerVT(*TLO.DAG.getContext(), LowBits);
2097           if (VT.isVector())
2098             ExtVT = EVT::getVectorVT(*TLO.DAG.getContext(), ExtVT,
2099                                      VT.getVectorElementCount());
2100 
2101           if (*InnerSA == ShAmt) {
2102             if (!TLO.LegalOperations() ||
2103                 getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) == Legal)
2104               return TLO.CombineTo(
2105                   Op, TLO.DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT,
2106                                       Op0.getOperand(0),
2107                                       TLO.DAG.getValueType(ExtVT)));
2108 
2109             // Even if we can't convert to sext_inreg, we might be able to
2110             // remove this shift pair if the input is already sign extended.
2111             unsigned NumSignBits =
2112                 TLO.DAG.ComputeNumSignBits(Op0.getOperand(0), DemandedElts);
2113             if (NumSignBits > ShAmt)
2114               return TLO.CombineTo(Op, Op0.getOperand(0));
2115           }
2116         }
2117       }
2118 
2119       APInt InDemandedMask = (DemandedBits << ShAmt);
2120 
2121       // If the shift is exact, then it does demand the low bits (and knows that
2122       // they are zero).
2123       if (Op->getFlags().hasExact())
2124         InDemandedMask.setLowBits(ShAmt);
2125 
2126       // If any of the demanded bits are produced by the sign extension, we also
2127       // demand the input sign bit.
2128       if (DemandedBits.countl_zero() < ShAmt)
2129         InDemandedMask.setSignBit();
2130 
2131       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
2132                                Depth + 1))
2133         return true;
2134       Known.Zero.lshrInPlace(ShAmt);
2135       Known.One.lshrInPlace(ShAmt);
2136 
2137       // If the input sign bit is known to be zero, or if none of the top bits
2138       // are demanded, turn this into an unsigned shift right.
2139       if (Known.Zero[BitWidth - ShAmt - 1] ||
2140           DemandedBits.countl_zero() >= ShAmt) {
2141         SDNodeFlags Flags;
2142         Flags.setExact(Op->getFlags().hasExact());
2143         return TLO.CombineTo(
2144             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
2145       }
2146 
2147       int Log2 = DemandedBits.exactLogBase2();
2148       if (Log2 >= 0) {
2149         // The bit must come from the sign.
2150         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
2151         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
2152       }
2153 
2154       if (Known.One[BitWidth - ShAmt - 1])
2155         // New bits are known one.
2156         Known.One.setHighBits(ShAmt);
2157 
2158       // Attempt to avoid multi-use ops if we don't need anything from them.
2159       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2160         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2161             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
2162         if (DemandedOp0) {
2163           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
2164           return TLO.CombineTo(Op, NewOp);
2165         }
2166       }
2167     }
2168 
2169     // Try to match AVG patterns (after shift simplification).
2170     if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits,
2171                                         DemandedElts, Depth + 1))
2172       return TLO.CombineTo(Op, AVG);
2173 
2174     break;
2175   }
2176   case ISD::FSHL:
2177   case ISD::FSHR: {
2178     SDValue Op0 = Op.getOperand(0);
2179     SDValue Op1 = Op.getOperand(1);
2180     SDValue Op2 = Op.getOperand(2);
2181     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
2182 
2183     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
2184       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
2185 
2186       // For fshl, 0-shift returns the 1st arg.
2187       // For fshr, 0-shift returns the 2nd arg.
2188       if (Amt == 0) {
2189         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
2190                                  Known, TLO, Depth + 1))
2191           return true;
2192         break;
2193       }
2194 
2195       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
2196       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
2197       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
2198       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
2199       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
2200                                Depth + 1))
2201         return true;
2202       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
2203                                Depth + 1))
2204         return true;
2205 
2206       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
2207       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
2208       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
2209       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
2210       Known = Known.unionWith(Known2);
2211 
2212       // Attempt to avoid multi-use ops if we don't need anything from them.
2213       if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() ||
2214           !DemandedElts.isAllOnes()) {
2215         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2216             Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1);
2217         SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2218             Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1);
2219         if (DemandedOp0 || DemandedOp1) {
2220           DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
2221           DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
2222           SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0,
2223                                           DemandedOp1, Op2);
2224           return TLO.CombineTo(Op, NewOp);
2225         }
2226       }
2227     }
2228 
2229     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2230     if (isPowerOf2_32(BitWidth)) {
2231       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
2232       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
2233                                Known2, TLO, Depth + 1))
2234         return true;
2235     }
2236     break;
2237   }
2238   case ISD::ROTL:
2239   case ISD::ROTR: {
2240     SDValue Op0 = Op.getOperand(0);
2241     SDValue Op1 = Op.getOperand(1);
2242     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
2243 
2244     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
2245     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
2246       return TLO.CombineTo(Op, Op0);
2247 
2248     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
2249       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
2250       unsigned RevAmt = BitWidth - Amt;
2251 
2252       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
2253       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
2254       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
2255       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
2256                                Depth + 1))
2257         return true;
2258 
2259       // rot*(x, 0) --> x
2260       if (Amt == 0)
2261         return TLO.CombineTo(Op, Op0);
2262 
2263       // See if we don't demand either half of the rotated bits.
2264       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
2265           DemandedBits.countr_zero() >= (IsROTL ? Amt : RevAmt)) {
2266         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
2267         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
2268       }
2269       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
2270           DemandedBits.countl_zero() >= (IsROTL ? RevAmt : Amt)) {
2271         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
2272         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
2273       }
2274     }
2275 
2276     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2277     if (isPowerOf2_32(BitWidth)) {
2278       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
2279       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
2280                                Depth + 1))
2281         return true;
2282     }
2283     break;
2284   }
2285   case ISD::SMIN:
2286   case ISD::SMAX:
2287   case ISD::UMIN:
2288   case ISD::UMAX: {
2289     unsigned Opc = Op.getOpcode();
2290     SDValue Op0 = Op.getOperand(0);
2291     SDValue Op1 = Op.getOperand(1);
2292 
2293     // If we're only demanding signbits, then we can simplify to OR/AND node.
2294     unsigned BitOp =
2295         (Opc == ISD::SMIN || Opc == ISD::UMAX) ? ISD::OR : ISD::AND;
2296     unsigned NumSignBits =
2297         std::min(TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1),
2298                  TLO.DAG.ComputeNumSignBits(Op1, DemandedElts, Depth + 1));
2299     unsigned NumDemandedUpperBits = BitWidth - DemandedBits.countr_zero();
2300     if (NumSignBits >= NumDemandedUpperBits)
2301       return TLO.CombineTo(Op, TLO.DAG.getNode(BitOp, SDLoc(Op), VT, Op0, Op1));
2302 
2303     // Check if one arg is always less/greater than (or equal) to the other arg.
2304     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
2305     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
2306     switch (Opc) {
2307     case ISD::SMIN:
2308       if (std::optional<bool> IsSLE = KnownBits::sle(Known0, Known1))
2309         return TLO.CombineTo(Op, *IsSLE ? Op0 : Op1);
2310       if (std::optional<bool> IsSLT = KnownBits::slt(Known0, Known1))
2311         return TLO.CombineTo(Op, *IsSLT ? Op0 : Op1);
2312       Known = KnownBits::smin(Known0, Known1);
2313       break;
2314     case ISD::SMAX:
2315       if (std::optional<bool> IsSGE = KnownBits::sge(Known0, Known1))
2316         return TLO.CombineTo(Op, *IsSGE ? Op0 : Op1);
2317       if (std::optional<bool> IsSGT = KnownBits::sgt(Known0, Known1))
2318         return TLO.CombineTo(Op, *IsSGT ? Op0 : Op1);
2319       Known = KnownBits::smax(Known0, Known1);
2320       break;
2321     case ISD::UMIN:
2322       if (std::optional<bool> IsULE = KnownBits::ule(Known0, Known1))
2323         return TLO.CombineTo(Op, *IsULE ? Op0 : Op1);
2324       if (std::optional<bool> IsULT = KnownBits::ult(Known0, Known1))
2325         return TLO.CombineTo(Op, *IsULT ? Op0 : Op1);
2326       Known = KnownBits::umin(Known0, Known1);
2327       break;
2328     case ISD::UMAX:
2329       if (std::optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
2330         return TLO.CombineTo(Op, *IsUGE ? Op0 : Op1);
2331       if (std::optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
2332         return TLO.CombineTo(Op, *IsUGT ? Op0 : Op1);
2333       Known = KnownBits::umax(Known0, Known1);
2334       break;
2335     }
2336     break;
2337   }
2338   case ISD::BITREVERSE: {
2339     SDValue Src = Op.getOperand(0);
2340     APInt DemandedSrcBits = DemandedBits.reverseBits();
2341     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2342                              Depth + 1))
2343       return true;
2344     Known.One = Known2.One.reverseBits();
2345     Known.Zero = Known2.Zero.reverseBits();
2346     break;
2347   }
2348   case ISD::BSWAP: {
2349     SDValue Src = Op.getOperand(0);
2350 
2351     // If the only bits demanded come from one byte of the bswap result,
2352     // just shift the input byte into position to eliminate the bswap.
2353     unsigned NLZ = DemandedBits.countl_zero();
2354     unsigned NTZ = DemandedBits.countr_zero();
2355 
2356     // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
2357     // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
2358     // have 14 leading zeros, round to 8.
2359     NLZ = alignDown(NLZ, 8);
2360     NTZ = alignDown(NTZ, 8);
2361     // If we need exactly one byte, we can do this transformation.
2362     if (BitWidth - NLZ - NTZ == 8) {
2363       // Replace this with either a left or right shift to get the byte into
2364       // the right place.
2365       unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
2366       if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
2367         unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
2368         SDValue ShAmt = TLO.DAG.getShiftAmountConstant(ShiftAmount, VT, dl);
2369         SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
2370         return TLO.CombineTo(Op, NewOp);
2371       }
2372     }
2373 
2374     APInt DemandedSrcBits = DemandedBits.byteSwap();
2375     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2376                              Depth + 1))
2377       return true;
2378     Known.One = Known2.One.byteSwap();
2379     Known.Zero = Known2.Zero.byteSwap();
2380     break;
2381   }
2382   case ISD::CTPOP: {
2383     // If only 1 bit is demanded, replace with PARITY as long as we're before
2384     // op legalization.
2385     // FIXME: Limit to scalars for now.
2386     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
2387       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
2388                                                Op.getOperand(0)));
2389 
2390     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2391     break;
2392   }
2393   case ISD::SIGN_EXTEND_INREG: {
2394     SDValue Op0 = Op.getOperand(0);
2395     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2396     unsigned ExVTBits = ExVT.getScalarSizeInBits();
2397 
2398     // If we only care about the highest bit, don't bother shifting right.
2399     if (DemandedBits.isSignMask()) {
2400       unsigned MinSignedBits =
2401           TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
2402       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2403       // However if the input is already sign extended we expect the sign
2404       // extension to be dropped altogether later and do not simplify.
2405       if (!AlreadySignExtended) {
2406         // Compute the correct shift amount type, which must be getShiftAmountTy
2407         // for scalar types after legalization.
2408         SDValue ShiftAmt =
2409             TLO.DAG.getShiftAmountConstant(BitWidth - ExVTBits, VT, dl);
2410         return TLO.CombineTo(Op,
2411                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
2412       }
2413     }
2414 
2415     // If none of the extended bits are demanded, eliminate the sextinreg.
2416     if (DemandedBits.getActiveBits() <= ExVTBits)
2417       return TLO.CombineTo(Op, Op0);
2418 
2419     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
2420 
2421     // Since the sign extended bits are demanded, we know that the sign
2422     // bit is demanded.
2423     InputDemandedBits.setBit(ExVTBits - 1);
2424 
2425     if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO,
2426                              Depth + 1))
2427       return true;
2428 
2429     // If the sign bit of the input is known set or clear, then we know the
2430     // top bits of the result.
2431 
2432     // If the input sign bit is known zero, convert this into a zero extension.
2433     if (Known.Zero[ExVTBits - 1])
2434       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
2435 
2436     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
2437     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
2438       Known.One.setBitsFrom(ExVTBits);
2439       Known.Zero &= Mask;
2440     } else { // Input sign bit unknown
2441       Known.Zero &= Mask;
2442       Known.One &= Mask;
2443     }
2444     break;
2445   }
2446   case ISD::BUILD_PAIR: {
2447     EVT HalfVT = Op.getOperand(0).getValueType();
2448     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
2449 
2450     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
2451     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
2452 
2453     KnownBits KnownLo, KnownHi;
2454 
2455     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
2456       return true;
2457 
2458     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
2459       return true;
2460 
2461     Known = KnownHi.concat(KnownLo);
2462     break;
2463   }
2464   case ISD::ZERO_EXTEND_VECTOR_INREG:
2465     if (VT.isScalableVector())
2466       return false;
2467     [[fallthrough]];
2468   case ISD::ZERO_EXTEND: {
2469     SDValue Src = Op.getOperand(0);
2470     EVT SrcVT = Src.getValueType();
2471     unsigned InBits = SrcVT.getScalarSizeInBits();
2472     unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2473     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
2474 
2475     // If none of the top bits are demanded, convert this into an any_extend.
2476     if (DemandedBits.getActiveBits() <= InBits) {
2477       // If we only need the non-extended bits of the bottom element
2478       // then we can just bitcast to the result.
2479       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2480           VT.getSizeInBits() == SrcVT.getSizeInBits())
2481         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2482 
2483       unsigned Opc =
2484           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2485       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2486         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2487     }
2488 
2489     APInt InDemandedBits = DemandedBits.trunc(InBits);
2490     APInt InDemandedElts = DemandedElts.zext(InElts);
2491     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2492                              Depth + 1)) {
2493       Op->dropFlags(SDNodeFlags::NonNeg);
2494       return true;
2495     }
2496     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2497     Known = Known.zext(BitWidth);
2498 
2499     // Attempt to avoid multi-use ops if we don't need anything from them.
2500     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2501             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2502       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2503     break;
2504   }
2505   case ISD::SIGN_EXTEND_VECTOR_INREG:
2506     if (VT.isScalableVector())
2507       return false;
2508     [[fallthrough]];
2509   case ISD::SIGN_EXTEND: {
2510     SDValue Src = Op.getOperand(0);
2511     EVT SrcVT = Src.getValueType();
2512     unsigned InBits = SrcVT.getScalarSizeInBits();
2513     unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2514     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
2515 
2516     APInt InDemandedElts = DemandedElts.zext(InElts);
2517     APInt InDemandedBits = DemandedBits.trunc(InBits);
2518 
2519     // Since some of the sign extended bits are demanded, we know that the sign
2520     // bit is demanded.
2521     InDemandedBits.setBit(InBits - 1);
2522 
2523     // If none of the top bits are demanded, convert this into an any_extend.
2524     if (DemandedBits.getActiveBits() <= InBits) {
2525       // If we only need the non-extended bits of the bottom element
2526       // then we can just bitcast to the result.
2527       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2528           VT.getSizeInBits() == SrcVT.getSizeInBits())
2529         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2530 
2531       // Don't lose an all signbits 0/-1 splat on targets with 0/-1 booleans.
2532       if (getBooleanContents(VT) != ZeroOrNegativeOneBooleanContent ||
2533           TLO.DAG.ComputeNumSignBits(Src, InDemandedElts, Depth + 1) !=
2534               InBits) {
2535         unsigned Opc =
2536             IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2537         if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2538           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2539       }
2540     }
2541 
2542     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2543                              Depth + 1))
2544       return true;
2545     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2546 
2547     // If the sign bit is known one, the top bits match.
2548     Known = Known.sext(BitWidth);
2549 
2550     // If the sign bit is known zero, convert this to a zero extend.
2551     if (Known.isNonNegative()) {
2552       unsigned Opc =
2553           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
2554       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) {
2555         SDNodeFlags Flags;
2556         if (!IsVecInReg)
2557           Flags |= SDNodeFlags::NonNeg;
2558         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src, Flags));
2559       }
2560     }
2561 
2562     // Attempt to avoid multi-use ops if we don't need anything from them.
2563     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2564             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2565       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2566     break;
2567   }
2568   case ISD::ANY_EXTEND_VECTOR_INREG:
2569     if (VT.isScalableVector())
2570       return false;
2571     [[fallthrough]];
2572   case ISD::ANY_EXTEND: {
2573     SDValue Src = Op.getOperand(0);
2574     EVT SrcVT = Src.getValueType();
2575     unsigned InBits = SrcVT.getScalarSizeInBits();
2576     unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2577     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2578 
2579     // If we only need the bottom element then we can just bitcast.
2580     // TODO: Handle ANY_EXTEND?
2581     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2582         VT.getSizeInBits() == SrcVT.getSizeInBits())
2583       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2584 
2585     APInt InDemandedBits = DemandedBits.trunc(InBits);
2586     APInt InDemandedElts = DemandedElts.zext(InElts);
2587     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2588                              Depth + 1))
2589       return true;
2590     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2591     Known = Known.anyext(BitWidth);
2592 
2593     // Attempt to avoid multi-use ops if we don't need anything from them.
2594     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2595             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2596       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2597     break;
2598   }
2599   case ISD::TRUNCATE: {
2600     SDValue Src = Op.getOperand(0);
2601 
2602     // Simplify the input, using demanded bit information, and compute the known
2603     // zero/one bits live out.
2604     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2605     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2606     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2607                              Depth + 1)) {
2608       // Disable the nsw and nuw flags. We can no longer guarantee that we
2609       // won't wrap after simplification.
2610       Op->dropFlags(SDNodeFlags::NoWrap);
2611       return true;
2612     }
2613     Known = Known.trunc(BitWidth);
2614 
2615     // Attempt to avoid multi-use ops if we don't need anything from them.
2616     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2617             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2618       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2619 
2620     // If the input is only used by this truncate, see if we can shrink it based
2621     // on the known demanded bits.
2622     switch (Src.getOpcode()) {
2623     default:
2624       break;
2625     case ISD::SRL:
2626       // Shrink SRL by a constant if none of the high bits shifted in are
2627       // demanded.
2628       if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2629         // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2630         // undesirable.
2631         break;
2632 
2633       if (Src.getNode()->hasOneUse()) {
2634         if (isTruncateFree(Src, VT) &&
2635             !isTruncateFree(Src.getValueType(), VT)) {
2636           // If truncate is only free at trunc(srl), do not turn it into
2637           // srl(trunc). The check is done by first check the truncate is free
2638           // at Src's opcode(srl), then check the truncate is not done by
2639           // referencing sub-register. In test, if both trunc(srl) and
2640           // srl(trunc)'s trunc are free, srl(trunc) performs better. If only
2641           // trunc(srl)'s trunc is free, trunc(srl) is better.
2642           break;
2643         }
2644 
2645         std::optional<uint64_t> ShAmtC =
2646             TLO.DAG.getValidShiftAmount(Src, DemandedElts, Depth + 2);
2647         if (!ShAmtC || *ShAmtC >= BitWidth)
2648           break;
2649         uint64_t ShVal = *ShAmtC;
2650 
2651         APInt HighBits =
2652             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2653         HighBits.lshrInPlace(ShVal);
2654         HighBits = HighBits.trunc(BitWidth);
2655         if (!(HighBits & DemandedBits)) {
2656           // None of the shifted in bits are needed.  Add a truncate of the
2657           // shift input, then shift it.
2658           SDValue NewShAmt = TLO.DAG.getShiftAmountConstant(ShVal, VT, dl);
2659           SDValue NewTrunc =
2660               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2661           return TLO.CombineTo(
2662               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2663         }
2664       }
2665       break;
2666     }
2667 
2668     break;
2669   }
2670   case ISD::AssertZext: {
2671     // AssertZext demands all of the high bits, plus any of the low bits
2672     // demanded by its users.
2673     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2674     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2675     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2676                              TLO, Depth + 1))
2677       return true;
2678 
2679     Known.Zero |= ~InMask;
2680     Known.One &= (~Known.Zero);
2681     break;
2682   }
2683   case ISD::EXTRACT_VECTOR_ELT: {
2684     SDValue Src = Op.getOperand(0);
2685     SDValue Idx = Op.getOperand(1);
2686     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2687     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2688 
2689     if (SrcEltCnt.isScalable())
2690       return false;
2691 
2692     // Demand the bits from every vector element without a constant index.
2693     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2694     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2695     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2696       if (CIdx->getAPIntValue().ult(NumSrcElts))
2697         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2698 
2699     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2700     // anything about the extended bits.
2701     APInt DemandedSrcBits = DemandedBits;
2702     if (BitWidth > EltBitWidth)
2703       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2704 
2705     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2706                              Depth + 1))
2707       return true;
2708 
2709     // Attempt to avoid multi-use ops if we don't need anything from them.
2710     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2711       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2712               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2713         SDValue NewOp =
2714             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2715         return TLO.CombineTo(Op, NewOp);
2716       }
2717     }
2718 
2719     Known = Known2;
2720     if (BitWidth > EltBitWidth)
2721       Known = Known.anyext(BitWidth);
2722     break;
2723   }
2724   case ISD::BITCAST: {
2725     if (VT.isScalableVector())
2726       return false;
2727     SDValue Src = Op.getOperand(0);
2728     EVT SrcVT = Src.getValueType();
2729     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2730 
2731     // If this is an FP->Int bitcast and if the sign bit is the only
2732     // thing demanded, turn this into a FGETSIGN.
2733     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2734         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2735         SrcVT.isFloatingPoint()) {
2736       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2737       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2738       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2739           SrcVT != MVT::f128) {
2740         // Cannot eliminate/lower SHL for f128 yet.
2741         EVT Ty = OpVTLegal ? VT : MVT::i32;
2742         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2743         // place.  We expect the SHL to be eliminated by other optimizations.
2744         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2745         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2746         if (!OpVTLegal && OpVTSizeInBits > 32)
2747           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2748         unsigned ShVal = Op.getValueSizeInBits() - 1;
2749         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2750         return TLO.CombineTo(Op,
2751                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2752       }
2753     }
2754 
2755     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2756     // Demand the elt/bit if any of the original elts/bits are demanded.
2757     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2758       unsigned Scale = BitWidth / NumSrcEltBits;
2759       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2760       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2761       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2762       for (unsigned i = 0; i != Scale; ++i) {
2763         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2764         unsigned BitOffset = EltOffset * NumSrcEltBits;
2765         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2766         if (!Sub.isZero()) {
2767           DemandedSrcBits |= Sub;
2768           for (unsigned j = 0; j != NumElts; ++j)
2769             if (DemandedElts[j])
2770               DemandedSrcElts.setBit((j * Scale) + i);
2771         }
2772       }
2773 
2774       APInt KnownSrcUndef, KnownSrcZero;
2775       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2776                                      KnownSrcZero, TLO, Depth + 1))
2777         return true;
2778 
2779       KnownBits KnownSrcBits;
2780       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2781                                KnownSrcBits, TLO, Depth + 1))
2782         return true;
2783     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2784       // TODO - bigendian once we have test coverage.
2785       unsigned Scale = NumSrcEltBits / BitWidth;
2786       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2787       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2788       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2789       for (unsigned i = 0; i != NumElts; ++i)
2790         if (DemandedElts[i]) {
2791           unsigned Offset = (i % Scale) * BitWidth;
2792           DemandedSrcBits.insertBits(DemandedBits, Offset);
2793           DemandedSrcElts.setBit(i / Scale);
2794         }
2795 
2796       if (SrcVT.isVector()) {
2797         APInt KnownSrcUndef, KnownSrcZero;
2798         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2799                                        KnownSrcZero, TLO, Depth + 1))
2800           return true;
2801       }
2802 
2803       KnownBits KnownSrcBits;
2804       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2805                                KnownSrcBits, TLO, Depth + 1))
2806         return true;
2807 
2808       // Attempt to avoid multi-use ops if we don't need anything from them.
2809       if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2810         if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2811                 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2812           SDValue NewOp = TLO.DAG.getBitcast(VT, DemandedSrc);
2813           return TLO.CombineTo(Op, NewOp);
2814         }
2815       }
2816     }
2817 
2818     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2819     // recursive call where Known may be useful to the caller.
2820     if (Depth > 0) {
2821       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2822       return false;
2823     }
2824     break;
2825   }
2826   case ISD::MUL:
2827     if (DemandedBits.isPowerOf2()) {
2828       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
2829       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
2830       // odd (has LSB set), then the left-shifted low bit of X is the answer.
2831       unsigned CTZ = DemandedBits.countr_zero();
2832       ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
2833       if (C && C->getAPIntValue().countr_zero() == CTZ) {
2834         SDValue AmtC = TLO.DAG.getShiftAmountConstant(CTZ, VT, dl);
2835         SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
2836         return TLO.CombineTo(Op, Shl);
2837       }
2838     }
2839     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
2840     // X * X is odd iff X is odd.
2841     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
2842     if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
2843       SDValue One = TLO.DAG.getConstant(1, dl, VT);
2844       SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
2845       return TLO.CombineTo(Op, And1);
2846     }
2847     [[fallthrough]];
2848   case ISD::ADD:
2849   case ISD::SUB: {
2850     // Add, Sub, and Mul don't demand any bits in positions beyond that
2851     // of the highest bit demanded of them.
2852     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2853     SDNodeFlags Flags = Op.getNode()->getFlags();
2854     unsigned DemandedBitsLZ = DemandedBits.countl_zero();
2855     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2856     KnownBits KnownOp0, KnownOp1;
2857     auto GetDemandedBitsLHSMask = [&](APInt Demanded,
2858                                       const KnownBits &KnownRHS) {
2859       if (Op.getOpcode() == ISD::MUL)
2860         Demanded.clearHighBits(KnownRHS.countMinTrailingZeros());
2861       return Demanded;
2862     };
2863     if (SimplifyDemandedBits(Op1, LoMask, DemandedElts, KnownOp1, TLO,
2864                              Depth + 1) ||
2865         SimplifyDemandedBits(Op0, GetDemandedBitsLHSMask(LoMask, KnownOp1),
2866                              DemandedElts, KnownOp0, TLO, Depth + 1) ||
2867         // See if the operation should be performed at a smaller bit width.
2868         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2869       // Disable the nsw and nuw flags. We can no longer guarantee that we
2870       // won't wrap after simplification.
2871       Op->dropFlags(SDNodeFlags::NoWrap);
2872       return true;
2873     }
2874 
2875     // neg x with only low bit demanded is simply x.
2876     if (Op.getOpcode() == ISD::SUB && DemandedBits.isOne() &&
2877         isNullConstant(Op0))
2878       return TLO.CombineTo(Op, Op1);
2879 
2880     // Attempt to avoid multi-use ops if we don't need anything from them.
2881     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2882       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2883           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2884       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2885           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2886       if (DemandedOp0 || DemandedOp1) {
2887         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2888         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2889         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1,
2890                                         Flags & ~SDNodeFlags::NoWrap);
2891         return TLO.CombineTo(Op, NewOp);
2892       }
2893     }
2894 
2895     // If we have a constant operand, we may be able to turn it into -1 if we
2896     // do not demand the high bits. This can make the constant smaller to
2897     // encode, allow more general folding, or match specialized instruction
2898     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2899     // is probably not useful (and could be detrimental).
2900     ConstantSDNode *C = isConstOrConstSplat(Op1);
2901     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2902     if (C && !C->isAllOnes() && !C->isOne() &&
2903         (C->getAPIntValue() | HighMask).isAllOnes()) {
2904       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2905       // Disable the nsw and nuw flags. We can no longer guarantee that we
2906       // won't wrap after simplification.
2907       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1,
2908                                       Flags & ~SDNodeFlags::NoWrap);
2909       return TLO.CombineTo(Op, NewOp);
2910     }
2911 
2912     // Match a multiply with a disguised negated-power-of-2 and convert to a
2913     // an equivalent shift-left amount.
2914     // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2915     auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
2916       if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
2917         return 0;
2918 
2919       // Don't touch opaque constants. Also, ignore zero and power-of-2
2920       // multiplies. Those will get folded later.
2921       ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
2922       if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
2923           !MulC->getAPIntValue().isPowerOf2()) {
2924         APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
2925         if (UnmaskedC.isNegatedPowerOf2())
2926           return (-UnmaskedC).logBase2();
2927       }
2928       return 0;
2929     };
2930 
2931     auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y,
2932                        unsigned ShlAmt) {
2933       SDValue ShlAmtC = TLO.DAG.getShiftAmountConstant(ShlAmt, VT, dl);
2934       SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
2935       SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl);
2936       return TLO.CombineTo(Op, Res);
2937     };
2938 
2939     if (isOperationLegalOrCustom(ISD::SHL, VT)) {
2940       if (Op.getOpcode() == ISD::ADD) {
2941         // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2942         if (unsigned ShAmt = getShiftLeftAmt(Op0))
2943           return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt);
2944         // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
2945         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2946           return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt);
2947       }
2948       if (Op.getOpcode() == ISD::SUB) {
2949         // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
2950         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2951           return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt);
2952       }
2953     }
2954 
2955     if (Op.getOpcode() == ISD::MUL) {
2956       Known = KnownBits::mul(KnownOp0, KnownOp1);
2957     } else { // Op.getOpcode() is either ISD::ADD or ISD::SUB.
2958       Known = KnownBits::computeForAddSub(
2959           Op.getOpcode() == ISD::ADD, Flags.hasNoSignedWrap(),
2960           Flags.hasNoUnsignedWrap(), KnownOp0, KnownOp1);
2961     }
2962     break;
2963   }
2964   default:
2965     // We also ask the target about intrinsics (which could be specific to it).
2966     if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2967         Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
2968       // TODO: Probably okay to remove after audit; here to reduce change size
2969       // in initial enablement patch for scalable vectors
2970       if (Op.getValueType().isScalableVector())
2971         break;
2972       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2973                                             Known, TLO, Depth))
2974         return true;
2975       break;
2976     }
2977 
2978     // Just use computeKnownBits to compute output bits.
2979     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2980     break;
2981   }
2982 
2983   // If we know the value of all of the demanded bits, return this as a
2984   // constant.
2985   if (!isTargetCanonicalConstantNode(Op) &&
2986       DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2987     // Avoid folding to a constant if any OpaqueConstant is involved.
2988     const SDNode *N = Op.getNode();
2989     for (SDNode *Op :
2990          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2991       if (auto *C = dyn_cast<ConstantSDNode>(Op))
2992         if (C->isOpaque())
2993           return false;
2994     }
2995     if (VT.isInteger())
2996       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2997     if (VT.isFloatingPoint())
2998       return TLO.CombineTo(
2999           Op, TLO.DAG.getConstantFP(APFloat(VT.getFltSemantics(), Known.One),
3000                                     dl, VT));
3001   }
3002 
3003   // A multi use 'all demanded elts' simplify failed to find any knownbits.
3004   // Try again just for the original demanded elts.
3005   // Ensure we do this AFTER constant folding above.
3006   if (HasMultiUse && Known.isUnknown() && !OriginalDemandedElts.isAllOnes())
3007     Known = TLO.DAG.computeKnownBits(Op, OriginalDemandedElts, Depth);
3008 
3009   return false;
3010 }
3011 
3012 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
3013                                                 const APInt &DemandedElts,
3014                                                 DAGCombinerInfo &DCI) const {
3015   SelectionDAG &DAG = DCI.DAG;
3016   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
3017                         !DCI.isBeforeLegalizeOps());
3018 
3019   APInt KnownUndef, KnownZero;
3020   bool Simplified =
3021       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
3022   if (Simplified) {
3023     DCI.AddToWorklist(Op.getNode());
3024     DCI.CommitTargetLoweringOpt(TLO);
3025   }
3026 
3027   return Simplified;
3028 }
3029 
3030 /// Given a vector binary operation and known undefined elements for each input
3031 /// operand, compute whether each element of the output is undefined.
3032 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
3033                                          const APInt &UndefOp0,
3034                                          const APInt &UndefOp1) {
3035   EVT VT = BO.getValueType();
3036   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
3037          "Vector binop only");
3038 
3039   EVT EltVT = VT.getVectorElementType();
3040   unsigned NumElts = VT.isFixedLengthVector() ? VT.getVectorNumElements() : 1;
3041   assert(UndefOp0.getBitWidth() == NumElts &&
3042          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
3043 
3044   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
3045                                    const APInt &UndefVals) {
3046     if (UndefVals[Index])
3047       return DAG.getUNDEF(EltVT);
3048 
3049     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
3050       // Try hard to make sure that the getNode() call is not creating temporary
3051       // nodes. Ignore opaque integers because they do not constant fold.
3052       SDValue Elt = BV->getOperand(Index);
3053       auto *C = dyn_cast<ConstantSDNode>(Elt);
3054       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
3055         return Elt;
3056     }
3057 
3058     return SDValue();
3059   };
3060 
3061   APInt KnownUndef = APInt::getZero(NumElts);
3062   for (unsigned i = 0; i != NumElts; ++i) {
3063     // If both inputs for this element are either constant or undef and match
3064     // the element type, compute the constant/undef result for this element of
3065     // the vector.
3066     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
3067     // not handle FP constants. The code within getNode() should be refactored
3068     // to avoid the danger of creating a bogus temporary node here.
3069     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
3070     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
3071     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
3072       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
3073         KnownUndef.setBit(i);
3074   }
3075   return KnownUndef;
3076 }
3077 
3078 bool TargetLowering::SimplifyDemandedVectorElts(
3079     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
3080     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
3081     bool AssumeSingleUse) const {
3082   EVT VT = Op.getValueType();
3083   unsigned Opcode = Op.getOpcode();
3084   APInt DemandedElts = OriginalDemandedElts;
3085   unsigned NumElts = DemandedElts.getBitWidth();
3086   assert(VT.isVector() && "Expected vector op");
3087 
3088   KnownUndef = KnownZero = APInt::getZero(NumElts);
3089 
3090   if (!shouldSimplifyDemandedVectorElts(Op, TLO))
3091     return false;
3092 
3093   // TODO: For now we assume we know nothing about scalable vectors.
3094   if (VT.isScalableVector())
3095     return false;
3096 
3097   assert(VT.getVectorNumElements() == NumElts &&
3098          "Mask size mismatches value type element count!");
3099 
3100   // Undef operand.
3101   if (Op.isUndef()) {
3102     KnownUndef.setAllBits();
3103     return false;
3104   }
3105 
3106   // If Op has other users, assume that all elements are needed.
3107   if (!AssumeSingleUse && !Op.getNode()->hasOneUse())
3108     DemandedElts.setAllBits();
3109 
3110   // Not demanding any elements from Op.
3111   if (DemandedElts == 0) {
3112     KnownUndef.setAllBits();
3113     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3114   }
3115 
3116   // Limit search depth.
3117   if (Depth >= SelectionDAG::MaxRecursionDepth)
3118     return false;
3119 
3120   SDLoc DL(Op);
3121   unsigned EltSizeInBits = VT.getScalarSizeInBits();
3122   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
3123 
3124   // Helper for demanding the specified elements and all the bits of both binary
3125   // operands.
3126   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
3127     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
3128                                                            TLO.DAG, Depth + 1);
3129     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
3130                                                            TLO.DAG, Depth + 1);
3131     if (NewOp0 || NewOp1) {
3132       SDValue NewOp =
3133           TLO.DAG.getNode(Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0,
3134                           NewOp1 ? NewOp1 : Op1, Op->getFlags());
3135       return TLO.CombineTo(Op, NewOp);
3136     }
3137     return false;
3138   };
3139 
3140   switch (Opcode) {
3141   case ISD::SCALAR_TO_VECTOR: {
3142     if (!DemandedElts[0]) {
3143       KnownUndef.setAllBits();
3144       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3145     }
3146     SDValue ScalarSrc = Op.getOperand(0);
3147     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
3148       SDValue Src = ScalarSrc.getOperand(0);
3149       SDValue Idx = ScalarSrc.getOperand(1);
3150       EVT SrcVT = Src.getValueType();
3151 
3152       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
3153 
3154       if (SrcEltCnt.isScalable())
3155         return false;
3156 
3157       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
3158       if (isNullConstant(Idx)) {
3159         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
3160         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
3161         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
3162         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3163                                        TLO, Depth + 1))
3164           return true;
3165       }
3166     }
3167     KnownUndef.setHighBits(NumElts - 1);
3168     break;
3169   }
3170   case ISD::BITCAST: {
3171     SDValue Src = Op.getOperand(0);
3172     EVT SrcVT = Src.getValueType();
3173 
3174     // We only handle vectors here.
3175     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
3176     if (!SrcVT.isVector())
3177       break;
3178 
3179     // Fast handling of 'identity' bitcasts.
3180     unsigned NumSrcElts = SrcVT.getVectorNumElements();
3181     if (NumSrcElts == NumElts)
3182       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
3183                                         KnownZero, TLO, Depth + 1);
3184 
3185     APInt SrcDemandedElts, SrcZero, SrcUndef;
3186 
3187     // Bitcast from 'large element' src vector to 'small element' vector, we
3188     // must demand a source element if any DemandedElt maps to it.
3189     if ((NumElts % NumSrcElts) == 0) {
3190       unsigned Scale = NumElts / NumSrcElts;
3191       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
3192       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3193                                      TLO, Depth + 1))
3194         return true;
3195 
3196       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
3197       // of the large element.
3198       // TODO - bigendian once we have test coverage.
3199       if (IsLE) {
3200         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
3201         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
3202         for (unsigned i = 0; i != NumElts; ++i)
3203           if (DemandedElts[i]) {
3204             unsigned Ofs = (i % Scale) * EltSizeInBits;
3205             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
3206           }
3207 
3208         KnownBits Known;
3209         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
3210                                  TLO, Depth + 1))
3211           return true;
3212 
3213         // The bitcast has split each wide element into a number of
3214         // narrow subelements. We have just computed the Known bits
3215         // for wide elements. See if element splitting results in
3216         // some subelements being zero. Only for demanded elements!
3217         for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
3218           if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits)
3219                    .isAllOnes())
3220             continue;
3221           for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
3222             unsigned Elt = Scale * SrcElt + SubElt;
3223             if (DemandedElts[Elt])
3224               KnownZero.setBit(Elt);
3225           }
3226         }
3227       }
3228 
3229       // If the src element is zero/undef then all the output elements will be -
3230       // only demanded elements are guaranteed to be correct.
3231       for (unsigned i = 0; i != NumSrcElts; ++i) {
3232         if (SrcDemandedElts[i]) {
3233           if (SrcZero[i])
3234             KnownZero.setBits(i * Scale, (i + 1) * Scale);
3235           if (SrcUndef[i])
3236             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
3237         }
3238       }
3239     }
3240 
3241     // Bitcast from 'small element' src vector to 'large element' vector, we
3242     // demand all smaller source elements covered by the larger demanded element
3243     // of this vector.
3244     if ((NumSrcElts % NumElts) == 0) {
3245       unsigned Scale = NumSrcElts / NumElts;
3246       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
3247       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3248                                      TLO, Depth + 1))
3249         return true;
3250 
3251       // If all the src elements covering an output element are zero/undef, then
3252       // the output element will be as well, assuming it was demanded.
3253       for (unsigned i = 0; i != NumElts; ++i) {
3254         if (DemandedElts[i]) {
3255           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
3256             KnownZero.setBit(i);
3257           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
3258             KnownUndef.setBit(i);
3259         }
3260       }
3261     }
3262     break;
3263   }
3264   case ISD::FREEZE: {
3265     SDValue N0 = Op.getOperand(0);
3266     if (TLO.DAG.isGuaranteedNotToBeUndefOrPoison(N0, DemandedElts,
3267                                                  /*PoisonOnly=*/false))
3268       return TLO.CombineTo(Op, N0);
3269 
3270     // TODO: Replace this with the general fold from DAGCombiner::visitFREEZE
3271     // freeze(op(x, ...)) -> op(freeze(x), ...).
3272     if (N0.getOpcode() == ISD::SCALAR_TO_VECTOR && DemandedElts == 1)
3273       return TLO.CombineTo(
3274           Op, TLO.DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT,
3275                               TLO.DAG.getFreeze(N0.getOperand(0))));
3276     break;
3277   }
3278   case ISD::BUILD_VECTOR: {
3279     // Check all elements and simplify any unused elements with UNDEF.
3280     if (!DemandedElts.isAllOnes()) {
3281       // Don't simplify BROADCASTS.
3282       if (llvm::any_of(Op->op_values(),
3283                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
3284         SmallVector<SDValue, 32> Ops(Op->ops());
3285         bool Updated = false;
3286         for (unsigned i = 0; i != NumElts; ++i) {
3287           if (!DemandedElts[i] && !Ops[i].isUndef()) {
3288             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
3289             KnownUndef.setBit(i);
3290             Updated = true;
3291           }
3292         }
3293         if (Updated)
3294           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
3295       }
3296     }
3297     for (unsigned i = 0; i != NumElts; ++i) {
3298       SDValue SrcOp = Op.getOperand(i);
3299       if (SrcOp.isUndef()) {
3300         KnownUndef.setBit(i);
3301       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
3302                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
3303         KnownZero.setBit(i);
3304       }
3305     }
3306     break;
3307   }
3308   case ISD::CONCAT_VECTORS: {
3309     EVT SubVT = Op.getOperand(0).getValueType();
3310     unsigned NumSubVecs = Op.getNumOperands();
3311     unsigned NumSubElts = SubVT.getVectorNumElements();
3312     for (unsigned i = 0; i != NumSubVecs; ++i) {
3313       SDValue SubOp = Op.getOperand(i);
3314       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
3315       APInt SubUndef, SubZero;
3316       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
3317                                      Depth + 1))
3318         return true;
3319       KnownUndef.insertBits(SubUndef, i * NumSubElts);
3320       KnownZero.insertBits(SubZero, i * NumSubElts);
3321     }
3322 
3323     // Attempt to avoid multi-use ops if we don't need anything from them.
3324     if (!DemandedElts.isAllOnes()) {
3325       bool FoundNewSub = false;
3326       SmallVector<SDValue, 2> DemandedSubOps;
3327       for (unsigned i = 0; i != NumSubVecs; ++i) {
3328         SDValue SubOp = Op.getOperand(i);
3329         APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
3330         SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts(
3331             SubOp, SubElts, TLO.DAG, Depth + 1);
3332         DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp);
3333         FoundNewSub = NewSubOp ? true : FoundNewSub;
3334       }
3335       if (FoundNewSub) {
3336         SDValue NewOp =
3337             TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps);
3338         return TLO.CombineTo(Op, NewOp);
3339       }
3340     }
3341     break;
3342   }
3343   case ISD::INSERT_SUBVECTOR: {
3344     // Demand any elements from the subvector and the remainder from the src its
3345     // inserted into.
3346     SDValue Src = Op.getOperand(0);
3347     SDValue Sub = Op.getOperand(1);
3348     uint64_t Idx = Op.getConstantOperandVal(2);
3349     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3350     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3351     APInt DemandedSrcElts = DemandedElts;
3352     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
3353 
3354     APInt SubUndef, SubZero;
3355     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
3356                                    Depth + 1))
3357       return true;
3358 
3359     // If none of the src operand elements are demanded, replace it with undef.
3360     if (!DemandedSrcElts && !Src.isUndef())
3361       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
3362                                                TLO.DAG.getUNDEF(VT), Sub,
3363                                                Op.getOperand(2)));
3364 
3365     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
3366                                    TLO, Depth + 1))
3367       return true;
3368     KnownUndef.insertBits(SubUndef, Idx);
3369     KnownZero.insertBits(SubZero, Idx);
3370 
3371     // Attempt to avoid multi-use ops if we don't need anything from them.
3372     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
3373       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3374           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3375       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
3376           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
3377       if (NewSrc || NewSub) {
3378         NewSrc = NewSrc ? NewSrc : Src;
3379         NewSub = NewSub ? NewSub : Sub;
3380         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3381                                         NewSub, Op.getOperand(2));
3382         return TLO.CombineTo(Op, NewOp);
3383       }
3384     }
3385     break;
3386   }
3387   case ISD::EXTRACT_SUBVECTOR: {
3388     // Offset the demanded elts by the subvector index.
3389     SDValue Src = Op.getOperand(0);
3390     if (Src.getValueType().isScalableVector())
3391       break;
3392     uint64_t Idx = Op.getConstantOperandVal(1);
3393     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3394     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3395 
3396     APInt SrcUndef, SrcZero;
3397     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3398                                    Depth + 1))
3399       return true;
3400     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
3401     KnownZero = SrcZero.extractBits(NumElts, Idx);
3402 
3403     // Attempt to avoid multi-use ops if we don't need anything from them.
3404     if (!DemandedElts.isAllOnes()) {
3405       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3406           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3407       if (NewSrc) {
3408         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3409                                         Op.getOperand(1));
3410         return TLO.CombineTo(Op, NewOp);
3411       }
3412     }
3413     break;
3414   }
3415   case ISD::INSERT_VECTOR_ELT: {
3416     SDValue Vec = Op.getOperand(0);
3417     SDValue Scl = Op.getOperand(1);
3418     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3419 
3420     // For a legal, constant insertion index, if we don't need this insertion
3421     // then strip it, else remove it from the demanded elts.
3422     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
3423       unsigned Idx = CIdx->getZExtValue();
3424       if (!DemandedElts[Idx])
3425         return TLO.CombineTo(Op, Vec);
3426 
3427       APInt DemandedVecElts(DemandedElts);
3428       DemandedVecElts.clearBit(Idx);
3429       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
3430                                      KnownZero, TLO, Depth + 1))
3431         return true;
3432 
3433       KnownUndef.setBitVal(Idx, Scl.isUndef());
3434 
3435       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
3436       break;
3437     }
3438 
3439     APInt VecUndef, VecZero;
3440     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
3441                                    Depth + 1))
3442       return true;
3443     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
3444     break;
3445   }
3446   case ISD::VSELECT: {
3447     SDValue Sel = Op.getOperand(0);
3448     SDValue LHS = Op.getOperand(1);
3449     SDValue RHS = Op.getOperand(2);
3450 
3451     // Try to transform the select condition based on the current demanded
3452     // elements.
3453     APInt UndefSel, ZeroSel;
3454     if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, ZeroSel, TLO,
3455                                    Depth + 1))
3456       return true;
3457 
3458     // See if we can simplify either vselect operand.
3459     APInt DemandedLHS(DemandedElts);
3460     APInt DemandedRHS(DemandedElts);
3461     APInt UndefLHS, ZeroLHS;
3462     APInt UndefRHS, ZeroRHS;
3463     if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3464                                    Depth + 1))
3465       return true;
3466     if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3467                                    Depth + 1))
3468       return true;
3469 
3470     KnownUndef = UndefLHS & UndefRHS;
3471     KnownZero = ZeroLHS & ZeroRHS;
3472 
3473     // If we know that the selected element is always zero, we don't need the
3474     // select value element.
3475     APInt DemandedSel = DemandedElts & ~KnownZero;
3476     if (DemandedSel != DemandedElts)
3477       if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, ZeroSel, TLO,
3478                                      Depth + 1))
3479         return true;
3480 
3481     break;
3482   }
3483   case ISD::VECTOR_SHUFFLE: {
3484     SDValue LHS = Op.getOperand(0);
3485     SDValue RHS = Op.getOperand(1);
3486     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
3487 
3488     // Collect demanded elements from shuffle operands..
3489     APInt DemandedLHS(NumElts, 0);
3490     APInt DemandedRHS(NumElts, 0);
3491     for (unsigned i = 0; i != NumElts; ++i) {
3492       int M = ShuffleMask[i];
3493       if (M < 0 || !DemandedElts[i])
3494         continue;
3495       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
3496       if (M < (int)NumElts)
3497         DemandedLHS.setBit(M);
3498       else
3499         DemandedRHS.setBit(M - NumElts);
3500     }
3501 
3502     // See if we can simplify either shuffle operand.
3503     APInt UndefLHS, ZeroLHS;
3504     APInt UndefRHS, ZeroRHS;
3505     if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3506                                    Depth + 1))
3507       return true;
3508     if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3509                                    Depth + 1))
3510       return true;
3511 
3512     // Simplify mask using undef elements from LHS/RHS.
3513     bool Updated = false;
3514     bool IdentityLHS = true, IdentityRHS = true;
3515     SmallVector<int, 32> NewMask(ShuffleMask);
3516     for (unsigned i = 0; i != NumElts; ++i) {
3517       int &M = NewMask[i];
3518       if (M < 0)
3519         continue;
3520       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
3521           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
3522         Updated = true;
3523         M = -1;
3524       }
3525       IdentityLHS &= (M < 0) || (M == (int)i);
3526       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3527     }
3528 
3529     // Update legal shuffle masks based on demanded elements if it won't reduce
3530     // to Identity which can cause premature removal of the shuffle mask.
3531     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
3532       SDValue LegalShuffle =
3533           buildLegalVectorShuffle(VT, DL, LHS, RHS, NewMask, TLO.DAG);
3534       if (LegalShuffle)
3535         return TLO.CombineTo(Op, LegalShuffle);
3536     }
3537 
3538     // Propagate undef/zero elements from LHS/RHS.
3539     for (unsigned i = 0; i != NumElts; ++i) {
3540       int M = ShuffleMask[i];
3541       if (M < 0) {
3542         KnownUndef.setBit(i);
3543       } else if (M < (int)NumElts) {
3544         if (UndefLHS[M])
3545           KnownUndef.setBit(i);
3546         if (ZeroLHS[M])
3547           KnownZero.setBit(i);
3548       } else {
3549         if (UndefRHS[M - NumElts])
3550           KnownUndef.setBit(i);
3551         if (ZeroRHS[M - NumElts])
3552           KnownZero.setBit(i);
3553       }
3554     }
3555     break;
3556   }
3557   case ISD::ANY_EXTEND_VECTOR_INREG:
3558   case ISD::SIGN_EXTEND_VECTOR_INREG:
3559   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3560     APInt SrcUndef, SrcZero;
3561     SDValue Src = Op.getOperand(0);
3562     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3563     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3564     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3565                                    Depth + 1))
3566       return true;
3567     KnownZero = SrcZero.zextOrTrunc(NumElts);
3568     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
3569 
3570     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
3571         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3572         DemandedSrcElts == 1) {
3573       // aext - if we just need the bottom element then we can bitcast.
3574       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
3575     }
3576 
3577     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
3578       // zext(undef) upper bits are guaranteed to be zero.
3579       if (DemandedElts.isSubsetOf(KnownUndef))
3580         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3581       KnownUndef.clearAllBits();
3582 
3583       // zext - if we just need the bottom element then we can mask:
3584       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
3585       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
3586           Op->isOnlyUserOf(Src.getNode()) &&
3587           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3588         SDLoc DL(Op);
3589         EVT SrcVT = Src.getValueType();
3590         EVT SrcSVT = SrcVT.getScalarType();
3591         SmallVector<SDValue> MaskElts;
3592         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
3593         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
3594         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
3595         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
3596                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
3597           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
3598           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
3599         }
3600       }
3601     }
3602     break;
3603   }
3604 
3605   // TODO: There are more binop opcodes that could be handled here - MIN,
3606   // MAX, saturated math, etc.
3607   case ISD::ADD: {
3608     SDValue Op0 = Op.getOperand(0);
3609     SDValue Op1 = Op.getOperand(1);
3610     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
3611       APInt UndefLHS, ZeroLHS;
3612       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3613                                      Depth + 1, /*AssumeSingleUse*/ true))
3614         return true;
3615     }
3616     [[fallthrough]];
3617   }
3618   case ISD::AVGCEILS:
3619   case ISD::AVGCEILU:
3620   case ISD::AVGFLOORS:
3621   case ISD::AVGFLOORU:
3622   case ISD::OR:
3623   case ISD::XOR:
3624   case ISD::SUB:
3625   case ISD::FADD:
3626   case ISD::FSUB:
3627   case ISD::FMUL:
3628   case ISD::FDIV:
3629   case ISD::FREM: {
3630     SDValue Op0 = Op.getOperand(0);
3631     SDValue Op1 = Op.getOperand(1);
3632 
3633     APInt UndefRHS, ZeroRHS;
3634     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3635                                    Depth + 1))
3636       return true;
3637     APInt UndefLHS, ZeroLHS;
3638     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3639                                    Depth + 1))
3640       return true;
3641 
3642     KnownZero = ZeroLHS & ZeroRHS;
3643     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
3644 
3645     // Attempt to avoid multi-use ops if we don't need anything from them.
3646     // TODO - use KnownUndef to relax the demandedelts?
3647     if (!DemandedElts.isAllOnes())
3648       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3649         return true;
3650     break;
3651   }
3652   case ISD::SHL:
3653   case ISD::SRL:
3654   case ISD::SRA:
3655   case ISD::ROTL:
3656   case ISD::ROTR: {
3657     SDValue Op0 = Op.getOperand(0);
3658     SDValue Op1 = Op.getOperand(1);
3659 
3660     APInt UndefRHS, ZeroRHS;
3661     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3662                                    Depth + 1))
3663       return true;
3664     APInt UndefLHS, ZeroLHS;
3665     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3666                                    Depth + 1))
3667       return true;
3668 
3669     KnownZero = ZeroLHS;
3670     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
3671 
3672     // Attempt to avoid multi-use ops if we don't need anything from them.
3673     // TODO - use KnownUndef to relax the demandedelts?
3674     if (!DemandedElts.isAllOnes())
3675       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3676         return true;
3677     break;
3678   }
3679   case ISD::MUL:
3680   case ISD::MULHU:
3681   case ISD::MULHS:
3682   case ISD::AND: {
3683     SDValue Op0 = Op.getOperand(0);
3684     SDValue Op1 = Op.getOperand(1);
3685 
3686     APInt SrcUndef, SrcZero;
3687     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3688                                    Depth + 1))
3689       return true;
3690     // If we know that a demanded element was zero in Op1 we don't need to
3691     // demand it in Op0 - its guaranteed to be zero.
3692     APInt DemandedElts0 = DemandedElts & ~SrcZero;
3693     if (SimplifyDemandedVectorElts(Op0, DemandedElts0, KnownUndef, KnownZero,
3694                                    TLO, Depth + 1))
3695       return true;
3696 
3697     KnownUndef &= DemandedElts0;
3698     KnownZero &= DemandedElts0;
3699 
3700     // If every element pair has a zero/undef then just fold to zero.
3701     // fold (and x, undef) -> 0  /  (and x, 0) -> 0
3702     // fold (mul x, undef) -> 0  /  (mul x, 0) -> 0
3703     if (DemandedElts.isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef))
3704       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3705 
3706     // If either side has a zero element, then the result element is zero, even
3707     // if the other is an UNDEF.
3708     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
3709     // and then handle 'and' nodes with the rest of the binop opcodes.
3710     KnownZero |= SrcZero;
3711     KnownUndef &= SrcUndef;
3712     KnownUndef &= ~KnownZero;
3713 
3714     // Attempt to avoid multi-use ops if we don't need anything from them.
3715     if (!DemandedElts.isAllOnes())
3716       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3717         return true;
3718     break;
3719   }
3720   case ISD::TRUNCATE:
3721   case ISD::SIGN_EXTEND:
3722   case ISD::ZERO_EXTEND:
3723     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3724                                    KnownZero, TLO, Depth + 1))
3725       return true;
3726 
3727     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
3728       // zext(undef) upper bits are guaranteed to be zero.
3729       if (DemandedElts.isSubsetOf(KnownUndef))
3730         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3731       KnownUndef.clearAllBits();
3732     }
3733     break;
3734   default: {
3735     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3736       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3737                                                   KnownZero, TLO, Depth))
3738         return true;
3739     } else {
3740       KnownBits Known;
3741       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3742       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3743                                TLO, Depth, AssumeSingleUse))
3744         return true;
3745     }
3746     break;
3747   }
3748   }
3749   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3750 
3751   // Constant fold all undef cases.
3752   // TODO: Handle zero cases as well.
3753   if (DemandedElts.isSubsetOf(KnownUndef))
3754     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3755 
3756   return false;
3757 }
3758 
3759 /// Determine which of the bits specified in Mask are known to be either zero or
3760 /// one and return them in the Known.
3761 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3762                                                    KnownBits &Known,
3763                                                    const APInt &DemandedElts,
3764                                                    const SelectionDAG &DAG,
3765                                                    unsigned Depth) const {
3766   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3767           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3768           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3769           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3770          "Should use MaskedValueIsZero if you don't know whether Op"
3771          " is a target node!");
3772   Known.resetAll();
3773 }
3774 
3775 void TargetLowering::computeKnownBitsForTargetInstr(
3776     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3777     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3778     unsigned Depth) const {
3779   Known.resetAll();
3780 }
3781 
3782 void TargetLowering::computeKnownBitsForFrameIndex(
3783   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3784   // The low bits are known zero if the pointer is aligned.
3785   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3786 }
3787 
3788 Align TargetLowering::computeKnownAlignForTargetInstr(
3789   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3790   unsigned Depth) const {
3791   return Align(1);
3792 }
3793 
3794 /// This method can be implemented by targets that want to expose additional
3795 /// information about sign bits to the DAG Combiner.
3796 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3797                                                          const APInt &,
3798                                                          const SelectionDAG &,
3799                                                          unsigned Depth) const {
3800   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3801           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3802           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3803           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3804          "Should use ComputeNumSignBits if you don't know whether Op"
3805          " is a target node!");
3806   return 1;
3807 }
3808 
3809 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3810   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3811   const MachineRegisterInfo &MRI, unsigned Depth) const {
3812   return 1;
3813 }
3814 
3815 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3816     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3817     TargetLoweringOpt &TLO, unsigned Depth) const {
3818   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3819           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3820           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3821           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3822          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3823          " is a target node!");
3824   return false;
3825 }
3826 
3827 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3828     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3829     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3830   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3831           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3832           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3833           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3834          "Should use SimplifyDemandedBits if you don't know whether Op"
3835          " is a target node!");
3836   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3837   return false;
3838 }
3839 
3840 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3841     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3842     SelectionDAG &DAG, unsigned Depth) const {
3843   assert(
3844       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3845        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3846        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3847        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3848       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3849       " is a target node!");
3850   return SDValue();
3851 }
3852 
3853 SDValue
3854 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3855                                         SDValue N1, MutableArrayRef<int> Mask,
3856                                         SelectionDAG &DAG) const {
3857   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3858   if (!LegalMask) {
3859     std::swap(N0, N1);
3860     ShuffleVectorSDNode::commuteMask(Mask);
3861     LegalMask = isShuffleMaskLegal(Mask, VT);
3862   }
3863 
3864   if (!LegalMask)
3865     return SDValue();
3866 
3867   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3868 }
3869 
3870 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3871   return nullptr;
3872 }
3873 
3874 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3875     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3876     bool PoisonOnly, unsigned Depth) const {
3877   assert(
3878       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3879        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3880        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3881        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3882       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3883       " is a target node!");
3884 
3885   // If Op can't create undef/poison and none of its operands are undef/poison
3886   // then Op is never undef/poison.
3887   return !canCreateUndefOrPoisonForTargetNode(Op, DemandedElts, DAG, PoisonOnly,
3888                                               /*ConsiderFlags*/ true, Depth) &&
3889          all_of(Op->ops(), [&](SDValue V) {
3890            return DAG.isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly,
3891                                                        Depth + 1);
3892          });
3893 }
3894 
3895 bool TargetLowering::canCreateUndefOrPoisonForTargetNode(
3896     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3897     bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const {
3898   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3899           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3900           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3901           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3902          "Should use canCreateUndefOrPoison if you don't know whether Op"
3903          " is a target node!");
3904   // Be conservative and return true.
3905   return true;
3906 }
3907 
3908 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3909                                                   const SelectionDAG &DAG,
3910                                                   bool SNaN,
3911                                                   unsigned Depth) const {
3912   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3913           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3914           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3915           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3916          "Should use isKnownNeverNaN if you don't know whether Op"
3917          " is a target node!");
3918   return false;
3919 }
3920 
3921 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3922                                                const APInt &DemandedElts,
3923                                                APInt &UndefElts,
3924                                                const SelectionDAG &DAG,
3925                                                unsigned Depth) const {
3926   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3927           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3928           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3929           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3930          "Should use isSplatValue if you don't know whether Op"
3931          " is a target node!");
3932   return false;
3933 }
3934 
3935 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3936 // work with truncating build vectors and vectors with elements of less than
3937 // 8 bits.
3938 bool TargetLowering::isConstTrueVal(SDValue N) const {
3939   if (!N)
3940     return false;
3941 
3942   unsigned EltWidth;
3943   APInt CVal;
3944   if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
3945                                                /*AllowTruncation=*/true)) {
3946     CVal = CN->getAPIntValue();
3947     EltWidth = N.getValueType().getScalarSizeInBits();
3948   } else
3949     return false;
3950 
3951   // If this is a truncating splat, truncate the splat value.
3952   // Otherwise, we may fail to match the expected values below.
3953   if (EltWidth < CVal.getBitWidth())
3954     CVal = CVal.trunc(EltWidth);
3955 
3956   switch (getBooleanContents(N.getValueType())) {
3957   case UndefinedBooleanContent:
3958     return CVal[0];
3959   case ZeroOrOneBooleanContent:
3960     return CVal.isOne();
3961   case ZeroOrNegativeOneBooleanContent:
3962     return CVal.isAllOnes();
3963   }
3964 
3965   llvm_unreachable("Invalid boolean contents");
3966 }
3967 
3968 bool TargetLowering::isConstFalseVal(SDValue N) const {
3969   if (!N)
3970     return false;
3971 
3972   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3973   if (!CN) {
3974     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3975     if (!BV)
3976       return false;
3977 
3978     // Only interested in constant splats, we don't care about undef
3979     // elements in identifying boolean constants and getConstantSplatNode
3980     // returns NULL if all ops are undef;
3981     CN = BV->getConstantSplatNode();
3982     if (!CN)
3983       return false;
3984   }
3985 
3986   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3987     return !CN->getAPIntValue()[0];
3988 
3989   return CN->isZero();
3990 }
3991 
3992 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3993                                        bool SExt) const {
3994   if (VT == MVT::i1)
3995     return N->isOne();
3996 
3997   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3998   switch (Cnt) {
3999   case TargetLowering::ZeroOrOneBooleanContent:
4000     // An extended value of 1 is always true, unless its original type is i1,
4001     // in which case it will be sign extended to -1.
4002     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
4003   case TargetLowering::UndefinedBooleanContent:
4004   case TargetLowering::ZeroOrNegativeOneBooleanContent:
4005     return N->isAllOnes() && SExt;
4006   }
4007   llvm_unreachable("Unexpected enumeration.");
4008 }
4009 
4010 /// This helper function of SimplifySetCC tries to optimize the comparison when
4011 /// either operand of the SetCC node is a bitwise-and instruction.
4012 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
4013                                          ISD::CondCode Cond, const SDLoc &DL,
4014                                          DAGCombinerInfo &DCI) const {
4015   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
4016     std::swap(N0, N1);
4017 
4018   SelectionDAG &DAG = DCI.DAG;
4019   EVT OpVT = N0.getValueType();
4020   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
4021       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
4022     return SDValue();
4023 
4024   // (X & Y) != 0 --> zextOrTrunc(X & Y)
4025   // iff everything but LSB is known zero:
4026   if (Cond == ISD::SETNE && isNullConstant(N1) &&
4027       (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
4028        getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
4029     unsigned NumEltBits = OpVT.getScalarSizeInBits();
4030     APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
4031     if (DAG.MaskedValueIsZero(N0, UpperBits))
4032       return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
4033   }
4034 
4035   // Try to eliminate a power-of-2 mask constant by converting to a signbit
4036   // test in a narrow type that we can truncate to with no cost. Examples:
4037   // (i32 X & 32768) == 0 --> (trunc X to i16) >= 0
4038   // (i32 X & 32768) != 0 --> (trunc X to i16) < 0
4039   // TODO: This conservatively checks for type legality on the source and
4040   //       destination types. That may inhibit optimizations, but it also
4041   //       allows setcc->shift transforms that may be more beneficial.
4042   auto *AndC = dyn_cast<ConstantSDNode>(N0.getOperand(1));
4043   if (AndC && isNullConstant(N1) && AndC->getAPIntValue().isPowerOf2() &&
4044       isTypeLegal(OpVT) && N0.hasOneUse()) {
4045     EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(),
4046                                      AndC->getAPIntValue().getActiveBits());
4047     if (isTruncateFree(OpVT, NarrowVT) && isTypeLegal(NarrowVT)) {
4048       SDValue Trunc = DAG.getZExtOrTrunc(N0.getOperand(0), DL, NarrowVT);
4049       SDValue Zero = DAG.getConstant(0, DL, NarrowVT);
4050       return DAG.getSetCC(DL, VT, Trunc, Zero,
4051                           Cond == ISD::SETEQ ? ISD::SETGE : ISD::SETLT);
4052     }
4053   }
4054 
4055   // Match these patterns in any of their permutations:
4056   // (X & Y) == Y
4057   // (X & Y) != Y
4058   SDValue X, Y;
4059   if (N0.getOperand(0) == N1) {
4060     X = N0.getOperand(1);
4061     Y = N0.getOperand(0);
4062   } else if (N0.getOperand(1) == N1) {
4063     X = N0.getOperand(0);
4064     Y = N0.getOperand(1);
4065   } else {
4066     return SDValue();
4067   }
4068 
4069   // TODO: We should invert (X & Y) eq/ne 0 -> (X & Y) ne/eq Y if
4070   // `isXAndYEqZeroPreferableToXAndYEqY` is false. This is a bit difficult as
4071   // its liable to create and infinite loop.
4072   SDValue Zero = DAG.getConstant(0, DL, OpVT);
4073   if (isXAndYEqZeroPreferableToXAndYEqY(Cond, OpVT) &&
4074       DAG.isKnownToBeAPowerOfTwo(Y)) {
4075     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
4076     // Note that where Y is variable and is known to have at most one bit set
4077     // (for example, if it is Z & 1) we cannot do this; the expressions are not
4078     // equivalent when Y == 0.
4079     assert(OpVT.isInteger());
4080     Cond = ISD::getSetCCInverse(Cond, OpVT);
4081     if (DCI.isBeforeLegalizeOps() ||
4082         isCondCodeLegal(Cond, N0.getSimpleValueType()))
4083       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
4084   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
4085     // If the target supports an 'and-not' or 'and-complement' logic operation,
4086     // try to use that to make a comparison operation more efficient.
4087     // But don't do this transform if the mask is a single bit because there are
4088     // more efficient ways to deal with that case (for example, 'bt' on x86 or
4089     // 'rlwinm' on PPC).
4090 
4091     // Bail out if the compare operand that we want to turn into a zero is
4092     // already a zero (otherwise, infinite loop).
4093     if (isNullConstant(Y))
4094       return SDValue();
4095 
4096     // Transform this into: ~X & Y == 0.
4097     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
4098     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
4099     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
4100   }
4101 
4102   return SDValue();
4103 }
4104 
4105 /// There are multiple IR patterns that could be checking whether certain
4106 /// truncation of a signed number would be lossy or not. The pattern which is
4107 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
4108 /// We are looking for the following pattern: (KeptBits is a constant)
4109 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
4110 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
4111 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
4112 /// We will unfold it into the natural trunc+sext pattern:
4113 ///   ((%x << C) a>> C) dstcond %x
4114 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
4115 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
4116     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
4117     const SDLoc &DL) const {
4118   // We must be comparing with a constant.
4119   ConstantSDNode *C1;
4120   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
4121     return SDValue();
4122 
4123   // N0 should be:  add %x, (1 << (KeptBits-1))
4124   if (N0->getOpcode() != ISD::ADD)
4125     return SDValue();
4126 
4127   // And we must be 'add'ing a constant.
4128   ConstantSDNode *C01;
4129   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
4130     return SDValue();
4131 
4132   SDValue X = N0->getOperand(0);
4133   EVT XVT = X.getValueType();
4134 
4135   // Validate constants ...
4136 
4137   APInt I1 = C1->getAPIntValue();
4138 
4139   ISD::CondCode NewCond;
4140   if (Cond == ISD::CondCode::SETULT) {
4141     NewCond = ISD::CondCode::SETEQ;
4142   } else if (Cond == ISD::CondCode::SETULE) {
4143     NewCond = ISD::CondCode::SETEQ;
4144     // But need to 'canonicalize' the constant.
4145     I1 += 1;
4146   } else if (Cond == ISD::CondCode::SETUGT) {
4147     NewCond = ISD::CondCode::SETNE;
4148     // But need to 'canonicalize' the constant.
4149     I1 += 1;
4150   } else if (Cond == ISD::CondCode::SETUGE) {
4151     NewCond = ISD::CondCode::SETNE;
4152   } else
4153     return SDValue();
4154 
4155   APInt I01 = C01->getAPIntValue();
4156 
4157   auto checkConstants = [&I1, &I01]() -> bool {
4158     // Both of them must be power-of-two, and the constant from setcc is bigger.
4159     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
4160   };
4161 
4162   if (checkConstants()) {
4163     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
4164   } else {
4165     // What if we invert constants? (and the target predicate)
4166     I1.negate();
4167     I01.negate();
4168     assert(XVT.isInteger());
4169     NewCond = getSetCCInverse(NewCond, XVT);
4170     if (!checkConstants())
4171       return SDValue();
4172     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
4173   }
4174 
4175   // They are power-of-two, so which bit is set?
4176   const unsigned KeptBits = I1.logBase2();
4177   const unsigned KeptBitsMinusOne = I01.logBase2();
4178 
4179   // Magic!
4180   if (KeptBits != (KeptBitsMinusOne + 1))
4181     return SDValue();
4182   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
4183 
4184   // We don't want to do this in every single case.
4185   SelectionDAG &DAG = DCI.DAG;
4186   if (!shouldTransformSignedTruncationCheck(XVT, KeptBits))
4187     return SDValue();
4188 
4189   // Unfold into:  sext_inreg(%x) cond %x
4190   // Where 'cond' will be either 'eq' or 'ne'.
4191   SDValue SExtInReg = DAG.getNode(
4192       ISD::SIGN_EXTEND_INREG, DL, XVT, X,
4193       DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), KeptBits)));
4194   return DAG.getSetCC(DL, SCCVT, SExtInReg, X, NewCond);
4195 }
4196 
4197 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4198 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
4199     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
4200     DAGCombinerInfo &DCI, const SDLoc &DL) const {
4201   assert(isConstOrConstSplat(N1C) && isConstOrConstSplat(N1C)->isZero() &&
4202          "Should be a comparison with 0.");
4203   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4204          "Valid only for [in]equality comparisons.");
4205 
4206   unsigned NewShiftOpcode;
4207   SDValue X, C, Y;
4208 
4209   SelectionDAG &DAG = DCI.DAG;
4210 
4211   // Look for '(C l>>/<< Y)'.
4212   auto Match = [&NewShiftOpcode, &X, &C, &Y, &DAG, this](SDValue V) {
4213     // The shift should be one-use.
4214     if (!V.hasOneUse())
4215       return false;
4216     unsigned OldShiftOpcode = V.getOpcode();
4217     switch (OldShiftOpcode) {
4218     case ISD::SHL:
4219       NewShiftOpcode = ISD::SRL;
4220       break;
4221     case ISD::SRL:
4222       NewShiftOpcode = ISD::SHL;
4223       break;
4224     default:
4225       return false; // must be a logical shift.
4226     }
4227     // We should be shifting a constant.
4228     // FIXME: best to use isConstantOrConstantVector().
4229     C = V.getOperand(0);
4230     ConstantSDNode *CC =
4231         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
4232     if (!CC)
4233       return false;
4234     Y = V.getOperand(1);
4235 
4236     ConstantSDNode *XC =
4237         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
4238     return shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
4239         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
4240   };
4241 
4242   // LHS of comparison should be an one-use 'and'.
4243   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
4244     return SDValue();
4245 
4246   X = N0.getOperand(0);
4247   SDValue Mask = N0.getOperand(1);
4248 
4249   // 'and' is commutative!
4250   if (!Match(Mask)) {
4251     std::swap(X, Mask);
4252     if (!Match(Mask))
4253       return SDValue();
4254   }
4255 
4256   EVT VT = X.getValueType();
4257 
4258   // Produce:
4259   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
4260   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
4261   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
4262   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
4263   return T2;
4264 }
4265 
4266 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
4267 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
4268 /// handle the commuted versions of these patterns.
4269 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
4270                                            ISD::CondCode Cond, const SDLoc &DL,
4271                                            DAGCombinerInfo &DCI) const {
4272   unsigned BOpcode = N0.getOpcode();
4273   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
4274          "Unexpected binop");
4275   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
4276 
4277   // (X + Y) == X --> Y == 0
4278   // (X - Y) == X --> Y == 0
4279   // (X ^ Y) == X --> Y == 0
4280   SelectionDAG &DAG = DCI.DAG;
4281   EVT OpVT = N0.getValueType();
4282   SDValue X = N0.getOperand(0);
4283   SDValue Y = N0.getOperand(1);
4284   if (X == N1)
4285     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
4286 
4287   if (Y != N1)
4288     return SDValue();
4289 
4290   // (X + Y) == Y --> X == 0
4291   // (X ^ Y) == Y --> X == 0
4292   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
4293     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
4294 
4295   // The shift would not be valid if the operands are boolean (i1).
4296   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
4297     return SDValue();
4298 
4299   // (X - Y) == Y --> X == Y << 1
4300   SDValue One = DAG.getShiftAmountConstant(1, OpVT, DL);
4301   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
4302   if (!DCI.isCalledByLegalizer())
4303     DCI.AddToWorklist(YShl1.getNode());
4304   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
4305 }
4306 
4307 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
4308                                       SDValue N0, const APInt &C1,
4309                                       ISD::CondCode Cond, const SDLoc &dl,
4310                                       SelectionDAG &DAG) {
4311   // Look through truncs that don't change the value of a ctpop.
4312   // FIXME: Add vector support? Need to be careful with setcc result type below.
4313   SDValue CTPOP = N0;
4314   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
4315       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
4316     CTPOP = N0.getOperand(0);
4317 
4318   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
4319     return SDValue();
4320 
4321   EVT CTVT = CTPOP.getValueType();
4322   SDValue CTOp = CTPOP.getOperand(0);
4323 
4324   // Expand a power-of-2-or-zero comparison based on ctpop:
4325   // (ctpop x) u< 2 -> (x & x-1) == 0
4326   // (ctpop x) u> 1 -> (x & x-1) != 0
4327   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
4328     // Keep the CTPOP if it is a cheap vector op.
4329     if (CTVT.isVector() && TLI.isCtpopFast(CTVT))
4330       return SDValue();
4331 
4332     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
4333     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
4334       return SDValue();
4335     if (C1 == 0 && (Cond == ISD::SETULT))
4336       return SDValue(); // This is handled elsewhere.
4337 
4338     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
4339 
4340     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
4341     SDValue Result = CTOp;
4342     for (unsigned i = 0; i < Passes; i++) {
4343       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
4344       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
4345     }
4346     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
4347     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
4348   }
4349 
4350   // Expand a power-of-2 comparison based on ctpop
4351   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
4352     // Keep the CTPOP if it is cheap.
4353     if (TLI.isCtpopFast(CTVT))
4354       return SDValue();
4355 
4356     SDValue Zero = DAG.getConstant(0, dl, CTVT);
4357     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
4358     assert(CTVT.isInteger());
4359     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
4360 
4361     // Its not uncommon for known-never-zero X to exist in (ctpop X) eq/ne 1, so
4362     // check before emitting a potentially unnecessary op.
4363     if (DAG.isKnownNeverZero(CTOp)) {
4364       // (ctpop x) == 1 --> (x & x-1) == 0
4365       // (ctpop x) != 1 --> (x & x-1) != 0
4366       SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
4367       SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
4368       return RHS;
4369     }
4370 
4371     // (ctpop x) == 1 --> (x ^ x-1) >  x-1
4372     // (ctpop x) != 1 --> (x ^ x-1) <= x-1
4373     SDValue Xor = DAG.getNode(ISD::XOR, dl, CTVT, CTOp, Add);
4374     ISD::CondCode CmpCond = Cond == ISD::SETEQ ? ISD::SETUGT : ISD::SETULE;
4375     return DAG.getSetCC(dl, VT, Xor, Add, CmpCond);
4376   }
4377 
4378   return SDValue();
4379 }
4380 
4381 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1,
4382                                    ISD::CondCode Cond, const SDLoc &dl,
4383                                    SelectionDAG &DAG) {
4384   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
4385     return SDValue();
4386 
4387   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4388   if (!C1 || !(C1->isZero() || C1->isAllOnes()))
4389     return SDValue();
4390 
4391   auto getRotateSource = [](SDValue X) {
4392     if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR)
4393       return X.getOperand(0);
4394     return SDValue();
4395   };
4396 
4397   // Peek through a rotated value compared against 0 or -1:
4398   // (rot X, Y) == 0/-1 --> X == 0/-1
4399   // (rot X, Y) != 0/-1 --> X != 0/-1
4400   if (SDValue R = getRotateSource(N0))
4401     return DAG.getSetCC(dl, VT, R, N1, Cond);
4402 
4403   // Peek through an 'or' of a rotated value compared against 0:
4404   // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0
4405   // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0
4406   //
4407   // TODO: Add the 'and' with -1 sibling.
4408   // TODO: Recurse through a series of 'or' ops to find the rotate.
4409   EVT OpVT = N0.getValueType();
4410   if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) {
4411     if (SDValue R = getRotateSource(N0.getOperand(0))) {
4412       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1));
4413       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4414     }
4415     if (SDValue R = getRotateSource(N0.getOperand(1))) {
4416       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0));
4417       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4418     }
4419   }
4420 
4421   return SDValue();
4422 }
4423 
4424 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1,
4425                                         ISD::CondCode Cond, const SDLoc &dl,
4426                                         SelectionDAG &DAG) {
4427   // If we are testing for all-bits-clear, we might be able to do that with
4428   // less shifting since bit-order does not matter.
4429   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
4430     return SDValue();
4431 
4432   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4433   if (!C1 || !C1->isZero())
4434     return SDValue();
4435 
4436   if (!N0.hasOneUse() ||
4437       (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR))
4438     return SDValue();
4439 
4440   unsigned BitWidth = N0.getScalarValueSizeInBits();
4441   auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2));
4442   if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
4443     return SDValue();
4444 
4445   // Canonicalize fshr as fshl to reduce pattern-matching.
4446   unsigned ShAmt = ShAmtC->getZExtValue();
4447   if (N0.getOpcode() == ISD::FSHR)
4448     ShAmt = BitWidth - ShAmt;
4449 
4450   // Match an 'or' with a specific operand 'Other' in either commuted variant.
4451   SDValue X, Y;
4452   auto matchOr = [&X, &Y](SDValue Or, SDValue Other) {
4453     if (Or.getOpcode() != ISD::OR || !Or.hasOneUse())
4454       return false;
4455     if (Or.getOperand(0) == Other) {
4456       X = Or.getOperand(0);
4457       Y = Or.getOperand(1);
4458       return true;
4459     }
4460     if (Or.getOperand(1) == Other) {
4461       X = Or.getOperand(1);
4462       Y = Or.getOperand(0);
4463       return true;
4464     }
4465     return false;
4466   };
4467 
4468   EVT OpVT = N0.getValueType();
4469   EVT ShAmtVT = N0.getOperand(2).getValueType();
4470   SDValue F0 = N0.getOperand(0);
4471   SDValue F1 = N0.getOperand(1);
4472   if (matchOr(F0, F1)) {
4473     // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0
4474     SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT);
4475     SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt);
4476     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4477     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4478   }
4479   if (matchOr(F1, F0)) {
4480     // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0
4481     SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT);
4482     SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt);
4483     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4484     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4485   }
4486 
4487   return SDValue();
4488 }
4489 
4490 /// Try to simplify a setcc built with the specified operands and cc. If it is
4491 /// unable to simplify it, return a null SDValue.
4492 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
4493                                       ISD::CondCode Cond, bool foldBooleans,
4494                                       DAGCombinerInfo &DCI,
4495                                       const SDLoc &dl) const {
4496   SelectionDAG &DAG = DCI.DAG;
4497   const DataLayout &Layout = DAG.getDataLayout();
4498   EVT OpVT = N0.getValueType();
4499   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4500 
4501   // Constant fold or commute setcc.
4502   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
4503     return Fold;
4504 
4505   bool N0ConstOrSplat =
4506       isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4507   bool N1ConstOrSplat =
4508       isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4509 
4510   // Canonicalize toward having the constant on the RHS.
4511   // TODO: Handle non-splat vector constants. All undef causes trouble.
4512   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
4513   // infinite loop here when we encounter one.
4514   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
4515   if (N0ConstOrSplat && !N1ConstOrSplat &&
4516       (DCI.isBeforeLegalizeOps() ||
4517        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
4518     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4519 
4520   // If we have a subtract with the same 2 non-constant operands as this setcc
4521   // -- but in reverse order -- then try to commute the operands of this setcc
4522   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
4523   // instruction on some targets.
4524   if (!N0ConstOrSplat && !N1ConstOrSplat &&
4525       (DCI.isBeforeLegalizeOps() ||
4526        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
4527       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
4528       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
4529     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4530 
4531   if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG))
4532     return V;
4533 
4534   if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG))
4535     return V;
4536 
4537   if (auto *N1C = isConstOrConstSplat(N1)) {
4538     const APInt &C1 = N1C->getAPIntValue();
4539 
4540     // Optimize some CTPOP cases.
4541     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
4542       return V;
4543 
4544     // For equality to 0 of a no-wrap multiply, decompose and test each op:
4545     // X * Y == 0 --> (X == 0) || (Y == 0)
4546     // X * Y != 0 --> (X != 0) && (Y != 0)
4547     // TODO: This bails out if minsize is set, but if the target doesn't have a
4548     //       single instruction multiply for this type, it would likely be
4549     //       smaller to decompose.
4550     if (C1.isZero() && (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4551         N0.getOpcode() == ISD::MUL && N0.hasOneUse() &&
4552         (N0->getFlags().hasNoUnsignedWrap() ||
4553          N0->getFlags().hasNoSignedWrap()) &&
4554         !Attr.hasFnAttr(Attribute::MinSize)) {
4555       SDValue IsXZero = DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4556       SDValue IsYZero = DAG.getSetCC(dl, VT, N0.getOperand(1), N1, Cond);
4557       unsigned LogicOp = Cond == ISD::SETEQ ? ISD::OR : ISD::AND;
4558       return DAG.getNode(LogicOp, dl, VT, IsXZero, IsYZero);
4559     }
4560 
4561     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
4562     // equality comparison, then we're just comparing whether X itself is
4563     // zero.
4564     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
4565         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
4566         llvm::has_single_bit<uint32_t>(N0.getScalarValueSizeInBits())) {
4567       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
4568         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4569             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
4570           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
4571             // (srl (ctlz x), 5) == 0  -> X != 0
4572             // (srl (ctlz x), 5) != 1  -> X != 0
4573             Cond = ISD::SETNE;
4574           } else {
4575             // (srl (ctlz x), 5) != 0  -> X == 0
4576             // (srl (ctlz x), 5) == 1  -> X == 0
4577             Cond = ISD::SETEQ;
4578           }
4579           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
4580           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
4581                               Cond);
4582         }
4583       }
4584     }
4585   }
4586 
4587   // FIXME: Support vectors.
4588   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4589     const APInt &C1 = N1C->getAPIntValue();
4590 
4591     // (zext x) == C --> x == (trunc C)
4592     // (sext x) == C --> x == (trunc C)
4593     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4594         DCI.isBeforeLegalize() && N0->hasOneUse()) {
4595       unsigned MinBits = N0.getValueSizeInBits();
4596       SDValue PreExt;
4597       bool Signed = false;
4598       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
4599         // ZExt
4600         MinBits = N0->getOperand(0).getValueSizeInBits();
4601         PreExt = N0->getOperand(0);
4602       } else if (N0->getOpcode() == ISD::AND) {
4603         // DAGCombine turns costly ZExts into ANDs
4604         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
4605           if ((C->getAPIntValue()+1).isPowerOf2()) {
4606             MinBits = C->getAPIntValue().countr_one();
4607             PreExt = N0->getOperand(0);
4608           }
4609       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
4610         // SExt
4611         MinBits = N0->getOperand(0).getValueSizeInBits();
4612         PreExt = N0->getOperand(0);
4613         Signed = true;
4614       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
4615         // ZEXTLOAD / SEXTLOAD
4616         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
4617           MinBits = LN0->getMemoryVT().getSizeInBits();
4618           PreExt = N0;
4619         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
4620           Signed = true;
4621           MinBits = LN0->getMemoryVT().getSizeInBits();
4622           PreExt = N0;
4623         }
4624       }
4625 
4626       // Figure out how many bits we need to preserve this constant.
4627       unsigned ReqdBits = Signed ? C1.getSignificantBits() : C1.getActiveBits();
4628 
4629       // Make sure we're not losing bits from the constant.
4630       if (MinBits > 0 &&
4631           MinBits < C1.getBitWidth() &&
4632           MinBits >= ReqdBits) {
4633         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
4634         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
4635           // Will get folded away.
4636           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
4637           if (MinBits == 1 && C1 == 1)
4638             // Invert the condition.
4639             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
4640                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4641           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
4642           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
4643         }
4644 
4645         // If truncating the setcc operands is not desirable, we can still
4646         // simplify the expression in some cases:
4647         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
4648         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
4649         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
4650         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
4651         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
4652         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
4653         SDValue TopSetCC = N0->getOperand(0);
4654         unsigned N0Opc = N0->getOpcode();
4655         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
4656         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
4657             TopSetCC.getOpcode() == ISD::SETCC &&
4658             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
4659             (isConstFalseVal(N1) ||
4660              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
4661 
4662           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
4663                          (!N1C->isZero() && Cond == ISD::SETNE);
4664 
4665           if (!Inverse)
4666             return TopSetCC;
4667 
4668           ISD::CondCode InvCond = ISD::getSetCCInverse(
4669               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
4670               TopSetCC.getOperand(0).getValueType());
4671           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
4672                                       TopSetCC.getOperand(1),
4673                                       InvCond);
4674         }
4675       }
4676     }
4677 
4678     // If the LHS is '(and load, const)', the RHS is 0, the test is for
4679     // equality or unsigned, and all 1 bits of the const are in the same
4680     // partial word, see if we can shorten the load.
4681     if (DCI.isBeforeLegalize() &&
4682         !ISD::isSignedIntSetCC(Cond) &&
4683         N0.getOpcode() == ISD::AND && C1 == 0 &&
4684         N0.getNode()->hasOneUse() &&
4685         isa<LoadSDNode>(N0.getOperand(0)) &&
4686         N0.getOperand(0).getNode()->hasOneUse() &&
4687         isa<ConstantSDNode>(N0.getOperand(1))) {
4688       auto *Lod = cast<LoadSDNode>(N0.getOperand(0));
4689       APInt bestMask;
4690       unsigned bestWidth = 0, bestOffset = 0;
4691       if (Lod->isSimple() && Lod->isUnindexed() &&
4692           (Lod->getMemoryVT().isByteSized() ||
4693            isPaddedAtMostSignificantBitsWhenStored(Lod->getMemoryVT()))) {
4694         unsigned memWidth = Lod->getMemoryVT().getStoreSizeInBits();
4695         unsigned origWidth = N0.getValueSizeInBits();
4696         unsigned maskWidth = origWidth;
4697         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
4698         // 8 bits, but have to be careful...
4699         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
4700           origWidth = Lod->getMemoryVT().getSizeInBits();
4701         const APInt &Mask = N0.getConstantOperandAPInt(1);
4702         // Only consider power-of-2 widths (and at least one byte) as candiates
4703         // for the narrowed load.
4704         for (unsigned width = 8; width < origWidth; width *= 2) {
4705           EVT newVT = EVT::getIntegerVT(*DAG.getContext(), width);
4706           if (!shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT))
4707             continue;
4708           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
4709           // Avoid accessing any padding here for now (we could use memWidth
4710           // instead of origWidth here otherwise).
4711           unsigned maxOffset = origWidth - width;
4712           for (unsigned offset = 0; offset <= maxOffset; offset += 8) {
4713             if (Mask.isSubsetOf(newMask)) {
4714               unsigned ptrOffset =
4715                   Layout.isLittleEndian() ? offset : memWidth - width - offset;
4716               unsigned IsFast = 0;
4717               Align NewAlign = commonAlignment(Lod->getAlign(), ptrOffset / 8);
4718               if (allowsMemoryAccess(
4719                       *DAG.getContext(), Layout, newVT, Lod->getAddressSpace(),
4720                       NewAlign, Lod->getMemOperand()->getFlags(), &IsFast) &&
4721                   IsFast) {
4722                 bestOffset = ptrOffset / 8;
4723                 bestMask = Mask.lshr(offset);
4724                 bestWidth = width;
4725                 break;
4726               }
4727             }
4728             newMask <<= 8;
4729           }
4730           if (bestWidth)
4731             break;
4732         }
4733       }
4734       if (bestWidth) {
4735         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
4736         SDValue Ptr = Lod->getBasePtr();
4737         if (bestOffset != 0)
4738           Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(bestOffset));
4739         SDValue NewLoad =
4740             DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
4741                         Lod->getPointerInfo().getWithOffset(bestOffset),
4742                         Lod->getOriginalAlign());
4743         SDValue And =
4744             DAG.getNode(ISD::AND, dl, newVT, NewLoad,
4745                         DAG.getConstant(bestMask.trunc(bestWidth), dl, newVT));
4746         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0LL, dl, newVT), Cond);
4747       }
4748     }
4749 
4750     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
4751     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
4752       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
4753 
4754       // If the comparison constant has bits in the upper part, the
4755       // zero-extended value could never match.
4756       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
4757                                               C1.getBitWidth() - InSize))) {
4758         switch (Cond) {
4759         case ISD::SETUGT:
4760         case ISD::SETUGE:
4761         case ISD::SETEQ:
4762           return DAG.getConstant(0, dl, VT);
4763         case ISD::SETULT:
4764         case ISD::SETULE:
4765         case ISD::SETNE:
4766           return DAG.getConstant(1, dl, VT);
4767         case ISD::SETGT:
4768         case ISD::SETGE:
4769           // True if the sign bit of C1 is set.
4770           return DAG.getConstant(C1.isNegative(), dl, VT);
4771         case ISD::SETLT:
4772         case ISD::SETLE:
4773           // True if the sign bit of C1 isn't set.
4774           return DAG.getConstant(C1.isNonNegative(), dl, VT);
4775         default:
4776           break;
4777         }
4778       }
4779 
4780       // Otherwise, we can perform the comparison with the low bits.
4781       switch (Cond) {
4782       case ISD::SETEQ:
4783       case ISD::SETNE:
4784       case ISD::SETUGT:
4785       case ISD::SETUGE:
4786       case ISD::SETULT:
4787       case ISD::SETULE: {
4788         EVT newVT = N0.getOperand(0).getValueType();
4789         // FIXME: Should use isNarrowingProfitable.
4790         if (DCI.isBeforeLegalizeOps() ||
4791             (isOperationLegal(ISD::SETCC, newVT) &&
4792              isCondCodeLegal(Cond, newVT.getSimpleVT()) &&
4793              isTypeDesirableForOp(ISD::SETCC, newVT))) {
4794           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
4795           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
4796 
4797           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
4798                                           NewConst, Cond);
4799           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
4800         }
4801         break;
4802       }
4803       default:
4804         break; // todo, be more careful with signed comparisons
4805       }
4806     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4807                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4808                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
4809                                       OpVT)) {
4810       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
4811       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
4812       EVT ExtDstTy = N0.getValueType();
4813       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
4814 
4815       // If the constant doesn't fit into the number of bits for the source of
4816       // the sign extension, it is impossible for both sides to be equal.
4817       if (C1.getSignificantBits() > ExtSrcTyBits)
4818         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
4819 
4820       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
4821              ExtDstTy != ExtSrcTy && "Unexpected types!");
4822       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
4823       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
4824                                    DAG.getConstant(Imm, dl, ExtDstTy));
4825       if (!DCI.isCalledByLegalizer())
4826         DCI.AddToWorklist(ZextOp.getNode());
4827       // Otherwise, make this a use of a zext.
4828       return DAG.getSetCC(dl, VT, ZextOp,
4829                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
4830     } else if ((N1C->isZero() || N1C->isOne()) &&
4831                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4832       // SETCC (X), [0|1], [EQ|NE]  -> X if X is known 0/1. i1 types are
4833       // excluded as they are handled below whilst checking for foldBooleans.
4834       if ((N0.getOpcode() == ISD::SETCC || VT.getScalarType() != MVT::i1) &&
4835           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
4836           (N0.getValueType() == MVT::i1 ||
4837            getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4838           DAG.MaskedValueIsZero(
4839               N0, APInt::getBitsSetFrom(N0.getValueSizeInBits(), 1))) {
4840         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
4841         if (TrueWhenTrue)
4842           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
4843         // Invert the condition.
4844         if (N0.getOpcode() == ISD::SETCC) {
4845           ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4846           CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
4847           if (DCI.isBeforeLegalizeOps() ||
4848               isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
4849             return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
4850         }
4851       }
4852 
4853       if ((N0.getOpcode() == ISD::XOR ||
4854            (N0.getOpcode() == ISD::AND &&
4855             N0.getOperand(0).getOpcode() == ISD::XOR &&
4856             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
4857           isOneConstant(N0.getOperand(1))) {
4858         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
4859         // can only do this if the top bits are known zero.
4860         unsigned BitWidth = N0.getValueSizeInBits();
4861         if (DAG.MaskedValueIsZero(N0,
4862                                   APInt::getHighBitsSet(BitWidth,
4863                                                         BitWidth-1))) {
4864           // Okay, get the un-inverted input value.
4865           SDValue Val;
4866           if (N0.getOpcode() == ISD::XOR) {
4867             Val = N0.getOperand(0);
4868           } else {
4869             assert(N0.getOpcode() == ISD::AND &&
4870                     N0.getOperand(0).getOpcode() == ISD::XOR);
4871             // ((X^1)&1)^1 -> X & 1
4872             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
4873                               N0.getOperand(0).getOperand(0),
4874                               N0.getOperand(1));
4875           }
4876 
4877           return DAG.getSetCC(dl, VT, Val, N1,
4878                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4879         }
4880       } else if (N1C->isOne()) {
4881         SDValue Op0 = N0;
4882         if (Op0.getOpcode() == ISD::TRUNCATE)
4883           Op0 = Op0.getOperand(0);
4884 
4885         if ((Op0.getOpcode() == ISD::XOR) &&
4886             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
4887             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
4888           SDValue XorLHS = Op0.getOperand(0);
4889           SDValue XorRHS = Op0.getOperand(1);
4890           // Ensure that the input setccs return an i1 type or 0/1 value.
4891           if (Op0.getValueType() == MVT::i1 ||
4892               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
4893                       ZeroOrOneBooleanContent &&
4894                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
4895                         ZeroOrOneBooleanContent)) {
4896             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
4897             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
4898             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
4899           }
4900         }
4901         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
4902           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
4903           if (Op0.getValueType().bitsGT(VT))
4904             Op0 = DAG.getNode(ISD::AND, dl, VT,
4905                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
4906                           DAG.getConstant(1, dl, VT));
4907           else if (Op0.getValueType().bitsLT(VT))
4908             Op0 = DAG.getNode(ISD::AND, dl, VT,
4909                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
4910                         DAG.getConstant(1, dl, VT));
4911 
4912           return DAG.getSetCC(dl, VT, Op0,
4913                               DAG.getConstant(0, dl, Op0.getValueType()),
4914                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4915         }
4916         if (Op0.getOpcode() == ISD::AssertZext &&
4917             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
4918           return DAG.getSetCC(dl, VT, Op0,
4919                               DAG.getConstant(0, dl, Op0.getValueType()),
4920                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4921       }
4922     }
4923 
4924     // Given:
4925     //   icmp eq/ne (urem %x, %y), 0
4926     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
4927     //   icmp eq/ne %x, 0
4928     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
4929         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4930       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
4931       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
4932       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
4933         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4934     }
4935 
4936     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
4937     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
4938     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4939         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
4940         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
4941         N1C->isAllOnes()) {
4942       return DAG.getSetCC(dl, VT, N0.getOperand(0),
4943                           DAG.getConstant(0, dl, OpVT),
4944                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
4945     }
4946 
4947     if (SDValue V =
4948             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
4949       return V;
4950   }
4951 
4952   // These simplifications apply to splat vectors as well.
4953   // TODO: Handle more splat vector cases.
4954   if (auto *N1C = isConstOrConstSplat(N1)) {
4955     const APInt &C1 = N1C->getAPIntValue();
4956 
4957     APInt MinVal, MaxVal;
4958     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
4959     if (ISD::isSignedIntSetCC(Cond)) {
4960       MinVal = APInt::getSignedMinValue(OperandBitSize);
4961       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
4962     } else {
4963       MinVal = APInt::getMinValue(OperandBitSize);
4964       MaxVal = APInt::getMaxValue(OperandBitSize);
4965     }
4966 
4967     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4968     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4969       // X >= MIN --> true
4970       if (C1 == MinVal)
4971         return DAG.getBoolConstant(true, dl, VT, OpVT);
4972 
4973       if (!VT.isVector()) { // TODO: Support this for vectors.
4974         // X >= C0 --> X > (C0 - 1)
4975         APInt C = C1 - 1;
4976         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4977         if ((DCI.isBeforeLegalizeOps() ||
4978              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4979             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4980                                   isLegalICmpImmediate(C.getSExtValue())))) {
4981           return DAG.getSetCC(dl, VT, N0,
4982                               DAG.getConstant(C, dl, N1.getValueType()),
4983                               NewCC);
4984         }
4985       }
4986     }
4987 
4988     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4989       // X <= MAX --> true
4990       if (C1 == MaxVal)
4991         return DAG.getBoolConstant(true, dl, VT, OpVT);
4992 
4993       // X <= C0 --> X < (C0 + 1)
4994       if (!VT.isVector()) { // TODO: Support this for vectors.
4995         APInt C = C1 + 1;
4996         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4997         if ((DCI.isBeforeLegalizeOps() ||
4998              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4999             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
5000                                   isLegalICmpImmediate(C.getSExtValue())))) {
5001           return DAG.getSetCC(dl, VT, N0,
5002                               DAG.getConstant(C, dl, N1.getValueType()),
5003                               NewCC);
5004         }
5005       }
5006     }
5007 
5008     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
5009       if (C1 == MinVal)
5010         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
5011 
5012       // TODO: Support this for vectors after legalize ops.
5013       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
5014         // Canonicalize setlt X, Max --> setne X, Max
5015         if (C1 == MaxVal)
5016           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
5017 
5018         // If we have setult X, 1, turn it into seteq X, 0
5019         if (C1 == MinVal+1)
5020           return DAG.getSetCC(dl, VT, N0,
5021                               DAG.getConstant(MinVal, dl, N0.getValueType()),
5022                               ISD::SETEQ);
5023       }
5024     }
5025 
5026     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
5027       if (C1 == MaxVal)
5028         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
5029 
5030       // TODO: Support this for vectors after legalize ops.
5031       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
5032         // Canonicalize setgt X, Min --> setne X, Min
5033         if (C1 == MinVal)
5034           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
5035 
5036         // If we have setugt X, Max-1, turn it into seteq X, Max
5037         if (C1 == MaxVal-1)
5038           return DAG.getSetCC(dl, VT, N0,
5039                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
5040                               ISD::SETEQ);
5041       }
5042     }
5043 
5044     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
5045       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
5046       if (C1.isZero())
5047         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
5048                 VT, N0, N1, Cond, DCI, dl))
5049           return CC;
5050 
5051       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
5052       // For example, when high 32-bits of i64 X are known clear:
5053       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
5054       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
5055       bool CmpZero = N1C->isZero();
5056       bool CmpNegOne = N1C->isAllOnes();
5057       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
5058         // Match or(lo,shl(hi,bw/2)) pattern.
5059         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
5060           unsigned EltBits = V.getScalarValueSizeInBits();
5061           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
5062             return false;
5063           SDValue LHS = V.getOperand(0);
5064           SDValue RHS = V.getOperand(1);
5065           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
5066           // Unshifted element must have zero upperbits.
5067           if (RHS.getOpcode() == ISD::SHL &&
5068               isa<ConstantSDNode>(RHS.getOperand(1)) &&
5069               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
5070               DAG.MaskedValueIsZero(LHS, HiBits)) {
5071             Lo = LHS;
5072             Hi = RHS.getOperand(0);
5073             return true;
5074           }
5075           if (LHS.getOpcode() == ISD::SHL &&
5076               isa<ConstantSDNode>(LHS.getOperand(1)) &&
5077               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
5078               DAG.MaskedValueIsZero(RHS, HiBits)) {
5079             Lo = RHS;
5080             Hi = LHS.getOperand(0);
5081             return true;
5082           }
5083           return false;
5084         };
5085 
5086         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
5087           unsigned EltBits = N0.getScalarValueSizeInBits();
5088           unsigned HalfBits = EltBits / 2;
5089           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
5090           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
5091           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
5092           SDValue NewN0 =
5093               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
5094           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
5095           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
5096         };
5097 
5098         SDValue Lo, Hi;
5099         if (IsConcat(N0, Lo, Hi))
5100           return MergeConcat(Lo, Hi);
5101 
5102         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
5103           SDValue Lo0, Lo1, Hi0, Hi1;
5104           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
5105               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
5106             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
5107                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
5108           }
5109         }
5110       }
5111     }
5112 
5113     // If we have "setcc X, C0", check to see if we can shrink the immediate
5114     // by changing cc.
5115     // TODO: Support this for vectors after legalize ops.
5116     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
5117       // SETUGT X, SINTMAX  -> SETLT X, 0
5118       // SETUGE X, SINTMIN -> SETLT X, 0
5119       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
5120           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
5121         return DAG.getSetCC(dl, VT, N0,
5122                             DAG.getConstant(0, dl, N1.getValueType()),
5123                             ISD::SETLT);
5124 
5125       // SETULT X, SINTMIN  -> SETGT X, -1
5126       // SETULE X, SINTMAX  -> SETGT X, -1
5127       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
5128           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
5129         return DAG.getSetCC(dl, VT, N0,
5130                             DAG.getAllOnesConstant(dl, N1.getValueType()),
5131                             ISD::SETGT);
5132     }
5133   }
5134 
5135   // Back to non-vector simplifications.
5136   // TODO: Can we do these for vector splats?
5137   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
5138     const APInt &C1 = N1C->getAPIntValue();
5139     EVT ShValTy = N0.getValueType();
5140 
5141     // Fold bit comparisons when we can. This will result in an
5142     // incorrect value when boolean false is negative one, unless
5143     // the bitsize is 1 in which case the false value is the same
5144     // in practice regardless of the representation.
5145     if ((VT.getSizeInBits() == 1 ||
5146          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
5147         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5148         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
5149         N0.getOpcode() == ISD::AND) {
5150       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5151         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
5152           // Perform the xform if the AND RHS is a single bit.
5153           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
5154           if (AndRHS->getAPIntValue().isPowerOf2() &&
5155               !shouldAvoidTransformToShift(ShValTy, ShCt)) {
5156             return DAG.getNode(
5157                 ISD::TRUNCATE, dl, VT,
5158                 DAG.getNode(ISD::SRL, dl, ShValTy, N0,
5159                             DAG.getShiftAmountConstant(ShCt, ShValTy, dl)));
5160           }
5161         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
5162           // (X & 8) == 8  -->  (X & 8) >> 3
5163           // Perform the xform if C1 is a single bit.
5164           unsigned ShCt = C1.logBase2();
5165           if (C1.isPowerOf2() && !shouldAvoidTransformToShift(ShValTy, ShCt)) {
5166             return DAG.getNode(
5167                 ISD::TRUNCATE, dl, VT,
5168                 DAG.getNode(ISD::SRL, dl, ShValTy, N0,
5169                             DAG.getShiftAmountConstant(ShCt, ShValTy, dl)));
5170           }
5171         }
5172       }
5173     }
5174 
5175     if (C1.getSignificantBits() <= 64 &&
5176         !isLegalICmpImmediate(C1.getSExtValue())) {
5177       // (X & -256) == 256 -> (X >> 8) == 1
5178       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5179           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
5180         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5181           const APInt &AndRHSC = AndRHS->getAPIntValue();
5182           if (AndRHSC.isNegatedPowerOf2() && C1.isSubsetOf(AndRHSC)) {
5183             unsigned ShiftBits = AndRHSC.countr_zero();
5184             if (!shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
5185               SDValue Shift = DAG.getNode(
5186                   ISD::SRL, dl, ShValTy, N0.getOperand(0),
5187                   DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl));
5188               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
5189               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
5190             }
5191           }
5192         }
5193       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
5194                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
5195         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
5196         // X <  0x100000000 -> (X >> 32) <  1
5197         // X >= 0x100000000 -> (X >> 32) >= 1
5198         // X <= 0x0ffffffff -> (X >> 32) <  1
5199         // X >  0x0ffffffff -> (X >> 32) >= 1
5200         unsigned ShiftBits;
5201         APInt NewC = C1;
5202         ISD::CondCode NewCond = Cond;
5203         if (AdjOne) {
5204           ShiftBits = C1.countr_one();
5205           NewC = NewC + 1;
5206           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
5207         } else {
5208           ShiftBits = C1.countr_zero();
5209         }
5210         NewC.lshrInPlace(ShiftBits);
5211         if (ShiftBits && NewC.getSignificantBits() <= 64 &&
5212             isLegalICmpImmediate(NewC.getSExtValue()) &&
5213             !shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
5214           SDValue Shift =
5215               DAG.getNode(ISD::SRL, dl, ShValTy, N0,
5216                           DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl));
5217           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
5218           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
5219         }
5220       }
5221     }
5222   }
5223 
5224   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
5225     auto *CFP = cast<ConstantFPSDNode>(N1);
5226     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
5227 
5228     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
5229     // constant if knowing that the operand is non-nan is enough.  We prefer to
5230     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
5231     // materialize 0.0.
5232     if (Cond == ISD::SETO || Cond == ISD::SETUO)
5233       return DAG.getSetCC(dl, VT, N0, N0, Cond);
5234 
5235     // setcc (fneg x), C -> setcc swap(pred) x, -C
5236     if (N0.getOpcode() == ISD::FNEG) {
5237       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
5238       if (DCI.isBeforeLegalizeOps() ||
5239           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
5240         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
5241         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
5242       }
5243     }
5244 
5245     // setueq/setoeq X, (fabs Inf) -> is_fpclass X, fcInf
5246     if (isOperationLegalOrCustom(ISD::IS_FPCLASS, N0.getValueType()) &&
5247         !isFPImmLegal(CFP->getValueAPF(), CFP->getValueType(0))) {
5248       bool IsFabs = N0.getOpcode() == ISD::FABS;
5249       SDValue Op = IsFabs ? N0.getOperand(0) : N0;
5250       if ((Cond == ISD::SETOEQ || Cond == ISD::SETUEQ) && CFP->isInfinity()) {
5251         FPClassTest Flag = CFP->isNegative() ? (IsFabs ? fcNone : fcNegInf)
5252                                              : (IsFabs ? fcInf : fcPosInf);
5253         if (Cond == ISD::SETUEQ)
5254           Flag |= fcNan;
5255         return DAG.getNode(ISD::IS_FPCLASS, dl, VT, Op,
5256                            DAG.getTargetConstant(Flag, dl, MVT::i32));
5257       }
5258     }
5259 
5260     // If the condition is not legal, see if we can find an equivalent one
5261     // which is legal.
5262     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
5263       // If the comparison was an awkward floating-point == or != and one of
5264       // the comparison operands is infinity or negative infinity, convert the
5265       // condition to a less-awkward <= or >=.
5266       if (CFP->getValueAPF().isInfinity()) {
5267         bool IsNegInf = CFP->getValueAPF().isNegative();
5268         ISD::CondCode NewCond = ISD::SETCC_INVALID;
5269         switch (Cond) {
5270         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
5271         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
5272         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
5273         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
5274         default: break;
5275         }
5276         if (NewCond != ISD::SETCC_INVALID &&
5277             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
5278           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
5279       }
5280     }
5281   }
5282 
5283   if (N0 == N1) {
5284     // The sext(setcc()) => setcc() optimization relies on the appropriate
5285     // constant being emitted.
5286     assert(!N0.getValueType().isInteger() &&
5287            "Integer types should be handled by FoldSetCC");
5288 
5289     bool EqTrue = ISD::isTrueWhenEqual(Cond);
5290     unsigned UOF = ISD::getUnorderedFlavor(Cond);
5291     if (UOF == 2) // FP operators that are undefined on NaNs.
5292       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
5293     if (UOF == unsigned(EqTrue))
5294       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
5295     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
5296     // if it is not already.
5297     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
5298     if (NewCond != Cond &&
5299         (DCI.isBeforeLegalizeOps() ||
5300                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
5301       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
5302   }
5303 
5304   // ~X > ~Y --> Y > X
5305   // ~X < ~Y --> Y < X
5306   // ~X < C --> X > ~C
5307   // ~X > C --> X < ~C
5308   if ((isSignedIntSetCC(Cond) || isUnsignedIntSetCC(Cond)) &&
5309       N0.getValueType().isInteger()) {
5310     if (isBitwiseNot(N0)) {
5311       if (isBitwiseNot(N1))
5312         return DAG.getSetCC(dl, VT, N1.getOperand(0), N0.getOperand(0), Cond);
5313 
5314       if (DAG.isConstantIntBuildVectorOrConstantInt(N1) &&
5315           !DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(0))) {
5316         SDValue Not = DAG.getNOT(dl, N1, OpVT);
5317         return DAG.getSetCC(dl, VT, Not, N0.getOperand(0), Cond);
5318       }
5319     }
5320   }
5321 
5322   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5323       N0.getValueType().isInteger()) {
5324     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
5325         N0.getOpcode() == ISD::XOR) {
5326       // Simplify (X+Y) == (X+Z) -->  Y == Z
5327       if (N0.getOpcode() == N1.getOpcode()) {
5328         if (N0.getOperand(0) == N1.getOperand(0))
5329           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
5330         if (N0.getOperand(1) == N1.getOperand(1))
5331           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
5332         if (isCommutativeBinOp(N0.getOpcode())) {
5333           // If X op Y == Y op X, try other combinations.
5334           if (N0.getOperand(0) == N1.getOperand(1))
5335             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
5336                                 Cond);
5337           if (N0.getOperand(1) == N1.getOperand(0))
5338             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
5339                                 Cond);
5340         }
5341       }
5342 
5343       // If RHS is a legal immediate value for a compare instruction, we need
5344       // to be careful about increasing register pressure needlessly.
5345       bool LegalRHSImm = false;
5346 
5347       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
5348         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5349           // Turn (X+C1) == C2 --> X == C2-C1
5350           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse())
5351             return DAG.getSetCC(
5352                 dl, VT, N0.getOperand(0),
5353                 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
5354                                 dl, N0.getValueType()),
5355                 Cond);
5356 
5357           // Turn (X^C1) == C2 --> X == C1^C2
5358           if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse())
5359             return DAG.getSetCC(
5360                 dl, VT, N0.getOperand(0),
5361                 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
5362                                 dl, N0.getValueType()),
5363                 Cond);
5364         }
5365 
5366         // Turn (C1-X) == C2 --> X == C1-C2
5367         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
5368           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse())
5369             return DAG.getSetCC(
5370                 dl, VT, N0.getOperand(1),
5371                 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
5372                                 dl, N0.getValueType()),
5373                 Cond);
5374 
5375         // Could RHSC fold directly into a compare?
5376         if (RHSC->getValueType(0).getSizeInBits() <= 64)
5377           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
5378       }
5379 
5380       // (X+Y) == X --> Y == 0 and similar folds.
5381       // Don't do this if X is an immediate that can fold into a cmp
5382       // instruction and X+Y has other uses. It could be an induction variable
5383       // chain, and the transform would increase register pressure.
5384       if (!LegalRHSImm || N0.hasOneUse())
5385         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
5386           return V;
5387     }
5388 
5389     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
5390         N1.getOpcode() == ISD::XOR)
5391       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
5392         return V;
5393 
5394     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
5395       return V;
5396   }
5397 
5398   // Fold remainder of division by a constant.
5399   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
5400       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
5401     // When division is cheap or optimizing for minimum size,
5402     // fall through to DIVREM creation by skipping this fold.
5403     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
5404       if (N0.getOpcode() == ISD::UREM) {
5405         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
5406           return Folded;
5407       } else if (N0.getOpcode() == ISD::SREM) {
5408         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
5409           return Folded;
5410       }
5411     }
5412   }
5413 
5414   // Fold away ALL boolean setcc's.
5415   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
5416     SDValue Temp;
5417     switch (Cond) {
5418     default: llvm_unreachable("Unknown integer setcc!");
5419     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
5420       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
5421       N0 = DAG.getNOT(dl, Temp, OpVT);
5422       if (!DCI.isCalledByLegalizer())
5423         DCI.AddToWorklist(Temp.getNode());
5424       break;
5425     case ISD::SETNE:  // X != Y   -->  (X^Y)
5426       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
5427       break;
5428     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
5429     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
5430       Temp = DAG.getNOT(dl, N0, OpVT);
5431       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
5432       if (!DCI.isCalledByLegalizer())
5433         DCI.AddToWorklist(Temp.getNode());
5434       break;
5435     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
5436     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
5437       Temp = DAG.getNOT(dl, N1, OpVT);
5438       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
5439       if (!DCI.isCalledByLegalizer())
5440         DCI.AddToWorklist(Temp.getNode());
5441       break;
5442     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
5443     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
5444       Temp = DAG.getNOT(dl, N0, OpVT);
5445       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
5446       if (!DCI.isCalledByLegalizer())
5447         DCI.AddToWorklist(Temp.getNode());
5448       break;
5449     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
5450     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
5451       Temp = DAG.getNOT(dl, N1, OpVT);
5452       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
5453       break;
5454     }
5455     if (VT.getScalarType() != MVT::i1) {
5456       if (!DCI.isCalledByLegalizer())
5457         DCI.AddToWorklist(N0.getNode());
5458       // FIXME: If running after legalize, we probably can't do this.
5459       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
5460       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
5461     }
5462     return N0;
5463   }
5464 
5465   // Could not fold it.
5466   return SDValue();
5467 }
5468 
5469 /// Returns true (and the GlobalValue and the offset) if the node is a
5470 /// GlobalAddress + offset.
5471 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
5472                                     int64_t &Offset) const {
5473 
5474   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
5475 
5476   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
5477     GA = GASD->getGlobal();
5478     Offset += GASD->getOffset();
5479     return true;
5480   }
5481 
5482   if (N->getOpcode() == ISD::ADD) {
5483     SDValue N1 = N->getOperand(0);
5484     SDValue N2 = N->getOperand(1);
5485     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
5486       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
5487         Offset += V->getSExtValue();
5488         return true;
5489       }
5490     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
5491       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
5492         Offset += V->getSExtValue();
5493         return true;
5494       }
5495     }
5496   }
5497 
5498   return false;
5499 }
5500 
5501 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
5502                                           DAGCombinerInfo &DCI) const {
5503   // Default implementation: no optimization.
5504   return SDValue();
5505 }
5506 
5507 //===----------------------------------------------------------------------===//
5508 //  Inline Assembler Implementation Methods
5509 //===----------------------------------------------------------------------===//
5510 
5511 TargetLowering::ConstraintType
5512 TargetLowering::getConstraintType(StringRef Constraint) const {
5513   unsigned S = Constraint.size();
5514 
5515   if (S == 1) {
5516     switch (Constraint[0]) {
5517     default: break;
5518     case 'r':
5519       return C_RegisterClass;
5520     case 'm': // memory
5521     case 'o': // offsetable
5522     case 'V': // not offsetable
5523       return C_Memory;
5524     case 'p': // Address.
5525       return C_Address;
5526     case 'n': // Simple Integer
5527     case 'E': // Floating Point Constant
5528     case 'F': // Floating Point Constant
5529       return C_Immediate;
5530     case 'i': // Simple Integer or Relocatable Constant
5531     case 's': // Relocatable Constant
5532     case 'X': // Allow ANY value.
5533     case 'I': // Target registers.
5534     case 'J':
5535     case 'K':
5536     case 'L':
5537     case 'M':
5538     case 'N':
5539     case 'O':
5540     case 'P':
5541     case '<':
5542     case '>':
5543       return C_Other;
5544     }
5545   }
5546 
5547   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
5548     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
5549       return C_Memory;
5550     return C_Register;
5551   }
5552   return C_Unknown;
5553 }
5554 
5555 /// Try to replace an X constraint, which matches anything, with another that
5556 /// has more specific requirements based on the type of the corresponding
5557 /// operand.
5558 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
5559   if (ConstraintVT.isInteger())
5560     return "r";
5561   if (ConstraintVT.isFloatingPoint())
5562     return "f"; // works for many targets
5563   return nullptr;
5564 }
5565 
5566 SDValue TargetLowering::LowerAsmOutputForConstraint(
5567     SDValue &Chain, SDValue &Glue, const SDLoc &DL,
5568     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
5569   return SDValue();
5570 }
5571 
5572 /// Lower the specified operand into the Ops vector.
5573 /// If it is invalid, don't add anything to Ops.
5574 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5575                                                   StringRef Constraint,
5576                                                   std::vector<SDValue> &Ops,
5577                                                   SelectionDAG &DAG) const {
5578 
5579   if (Constraint.size() > 1)
5580     return;
5581 
5582   char ConstraintLetter = Constraint[0];
5583   switch (ConstraintLetter) {
5584   default: break;
5585   case 'X':    // Allows any operand
5586   case 'i':    // Simple Integer or Relocatable Constant
5587   case 'n':    // Simple Integer
5588   case 's': {  // Relocatable Constant
5589 
5590     ConstantSDNode *C;
5591     uint64_t Offset = 0;
5592 
5593     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
5594     // etc., since getelementpointer is variadic. We can't use
5595     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
5596     // while in this case the GA may be furthest from the root node which is
5597     // likely an ISD::ADD.
5598     while (true) {
5599       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
5600         // gcc prints these as sign extended.  Sign extend value to 64 bits
5601         // now; without this it would get ZExt'd later in
5602         // ScheduleDAGSDNodes::EmitNode, which is very generic.
5603         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
5604         BooleanContent BCont = getBooleanContents(MVT::i64);
5605         ISD::NodeType ExtOpc =
5606             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
5607         int64_t ExtVal =
5608             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
5609         Ops.push_back(
5610             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
5611         return;
5612       }
5613       if (ConstraintLetter != 'n') {
5614         if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5615           Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
5616                                                    GA->getValueType(0),
5617                                                    Offset + GA->getOffset()));
5618           return;
5619         }
5620         if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
5621           Ops.push_back(DAG.getTargetBlockAddress(
5622               BA->getBlockAddress(), BA->getValueType(0),
5623               Offset + BA->getOffset(), BA->getTargetFlags()));
5624           return;
5625         }
5626         if (isa<BasicBlockSDNode>(Op)) {
5627           Ops.push_back(Op);
5628           return;
5629         }
5630       }
5631       const unsigned OpCode = Op.getOpcode();
5632       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
5633         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
5634           Op = Op.getOperand(1);
5635         // Subtraction is not commutative.
5636         else if (OpCode == ISD::ADD &&
5637                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
5638           Op = Op.getOperand(0);
5639         else
5640           return;
5641         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
5642         continue;
5643       }
5644       return;
5645     }
5646     break;
5647   }
5648   }
5649 }
5650 
5651 void TargetLowering::CollectTargetIntrinsicOperands(
5652     const CallInst &I, SmallVectorImpl<SDValue> &Ops, SelectionDAG &DAG) const {
5653 }
5654 
5655 std::pair<unsigned, const TargetRegisterClass *>
5656 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
5657                                              StringRef Constraint,
5658                                              MVT VT) const {
5659   if (!Constraint.starts_with("{"))
5660     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
5661   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
5662 
5663   // Remove the braces from around the name.
5664   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
5665 
5666   std::pair<unsigned, const TargetRegisterClass *> R =
5667       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
5668 
5669   // Figure out which register class contains this reg.
5670   for (const TargetRegisterClass *RC : RI->regclasses()) {
5671     // If none of the value types for this register class are valid, we
5672     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5673     if (!isLegalRC(*RI, *RC))
5674       continue;
5675 
5676     for (const MCPhysReg &PR : *RC) {
5677       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
5678         std::pair<unsigned, const TargetRegisterClass *> S =
5679             std::make_pair(PR, RC);
5680 
5681         // If this register class has the requested value type, return it,
5682         // otherwise keep searching and return the first class found
5683         // if no other is found which explicitly has the requested type.
5684         if (RI->isTypeLegalForClass(*RC, VT))
5685           return S;
5686         if (!R.second)
5687           R = S;
5688       }
5689     }
5690   }
5691 
5692   return R;
5693 }
5694 
5695 //===----------------------------------------------------------------------===//
5696 // Constraint Selection.
5697 
5698 /// Return true of this is an input operand that is a matching constraint like
5699 /// "4".
5700 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
5701   assert(!ConstraintCode.empty() && "No known constraint!");
5702   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
5703 }
5704 
5705 /// If this is an input matching constraint, this method returns the output
5706 /// operand it matches.
5707 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
5708   assert(!ConstraintCode.empty() && "No known constraint!");
5709   return atoi(ConstraintCode.c_str());
5710 }
5711 
5712 /// Split up the constraint string from the inline assembly value into the
5713 /// specific constraints and their prefixes, and also tie in the associated
5714 /// operand values.
5715 /// If this returns an empty vector, and if the constraint string itself
5716 /// isn't empty, there was an error parsing.
5717 TargetLowering::AsmOperandInfoVector
5718 TargetLowering::ParseConstraints(const DataLayout &DL,
5719                                  const TargetRegisterInfo *TRI,
5720                                  const CallBase &Call) const {
5721   /// Information about all of the constraints.
5722   AsmOperandInfoVector ConstraintOperands;
5723   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
5724   unsigned maCount = 0; // Largest number of multiple alternative constraints.
5725 
5726   // Do a prepass over the constraints, canonicalizing them, and building up the
5727   // ConstraintOperands list.
5728   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5729   unsigned ResNo = 0; // ResNo - The result number of the next output.
5730   unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number.
5731 
5732   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
5733     ConstraintOperands.emplace_back(std::move(CI));
5734     AsmOperandInfo &OpInfo = ConstraintOperands.back();
5735 
5736     // Update multiple alternative constraint count.
5737     if (OpInfo.multipleAlternatives.size() > maCount)
5738       maCount = OpInfo.multipleAlternatives.size();
5739 
5740     OpInfo.ConstraintVT = MVT::Other;
5741 
5742     // Compute the value type for each operand.
5743     switch (OpInfo.Type) {
5744     case InlineAsm::isOutput:
5745       // Indirect outputs just consume an argument.
5746       if (OpInfo.isIndirect) {
5747         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5748         break;
5749       }
5750 
5751       // The return value of the call is this value.  As such, there is no
5752       // corresponding argument.
5753       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
5754       if (auto *STy = dyn_cast<StructType>(Call.getType())) {
5755         OpInfo.ConstraintVT =
5756             getSimpleValueType(DL, STy->getElementType(ResNo));
5757       } else {
5758         assert(ResNo == 0 && "Asm only has one result!");
5759         OpInfo.ConstraintVT =
5760             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
5761       }
5762       ++ResNo;
5763       break;
5764     case InlineAsm::isInput:
5765       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5766       break;
5767     case InlineAsm::isLabel:
5768       OpInfo.CallOperandVal = cast<CallBrInst>(&Call)->getIndirectDest(LabelNo);
5769       ++LabelNo;
5770       continue;
5771     case InlineAsm::isClobber:
5772       // Nothing to do.
5773       break;
5774     }
5775 
5776     if (OpInfo.CallOperandVal) {
5777       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5778       if (OpInfo.isIndirect) {
5779         OpTy = Call.getParamElementType(ArgNo);
5780         assert(OpTy && "Indirect operand must have elementtype attribute");
5781       }
5782 
5783       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5784       if (StructType *STy = dyn_cast<StructType>(OpTy))
5785         if (STy->getNumElements() == 1)
5786           OpTy = STy->getElementType(0);
5787 
5788       // If OpTy is not a single value, it may be a struct/union that we
5789       // can tile with integers.
5790       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5791         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5792         switch (BitSize) {
5793         default: break;
5794         case 1:
5795         case 8:
5796         case 16:
5797         case 32:
5798         case 64:
5799         case 128:
5800           OpTy = IntegerType::get(OpTy->getContext(), BitSize);
5801           break;
5802         }
5803       }
5804 
5805       EVT VT = getAsmOperandValueType(DL, OpTy, true);
5806       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
5807       ArgNo++;
5808     }
5809   }
5810 
5811   // If we have multiple alternative constraints, select the best alternative.
5812   if (!ConstraintOperands.empty()) {
5813     if (maCount) {
5814       unsigned bestMAIndex = 0;
5815       int bestWeight = -1;
5816       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
5817       int weight = -1;
5818       unsigned maIndex;
5819       // Compute the sums of the weights for each alternative, keeping track
5820       // of the best (highest weight) one so far.
5821       for (maIndex = 0; maIndex < maCount; ++maIndex) {
5822         int weightSum = 0;
5823         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5824              cIndex != eIndex; ++cIndex) {
5825           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5826           if (OpInfo.Type == InlineAsm::isClobber)
5827             continue;
5828 
5829           // If this is an output operand with a matching input operand,
5830           // look up the matching input. If their types mismatch, e.g. one
5831           // is an integer, the other is floating point, or their sizes are
5832           // different, flag it as an maCantMatch.
5833           if (OpInfo.hasMatchingInput()) {
5834             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5835             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5836               if ((OpInfo.ConstraintVT.isInteger() !=
5837                    Input.ConstraintVT.isInteger()) ||
5838                   (OpInfo.ConstraintVT.getSizeInBits() !=
5839                    Input.ConstraintVT.getSizeInBits())) {
5840                 weightSum = -1; // Can't match.
5841                 break;
5842               }
5843             }
5844           }
5845           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
5846           if (weight == -1) {
5847             weightSum = -1;
5848             break;
5849           }
5850           weightSum += weight;
5851         }
5852         // Update best.
5853         if (weightSum > bestWeight) {
5854           bestWeight = weightSum;
5855           bestMAIndex = maIndex;
5856         }
5857       }
5858 
5859       // Now select chosen alternative in each constraint.
5860       for (AsmOperandInfo &cInfo : ConstraintOperands)
5861         if (cInfo.Type != InlineAsm::isClobber)
5862           cInfo.selectAlternative(bestMAIndex);
5863     }
5864   }
5865 
5866   // Check and hook up tied operands, choose constraint code to use.
5867   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5868        cIndex != eIndex; ++cIndex) {
5869     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5870 
5871     // If this is an output operand with a matching input operand, look up the
5872     // matching input. If their types mismatch, e.g. one is an integer, the
5873     // other is floating point, or their sizes are different, flag it as an
5874     // error.
5875     if (OpInfo.hasMatchingInput()) {
5876       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5877 
5878       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5879         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
5880             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
5881                                          OpInfo.ConstraintVT);
5882         std::pair<unsigned, const TargetRegisterClass *> InputRC =
5883             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
5884                                          Input.ConstraintVT);
5885         const bool OutOpIsIntOrFP = OpInfo.ConstraintVT.isInteger() ||
5886                                     OpInfo.ConstraintVT.isFloatingPoint();
5887         const bool InOpIsIntOrFP = Input.ConstraintVT.isInteger() ||
5888                                    Input.ConstraintVT.isFloatingPoint();
5889         if ((OutOpIsIntOrFP != InOpIsIntOrFP) ||
5890             (MatchRC.second != InputRC.second)) {
5891           report_fatal_error("Unsupported asm: input constraint"
5892                              " with a matching output constraint of"
5893                              " incompatible type!");
5894         }
5895       }
5896     }
5897   }
5898 
5899   return ConstraintOperands;
5900 }
5901 
5902 /// Return a number indicating our preference for chosing a type of constraint
5903 /// over another, for the purpose of sorting them. Immediates are almost always
5904 /// preferrable (when they can be emitted). A higher return value means a
5905 /// stronger preference for one constraint type relative to another.
5906 /// FIXME: We should prefer registers over memory but doing so may lead to
5907 /// unrecoverable register exhaustion later.
5908 /// https://github.com/llvm/llvm-project/issues/20571
5909 static unsigned getConstraintPiority(TargetLowering::ConstraintType CT) {
5910   switch (CT) {
5911   case TargetLowering::C_Immediate:
5912   case TargetLowering::C_Other:
5913     return 4;
5914   case TargetLowering::C_Memory:
5915   case TargetLowering::C_Address:
5916     return 3;
5917   case TargetLowering::C_RegisterClass:
5918     return 2;
5919   case TargetLowering::C_Register:
5920     return 1;
5921   case TargetLowering::C_Unknown:
5922     return 0;
5923   }
5924   llvm_unreachable("Invalid constraint type");
5925 }
5926 
5927 /// Examine constraint type and operand type and determine a weight value.
5928 /// This object must already have been set up with the operand type
5929 /// and the current alternative constraint selected.
5930 TargetLowering::ConstraintWeight
5931   TargetLowering::getMultipleConstraintMatchWeight(
5932     AsmOperandInfo &info, int maIndex) const {
5933   InlineAsm::ConstraintCodeVector *rCodes;
5934   if (maIndex >= (int)info.multipleAlternatives.size())
5935     rCodes = &info.Codes;
5936   else
5937     rCodes = &info.multipleAlternatives[maIndex].Codes;
5938   ConstraintWeight BestWeight = CW_Invalid;
5939 
5940   // Loop over the options, keeping track of the most general one.
5941   for (const std::string &rCode : *rCodes) {
5942     ConstraintWeight weight =
5943         getSingleConstraintMatchWeight(info, rCode.c_str());
5944     if (weight > BestWeight)
5945       BestWeight = weight;
5946   }
5947 
5948   return BestWeight;
5949 }
5950 
5951 /// Examine constraint type and operand type and determine a weight value.
5952 /// This object must already have been set up with the operand type
5953 /// and the current alternative constraint selected.
5954 TargetLowering::ConstraintWeight
5955   TargetLowering::getSingleConstraintMatchWeight(
5956     AsmOperandInfo &info, const char *constraint) const {
5957   ConstraintWeight weight = CW_Invalid;
5958   Value *CallOperandVal = info.CallOperandVal;
5959     // If we don't have a value, we can't do a match,
5960     // but allow it at the lowest weight.
5961   if (!CallOperandVal)
5962     return CW_Default;
5963   // Look at the constraint type.
5964   switch (*constraint) {
5965     case 'i': // immediate integer.
5966     case 'n': // immediate integer with a known value.
5967       if (isa<ConstantInt>(CallOperandVal))
5968         weight = CW_Constant;
5969       break;
5970     case 's': // non-explicit intregal immediate.
5971       if (isa<GlobalValue>(CallOperandVal))
5972         weight = CW_Constant;
5973       break;
5974     case 'E': // immediate float if host format.
5975     case 'F': // immediate float.
5976       if (isa<ConstantFP>(CallOperandVal))
5977         weight = CW_Constant;
5978       break;
5979     case '<': // memory operand with autodecrement.
5980     case '>': // memory operand with autoincrement.
5981     case 'm': // memory operand.
5982     case 'o': // offsettable memory operand
5983     case 'V': // non-offsettable memory operand
5984       weight = CW_Memory;
5985       break;
5986     case 'r': // general register.
5987     case 'g': // general register, memory operand or immediate integer.
5988               // note: Clang converts "g" to "imr".
5989       if (CallOperandVal->getType()->isIntegerTy())
5990         weight = CW_Register;
5991       break;
5992     case 'X': // any operand.
5993   default:
5994     weight = CW_Default;
5995     break;
5996   }
5997   return weight;
5998 }
5999 
6000 /// If there are multiple different constraints that we could pick for this
6001 /// operand (e.g. "imr") try to pick the 'best' one.
6002 /// This is somewhat tricky: constraints (TargetLowering::ConstraintType) fall
6003 /// into seven classes:
6004 ///    Register      -> one specific register
6005 ///    RegisterClass -> a group of regs
6006 ///    Memory        -> memory
6007 ///    Address       -> a symbolic memory reference
6008 ///    Immediate     -> immediate values
6009 ///    Other         -> magic values (such as "Flag Output Operands")
6010 ///    Unknown       -> something we don't recognize yet and can't handle
6011 /// Ideally, we would pick the most specific constraint possible: if we have
6012 /// something that fits into a register, we would pick it.  The problem here
6013 /// is that if we have something that could either be in a register or in
6014 /// memory that use of the register could cause selection of *other*
6015 /// operands to fail: they might only succeed if we pick memory.  Because of
6016 /// this the heuristic we use is:
6017 ///
6018 ///  1) If there is an 'other' constraint, and if the operand is valid for
6019 ///     that constraint, use it.  This makes us take advantage of 'i'
6020 ///     constraints when available.
6021 ///  2) Otherwise, pick the most general constraint present.  This prefers
6022 ///     'm' over 'r', for example.
6023 ///
6024 TargetLowering::ConstraintGroup TargetLowering::getConstraintPreferences(
6025     TargetLowering::AsmOperandInfo &OpInfo) const {
6026   ConstraintGroup Ret;
6027 
6028   Ret.reserve(OpInfo.Codes.size());
6029   for (StringRef Code : OpInfo.Codes) {
6030     TargetLowering::ConstraintType CType = getConstraintType(Code);
6031 
6032     // Indirect 'other' or 'immediate' constraints are not allowed.
6033     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
6034                                CType == TargetLowering::C_Register ||
6035                                CType == TargetLowering::C_RegisterClass))
6036       continue;
6037 
6038     // Things with matching constraints can only be registers, per gcc
6039     // documentation.  This mainly affects "g" constraints.
6040     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
6041       continue;
6042 
6043     Ret.emplace_back(Code, CType);
6044   }
6045 
6046   std::stable_sort(
6047       Ret.begin(), Ret.end(), [](ConstraintPair a, ConstraintPair b) {
6048         return getConstraintPiority(a.second) > getConstraintPiority(b.second);
6049       });
6050 
6051   return Ret;
6052 }
6053 
6054 /// If we have an immediate, see if we can lower it. Return true if we can,
6055 /// false otherwise.
6056 static bool lowerImmediateIfPossible(TargetLowering::ConstraintPair &P,
6057                                      SDValue Op, SelectionDAG *DAG,
6058                                      const TargetLowering &TLI) {
6059 
6060   assert((P.second == TargetLowering::C_Other ||
6061           P.second == TargetLowering::C_Immediate) &&
6062          "need immediate or other");
6063 
6064   if (!Op.getNode())
6065     return false;
6066 
6067   std::vector<SDValue> ResultOps;
6068   TLI.LowerAsmOperandForConstraint(Op, P.first, ResultOps, *DAG);
6069   return !ResultOps.empty();
6070 }
6071 
6072 /// Determines the constraint code and constraint type to use for the specific
6073 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
6074 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
6075                                             SDValue Op,
6076                                             SelectionDAG *DAG) const {
6077   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
6078 
6079   // Single-letter constraints ('r') are very common.
6080   if (OpInfo.Codes.size() == 1) {
6081     OpInfo.ConstraintCode = OpInfo.Codes[0];
6082     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
6083   } else {
6084     ConstraintGroup G = getConstraintPreferences(OpInfo);
6085     if (G.empty())
6086       return;
6087 
6088     unsigned BestIdx = 0;
6089     for (const unsigned E = G.size();
6090          BestIdx < E && (G[BestIdx].second == TargetLowering::C_Other ||
6091                          G[BestIdx].second == TargetLowering::C_Immediate);
6092          ++BestIdx) {
6093       if (lowerImmediateIfPossible(G[BestIdx], Op, DAG, *this))
6094         break;
6095       // If we're out of constraints, just pick the first one.
6096       if (BestIdx + 1 == E) {
6097         BestIdx = 0;
6098         break;
6099       }
6100     }
6101 
6102     OpInfo.ConstraintCode = G[BestIdx].first;
6103     OpInfo.ConstraintType = G[BestIdx].second;
6104   }
6105 
6106   // 'X' matches anything.
6107   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
6108     // Constants are handled elsewhere.  For Functions, the type here is the
6109     // type of the result, which is not what we want to look at; leave them
6110     // alone.
6111     Value *v = OpInfo.CallOperandVal;
6112     if (isa<ConstantInt>(v) || isa<Function>(v)) {
6113       return;
6114     }
6115 
6116     if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
6117       OpInfo.ConstraintCode = "i";
6118       return;
6119     }
6120 
6121     // Otherwise, try to resolve it to something we know about by looking at
6122     // the actual operand type.
6123     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
6124       OpInfo.ConstraintCode = Repl;
6125       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
6126     }
6127   }
6128 }
6129 
6130 /// Given an exact SDIV by a constant, create a multiplication
6131 /// with the multiplicative inverse of the constant.
6132 /// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242
6133 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
6134                               const SDLoc &dl, SelectionDAG &DAG,
6135                               SmallVectorImpl<SDNode *> &Created) {
6136   SDValue Op0 = N->getOperand(0);
6137   SDValue Op1 = N->getOperand(1);
6138   EVT VT = N->getValueType(0);
6139   EVT SVT = VT.getScalarType();
6140   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
6141   EVT ShSVT = ShVT.getScalarType();
6142 
6143   bool UseSRA = false;
6144   SmallVector<SDValue, 16> Shifts, Factors;
6145 
6146   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
6147     if (C->isZero())
6148       return false;
6149     APInt Divisor = C->getAPIntValue();
6150     unsigned Shift = Divisor.countr_zero();
6151     if (Shift) {
6152       Divisor.ashrInPlace(Shift);
6153       UseSRA = true;
6154     }
6155     APInt Factor = Divisor.multiplicativeInverse();
6156     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
6157     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
6158     return true;
6159   };
6160 
6161   // Collect all magic values from the build vector.
6162   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
6163     return SDValue();
6164 
6165   SDValue Shift, Factor;
6166   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
6167     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
6168     Factor = DAG.getBuildVector(VT, dl, Factors);
6169   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
6170     assert(Shifts.size() == 1 && Factors.size() == 1 &&
6171            "Expected matchUnaryPredicate to return one element for scalable "
6172            "vectors");
6173     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
6174     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
6175   } else {
6176     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
6177     Shift = Shifts[0];
6178     Factor = Factors[0];
6179   }
6180 
6181   SDValue Res = Op0;
6182   if (UseSRA) {
6183     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, SDNodeFlags::Exact);
6184     Created.push_back(Res.getNode());
6185   }
6186 
6187   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
6188 }
6189 
6190 /// Given an exact UDIV by a constant, create a multiplication
6191 /// with the multiplicative inverse of the constant.
6192 /// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242
6193 static SDValue BuildExactUDIV(const TargetLowering &TLI, SDNode *N,
6194                               const SDLoc &dl, SelectionDAG &DAG,
6195                               SmallVectorImpl<SDNode *> &Created) {
6196   EVT VT = N->getValueType(0);
6197   EVT SVT = VT.getScalarType();
6198   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
6199   EVT ShSVT = ShVT.getScalarType();
6200 
6201   bool UseSRL = false;
6202   SmallVector<SDValue, 16> Shifts, Factors;
6203 
6204   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
6205     if (C->isZero())
6206       return false;
6207     APInt Divisor = C->getAPIntValue();
6208     unsigned Shift = Divisor.countr_zero();
6209     if (Shift) {
6210       Divisor.lshrInPlace(Shift);
6211       UseSRL = true;
6212     }
6213     // Calculate the multiplicative inverse modulo BW.
6214     APInt Factor = Divisor.multiplicativeInverse();
6215     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
6216     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
6217     return true;
6218   };
6219 
6220   SDValue Op1 = N->getOperand(1);
6221 
6222   // Collect all magic values from the build vector.
6223   if (!ISD::matchUnaryPredicate(Op1, BuildUDIVPattern))
6224     return SDValue();
6225 
6226   SDValue Shift, Factor;
6227   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
6228     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
6229     Factor = DAG.getBuildVector(VT, dl, Factors);
6230   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
6231     assert(Shifts.size() == 1 && Factors.size() == 1 &&
6232            "Expected matchUnaryPredicate to return one element for scalable "
6233            "vectors");
6234     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
6235     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
6236   } else {
6237     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
6238     Shift = Shifts[0];
6239     Factor = Factors[0];
6240   }
6241 
6242   SDValue Res = N->getOperand(0);
6243   if (UseSRL) {
6244     Res = DAG.getNode(ISD::SRL, dl, VT, Res, Shift, SDNodeFlags::Exact);
6245     Created.push_back(Res.getNode());
6246   }
6247 
6248   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
6249 }
6250 
6251 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
6252                               SelectionDAG &DAG,
6253                               SmallVectorImpl<SDNode *> &Created) const {
6254   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
6255   if (isIntDivCheap(N->getValueType(0), Attr))
6256     return SDValue(N, 0); // Lower SDIV as SDIV
6257   return SDValue();
6258 }
6259 
6260 SDValue
6261 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor,
6262                               SelectionDAG &DAG,
6263                               SmallVectorImpl<SDNode *> &Created) const {
6264   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
6265   if (isIntDivCheap(N->getValueType(0), Attr))
6266     return SDValue(N, 0); // Lower SREM as SREM
6267   return SDValue();
6268 }
6269 
6270 /// Build sdiv by power-of-2 with conditional move instructions
6271 /// Ref: "Hacker's Delight" by Henry Warren 10-1
6272 /// If conditional move/branch is preferred, we lower sdiv x, +/-2**k into:
6273 ///   bgez x, label
6274 ///   add x, x, 2**k-1
6275 /// label:
6276 ///   sra res, x, k
6277 ///   neg res, res (when the divisor is negative)
6278 SDValue TargetLowering::buildSDIVPow2WithCMov(
6279     SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
6280     SmallVectorImpl<SDNode *> &Created) const {
6281   unsigned Lg2 = Divisor.countr_zero();
6282   EVT VT = N->getValueType(0);
6283 
6284   SDLoc DL(N);
6285   SDValue N0 = N->getOperand(0);
6286   SDValue Zero = DAG.getConstant(0, DL, VT);
6287   APInt Lg2Mask = APInt::getLowBitsSet(VT.getSizeInBits(), Lg2);
6288   SDValue Pow2MinusOne = DAG.getConstant(Lg2Mask, DL, VT);
6289 
6290   // If N0 is negative, we need to add (Pow2 - 1) to it before shifting right.
6291   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6292   SDValue Cmp = DAG.getSetCC(DL, CCVT, N0, Zero, ISD::SETLT);
6293   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
6294   SDValue CMov = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
6295 
6296   Created.push_back(Cmp.getNode());
6297   Created.push_back(Add.getNode());
6298   Created.push_back(CMov.getNode());
6299 
6300   // Divide by pow2.
6301   SDValue SRA =
6302       DAG.getNode(ISD::SRA, DL, VT, CMov, DAG.getConstant(Lg2, DL, VT));
6303 
6304   // If we're dividing by a positive value, we're done.  Otherwise, we must
6305   // negate the result.
6306   if (Divisor.isNonNegative())
6307     return SRA;
6308 
6309   Created.push_back(SRA.getNode());
6310   return DAG.getNode(ISD::SUB, DL, VT, Zero, SRA);
6311 }
6312 
6313 /// Given an ISD::SDIV node expressing a divide by constant,
6314 /// return a DAG expression to select that will generate the same value by
6315 /// multiplying by a magic number.
6316 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
6317 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
6318                                   bool IsAfterLegalization,
6319                                   bool IsAfterLegalTypes,
6320                                   SmallVectorImpl<SDNode *> &Created) const {
6321   SDLoc dl(N);
6322   EVT VT = N->getValueType(0);
6323   EVT SVT = VT.getScalarType();
6324   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6325   EVT ShSVT = ShVT.getScalarType();
6326   unsigned EltBits = VT.getScalarSizeInBits();
6327   EVT MulVT;
6328 
6329   // Check to see if we can do this.
6330   // FIXME: We should be more aggressive here.
6331   if (!isTypeLegal(VT)) {
6332     // Limit this to simple scalars for now.
6333     if (VT.isVector() || !VT.isSimple())
6334       return SDValue();
6335 
6336     // If this type will be promoted to a large enough type with a legal
6337     // multiply operation, we can go ahead and do this transform.
6338     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
6339       return SDValue();
6340 
6341     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
6342     if (MulVT.getSizeInBits() < (2 * EltBits) ||
6343         !isOperationLegal(ISD::MUL, MulVT))
6344       return SDValue();
6345   }
6346 
6347   // If the sdiv has an 'exact' bit we can use a simpler lowering.
6348   if (N->getFlags().hasExact())
6349     return BuildExactSDIV(*this, N, dl, DAG, Created);
6350 
6351   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
6352 
6353   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
6354     if (C->isZero())
6355       return false;
6356 
6357     const APInt &Divisor = C->getAPIntValue();
6358     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
6359     int NumeratorFactor = 0;
6360     int ShiftMask = -1;
6361 
6362     if (Divisor.isOne() || Divisor.isAllOnes()) {
6363       // If d is +1/-1, we just multiply the numerator by +1/-1.
6364       NumeratorFactor = Divisor.getSExtValue();
6365       magics.Magic = 0;
6366       magics.ShiftAmount = 0;
6367       ShiftMask = 0;
6368     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
6369       // If d > 0 and m < 0, add the numerator.
6370       NumeratorFactor = 1;
6371     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
6372       // If d < 0 and m > 0, subtract the numerator.
6373       NumeratorFactor = -1;
6374     }
6375 
6376     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
6377     Factors.push_back(DAG.getSignedConstant(NumeratorFactor, dl, SVT));
6378     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
6379     ShiftMasks.push_back(DAG.getSignedConstant(ShiftMask, dl, SVT));
6380     return true;
6381   };
6382 
6383   SDValue N0 = N->getOperand(0);
6384   SDValue N1 = N->getOperand(1);
6385 
6386   // Collect the shifts / magic values from each element.
6387   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
6388     return SDValue();
6389 
6390   SDValue MagicFactor, Factor, Shift, ShiftMask;
6391   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
6392     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
6393     Factor = DAG.getBuildVector(VT, dl, Factors);
6394     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
6395     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
6396   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
6397     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
6398            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
6399            "Expected matchUnaryPredicate to return one element for scalable "
6400            "vectors");
6401     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
6402     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
6403     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
6404     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
6405   } else {
6406     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
6407     MagicFactor = MagicFactors[0];
6408     Factor = Factors[0];
6409     Shift = Shifts[0];
6410     ShiftMask = ShiftMasks[0];
6411   }
6412 
6413   // Multiply the numerator (operand 0) by the magic value.
6414   // FIXME: We should support doing a MUL in a wider type.
6415   auto GetMULHS = [&](SDValue X, SDValue Y) {
6416     // If the type isn't legal, use a wider mul of the type calculated
6417     // earlier.
6418     if (!isTypeLegal(VT)) {
6419       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
6420       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
6421       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
6422       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
6423                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
6424       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6425     }
6426 
6427     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
6428       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
6429     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
6430       SDValue LoHi =
6431           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
6432       return SDValue(LoHi.getNode(), 1);
6433     }
6434     // If type twice as wide legal, widen and use a mul plus a shift.
6435     unsigned Size = VT.getScalarSizeInBits();
6436     EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2);
6437     if (VT.isVector())
6438       WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
6439                                 VT.getVectorElementCount());
6440     // Some targets like AMDGPU try to go from SDIV to SDIVREM which is then
6441     // custom lowered. This is very expensive so avoid it at all costs for
6442     // constant divisors.
6443     if ((!IsAfterLegalTypes && isOperationExpand(ISD::SDIV, VT) &&
6444          isOperationCustom(ISD::SDIVREM, VT.getScalarType())) ||
6445         isOperationLegalOrCustom(ISD::MUL, WideVT)) {
6446       X = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, X);
6447       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, Y);
6448       Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y);
6449       Y = DAG.getNode(ISD::SRL, dl, WideVT, Y,
6450                       DAG.getShiftAmountConstant(EltBits, WideVT, dl));
6451       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6452     }
6453     return SDValue();
6454   };
6455 
6456   SDValue Q = GetMULHS(N0, MagicFactor);
6457   if (!Q)
6458     return SDValue();
6459 
6460   Created.push_back(Q.getNode());
6461 
6462   // (Optionally) Add/subtract the numerator using Factor.
6463   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
6464   Created.push_back(Factor.getNode());
6465   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
6466   Created.push_back(Q.getNode());
6467 
6468   // Shift right algebraic by shift value.
6469   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
6470   Created.push_back(Q.getNode());
6471 
6472   // Extract the sign bit, mask it and add it to the quotient.
6473   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
6474   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
6475   Created.push_back(T.getNode());
6476   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
6477   Created.push_back(T.getNode());
6478   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
6479 }
6480 
6481 /// Given an ISD::UDIV node expressing a divide by constant,
6482 /// return a DAG expression to select that will generate the same value by
6483 /// multiplying by a magic number.
6484 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
6485 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
6486                                   bool IsAfterLegalization,
6487                                   bool IsAfterLegalTypes,
6488                                   SmallVectorImpl<SDNode *> &Created) const {
6489   SDLoc dl(N);
6490   EVT VT = N->getValueType(0);
6491   EVT SVT = VT.getScalarType();
6492   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6493   EVT ShSVT = ShVT.getScalarType();
6494   unsigned EltBits = VT.getScalarSizeInBits();
6495   EVT MulVT;
6496 
6497   // Check to see if we can do this.
6498   // FIXME: We should be more aggressive here.
6499   if (!isTypeLegal(VT)) {
6500     // Limit this to simple scalars for now.
6501     if (VT.isVector() || !VT.isSimple())
6502       return SDValue();
6503 
6504     // If this type will be promoted to a large enough type with a legal
6505     // multiply operation, we can go ahead and do this transform.
6506     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
6507       return SDValue();
6508 
6509     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
6510     if (MulVT.getSizeInBits() < (2 * EltBits) ||
6511         !isOperationLegal(ISD::MUL, MulVT))
6512       return SDValue();
6513   }
6514 
6515   // If the udiv has an 'exact' bit we can use a simpler lowering.
6516   if (N->getFlags().hasExact())
6517     return BuildExactUDIV(*this, N, dl, DAG, Created);
6518 
6519   SDValue N0 = N->getOperand(0);
6520   SDValue N1 = N->getOperand(1);
6521 
6522   // Try to use leading zeros of the dividend to reduce the multiplier and
6523   // avoid expensive fixups.
6524   unsigned KnownLeadingZeros = DAG.computeKnownBits(N0).countMinLeadingZeros();
6525 
6526   bool UseNPQ = false, UsePreShift = false, UsePostShift = false;
6527   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
6528 
6529   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
6530     if (C->isZero())
6531       return false;
6532     const APInt& Divisor = C->getAPIntValue();
6533 
6534     SDValue PreShift, MagicFactor, NPQFactor, PostShift;
6535 
6536     // Magic algorithm doesn't work for division by 1. We need to emit a select
6537     // at the end.
6538     if (Divisor.isOne()) {
6539       PreShift = PostShift = DAG.getUNDEF(ShSVT);
6540       MagicFactor = NPQFactor = DAG.getUNDEF(SVT);
6541     } else {
6542       UnsignedDivisionByConstantInfo magics =
6543           UnsignedDivisionByConstantInfo::get(
6544               Divisor, std::min(KnownLeadingZeros, Divisor.countl_zero()));
6545 
6546       MagicFactor = DAG.getConstant(magics.Magic, dl, SVT);
6547 
6548       assert(magics.PreShift < Divisor.getBitWidth() &&
6549              "We shouldn't generate an undefined shift!");
6550       assert(magics.PostShift < Divisor.getBitWidth() &&
6551              "We shouldn't generate an undefined shift!");
6552       assert((!magics.IsAdd || magics.PreShift == 0) &&
6553              "Unexpected pre-shift");
6554       PreShift = DAG.getConstant(magics.PreShift, dl, ShSVT);
6555       PostShift = DAG.getConstant(magics.PostShift, dl, ShSVT);
6556       NPQFactor = DAG.getConstant(
6557           magics.IsAdd ? APInt::getOneBitSet(EltBits, EltBits - 1)
6558                        : APInt::getZero(EltBits),
6559           dl, SVT);
6560       UseNPQ |= magics.IsAdd;
6561       UsePreShift |= magics.PreShift != 0;
6562       UsePostShift |= magics.PostShift != 0;
6563     }
6564 
6565     PreShifts.push_back(PreShift);
6566     MagicFactors.push_back(MagicFactor);
6567     NPQFactors.push_back(NPQFactor);
6568     PostShifts.push_back(PostShift);
6569     return true;
6570   };
6571 
6572   // Collect the shifts/magic values from each element.
6573   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
6574     return SDValue();
6575 
6576   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
6577   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
6578     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
6579     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
6580     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
6581     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
6582   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
6583     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
6584            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
6585            "Expected matchUnaryPredicate to return one for scalable vectors");
6586     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
6587     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
6588     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
6589     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
6590   } else {
6591     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
6592     PreShift = PreShifts[0];
6593     MagicFactor = MagicFactors[0];
6594     PostShift = PostShifts[0];
6595   }
6596 
6597   SDValue Q = N0;
6598   if (UsePreShift) {
6599     Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
6600     Created.push_back(Q.getNode());
6601   }
6602 
6603   // FIXME: We should support doing a MUL in a wider type.
6604   auto GetMULHU = [&](SDValue X, SDValue Y) {
6605     // If the type isn't legal, use a wider mul of the type calculated
6606     // earlier.
6607     if (!isTypeLegal(VT)) {
6608       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
6609       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
6610       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
6611       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
6612                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
6613       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6614     }
6615 
6616     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
6617       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
6618     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
6619       SDValue LoHi =
6620           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
6621       return SDValue(LoHi.getNode(), 1);
6622     }
6623     // If type twice as wide legal, widen and use a mul plus a shift.
6624     unsigned Size = VT.getScalarSizeInBits();
6625     EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2);
6626     if (VT.isVector())
6627       WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
6628                                 VT.getVectorElementCount());
6629     // Some targets like AMDGPU try to go from UDIV to UDIVREM which is then
6630     // custom lowered. This is very expensive so avoid it at all costs for
6631     // constant divisors.
6632     if ((!IsAfterLegalTypes && isOperationExpand(ISD::UDIV, VT) &&
6633          isOperationCustom(ISD::UDIVREM, VT.getScalarType())) ||
6634         isOperationLegalOrCustom(ISD::MUL, WideVT)) {
6635       X = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, X);
6636       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, Y);
6637       Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y);
6638       Y = DAG.getNode(ISD::SRL, dl, WideVT, Y,
6639                       DAG.getShiftAmountConstant(EltBits, WideVT, dl));
6640       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6641     }
6642     return SDValue(); // No mulhu or equivalent
6643   };
6644 
6645   // Multiply the numerator (operand 0) by the magic value.
6646   Q = GetMULHU(Q, MagicFactor);
6647   if (!Q)
6648     return SDValue();
6649 
6650   Created.push_back(Q.getNode());
6651 
6652   if (UseNPQ) {
6653     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
6654     Created.push_back(NPQ.getNode());
6655 
6656     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
6657     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
6658     if (VT.isVector())
6659       NPQ = GetMULHU(NPQ, NPQFactor);
6660     else
6661       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
6662 
6663     Created.push_back(NPQ.getNode());
6664 
6665     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
6666     Created.push_back(Q.getNode());
6667   }
6668 
6669   if (UsePostShift) {
6670     Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
6671     Created.push_back(Q.getNode());
6672   }
6673 
6674   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6675 
6676   SDValue One = DAG.getConstant(1, dl, VT);
6677   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
6678   return DAG.getSelect(dl, VT, IsOne, N0, Q);
6679 }
6680 
6681 /// If all values in Values that *don't* match the predicate are same 'splat'
6682 /// value, then replace all values with that splat value.
6683 /// Else, if AlternativeReplacement was provided, then replace all values that
6684 /// do match predicate with AlternativeReplacement value.
6685 static void
6686 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
6687                           std::function<bool(SDValue)> Predicate,
6688                           SDValue AlternativeReplacement = SDValue()) {
6689   SDValue Replacement;
6690   // Is there a value for which the Predicate does *NOT* match? What is it?
6691   auto SplatValue = llvm::find_if_not(Values, Predicate);
6692   if (SplatValue != Values.end()) {
6693     // Does Values consist only of SplatValue's and values matching Predicate?
6694     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
6695           return Value == *SplatValue || Predicate(Value);
6696         })) // Then we shall replace values matching predicate with SplatValue.
6697       Replacement = *SplatValue;
6698   }
6699   if (!Replacement) {
6700     // Oops, we did not find the "baseline" splat value.
6701     if (!AlternativeReplacement)
6702       return; // Nothing to do.
6703     // Let's replace with provided value then.
6704     Replacement = AlternativeReplacement;
6705   }
6706   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
6707 }
6708 
6709 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
6710 /// where the divisor is constant and the comparison target is zero,
6711 /// return a DAG expression that will generate the same comparison result
6712 /// using only multiplications, additions and shifts/rotations.
6713 /// Ref: "Hacker's Delight" 10-17.
6714 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
6715                                         SDValue CompTargetNode,
6716                                         ISD::CondCode Cond,
6717                                         DAGCombinerInfo &DCI,
6718                                         const SDLoc &DL) const {
6719   SmallVector<SDNode *, 5> Built;
6720   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6721                                          DCI, DL, Built)) {
6722     for (SDNode *N : Built)
6723       DCI.AddToWorklist(N);
6724     return Folded;
6725   }
6726 
6727   return SDValue();
6728 }
6729 
6730 SDValue
6731 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
6732                                   SDValue CompTargetNode, ISD::CondCode Cond,
6733                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6734                                   SmallVectorImpl<SDNode *> &Created) const {
6735   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
6736   // - D must be constant, with D = D0 * 2^K where D0 is odd
6737   // - P is the multiplicative inverse of D0 modulo 2^W
6738   // - Q = floor(((2^W) - 1) / D)
6739   // where W is the width of the common type of N and D.
6740   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6741          "Only applicable for (in)equality comparisons.");
6742 
6743   SelectionDAG &DAG = DCI.DAG;
6744 
6745   EVT VT = REMNode.getValueType();
6746   EVT SVT = VT.getScalarType();
6747   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6748   EVT ShSVT = ShVT.getScalarType();
6749 
6750   // If MUL is unavailable, we cannot proceed in any case.
6751   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6752     return SDValue();
6753 
6754   bool ComparingWithAllZeros = true;
6755   bool AllComparisonsWithNonZerosAreTautological = true;
6756   bool HadTautologicalLanes = false;
6757   bool AllLanesAreTautological = true;
6758   bool HadEvenDivisor = false;
6759   bool AllDivisorsArePowerOfTwo = true;
6760   bool HadTautologicalInvertedLanes = false;
6761   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
6762 
6763   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
6764     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6765     if (CDiv->isZero())
6766       return false;
6767 
6768     const APInt &D = CDiv->getAPIntValue();
6769     const APInt &Cmp = CCmp->getAPIntValue();
6770 
6771     ComparingWithAllZeros &= Cmp.isZero();
6772 
6773     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6774     // if C2 is not less than C1, the comparison is always false.
6775     // But we will only be able to produce the comparison that will give the
6776     // opposive tautological answer. So this lane would need to be fixed up.
6777     bool TautologicalInvertedLane = D.ule(Cmp);
6778     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
6779 
6780     // If all lanes are tautological (either all divisors are ones, or divisor
6781     // is not greater than the constant we are comparing with),
6782     // we will prefer to avoid the fold.
6783     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
6784     HadTautologicalLanes |= TautologicalLane;
6785     AllLanesAreTautological &= TautologicalLane;
6786 
6787     // If we are comparing with non-zero, we need'll need  to subtract said
6788     // comparison value from the LHS. But there is no point in doing that if
6789     // every lane where we are comparing with non-zero is tautological..
6790     if (!Cmp.isZero())
6791       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
6792 
6793     // Decompose D into D0 * 2^K
6794     unsigned K = D.countr_zero();
6795     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6796     APInt D0 = D.lshr(K);
6797 
6798     // D is even if it has trailing zeros.
6799     HadEvenDivisor |= (K != 0);
6800     // D is a power-of-two if D0 is one.
6801     // If all divisors are power-of-two, we will prefer to avoid the fold.
6802     AllDivisorsArePowerOfTwo &= D0.isOne();
6803 
6804     // P = inv(D0, 2^W)
6805     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6806     unsigned W = D.getBitWidth();
6807     APInt P = D0.multiplicativeInverse();
6808     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6809 
6810     // Q = floor((2^W - 1) u/ D)
6811     // R = ((2^W - 1) u% D)
6812     APInt Q, R;
6813     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
6814 
6815     // If we are comparing with zero, then that comparison constant is okay,
6816     // else it may need to be one less than that.
6817     if (Cmp.ugt(R))
6818       Q -= 1;
6819 
6820     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6821            "We are expecting that K is always less than all-ones for ShSVT");
6822 
6823     // If the lane is tautological the result can be constant-folded.
6824     if (TautologicalLane) {
6825       // Set P and K amount to a bogus values so we can try to splat them.
6826       P = 0;
6827       K = -1;
6828       // And ensure that comparison constant is tautological,
6829       // it will always compare true/false.
6830       Q = -1;
6831     }
6832 
6833     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6834     KAmts.push_back(
6835         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K, /*isSigned=*/false,
6836                               /*implicitTrunc=*/true),
6837                         DL, ShSVT));
6838     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6839     return true;
6840   };
6841 
6842   SDValue N = REMNode.getOperand(0);
6843   SDValue D = REMNode.getOperand(1);
6844 
6845   // Collect the values from each element.
6846   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
6847     return SDValue();
6848 
6849   // If all lanes are tautological, the result can be constant-folded.
6850   if (AllLanesAreTautological)
6851     return SDValue();
6852 
6853   // If this is a urem by a powers-of-two, avoid the fold since it can be
6854   // best implemented as a bit test.
6855   if (AllDivisorsArePowerOfTwo)
6856     return SDValue();
6857 
6858   SDValue PVal, KVal, QVal;
6859   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6860     if (HadTautologicalLanes) {
6861       // Try to turn PAmts into a splat, since we don't care about the values
6862       // that are currently '0'. If we can't, just keep '0'`s.
6863       turnVectorIntoSplatVector(PAmts, isNullConstant);
6864       // Try to turn KAmts into a splat, since we don't care about the values
6865       // that are currently '-1'. If we can't, change them to '0'`s.
6866       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6867                                 DAG.getConstant(0, DL, ShSVT));
6868     }
6869 
6870     PVal = DAG.getBuildVector(VT, DL, PAmts);
6871     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6872     QVal = DAG.getBuildVector(VT, DL, QAmts);
6873   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6874     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
6875            "Expected matchBinaryPredicate to return one element for "
6876            "SPLAT_VECTORs");
6877     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6878     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6879     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6880   } else {
6881     PVal = PAmts[0];
6882     KVal = KAmts[0];
6883     QVal = QAmts[0];
6884   }
6885 
6886   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
6887     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
6888       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
6889     assert(CompTargetNode.getValueType() == N.getValueType() &&
6890            "Expecting that the types on LHS and RHS of comparisons match.");
6891     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
6892   }
6893 
6894   // (mul N, P)
6895   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6896   Created.push_back(Op0.getNode());
6897 
6898   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6899   // divisors as a performance improvement, since rotating by 0 is a no-op.
6900   if (HadEvenDivisor) {
6901     // We need ROTR to do this.
6902     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6903       return SDValue();
6904     // UREM: (rotr (mul N, P), K)
6905     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6906     Created.push_back(Op0.getNode());
6907   }
6908 
6909   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
6910   SDValue NewCC =
6911       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6912                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6913   if (!HadTautologicalInvertedLanes)
6914     return NewCC;
6915 
6916   // If any lanes previously compared always-false, the NewCC will give
6917   // always-true result for them, so we need to fixup those lanes.
6918   // Or the other way around for inequality predicate.
6919   assert(VT.isVector() && "Can/should only get here for vectors.");
6920   Created.push_back(NewCC.getNode());
6921 
6922   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6923   // if C2 is not less than C1, the comparison is always false.
6924   // But we have produced the comparison that will give the
6925   // opposive tautological answer. So these lanes would need to be fixed up.
6926   SDValue TautologicalInvertedChannels =
6927       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
6928   Created.push_back(TautologicalInvertedChannels.getNode());
6929 
6930   // NOTE: we avoid letting illegal types through even if we're before legalize
6931   // ops – legalization has a hard time producing good code for this.
6932   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
6933     // If we have a vector select, let's replace the comparison results in the
6934     // affected lanes with the correct tautological result.
6935     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
6936                                               DL, SETCCVT, SETCCVT);
6937     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
6938                        Replacement, NewCC);
6939   }
6940 
6941   // Else, we can just invert the comparison result in the appropriate lanes.
6942   //
6943   // NOTE: see the note above VSELECT above.
6944   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
6945     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
6946                        TautologicalInvertedChannels);
6947 
6948   return SDValue(); // Don't know how to lower.
6949 }
6950 
6951 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
6952 /// where the divisor is constant and the comparison target is zero,
6953 /// return a DAG expression that will generate the same comparison result
6954 /// using only multiplications, additions and shifts/rotations.
6955 /// Ref: "Hacker's Delight" 10-17.
6956 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
6957                                         SDValue CompTargetNode,
6958                                         ISD::CondCode Cond,
6959                                         DAGCombinerInfo &DCI,
6960                                         const SDLoc &DL) const {
6961   SmallVector<SDNode *, 7> Built;
6962   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6963                                          DCI, DL, Built)) {
6964     assert(Built.size() <= 7 && "Max size prediction failed.");
6965     for (SDNode *N : Built)
6966       DCI.AddToWorklist(N);
6967     return Folded;
6968   }
6969 
6970   return SDValue();
6971 }
6972 
6973 SDValue
6974 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
6975                                   SDValue CompTargetNode, ISD::CondCode Cond,
6976                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6977                                   SmallVectorImpl<SDNode *> &Created) const {
6978   // Derived from Hacker's Delight, 2nd Edition, by Hank Warren. Section 10-17.
6979   // Fold:
6980   //   (seteq/ne (srem N, D), 0)
6981   // To:
6982   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
6983   //
6984   // - D must be constant, with D = D0 * 2^K where D0 is odd
6985   // - P is the multiplicative inverse of D0 modulo 2^W
6986   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
6987   // - Q = floor((2 * A) / (2^K))
6988   // where W is the width of the common type of N and D.
6989   //
6990   // When D is a power of two (and thus D0 is 1), the normal
6991   // formula for A and Q don't apply, because the derivation
6992   // depends on D not dividing 2^(W-1), and thus theorem ZRS
6993   // does not apply. This specifically fails when N = INT_MIN.
6994   //
6995   // Instead, for power-of-two D, we use:
6996   // - A = 2^(W-1)
6997   // |-> Order-preserving map from [-2^(W-1), 2^(W-1) - 1] to [0,2^W - 1])
6998   // - Q = 2^(W-K) - 1
6999   // |-> Test that the top K bits are zero after rotation
7000   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
7001          "Only applicable for (in)equality comparisons.");
7002 
7003   SelectionDAG &DAG = DCI.DAG;
7004 
7005   EVT VT = REMNode.getValueType();
7006   EVT SVT = VT.getScalarType();
7007   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7008   EVT ShSVT = ShVT.getScalarType();
7009 
7010   // If we are after ops legalization, and MUL is unavailable, we can not
7011   // proceed.
7012   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
7013     return SDValue();
7014 
7015   // TODO: Could support comparing with non-zero too.
7016   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
7017   if (!CompTarget || !CompTarget->isZero())
7018     return SDValue();
7019 
7020   bool HadIntMinDivisor = false;
7021   bool HadOneDivisor = false;
7022   bool AllDivisorsAreOnes = true;
7023   bool HadEvenDivisor = false;
7024   bool NeedToApplyOffset = false;
7025   bool AllDivisorsArePowerOfTwo = true;
7026   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
7027 
7028   auto BuildSREMPattern = [&](ConstantSDNode *C) {
7029     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
7030     if (C->isZero())
7031       return false;
7032 
7033     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
7034 
7035     // WARNING: this fold is only valid for positive divisors!
7036     APInt D = C->getAPIntValue();
7037     if (D.isNegative())
7038       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
7039 
7040     HadIntMinDivisor |= D.isMinSignedValue();
7041 
7042     // If all divisors are ones, we will prefer to avoid the fold.
7043     HadOneDivisor |= D.isOne();
7044     AllDivisorsAreOnes &= D.isOne();
7045 
7046     // Decompose D into D0 * 2^K
7047     unsigned K = D.countr_zero();
7048     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
7049     APInt D0 = D.lshr(K);
7050 
7051     if (!D.isMinSignedValue()) {
7052       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
7053       // we don't care about this lane in this fold, we'll special-handle it.
7054       HadEvenDivisor |= (K != 0);
7055     }
7056 
7057     // D is a power-of-two if D0 is one. This includes INT_MIN.
7058     // If all divisors are power-of-two, we will prefer to avoid the fold.
7059     AllDivisorsArePowerOfTwo &= D0.isOne();
7060 
7061     // P = inv(D0, 2^W)
7062     // 2^W requires W + 1 bits, so we have to extend and then truncate.
7063     unsigned W = D.getBitWidth();
7064     APInt P = D0.multiplicativeInverse();
7065     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
7066 
7067     // A = floor((2^(W - 1) - 1) / D0) & -2^K
7068     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
7069     A.clearLowBits(K);
7070 
7071     if (!D.isMinSignedValue()) {
7072       // If divisor INT_MIN, then we don't care about this lane in this fold,
7073       // we'll special-handle it.
7074       NeedToApplyOffset |= A != 0;
7075     }
7076 
7077     // Q = floor((2 * A) / (2^K))
7078     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
7079 
7080     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
7081            "We are expecting that A is always less than all-ones for SVT");
7082     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
7083            "We are expecting that K is always less than all-ones for ShSVT");
7084 
7085     // If D was a power of two, apply the alternate constant derivation.
7086     if (D0.isOne()) {
7087       // A = 2^(W-1)
7088       A = APInt::getSignedMinValue(W);
7089       // - Q = 2^(W-K) - 1
7090       Q = APInt::getAllOnes(W - K).zext(W);
7091     }
7092 
7093     // If the divisor is 1 the result can be constant-folded. Likewise, we
7094     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
7095     if (D.isOne()) {
7096       // Set P, A and K to a bogus values so we can try to splat them.
7097       P = 0;
7098       A = -1;
7099       K = -1;
7100 
7101       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
7102       Q = -1;
7103     }
7104 
7105     PAmts.push_back(DAG.getConstant(P, DL, SVT));
7106     AAmts.push_back(DAG.getConstant(A, DL, SVT));
7107     KAmts.push_back(
7108         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K, /*isSigned=*/false,
7109                               /*implicitTrunc=*/true),
7110                         DL, ShSVT));
7111     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
7112     return true;
7113   };
7114 
7115   SDValue N = REMNode.getOperand(0);
7116   SDValue D = REMNode.getOperand(1);
7117 
7118   // Collect the values from each element.
7119   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
7120     return SDValue();
7121 
7122   // If this is a srem by a one, avoid the fold since it can be constant-folded.
7123   if (AllDivisorsAreOnes)
7124     return SDValue();
7125 
7126   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
7127   // since it can be best implemented as a bit test.
7128   if (AllDivisorsArePowerOfTwo)
7129     return SDValue();
7130 
7131   SDValue PVal, AVal, KVal, QVal;
7132   if (D.getOpcode() == ISD::BUILD_VECTOR) {
7133     if (HadOneDivisor) {
7134       // Try to turn PAmts into a splat, since we don't care about the values
7135       // that are currently '0'. If we can't, just keep '0'`s.
7136       turnVectorIntoSplatVector(PAmts, isNullConstant);
7137       // Try to turn AAmts into a splat, since we don't care about the
7138       // values that are currently '-1'. If we can't, change them to '0'`s.
7139       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
7140                                 DAG.getConstant(0, DL, SVT));
7141       // Try to turn KAmts into a splat, since we don't care about the values
7142       // that are currently '-1'. If we can't, change them to '0'`s.
7143       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
7144                                 DAG.getConstant(0, DL, ShSVT));
7145     }
7146 
7147     PVal = DAG.getBuildVector(VT, DL, PAmts);
7148     AVal = DAG.getBuildVector(VT, DL, AAmts);
7149     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
7150     QVal = DAG.getBuildVector(VT, DL, QAmts);
7151   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
7152     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
7153            QAmts.size() == 1 &&
7154            "Expected matchUnaryPredicate to return one element for scalable "
7155            "vectors");
7156     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
7157     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
7158     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
7159     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
7160   } else {
7161     assert(isa<ConstantSDNode>(D) && "Expected a constant");
7162     PVal = PAmts[0];
7163     AVal = AAmts[0];
7164     KVal = KAmts[0];
7165     QVal = QAmts[0];
7166   }
7167 
7168   // (mul N, P)
7169   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
7170   Created.push_back(Op0.getNode());
7171 
7172   if (NeedToApplyOffset) {
7173     // We need ADD to do this.
7174     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
7175       return SDValue();
7176 
7177     // (add (mul N, P), A)
7178     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
7179     Created.push_back(Op0.getNode());
7180   }
7181 
7182   // Rotate right only if any divisor was even. We avoid rotates for all-odd
7183   // divisors as a performance improvement, since rotating by 0 is a no-op.
7184   if (HadEvenDivisor) {
7185     // We need ROTR to do this.
7186     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
7187       return SDValue();
7188     // SREM: (rotr (add (mul N, P), A), K)
7189     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
7190     Created.push_back(Op0.getNode());
7191   }
7192 
7193   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
7194   SDValue Fold =
7195       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
7196                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
7197 
7198   // If we didn't have lanes with INT_MIN divisor, then we're done.
7199   if (!HadIntMinDivisor)
7200     return Fold;
7201 
7202   // That fold is only valid for positive divisors. Which effectively means,
7203   // it is invalid for INT_MIN divisors. So if we have such a lane,
7204   // we must fix-up results for said lanes.
7205   assert(VT.isVector() && "Can/should only get here for vectors.");
7206 
7207   // NOTE: we avoid letting illegal types through even if we're before legalize
7208   // ops – legalization has a hard time producing good code for the code that
7209   // follows.
7210   if (!isOperationLegalOrCustom(ISD::SETCC, SETCCVT) ||
7211       !isOperationLegalOrCustom(ISD::AND, VT) ||
7212       !isCondCodeLegalOrCustom(Cond, VT.getSimpleVT()) ||
7213       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
7214     return SDValue();
7215 
7216   Created.push_back(Fold.getNode());
7217 
7218   SDValue IntMin = DAG.getConstant(
7219       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
7220   SDValue IntMax = DAG.getConstant(
7221       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
7222   SDValue Zero =
7223       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
7224 
7225   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
7226   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
7227   Created.push_back(DivisorIsIntMin.getNode());
7228 
7229   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
7230   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
7231   Created.push_back(Masked.getNode());
7232   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
7233   Created.push_back(MaskedIsZero.getNode());
7234 
7235   // To produce final result we need to blend 2 vectors: 'SetCC' and
7236   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
7237   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
7238   // constant-folded, select can get lowered to a shuffle with constant mask.
7239   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
7240                                 MaskedIsZero, Fold);
7241 
7242   return Blended;
7243 }
7244 
7245 bool TargetLowering::
7246 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
7247   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
7248     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
7249                                 "be a constant integer");
7250     return true;
7251   }
7252 
7253   return false;
7254 }
7255 
7256 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
7257                                          const DenormalMode &Mode) const {
7258   SDLoc DL(Op);
7259   EVT VT = Op.getValueType();
7260   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7261   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
7262 
7263   // This is specifically a check for the handling of denormal inputs, not the
7264   // result.
7265   if (Mode.Input == DenormalMode::PreserveSign ||
7266       Mode.Input == DenormalMode::PositiveZero) {
7267     // Test = X == 0.0
7268     return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
7269   }
7270 
7271   // Testing it with denormal inputs to avoid wrong estimate.
7272   //
7273   // Test = fabs(X) < SmallestNormal
7274   const fltSemantics &FltSem = VT.getFltSemantics();
7275   APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
7276   SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
7277   SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
7278   return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
7279 }
7280 
7281 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
7282                                              bool LegalOps, bool OptForSize,
7283                                              NegatibleCost &Cost,
7284                                              unsigned Depth) const {
7285   // fneg is removable even if it has multiple uses.
7286   if (Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::VP_FNEG) {
7287     Cost = NegatibleCost::Cheaper;
7288     return Op.getOperand(0);
7289   }
7290 
7291   // Don't recurse exponentially.
7292   if (Depth > SelectionDAG::MaxRecursionDepth)
7293     return SDValue();
7294 
7295   // Pre-increment recursion depth for use in recursive calls.
7296   ++Depth;
7297   const SDNodeFlags Flags = Op->getFlags();
7298   const TargetOptions &Options = DAG.getTarget().Options;
7299   EVT VT = Op.getValueType();
7300   unsigned Opcode = Op.getOpcode();
7301 
7302   // Don't allow anything with multiple uses unless we know it is free.
7303   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
7304     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
7305                         isFPExtFree(VT, Op.getOperand(0).getValueType());
7306     if (!IsFreeExtend)
7307       return SDValue();
7308   }
7309 
7310   auto RemoveDeadNode = [&](SDValue N) {
7311     if (N && N.getNode()->use_empty())
7312       DAG.RemoveDeadNode(N.getNode());
7313   };
7314 
7315   SDLoc DL(Op);
7316 
7317   // Because getNegatedExpression can delete nodes we need a handle to keep
7318   // temporary nodes alive in case the recursion manages to create an identical
7319   // node.
7320   std::list<HandleSDNode> Handles;
7321 
7322   switch (Opcode) {
7323   case ISD::ConstantFP: {
7324     // Don't invert constant FP values after legalization unless the target says
7325     // the negated constant is legal.
7326     bool IsOpLegal =
7327         isOperationLegal(ISD::ConstantFP, VT) ||
7328         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
7329                      OptForSize);
7330 
7331     if (LegalOps && !IsOpLegal)
7332       break;
7333 
7334     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
7335     V.changeSign();
7336     SDValue CFP = DAG.getConstantFP(V, DL, VT);
7337 
7338     // If we already have the use of the negated floating constant, it is free
7339     // to negate it even it has multiple uses.
7340     if (!Op.hasOneUse() && CFP.use_empty())
7341       break;
7342     Cost = NegatibleCost::Neutral;
7343     return CFP;
7344   }
7345   case ISD::BUILD_VECTOR: {
7346     // Only permit BUILD_VECTOR of constants.
7347     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
7348           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
7349         }))
7350       break;
7351 
7352     bool IsOpLegal =
7353         (isOperationLegal(ISD::ConstantFP, VT) &&
7354          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
7355         llvm::all_of(Op->op_values(), [&](SDValue N) {
7356           return N.isUndef() ||
7357                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
7358                               OptForSize);
7359         });
7360 
7361     if (LegalOps && !IsOpLegal)
7362       break;
7363 
7364     SmallVector<SDValue, 4> Ops;
7365     for (SDValue C : Op->op_values()) {
7366       if (C.isUndef()) {
7367         Ops.push_back(C);
7368         continue;
7369       }
7370       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
7371       V.changeSign();
7372       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
7373     }
7374     Cost = NegatibleCost::Neutral;
7375     return DAG.getBuildVector(VT, DL, Ops);
7376   }
7377   case ISD::FADD: {
7378     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7379       break;
7380 
7381     // After operation legalization, it might not be legal to create new FSUBs.
7382     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
7383       break;
7384     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
7385 
7386     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
7387     NegatibleCost CostX = NegatibleCost::Expensive;
7388     SDValue NegX =
7389         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
7390     // Prevent this node from being deleted by the next call.
7391     if (NegX)
7392       Handles.emplace_back(NegX);
7393 
7394     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
7395     NegatibleCost CostY = NegatibleCost::Expensive;
7396     SDValue NegY =
7397         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
7398 
7399     // We're done with the handles.
7400     Handles.clear();
7401 
7402     // Negate the X if its cost is less or equal than Y.
7403     if (NegX && (CostX <= CostY)) {
7404       Cost = CostX;
7405       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
7406       if (NegY != N)
7407         RemoveDeadNode(NegY);
7408       return N;
7409     }
7410 
7411     // Negate the Y if it is not expensive.
7412     if (NegY) {
7413       Cost = CostY;
7414       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
7415       if (NegX != N)
7416         RemoveDeadNode(NegX);
7417       return N;
7418     }
7419     break;
7420   }
7421   case ISD::FSUB: {
7422     // We can't turn -(A-B) into B-A when we honor signed zeros.
7423     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7424       break;
7425 
7426     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
7427     // fold (fneg (fsub 0, Y)) -> Y
7428     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
7429       if (C->isZero()) {
7430         Cost = NegatibleCost::Cheaper;
7431         return Y;
7432       }
7433 
7434     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
7435     Cost = NegatibleCost::Neutral;
7436     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
7437   }
7438   case ISD::FMUL:
7439   case ISD::FDIV: {
7440     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
7441 
7442     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
7443     NegatibleCost CostX = NegatibleCost::Expensive;
7444     SDValue NegX =
7445         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
7446     // Prevent this node from being deleted by the next call.
7447     if (NegX)
7448       Handles.emplace_back(NegX);
7449 
7450     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
7451     NegatibleCost CostY = NegatibleCost::Expensive;
7452     SDValue NegY =
7453         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
7454 
7455     // We're done with the handles.
7456     Handles.clear();
7457 
7458     // Negate the X if its cost is less or equal than Y.
7459     if (NegX && (CostX <= CostY)) {
7460       Cost = CostX;
7461       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
7462       if (NegY != N)
7463         RemoveDeadNode(NegY);
7464       return N;
7465     }
7466 
7467     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
7468     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
7469       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
7470         break;
7471 
7472     // Negate the Y if it is not expensive.
7473     if (NegY) {
7474       Cost = CostY;
7475       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
7476       if (NegX != N)
7477         RemoveDeadNode(NegX);
7478       return N;
7479     }
7480     break;
7481   }
7482   case ISD::FMA:
7483   case ISD::FMAD: {
7484     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7485       break;
7486 
7487     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
7488     NegatibleCost CostZ = NegatibleCost::Expensive;
7489     SDValue NegZ =
7490         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
7491     // Give up if fail to negate the Z.
7492     if (!NegZ)
7493       break;
7494 
7495     // Prevent this node from being deleted by the next two calls.
7496     Handles.emplace_back(NegZ);
7497 
7498     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
7499     NegatibleCost CostX = NegatibleCost::Expensive;
7500     SDValue NegX =
7501         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
7502     // Prevent this node from being deleted by the next call.
7503     if (NegX)
7504       Handles.emplace_back(NegX);
7505 
7506     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
7507     NegatibleCost CostY = NegatibleCost::Expensive;
7508     SDValue NegY =
7509         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
7510 
7511     // We're done with the handles.
7512     Handles.clear();
7513 
7514     // Negate the X if its cost is less or equal than Y.
7515     if (NegX && (CostX <= CostY)) {
7516       Cost = std::min(CostX, CostZ);
7517       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
7518       if (NegY != N)
7519         RemoveDeadNode(NegY);
7520       return N;
7521     }
7522 
7523     // Negate the Y if it is not expensive.
7524     if (NegY) {
7525       Cost = std::min(CostY, CostZ);
7526       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
7527       if (NegX != N)
7528         RemoveDeadNode(NegX);
7529       return N;
7530     }
7531     break;
7532   }
7533 
7534   case ISD::FP_EXTEND:
7535   case ISD::FSIN:
7536     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
7537                                             OptForSize, Cost, Depth))
7538       return DAG.getNode(Opcode, DL, VT, NegV);
7539     break;
7540   case ISD::FP_ROUND:
7541     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
7542                                             OptForSize, Cost, Depth))
7543       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
7544     break;
7545   case ISD::SELECT:
7546   case ISD::VSELECT: {
7547     // fold (fneg (select C, LHS, RHS)) -> (select C, (fneg LHS), (fneg RHS))
7548     // iff at least one cost is cheaper and the other is neutral/cheaper
7549     SDValue LHS = Op.getOperand(1);
7550     NegatibleCost CostLHS = NegatibleCost::Expensive;
7551     SDValue NegLHS =
7552         getNegatedExpression(LHS, DAG, LegalOps, OptForSize, CostLHS, Depth);
7553     if (!NegLHS || CostLHS > NegatibleCost::Neutral) {
7554       RemoveDeadNode(NegLHS);
7555       break;
7556     }
7557 
7558     // Prevent this node from being deleted by the next call.
7559     Handles.emplace_back(NegLHS);
7560 
7561     SDValue RHS = Op.getOperand(2);
7562     NegatibleCost CostRHS = NegatibleCost::Expensive;
7563     SDValue NegRHS =
7564         getNegatedExpression(RHS, DAG, LegalOps, OptForSize, CostRHS, Depth);
7565 
7566     // We're done with the handles.
7567     Handles.clear();
7568 
7569     if (!NegRHS || CostRHS > NegatibleCost::Neutral ||
7570         (CostLHS != NegatibleCost::Cheaper &&
7571          CostRHS != NegatibleCost::Cheaper)) {
7572       RemoveDeadNode(NegLHS);
7573       RemoveDeadNode(NegRHS);
7574       break;
7575     }
7576 
7577     Cost = std::min(CostLHS, CostRHS);
7578     return DAG.getSelect(DL, VT, Op.getOperand(0), NegLHS, NegRHS);
7579   }
7580   }
7581 
7582   return SDValue();
7583 }
7584 
7585 //===----------------------------------------------------------------------===//
7586 // Legalization Utilities
7587 //===----------------------------------------------------------------------===//
7588 
7589 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
7590                                     SDValue LHS, SDValue RHS,
7591                                     SmallVectorImpl<SDValue> &Result,
7592                                     EVT HiLoVT, SelectionDAG &DAG,
7593                                     MulExpansionKind Kind, SDValue LL,
7594                                     SDValue LH, SDValue RL, SDValue RH) const {
7595   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
7596          Opcode == ISD::SMUL_LOHI);
7597 
7598   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
7599                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
7600   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
7601                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
7602   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
7603                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
7604   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
7605                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
7606 
7607   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
7608     return false;
7609 
7610   unsigned OuterBitSize = VT.getScalarSizeInBits();
7611   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
7612 
7613   // LL, LH, RL, and RH must be either all NULL or all set to a value.
7614   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
7615          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
7616 
7617   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
7618   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
7619                           bool Signed) -> bool {
7620     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
7621       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
7622       Hi = SDValue(Lo.getNode(), 1);
7623       return true;
7624     }
7625     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
7626       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
7627       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
7628       return true;
7629     }
7630     return false;
7631   };
7632 
7633   SDValue Lo, Hi;
7634 
7635   if (!LL.getNode() && !RL.getNode() &&
7636       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
7637     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
7638     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
7639   }
7640 
7641   if (!LL.getNode())
7642     return false;
7643 
7644   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
7645   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
7646       DAG.MaskedValueIsZero(RHS, HighMask)) {
7647     // The inputs are both zero-extended.
7648     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
7649       Result.push_back(Lo);
7650       Result.push_back(Hi);
7651       if (Opcode != ISD::MUL) {
7652         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
7653         Result.push_back(Zero);
7654         Result.push_back(Zero);
7655       }
7656       return true;
7657     }
7658   }
7659 
7660   if (!VT.isVector() && Opcode == ISD::MUL &&
7661       DAG.ComputeMaxSignificantBits(LHS) <= InnerBitSize &&
7662       DAG.ComputeMaxSignificantBits(RHS) <= InnerBitSize) {
7663     // The input values are both sign-extended.
7664     // TODO non-MUL case?
7665     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
7666       Result.push_back(Lo);
7667       Result.push_back(Hi);
7668       return true;
7669     }
7670   }
7671 
7672   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
7673   SDValue Shift = DAG.getShiftAmountConstant(ShiftAmount, VT, dl);
7674 
7675   if (!LH.getNode() && !RH.getNode() &&
7676       isOperationLegalOrCustom(ISD::SRL, VT) &&
7677       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
7678     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
7679     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
7680     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
7681     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
7682   }
7683 
7684   if (!LH.getNode())
7685     return false;
7686 
7687   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
7688     return false;
7689 
7690   Result.push_back(Lo);
7691 
7692   if (Opcode == ISD::MUL) {
7693     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
7694     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
7695     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
7696     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
7697     Result.push_back(Hi);
7698     return true;
7699   }
7700 
7701   // Compute the full width result.
7702   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
7703     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
7704     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7705     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
7706     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
7707   };
7708 
7709   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7710   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
7711     return false;
7712 
7713   // This is effectively the add part of a multiply-add of half-sized operands,
7714   // so it cannot overflow.
7715   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7716 
7717   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
7718     return false;
7719 
7720   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
7721   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7722 
7723   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
7724                   isOperationLegalOrCustom(ISD::ADDE, VT));
7725   if (UseGlue)
7726     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
7727                        Merge(Lo, Hi));
7728   else
7729     Next = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(VT, BoolType), Next,
7730                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
7731 
7732   SDValue Carry = Next.getValue(1);
7733   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7734   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7735 
7736   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
7737     return false;
7738 
7739   if (UseGlue)
7740     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
7741                      Carry);
7742   else
7743     Hi = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
7744                      Zero, Carry);
7745 
7746   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7747 
7748   if (Opcode == ISD::SMUL_LOHI) {
7749     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7750                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
7751     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
7752 
7753     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7754                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
7755     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
7756   }
7757 
7758   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7759   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7760   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7761   return true;
7762 }
7763 
7764 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
7765                                SelectionDAG &DAG, MulExpansionKind Kind,
7766                                SDValue LL, SDValue LH, SDValue RL,
7767                                SDValue RH) const {
7768   SmallVector<SDValue, 2> Result;
7769   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
7770                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
7771                            DAG, Kind, LL, LH, RL, RH);
7772   if (Ok) {
7773     assert(Result.size() == 2);
7774     Lo = Result[0];
7775     Hi = Result[1];
7776   }
7777   return Ok;
7778 }
7779 
7780 // Optimize unsigned division or remainder by constants for types twice as large
7781 // as a legal VT.
7782 //
7783 // If (1 << (BitWidth / 2)) % Constant == 1, then the remainder
7784 // can be computed
7785 // as:
7786 //   Sum += __builtin_uadd_overflow(Lo, High, &Sum);
7787 //   Remainder = Sum % Constant
7788 // This is based on "Remainder by Summing Digits" from Hacker's Delight.
7789 //
7790 // For division, we can compute the remainder using the algorithm described
7791 // above, subtract it from the dividend to get an exact multiple of Constant.
7792 // Then multiply that exact multiply by the multiplicative inverse modulo
7793 // (1 << (BitWidth / 2)) to get the quotient.
7794 
7795 // If Constant is even, we can shift right the dividend and the divisor by the
7796 // number of trailing zeros in Constant before applying the remainder algorithm.
7797 // If we're after the quotient, we can subtract this value from the shifted
7798 // dividend and multiply by the multiplicative inverse of the shifted divisor.
7799 // If we want the remainder, we shift the value left by the number of trailing
7800 // zeros and add the bits that were shifted out of the dividend.
7801 bool TargetLowering::expandDIVREMByConstant(SDNode *N,
7802                                             SmallVectorImpl<SDValue> &Result,
7803                                             EVT HiLoVT, SelectionDAG &DAG,
7804                                             SDValue LL, SDValue LH) const {
7805   unsigned Opcode = N->getOpcode();
7806   EVT VT = N->getValueType(0);
7807 
7808   // TODO: Support signed division/remainder.
7809   if (Opcode == ISD::SREM || Opcode == ISD::SDIV || Opcode == ISD::SDIVREM)
7810     return false;
7811   assert(
7812       (Opcode == ISD::UREM || Opcode == ISD::UDIV || Opcode == ISD::UDIVREM) &&
7813       "Unexpected opcode");
7814 
7815   auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(1));
7816   if (!CN)
7817     return false;
7818 
7819   APInt Divisor = CN->getAPIntValue();
7820   unsigned BitWidth = Divisor.getBitWidth();
7821   unsigned HBitWidth = BitWidth / 2;
7822   assert(VT.getScalarSizeInBits() == BitWidth &&
7823          HiLoVT.getScalarSizeInBits() == HBitWidth && "Unexpected VTs");
7824 
7825   // Divisor needs to less than (1 << HBitWidth).
7826   APInt HalfMaxPlus1 = APInt::getOneBitSet(BitWidth, HBitWidth);
7827   if (Divisor.uge(HalfMaxPlus1))
7828     return false;
7829 
7830   // We depend on the UREM by constant optimization in DAGCombiner that requires
7831   // high multiply.
7832   if (!isOperationLegalOrCustom(ISD::MULHU, HiLoVT) &&
7833       !isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT))
7834     return false;
7835 
7836   // Don't expand if optimizing for size.
7837   if (DAG.shouldOptForSize())
7838     return false;
7839 
7840   // Early out for 0 or 1 divisors.
7841   if (Divisor.ule(1))
7842     return false;
7843 
7844   // If the divisor is even, shift it until it becomes odd.
7845   unsigned TrailingZeros = 0;
7846   if (!Divisor[0]) {
7847     TrailingZeros = Divisor.countr_zero();
7848     Divisor.lshrInPlace(TrailingZeros);
7849   }
7850 
7851   SDLoc dl(N);
7852   SDValue Sum;
7853   SDValue PartialRem;
7854 
7855   // If (1 << HBitWidth) % divisor == 1, we can add the two halves together and
7856   // then add in the carry.
7857   // TODO: If we can't split it in half, we might be able to split into 3 or
7858   // more pieces using a smaller bit width.
7859   if (HalfMaxPlus1.urem(Divisor).isOne()) {
7860     assert(!LL == !LH && "Expected both input halves or no input halves!");
7861     if (!LL)
7862       std::tie(LL, LH) = DAG.SplitScalar(N->getOperand(0), dl, HiLoVT, HiLoVT);
7863 
7864     // Shift the input by the number of TrailingZeros in the divisor. The
7865     // shifted out bits will be added to the remainder later.
7866     if (TrailingZeros) {
7867       // Save the shifted off bits if we need the remainder.
7868       if (Opcode != ISD::UDIV) {
7869         APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros);
7870         PartialRem = DAG.getNode(ISD::AND, dl, HiLoVT, LL,
7871                                  DAG.getConstant(Mask, dl, HiLoVT));
7872       }
7873 
7874       LL = DAG.getNode(
7875           ISD::OR, dl, HiLoVT,
7876           DAG.getNode(ISD::SRL, dl, HiLoVT, LL,
7877                       DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)),
7878           DAG.getNode(ISD::SHL, dl, HiLoVT, LH,
7879                       DAG.getShiftAmountConstant(HBitWidth - TrailingZeros,
7880                                                  HiLoVT, dl)));
7881       LH = DAG.getNode(ISD::SRL, dl, HiLoVT, LH,
7882                        DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl));
7883     }
7884 
7885     // Use uaddo_carry if we can, otherwise use a compare to detect overflow.
7886     EVT SetCCType =
7887         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), HiLoVT);
7888     if (isOperationLegalOrCustom(ISD::UADDO_CARRY, HiLoVT)) {
7889       SDVTList VTList = DAG.getVTList(HiLoVT, SetCCType);
7890       Sum = DAG.getNode(ISD::UADDO, dl, VTList, LL, LH);
7891       Sum = DAG.getNode(ISD::UADDO_CARRY, dl, VTList, Sum,
7892                         DAG.getConstant(0, dl, HiLoVT), Sum.getValue(1));
7893     } else {
7894       Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, LL, LH);
7895       SDValue Carry = DAG.getSetCC(dl, SetCCType, Sum, LL, ISD::SETULT);
7896       // If the boolean for the target is 0 or 1, we can add the setcc result
7897       // directly.
7898       if (getBooleanContents(HiLoVT) ==
7899           TargetLoweringBase::ZeroOrOneBooleanContent)
7900         Carry = DAG.getZExtOrTrunc(Carry, dl, HiLoVT);
7901       else
7902         Carry = DAG.getSelect(dl, HiLoVT, Carry, DAG.getConstant(1, dl, HiLoVT),
7903                               DAG.getConstant(0, dl, HiLoVT));
7904       Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, Sum, Carry);
7905     }
7906   }
7907 
7908   // If we didn't find a sum, we can't do the expansion.
7909   if (!Sum)
7910     return false;
7911 
7912   // Perform a HiLoVT urem on the Sum using truncated divisor.
7913   SDValue RemL =
7914       DAG.getNode(ISD::UREM, dl, HiLoVT, Sum,
7915                   DAG.getConstant(Divisor.trunc(HBitWidth), dl, HiLoVT));
7916   SDValue RemH = DAG.getConstant(0, dl, HiLoVT);
7917 
7918   if (Opcode != ISD::UREM) {
7919     // Subtract the remainder from the shifted dividend.
7920     SDValue Dividend = DAG.getNode(ISD::BUILD_PAIR, dl, VT, LL, LH);
7921     SDValue Rem = DAG.getNode(ISD::BUILD_PAIR, dl, VT, RemL, RemH);
7922 
7923     Dividend = DAG.getNode(ISD::SUB, dl, VT, Dividend, Rem);
7924 
7925     // Multiply by the multiplicative inverse of the divisor modulo
7926     // (1 << BitWidth).
7927     APInt MulFactor = Divisor.multiplicativeInverse();
7928 
7929     SDValue Quotient = DAG.getNode(ISD::MUL, dl, VT, Dividend,
7930                                    DAG.getConstant(MulFactor, dl, VT));
7931 
7932     // Split the quotient into low and high parts.
7933     SDValue QuotL, QuotH;
7934     std::tie(QuotL, QuotH) = DAG.SplitScalar(Quotient, dl, HiLoVT, HiLoVT);
7935     Result.push_back(QuotL);
7936     Result.push_back(QuotH);
7937   }
7938 
7939   if (Opcode != ISD::UDIV) {
7940     // If we shifted the input, shift the remainder left and add the bits we
7941     // shifted off the input.
7942     if (TrailingZeros) {
7943       APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros);
7944       RemL = DAG.getNode(ISD::SHL, dl, HiLoVT, RemL,
7945                          DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl));
7946       RemL = DAG.getNode(ISD::ADD, dl, HiLoVT, RemL, PartialRem);
7947     }
7948     Result.push_back(RemL);
7949     Result.push_back(DAG.getConstant(0, dl, HiLoVT));
7950   }
7951 
7952   return true;
7953 }
7954 
7955 // Check that (every element of) Z is undef or not an exact multiple of BW.
7956 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
7957   return ISD::matchUnaryPredicate(
7958       Z,
7959       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
7960       true);
7961 }
7962 
7963 static SDValue expandVPFunnelShift(SDNode *Node, SelectionDAG &DAG) {
7964   EVT VT = Node->getValueType(0);
7965   SDValue ShX, ShY;
7966   SDValue ShAmt, InvShAmt;
7967   SDValue X = Node->getOperand(0);
7968   SDValue Y = Node->getOperand(1);
7969   SDValue Z = Node->getOperand(2);
7970   SDValue Mask = Node->getOperand(3);
7971   SDValue VL = Node->getOperand(4);
7972 
7973   unsigned BW = VT.getScalarSizeInBits();
7974   bool IsFSHL = Node->getOpcode() == ISD::VP_FSHL;
7975   SDLoc DL(SDValue(Node, 0));
7976 
7977   EVT ShVT = Z.getValueType();
7978   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7979     // fshl: X << C | Y >> (BW - C)
7980     // fshr: X << (BW - C) | Y >> C
7981     // where C = Z % BW is not zero
7982     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7983     ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL);
7984     InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitWidthC, ShAmt, Mask, VL);
7985     ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt, Mask,
7986                       VL);
7987     ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt, Mask,
7988                       VL);
7989   } else {
7990     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
7991     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
7992     SDValue BitMask = DAG.getConstant(BW - 1, DL, ShVT);
7993     if (isPowerOf2_32(BW)) {
7994       // Z % BW -> Z & (BW - 1)
7995       ShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, Z, BitMask, Mask, VL);
7996       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
7997       SDValue NotZ = DAG.getNode(ISD::VP_XOR, DL, ShVT, Z,
7998                                  DAG.getAllOnesConstant(DL, ShVT), Mask, VL);
7999       InvShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, NotZ, BitMask, Mask, VL);
8000     } else {
8001       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
8002       ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL);
8003       InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitMask, ShAmt, Mask, VL);
8004     }
8005 
8006     SDValue One = DAG.getConstant(1, DL, ShVT);
8007     if (IsFSHL) {
8008       ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, ShAmt, Mask, VL);
8009       SDValue ShY1 = DAG.getNode(ISD::VP_SRL, DL, VT, Y, One, Mask, VL);
8010       ShY = DAG.getNode(ISD::VP_SRL, DL, VT, ShY1, InvShAmt, Mask, VL);
8011     } else {
8012       SDValue ShX1 = DAG.getNode(ISD::VP_SHL, DL, VT, X, One, Mask, VL);
8013       ShX = DAG.getNode(ISD::VP_SHL, DL, VT, ShX1, InvShAmt, Mask, VL);
8014       ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, ShAmt, Mask, VL);
8015     }
8016   }
8017   return DAG.getNode(ISD::VP_OR, DL, VT, ShX, ShY, Mask, VL);
8018 }
8019 
8020 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
8021                                           SelectionDAG &DAG) const {
8022   if (Node->isVPOpcode())
8023     return expandVPFunnelShift(Node, DAG);
8024 
8025   EVT VT = Node->getValueType(0);
8026 
8027   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
8028                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
8029                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
8030                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
8031     return SDValue();
8032 
8033   SDValue X = Node->getOperand(0);
8034   SDValue Y = Node->getOperand(1);
8035   SDValue Z = Node->getOperand(2);
8036 
8037   unsigned BW = VT.getScalarSizeInBits();
8038   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
8039   SDLoc DL(SDValue(Node, 0));
8040 
8041   EVT ShVT = Z.getValueType();
8042 
8043   // If a funnel shift in the other direction is more supported, use it.
8044   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
8045   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
8046       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
8047     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
8048       // fshl X, Y, Z -> fshr X, Y, -Z
8049       // fshr X, Y, Z -> fshl X, Y, -Z
8050       SDValue Zero = DAG.getConstant(0, DL, ShVT);
8051       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
8052     } else {
8053       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
8054       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
8055       SDValue One = DAG.getConstant(1, DL, ShVT);
8056       if (IsFSHL) {
8057         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
8058         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
8059       } else {
8060         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
8061         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
8062       }
8063       Z = DAG.getNOT(DL, Z, ShVT);
8064     }
8065     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
8066   }
8067 
8068   SDValue ShX, ShY;
8069   SDValue ShAmt, InvShAmt;
8070   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
8071     // fshl: X << C | Y >> (BW - C)
8072     // fshr: X << (BW - C) | Y >> C
8073     // where C = Z % BW is not zero
8074     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
8075     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
8076     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
8077     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
8078     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
8079   } else {
8080     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
8081     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
8082     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
8083     if (isPowerOf2_32(BW)) {
8084       // Z % BW -> Z & (BW - 1)
8085       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
8086       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
8087       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
8088     } else {
8089       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
8090       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
8091       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
8092     }
8093 
8094     SDValue One = DAG.getConstant(1, DL, ShVT);
8095     if (IsFSHL) {
8096       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
8097       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
8098       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
8099     } else {
8100       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
8101       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
8102       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
8103     }
8104   }
8105   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
8106 }
8107 
8108 // TODO: Merge with expandFunnelShift.
8109 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
8110                                   SelectionDAG &DAG) const {
8111   EVT VT = Node->getValueType(0);
8112   unsigned EltSizeInBits = VT.getScalarSizeInBits();
8113   bool IsLeft = Node->getOpcode() == ISD::ROTL;
8114   SDValue Op0 = Node->getOperand(0);
8115   SDValue Op1 = Node->getOperand(1);
8116   SDLoc DL(SDValue(Node, 0));
8117 
8118   EVT ShVT = Op1.getValueType();
8119   SDValue Zero = DAG.getConstant(0, DL, ShVT);
8120 
8121   // If a rotate in the other direction is more supported, use it.
8122   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
8123   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
8124       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
8125     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
8126     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
8127   }
8128 
8129   if (!AllowVectorOps && VT.isVector() &&
8130       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
8131        !isOperationLegalOrCustom(ISD::SRL, VT) ||
8132        !isOperationLegalOrCustom(ISD::SUB, VT) ||
8133        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
8134        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
8135     return SDValue();
8136 
8137   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
8138   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
8139   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
8140   SDValue ShVal;
8141   SDValue HsVal;
8142   if (isPowerOf2_32(EltSizeInBits)) {
8143     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
8144     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
8145     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
8146     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
8147     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
8148     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
8149     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
8150   } else {
8151     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
8152     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
8153     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
8154     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
8155     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
8156     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
8157     SDValue One = DAG.getConstant(1, DL, ShVT);
8158     HsVal =
8159         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
8160   }
8161   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
8162 }
8163 
8164 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
8165                                       SelectionDAG &DAG) const {
8166   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
8167   EVT VT = Node->getValueType(0);
8168   unsigned VTBits = VT.getScalarSizeInBits();
8169   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
8170 
8171   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
8172   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
8173   SDValue ShOpLo = Node->getOperand(0);
8174   SDValue ShOpHi = Node->getOperand(1);
8175   SDValue ShAmt = Node->getOperand(2);
8176   EVT ShAmtVT = ShAmt.getValueType();
8177   EVT ShAmtCCVT =
8178       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
8179   SDLoc dl(Node);
8180 
8181   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
8182   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
8183   // away during isel.
8184   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
8185                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
8186   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
8187                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
8188                        : DAG.getConstant(0, dl, VT);
8189 
8190   SDValue Tmp2, Tmp3;
8191   if (IsSHL) {
8192     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
8193     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
8194   } else {
8195     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
8196     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
8197   }
8198 
8199   // If the shift amount is larger or equal than the width of a part we don't
8200   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
8201   // values for large shift amounts.
8202   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
8203                                 DAG.getConstant(VTBits, dl, ShAmtVT));
8204   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
8205                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
8206 
8207   if (IsSHL) {
8208     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
8209     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
8210   } else {
8211     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
8212     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
8213   }
8214 }
8215 
8216 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
8217                                       SelectionDAG &DAG) const {
8218   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
8219   SDValue Src = Node->getOperand(OpNo);
8220   EVT SrcVT = Src.getValueType();
8221   EVT DstVT = Node->getValueType(0);
8222   SDLoc dl(SDValue(Node, 0));
8223 
8224   // FIXME: Only f32 to i64 conversions are supported.
8225   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
8226     return false;
8227 
8228   if (Node->isStrictFPOpcode())
8229     // When a NaN is converted to an integer a trap is allowed. We can't
8230     // use this expansion here because it would eliminate that trap. Other
8231     // traps are also allowed and cannot be eliminated. See
8232     // IEEE 754-2008 sec 5.8.
8233     return false;
8234 
8235   // Expand f32 -> i64 conversion
8236   // This algorithm comes from compiler-rt's implementation of fixsfdi:
8237   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
8238   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
8239   EVT IntVT = SrcVT.changeTypeToInteger();
8240   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
8241 
8242   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
8243   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
8244   SDValue Bias = DAG.getConstant(127, dl, IntVT);
8245   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
8246   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
8247   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
8248 
8249   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
8250 
8251   SDValue ExponentBits = DAG.getNode(
8252       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
8253       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
8254   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
8255 
8256   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
8257                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
8258                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
8259   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
8260 
8261   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
8262                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
8263                           DAG.getConstant(0x00800000, dl, IntVT));
8264 
8265   R = DAG.getZExtOrTrunc(R, dl, DstVT);
8266 
8267   R = DAG.getSelectCC(
8268       dl, Exponent, ExponentLoBit,
8269       DAG.getNode(ISD::SHL, dl, DstVT, R,
8270                   DAG.getZExtOrTrunc(
8271                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
8272                       dl, IntShVT)),
8273       DAG.getNode(ISD::SRL, dl, DstVT, R,
8274                   DAG.getZExtOrTrunc(
8275                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
8276                       dl, IntShVT)),
8277       ISD::SETGT);
8278 
8279   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
8280                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
8281 
8282   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
8283                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
8284   return true;
8285 }
8286 
8287 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
8288                                       SDValue &Chain,
8289                                       SelectionDAG &DAG) const {
8290   SDLoc dl(SDValue(Node, 0));
8291   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
8292   SDValue Src = Node->getOperand(OpNo);
8293 
8294   EVT SrcVT = Src.getValueType();
8295   EVT DstVT = Node->getValueType(0);
8296   EVT SetCCVT =
8297       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
8298   EVT DstSetCCVT =
8299       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
8300 
8301   // Only expand vector types if we have the appropriate vector bit operations.
8302   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
8303                                                    ISD::FP_TO_SINT;
8304   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
8305                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
8306     return false;
8307 
8308   // If the maximum float value is smaller then the signed integer range,
8309   // the destination signmask can't be represented by the float, so we can
8310   // just use FP_TO_SINT directly.
8311   const fltSemantics &APFSem = SrcVT.getFltSemantics();
8312   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
8313   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
8314   if (APFloat::opOverflow &
8315       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
8316     if (Node->isStrictFPOpcode()) {
8317       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
8318                            { Node->getOperand(0), Src });
8319       Chain = Result.getValue(1);
8320     } else
8321       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
8322     return true;
8323   }
8324 
8325   // Don't expand it if there isn't cheap fsub instruction.
8326   if (!isOperationLegalOrCustom(
8327           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
8328     return false;
8329 
8330   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
8331   SDValue Sel;
8332 
8333   if (Node->isStrictFPOpcode()) {
8334     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
8335                        Node->getOperand(0), /*IsSignaling*/ true);
8336     Chain = Sel.getValue(1);
8337   } else {
8338     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
8339   }
8340 
8341   bool Strict = Node->isStrictFPOpcode() ||
8342                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
8343 
8344   if (Strict) {
8345     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
8346     // signmask then offset (the result of which should be fully representable).
8347     // Sel = Src < 0x8000000000000000
8348     // FltOfs = select Sel, 0, 0x8000000000000000
8349     // IntOfs = select Sel, 0, 0x8000000000000000
8350     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
8351 
8352     // TODO: Should any fast-math-flags be set for the FSUB?
8353     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
8354                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
8355     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8356     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
8357                                    DAG.getConstant(0, dl, DstVT),
8358                                    DAG.getConstant(SignMask, dl, DstVT));
8359     SDValue SInt;
8360     if (Node->isStrictFPOpcode()) {
8361       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
8362                                 { Chain, Src, FltOfs });
8363       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
8364                          { Val.getValue(1), Val });
8365       Chain = SInt.getValue(1);
8366     } else {
8367       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
8368       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
8369     }
8370     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
8371   } else {
8372     // Expand based on maximum range of FP_TO_SINT:
8373     // True = fp_to_sint(Src)
8374     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
8375     // Result = select (Src < 0x8000000000000000), True, False
8376 
8377     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
8378     // TODO: Should any fast-math-flags be set for the FSUB?
8379     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
8380                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
8381     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
8382                         DAG.getConstant(SignMask, dl, DstVT));
8383     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8384     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
8385   }
8386   return true;
8387 }
8388 
8389 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
8390                                       SDValue &Chain, SelectionDAG &DAG) const {
8391   // This transform is not correct for converting 0 when rounding mode is set
8392   // to round toward negative infinity which will produce -0.0. So disable
8393   // under strictfp.
8394   if (Node->isStrictFPOpcode())
8395     return false;
8396 
8397   SDValue Src = Node->getOperand(0);
8398   EVT SrcVT = Src.getValueType();
8399   EVT DstVT = Node->getValueType(0);
8400 
8401   // If the input is known to be non-negative and SINT_TO_FP is legal then use
8402   // it.
8403   if (Node->getFlags().hasNonNeg() &&
8404       isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT)) {
8405     Result =
8406         DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), DstVT, Node->getOperand(0));
8407     return true;
8408   }
8409 
8410   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
8411     return false;
8412 
8413   // Only expand vector types if we have the appropriate vector bit
8414   // operations.
8415   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
8416                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
8417                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
8418                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
8419                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
8420     return false;
8421 
8422   SDLoc dl(SDValue(Node, 0));
8423   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
8424 
8425   // Implementation of unsigned i64 to f64 following the algorithm in
8426   // __floatundidf in compiler_rt.  This implementation performs rounding
8427   // correctly in all rounding modes with the exception of converting 0
8428   // when rounding toward negative infinity. In that case the fsub will
8429   // produce -0.0. This will be added to +0.0 and produce -0.0 which is
8430   // incorrect.
8431   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
8432   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
8433       llvm::bit_cast<double>(UINT64_C(0x4530000000100000)), dl, DstVT);
8434   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
8435   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
8436   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
8437 
8438   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
8439   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
8440   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
8441   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
8442   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
8443   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
8444   SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
8445   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
8446   return true;
8447 }
8448 
8449 SDValue
8450 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node,
8451                                                SelectionDAG &DAG) const {
8452   unsigned Opcode = Node->getOpcode();
8453   assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
8454           Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) &&
8455          "Wrong opcode");
8456 
8457   if (Node->getFlags().hasNoNaNs()) {
8458     ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
8459     EVT VT = Node->getValueType(0);
8460     if ((!isCondCodeLegal(Pred, VT.getSimpleVT()) ||
8461          !isOperationLegalOrCustom(ISD::VSELECT, VT)) &&
8462         VT.isVector())
8463       return SDValue();
8464     SDValue Op1 = Node->getOperand(0);
8465     SDValue Op2 = Node->getOperand(1);
8466     SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred);
8467     // Copy FMF flags, but always set the no-signed-zeros flag
8468     // as this is implied by the FMINNUM/FMAXNUM semantics.
8469     SelCC->setFlags(Node->getFlags() | SDNodeFlags::NoSignedZeros);
8470     return SelCC;
8471   }
8472 
8473   return SDValue();
8474 }
8475 
8476 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
8477                                               SelectionDAG &DAG) const {
8478   if (SDValue Expanded = expandVectorNaryOpBySplitting(Node, DAG))
8479     return Expanded;
8480 
8481   EVT VT = Node->getValueType(0);
8482   if (VT.isScalableVector())
8483     report_fatal_error(
8484         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
8485 
8486   SDLoc dl(Node);
8487   unsigned NewOp =
8488       Node->getOpcode() == ISD::FMINNUM ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
8489 
8490   if (isOperationLegalOrCustom(NewOp, VT)) {
8491     SDValue Quiet0 = Node->getOperand(0);
8492     SDValue Quiet1 = Node->getOperand(1);
8493 
8494     if (!Node->getFlags().hasNoNaNs()) {
8495       // Insert canonicalizes if it's possible we need to quiet to get correct
8496       // sNaN behavior.
8497       if (!DAG.isKnownNeverSNaN(Quiet0)) {
8498         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
8499                              Node->getFlags());
8500       }
8501       if (!DAG.isKnownNeverSNaN(Quiet1)) {
8502         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
8503                              Node->getFlags());
8504       }
8505     }
8506 
8507     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
8508   }
8509 
8510   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
8511   // instead if there are no NaNs and there can't be an incompatible zero
8512   // compare: at least one operand isn't +/-0, or there are no signed-zeros.
8513   if ((Node->getFlags().hasNoNaNs() ||
8514        (DAG.isKnownNeverNaN(Node->getOperand(0)) &&
8515         DAG.isKnownNeverNaN(Node->getOperand(1)))) &&
8516       (Node->getFlags().hasNoSignedZeros() ||
8517        DAG.isKnownNeverZeroFloat(Node->getOperand(0)) ||
8518        DAG.isKnownNeverZeroFloat(Node->getOperand(1)))) {
8519     unsigned IEEE2018Op =
8520         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
8521     if (isOperationLegalOrCustom(IEEE2018Op, VT))
8522       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
8523                          Node->getOperand(1), Node->getFlags());
8524   }
8525 
8526   if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG))
8527     return SelCC;
8528 
8529   return SDValue();
8530 }
8531 
8532 SDValue TargetLowering::expandFMINIMUM_FMAXIMUM(SDNode *N,
8533                                                 SelectionDAG &DAG) const {
8534   if (SDValue Expanded = expandVectorNaryOpBySplitting(N, DAG))
8535     return Expanded;
8536 
8537   SDLoc DL(N);
8538   SDValue LHS = N->getOperand(0);
8539   SDValue RHS = N->getOperand(1);
8540   unsigned Opc = N->getOpcode();
8541   EVT VT = N->getValueType(0);
8542   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8543   bool IsMax = Opc == ISD::FMAXIMUM;
8544   SDNodeFlags Flags = N->getFlags();
8545 
8546   // First, implement comparison not propagating NaN. If no native fmin or fmax
8547   // available, use plain select with setcc instead.
8548   SDValue MinMax;
8549   unsigned CompOpcIeee = IsMax ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE;
8550   unsigned CompOpc = IsMax ? ISD::FMAXNUM : ISD::FMINNUM;
8551 
8552   // FIXME: We should probably define fminnum/fmaxnum variants with correct
8553   // signed zero behavior.
8554   bool MinMaxMustRespectOrderedZero = false;
8555 
8556   if (isOperationLegalOrCustom(CompOpcIeee, VT)) {
8557     MinMax = DAG.getNode(CompOpcIeee, DL, VT, LHS, RHS, Flags);
8558     MinMaxMustRespectOrderedZero = true;
8559   } else if (isOperationLegalOrCustom(CompOpc, VT)) {
8560     MinMax = DAG.getNode(CompOpc, DL, VT, LHS, RHS, Flags);
8561   } else {
8562     if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8563       return DAG.UnrollVectorOp(N);
8564 
8565     // NaN (if exists) will be propagated later, so orderness doesn't matter.
8566     SDValue Compare =
8567         DAG.getSetCC(DL, CCVT, LHS, RHS, IsMax ? ISD::SETOGT : ISD::SETOLT);
8568     MinMax = DAG.getSelect(DL, VT, Compare, LHS, RHS, Flags);
8569   }
8570 
8571   // Propagate any NaN of both operands
8572   if (!N->getFlags().hasNoNaNs() &&
8573       (!DAG.isKnownNeverNaN(RHS) || !DAG.isKnownNeverNaN(LHS))) {
8574     ConstantFP *FPNaN = ConstantFP::get(*DAG.getContext(),
8575                                         APFloat::getNaN(VT.getFltSemantics()));
8576     MinMax = DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, LHS, RHS, ISD::SETUO),
8577                            DAG.getConstantFP(*FPNaN, DL, VT), MinMax, Flags);
8578   }
8579 
8580   // fminimum/fmaximum requires -0.0 less than +0.0
8581   if (!MinMaxMustRespectOrderedZero && !N->getFlags().hasNoSignedZeros() &&
8582       !DAG.isKnownNeverZeroFloat(RHS) && !DAG.isKnownNeverZeroFloat(LHS)) {
8583     SDValue IsZero = DAG.getSetCC(DL, CCVT, MinMax,
8584                                   DAG.getConstantFP(0.0, DL, VT), ISD::SETOEQ);
8585     SDValue TestZero =
8586         DAG.getTargetConstant(IsMax ? fcPosZero : fcNegZero, DL, MVT::i32);
8587     SDValue LCmp = DAG.getSelect(
8588         DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, LHS, TestZero), LHS,
8589         MinMax, Flags);
8590     SDValue RCmp = DAG.getSelect(
8591         DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, RHS, TestZero), RHS,
8592         LCmp, Flags);
8593     MinMax = DAG.getSelect(DL, VT, IsZero, RCmp, MinMax, Flags);
8594   }
8595 
8596   return MinMax;
8597 }
8598 
8599 SDValue TargetLowering::expandFMINIMUMNUM_FMAXIMUMNUM(SDNode *Node,
8600                                                       SelectionDAG &DAG) const {
8601   SDLoc DL(Node);
8602   SDValue LHS = Node->getOperand(0);
8603   SDValue RHS = Node->getOperand(1);
8604   unsigned Opc = Node->getOpcode();
8605   EVT VT = Node->getValueType(0);
8606   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8607   bool IsMax = Opc == ISD::FMAXIMUMNUM;
8608   const TargetOptions &Options = DAG.getTarget().Options;
8609   SDNodeFlags Flags = Node->getFlags();
8610 
8611   unsigned NewOp =
8612       Opc == ISD::FMINIMUMNUM ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
8613 
8614   if (isOperationLegalOrCustom(NewOp, VT)) {
8615     if (!Flags.hasNoNaNs()) {
8616       // Insert canonicalizes if it's possible we need to quiet to get correct
8617       // sNaN behavior.
8618       if (!DAG.isKnownNeverSNaN(LHS)) {
8619         LHS = DAG.getNode(ISD::FCANONICALIZE, DL, VT, LHS, Flags);
8620       }
8621       if (!DAG.isKnownNeverSNaN(RHS)) {
8622         RHS = DAG.getNode(ISD::FCANONICALIZE, DL, VT, RHS, Flags);
8623       }
8624     }
8625 
8626     return DAG.getNode(NewOp, DL, VT, LHS, RHS, Flags);
8627   }
8628 
8629   // We can use FMINIMUM/FMAXIMUM if there is no NaN, since it has
8630   // same behaviors for all of other cases: +0.0 vs -0.0 included.
8631   if (Flags.hasNoNaNs() ||
8632       (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS))) {
8633     unsigned IEEE2019Op =
8634         Opc == ISD::FMINIMUMNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
8635     if (isOperationLegalOrCustom(IEEE2019Op, VT))
8636       return DAG.getNode(IEEE2019Op, DL, VT, LHS, RHS, Flags);
8637   }
8638 
8639   // FMINNUM/FMAXMUM returns qNaN if either operand is sNaN, and it may return
8640   // either one for +0.0 vs -0.0.
8641   if ((Flags.hasNoNaNs() ||
8642        (DAG.isKnownNeverSNaN(LHS) && DAG.isKnownNeverSNaN(RHS))) &&
8643       (Flags.hasNoSignedZeros() || DAG.isKnownNeverZeroFloat(LHS) ||
8644        DAG.isKnownNeverZeroFloat(RHS))) {
8645     unsigned IEEE2008Op = Opc == ISD::FMINIMUMNUM ? ISD::FMINNUM : ISD::FMAXNUM;
8646     if (isOperationLegalOrCustom(IEEE2008Op, VT))
8647       return DAG.getNode(IEEE2008Op, DL, VT, LHS, RHS, Flags);
8648   }
8649 
8650   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8651     return DAG.UnrollVectorOp(Node);
8652 
8653   // If only one operand is NaN, override it with another operand.
8654   if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(LHS)) {
8655     LHS = DAG.getSelectCC(DL, LHS, LHS, RHS, LHS, ISD::SETUO);
8656   }
8657   if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(RHS)) {
8658     RHS = DAG.getSelectCC(DL, RHS, RHS, LHS, RHS, ISD::SETUO);
8659   }
8660 
8661   SDValue MinMax =
8662       DAG.getSelectCC(DL, LHS, RHS, LHS, RHS, IsMax ? ISD::SETGT : ISD::SETLT);
8663   // If MinMax is NaN, let's quiet it.
8664   if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(LHS) &&
8665       !DAG.isKnownNeverNaN(RHS)) {
8666     MinMax = DAG.getNode(ISD::FCANONICALIZE, DL, VT, MinMax, Flags);
8667   }
8668 
8669   // Fixup signed zero behavior.
8670   if (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros() ||
8671       DAG.isKnownNeverZeroFloat(LHS) || DAG.isKnownNeverZeroFloat(RHS)) {
8672     return MinMax;
8673   }
8674   SDValue TestZero =
8675       DAG.getTargetConstant(IsMax ? fcPosZero : fcNegZero, DL, MVT::i32);
8676   SDValue IsZero = DAG.getSetCC(DL, CCVT, MinMax,
8677                                 DAG.getConstantFP(0.0, DL, VT), ISD::SETEQ);
8678   SDValue LCmp = DAG.getSelect(
8679       DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, LHS, TestZero), LHS,
8680       MinMax, Flags);
8681   SDValue RCmp = DAG.getSelect(
8682       DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, RHS, TestZero), RHS, LCmp,
8683       Flags);
8684   return DAG.getSelect(DL, VT, IsZero, RCmp, MinMax, Flags);
8685 }
8686 
8687 /// Returns a true value if if this FPClassTest can be performed with an ordered
8688 /// fcmp to 0, and a false value if it's an unordered fcmp to 0. Returns
8689 /// std::nullopt if it cannot be performed as a compare with 0.
8690 static std::optional<bool> isFCmpEqualZero(FPClassTest Test,
8691                                            const fltSemantics &Semantics,
8692                                            const MachineFunction &MF) {
8693   FPClassTest OrderedMask = Test & ~fcNan;
8694   FPClassTest NanTest = Test & fcNan;
8695   bool IsOrdered = NanTest == fcNone;
8696   bool IsUnordered = NanTest == fcNan;
8697 
8698   // Skip cases that are testing for only a qnan or snan.
8699   if (!IsOrdered && !IsUnordered)
8700     return std::nullopt;
8701 
8702   if (OrderedMask == fcZero &&
8703       MF.getDenormalMode(Semantics).Input == DenormalMode::IEEE)
8704     return IsOrdered;
8705   if (OrderedMask == (fcZero | fcSubnormal) &&
8706       MF.getDenormalMode(Semantics).inputsAreZero())
8707     return IsOrdered;
8708   return std::nullopt;
8709 }
8710 
8711 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op,
8712                                          const FPClassTest OrigTestMask,
8713                                          SDNodeFlags Flags, const SDLoc &DL,
8714                                          SelectionDAG &DAG) const {
8715   EVT OperandVT = Op.getValueType();
8716   assert(OperandVT.isFloatingPoint());
8717   FPClassTest Test = OrigTestMask;
8718 
8719   // Degenerated cases.
8720   if (Test == fcNone)
8721     return DAG.getBoolConstant(false, DL, ResultVT, OperandVT);
8722   if (Test == fcAllFlags)
8723     return DAG.getBoolConstant(true, DL, ResultVT, OperandVT);
8724 
8725   // PPC double double is a pair of doubles, of which the higher part determines
8726   // the value class.
8727   if (OperandVT == MVT::ppcf128) {
8728     Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op,
8729                      DAG.getConstant(1, DL, MVT::i32));
8730     OperandVT = MVT::f64;
8731   }
8732 
8733   // Floating-point type properties.
8734   EVT ScalarFloatVT = OperandVT.getScalarType();
8735   const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext());
8736   const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics();
8737   bool IsF80 = (ScalarFloatVT == MVT::f80);
8738 
8739   // Some checks can be implemented using float comparisons, if floating point
8740   // exceptions are ignored.
8741   if (Flags.hasNoFPExcept() &&
8742       isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) {
8743     FPClassTest FPTestMask = Test;
8744     bool IsInvertedFP = false;
8745 
8746     if (FPClassTest InvertedFPCheck =
8747             invertFPClassTestIfSimpler(FPTestMask, true)) {
8748       FPTestMask = InvertedFPCheck;
8749       IsInvertedFP = true;
8750     }
8751 
8752     ISD::CondCode OrderedCmpOpcode = IsInvertedFP ? ISD::SETUNE : ISD::SETOEQ;
8753     ISD::CondCode UnorderedCmpOpcode = IsInvertedFP ? ISD::SETONE : ISD::SETUEQ;
8754 
8755     // See if we can fold an | fcNan into an unordered compare.
8756     FPClassTest OrderedFPTestMask = FPTestMask & ~fcNan;
8757 
8758     // Can't fold the ordered check if we're only testing for snan or qnan
8759     // individually.
8760     if ((FPTestMask & fcNan) != fcNan)
8761       OrderedFPTestMask = FPTestMask;
8762 
8763     const bool IsOrdered = FPTestMask == OrderedFPTestMask;
8764 
8765     if (std::optional<bool> IsCmp0 =
8766             isFCmpEqualZero(FPTestMask, Semantics, DAG.getMachineFunction());
8767         IsCmp0 && (isCondCodeLegalOrCustom(
8768                       *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode,
8769                       OperandVT.getScalarType().getSimpleVT()))) {
8770 
8771       // If denormals could be implicitly treated as 0, this is not equivalent
8772       // to a compare with 0 since it will also be true for denormals.
8773       return DAG.getSetCC(DL, ResultVT, Op,
8774                           DAG.getConstantFP(0.0, DL, OperandVT),
8775                           *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode);
8776     }
8777 
8778     if (FPTestMask == fcNan &&
8779         isCondCodeLegalOrCustom(IsInvertedFP ? ISD::SETO : ISD::SETUO,
8780                                 OperandVT.getScalarType().getSimpleVT()))
8781       return DAG.getSetCC(DL, ResultVT, Op, Op,
8782                           IsInvertedFP ? ISD::SETO : ISD::SETUO);
8783 
8784     bool IsOrderedInf = FPTestMask == fcInf;
8785     if ((FPTestMask == fcInf || FPTestMask == (fcInf | fcNan)) &&
8786         isCondCodeLegalOrCustom(IsOrderedInf ? OrderedCmpOpcode
8787                                              : UnorderedCmpOpcode,
8788                                 OperandVT.getScalarType().getSimpleVT()) &&
8789         isOperationLegalOrCustom(ISD::FABS, OperandVT.getScalarType()) &&
8790         (isOperationLegal(ISD::ConstantFP, OperandVT.getScalarType()) ||
8791          (OperandVT.isVector() &&
8792           isOperationLegalOrCustom(ISD::BUILD_VECTOR, OperandVT)))) {
8793       // isinf(x) --> fabs(x) == inf
8794       SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op);
8795       SDValue Inf =
8796           DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT);
8797       return DAG.getSetCC(DL, ResultVT, Abs, Inf,
8798                           IsOrderedInf ? OrderedCmpOpcode : UnorderedCmpOpcode);
8799     }
8800 
8801     if ((OrderedFPTestMask == fcPosInf || OrderedFPTestMask == fcNegInf) &&
8802         isCondCodeLegalOrCustom(IsOrdered ? OrderedCmpOpcode
8803                                           : UnorderedCmpOpcode,
8804                                 OperandVT.getSimpleVT())) {
8805       // isposinf(x) --> x == inf
8806       // isneginf(x) --> x == -inf
8807       // isposinf(x) || nan --> x u== inf
8808       // isneginf(x) || nan --> x u== -inf
8809 
8810       SDValue Inf = DAG.getConstantFP(
8811           APFloat::getInf(Semantics, OrderedFPTestMask == fcNegInf), DL,
8812           OperandVT);
8813       return DAG.getSetCC(DL, ResultVT, Op, Inf,
8814                           IsOrdered ? OrderedCmpOpcode : UnorderedCmpOpcode);
8815     }
8816 
8817     if (OrderedFPTestMask == (fcSubnormal | fcZero) && !IsOrdered) {
8818       // TODO: Could handle ordered case, but it produces worse code for
8819       // x86. Maybe handle ordered if fabs is free?
8820 
8821       ISD::CondCode OrderedOp = IsInvertedFP ? ISD::SETUGE : ISD::SETOLT;
8822       ISD::CondCode UnorderedOp = IsInvertedFP ? ISD::SETOGE : ISD::SETULT;
8823 
8824       if (isCondCodeLegalOrCustom(IsOrdered ? OrderedOp : UnorderedOp,
8825                                   OperandVT.getScalarType().getSimpleVT())) {
8826         // (issubnormal(x) || iszero(x)) --> fabs(x) < smallest_normal
8827 
8828         // TODO: Maybe only makes sense if fabs is free. Integer test of
8829         // exponent bits seems better for x86.
8830         SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op);
8831         SDValue SmallestNormal = DAG.getConstantFP(
8832             APFloat::getSmallestNormalized(Semantics), DL, OperandVT);
8833         return DAG.getSetCC(DL, ResultVT, Abs, SmallestNormal,
8834                             IsOrdered ? OrderedOp : UnorderedOp);
8835       }
8836     }
8837 
8838     if (FPTestMask == fcNormal) {
8839       // TODO: Handle unordered
8840       ISD::CondCode IsFiniteOp = IsInvertedFP ? ISD::SETUGE : ISD::SETOLT;
8841       ISD::CondCode IsNormalOp = IsInvertedFP ? ISD::SETOLT : ISD::SETUGE;
8842 
8843       if (isCondCodeLegalOrCustom(IsFiniteOp,
8844                                   OperandVT.getScalarType().getSimpleVT()) &&
8845           isCondCodeLegalOrCustom(IsNormalOp,
8846                                   OperandVT.getScalarType().getSimpleVT()) &&
8847           isFAbsFree(OperandVT)) {
8848         // isnormal(x) --> fabs(x) < infinity && !(fabs(x) < smallest_normal)
8849         SDValue Inf =
8850             DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT);
8851         SDValue SmallestNormal = DAG.getConstantFP(
8852             APFloat::getSmallestNormalized(Semantics), DL, OperandVT);
8853 
8854         SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op);
8855         SDValue IsFinite = DAG.getSetCC(DL, ResultVT, Abs, Inf, IsFiniteOp);
8856         SDValue IsNormal =
8857             DAG.getSetCC(DL, ResultVT, Abs, SmallestNormal, IsNormalOp);
8858         unsigned LogicOp = IsInvertedFP ? ISD::OR : ISD::AND;
8859         return DAG.getNode(LogicOp, DL, ResultVT, IsFinite, IsNormal);
8860       }
8861     }
8862   }
8863 
8864   // Some checks may be represented as inversion of simpler check, for example
8865   // "inf|normal|subnormal|zero" => !"nan".
8866   bool IsInverted = false;
8867 
8868   if (FPClassTest InvertedCheck = invertFPClassTestIfSimpler(Test, false)) {
8869     Test = InvertedCheck;
8870     IsInverted = true;
8871   }
8872 
8873   // In the general case use integer operations.
8874   unsigned BitSize = OperandVT.getScalarSizeInBits();
8875   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize);
8876   if (OperandVT.isVector())
8877     IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT,
8878                              OperandVT.getVectorElementCount());
8879   SDValue OpAsInt = DAG.getBitcast(IntVT, Op);
8880 
8881   // Various masks.
8882   APInt SignBit = APInt::getSignMask(BitSize);
8883   APInt ValueMask = APInt::getSignedMaxValue(BitSize);     // All bits but sign.
8884   APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit.
8885   const unsigned ExplicitIntBitInF80 = 63;
8886   APInt ExpMask = Inf;
8887   if (IsF80)
8888     ExpMask.clearBit(ExplicitIntBitInF80);
8889   APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf;
8890   APInt QNaNBitMask =
8891       APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1);
8892   APInt InvertionMask = APInt::getAllOnes(ResultVT.getScalarSizeInBits());
8893 
8894   SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT);
8895   SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT);
8896   SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT);
8897   SDValue ZeroV = DAG.getConstant(0, DL, IntVT);
8898   SDValue InfV = DAG.getConstant(Inf, DL, IntVT);
8899   SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT);
8900 
8901   SDValue Res;
8902   const auto appendResult = [&](SDValue PartialRes) {
8903     if (PartialRes) {
8904       if (Res)
8905         Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes);
8906       else
8907         Res = PartialRes;
8908     }
8909   };
8910 
8911   SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set.
8912   const auto getIntBitIsSet = [&]() -> SDValue {
8913     if (!IntBitIsSetV) {
8914       APInt IntBitMask(BitSize, 0);
8915       IntBitMask.setBit(ExplicitIntBitInF80);
8916       SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT);
8917       SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV);
8918       IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE);
8919     }
8920     return IntBitIsSetV;
8921   };
8922 
8923   // Split the value into sign bit and absolute value.
8924   SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV);
8925   SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt,
8926                                DAG.getConstant(0, DL, IntVT), ISD::SETLT);
8927 
8928   // Tests that involve more than one class should be processed first.
8929   SDValue PartialRes;
8930 
8931   if (IsF80)
8932     ; // Detect finite numbers of f80 by checking individual classes because
8933       // they have different settings of the explicit integer bit.
8934   else if ((Test & fcFinite) == fcFinite) {
8935     // finite(V) ==> abs(V) < exp_mask
8936     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
8937     Test &= ~fcFinite;
8938   } else if ((Test & fcFinite) == fcPosFinite) {
8939     // finite(V) && V > 0 ==> V < exp_mask
8940     PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT);
8941     Test &= ~fcPosFinite;
8942   } else if ((Test & fcFinite) == fcNegFinite) {
8943     // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1
8944     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
8945     PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
8946     Test &= ~fcNegFinite;
8947   }
8948   appendResult(PartialRes);
8949 
8950   if (FPClassTest PartialCheck = Test & (fcZero | fcSubnormal)) {
8951     // fcZero | fcSubnormal => test all exponent bits are 0
8952     // TODO: Handle sign bit specific cases
8953     if (PartialCheck == (fcZero | fcSubnormal)) {
8954       SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ExpMaskV);
8955       SDValue ExpIsZero =
8956           DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
8957       appendResult(ExpIsZero);
8958       Test &= ~PartialCheck & fcAllFlags;
8959     }
8960   }
8961 
8962   // Check for individual classes.
8963 
8964   if (unsigned PartialCheck = Test & fcZero) {
8965     if (PartialCheck == fcPosZero)
8966       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ);
8967     else if (PartialCheck == fcZero)
8968       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ);
8969     else // ISD::fcNegZero
8970       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ);
8971     appendResult(PartialRes);
8972   }
8973 
8974   if (unsigned PartialCheck = Test & fcSubnormal) {
8975     // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set)
8976     // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set)
8977     SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV;
8978     SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT);
8979     SDValue VMinusOneV =
8980         DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT));
8981     PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT);
8982     if (PartialCheck == fcNegSubnormal)
8983       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
8984     appendResult(PartialRes);
8985   }
8986 
8987   if (unsigned PartialCheck = Test & fcInf) {
8988     if (PartialCheck == fcPosInf)
8989       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ);
8990     else if (PartialCheck == fcInf)
8991       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ);
8992     else { // ISD::fcNegInf
8993       APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt();
8994       SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT);
8995       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ);
8996     }
8997     appendResult(PartialRes);
8998   }
8999 
9000   if (unsigned PartialCheck = Test & fcNan) {
9001     APInt InfWithQnanBit = Inf | QNaNBitMask;
9002     SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT);
9003     if (PartialCheck == fcNan) {
9004       // isnan(V) ==> abs(V) > int(inf)
9005       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
9006       if (IsF80) {
9007         // Recognize unsupported values as NaNs for compatibility with glibc.
9008         // In them (exp(V)==0) == int_bit.
9009         SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV);
9010         SDValue ExpIsZero =
9011             DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
9012         SDValue IsPseudo =
9013             DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ);
9014         PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo);
9015       }
9016     } else if (PartialCheck == fcQNan) {
9017       // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit)
9018       PartialRes =
9019           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE);
9020     } else { // ISD::fcSNan
9021       // issignaling(V) ==> abs(V) > unsigned(Inf) &&
9022       //                    abs(V) < (unsigned(Inf) | quiet_bit)
9023       SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
9024       SDValue IsNotQnan =
9025           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT);
9026       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan);
9027     }
9028     appendResult(PartialRes);
9029   }
9030 
9031   if (unsigned PartialCheck = Test & fcNormal) {
9032     // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1))
9033     APInt ExpLSB = ExpMask & ~(ExpMask.shl(1));
9034     SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT);
9035     SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV);
9036     APInt ExpLimit = ExpMask - ExpLSB;
9037     SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT);
9038     PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT);
9039     if (PartialCheck == fcNegNormal)
9040       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
9041     else if (PartialCheck == fcPosNormal) {
9042       SDValue PosSignV =
9043           DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask);
9044       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV);
9045     }
9046     if (IsF80)
9047       PartialRes =
9048           DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet());
9049     appendResult(PartialRes);
9050   }
9051 
9052   if (!Res)
9053     return DAG.getConstant(IsInverted, DL, ResultVT);
9054   if (IsInverted)
9055     Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask);
9056   return Res;
9057 }
9058 
9059 // Only expand vector types if we have the appropriate vector bit operations.
9060 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
9061   assert(VT.isVector() && "Expected vector type");
9062   unsigned Len = VT.getScalarSizeInBits();
9063   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
9064          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
9065          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
9066          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
9067          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
9068 }
9069 
9070 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
9071   SDLoc dl(Node);
9072   EVT VT = Node->getValueType(0);
9073   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9074   SDValue Op = Node->getOperand(0);
9075   unsigned Len = VT.getScalarSizeInBits();
9076   assert(VT.isInteger() && "CTPOP not implemented for this type.");
9077 
9078   // TODO: Add support for irregular type lengths.
9079   if (!(Len <= 128 && Len % 8 == 0))
9080     return SDValue();
9081 
9082   // Only expand vector types if we have the appropriate vector bit operations.
9083   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
9084     return SDValue();
9085 
9086   // This is the "best" algorithm from
9087   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
9088   SDValue Mask55 =
9089       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
9090   SDValue Mask33 =
9091       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
9092   SDValue Mask0F =
9093       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
9094 
9095   // v = v - ((v >> 1) & 0x55555555...)
9096   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
9097                    DAG.getNode(ISD::AND, dl, VT,
9098                                DAG.getNode(ISD::SRL, dl, VT, Op,
9099                                            DAG.getConstant(1, dl, ShVT)),
9100                                Mask55));
9101   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
9102   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
9103                    DAG.getNode(ISD::AND, dl, VT,
9104                                DAG.getNode(ISD::SRL, dl, VT, Op,
9105                                            DAG.getConstant(2, dl, ShVT)),
9106                                Mask33));
9107   // v = (v + (v >> 4)) & 0x0F0F0F0F...
9108   Op = DAG.getNode(ISD::AND, dl, VT,
9109                    DAG.getNode(ISD::ADD, dl, VT, Op,
9110                                DAG.getNode(ISD::SRL, dl, VT, Op,
9111                                            DAG.getConstant(4, dl, ShVT))),
9112                    Mask0F);
9113 
9114   if (Len <= 8)
9115     return Op;
9116 
9117   // Avoid the multiply if we only have 2 bytes to add.
9118   // TODO: Only doing this for scalars because vectors weren't as obviously
9119   // improved.
9120   if (Len == 16 && !VT.isVector()) {
9121     // v = (v + (v >> 8)) & 0x00FF;
9122     return DAG.getNode(ISD::AND, dl, VT,
9123                      DAG.getNode(ISD::ADD, dl, VT, Op,
9124                                  DAG.getNode(ISD::SRL, dl, VT, Op,
9125                                              DAG.getConstant(8, dl, ShVT))),
9126                      DAG.getConstant(0xFF, dl, VT));
9127   }
9128 
9129   // v = (v * 0x01010101...) >> (Len - 8)
9130   SDValue V;
9131   if (isOperationLegalOrCustomOrPromote(
9132           ISD::MUL, getTypeToTransformTo(*DAG.getContext(), VT))) {
9133     SDValue Mask01 =
9134         DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
9135     V = DAG.getNode(ISD::MUL, dl, VT, Op, Mask01);
9136   } else {
9137     V = Op;
9138     for (unsigned Shift = 8; Shift < Len; Shift *= 2) {
9139       SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl);
9140       V = DAG.getNode(ISD::ADD, dl, VT, V,
9141                       DAG.getNode(ISD::SHL, dl, VT, V, ShiftC));
9142     }
9143   }
9144   return DAG.getNode(ISD::SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT));
9145 }
9146 
9147 SDValue TargetLowering::expandVPCTPOP(SDNode *Node, SelectionDAG &DAG) const {
9148   SDLoc dl(Node);
9149   EVT VT = Node->getValueType(0);
9150   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9151   SDValue Op = Node->getOperand(0);
9152   SDValue Mask = Node->getOperand(1);
9153   SDValue VL = Node->getOperand(2);
9154   unsigned Len = VT.getScalarSizeInBits();
9155   assert(VT.isInteger() && "VP_CTPOP not implemented for this type.");
9156 
9157   // TODO: Add support for irregular type lengths.
9158   if (!(Len <= 128 && Len % 8 == 0))
9159     return SDValue();
9160 
9161   // This is same algorithm of expandCTPOP from
9162   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
9163   SDValue Mask55 =
9164       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
9165   SDValue Mask33 =
9166       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
9167   SDValue Mask0F =
9168       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
9169 
9170   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5;
9171 
9172   // v = v - ((v >> 1) & 0x55555555...)
9173   Tmp1 = DAG.getNode(ISD::VP_AND, dl, VT,
9174                      DAG.getNode(ISD::VP_SRL, dl, VT, Op,
9175                                  DAG.getConstant(1, dl, ShVT), Mask, VL),
9176                      Mask55, Mask, VL);
9177   Op = DAG.getNode(ISD::VP_SUB, dl, VT, Op, Tmp1, Mask, VL);
9178 
9179   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
9180   Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Op, Mask33, Mask, VL);
9181   Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT,
9182                      DAG.getNode(ISD::VP_SRL, dl, VT, Op,
9183                                  DAG.getConstant(2, dl, ShVT), Mask, VL),
9184                      Mask33, Mask, VL);
9185   Op = DAG.getNode(ISD::VP_ADD, dl, VT, Tmp2, Tmp3, Mask, VL);
9186 
9187   // v = (v + (v >> 4)) & 0x0F0F0F0F...
9188   Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(4, dl, ShVT),
9189                      Mask, VL),
9190   Tmp5 = DAG.getNode(ISD::VP_ADD, dl, VT, Op, Tmp4, Mask, VL);
9191   Op = DAG.getNode(ISD::VP_AND, dl, VT, Tmp5, Mask0F, Mask, VL);
9192 
9193   if (Len <= 8)
9194     return Op;
9195 
9196   // v = (v * 0x01010101...) >> (Len - 8)
9197   SDValue V;
9198   if (isOperationLegalOrCustomOrPromote(
9199           ISD::VP_MUL, getTypeToTransformTo(*DAG.getContext(), VT))) {
9200     SDValue Mask01 =
9201         DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
9202     V = DAG.getNode(ISD::VP_MUL, dl, VT, Op, Mask01, Mask, VL);
9203   } else {
9204     V = Op;
9205     for (unsigned Shift = 8; Shift < Len; Shift *= 2) {
9206       SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl);
9207       V = DAG.getNode(ISD::VP_ADD, dl, VT, V,
9208                       DAG.getNode(ISD::VP_SHL, dl, VT, V, ShiftC, Mask, VL),
9209                       Mask, VL);
9210     }
9211   }
9212   return DAG.getNode(ISD::VP_SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT),
9213                      Mask, VL);
9214 }
9215 
9216 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
9217   SDLoc dl(Node);
9218   EVT VT = Node->getValueType(0);
9219   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9220   SDValue Op = Node->getOperand(0);
9221   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
9222 
9223   // If the non-ZERO_UNDEF version is supported we can use that instead.
9224   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
9225       isOperationLegalOrCustom(ISD::CTLZ, VT))
9226     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
9227 
9228   // If the ZERO_UNDEF version is supported use that and handle the zero case.
9229   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
9230     EVT SetCCVT =
9231         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9232     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
9233     SDValue Zero = DAG.getConstant(0, dl, VT);
9234     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
9235     return DAG.getSelect(dl, VT, SrcIsZero,
9236                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
9237   }
9238 
9239   // Only expand vector types if we have the appropriate vector bit operations.
9240   // This includes the operations needed to expand CTPOP if it isn't supported.
9241   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
9242                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
9243                          !canExpandVectorCTPOP(*this, VT)) ||
9244                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
9245                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
9246     return SDValue();
9247 
9248   // for now, we do this:
9249   // x = x | (x >> 1);
9250   // x = x | (x >> 2);
9251   // ...
9252   // x = x | (x >>16);
9253   // x = x | (x >>32); // for 64-bit input
9254   // return popcount(~x);
9255   //
9256   // Ref: "Hacker's Delight" by Henry Warren
9257   for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
9258     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
9259     Op = DAG.getNode(ISD::OR, dl, VT, Op,
9260                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
9261   }
9262   Op = DAG.getNOT(dl, Op, VT);
9263   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
9264 }
9265 
9266 SDValue TargetLowering::expandVPCTLZ(SDNode *Node, SelectionDAG &DAG) const {
9267   SDLoc dl(Node);
9268   EVT VT = Node->getValueType(0);
9269   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9270   SDValue Op = Node->getOperand(0);
9271   SDValue Mask = Node->getOperand(1);
9272   SDValue VL = Node->getOperand(2);
9273   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
9274 
9275   // do this:
9276   // x = x | (x >> 1);
9277   // x = x | (x >> 2);
9278   // ...
9279   // x = x | (x >>16);
9280   // x = x | (x >>32); // for 64-bit input
9281   // return popcount(~x);
9282   for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
9283     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
9284     Op = DAG.getNode(ISD::VP_OR, dl, VT, Op,
9285                      DAG.getNode(ISD::VP_SRL, dl, VT, Op, Tmp, Mask, VL), Mask,
9286                      VL);
9287   }
9288   Op = DAG.getNode(ISD::VP_XOR, dl, VT, Op, DAG.getAllOnesConstant(dl, VT),
9289                    Mask, VL);
9290   return DAG.getNode(ISD::VP_CTPOP, dl, VT, Op, Mask, VL);
9291 }
9292 
9293 SDValue TargetLowering::CTTZTableLookup(SDNode *Node, SelectionDAG &DAG,
9294                                         const SDLoc &DL, EVT VT, SDValue Op,
9295                                         unsigned BitWidth) const {
9296   if (BitWidth != 32 && BitWidth != 64)
9297     return SDValue();
9298   APInt DeBruijn = BitWidth == 32 ? APInt(32, 0x077CB531U)
9299                                   : APInt(64, 0x0218A392CD3D5DBFULL);
9300   const DataLayout &TD = DAG.getDataLayout();
9301   MachinePointerInfo PtrInfo =
9302       MachinePointerInfo::getConstantPool(DAG.getMachineFunction());
9303   unsigned ShiftAmt = BitWidth - Log2_32(BitWidth);
9304   SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
9305   SDValue Lookup = DAG.getNode(
9306       ISD::SRL, DL, VT,
9307       DAG.getNode(ISD::MUL, DL, VT, DAG.getNode(ISD::AND, DL, VT, Op, Neg),
9308                   DAG.getConstant(DeBruijn, DL, VT)),
9309       DAG.getConstant(ShiftAmt, DL, VT));
9310   Lookup = DAG.getSExtOrTrunc(Lookup, DL, getPointerTy(TD));
9311 
9312   SmallVector<uint8_t> Table(BitWidth, 0);
9313   for (unsigned i = 0; i < BitWidth; i++) {
9314     APInt Shl = DeBruijn.shl(i);
9315     APInt Lshr = Shl.lshr(ShiftAmt);
9316     Table[Lshr.getZExtValue()] = i;
9317   }
9318 
9319   // Create a ConstantArray in Constant Pool
9320   auto *CA = ConstantDataArray::get(*DAG.getContext(), Table);
9321   SDValue CPIdx = DAG.getConstantPool(CA, getPointerTy(TD),
9322                                       TD.getPrefTypeAlign(CA->getType()));
9323   SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, VT, DAG.getEntryNode(),
9324                                    DAG.getMemBasePlusOffset(CPIdx, Lookup, DL),
9325                                    PtrInfo, MVT::i8);
9326   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF)
9327     return ExtLoad;
9328 
9329   EVT SetCCVT =
9330       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9331   SDValue Zero = DAG.getConstant(0, DL, VT);
9332   SDValue SrcIsZero = DAG.getSetCC(DL, SetCCVT, Op, Zero, ISD::SETEQ);
9333   return DAG.getSelect(DL, VT, SrcIsZero,
9334                        DAG.getConstant(BitWidth, DL, VT), ExtLoad);
9335 }
9336 
9337 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
9338   SDLoc dl(Node);
9339   EVT VT = Node->getValueType(0);
9340   SDValue Op = Node->getOperand(0);
9341   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
9342 
9343   // If the non-ZERO_UNDEF version is supported we can use that instead.
9344   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
9345       isOperationLegalOrCustom(ISD::CTTZ, VT))
9346     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
9347 
9348   // If the ZERO_UNDEF version is supported use that and handle the zero case.
9349   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
9350     EVT SetCCVT =
9351         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9352     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
9353     SDValue Zero = DAG.getConstant(0, dl, VT);
9354     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
9355     return DAG.getSelect(dl, VT, SrcIsZero,
9356                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
9357   }
9358 
9359   // Only expand vector types if we have the appropriate vector bit operations.
9360   // This includes the operations needed to expand CTPOP if it isn't supported.
9361   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
9362                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
9363                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
9364                          !canExpandVectorCTPOP(*this, VT)) ||
9365                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
9366                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
9367                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
9368     return SDValue();
9369 
9370   // Emit Table Lookup if ISD::CTLZ and ISD::CTPOP are not legal.
9371   if (!VT.isVector() && isOperationExpand(ISD::CTPOP, VT) &&
9372       !isOperationLegal(ISD::CTLZ, VT))
9373     if (SDValue V = CTTZTableLookup(Node, DAG, dl, VT, Op, NumBitsPerElt))
9374       return V;
9375 
9376   // for now, we use: { return popcount(~x & (x - 1)); }
9377   // unless the target has ctlz but not ctpop, in which case we use:
9378   // { return 32 - nlz(~x & (x-1)); }
9379   // Ref: "Hacker's Delight" by Henry Warren
9380   SDValue Tmp = DAG.getNode(
9381       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
9382       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
9383 
9384   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
9385   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
9386     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
9387                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
9388   }
9389 
9390   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
9391 }
9392 
9393 SDValue TargetLowering::expandVPCTTZ(SDNode *Node, SelectionDAG &DAG) const {
9394   SDValue Op = Node->getOperand(0);
9395   SDValue Mask = Node->getOperand(1);
9396   SDValue VL = Node->getOperand(2);
9397   SDLoc dl(Node);
9398   EVT VT = Node->getValueType(0);
9399 
9400   // Same as the vector part of expandCTTZ, use: popcount(~x & (x - 1))
9401   SDValue Not = DAG.getNode(ISD::VP_XOR, dl, VT, Op,
9402                             DAG.getAllOnesConstant(dl, VT), Mask, VL);
9403   SDValue MinusOne = DAG.getNode(ISD::VP_SUB, dl, VT, Op,
9404                                  DAG.getConstant(1, dl, VT), Mask, VL);
9405   SDValue Tmp = DAG.getNode(ISD::VP_AND, dl, VT, Not, MinusOne, Mask, VL);
9406   return DAG.getNode(ISD::VP_CTPOP, dl, VT, Tmp, Mask, VL);
9407 }
9408 
9409 SDValue TargetLowering::expandVPCTTZElements(SDNode *N,
9410                                              SelectionDAG &DAG) const {
9411   // %cond = to_bool_vec %source
9412   // %splat = splat /*val=*/VL
9413   // %tz = step_vector
9414   // %v = vp.select %cond, /*true=*/tz, /*false=*/%splat
9415   // %r = vp.reduce.umin %v
9416   SDLoc DL(N);
9417   SDValue Source = N->getOperand(0);
9418   SDValue Mask = N->getOperand(1);
9419   SDValue EVL = N->getOperand(2);
9420   EVT SrcVT = Source.getValueType();
9421   EVT ResVT = N->getValueType(0);
9422   EVT ResVecVT =
9423       EVT::getVectorVT(*DAG.getContext(), ResVT, SrcVT.getVectorElementCount());
9424 
9425   // Convert to boolean vector.
9426   if (SrcVT.getScalarType() != MVT::i1) {
9427     SDValue AllZero = DAG.getConstant(0, DL, SrcVT);
9428     SrcVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
9429                              SrcVT.getVectorElementCount());
9430     Source = DAG.getNode(ISD::VP_SETCC, DL, SrcVT, Source, AllZero,
9431                          DAG.getCondCode(ISD::SETNE), Mask, EVL);
9432   }
9433 
9434   SDValue ExtEVL = DAG.getZExtOrTrunc(EVL, DL, ResVT);
9435   SDValue Splat = DAG.getSplat(ResVecVT, DL, ExtEVL);
9436   SDValue StepVec = DAG.getStepVector(DL, ResVecVT);
9437   SDValue Select =
9438       DAG.getNode(ISD::VP_SELECT, DL, ResVecVT, Source, StepVec, Splat, EVL);
9439   return DAG.getNode(ISD::VP_REDUCE_UMIN, DL, ResVT, ExtEVL, Select, Mask, EVL);
9440 }
9441 
9442 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
9443                                   bool IsNegative) const {
9444   SDLoc dl(N);
9445   EVT VT = N->getValueType(0);
9446   SDValue Op = N->getOperand(0);
9447 
9448   // abs(x) -> smax(x,sub(0,x))
9449   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
9450       isOperationLegal(ISD::SMAX, VT)) {
9451     SDValue Zero = DAG.getConstant(0, dl, VT);
9452     Op = DAG.getFreeze(Op);
9453     return DAG.getNode(ISD::SMAX, dl, VT, Op,
9454                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
9455   }
9456 
9457   // abs(x) -> umin(x,sub(0,x))
9458   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
9459       isOperationLegal(ISD::UMIN, VT)) {
9460     SDValue Zero = DAG.getConstant(0, dl, VT);
9461     Op = DAG.getFreeze(Op);
9462     return DAG.getNode(ISD::UMIN, dl, VT, Op,
9463                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
9464   }
9465 
9466   // 0 - abs(x) -> smin(x, sub(0,x))
9467   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
9468       isOperationLegal(ISD::SMIN, VT)) {
9469     SDValue Zero = DAG.getConstant(0, dl, VT);
9470     Op = DAG.getFreeze(Op);
9471     return DAG.getNode(ISD::SMIN, dl, VT, Op,
9472                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
9473   }
9474 
9475   // Only expand vector types if we have the appropriate vector operations.
9476   if (VT.isVector() &&
9477       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
9478        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
9479        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
9480        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
9481     return SDValue();
9482 
9483   Op = DAG.getFreeze(Op);
9484   SDValue Shift = DAG.getNode(
9485       ISD::SRA, dl, VT, Op,
9486       DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, dl));
9487   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
9488 
9489   // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
9490   if (!IsNegative)
9491     return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
9492 
9493   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
9494   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
9495 }
9496 
9497 SDValue TargetLowering::expandABD(SDNode *N, SelectionDAG &DAG) const {
9498   SDLoc dl(N);
9499   EVT VT = N->getValueType(0);
9500   SDValue LHS = DAG.getFreeze(N->getOperand(0));
9501   SDValue RHS = DAG.getFreeze(N->getOperand(1));
9502   bool IsSigned = N->getOpcode() == ISD::ABDS;
9503 
9504   // abds(lhs, rhs) -> sub(smax(lhs,rhs), smin(lhs,rhs))
9505   // abdu(lhs, rhs) -> sub(umax(lhs,rhs), umin(lhs,rhs))
9506   unsigned MaxOpc = IsSigned ? ISD::SMAX : ISD::UMAX;
9507   unsigned MinOpc = IsSigned ? ISD::SMIN : ISD::UMIN;
9508   if (isOperationLegal(MaxOpc, VT) && isOperationLegal(MinOpc, VT)) {
9509     SDValue Max = DAG.getNode(MaxOpc, dl, VT, LHS, RHS);
9510     SDValue Min = DAG.getNode(MinOpc, dl, VT, LHS, RHS);
9511     return DAG.getNode(ISD::SUB, dl, VT, Max, Min);
9512   }
9513 
9514   // abdu(lhs, rhs) -> or(usubsat(lhs,rhs), usubsat(rhs,lhs))
9515   if (!IsSigned && isOperationLegal(ISD::USUBSAT, VT))
9516     return DAG.getNode(ISD::OR, dl, VT,
9517                        DAG.getNode(ISD::USUBSAT, dl, VT, LHS, RHS),
9518                        DAG.getNode(ISD::USUBSAT, dl, VT, RHS, LHS));
9519 
9520   // If the subtract doesn't overflow then just use abs(sub())
9521   // NOTE: don't use frozen operands for value tracking.
9522   bool IsNonNegative = DAG.SignBitIsZero(N->getOperand(1)) &&
9523                        DAG.SignBitIsZero(N->getOperand(0));
9524 
9525   if (DAG.willNotOverflowSub(IsSigned || IsNonNegative, N->getOperand(0),
9526                              N->getOperand(1)))
9527     return DAG.getNode(ISD::ABS, dl, VT,
9528                        DAG.getNode(ISD::SUB, dl, VT, LHS, RHS));
9529 
9530   if (DAG.willNotOverflowSub(IsSigned || IsNonNegative, N->getOperand(1),
9531                              N->getOperand(0)))
9532     return DAG.getNode(ISD::ABS, dl, VT,
9533                        DAG.getNode(ISD::SUB, dl, VT, RHS, LHS));
9534 
9535   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9536   ISD::CondCode CC = IsSigned ? ISD::CondCode::SETGT : ISD::CondCode::SETUGT;
9537   SDValue Cmp = DAG.getSetCC(dl, CCVT, LHS, RHS, CC);
9538 
9539   // Branchless expansion iff cmp result is allbits:
9540   // abds(lhs, rhs) -> sub(sgt(lhs, rhs), xor(sgt(lhs, rhs), sub(lhs, rhs)))
9541   // abdu(lhs, rhs) -> sub(ugt(lhs, rhs), xor(ugt(lhs, rhs), sub(lhs, rhs)))
9542   if (CCVT == VT && getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
9543     SDValue Diff = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
9544     SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Diff, Cmp);
9545     return DAG.getNode(ISD::SUB, dl, VT, Cmp, Xor);
9546   }
9547 
9548   // Similar to the branchless expansion, use the (sign-extended) usubo overflow
9549   // flag if the (scalar) type is illegal as this is more likely to legalize
9550   // cleanly:
9551   // abdu(lhs, rhs) -> sub(xor(sub(lhs, rhs), uof(lhs, rhs)), uof(lhs, rhs))
9552   if (!IsSigned && VT.isScalarInteger() && !isTypeLegal(VT)) {
9553     SDValue USubO =
9554         DAG.getNode(ISD::USUBO, dl, DAG.getVTList(VT, MVT::i1), {LHS, RHS});
9555     SDValue Cmp = DAG.getNode(ISD::SIGN_EXTEND, dl, VT, USubO.getValue(1));
9556     SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, USubO.getValue(0), Cmp);
9557     return DAG.getNode(ISD::SUB, dl, VT, Xor, Cmp);
9558   }
9559 
9560   // FIXME: Should really try to split the vector in case it's legal on a
9561   // subvector.
9562   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
9563     return DAG.UnrollVectorOp(N);
9564 
9565   // abds(lhs, rhs) -> select(sgt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs))
9566   // abdu(lhs, rhs) -> select(ugt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs))
9567   return DAG.getSelect(dl, VT, Cmp, DAG.getNode(ISD::SUB, dl, VT, LHS, RHS),
9568                        DAG.getNode(ISD::SUB, dl, VT, RHS, LHS));
9569 }
9570 
9571 SDValue TargetLowering::expandAVG(SDNode *N, SelectionDAG &DAG) const {
9572   SDLoc dl(N);
9573   EVT VT = N->getValueType(0);
9574   SDValue LHS = N->getOperand(0);
9575   SDValue RHS = N->getOperand(1);
9576 
9577   unsigned Opc = N->getOpcode();
9578   bool IsFloor = Opc == ISD::AVGFLOORS || Opc == ISD::AVGFLOORU;
9579   bool IsSigned = Opc == ISD::AVGCEILS || Opc == ISD::AVGFLOORS;
9580   unsigned SumOpc = IsFloor ? ISD::ADD : ISD::SUB;
9581   unsigned SignOpc = IsFloor ? ISD::AND : ISD::OR;
9582   unsigned ShiftOpc = IsSigned ? ISD::SRA : ISD::SRL;
9583   unsigned ExtOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
9584   assert((Opc == ISD::AVGFLOORS || Opc == ISD::AVGCEILS ||
9585           Opc == ISD::AVGFLOORU || Opc == ISD::AVGCEILU) &&
9586          "Unknown AVG node");
9587 
9588   // If the operands are already extended, we can add+shift.
9589   bool IsExt =
9590       (IsSigned && DAG.ComputeNumSignBits(LHS) >= 2 &&
9591        DAG.ComputeNumSignBits(RHS) >= 2) ||
9592       (!IsSigned && DAG.computeKnownBits(LHS).countMinLeadingZeros() >= 1 &&
9593        DAG.computeKnownBits(RHS).countMinLeadingZeros() >= 1);
9594   if (IsExt) {
9595     SDValue Sum = DAG.getNode(ISD::ADD, dl, VT, LHS, RHS);
9596     if (!IsFloor)
9597       Sum = DAG.getNode(ISD::ADD, dl, VT, Sum, DAG.getConstant(1, dl, VT));
9598     return DAG.getNode(ShiftOpc, dl, VT, Sum,
9599                        DAG.getShiftAmountConstant(1, VT, dl));
9600   }
9601 
9602   // For scalars, see if we can efficiently extend/truncate to use add+shift.
9603   if (VT.isScalarInteger()) {
9604     unsigned BW = VT.getScalarSizeInBits();
9605     EVT ExtVT = VT.getIntegerVT(*DAG.getContext(), 2 * BW);
9606     if (isTypeLegal(ExtVT) && isTruncateFree(ExtVT, VT)) {
9607       LHS = DAG.getNode(ExtOpc, dl, ExtVT, LHS);
9608       RHS = DAG.getNode(ExtOpc, dl, ExtVT, RHS);
9609       SDValue Avg = DAG.getNode(ISD::ADD, dl, ExtVT, LHS, RHS);
9610       if (!IsFloor)
9611         Avg = DAG.getNode(ISD::ADD, dl, ExtVT, Avg,
9612                           DAG.getConstant(1, dl, ExtVT));
9613       // Just use SRL as we will be truncating away the extended sign bits.
9614       Avg = DAG.getNode(ISD::SRL, dl, ExtVT, Avg,
9615                         DAG.getShiftAmountConstant(1, ExtVT, dl));
9616       return DAG.getNode(ISD::TRUNCATE, dl, VT, Avg);
9617     }
9618   }
9619 
9620   // avgflooru(lhs, rhs) -> or(lshr(add(lhs, rhs),1),shl(overflow, typesize-1))
9621   if (Opc == ISD::AVGFLOORU && VT.isScalarInteger() && !isTypeLegal(VT)) {
9622     SDValue UAddWithOverflow =
9623         DAG.getNode(ISD::UADDO, dl, DAG.getVTList(VT, MVT::i1), {RHS, LHS});
9624 
9625     SDValue Sum = UAddWithOverflow.getValue(0);
9626     SDValue Overflow = UAddWithOverflow.getValue(1);
9627 
9628     // Right shift the sum by 1
9629     SDValue LShrVal = DAG.getNode(ISD::SRL, dl, VT, Sum,
9630                                   DAG.getShiftAmountConstant(1, VT, dl));
9631 
9632     SDValue ZeroExtOverflow = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Overflow);
9633     SDValue OverflowShl = DAG.getNode(
9634         ISD::SHL, dl, VT, ZeroExtOverflow,
9635         DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, dl));
9636 
9637     return DAG.getNode(ISD::OR, dl, VT, LShrVal, OverflowShl);
9638   }
9639 
9640   // avgceils(lhs, rhs) -> sub(or(lhs,rhs),ashr(xor(lhs,rhs),1))
9641   // avgceilu(lhs, rhs) -> sub(or(lhs,rhs),lshr(xor(lhs,rhs),1))
9642   // avgfloors(lhs, rhs) -> add(and(lhs,rhs),ashr(xor(lhs,rhs),1))
9643   // avgflooru(lhs, rhs) -> add(and(lhs,rhs),lshr(xor(lhs,rhs),1))
9644   LHS = DAG.getFreeze(LHS);
9645   RHS = DAG.getFreeze(RHS);
9646   SDValue Sign = DAG.getNode(SignOpc, dl, VT, LHS, RHS);
9647   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
9648   SDValue Shift =
9649       DAG.getNode(ShiftOpc, dl, VT, Xor, DAG.getShiftAmountConstant(1, VT, dl));
9650   return DAG.getNode(SumOpc, dl, VT, Sign, Shift);
9651 }
9652 
9653 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
9654   SDLoc dl(N);
9655   EVT VT = N->getValueType(0);
9656   SDValue Op = N->getOperand(0);
9657 
9658   if (!VT.isSimple())
9659     return SDValue();
9660 
9661   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
9662   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
9663   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
9664   default:
9665     return SDValue();
9666   case MVT::i16:
9667     // Use a rotate by 8. This can be further expanded if necessary.
9668     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
9669   case MVT::i32:
9670     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
9671     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Op,
9672                        DAG.getConstant(0xFF00, dl, VT));
9673     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT));
9674     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
9675     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
9676     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
9677     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
9678     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
9679     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
9680   case MVT::i64:
9681     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
9682     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Op,
9683                        DAG.getConstant(255ULL<<8, dl, VT));
9684     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT));
9685     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Op,
9686                        DAG.getConstant(255ULL<<16, dl, VT));
9687     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT));
9688     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Op,
9689                        DAG.getConstant(255ULL<<24, dl, VT));
9690     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT));
9691     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
9692     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
9693                        DAG.getConstant(255ULL<<24, dl, VT));
9694     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
9695     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
9696                        DAG.getConstant(255ULL<<16, dl, VT));
9697     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
9698     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
9699                        DAG.getConstant(255ULL<<8, dl, VT));
9700     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
9701     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
9702     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
9703     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
9704     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
9705     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
9706     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
9707     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
9708   }
9709 }
9710 
9711 SDValue TargetLowering::expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const {
9712   SDLoc dl(N);
9713   EVT VT = N->getValueType(0);
9714   SDValue Op = N->getOperand(0);
9715   SDValue Mask = N->getOperand(1);
9716   SDValue EVL = N->getOperand(2);
9717 
9718   if (!VT.isSimple())
9719     return SDValue();
9720 
9721   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
9722   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
9723   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
9724   default:
9725     return SDValue();
9726   case MVT::i16:
9727     Tmp1 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
9728                        Mask, EVL);
9729     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
9730                        Mask, EVL);
9731     return DAG.getNode(ISD::VP_OR, dl, VT, Tmp1, Tmp2, Mask, EVL);
9732   case MVT::i32:
9733     Tmp4 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
9734                        Mask, EVL);
9735     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Op, DAG.getConstant(0xFF00, dl, VT),
9736                        Mask, EVL);
9737     Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT),
9738                        Mask, EVL);
9739     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
9740                        Mask, EVL);
9741     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9742                        DAG.getConstant(0xFF00, dl, VT), Mask, EVL);
9743     Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
9744                        Mask, EVL);
9745     Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
9746     Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
9747     return DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
9748   case MVT::i64:
9749     Tmp8 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT),
9750                        Mask, EVL);
9751     Tmp7 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
9752                        DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL);
9753     Tmp7 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT),
9754                        Mask, EVL);
9755     Tmp6 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
9756                        DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL);
9757     Tmp6 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT),
9758                        Mask, EVL);
9759     Tmp5 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
9760                        DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL);
9761     Tmp5 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT),
9762                        Mask, EVL);
9763     Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
9764                        Mask, EVL);
9765     Tmp4 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp4,
9766                        DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL);
9767     Tmp3 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
9768                        Mask, EVL);
9769     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp3,
9770                        DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL);
9771     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT),
9772                        Mask, EVL);
9773     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9774                        DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL);
9775     Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT),
9776                        Mask, EVL);
9777     Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp7, Mask, EVL);
9778     Tmp6 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp6, Tmp5, Mask, EVL);
9779     Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
9780     Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
9781     Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp6, Mask, EVL);
9782     Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
9783     return DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp4, Mask, EVL);
9784   }
9785 }
9786 
9787 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
9788   SDLoc dl(N);
9789   EVT VT = N->getValueType(0);
9790   SDValue Op = N->getOperand(0);
9791   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
9792   unsigned Sz = VT.getScalarSizeInBits();
9793 
9794   SDValue Tmp, Tmp2, Tmp3;
9795 
9796   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
9797   // and finally the i1 pairs.
9798   // TODO: We can easily support i4/i2 legal types if any target ever does.
9799   if (Sz >= 8 && isPowerOf2_32(Sz)) {
9800     // Create the masks - repeating the pattern every byte.
9801     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
9802     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
9803     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
9804 
9805     // BSWAP if the type is wider than a single byte.
9806     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
9807 
9808     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
9809     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
9810     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
9811     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
9812     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
9813     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
9814 
9815     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
9816     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
9817     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
9818     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
9819     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
9820     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
9821 
9822     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
9823     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
9824     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
9825     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
9826     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
9827     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
9828     return Tmp;
9829   }
9830 
9831   Tmp = DAG.getConstant(0, dl, VT);
9832   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
9833     if (I < J)
9834       Tmp2 =
9835           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
9836     else
9837       Tmp2 =
9838           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
9839 
9840     APInt Shift = APInt::getOneBitSet(Sz, J);
9841     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
9842     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
9843   }
9844 
9845   return Tmp;
9846 }
9847 
9848 SDValue TargetLowering::expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
9849   assert(N->getOpcode() == ISD::VP_BITREVERSE);
9850 
9851   SDLoc dl(N);
9852   EVT VT = N->getValueType(0);
9853   SDValue Op = N->getOperand(0);
9854   SDValue Mask = N->getOperand(1);
9855   SDValue EVL = N->getOperand(2);
9856   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
9857   unsigned Sz = VT.getScalarSizeInBits();
9858 
9859   SDValue Tmp, Tmp2, Tmp3;
9860 
9861   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
9862   // and finally the i1 pairs.
9863   // TODO: We can easily support i4/i2 legal types if any target ever does.
9864   if (Sz >= 8 && isPowerOf2_32(Sz)) {
9865     // Create the masks - repeating the pattern every byte.
9866     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
9867     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
9868     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
9869 
9870     // BSWAP if the type is wider than a single byte.
9871     Tmp = (Sz > 8 ? DAG.getNode(ISD::VP_BSWAP, dl, VT, Op, Mask, EVL) : Op);
9872 
9873     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
9874     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT),
9875                        Mask, EVL);
9876     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9877                        DAG.getConstant(Mask4, dl, VT), Mask, EVL);
9878     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT),
9879                        Mask, EVL);
9880     Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT),
9881                        Mask, EVL);
9882     Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
9883 
9884     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
9885     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT),
9886                        Mask, EVL);
9887     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9888                        DAG.getConstant(Mask2, dl, VT), Mask, EVL);
9889     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT),
9890                        Mask, EVL);
9891     Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT),
9892                        Mask, EVL);
9893     Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
9894 
9895     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
9896     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT),
9897                        Mask, EVL);
9898     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9899                        DAG.getConstant(Mask1, dl, VT), Mask, EVL);
9900     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT),
9901                        Mask, EVL);
9902     Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT),
9903                        Mask, EVL);
9904     Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
9905     return Tmp;
9906   }
9907   return SDValue();
9908 }
9909 
9910 std::pair<SDValue, SDValue>
9911 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
9912                                     SelectionDAG &DAG) const {
9913   SDLoc SL(LD);
9914   SDValue Chain = LD->getChain();
9915   SDValue BasePTR = LD->getBasePtr();
9916   EVT SrcVT = LD->getMemoryVT();
9917   EVT DstVT = LD->getValueType(0);
9918   ISD::LoadExtType ExtType = LD->getExtensionType();
9919 
9920   if (SrcVT.isScalableVector())
9921     report_fatal_error("Cannot scalarize scalable vector loads");
9922 
9923   unsigned NumElem = SrcVT.getVectorNumElements();
9924 
9925   EVT SrcEltVT = SrcVT.getScalarType();
9926   EVT DstEltVT = DstVT.getScalarType();
9927 
9928   // A vector must always be stored in memory as-is, i.e. without any padding
9929   // between the elements, since various code depend on it, e.g. in the
9930   // handling of a bitcast of a vector type to int, which may be done with a
9931   // vector store followed by an integer load. A vector that does not have
9932   // elements that are byte-sized must therefore be stored as an integer
9933   // built out of the extracted vector elements.
9934   if (!SrcEltVT.isByteSized()) {
9935     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
9936     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
9937 
9938     unsigned NumSrcBits = SrcVT.getSizeInBits();
9939     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
9940 
9941     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
9942     SDValue SrcEltBitMask = DAG.getConstant(
9943         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
9944 
9945     // Load the whole vector and avoid masking off the top bits as it makes
9946     // the codegen worse.
9947     SDValue Load =
9948         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
9949                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
9950                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
9951 
9952     SmallVector<SDValue, 8> Vals;
9953     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
9954       unsigned ShiftIntoIdx =
9955           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
9956       SDValue ShiftAmount = DAG.getShiftAmountConstant(
9957           ShiftIntoIdx * SrcEltVT.getSizeInBits(), LoadVT, SL);
9958       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
9959       SDValue Elt =
9960           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
9961       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
9962 
9963       if (ExtType != ISD::NON_EXTLOAD) {
9964         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
9965         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
9966       }
9967 
9968       Vals.push_back(Scalar);
9969     }
9970 
9971     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
9972     return std::make_pair(Value, Load.getValue(1));
9973   }
9974 
9975   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
9976   assert(SrcEltVT.isByteSized());
9977 
9978   SmallVector<SDValue, 8> Vals;
9979   SmallVector<SDValue, 8> LoadChains;
9980 
9981   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
9982     SDValue ScalarLoad =
9983         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
9984                        LD->getPointerInfo().getWithOffset(Idx * Stride),
9985                        SrcEltVT, LD->getOriginalAlign(),
9986                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
9987 
9988     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::getFixed(Stride));
9989 
9990     Vals.push_back(ScalarLoad.getValue(0));
9991     LoadChains.push_back(ScalarLoad.getValue(1));
9992   }
9993 
9994   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
9995   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
9996 
9997   return std::make_pair(Value, NewChain);
9998 }
9999 
10000 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
10001                                              SelectionDAG &DAG) const {
10002   SDLoc SL(ST);
10003 
10004   SDValue Chain = ST->getChain();
10005   SDValue BasePtr = ST->getBasePtr();
10006   SDValue Value = ST->getValue();
10007   EVT StVT = ST->getMemoryVT();
10008 
10009   if (StVT.isScalableVector())
10010     report_fatal_error("Cannot scalarize scalable vector stores");
10011 
10012   // The type of the data we want to save
10013   EVT RegVT = Value.getValueType();
10014   EVT RegSclVT = RegVT.getScalarType();
10015 
10016   // The type of data as saved in memory.
10017   EVT MemSclVT = StVT.getScalarType();
10018 
10019   unsigned NumElem = StVT.getVectorNumElements();
10020 
10021   // A vector must always be stored in memory as-is, i.e. without any padding
10022   // between the elements, since various code depend on it, e.g. in the
10023   // handling of a bitcast of a vector type to int, which may be done with a
10024   // vector store followed by an integer load. A vector that does not have
10025   // elements that are byte-sized must therefore be stored as an integer
10026   // built out of the extracted vector elements.
10027   if (!MemSclVT.isByteSized()) {
10028     unsigned NumBits = StVT.getSizeInBits();
10029     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
10030 
10031     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
10032 
10033     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
10034       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
10035                                 DAG.getVectorIdxConstant(Idx, SL));
10036       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
10037       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
10038       unsigned ShiftIntoIdx =
10039           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
10040       SDValue ShiftAmount =
10041           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
10042       SDValue ShiftedElt =
10043           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
10044       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
10045     }
10046 
10047     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
10048                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
10049                         ST->getAAInfo());
10050   }
10051 
10052   // Store Stride in bytes
10053   unsigned Stride = MemSclVT.getSizeInBits() / 8;
10054   assert(Stride && "Zero stride!");
10055   // Extract each of the elements from the original vector and save them into
10056   // memory individually.
10057   SmallVector<SDValue, 8> Stores;
10058   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
10059     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
10060                               DAG.getVectorIdxConstant(Idx, SL));
10061 
10062     SDValue Ptr =
10063         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::getFixed(Idx * Stride));
10064 
10065     // This scalar TruncStore may be illegal, but we legalize it later.
10066     SDValue Store = DAG.getTruncStore(
10067         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
10068         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
10069         ST->getAAInfo());
10070 
10071     Stores.push_back(Store);
10072   }
10073 
10074   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
10075 }
10076 
10077 std::pair<SDValue, SDValue>
10078 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
10079   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
10080          "unaligned indexed loads not implemented!");
10081   SDValue Chain = LD->getChain();
10082   SDValue Ptr = LD->getBasePtr();
10083   EVT VT = LD->getValueType(0);
10084   EVT LoadedVT = LD->getMemoryVT();
10085   SDLoc dl(LD);
10086   auto &MF = DAG.getMachineFunction();
10087 
10088   if (VT.isFloatingPoint() || VT.isVector()) {
10089     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
10090     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
10091       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
10092           LoadedVT.isVector()) {
10093         // Scalarize the load and let the individual components be handled.
10094         return scalarizeVectorLoad(LD, DAG);
10095       }
10096 
10097       // Expand to a (misaligned) integer load of the same size,
10098       // then bitconvert to floating point or vector.
10099       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
10100                                     LD->getMemOperand());
10101       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
10102       if (LoadedVT != VT)
10103         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
10104                              ISD::ANY_EXTEND, dl, VT, Result);
10105 
10106       return std::make_pair(Result, newLoad.getValue(1));
10107     }
10108 
10109     // Copy the value to a (aligned) stack slot using (unaligned) integer
10110     // loads and stores, then do a (aligned) load from the stack slot.
10111     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
10112     unsigned LoadedBytes = LoadedVT.getStoreSize();
10113     unsigned RegBytes = RegVT.getSizeInBits() / 8;
10114     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
10115 
10116     // Make sure the stack slot is also aligned for the register type.
10117     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
10118     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
10119     SmallVector<SDValue, 8> Stores;
10120     SDValue StackPtr = StackBase;
10121     unsigned Offset = 0;
10122 
10123     EVT PtrVT = Ptr.getValueType();
10124     EVT StackPtrVT = StackPtr.getValueType();
10125 
10126     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
10127     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
10128 
10129     // Do all but one copies using the full register width.
10130     for (unsigned i = 1; i < NumRegs; i++) {
10131       // Load one integer register's worth from the original location.
10132       SDValue Load = DAG.getLoad(
10133           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
10134           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
10135           LD->getAAInfo());
10136       // Follow the load with a store to the stack slot.  Remember the store.
10137       Stores.push_back(DAG.getStore(
10138           Load.getValue(1), dl, Load, StackPtr,
10139           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
10140       // Increment the pointers.
10141       Offset += RegBytes;
10142 
10143       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
10144       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
10145     }
10146 
10147     // The last copy may be partial.  Do an extending load.
10148     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
10149                                   8 * (LoadedBytes - Offset));
10150     SDValue Load =
10151         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
10152                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
10153                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
10154                        LD->getAAInfo());
10155     // Follow the load with a store to the stack slot.  Remember the store.
10156     // On big-endian machines this requires a truncating store to ensure
10157     // that the bits end up in the right place.
10158     Stores.push_back(DAG.getTruncStore(
10159         Load.getValue(1), dl, Load, StackPtr,
10160         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
10161 
10162     // The order of the stores doesn't matter - say it with a TokenFactor.
10163     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10164 
10165     // Finally, perform the original load only redirected to the stack slot.
10166     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
10167                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
10168                           LoadedVT);
10169 
10170     // Callers expect a MERGE_VALUES node.
10171     return std::make_pair(Load, TF);
10172   }
10173 
10174   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
10175          "Unaligned load of unsupported type.");
10176 
10177   // Compute the new VT that is half the size of the old one.  This is an
10178   // integer MVT.
10179   unsigned NumBits = LoadedVT.getSizeInBits();
10180   EVT NewLoadedVT;
10181   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
10182   NumBits >>= 1;
10183 
10184   Align Alignment = LD->getOriginalAlign();
10185   unsigned IncrementSize = NumBits / 8;
10186   ISD::LoadExtType HiExtType = LD->getExtensionType();
10187 
10188   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
10189   if (HiExtType == ISD::NON_EXTLOAD)
10190     HiExtType = ISD::ZEXTLOAD;
10191 
10192   // Load the value in two parts
10193   SDValue Lo, Hi;
10194   if (DAG.getDataLayout().isLittleEndian()) {
10195     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
10196                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10197                         LD->getAAInfo());
10198 
10199     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize));
10200     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
10201                         LD->getPointerInfo().getWithOffset(IncrementSize),
10202                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10203                         LD->getAAInfo());
10204   } else {
10205     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
10206                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10207                         LD->getAAInfo());
10208 
10209     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize));
10210     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
10211                         LD->getPointerInfo().getWithOffset(IncrementSize),
10212                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10213                         LD->getAAInfo());
10214   }
10215 
10216   // aggregate the two parts
10217   SDValue ShiftAmount = DAG.getShiftAmountConstant(NumBits, VT, dl);
10218   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
10219   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
10220 
10221   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
10222                              Hi.getValue(1));
10223 
10224   return std::make_pair(Result, TF);
10225 }
10226 
10227 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
10228                                              SelectionDAG &DAG) const {
10229   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
10230          "unaligned indexed stores not implemented!");
10231   SDValue Chain = ST->getChain();
10232   SDValue Ptr = ST->getBasePtr();
10233   SDValue Val = ST->getValue();
10234   EVT VT = Val.getValueType();
10235   Align Alignment = ST->getOriginalAlign();
10236   auto &MF = DAG.getMachineFunction();
10237   EVT StoreMemVT = ST->getMemoryVT();
10238 
10239   SDLoc dl(ST);
10240   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
10241     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
10242     if (isTypeLegal(intVT)) {
10243       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
10244           StoreMemVT.isVector()) {
10245         // Scalarize the store and let the individual components be handled.
10246         SDValue Result = scalarizeVectorStore(ST, DAG);
10247         return Result;
10248       }
10249       // Expand to a bitconvert of the value to the integer type of the
10250       // same size, then a (misaligned) int store.
10251       // FIXME: Does not handle truncating floating point stores!
10252       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
10253       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
10254                             Alignment, ST->getMemOperand()->getFlags());
10255       return Result;
10256     }
10257     // Do a (aligned) store to a stack slot, then copy from the stack slot
10258     // to the final destination using (unaligned) integer loads and stores.
10259     MVT RegVT = getRegisterType(
10260         *DAG.getContext(),
10261         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
10262     EVT PtrVT = Ptr.getValueType();
10263     unsigned StoredBytes = StoreMemVT.getStoreSize();
10264     unsigned RegBytes = RegVT.getSizeInBits() / 8;
10265     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
10266 
10267     // Make sure the stack slot is also aligned for the register type.
10268     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
10269     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
10270 
10271     // Perform the original store, only redirected to the stack slot.
10272     SDValue Store = DAG.getTruncStore(
10273         Chain, dl, Val, StackPtr,
10274         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
10275 
10276     EVT StackPtrVT = StackPtr.getValueType();
10277 
10278     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
10279     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
10280     SmallVector<SDValue, 8> Stores;
10281     unsigned Offset = 0;
10282 
10283     // Do all but one copies using the full register width.
10284     for (unsigned i = 1; i < NumRegs; i++) {
10285       // Load one integer register's worth from the stack slot.
10286       SDValue Load = DAG.getLoad(
10287           RegVT, dl, Store, StackPtr,
10288           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
10289       // Store it to the final location.  Remember the store.
10290       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
10291                                     ST->getPointerInfo().getWithOffset(Offset),
10292                                     ST->getOriginalAlign(),
10293                                     ST->getMemOperand()->getFlags()));
10294       // Increment the pointers.
10295       Offset += RegBytes;
10296       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
10297       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
10298     }
10299 
10300     // The last store may be partial.  Do a truncating store.  On big-endian
10301     // machines this requires an extending load from the stack slot to ensure
10302     // that the bits are in the right place.
10303     EVT LoadMemVT =
10304         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
10305 
10306     // Load from the stack slot.
10307     SDValue Load = DAG.getExtLoad(
10308         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
10309         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
10310 
10311     Stores.push_back(
10312         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
10313                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
10314                           ST->getOriginalAlign(),
10315                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
10316     // The order of the stores doesn't matter - say it with a TokenFactor.
10317     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10318     return Result;
10319   }
10320 
10321   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
10322          "Unaligned store of unknown type.");
10323   // Get the half-size VT
10324   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
10325   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
10326   unsigned IncrementSize = NumBits / 8;
10327 
10328   // Divide the stored value in two parts.
10329   SDValue ShiftAmount =
10330       DAG.getShiftAmountConstant(NumBits, Val.getValueType(), dl);
10331   SDValue Lo = Val;
10332   // If Val is a constant, replace the upper bits with 0. The SRL will constant
10333   // fold and not use the upper bits. A smaller constant may be easier to
10334   // materialize.
10335   if (auto *C = dyn_cast<ConstantSDNode>(Lo); C && !C->isOpaque())
10336     Lo = DAG.getNode(
10337         ISD::AND, dl, VT, Lo,
10338         DAG.getConstant(APInt::getLowBitsSet(VT.getSizeInBits(), NumBits), dl,
10339                         VT));
10340   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
10341 
10342   // Store the two parts
10343   SDValue Store1, Store2;
10344   Store1 = DAG.getTruncStore(Chain, dl,
10345                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
10346                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
10347                              ST->getMemOperand()->getFlags());
10348 
10349   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize));
10350   Store2 = DAG.getTruncStore(
10351       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
10352       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
10353       ST->getMemOperand()->getFlags(), ST->getAAInfo());
10354 
10355   SDValue Result =
10356       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
10357   return Result;
10358 }
10359 
10360 SDValue
10361 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
10362                                        const SDLoc &DL, EVT DataVT,
10363                                        SelectionDAG &DAG,
10364                                        bool IsCompressedMemory) const {
10365   SDValue Increment;
10366   EVT AddrVT = Addr.getValueType();
10367   EVT MaskVT = Mask.getValueType();
10368   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
10369          "Incompatible types of Data and Mask");
10370   if (IsCompressedMemory) {
10371     if (DataVT.isScalableVector())
10372       report_fatal_error(
10373           "Cannot currently handle compressed memory with scalable vectors");
10374     // Incrementing the pointer according to number of '1's in the mask.
10375     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
10376     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
10377     if (MaskIntVT.getSizeInBits() < 32) {
10378       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
10379       MaskIntVT = MVT::i32;
10380     }
10381 
10382     // Count '1's with POPCNT.
10383     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
10384     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
10385     // Scale is an element size in bytes.
10386     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
10387                                     AddrVT);
10388     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
10389   } else if (DataVT.isScalableVector()) {
10390     Increment = DAG.getVScale(DL, AddrVT,
10391                               APInt(AddrVT.getFixedSizeInBits(),
10392                                     DataVT.getStoreSize().getKnownMinValue()));
10393   } else
10394     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
10395 
10396   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
10397 }
10398 
10399 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
10400                                        EVT VecVT, const SDLoc &dl,
10401                                        ElementCount SubEC) {
10402   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
10403          "Cannot index a scalable vector within a fixed-width vector");
10404 
10405   unsigned NElts = VecVT.getVectorMinNumElements();
10406   unsigned NumSubElts = SubEC.getKnownMinValue();
10407   EVT IdxVT = Idx.getValueType();
10408 
10409   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
10410     // If this is a constant index and we know the value plus the number of the
10411     // elements in the subvector minus one is less than the minimum number of
10412     // elements then it's safe to return Idx.
10413     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
10414       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
10415         return Idx;
10416     SDValue VS =
10417         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
10418     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
10419     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
10420                               DAG.getConstant(NumSubElts, dl, IdxVT));
10421     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
10422   }
10423   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
10424     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
10425     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
10426                        DAG.getConstant(Imm, dl, IdxVT));
10427   }
10428   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
10429   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
10430                      DAG.getConstant(MaxIndex, dl, IdxVT));
10431 }
10432 
10433 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
10434                                                 SDValue VecPtr, EVT VecVT,
10435                                                 SDValue Index) const {
10436   return getVectorSubVecPointer(
10437       DAG, VecPtr, VecVT,
10438       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
10439       Index);
10440 }
10441 
10442 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
10443                                                SDValue VecPtr, EVT VecVT,
10444                                                EVT SubVecVT,
10445                                                SDValue Index) const {
10446   SDLoc dl(Index);
10447   // Make sure the index type is big enough to compute in.
10448   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
10449 
10450   EVT EltVT = VecVT.getVectorElementType();
10451 
10452   // Calculate the element offset and add it to the pointer.
10453   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
10454   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
10455          "Converting bits to bytes lost precision");
10456   assert(SubVecVT.getVectorElementType() == EltVT &&
10457          "Sub-vector must be a vector with matching element type");
10458   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
10459                                   SubVecVT.getVectorElementCount());
10460 
10461   EVT IdxVT = Index.getValueType();
10462   if (SubVecVT.isScalableVector())
10463     Index =
10464         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
10465                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
10466 
10467   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
10468                       DAG.getConstant(EltSize, dl, IdxVT));
10469   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
10470 }
10471 
10472 //===----------------------------------------------------------------------===//
10473 // Implementation of Emulated TLS Model
10474 //===----------------------------------------------------------------------===//
10475 
10476 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
10477                                                 SelectionDAG &DAG) const {
10478   // Access to address of TLS varialbe xyz is lowered to a function call:
10479   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
10480   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10481   PointerType *VoidPtrType = PointerType::get(*DAG.getContext(), 0);
10482   SDLoc dl(GA);
10483 
10484   ArgListTy Args;
10485   ArgListEntry Entry;
10486   const GlobalValue *GV =
10487       cast<GlobalValue>(GA->getGlobal()->stripPointerCastsAndAliases());
10488   SmallString<32> NameString("__emutls_v.");
10489   NameString += GV->getName();
10490   StringRef EmuTlsVarName(NameString);
10491   const GlobalVariable *EmuTlsVar =
10492       GV->getParent()->getNamedGlobal(EmuTlsVarName);
10493   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
10494   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
10495   Entry.Ty = VoidPtrType;
10496   Args.push_back(Entry);
10497 
10498   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
10499 
10500   TargetLowering::CallLoweringInfo CLI(DAG);
10501   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
10502   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
10503   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
10504 
10505   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
10506   // At last for X86 targets, maybe good for other targets too?
10507   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10508   MFI.setAdjustsStack(true); // Is this only for X86 target?
10509   MFI.setHasCalls(true);
10510 
10511   assert((GA->getOffset() == 0) &&
10512          "Emulated TLS must have zero offset in GlobalAddressSDNode");
10513   return CallResult.first;
10514 }
10515 
10516 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
10517                                                 SelectionDAG &DAG) const {
10518   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
10519   if (!isCtlzFast())
10520     return SDValue();
10521   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
10522   SDLoc dl(Op);
10523   if (isNullConstant(Op.getOperand(1)) && CC == ISD::SETEQ) {
10524     EVT VT = Op.getOperand(0).getValueType();
10525     SDValue Zext = Op.getOperand(0);
10526     if (VT.bitsLT(MVT::i32)) {
10527       VT = MVT::i32;
10528       Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
10529     }
10530     unsigned Log2b = Log2_32(VT.getSizeInBits());
10531     SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
10532     SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
10533                               DAG.getConstant(Log2b, dl, MVT::i32));
10534     return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
10535   }
10536   return SDValue();
10537 }
10538 
10539 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
10540   SDValue Op0 = Node->getOperand(0);
10541   SDValue Op1 = Node->getOperand(1);
10542   EVT VT = Op0.getValueType();
10543   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10544   unsigned Opcode = Node->getOpcode();
10545   SDLoc DL(Node);
10546 
10547   // umax(x,1) --> sub(x,cmpeq(x,0)) iff cmp result is allbits
10548   if (Opcode == ISD::UMAX && llvm::isOneOrOneSplat(Op1, true) && BoolVT == VT &&
10549       getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
10550     Op0 = DAG.getFreeze(Op0);
10551     SDValue Zero = DAG.getConstant(0, DL, VT);
10552     return DAG.getNode(ISD::SUB, DL, VT, Op0,
10553                        DAG.getSetCC(DL, VT, Op0, Zero, ISD::SETEQ));
10554   }
10555 
10556   // umin(x,y) -> sub(x,usubsat(x,y))
10557   // TODO: Missing freeze(Op0)?
10558   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
10559       isOperationLegal(ISD::USUBSAT, VT)) {
10560     return DAG.getNode(ISD::SUB, DL, VT, Op0,
10561                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
10562   }
10563 
10564   // umax(x,y) -> add(x,usubsat(y,x))
10565   // TODO: Missing freeze(Op0)?
10566   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
10567       isOperationLegal(ISD::USUBSAT, VT)) {
10568     return DAG.getNode(ISD::ADD, DL, VT, Op0,
10569                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
10570   }
10571 
10572   // FIXME: Should really try to split the vector in case it's legal on a
10573   // subvector.
10574   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
10575     return DAG.UnrollVectorOp(Node);
10576 
10577   // Attempt to find an existing SETCC node that we can reuse.
10578   // TODO: Do we need a generic doesSETCCNodeExist?
10579   // TODO: Missing freeze(Op0)/freeze(Op1)?
10580   auto buildMinMax = [&](ISD::CondCode PrefCC, ISD::CondCode AltCC,
10581                          ISD::CondCode PrefCommuteCC,
10582                          ISD::CondCode AltCommuteCC) {
10583     SDVTList BoolVTList = DAG.getVTList(BoolVT);
10584     for (ISD::CondCode CC : {PrefCC, AltCC}) {
10585       if (DAG.doesNodeExist(ISD::SETCC, BoolVTList,
10586                             {Op0, Op1, DAG.getCondCode(CC)})) {
10587         SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
10588         return DAG.getSelect(DL, VT, Cond, Op0, Op1);
10589       }
10590     }
10591     for (ISD::CondCode CC : {PrefCommuteCC, AltCommuteCC}) {
10592       if (DAG.doesNodeExist(ISD::SETCC, BoolVTList,
10593                             {Op0, Op1, DAG.getCondCode(CC)})) {
10594         SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
10595         return DAG.getSelect(DL, VT, Cond, Op1, Op0);
10596       }
10597     }
10598     SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, PrefCC);
10599     return DAG.getSelect(DL, VT, Cond, Op0, Op1);
10600   };
10601 
10602   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
10603   //                      -> Y = (A < B) ? B : A
10604   //                      -> Y = (A >= B) ? A : B
10605   //                      -> Y = (A <= B) ? B : A
10606   switch (Opcode) {
10607   case ISD::SMAX:
10608     return buildMinMax(ISD::SETGT, ISD::SETGE, ISD::SETLT, ISD::SETLE);
10609   case ISD::SMIN:
10610     return buildMinMax(ISD::SETLT, ISD::SETLE, ISD::SETGT, ISD::SETGE);
10611   case ISD::UMAX:
10612     return buildMinMax(ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE);
10613   case ISD::UMIN:
10614     return buildMinMax(ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE);
10615   }
10616 
10617   llvm_unreachable("How did we get here?");
10618 }
10619 
10620 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
10621   unsigned Opcode = Node->getOpcode();
10622   SDValue LHS = Node->getOperand(0);
10623   SDValue RHS = Node->getOperand(1);
10624   EVT VT = LHS.getValueType();
10625   SDLoc dl(Node);
10626 
10627   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
10628   assert(VT.isInteger() && "Expected operands to be integers");
10629 
10630   // usub.sat(a, b) -> umax(a, b) - b
10631   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
10632     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
10633     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
10634   }
10635 
10636   // uadd.sat(a, b) -> umin(a, ~b) + b
10637   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
10638     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
10639     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
10640     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
10641   }
10642 
10643   unsigned OverflowOp;
10644   switch (Opcode) {
10645   case ISD::SADDSAT:
10646     OverflowOp = ISD::SADDO;
10647     break;
10648   case ISD::UADDSAT:
10649     OverflowOp = ISD::UADDO;
10650     break;
10651   case ISD::SSUBSAT:
10652     OverflowOp = ISD::SSUBO;
10653     break;
10654   case ISD::USUBSAT:
10655     OverflowOp = ISD::USUBO;
10656     break;
10657   default:
10658     llvm_unreachable("Expected method to receive signed or unsigned saturation "
10659                      "addition or subtraction node.");
10660   }
10661 
10662   // FIXME: Should really try to split the vector in case it's legal on a
10663   // subvector.
10664   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
10665     return DAG.UnrollVectorOp(Node);
10666 
10667   unsigned BitWidth = LHS.getScalarValueSizeInBits();
10668   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10669   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
10670   SDValue SumDiff = Result.getValue(0);
10671   SDValue Overflow = Result.getValue(1);
10672   SDValue Zero = DAG.getConstant(0, dl, VT);
10673   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
10674 
10675   if (Opcode == ISD::UADDSAT) {
10676     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
10677       // (LHS + RHS) | OverflowMask
10678       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
10679       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
10680     }
10681     // Overflow ? 0xffff.... : (LHS + RHS)
10682     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
10683   }
10684 
10685   if (Opcode == ISD::USUBSAT) {
10686     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
10687       // (LHS - RHS) & ~OverflowMask
10688       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
10689       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
10690       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
10691     }
10692     // Overflow ? 0 : (LHS - RHS)
10693     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
10694   }
10695 
10696   if (Opcode == ISD::SADDSAT || Opcode == ISD::SSUBSAT) {
10697     APInt MinVal = APInt::getSignedMinValue(BitWidth);
10698     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
10699 
10700     KnownBits KnownLHS = DAG.computeKnownBits(LHS);
10701     KnownBits KnownRHS = DAG.computeKnownBits(RHS);
10702 
10703     // If either of the operand signs are known, then they are guaranteed to
10704     // only saturate in one direction. If non-negative they will saturate
10705     // towards SIGNED_MAX, if negative they will saturate towards SIGNED_MIN.
10706     //
10707     // In the case of ISD::SSUBSAT, 'x - y' is equivalent to 'x + (-y)', so the
10708     // sign of 'y' has to be flipped.
10709 
10710     bool LHSIsNonNegative = KnownLHS.isNonNegative();
10711     bool RHSIsNonNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNonNegative()
10712                                                    : KnownRHS.isNegative();
10713     if (LHSIsNonNegative || RHSIsNonNegative) {
10714       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
10715       return DAG.getSelect(dl, VT, Overflow, SatMax, SumDiff);
10716     }
10717 
10718     bool LHSIsNegative = KnownLHS.isNegative();
10719     bool RHSIsNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNegative()
10720                                                 : KnownRHS.isNonNegative();
10721     if (LHSIsNegative || RHSIsNegative) {
10722       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
10723       return DAG.getSelect(dl, VT, Overflow, SatMin, SumDiff);
10724     }
10725   }
10726 
10727   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
10728   APInt MinVal = APInt::getSignedMinValue(BitWidth);
10729   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
10730   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
10731                               DAG.getConstant(BitWidth - 1, dl, VT));
10732   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
10733   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
10734 }
10735 
10736 SDValue TargetLowering::expandCMP(SDNode *Node, SelectionDAG &DAG) const {
10737   unsigned Opcode = Node->getOpcode();
10738   SDValue LHS = Node->getOperand(0);
10739   SDValue RHS = Node->getOperand(1);
10740   EVT VT = LHS.getValueType();
10741   EVT ResVT = Node->getValueType(0);
10742   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10743   SDLoc dl(Node);
10744 
10745   auto LTPredicate = (Opcode == ISD::UCMP ? ISD::SETULT : ISD::SETLT);
10746   auto GTPredicate = (Opcode == ISD::UCMP ? ISD::SETUGT : ISD::SETGT);
10747   SDValue IsLT = DAG.getSetCC(dl, BoolVT, LHS, RHS, LTPredicate);
10748   SDValue IsGT = DAG.getSetCC(dl, BoolVT, LHS, RHS, GTPredicate);
10749 
10750   // We can't perform arithmetic on i1 values. Extending them would
10751   // probably result in worse codegen, so let's just use two selects instead.
10752   // Some targets are also just better off using selects rather than subtraction
10753   // because one of the conditions can be merged with one of the selects.
10754   // And finally, if we don't know the contents of high bits of a boolean value
10755   // we can't perform any arithmetic either.
10756   if (shouldExpandCmpUsingSelects(VT) || BoolVT.getScalarSizeInBits() == 1 ||
10757       getBooleanContents(BoolVT) == UndefinedBooleanContent) {
10758     SDValue SelectZeroOrOne =
10759         DAG.getSelect(dl, ResVT, IsGT, DAG.getConstant(1, dl, ResVT),
10760                       DAG.getConstant(0, dl, ResVT));
10761     return DAG.getSelect(dl, ResVT, IsLT, DAG.getAllOnesConstant(dl, ResVT),
10762                          SelectZeroOrOne);
10763   }
10764 
10765   if (getBooleanContents(BoolVT) == ZeroOrNegativeOneBooleanContent)
10766     std::swap(IsGT, IsLT);
10767   return DAG.getSExtOrTrunc(DAG.getNode(ISD::SUB, dl, BoolVT, IsGT, IsLT), dl,
10768                             ResVT);
10769 }
10770 
10771 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
10772   unsigned Opcode = Node->getOpcode();
10773   bool IsSigned = Opcode == ISD::SSHLSAT;
10774   SDValue LHS = Node->getOperand(0);
10775   SDValue RHS = Node->getOperand(1);
10776   EVT VT = LHS.getValueType();
10777   SDLoc dl(Node);
10778 
10779   assert((Node->getOpcode() == ISD::SSHLSAT ||
10780           Node->getOpcode() == ISD::USHLSAT) &&
10781           "Expected a SHLSAT opcode");
10782   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
10783   assert(VT.isInteger() && "Expected operands to be integers");
10784 
10785   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
10786     return DAG.UnrollVectorOp(Node);
10787 
10788   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
10789 
10790   unsigned BW = VT.getScalarSizeInBits();
10791   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10792   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
10793   SDValue Orig =
10794       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
10795 
10796   SDValue SatVal;
10797   if (IsSigned) {
10798     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
10799     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
10800     SDValue Cond =
10801         DAG.getSetCC(dl, BoolVT, LHS, DAG.getConstant(0, dl, VT), ISD::SETLT);
10802     SatVal = DAG.getSelect(dl, VT, Cond, SatMin, SatMax);
10803   } else {
10804     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
10805   }
10806   SDValue Cond = DAG.getSetCC(dl, BoolVT, LHS, Orig, ISD::SETNE);
10807   return DAG.getSelect(dl, VT, Cond, SatVal, Result);
10808 }
10809 
10810 void TargetLowering::forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl,
10811                                         bool Signed, EVT WideVT,
10812                                         const SDValue LL, const SDValue LH,
10813                                         const SDValue RL, const SDValue RH,
10814                                         SDValue &Lo, SDValue &Hi) const {
10815   // We can fall back to a libcall with an illegal type for the MUL if we
10816   // have a libcall big enough.
10817   // Also, we can fall back to a division in some cases, but that's a big
10818   // performance hit in the general case.
10819   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
10820   if (WideVT == MVT::i16)
10821     LC = RTLIB::MUL_I16;
10822   else if (WideVT == MVT::i32)
10823     LC = RTLIB::MUL_I32;
10824   else if (WideVT == MVT::i64)
10825     LC = RTLIB::MUL_I64;
10826   else if (WideVT == MVT::i128)
10827     LC = RTLIB::MUL_I128;
10828 
10829   if (LC == RTLIB::UNKNOWN_LIBCALL || !getLibcallName(LC)) {
10830     // We'll expand the multiplication by brute force because we have no other
10831     // options. This is a trivially-generalized version of the code from
10832     // Hacker's Delight (itself derived from Knuth's Algorithm M from section
10833     // 4.3.1).
10834     EVT VT = LL.getValueType();
10835     unsigned Bits = VT.getSizeInBits();
10836     unsigned HalfBits = Bits >> 1;
10837     SDValue Mask =
10838         DAG.getConstant(APInt::getLowBitsSet(Bits, HalfBits), dl, VT);
10839     SDValue LLL = DAG.getNode(ISD::AND, dl, VT, LL, Mask);
10840     SDValue RLL = DAG.getNode(ISD::AND, dl, VT, RL, Mask);
10841 
10842     SDValue T = DAG.getNode(ISD::MUL, dl, VT, LLL, RLL);
10843     SDValue TL = DAG.getNode(ISD::AND, dl, VT, T, Mask);
10844 
10845     SDValue Shift = DAG.getShiftAmountConstant(HalfBits, VT, dl);
10846     SDValue TH = DAG.getNode(ISD::SRL, dl, VT, T, Shift);
10847     SDValue LLH = DAG.getNode(ISD::SRL, dl, VT, LL, Shift);
10848     SDValue RLH = DAG.getNode(ISD::SRL, dl, VT, RL, Shift);
10849 
10850     SDValue U = DAG.getNode(ISD::ADD, dl, VT,
10851                             DAG.getNode(ISD::MUL, dl, VT, LLH, RLL), TH);
10852     SDValue UL = DAG.getNode(ISD::AND, dl, VT, U, Mask);
10853     SDValue UH = DAG.getNode(ISD::SRL, dl, VT, U, Shift);
10854 
10855     SDValue V = DAG.getNode(ISD::ADD, dl, VT,
10856                             DAG.getNode(ISD::MUL, dl, VT, LLL, RLH), UL);
10857     SDValue VH = DAG.getNode(ISD::SRL, dl, VT, V, Shift);
10858 
10859     SDValue W =
10860         DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::MUL, dl, VT, LLH, RLH),
10861                     DAG.getNode(ISD::ADD, dl, VT, UH, VH));
10862     Lo = DAG.getNode(ISD::ADD, dl, VT, TL,
10863                      DAG.getNode(ISD::SHL, dl, VT, V, Shift));
10864 
10865     Hi = DAG.getNode(ISD::ADD, dl, VT, W,
10866                      DAG.getNode(ISD::ADD, dl, VT,
10867                                  DAG.getNode(ISD::MUL, dl, VT, RH, LL),
10868                                  DAG.getNode(ISD::MUL, dl, VT, RL, LH)));
10869   } else {
10870     // Attempt a libcall.
10871     SDValue Ret;
10872     TargetLowering::MakeLibCallOptions CallOptions;
10873     CallOptions.setSExt(Signed);
10874     CallOptions.setIsPostTypeLegalization(true);
10875     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
10876       // Halves of WideVT are packed into registers in different order
10877       // depending on platform endianness. This is usually handled by
10878       // the C calling convention, but we can't defer to it in
10879       // the legalizer.
10880       SDValue Args[] = {LL, LH, RL, RH};
10881       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
10882     } else {
10883       SDValue Args[] = {LH, LL, RH, RL};
10884       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
10885     }
10886     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
10887            "Ret value is a collection of constituent nodes holding result.");
10888     if (DAG.getDataLayout().isLittleEndian()) {
10889       // Same as above.
10890       Lo = Ret.getOperand(0);
10891       Hi = Ret.getOperand(1);
10892     } else {
10893       Lo = Ret.getOperand(1);
10894       Hi = Ret.getOperand(0);
10895     }
10896   }
10897 }
10898 
10899 void TargetLowering::forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl,
10900                                         bool Signed, const SDValue LHS,
10901                                         const SDValue RHS, SDValue &Lo,
10902                                         SDValue &Hi) const {
10903   EVT VT = LHS.getValueType();
10904   assert(RHS.getValueType() == VT && "Mismatching operand types");
10905 
10906   SDValue HiLHS;
10907   SDValue HiRHS;
10908   if (Signed) {
10909     // The high part is obtained by SRA'ing all but one of the bits of low
10910     // part.
10911     unsigned LoSize = VT.getFixedSizeInBits();
10912     HiLHS = DAG.getNode(
10913         ISD::SRA, dl, VT, LHS,
10914         DAG.getConstant(LoSize - 1, dl, getPointerTy(DAG.getDataLayout())));
10915     HiRHS = DAG.getNode(
10916         ISD::SRA, dl, VT, RHS,
10917         DAG.getConstant(LoSize - 1, dl, getPointerTy(DAG.getDataLayout())));
10918   } else {
10919     HiLHS = DAG.getConstant(0, dl, VT);
10920     HiRHS = DAG.getConstant(0, dl, VT);
10921   }
10922   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
10923   forceExpandWideMUL(DAG, dl, Signed, WideVT, LHS, HiLHS, RHS, HiRHS, Lo, Hi);
10924 }
10925 
10926 SDValue
10927 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
10928   assert((Node->getOpcode() == ISD::SMULFIX ||
10929           Node->getOpcode() == ISD::UMULFIX ||
10930           Node->getOpcode() == ISD::SMULFIXSAT ||
10931           Node->getOpcode() == ISD::UMULFIXSAT) &&
10932          "Expected a fixed point multiplication opcode");
10933 
10934   SDLoc dl(Node);
10935   SDValue LHS = Node->getOperand(0);
10936   SDValue RHS = Node->getOperand(1);
10937   EVT VT = LHS.getValueType();
10938   unsigned Scale = Node->getConstantOperandVal(2);
10939   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
10940                      Node->getOpcode() == ISD::UMULFIXSAT);
10941   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
10942                  Node->getOpcode() == ISD::SMULFIXSAT);
10943   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10944   unsigned VTSize = VT.getScalarSizeInBits();
10945 
10946   if (!Scale) {
10947     // [us]mul.fix(a, b, 0) -> mul(a, b)
10948     if (!Saturating) {
10949       if (isOperationLegalOrCustom(ISD::MUL, VT))
10950         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
10951     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
10952       SDValue Result =
10953           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
10954       SDValue Product = Result.getValue(0);
10955       SDValue Overflow = Result.getValue(1);
10956       SDValue Zero = DAG.getConstant(0, dl, VT);
10957 
10958       APInt MinVal = APInt::getSignedMinValue(VTSize);
10959       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
10960       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
10961       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
10962       // Xor the inputs, if resulting sign bit is 0 the product will be
10963       // positive, else negative.
10964       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
10965       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
10966       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
10967       return DAG.getSelect(dl, VT, Overflow, Result, Product);
10968     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
10969       SDValue Result =
10970           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
10971       SDValue Product = Result.getValue(0);
10972       SDValue Overflow = Result.getValue(1);
10973 
10974       APInt MaxVal = APInt::getMaxValue(VTSize);
10975       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
10976       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
10977     }
10978   }
10979 
10980   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
10981          "Expected scale to be less than the number of bits if signed or at "
10982          "most the number of bits if unsigned.");
10983   assert(LHS.getValueType() == RHS.getValueType() &&
10984          "Expected both operands to be the same type");
10985 
10986   // Get the upper and lower bits of the result.
10987   SDValue Lo, Hi;
10988   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
10989   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
10990   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VTSize * 2);
10991   if (VT.isVector())
10992     WideVT =
10993         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
10994   if (isOperationLegalOrCustom(LoHiOp, VT)) {
10995     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
10996     Lo = Result.getValue(0);
10997     Hi = Result.getValue(1);
10998   } else if (isOperationLegalOrCustom(HiOp, VT)) {
10999     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
11000     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
11001   } else if (isOperationLegalOrCustom(ISD::MUL, WideVT)) {
11002     // Try for a multiplication using a wider type.
11003     unsigned Ext = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
11004     SDValue LHSExt = DAG.getNode(Ext, dl, WideVT, LHS);
11005     SDValue RHSExt = DAG.getNode(Ext, dl, WideVT, RHS);
11006     SDValue Res = DAG.getNode(ISD::MUL, dl, WideVT, LHSExt, RHSExt);
11007     Lo = DAG.getNode(ISD::TRUNCATE, dl, VT, Res);
11008     SDValue Shifted =
11009         DAG.getNode(ISD::SRA, dl, WideVT, Res,
11010                     DAG.getShiftAmountConstant(VTSize, WideVT, dl));
11011     Hi = DAG.getNode(ISD::TRUNCATE, dl, VT, Shifted);
11012   } else if (VT.isVector()) {
11013     return SDValue();
11014   } else {
11015     forceExpandWideMUL(DAG, dl, Signed, LHS, RHS, Lo, Hi);
11016   }
11017 
11018   if (Scale == VTSize)
11019     // Result is just the top half since we'd be shifting by the width of the
11020     // operand. Overflow impossible so this works for both UMULFIX and
11021     // UMULFIXSAT.
11022     return Hi;
11023 
11024   // The result will need to be shifted right by the scale since both operands
11025   // are scaled. The result is given to us in 2 halves, so we only want part of
11026   // both in the result.
11027   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
11028                                DAG.getShiftAmountConstant(Scale, VT, dl));
11029   if (!Saturating)
11030     return Result;
11031 
11032   if (!Signed) {
11033     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
11034     // widened multiplication) aren't all zeroes.
11035 
11036     // Saturate to max if ((Hi >> Scale) != 0),
11037     // which is the same as if (Hi > ((1 << Scale) - 1))
11038     APInt MaxVal = APInt::getMaxValue(VTSize);
11039     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
11040                                       dl, VT);
11041     Result = DAG.getSelectCC(dl, Hi, LowMask,
11042                              DAG.getConstant(MaxVal, dl, VT), Result,
11043                              ISD::SETUGT);
11044 
11045     return Result;
11046   }
11047 
11048   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
11049   // widened multiplication) aren't all ones or all zeroes.
11050 
11051   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
11052   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
11053 
11054   if (Scale == 0) {
11055     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
11056                                DAG.getShiftAmountConstant(VTSize - 1, VT, dl));
11057     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
11058     // Saturated to SatMin if wide product is negative, and SatMax if wide
11059     // product is positive ...
11060     SDValue Zero = DAG.getConstant(0, dl, VT);
11061     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
11062                                                ISD::SETLT);
11063     // ... but only if we overflowed.
11064     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
11065   }
11066 
11067   //  We handled Scale==0 above so all the bits to examine is in Hi.
11068 
11069   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
11070   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
11071   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
11072                                     dl, VT);
11073   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
11074   // Saturate to min if (Hi >> (Scale - 1)) < -1),
11075   // which is the same as if (HI < (-1 << (Scale - 1))
11076   SDValue HighMask =
11077       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
11078                       dl, VT);
11079   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
11080   return Result;
11081 }
11082 
11083 SDValue
11084 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
11085                                     SDValue LHS, SDValue RHS,
11086                                     unsigned Scale, SelectionDAG &DAG) const {
11087   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
11088           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
11089          "Expected a fixed point division opcode");
11090 
11091   EVT VT = LHS.getValueType();
11092   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
11093   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
11094   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
11095 
11096   // If there is enough room in the type to upscale the LHS or downscale the
11097   // RHS before the division, we can perform it in this type without having to
11098   // resize. For signed operations, the LHS headroom is the number of
11099   // redundant sign bits, and for unsigned ones it is the number of zeroes.
11100   // The headroom for the RHS is the number of trailing zeroes.
11101   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
11102                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
11103   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
11104 
11105   // For signed saturating operations, we need to be able to detect true integer
11106   // division overflow; that is, when you have MIN / -EPS. However, this
11107   // is undefined behavior and if we emit divisions that could take such
11108   // values it may cause undesired behavior (arithmetic exceptions on x86, for
11109   // example).
11110   // Avoid this by requiring an extra bit so that we never get this case.
11111   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
11112   // signed saturating division, we need to emit a whopping 32-bit division.
11113   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
11114     return SDValue();
11115 
11116   unsigned LHSShift = std::min(LHSLead, Scale);
11117   unsigned RHSShift = Scale - LHSShift;
11118 
11119   // At this point, we know that if we shift the LHS up by LHSShift and the
11120   // RHS down by RHSShift, we can emit a regular division with a final scaling
11121   // factor of Scale.
11122 
11123   if (LHSShift)
11124     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
11125                       DAG.getShiftAmountConstant(LHSShift, VT, dl));
11126   if (RHSShift)
11127     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
11128                       DAG.getShiftAmountConstant(RHSShift, VT, dl));
11129 
11130   SDValue Quot;
11131   if (Signed) {
11132     // For signed operations, if the resulting quotient is negative and the
11133     // remainder is nonzero, subtract 1 from the quotient to round towards
11134     // negative infinity.
11135     SDValue Rem;
11136     // FIXME: Ideally we would always produce an SDIVREM here, but if the
11137     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
11138     // we couldn't just form a libcall, but the type legalizer doesn't do it.
11139     if (isTypeLegal(VT) &&
11140         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
11141       Quot = DAG.getNode(ISD::SDIVREM, dl,
11142                          DAG.getVTList(VT, VT),
11143                          LHS, RHS);
11144       Rem = Quot.getValue(1);
11145       Quot = Quot.getValue(0);
11146     } else {
11147       Quot = DAG.getNode(ISD::SDIV, dl, VT,
11148                          LHS, RHS);
11149       Rem = DAG.getNode(ISD::SREM, dl, VT,
11150                         LHS, RHS);
11151     }
11152     SDValue Zero = DAG.getConstant(0, dl, VT);
11153     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
11154     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
11155     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
11156     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
11157     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
11158                                DAG.getConstant(1, dl, VT));
11159     Quot = DAG.getSelect(dl, VT,
11160                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
11161                          Sub1, Quot);
11162   } else
11163     Quot = DAG.getNode(ISD::UDIV, dl, VT,
11164                        LHS, RHS);
11165 
11166   return Quot;
11167 }
11168 
11169 void TargetLowering::expandUADDSUBO(
11170     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
11171   SDLoc dl(Node);
11172   SDValue LHS = Node->getOperand(0);
11173   SDValue RHS = Node->getOperand(1);
11174   bool IsAdd = Node->getOpcode() == ISD::UADDO;
11175 
11176   // If UADDO_CARRY/SUBO_CARRY is legal, use that instead.
11177   unsigned OpcCarry = IsAdd ? ISD::UADDO_CARRY : ISD::USUBO_CARRY;
11178   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
11179     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
11180     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
11181                                     { LHS, RHS, CarryIn });
11182     Result = SDValue(NodeCarry.getNode(), 0);
11183     Overflow = SDValue(NodeCarry.getNode(), 1);
11184     return;
11185   }
11186 
11187   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
11188                             LHS.getValueType(), LHS, RHS);
11189 
11190   EVT ResultType = Node->getValueType(1);
11191   EVT SetCCType = getSetCCResultType(
11192       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
11193   SDValue SetCC;
11194   if (IsAdd && isOneConstant(RHS)) {
11195     // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces
11196     // the live range of X. We assume comparing with 0 is cheap.
11197     // The general case (X + C) < C is not necessarily beneficial. Although we
11198     // reduce the live range of X, we may introduce the materialization of
11199     // constant C.
11200     SetCC =
11201         DAG.getSetCC(dl, SetCCType, Result,
11202                      DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ);
11203   } else if (IsAdd && isAllOnesConstant(RHS)) {
11204     // Special case: uaddo X, -1 overflows if X != 0.
11205     SetCC =
11206         DAG.getSetCC(dl, SetCCType, LHS,
11207                      DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETNE);
11208   } else {
11209     ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
11210     SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
11211   }
11212   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
11213 }
11214 
11215 void TargetLowering::expandSADDSUBO(
11216     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
11217   SDLoc dl(Node);
11218   SDValue LHS = Node->getOperand(0);
11219   SDValue RHS = Node->getOperand(1);
11220   bool IsAdd = Node->getOpcode() == ISD::SADDO;
11221 
11222   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
11223                             LHS.getValueType(), LHS, RHS);
11224 
11225   EVT ResultType = Node->getValueType(1);
11226   EVT OType = getSetCCResultType(
11227       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
11228 
11229   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
11230   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
11231   if (isOperationLegal(OpcSat, LHS.getValueType())) {
11232     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
11233     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
11234     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
11235     return;
11236   }
11237 
11238   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
11239 
11240   // For an addition, the result should be less than one of the operands (LHS)
11241   // if and only if the other operand (RHS) is negative, otherwise there will
11242   // be overflow.
11243   // For a subtraction, the result should be less than one of the operands
11244   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
11245   // otherwise there will be overflow.
11246   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
11247   SDValue ConditionRHS =
11248       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
11249 
11250   Overflow = DAG.getBoolExtOrTrunc(
11251       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
11252       ResultType, ResultType);
11253 }
11254 
11255 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
11256                                 SDValue &Overflow, SelectionDAG &DAG) const {
11257   SDLoc dl(Node);
11258   EVT VT = Node->getValueType(0);
11259   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
11260   SDValue LHS = Node->getOperand(0);
11261   SDValue RHS = Node->getOperand(1);
11262   bool isSigned = Node->getOpcode() == ISD::SMULO;
11263 
11264   // For power-of-two multiplications we can use a simpler shift expansion.
11265   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
11266     const APInt &C = RHSC->getAPIntValue();
11267     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
11268     if (C.isPowerOf2()) {
11269       // smulo(x, signed_min) is same as umulo(x, signed_min).
11270       bool UseArithShift = isSigned && !C.isMinSignedValue();
11271       SDValue ShiftAmt = DAG.getShiftAmountConstant(C.logBase2(), VT, dl);
11272       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
11273       Overflow = DAG.getSetCC(dl, SetCCVT,
11274           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
11275                       dl, VT, Result, ShiftAmt),
11276           LHS, ISD::SETNE);
11277       return true;
11278     }
11279   }
11280 
11281   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
11282   if (VT.isVector())
11283     WideVT =
11284         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
11285 
11286   SDValue BottomHalf;
11287   SDValue TopHalf;
11288   static const unsigned Ops[2][3] =
11289       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
11290         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
11291   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
11292     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
11293     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
11294   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
11295     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
11296                              RHS);
11297     TopHalf = BottomHalf.getValue(1);
11298   } else if (isTypeLegal(WideVT)) {
11299     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
11300     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
11301     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
11302     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
11303     SDValue ShiftAmt =
11304         DAG.getShiftAmountConstant(VT.getScalarSizeInBits(), WideVT, dl);
11305     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
11306                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
11307   } else {
11308     if (VT.isVector())
11309       return false;
11310 
11311     forceExpandWideMUL(DAG, dl, isSigned, LHS, RHS, BottomHalf, TopHalf);
11312   }
11313 
11314   Result = BottomHalf;
11315   if (isSigned) {
11316     SDValue ShiftAmt = DAG.getShiftAmountConstant(
11317         VT.getScalarSizeInBits() - 1, BottomHalf.getValueType(), dl);
11318     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
11319     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
11320   } else {
11321     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
11322                             DAG.getConstant(0, dl, VT), ISD::SETNE);
11323   }
11324 
11325   // Truncate the result if SetCC returns a larger type than needed.
11326   EVT RType = Node->getValueType(1);
11327   if (RType.bitsLT(Overflow.getValueType()))
11328     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
11329 
11330   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
11331          "Unexpected result type for S/UMULO legalization");
11332   return true;
11333 }
11334 
11335 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
11336   SDLoc dl(Node);
11337   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
11338   SDValue Op = Node->getOperand(0);
11339   EVT VT = Op.getValueType();
11340 
11341   if (VT.isScalableVector())
11342     report_fatal_error(
11343         "Expanding reductions for scalable vectors is undefined.");
11344 
11345   // Try to use a shuffle reduction for power of two vectors.
11346   if (VT.isPow2VectorType()) {
11347     while (VT.getVectorNumElements() > 1) {
11348       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
11349       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
11350         break;
11351 
11352       SDValue Lo, Hi;
11353       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
11354       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi, Node->getFlags());
11355       VT = HalfVT;
11356     }
11357   }
11358 
11359   EVT EltVT = VT.getVectorElementType();
11360   unsigned NumElts = VT.getVectorNumElements();
11361 
11362   SmallVector<SDValue, 8> Ops;
11363   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
11364 
11365   SDValue Res = Ops[0];
11366   for (unsigned i = 1; i < NumElts; i++)
11367     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
11368 
11369   // Result type may be wider than element type.
11370   if (EltVT != Node->getValueType(0))
11371     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
11372   return Res;
11373 }
11374 
11375 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
11376   SDLoc dl(Node);
11377   SDValue AccOp = Node->getOperand(0);
11378   SDValue VecOp = Node->getOperand(1);
11379   SDNodeFlags Flags = Node->getFlags();
11380 
11381   EVT VT = VecOp.getValueType();
11382   EVT EltVT = VT.getVectorElementType();
11383 
11384   if (VT.isScalableVector())
11385     report_fatal_error(
11386         "Expanding reductions for scalable vectors is undefined.");
11387 
11388   unsigned NumElts = VT.getVectorNumElements();
11389 
11390   SmallVector<SDValue, 8> Ops;
11391   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
11392 
11393   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
11394 
11395   SDValue Res = AccOp;
11396   for (unsigned i = 0; i < NumElts; i++)
11397     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
11398 
11399   return Res;
11400 }
11401 
11402 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
11403                                SelectionDAG &DAG) const {
11404   EVT VT = Node->getValueType(0);
11405   SDLoc dl(Node);
11406   bool isSigned = Node->getOpcode() == ISD::SREM;
11407   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
11408   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
11409   SDValue Dividend = Node->getOperand(0);
11410   SDValue Divisor = Node->getOperand(1);
11411   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
11412     SDVTList VTs = DAG.getVTList(VT, VT);
11413     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
11414     return true;
11415   }
11416   if (isOperationLegalOrCustom(DivOpc, VT)) {
11417     // X % Y -> X-X/Y*Y
11418     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
11419     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
11420     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
11421     return true;
11422   }
11423   return false;
11424 }
11425 
11426 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
11427                                             SelectionDAG &DAG) const {
11428   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
11429   SDLoc dl(SDValue(Node, 0));
11430   SDValue Src = Node->getOperand(0);
11431 
11432   // DstVT is the result type, while SatVT is the size to which we saturate
11433   EVT SrcVT = Src.getValueType();
11434   EVT DstVT = Node->getValueType(0);
11435 
11436   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
11437   unsigned SatWidth = SatVT.getScalarSizeInBits();
11438   unsigned DstWidth = DstVT.getScalarSizeInBits();
11439   assert(SatWidth <= DstWidth &&
11440          "Expected saturation width smaller than result width");
11441 
11442   // Determine minimum and maximum integer values and their corresponding
11443   // floating-point values.
11444   APInt MinInt, MaxInt;
11445   if (IsSigned) {
11446     MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth);
11447     MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth);
11448   } else {
11449     MinInt = APInt::getMinValue(SatWidth).zext(DstWidth);
11450     MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth);
11451   }
11452 
11453   // We cannot risk emitting FP_TO_XINT nodes with a source VT of [b]f16, as
11454   // libcall emission cannot handle this. Large result types will fail.
11455   if (SrcVT == MVT::f16 || SrcVT == MVT::bf16) {
11456     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
11457     SrcVT = Src.getValueType();
11458   }
11459 
11460   const fltSemantics &Sem = SrcVT.getFltSemantics();
11461   APFloat MinFloat(Sem);
11462   APFloat MaxFloat(Sem);
11463 
11464   APFloat::opStatus MinStatus =
11465       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
11466   APFloat::opStatus MaxStatus =
11467       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
11468   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
11469                              !(MaxStatus & APFloat::opStatus::opInexact);
11470 
11471   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
11472   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
11473 
11474   // If the integer bounds are exactly representable as floats and min/max are
11475   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
11476   // of comparisons and selects.
11477   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
11478                      isOperationLegal(ISD::FMAXNUM, SrcVT);
11479   if (AreExactFloatBounds && MinMaxLegal) {
11480     SDValue Clamped = Src;
11481 
11482     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
11483     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
11484     // Clamp by MaxFloat from above. NaN cannot occur.
11485     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
11486     // Convert clamped value to integer.
11487     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
11488                                   dl, DstVT, Clamped);
11489 
11490     // In the unsigned case we're done, because we mapped NaN to MinFloat,
11491     // which will cast to zero.
11492     if (!IsSigned)
11493       return FpToInt;
11494 
11495     // Otherwise, select 0 if Src is NaN.
11496     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
11497     EVT SetCCVT =
11498         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
11499     SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO);
11500     return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, FpToInt);
11501   }
11502 
11503   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
11504   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
11505 
11506   // Result of direct conversion. The assumption here is that the operation is
11507   // non-trapping and it's fine to apply it to an out-of-range value if we
11508   // select it away later.
11509   SDValue FpToInt =
11510       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
11511 
11512   SDValue Select = FpToInt;
11513 
11514   EVT SetCCVT =
11515       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
11516 
11517   // If Src ULT MinFloat, select MinInt. In particular, this also selects
11518   // MinInt if Src is NaN.
11519   SDValue ULT = DAG.getSetCC(dl, SetCCVT, Src, MinFloatNode, ISD::SETULT);
11520   Select = DAG.getSelect(dl, DstVT, ULT, MinIntNode, Select);
11521   // If Src OGT MaxFloat, select MaxInt.
11522   SDValue OGT = DAG.getSetCC(dl, SetCCVT, Src, MaxFloatNode, ISD::SETOGT);
11523   Select = DAG.getSelect(dl, DstVT, OGT, MaxIntNode, Select);
11524 
11525   // In the unsigned case we are done, because we mapped NaN to MinInt, which
11526   // is already zero.
11527   if (!IsSigned)
11528     return Select;
11529 
11530   // Otherwise, select 0 if Src is NaN.
11531   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
11532   SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO);
11533   return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, Select);
11534 }
11535 
11536 SDValue TargetLowering::expandRoundInexactToOdd(EVT ResultVT, SDValue Op,
11537                                                 const SDLoc &dl,
11538                                                 SelectionDAG &DAG) const {
11539   EVT OperandVT = Op.getValueType();
11540   if (OperandVT.getScalarType() == ResultVT.getScalarType())
11541     return Op;
11542   EVT ResultIntVT = ResultVT.changeTypeToInteger();
11543   // We are rounding binary64/binary128 -> binary32 -> bfloat16. This
11544   // can induce double-rounding which may alter the results. We can
11545   // correct for this using a trick explained in: Boldo, Sylvie, and
11546   // Guillaume Melquiond. "When double rounding is odd." 17th IMACS
11547   // World Congress. 2005.
11548   unsigned BitSize = OperandVT.getScalarSizeInBits();
11549   EVT WideIntVT = OperandVT.changeTypeToInteger();
11550   SDValue OpAsInt = DAG.getBitcast(WideIntVT, Op);
11551   SDValue SignBit =
11552       DAG.getNode(ISD::AND, dl, WideIntVT, OpAsInt,
11553                   DAG.getConstant(APInt::getSignMask(BitSize), dl, WideIntVT));
11554   SDValue AbsWide;
11555   if (isOperationLegalOrCustom(ISD::FABS, OperandVT)) {
11556     AbsWide = DAG.getNode(ISD::FABS, dl, OperandVT, Op);
11557   } else {
11558     SDValue ClearedSign = DAG.getNode(
11559         ISD::AND, dl, WideIntVT, OpAsInt,
11560         DAG.getConstant(APInt::getSignedMaxValue(BitSize), dl, WideIntVT));
11561     AbsWide = DAG.getBitcast(OperandVT, ClearedSign);
11562   }
11563   SDValue AbsNarrow = DAG.getFPExtendOrRound(AbsWide, dl, ResultVT);
11564   SDValue AbsNarrowAsWide = DAG.getFPExtendOrRound(AbsNarrow, dl, OperandVT);
11565 
11566   // We can keep the narrow value as-is if narrowing was exact (no
11567   // rounding error), the wide value was NaN (the narrow value is also
11568   // NaN and should be preserved) or if we rounded to the odd value.
11569   SDValue NarrowBits = DAG.getNode(ISD::BITCAST, dl, ResultIntVT, AbsNarrow);
11570   SDValue One = DAG.getConstant(1, dl, ResultIntVT);
11571   SDValue NegativeOne = DAG.getAllOnesConstant(dl, ResultIntVT);
11572   SDValue And = DAG.getNode(ISD::AND, dl, ResultIntVT, NarrowBits, One);
11573   EVT ResultIntVTCCVT = getSetCCResultType(
11574       DAG.getDataLayout(), *DAG.getContext(), And.getValueType());
11575   SDValue Zero = DAG.getConstant(0, dl, ResultIntVT);
11576   // The result is already odd so we don't need to do anything.
11577   SDValue AlreadyOdd = DAG.getSetCC(dl, ResultIntVTCCVT, And, Zero, ISD::SETNE);
11578 
11579   EVT WideSetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
11580                                        AbsWide.getValueType());
11581   // We keep results which are exact, odd or NaN.
11582   SDValue KeepNarrow =
11583       DAG.getSetCC(dl, WideSetCCVT, AbsWide, AbsNarrowAsWide, ISD::SETUEQ);
11584   KeepNarrow = DAG.getNode(ISD::OR, dl, WideSetCCVT, KeepNarrow, AlreadyOdd);
11585   // We morally performed a round-down if AbsNarrow is smaller than
11586   // AbsWide.
11587   SDValue NarrowIsRd =
11588       DAG.getSetCC(dl, WideSetCCVT, AbsWide, AbsNarrowAsWide, ISD::SETOGT);
11589   // If the narrow value is odd or exact, pick it.
11590   // Otherwise, narrow is even and corresponds to either the rounded-up
11591   // or rounded-down value. If narrow is the rounded-down value, we want
11592   // the rounded-up value as it will be odd.
11593   SDValue Adjust = DAG.getSelect(dl, ResultIntVT, NarrowIsRd, One, NegativeOne);
11594   SDValue Adjusted = DAG.getNode(ISD::ADD, dl, ResultIntVT, NarrowBits, Adjust);
11595   Op = DAG.getSelect(dl, ResultIntVT, KeepNarrow, NarrowBits, Adjusted);
11596   int ShiftAmount = BitSize - ResultVT.getScalarSizeInBits();
11597   SDValue ShiftCnst = DAG.getShiftAmountConstant(ShiftAmount, WideIntVT, dl);
11598   SignBit = DAG.getNode(ISD::SRL, dl, WideIntVT, SignBit, ShiftCnst);
11599   SignBit = DAG.getNode(ISD::TRUNCATE, dl, ResultIntVT, SignBit);
11600   Op = DAG.getNode(ISD::OR, dl, ResultIntVT, Op, SignBit);
11601   return DAG.getNode(ISD::BITCAST, dl, ResultVT, Op);
11602 }
11603 
11604 SDValue TargetLowering::expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const {
11605   assert(Node->getOpcode() == ISD::FP_ROUND && "Unexpected opcode!");
11606   SDValue Op = Node->getOperand(0);
11607   EVT VT = Node->getValueType(0);
11608   SDLoc dl(Node);
11609   if (VT.getScalarType() == MVT::bf16) {
11610     if (Node->getConstantOperandVal(1) == 1) {
11611       return DAG.getNode(ISD::FP_TO_BF16, dl, VT, Node->getOperand(0));
11612     }
11613     EVT OperandVT = Op.getValueType();
11614     SDValue IsNaN = DAG.getSetCC(
11615         dl,
11616         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), OperandVT),
11617         Op, Op, ISD::SETUO);
11618 
11619     // We are rounding binary64/binary128 -> binary32 -> bfloat16. This
11620     // can induce double-rounding which may alter the results. We can
11621     // correct for this using a trick explained in: Boldo, Sylvie, and
11622     // Guillaume Melquiond. "When double rounding is odd." 17th IMACS
11623     // World Congress. 2005.
11624     EVT F32 = VT.isVector() ? VT.changeVectorElementType(MVT::f32) : MVT::f32;
11625     EVT I32 = F32.changeTypeToInteger();
11626     Op = expandRoundInexactToOdd(F32, Op, dl, DAG);
11627     Op = DAG.getNode(ISD::BITCAST, dl, I32, Op);
11628 
11629     // Conversions should set NaN's quiet bit. This also prevents NaNs from
11630     // turning into infinities.
11631     SDValue NaN =
11632         DAG.getNode(ISD::OR, dl, I32, Op, DAG.getConstant(0x400000, dl, I32));
11633 
11634     // Factor in the contribution of the low 16 bits.
11635     SDValue One = DAG.getConstant(1, dl, I32);
11636     SDValue Lsb = DAG.getNode(ISD::SRL, dl, I32, Op,
11637                               DAG.getShiftAmountConstant(16, I32, dl));
11638     Lsb = DAG.getNode(ISD::AND, dl, I32, Lsb, One);
11639     SDValue RoundingBias =
11640         DAG.getNode(ISD::ADD, dl, I32, DAG.getConstant(0x7fff, dl, I32), Lsb);
11641     SDValue Add = DAG.getNode(ISD::ADD, dl, I32, Op, RoundingBias);
11642 
11643     // Don't round if we had a NaN, we don't want to turn 0x7fffffff into
11644     // 0x80000000.
11645     Op = DAG.getSelect(dl, I32, IsNaN, NaN, Add);
11646 
11647     // Now that we have rounded, shift the bits into position.
11648     Op = DAG.getNode(ISD::SRL, dl, I32, Op,
11649                      DAG.getShiftAmountConstant(16, I32, dl));
11650     Op = DAG.getNode(ISD::BITCAST, dl, I32, Op);
11651     EVT I16 = I32.isVector() ? I32.changeVectorElementType(MVT::i16) : MVT::i16;
11652     Op = DAG.getNode(ISD::TRUNCATE, dl, I16, Op);
11653     return DAG.getNode(ISD::BITCAST, dl, VT, Op);
11654   }
11655   return SDValue();
11656 }
11657 
11658 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
11659                                            SelectionDAG &DAG) const {
11660   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
11661   assert(Node->getValueType(0).isScalableVector() &&
11662          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
11663 
11664   EVT VT = Node->getValueType(0);
11665   SDValue V1 = Node->getOperand(0);
11666   SDValue V2 = Node->getOperand(1);
11667   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
11668   SDLoc DL(Node);
11669 
11670   // Expand through memory thusly:
11671   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
11672   //  Store V1, Ptr
11673   //  Store V2, Ptr + sizeof(V1)
11674   //  If (Imm < 0)
11675   //    TrailingElts = -Imm
11676   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
11677   //  else
11678   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
11679   //  Res = Load Ptr
11680 
11681   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
11682 
11683   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
11684                                VT.getVectorElementCount() * 2);
11685   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
11686   EVT PtrVT = StackPtr.getValueType();
11687   auto &MF = DAG.getMachineFunction();
11688   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
11689   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
11690 
11691   // Store the lo part of CONCAT_VECTORS(V1, V2)
11692   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
11693   // Store the hi part of CONCAT_VECTORS(V1, V2)
11694   SDValue OffsetToV2 = DAG.getVScale(
11695       DL, PtrVT,
11696       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinValue()));
11697   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
11698   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
11699 
11700   if (Imm >= 0) {
11701     // Load back the required element. getVectorElementPointer takes care of
11702     // clamping the index if it's out-of-bounds.
11703     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
11704     // Load the spliced result
11705     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
11706                        MachinePointerInfo::getUnknownStack(MF));
11707   }
11708 
11709   uint64_t TrailingElts = -Imm;
11710 
11711   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
11712   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
11713   SDValue TrailingBytes =
11714       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
11715 
11716   if (TrailingElts > VT.getVectorMinNumElements()) {
11717     SDValue VLBytes =
11718         DAG.getVScale(DL, PtrVT,
11719                       APInt(PtrVT.getFixedSizeInBits(),
11720                             VT.getStoreSize().getKnownMinValue()));
11721     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
11722   }
11723 
11724   // Calculate the start address of the spliced result.
11725   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
11726 
11727   // Load the spliced result
11728   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
11729                      MachinePointerInfo::getUnknownStack(MF));
11730 }
11731 
11732 SDValue TargetLowering::expandVECTOR_COMPRESS(SDNode *Node,
11733                                               SelectionDAG &DAG) const {
11734   SDLoc DL(Node);
11735   SDValue Vec = Node->getOperand(0);
11736   SDValue Mask = Node->getOperand(1);
11737   SDValue Passthru = Node->getOperand(2);
11738 
11739   EVT VecVT = Vec.getValueType();
11740   EVT ScalarVT = VecVT.getScalarType();
11741   EVT MaskVT = Mask.getValueType();
11742   EVT MaskScalarVT = MaskVT.getScalarType();
11743 
11744   // Needs to be handled by targets that have scalable vector types.
11745   if (VecVT.isScalableVector())
11746     report_fatal_error("Cannot expand masked_compress for scalable vectors.");
11747 
11748   SDValue StackPtr = DAG.CreateStackTemporary(
11749       VecVT.getStoreSize(), DAG.getReducedAlign(VecVT, /*UseABI=*/false));
11750   int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
11751   MachinePointerInfo PtrInfo =
11752       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
11753 
11754   MVT PositionVT = getVectorIdxTy(DAG.getDataLayout());
11755   SDValue Chain = DAG.getEntryNode();
11756   SDValue OutPos = DAG.getConstant(0, DL, PositionVT);
11757 
11758   bool HasPassthru = !Passthru.isUndef();
11759 
11760   // If we have a passthru vector, store it on the stack, overwrite the matching
11761   // positions and then re-write the last element that was potentially
11762   // overwritten even though mask[i] = false.
11763   if (HasPassthru)
11764     Chain = DAG.getStore(Chain, DL, Passthru, StackPtr, PtrInfo);
11765 
11766   SDValue LastWriteVal;
11767   APInt PassthruSplatVal;
11768   bool IsSplatPassthru =
11769       ISD::isConstantSplatVector(Passthru.getNode(), PassthruSplatVal);
11770 
11771   if (IsSplatPassthru) {
11772     // As we do not know which position we wrote to last, we cannot simply
11773     // access that index from the passthru vector. So we first check if passthru
11774     // is a splat vector, to use any element ...
11775     LastWriteVal = DAG.getConstant(PassthruSplatVal, DL, ScalarVT);
11776   } else if (HasPassthru) {
11777     // ... if it is not a splat vector, we need to get the passthru value at
11778     // position = popcount(mask) and re-load it from the stack before it is
11779     // overwritten in the loop below.
11780     EVT PopcountVT = ScalarVT.changeTypeToInteger();
11781     SDValue Popcount = DAG.getNode(
11782         ISD::TRUNCATE, DL, MaskVT.changeVectorElementType(MVT::i1), Mask);
11783     Popcount =
11784         DAG.getNode(ISD::ZERO_EXTEND, DL,
11785                     MaskVT.changeVectorElementType(PopcountVT), Popcount);
11786     Popcount = DAG.getNode(ISD::VECREDUCE_ADD, DL, PopcountVT, Popcount);
11787     SDValue LastElmtPtr =
11788         getVectorElementPointer(DAG, StackPtr, VecVT, Popcount);
11789     LastWriteVal = DAG.getLoad(
11790         ScalarVT, DL, Chain, LastElmtPtr,
11791         MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
11792     Chain = LastWriteVal.getValue(1);
11793   }
11794 
11795   unsigned NumElms = VecVT.getVectorNumElements();
11796   for (unsigned I = 0; I < NumElms; I++) {
11797     SDValue Idx = DAG.getVectorIdxConstant(I, DL);
11798 
11799     SDValue ValI = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, Vec, Idx);
11800     SDValue OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos);
11801     Chain = DAG.getStore(
11802         Chain, DL, ValI, OutPtr,
11803         MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
11804 
11805     // Get the mask value and add it to the current output position. This
11806     // either increments by 1 if MaskI is true or adds 0 otherwise.
11807     // Freeze in case we have poison/undef mask entries.
11808     SDValue MaskI = DAG.getFreeze(
11809         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskScalarVT, Mask, Idx));
11810     MaskI = DAG.getFreeze(MaskI);
11811     MaskI = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, MaskI);
11812     MaskI = DAG.getNode(ISD::ZERO_EXTEND, DL, PositionVT, MaskI);
11813     OutPos = DAG.getNode(ISD::ADD, DL, PositionVT, OutPos, MaskI);
11814 
11815     if (HasPassthru && I == NumElms - 1) {
11816       SDValue EndOfVector =
11817           DAG.getConstant(VecVT.getVectorNumElements() - 1, DL, PositionVT);
11818       SDValue AllLanesSelected =
11819           DAG.getSetCC(DL, MVT::i1, OutPos, EndOfVector, ISD::CondCode::SETUGT);
11820       OutPos = DAG.getNode(ISD::UMIN, DL, PositionVT, OutPos, EndOfVector);
11821       OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos);
11822 
11823       // Re-write the last ValI if all lanes were selected. Otherwise,
11824       // overwrite the last write it with the passthru value.
11825       LastWriteVal = DAG.getSelect(DL, ScalarVT, AllLanesSelected, ValI,
11826                                    LastWriteVal, SDNodeFlags::Unpredictable);
11827       Chain = DAG.getStore(
11828           Chain, DL, LastWriteVal, OutPtr,
11829           MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
11830     }
11831   }
11832 
11833   return DAG.getLoad(VecVT, DL, Chain, StackPtr, PtrInfo);
11834 }
11835 
11836 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
11837                                            SDValue &LHS, SDValue &RHS,
11838                                            SDValue &CC, SDValue Mask,
11839                                            SDValue EVL, bool &NeedInvert,
11840                                            const SDLoc &dl, SDValue &Chain,
11841                                            bool IsSignaling) const {
11842   MVT OpVT = LHS.getSimpleValueType();
11843   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
11844   NeedInvert = false;
11845   assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset");
11846   bool IsNonVP = !EVL;
11847   switch (getCondCodeAction(CCCode, OpVT)) {
11848   default:
11849     llvm_unreachable("Unknown condition code action!");
11850   case TargetLowering::Legal:
11851     // Nothing to do.
11852     break;
11853   case TargetLowering::Expand: {
11854     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
11855     if (isCondCodeLegalOrCustom(InvCC, OpVT)) {
11856       std::swap(LHS, RHS);
11857       CC = DAG.getCondCode(InvCC);
11858       return true;
11859     }
11860     // Swapping operands didn't work. Try inverting the condition.
11861     bool NeedSwap = false;
11862     InvCC = getSetCCInverse(CCCode, OpVT);
11863     if (!isCondCodeLegalOrCustom(InvCC, OpVT)) {
11864       // If inverting the condition is not enough, try swapping operands
11865       // on top of it.
11866       InvCC = ISD::getSetCCSwappedOperands(InvCC);
11867       NeedSwap = true;
11868     }
11869     if (isCondCodeLegalOrCustom(InvCC, OpVT)) {
11870       CC = DAG.getCondCode(InvCC);
11871       NeedInvert = true;
11872       if (NeedSwap)
11873         std::swap(LHS, RHS);
11874       return true;
11875     }
11876 
11877     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
11878     unsigned Opc = 0;
11879     switch (CCCode) {
11880     default:
11881       llvm_unreachable("Don't know how to expand this condition!");
11882     case ISD::SETUO:
11883       if (isCondCodeLegal(ISD::SETUNE, OpVT)) {
11884         CC1 = ISD::SETUNE;
11885         CC2 = ISD::SETUNE;
11886         Opc = ISD::OR;
11887         break;
11888       }
11889       assert(isCondCodeLegal(ISD::SETOEQ, OpVT) &&
11890              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
11891       NeedInvert = true;
11892       [[fallthrough]];
11893     case ISD::SETO:
11894       assert(isCondCodeLegal(ISD::SETOEQ, OpVT) &&
11895              "If SETO is expanded, SETOEQ must be legal!");
11896       CC1 = ISD::SETOEQ;
11897       CC2 = ISD::SETOEQ;
11898       Opc = ISD::AND;
11899       break;
11900     case ISD::SETONE:
11901     case ISD::SETUEQ:
11902       // If the SETUO or SETO CC isn't legal, we might be able to use
11903       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
11904       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
11905       // the operands.
11906       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
11907       if (!isCondCodeLegal(CC2, OpVT) && (isCondCodeLegal(ISD::SETOGT, OpVT) ||
11908                                           isCondCodeLegal(ISD::SETOLT, OpVT))) {
11909         CC1 = ISD::SETOGT;
11910         CC2 = ISD::SETOLT;
11911         Opc = ISD::OR;
11912         NeedInvert = ((unsigned)CCCode & 0x8U);
11913         break;
11914       }
11915       [[fallthrough]];
11916     case ISD::SETOEQ:
11917     case ISD::SETOGT:
11918     case ISD::SETOGE:
11919     case ISD::SETOLT:
11920     case ISD::SETOLE:
11921     case ISD::SETUNE:
11922     case ISD::SETUGT:
11923     case ISD::SETUGE:
11924     case ISD::SETULT:
11925     case ISD::SETULE:
11926       // If we are floating point, assign and break, otherwise fall through.
11927       if (!OpVT.isInteger()) {
11928         // We can use the 4th bit to tell if we are the unordered
11929         // or ordered version of the opcode.
11930         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
11931         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
11932         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
11933         break;
11934       }
11935       // Fallthrough if we are unsigned integer.
11936       [[fallthrough]];
11937     case ISD::SETLE:
11938     case ISD::SETGT:
11939     case ISD::SETGE:
11940     case ISD::SETLT:
11941     case ISD::SETNE:
11942     case ISD::SETEQ:
11943       // If all combinations of inverting the condition and swapping operands
11944       // didn't work then we have no means to expand the condition.
11945       llvm_unreachable("Don't know how to expand this condition!");
11946     }
11947 
11948     SDValue SetCC1, SetCC2;
11949     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
11950       // If we aren't the ordered or unorder operation,
11951       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
11952       if (IsNonVP) {
11953         SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
11954         SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
11955       } else {
11956         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
11957         SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
11958       }
11959     } else {
11960       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
11961       if (IsNonVP) {
11962         SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
11963         SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
11964       } else {
11965         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
11966         SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
11967       }
11968     }
11969     if (Chain)
11970       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
11971                           SetCC2.getValue(1));
11972     if (IsNonVP)
11973       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
11974     else {
11975       // Transform the binary opcode to the VP equivalent.
11976       assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode");
11977       Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND;
11978       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
11979     }
11980     RHS = SDValue();
11981     CC = SDValue();
11982     return true;
11983   }
11984   }
11985   return false;
11986 }
11987 
11988 SDValue TargetLowering::expandVectorNaryOpBySplitting(SDNode *Node,
11989                                                       SelectionDAG &DAG) const {
11990   EVT VT = Node->getValueType(0);
11991   // Despite its documentation, GetSplitDestVTs will assert if VT cannot be
11992   // split into two equal parts.
11993   if (!VT.isVector() || !VT.getVectorElementCount().isKnownMultipleOf(2))
11994     return SDValue();
11995 
11996   // Restrict expansion to cases where both parts can be concatenated.
11997   auto [LoVT, HiVT] = DAG.GetSplitDestVTs(VT);
11998   if (LoVT != HiVT || !isTypeLegal(LoVT))
11999     return SDValue();
12000 
12001   SDLoc DL(Node);
12002   unsigned Opcode = Node->getOpcode();
12003 
12004   // Don't expand if the result is likely to be unrolled anyway.
12005   if (!isOperationLegalOrCustomOrPromote(Opcode, LoVT))
12006     return SDValue();
12007 
12008   SmallVector<SDValue, 4> LoOps, HiOps;
12009   for (const SDValue &V : Node->op_values()) {
12010     auto [Lo, Hi] = DAG.SplitVector(V, DL, LoVT, HiVT);
12011     LoOps.push_back(Lo);
12012     HiOps.push_back(Hi);
12013   }
12014 
12015   SDValue SplitOpLo = DAG.getNode(Opcode, DL, LoVT, LoOps);
12016   SDValue SplitOpHi = DAG.getNode(Opcode, DL, HiVT, HiOps);
12017   return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, SplitOpLo, SplitOpHi);
12018 }
12019