1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/Analysis/VectorUtils.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/CodeGenCommonISel.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/CodeGen/TargetRegisterInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCExpr.h" 30 #include "llvm/Support/DivisionByConstantInfo.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/KnownBits.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function &F = DAG.getMachineFunction().getFunction(); 55 56 // First, check if tail calls have been disabled in this function. 57 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 58 return false; 59 60 // Conservatively require the attributes of the call to match those of 61 // the return. Ignore following attributes because they don't affect the 62 // call sequence. 63 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs()); 64 for (const auto &Attr : 65 {Attribute::Alignment, Attribute::Dereferenceable, 66 Attribute::DereferenceableOrNull, Attribute::NoAlias, 67 Attribute::NonNull, Attribute::NoUndef, Attribute::Range}) 68 CallerAttrs.removeAttribute(Attr); 69 70 if (CallerAttrs.hasAttributes()) 71 return false; 72 73 // It's not safe to eliminate the sign / zero extension of the return value. 74 if (CallerAttrs.contains(Attribute::ZExt) || 75 CallerAttrs.contains(Attribute::SExt)) 76 return false; 77 78 // Check if the only use is a function return node. 79 return isUsedByReturnOnly(Node, Chain); 80 } 81 82 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 83 const uint32_t *CallerPreservedMask, 84 const SmallVectorImpl<CCValAssign> &ArgLocs, 85 const SmallVectorImpl<SDValue> &OutVals) const { 86 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 87 const CCValAssign &ArgLoc = ArgLocs[I]; 88 if (!ArgLoc.isRegLoc()) 89 continue; 90 MCRegister Reg = ArgLoc.getLocReg(); 91 // Only look at callee saved registers. 92 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 93 continue; 94 // Check that we pass the value used for the caller. 95 // (We look for a CopyFromReg reading a virtual register that is used 96 // for the function live-in value of register Reg) 97 SDValue Value = OutVals[I]; 98 if (Value->getOpcode() == ISD::AssertZext) 99 Value = Value.getOperand(0); 100 if (Value->getOpcode() != ISD::CopyFromReg) 101 return false; 102 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 103 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 104 return false; 105 } 106 return true; 107 } 108 109 /// Set CallLoweringInfo attribute flags based on a call instruction 110 /// and called function attributes. 111 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 112 unsigned ArgIdx) { 113 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 114 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 115 IsNoExt = Call->paramHasAttr(ArgIdx, Attribute::NoExt); 116 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 117 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 118 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 119 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 120 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 121 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 122 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 123 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 124 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 125 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 126 Alignment = Call->getParamStackAlign(ArgIdx); 127 IndirectType = nullptr; 128 assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 && 129 "multiple ABI attributes?"); 130 if (IsByVal) { 131 IndirectType = Call->getParamByValType(ArgIdx); 132 if (!Alignment) 133 Alignment = Call->getParamAlign(ArgIdx); 134 } 135 if (IsPreallocated) 136 IndirectType = Call->getParamPreallocatedType(ArgIdx); 137 if (IsInAlloca) 138 IndirectType = Call->getParamInAllocaType(ArgIdx); 139 if (IsSRet) 140 IndirectType = Call->getParamStructRetType(ArgIdx); 141 } 142 143 /// Generate a libcall taking the given operands as arguments and returning a 144 /// result of type RetVT. 145 std::pair<SDValue, SDValue> 146 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 147 ArrayRef<SDValue> Ops, 148 MakeLibCallOptions CallOptions, 149 const SDLoc &dl, 150 SDValue InChain) const { 151 if (!InChain) 152 InChain = DAG.getEntryNode(); 153 154 TargetLowering::ArgListTy Args; 155 Args.reserve(Ops.size()); 156 157 TargetLowering::ArgListEntry Entry; 158 for (unsigned i = 0; i < Ops.size(); ++i) { 159 SDValue NewOp = Ops[i]; 160 Entry.Node = NewOp; 161 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 162 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 163 CallOptions.IsSExt); 164 Entry.IsZExt = !Entry.IsSExt; 165 166 if (CallOptions.IsSoften && 167 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 168 Entry.IsSExt = Entry.IsZExt = false; 169 } 170 Args.push_back(Entry); 171 } 172 173 if (LC == RTLIB::UNKNOWN_LIBCALL) 174 report_fatal_error("Unsupported library call operation!"); 175 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 176 getPointerTy(DAG.getDataLayout())); 177 178 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 179 TargetLowering::CallLoweringInfo CLI(DAG); 180 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 181 bool zeroExtend = !signExtend; 182 183 if (CallOptions.IsSoften && 184 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 185 signExtend = zeroExtend = false; 186 } 187 188 CLI.setDebugLoc(dl) 189 .setChain(InChain) 190 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 191 .setNoReturn(CallOptions.DoesNotReturn) 192 .setDiscardResult(!CallOptions.IsReturnValueUsed) 193 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 194 .setSExtResult(signExtend) 195 .setZExtResult(zeroExtend); 196 return LowerCallTo(CLI); 197 } 198 199 bool TargetLowering::findOptimalMemOpLowering( 200 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 201 unsigned SrcAS, const AttributeList &FuncAttributes) const { 202 if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() && 203 Op.getSrcAlign() < Op.getDstAlign()) 204 return false; 205 206 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 207 208 if (VT == MVT::Other) { 209 // Use the largest integer type whose alignment constraints are satisfied. 210 // We only need to check DstAlign here as SrcAlign is always greater or 211 // equal to DstAlign (or zero). 212 VT = MVT::LAST_INTEGER_VALUETYPE; 213 if (Op.isFixedDstAlign()) 214 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 215 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 216 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 217 assert(VT.isInteger()); 218 219 // Find the largest legal integer type. 220 MVT LVT = MVT::LAST_INTEGER_VALUETYPE; 221 while (!isTypeLegal(LVT)) 222 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 223 assert(LVT.isInteger()); 224 225 // If the type we've chosen is larger than the largest legal integer type 226 // then use that instead. 227 if (VT.bitsGT(LVT)) 228 VT = LVT; 229 } 230 231 unsigned NumMemOps = 0; 232 uint64_t Size = Op.size(); 233 while (Size) { 234 unsigned VTSize = VT.getSizeInBits() / 8; 235 while (VTSize > Size) { 236 // For now, only use non-vector load / store's for the left-over pieces. 237 EVT NewVT = VT; 238 unsigned NewVTSize; 239 240 bool Found = false; 241 if (VT.isVector() || VT.isFloatingPoint()) { 242 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 243 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 244 isSafeMemOpType(NewVT.getSimpleVT())) 245 Found = true; 246 else if (NewVT == MVT::i64 && 247 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 248 isSafeMemOpType(MVT::f64)) { 249 // i64 is usually not legal on 32-bit targets, but f64 may be. 250 NewVT = MVT::f64; 251 Found = true; 252 } 253 } 254 255 if (!Found) { 256 do { 257 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 258 if (NewVT == MVT::i8) 259 break; 260 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 261 } 262 NewVTSize = NewVT.getSizeInBits() / 8; 263 264 // If the new VT cannot cover all of the remaining bits, then consider 265 // issuing a (or a pair of) unaligned and overlapping load / store. 266 unsigned Fast; 267 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 268 allowsMisalignedMemoryAccesses( 269 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 270 MachineMemOperand::MONone, &Fast) && 271 Fast) 272 VTSize = Size; 273 else { 274 VT = NewVT; 275 VTSize = NewVTSize; 276 } 277 } 278 279 if (++NumMemOps > Limit) 280 return false; 281 282 MemOps.push_back(VT); 283 Size -= VTSize; 284 } 285 286 return true; 287 } 288 289 /// Soften the operands of a comparison. This code is shared among BR_CC, 290 /// SELECT_CC, and SETCC handlers. 291 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 292 SDValue &NewLHS, SDValue &NewRHS, 293 ISD::CondCode &CCCode, 294 const SDLoc &dl, const SDValue OldLHS, 295 const SDValue OldRHS) const { 296 SDValue Chain; 297 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 298 OldRHS, Chain); 299 } 300 301 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 302 SDValue &NewLHS, SDValue &NewRHS, 303 ISD::CondCode &CCCode, 304 const SDLoc &dl, const SDValue OldLHS, 305 const SDValue OldRHS, 306 SDValue &Chain, 307 bool IsSignaling) const { 308 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 309 // not supporting it. We can update this code when libgcc provides such 310 // functions. 311 312 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 313 && "Unsupported setcc type!"); 314 315 // Expand into one or more soft-fp libcall(s). 316 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 317 bool ShouldInvertCC = false; 318 switch (CCCode) { 319 case ISD::SETEQ: 320 case ISD::SETOEQ: 321 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 322 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 323 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 324 break; 325 case ISD::SETNE: 326 case ISD::SETUNE: 327 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 328 (VT == MVT::f64) ? RTLIB::UNE_F64 : 329 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 330 break; 331 case ISD::SETGE: 332 case ISD::SETOGE: 333 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 334 (VT == MVT::f64) ? RTLIB::OGE_F64 : 335 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 336 break; 337 case ISD::SETLT: 338 case ISD::SETOLT: 339 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 340 (VT == MVT::f64) ? RTLIB::OLT_F64 : 341 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 342 break; 343 case ISD::SETLE: 344 case ISD::SETOLE: 345 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 346 (VT == MVT::f64) ? RTLIB::OLE_F64 : 347 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 348 break; 349 case ISD::SETGT: 350 case ISD::SETOGT: 351 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 352 (VT == MVT::f64) ? RTLIB::OGT_F64 : 353 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 354 break; 355 case ISD::SETO: 356 ShouldInvertCC = true; 357 [[fallthrough]]; 358 case ISD::SETUO: 359 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 360 (VT == MVT::f64) ? RTLIB::UO_F64 : 361 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 362 break; 363 case ISD::SETONE: 364 // SETONE = O && UNE 365 ShouldInvertCC = true; 366 [[fallthrough]]; 367 case ISD::SETUEQ: 368 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 369 (VT == MVT::f64) ? RTLIB::UO_F64 : 370 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 371 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 372 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 373 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 374 break; 375 default: 376 // Invert CC for unordered comparisons 377 ShouldInvertCC = true; 378 switch (CCCode) { 379 case ISD::SETULT: 380 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 381 (VT == MVT::f64) ? RTLIB::OGE_F64 : 382 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 383 break; 384 case ISD::SETULE: 385 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 386 (VT == MVT::f64) ? RTLIB::OGT_F64 : 387 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 388 break; 389 case ISD::SETUGT: 390 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 391 (VT == MVT::f64) ? RTLIB::OLE_F64 : 392 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 393 break; 394 case ISD::SETUGE: 395 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 396 (VT == MVT::f64) ? RTLIB::OLT_F64 : 397 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 398 break; 399 default: llvm_unreachable("Do not know how to soften this setcc!"); 400 } 401 } 402 403 // Use the target specific return value for comparison lib calls. 404 EVT RetVT = getCmpLibcallReturnType(); 405 SDValue Ops[2] = {NewLHS, NewRHS}; 406 TargetLowering::MakeLibCallOptions CallOptions; 407 EVT OpsVT[2] = { OldLHS.getValueType(), 408 OldRHS.getValueType() }; 409 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 410 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 411 NewLHS = Call.first; 412 NewRHS = DAG.getConstant(0, dl, RetVT); 413 414 CCCode = getCmpLibcallCC(LC1); 415 if (ShouldInvertCC) { 416 assert(RetVT.isInteger()); 417 CCCode = getSetCCInverse(CCCode, RetVT); 418 } 419 420 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 421 // Update Chain. 422 Chain = Call.second; 423 } else { 424 EVT SetCCVT = 425 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 426 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 427 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 428 CCCode = getCmpLibcallCC(LC2); 429 if (ShouldInvertCC) 430 CCCode = getSetCCInverse(CCCode, RetVT); 431 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 432 if (Chain) 433 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 434 Call2.second); 435 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 436 Tmp.getValueType(), Tmp, NewLHS); 437 NewRHS = SDValue(); 438 } 439 } 440 441 /// Return the entry encoding for a jump table in the current function. The 442 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 443 unsigned TargetLowering::getJumpTableEncoding() const { 444 // In non-pic modes, just use the address of a block. 445 if (!isPositionIndependent()) 446 return MachineJumpTableInfo::EK_BlockAddress; 447 448 // In PIC mode, if the target supports a GPRel32 directive, use it. 449 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 450 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 451 452 // Otherwise, use a label difference. 453 return MachineJumpTableInfo::EK_LabelDifference32; 454 } 455 456 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 457 SelectionDAG &DAG) const { 458 // If our PIC model is GP relative, use the global offset table as the base. 459 unsigned JTEncoding = getJumpTableEncoding(); 460 461 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 462 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 463 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 464 465 return Table; 466 } 467 468 /// This returns the relocation base for the given PIC jumptable, the same as 469 /// getPICJumpTableRelocBase, but as an MCExpr. 470 const MCExpr * 471 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 472 unsigned JTI,MCContext &Ctx) const{ 473 // The normal PIC reloc base is the label at the start of the jump table. 474 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 475 } 476 477 SDValue TargetLowering::expandIndirectJTBranch(const SDLoc &dl, SDValue Value, 478 SDValue Addr, int JTI, 479 SelectionDAG &DAG) const { 480 SDValue Chain = Value; 481 // Jump table debug info is only needed if CodeView is enabled. 482 if (DAG.getTarget().getTargetTriple().isOSBinFormatCOFF()) { 483 Chain = DAG.getJumpTableDebugInfo(JTI, Chain, dl); 484 } 485 return DAG.getNode(ISD::BRIND, dl, MVT::Other, Chain, Addr); 486 } 487 488 bool 489 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 490 const TargetMachine &TM = getTargetMachine(); 491 const GlobalValue *GV = GA->getGlobal(); 492 493 // If the address is not even local to this DSO we will have to load it from 494 // a got and then add the offset. 495 if (!TM.shouldAssumeDSOLocal(GV)) 496 return false; 497 498 // If the code is position independent we will have to add a base register. 499 if (isPositionIndependent()) 500 return false; 501 502 // Otherwise we can do it. 503 return true; 504 } 505 506 //===----------------------------------------------------------------------===// 507 // Optimization Methods 508 //===----------------------------------------------------------------------===// 509 510 /// If the specified instruction has a constant integer operand and there are 511 /// bits set in that constant that are not demanded, then clear those bits and 512 /// return true. 513 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 514 const APInt &DemandedBits, 515 const APInt &DemandedElts, 516 TargetLoweringOpt &TLO) const { 517 SDLoc DL(Op); 518 unsigned Opcode = Op.getOpcode(); 519 520 // Early-out if we've ended up calling an undemanded node, leave this to 521 // constant folding. 522 if (DemandedBits.isZero() || DemandedElts.isZero()) 523 return false; 524 525 // Do target-specific constant optimization. 526 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 527 return TLO.New.getNode(); 528 529 // FIXME: ISD::SELECT, ISD::SELECT_CC 530 switch (Opcode) { 531 default: 532 break; 533 case ISD::XOR: 534 case ISD::AND: 535 case ISD::OR: { 536 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 537 if (!Op1C || Op1C->isOpaque()) 538 return false; 539 540 // If this is a 'not' op, don't touch it because that's a canonical form. 541 const APInt &C = Op1C->getAPIntValue(); 542 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 543 return false; 544 545 if (!C.isSubsetOf(DemandedBits)) { 546 EVT VT = Op.getValueType(); 547 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 548 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC, 549 Op->getFlags()); 550 return TLO.CombineTo(Op, NewOp); 551 } 552 553 break; 554 } 555 } 556 557 return false; 558 } 559 560 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 561 const APInt &DemandedBits, 562 TargetLoweringOpt &TLO) const { 563 EVT VT = Op.getValueType(); 564 APInt DemandedElts = VT.isVector() 565 ? APInt::getAllOnes(VT.getVectorNumElements()) 566 : APInt(1, 1); 567 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 568 } 569 570 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 571 /// This uses isTruncateFree/isZExtFree and ANY_EXTEND for the widening cast, 572 /// but it could be generalized for targets with other types of implicit 573 /// widening casts. 574 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 575 const APInt &DemandedBits, 576 TargetLoweringOpt &TLO) const { 577 assert(Op.getNumOperands() == 2 && 578 "ShrinkDemandedOp only supports binary operators!"); 579 assert(Op.getNode()->getNumValues() == 1 && 580 "ShrinkDemandedOp only supports nodes with one result!"); 581 582 EVT VT = Op.getValueType(); 583 SelectionDAG &DAG = TLO.DAG; 584 SDLoc dl(Op); 585 586 // Early return, as this function cannot handle vector types. 587 if (VT.isVector()) 588 return false; 589 590 assert(Op.getOperand(0).getValueType().getScalarSizeInBits() == BitWidth && 591 Op.getOperand(1).getValueType().getScalarSizeInBits() == BitWidth && 592 "ShrinkDemandedOp only supports operands that have the same size!"); 593 594 // Don't do this if the node has another user, which may require the 595 // full value. 596 if (!Op.getNode()->hasOneUse()) 597 return false; 598 599 // Search for the smallest integer type with free casts to and from 600 // Op's type. For expedience, just check power-of-2 integer types. 601 unsigned DemandedSize = DemandedBits.getActiveBits(); 602 for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize); 603 SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 604 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 605 if (isTruncateFree(VT, SmallVT) && isZExtFree(SmallVT, VT)) { 606 // We found a type with free casts. 607 608 // If the operation has the 'disjoint' flag, then the 609 // operands on the new node are also disjoint. 610 SDNodeFlags Flags(Op->getFlags().hasDisjoint() ? SDNodeFlags::Disjoint 611 : SDNodeFlags::None); 612 SDValue X = DAG.getNode( 613 Op.getOpcode(), dl, SmallVT, 614 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 615 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)), Flags); 616 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 617 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, VT, X); 618 return TLO.CombineTo(Op, Z); 619 } 620 } 621 return false; 622 } 623 624 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 625 DAGCombinerInfo &DCI) const { 626 SelectionDAG &DAG = DCI.DAG; 627 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 628 !DCI.isBeforeLegalizeOps()); 629 KnownBits Known; 630 631 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 632 if (Simplified) { 633 DCI.AddToWorklist(Op.getNode()); 634 DCI.CommitTargetLoweringOpt(TLO); 635 } 636 return Simplified; 637 } 638 639 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 640 const APInt &DemandedElts, 641 DAGCombinerInfo &DCI) const { 642 SelectionDAG &DAG = DCI.DAG; 643 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 644 !DCI.isBeforeLegalizeOps()); 645 KnownBits Known; 646 647 bool Simplified = 648 SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO); 649 if (Simplified) { 650 DCI.AddToWorklist(Op.getNode()); 651 DCI.CommitTargetLoweringOpt(TLO); 652 } 653 return Simplified; 654 } 655 656 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 657 KnownBits &Known, 658 TargetLoweringOpt &TLO, 659 unsigned Depth, 660 bool AssumeSingleUse) const { 661 EVT VT = Op.getValueType(); 662 663 // Since the number of lanes in a scalable vector is unknown at compile time, 664 // we track one bit which is implicitly broadcast to all lanes. This means 665 // that all lanes in a scalable vector are considered demanded. 666 APInt DemandedElts = VT.isFixedLengthVector() 667 ? APInt::getAllOnes(VT.getVectorNumElements()) 668 : APInt(1, 1); 669 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 670 AssumeSingleUse); 671 } 672 673 // TODO: Under what circumstances can we create nodes? Constant folding? 674 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 675 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 676 SelectionDAG &DAG, unsigned Depth) const { 677 EVT VT = Op.getValueType(); 678 679 // Limit search depth. 680 if (Depth >= SelectionDAG::MaxRecursionDepth) 681 return SDValue(); 682 683 // Ignore UNDEFs. 684 if (Op.isUndef()) 685 return SDValue(); 686 687 // Not demanding any bits/elts from Op. 688 if (DemandedBits == 0 || DemandedElts == 0) 689 return DAG.getUNDEF(VT); 690 691 bool IsLE = DAG.getDataLayout().isLittleEndian(); 692 unsigned NumElts = DemandedElts.getBitWidth(); 693 unsigned BitWidth = DemandedBits.getBitWidth(); 694 KnownBits LHSKnown, RHSKnown; 695 switch (Op.getOpcode()) { 696 case ISD::BITCAST: { 697 if (VT.isScalableVector()) 698 return SDValue(); 699 700 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 701 EVT SrcVT = Src.getValueType(); 702 EVT DstVT = Op.getValueType(); 703 if (SrcVT == DstVT) 704 return Src; 705 706 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 707 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 708 if (NumSrcEltBits == NumDstEltBits) 709 if (SDValue V = SimplifyMultipleUseDemandedBits( 710 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 711 return DAG.getBitcast(DstVT, V); 712 713 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { 714 unsigned Scale = NumDstEltBits / NumSrcEltBits; 715 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 716 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 717 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 718 for (unsigned i = 0; i != Scale; ++i) { 719 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 720 unsigned BitOffset = EltOffset * NumSrcEltBits; 721 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 722 if (!Sub.isZero()) { 723 DemandedSrcBits |= Sub; 724 for (unsigned j = 0; j != NumElts; ++j) 725 if (DemandedElts[j]) 726 DemandedSrcElts.setBit((j * Scale) + i); 727 } 728 } 729 730 if (SDValue V = SimplifyMultipleUseDemandedBits( 731 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 732 return DAG.getBitcast(DstVT, V); 733 } 734 735 // TODO - bigendian once we have test coverage. 736 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { 737 unsigned Scale = NumSrcEltBits / NumDstEltBits; 738 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 739 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 740 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 741 for (unsigned i = 0; i != NumElts; ++i) 742 if (DemandedElts[i]) { 743 unsigned Offset = (i % Scale) * NumDstEltBits; 744 DemandedSrcBits.insertBits(DemandedBits, Offset); 745 DemandedSrcElts.setBit(i / Scale); 746 } 747 748 if (SDValue V = SimplifyMultipleUseDemandedBits( 749 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 750 return DAG.getBitcast(DstVT, V); 751 } 752 753 break; 754 } 755 case ISD::FREEZE: { 756 SDValue N0 = Op.getOperand(0); 757 if (DAG.isGuaranteedNotToBeUndefOrPoison(N0, DemandedElts, 758 /*PoisonOnly=*/false)) 759 return N0; 760 break; 761 } 762 case ISD::AND: { 763 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 764 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 765 766 // If all of the demanded bits are known 1 on one side, return the other. 767 // These bits cannot contribute to the result of the 'and' in this 768 // context. 769 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 770 return Op.getOperand(0); 771 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 772 return Op.getOperand(1); 773 break; 774 } 775 case ISD::OR: { 776 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 777 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 778 779 // If all of the demanded bits are known zero on one side, return the 780 // other. These bits cannot contribute to the result of the 'or' in this 781 // context. 782 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 783 return Op.getOperand(0); 784 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 785 return Op.getOperand(1); 786 break; 787 } 788 case ISD::XOR: { 789 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 790 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 791 792 // If all of the demanded bits are known zero on one side, return the 793 // other. 794 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 795 return Op.getOperand(0); 796 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 797 return Op.getOperand(1); 798 break; 799 } 800 case ISD::ADD: { 801 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 802 if (RHSKnown.isZero()) 803 return Op.getOperand(0); 804 805 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 806 if (LHSKnown.isZero()) 807 return Op.getOperand(1); 808 break; 809 } 810 case ISD::SHL: { 811 // If we are only demanding sign bits then we can use the shift source 812 // directly. 813 if (std::optional<uint64_t> MaxSA = 814 DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) { 815 SDValue Op0 = Op.getOperand(0); 816 unsigned ShAmt = *MaxSA; 817 unsigned NumSignBits = 818 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 819 unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero(); 820 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 821 return Op0; 822 } 823 break; 824 } 825 case ISD::SRL: { 826 // If we are only demanding sign bits then we can use the shift source 827 // directly. 828 if (std::optional<uint64_t> MaxSA = 829 DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) { 830 SDValue Op0 = Op.getOperand(0); 831 unsigned ShAmt = *MaxSA; 832 // Must already be signbits in DemandedBits bounds, and can't demand any 833 // shifted in zeroes. 834 if (DemandedBits.countl_zero() >= ShAmt) { 835 unsigned NumSignBits = 836 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 837 if (DemandedBits.countr_zero() >= (BitWidth - NumSignBits)) 838 return Op0; 839 } 840 } 841 break; 842 } 843 case ISD::SETCC: { 844 SDValue Op0 = Op.getOperand(0); 845 SDValue Op1 = Op.getOperand(1); 846 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 847 // If (1) we only need the sign-bit, (2) the setcc operands are the same 848 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 849 // -1, we may be able to bypass the setcc. 850 if (DemandedBits.isSignMask() && 851 Op0.getScalarValueSizeInBits() == BitWidth && 852 getBooleanContents(Op0.getValueType()) == 853 BooleanContent::ZeroOrNegativeOneBooleanContent) { 854 // If we're testing X < 0, then this compare isn't needed - just use X! 855 // FIXME: We're limiting to integer types here, but this should also work 856 // if we don't care about FP signed-zero. The use of SETLT with FP means 857 // that we don't care about NaNs. 858 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 859 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 860 return Op0; 861 } 862 break; 863 } 864 case ISD::SIGN_EXTEND_INREG: { 865 // If none of the extended bits are demanded, eliminate the sextinreg. 866 SDValue Op0 = Op.getOperand(0); 867 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 868 unsigned ExBits = ExVT.getScalarSizeInBits(); 869 if (DemandedBits.getActiveBits() <= ExBits && 870 shouldRemoveRedundantExtend(Op)) 871 return Op0; 872 // If the input is already sign extended, just drop the extension. 873 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 874 if (NumSignBits >= (BitWidth - ExBits + 1)) 875 return Op0; 876 break; 877 } 878 case ISD::ANY_EXTEND_VECTOR_INREG: 879 case ISD::SIGN_EXTEND_VECTOR_INREG: 880 case ISD::ZERO_EXTEND_VECTOR_INREG: { 881 if (VT.isScalableVector()) 882 return SDValue(); 883 884 // If we only want the lowest element and none of extended bits, then we can 885 // return the bitcasted source vector. 886 SDValue Src = Op.getOperand(0); 887 EVT SrcVT = Src.getValueType(); 888 EVT DstVT = Op.getValueType(); 889 if (IsLE && DemandedElts == 1 && 890 DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 891 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 892 return DAG.getBitcast(DstVT, Src); 893 } 894 break; 895 } 896 case ISD::INSERT_VECTOR_ELT: { 897 if (VT.isScalableVector()) 898 return SDValue(); 899 900 // If we don't demand the inserted element, return the base vector. 901 SDValue Vec = Op.getOperand(0); 902 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 903 EVT VecVT = Vec.getValueType(); 904 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 905 !DemandedElts[CIdx->getZExtValue()]) 906 return Vec; 907 break; 908 } 909 case ISD::INSERT_SUBVECTOR: { 910 if (VT.isScalableVector()) 911 return SDValue(); 912 913 SDValue Vec = Op.getOperand(0); 914 SDValue Sub = Op.getOperand(1); 915 uint64_t Idx = Op.getConstantOperandVal(2); 916 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 917 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 918 // If we don't demand the inserted subvector, return the base vector. 919 if (DemandedSubElts == 0) 920 return Vec; 921 break; 922 } 923 case ISD::VECTOR_SHUFFLE: { 924 assert(!VT.isScalableVector()); 925 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 926 927 // If all the demanded elts are from one operand and are inline, 928 // then we can use the operand directly. 929 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 930 for (unsigned i = 0; i != NumElts; ++i) { 931 int M = ShuffleMask[i]; 932 if (M < 0 || !DemandedElts[i]) 933 continue; 934 AllUndef = false; 935 IdentityLHS &= (M == (int)i); 936 IdentityRHS &= ((M - NumElts) == i); 937 } 938 939 if (AllUndef) 940 return DAG.getUNDEF(Op.getValueType()); 941 if (IdentityLHS) 942 return Op.getOperand(0); 943 if (IdentityRHS) 944 return Op.getOperand(1); 945 break; 946 } 947 default: 948 // TODO: Probably okay to remove after audit; here to reduce change size 949 // in initial enablement patch for scalable vectors 950 if (VT.isScalableVector()) 951 return SDValue(); 952 953 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 954 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 955 Op, DemandedBits, DemandedElts, DAG, Depth)) 956 return V; 957 break; 958 } 959 return SDValue(); 960 } 961 962 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 963 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 964 unsigned Depth) const { 965 EVT VT = Op.getValueType(); 966 // Since the number of lanes in a scalable vector is unknown at compile time, 967 // we track one bit which is implicitly broadcast to all lanes. This means 968 // that all lanes in a scalable vector are considered demanded. 969 APInt DemandedElts = VT.isFixedLengthVector() 970 ? APInt::getAllOnes(VT.getVectorNumElements()) 971 : APInt(1, 1); 972 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 973 Depth); 974 } 975 976 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 977 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 978 unsigned Depth) const { 979 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 980 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 981 Depth); 982 } 983 984 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1). 985 // or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1). 986 static SDValue combineShiftToAVG(SDValue Op, 987 TargetLowering::TargetLoweringOpt &TLO, 988 const TargetLowering &TLI, 989 const APInt &DemandedBits, 990 const APInt &DemandedElts, unsigned Depth) { 991 assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) && 992 "SRL or SRA node is required here!"); 993 // Is the right shift using an immediate value of 1? 994 ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 995 if (!N1C || !N1C->isOne()) 996 return SDValue(); 997 998 // We are looking for an avgfloor 999 // add(ext, ext) 1000 // or one of these as a avgceil 1001 // add(add(ext, ext), 1) 1002 // add(add(ext, 1), ext) 1003 // add(ext, add(ext, 1)) 1004 SDValue Add = Op.getOperand(0); 1005 if (Add.getOpcode() != ISD::ADD) 1006 return SDValue(); 1007 1008 SDValue ExtOpA = Add.getOperand(0); 1009 SDValue ExtOpB = Add.getOperand(1); 1010 SDValue Add2; 1011 auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3, SDValue A) { 1012 ConstantSDNode *ConstOp; 1013 if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) && 1014 ConstOp->isOne()) { 1015 ExtOpA = Op1; 1016 ExtOpB = Op3; 1017 Add2 = A; 1018 return true; 1019 } 1020 if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) && 1021 ConstOp->isOne()) { 1022 ExtOpA = Op1; 1023 ExtOpB = Op2; 1024 Add2 = A; 1025 return true; 1026 } 1027 return false; 1028 }; 1029 bool IsCeil = 1030 (ExtOpA.getOpcode() == ISD::ADD && 1031 MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB, ExtOpA)) || 1032 (ExtOpB.getOpcode() == ISD::ADD && 1033 MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA, ExtOpB)); 1034 1035 // If the shift is signed (sra): 1036 // - Needs >= 2 sign bit for both operands. 1037 // - Needs >= 2 zero bits. 1038 // If the shift is unsigned (srl): 1039 // - Needs >= 1 zero bit for both operands. 1040 // - Needs 1 demanded bit zero and >= 2 sign bits. 1041 SelectionDAG &DAG = TLO.DAG; 1042 unsigned ShiftOpc = Op.getOpcode(); 1043 bool IsSigned = false; 1044 unsigned KnownBits; 1045 unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth); 1046 unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth); 1047 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1; 1048 unsigned NumZeroA = 1049 DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros(); 1050 unsigned NumZeroB = 1051 DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros(); 1052 unsigned NumZero = std::min(NumZeroA, NumZeroB); 1053 1054 switch (ShiftOpc) { 1055 default: 1056 llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG"); 1057 case ISD::SRA: { 1058 if (NumZero >= 2 && NumSigned < NumZero) { 1059 IsSigned = false; 1060 KnownBits = NumZero; 1061 break; 1062 } 1063 if (NumSigned >= 1) { 1064 IsSigned = true; 1065 KnownBits = NumSigned; 1066 break; 1067 } 1068 return SDValue(); 1069 } 1070 case ISD::SRL: { 1071 if (NumZero >= 1 && NumSigned < NumZero) { 1072 IsSigned = false; 1073 KnownBits = NumZero; 1074 break; 1075 } 1076 if (NumSigned >= 1 && DemandedBits.isSignBitClear()) { 1077 IsSigned = true; 1078 KnownBits = NumSigned; 1079 break; 1080 } 1081 return SDValue(); 1082 } 1083 } 1084 1085 unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU) 1086 : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU); 1087 1088 // Find the smallest power-2 type that is legal for this vector size and 1089 // operation, given the original type size and the number of known sign/zero 1090 // bits. 1091 EVT VT = Op.getValueType(); 1092 unsigned MinWidth = 1093 std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8); 1094 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_ceil(MinWidth)); 1095 if (NVT.getScalarSizeInBits() > VT.getScalarSizeInBits()) 1096 return SDValue(); 1097 if (VT.isVector()) 1098 NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount()); 1099 if (TLO.LegalTypes() && !TLI.isOperationLegal(AVGOpc, NVT)) { 1100 // If we could not transform, and (both) adds are nuw/nsw, we can use the 1101 // larger type size to do the transform. 1102 if (TLO.LegalOperations() && !TLI.isOperationLegal(AVGOpc, VT)) 1103 return SDValue(); 1104 if (DAG.willNotOverflowAdd(IsSigned, Add.getOperand(0), 1105 Add.getOperand(1)) && 1106 (!Add2 || DAG.willNotOverflowAdd(IsSigned, Add2.getOperand(0), 1107 Add2.getOperand(1)))) 1108 NVT = VT; 1109 else 1110 return SDValue(); 1111 } 1112 1113 // Don't create a AVGFLOOR node with a scalar constant unless its legal as 1114 // this is likely to stop other folds (reassociation, value tracking etc.) 1115 if (!IsCeil && !TLI.isOperationLegal(AVGOpc, NVT) && 1116 (isa<ConstantSDNode>(ExtOpA) || isa<ConstantSDNode>(ExtOpB))) 1117 return SDValue(); 1118 1119 SDLoc DL(Op); 1120 SDValue ResultAVG = 1121 DAG.getNode(AVGOpc, DL, NVT, DAG.getExtOrTrunc(IsSigned, ExtOpA, DL, NVT), 1122 DAG.getExtOrTrunc(IsSigned, ExtOpB, DL, NVT)); 1123 return DAG.getExtOrTrunc(IsSigned, ResultAVG, DL, VT); 1124 } 1125 1126 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 1127 /// result of Op are ever used downstream. If we can use this information to 1128 /// simplify Op, create a new simplified DAG node and return true, returning the 1129 /// original and new nodes in Old and New. Otherwise, analyze the expression and 1130 /// return a mask of Known bits for the expression (used to simplify the 1131 /// caller). The Known bits may only be accurate for those bits in the 1132 /// OriginalDemandedBits and OriginalDemandedElts. 1133 bool TargetLowering::SimplifyDemandedBits( 1134 SDValue Op, const APInt &OriginalDemandedBits, 1135 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 1136 unsigned Depth, bool AssumeSingleUse) const { 1137 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 1138 assert(Op.getScalarValueSizeInBits() == BitWidth && 1139 "Mask size mismatches value type size!"); 1140 1141 // Don't know anything. 1142 Known = KnownBits(BitWidth); 1143 1144 EVT VT = Op.getValueType(); 1145 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 1146 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 1147 assert((!VT.isFixedLengthVector() || NumElts == VT.getVectorNumElements()) && 1148 "Unexpected vector size"); 1149 1150 APInt DemandedBits = OriginalDemandedBits; 1151 APInt DemandedElts = OriginalDemandedElts; 1152 SDLoc dl(Op); 1153 1154 // Undef operand. 1155 if (Op.isUndef()) 1156 return false; 1157 1158 // We can't simplify target constants. 1159 if (Op.getOpcode() == ISD::TargetConstant) 1160 return false; 1161 1162 if (Op.getOpcode() == ISD::Constant) { 1163 // We know all of the bits for a constant! 1164 Known = KnownBits::makeConstant(Op->getAsAPIntVal()); 1165 return false; 1166 } 1167 1168 if (Op.getOpcode() == ISD::ConstantFP) { 1169 // We know all of the bits for a floating point constant! 1170 Known = KnownBits::makeConstant( 1171 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 1172 return false; 1173 } 1174 1175 // Other users may use these bits. 1176 bool HasMultiUse = false; 1177 if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) { 1178 if (Depth >= SelectionDAG::MaxRecursionDepth) { 1179 // Limit search depth. 1180 return false; 1181 } 1182 // Allow multiple uses, just set the DemandedBits/Elts to all bits. 1183 DemandedBits = APInt::getAllOnes(BitWidth); 1184 DemandedElts = APInt::getAllOnes(NumElts); 1185 HasMultiUse = true; 1186 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 1187 // Not demanding any bits/elts from Op. 1188 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1189 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 1190 // Limit search depth. 1191 return false; 1192 } 1193 1194 KnownBits Known2; 1195 switch (Op.getOpcode()) { 1196 case ISD::SCALAR_TO_VECTOR: { 1197 if (VT.isScalableVector()) 1198 return false; 1199 if (!DemandedElts[0]) 1200 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1201 1202 KnownBits SrcKnown; 1203 SDValue Src = Op.getOperand(0); 1204 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 1205 APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth); 1206 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 1207 return true; 1208 1209 // Upper elements are undef, so only get the knownbits if we just demand 1210 // the bottom element. 1211 if (DemandedElts == 1) 1212 Known = SrcKnown.anyextOrTrunc(BitWidth); 1213 break; 1214 } 1215 case ISD::BUILD_VECTOR: 1216 // Collect the known bits that are shared by every demanded element. 1217 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 1218 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1219 return false; // Don't fall through, will infinitely loop. 1220 case ISD::SPLAT_VECTOR: { 1221 SDValue Scl = Op.getOperand(0); 1222 APInt DemandedSclBits = DemandedBits.zextOrTrunc(Scl.getValueSizeInBits()); 1223 KnownBits KnownScl; 1224 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1225 return true; 1226 1227 // Implicitly truncate the bits to match the official semantics of 1228 // SPLAT_VECTOR. 1229 Known = KnownScl.trunc(BitWidth); 1230 break; 1231 } 1232 case ISD::LOAD: { 1233 auto *LD = cast<LoadSDNode>(Op); 1234 if (getTargetConstantFromLoad(LD)) { 1235 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1236 return false; // Don't fall through, will infinitely loop. 1237 } 1238 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 1239 // If this is a ZEXTLoad and we are looking at the loaded value. 1240 EVT MemVT = LD->getMemoryVT(); 1241 unsigned MemBits = MemVT.getScalarSizeInBits(); 1242 Known.Zero.setBitsFrom(MemBits); 1243 return false; // Don't fall through, will infinitely loop. 1244 } 1245 break; 1246 } 1247 case ISD::INSERT_VECTOR_ELT: { 1248 if (VT.isScalableVector()) 1249 return false; 1250 SDValue Vec = Op.getOperand(0); 1251 SDValue Scl = Op.getOperand(1); 1252 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1253 EVT VecVT = Vec.getValueType(); 1254 1255 // If index isn't constant, assume we need all vector elements AND the 1256 // inserted element. 1257 APInt DemandedVecElts(DemandedElts); 1258 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1259 unsigned Idx = CIdx->getZExtValue(); 1260 DemandedVecElts.clearBit(Idx); 1261 1262 // Inserted element is not required. 1263 if (!DemandedElts[Idx]) 1264 return TLO.CombineTo(Op, Vec); 1265 } 1266 1267 KnownBits KnownScl; 1268 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1269 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1270 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1271 return true; 1272 1273 Known = KnownScl.anyextOrTrunc(BitWidth); 1274 1275 KnownBits KnownVec; 1276 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1277 Depth + 1)) 1278 return true; 1279 1280 if (!!DemandedVecElts) 1281 Known = Known.intersectWith(KnownVec); 1282 1283 return false; 1284 } 1285 case ISD::INSERT_SUBVECTOR: { 1286 if (VT.isScalableVector()) 1287 return false; 1288 // Demand any elements from the subvector and the remainder from the src its 1289 // inserted into. 1290 SDValue Src = Op.getOperand(0); 1291 SDValue Sub = Op.getOperand(1); 1292 uint64_t Idx = Op.getConstantOperandVal(2); 1293 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1294 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1295 APInt DemandedSrcElts = DemandedElts; 1296 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1297 1298 KnownBits KnownSub, KnownSrc; 1299 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1300 Depth + 1)) 1301 return true; 1302 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1303 Depth + 1)) 1304 return true; 1305 1306 Known.Zero.setAllBits(); 1307 Known.One.setAllBits(); 1308 if (!!DemandedSubElts) 1309 Known = Known.intersectWith(KnownSub); 1310 if (!!DemandedSrcElts) 1311 Known = Known.intersectWith(KnownSrc); 1312 1313 // Attempt to avoid multi-use src if we don't need anything from it. 1314 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1315 !DemandedSrcElts.isAllOnes()) { 1316 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1317 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1318 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1319 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1320 if (NewSub || NewSrc) { 1321 NewSub = NewSub ? NewSub : Sub; 1322 NewSrc = NewSrc ? NewSrc : Src; 1323 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1324 Op.getOperand(2)); 1325 return TLO.CombineTo(Op, NewOp); 1326 } 1327 } 1328 break; 1329 } 1330 case ISD::EXTRACT_SUBVECTOR: { 1331 if (VT.isScalableVector()) 1332 return false; 1333 // Offset the demanded elts by the subvector index. 1334 SDValue Src = Op.getOperand(0); 1335 if (Src.getValueType().isScalableVector()) 1336 break; 1337 uint64_t Idx = Op.getConstantOperandVal(1); 1338 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1339 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 1340 1341 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1342 Depth + 1)) 1343 return true; 1344 1345 // Attempt to avoid multi-use src if we don't need anything from it. 1346 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1347 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1348 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1349 if (DemandedSrc) { 1350 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1351 Op.getOperand(1)); 1352 return TLO.CombineTo(Op, NewOp); 1353 } 1354 } 1355 break; 1356 } 1357 case ISD::CONCAT_VECTORS: { 1358 if (VT.isScalableVector()) 1359 return false; 1360 Known.Zero.setAllBits(); 1361 Known.One.setAllBits(); 1362 EVT SubVT = Op.getOperand(0).getValueType(); 1363 unsigned NumSubVecs = Op.getNumOperands(); 1364 unsigned NumSubElts = SubVT.getVectorNumElements(); 1365 for (unsigned i = 0; i != NumSubVecs; ++i) { 1366 APInt DemandedSubElts = 1367 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1368 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1369 Known2, TLO, Depth + 1)) 1370 return true; 1371 // Known bits are shared by every demanded subvector element. 1372 if (!!DemandedSubElts) 1373 Known = Known.intersectWith(Known2); 1374 } 1375 break; 1376 } 1377 case ISD::VECTOR_SHUFFLE: { 1378 assert(!VT.isScalableVector()); 1379 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1380 1381 // Collect demanded elements from shuffle operands.. 1382 APInt DemandedLHS, DemandedRHS; 1383 if (!getShuffleDemandedElts(NumElts, ShuffleMask, DemandedElts, DemandedLHS, 1384 DemandedRHS)) 1385 break; 1386 1387 if (!!DemandedLHS || !!DemandedRHS) { 1388 SDValue Op0 = Op.getOperand(0); 1389 SDValue Op1 = Op.getOperand(1); 1390 1391 Known.Zero.setAllBits(); 1392 Known.One.setAllBits(); 1393 if (!!DemandedLHS) { 1394 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1395 Depth + 1)) 1396 return true; 1397 Known = Known.intersectWith(Known2); 1398 } 1399 if (!!DemandedRHS) { 1400 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1401 Depth + 1)) 1402 return true; 1403 Known = Known.intersectWith(Known2); 1404 } 1405 1406 // Attempt to avoid multi-use ops if we don't need anything from them. 1407 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1408 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1409 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1410 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1411 if (DemandedOp0 || DemandedOp1) { 1412 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1413 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1414 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1415 return TLO.CombineTo(Op, NewOp); 1416 } 1417 } 1418 break; 1419 } 1420 case ISD::AND: { 1421 SDValue Op0 = Op.getOperand(0); 1422 SDValue Op1 = Op.getOperand(1); 1423 1424 // If the RHS is a constant, check to see if the LHS would be zero without 1425 // using the bits from the RHS. Below, we use knowledge about the RHS to 1426 // simplify the LHS, here we're using information from the LHS to simplify 1427 // the RHS. 1428 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1, DemandedElts)) { 1429 // Do not increment Depth here; that can cause an infinite loop. 1430 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1431 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1432 if ((LHSKnown.Zero & DemandedBits) == 1433 (~RHSC->getAPIntValue() & DemandedBits)) 1434 return TLO.CombineTo(Op, Op0); 1435 1436 // If any of the set bits in the RHS are known zero on the LHS, shrink 1437 // the constant. 1438 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1439 DemandedElts, TLO)) 1440 return true; 1441 1442 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1443 // constant, but if this 'and' is only clearing bits that were just set by 1444 // the xor, then this 'and' can be eliminated by shrinking the mask of 1445 // the xor. For example, for a 32-bit X: 1446 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1447 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1448 LHSKnown.One == ~RHSC->getAPIntValue()) { 1449 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1450 return TLO.CombineTo(Op, Xor); 1451 } 1452 } 1453 1454 // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I) 1455 // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits). 1456 if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR && !VT.isScalableVector() && 1457 (Op0.getOperand(0).isUndef() || 1458 ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) && 1459 Op0->hasOneUse()) { 1460 unsigned NumSubElts = 1461 Op0.getOperand(1).getValueType().getVectorNumElements(); 1462 unsigned SubIdx = Op0.getConstantOperandVal(2); 1463 APInt DemandedSub = 1464 APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts); 1465 KnownBits KnownSubMask = 1466 TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1); 1467 if (DemandedBits.isSubsetOf(KnownSubMask.One)) { 1468 SDValue NewAnd = 1469 TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1); 1470 SDValue NewInsert = 1471 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd, 1472 Op0.getOperand(1), Op0.getOperand(2)); 1473 return TLO.CombineTo(Op, NewInsert); 1474 } 1475 } 1476 1477 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1478 Depth + 1)) 1479 return true; 1480 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1481 Known2, TLO, Depth + 1)) 1482 return true; 1483 1484 // If all of the demanded bits are known one on one side, return the other. 1485 // These bits cannot contribute to the result of the 'and'. 1486 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1487 return TLO.CombineTo(Op, Op0); 1488 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1489 return TLO.CombineTo(Op, Op1); 1490 // If all of the demanded bits in the inputs are known zeros, return zero. 1491 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1492 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1493 // If the RHS is a constant, see if we can simplify it. 1494 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1495 TLO)) 1496 return true; 1497 // If the operation can be done in a smaller type, do so. 1498 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1499 return true; 1500 1501 // Attempt to avoid multi-use ops if we don't need anything from them. 1502 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1503 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1504 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1505 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1506 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1507 if (DemandedOp0 || DemandedOp1) { 1508 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1509 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1510 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1511 return TLO.CombineTo(Op, NewOp); 1512 } 1513 } 1514 1515 Known &= Known2; 1516 break; 1517 } 1518 case ISD::OR: { 1519 SDValue Op0 = Op.getOperand(0); 1520 SDValue Op1 = Op.getOperand(1); 1521 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1522 Depth + 1)) { 1523 Op->dropFlags(SDNodeFlags::Disjoint); 1524 return true; 1525 } 1526 1527 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1528 Known2, TLO, Depth + 1)) { 1529 Op->dropFlags(SDNodeFlags::Disjoint); 1530 return true; 1531 } 1532 1533 // If all of the demanded bits are known zero on one side, return the other. 1534 // These bits cannot contribute to the result of the 'or'. 1535 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1536 return TLO.CombineTo(Op, Op0); 1537 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1538 return TLO.CombineTo(Op, Op1); 1539 // If the RHS is a constant, see if we can simplify it. 1540 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1541 return true; 1542 // If the operation can be done in a smaller type, do so. 1543 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1544 return true; 1545 1546 // Attempt to avoid multi-use ops if we don't need anything from them. 1547 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1548 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1549 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1550 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1551 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1552 if (DemandedOp0 || DemandedOp1) { 1553 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1554 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1555 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1556 return TLO.CombineTo(Op, NewOp); 1557 } 1558 } 1559 1560 // (or (and X, C1), (and (or X, Y), C2)) -> (or (and X, C1|C2), (and Y, C2)) 1561 // TODO: Use SimplifyMultipleUseDemandedBits to peek through masks. 1562 if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::AND && 1563 Op0->hasOneUse() && Op1->hasOneUse()) { 1564 // Attempt to match all commutations - m_c_Or would've been useful! 1565 for (int I = 0; I != 2; ++I) { 1566 SDValue X = Op.getOperand(I).getOperand(0); 1567 SDValue C1 = Op.getOperand(I).getOperand(1); 1568 SDValue Alt = Op.getOperand(1 - I).getOperand(0); 1569 SDValue C2 = Op.getOperand(1 - I).getOperand(1); 1570 if (Alt.getOpcode() == ISD::OR) { 1571 for (int J = 0; J != 2; ++J) { 1572 if (X == Alt.getOperand(J)) { 1573 SDValue Y = Alt.getOperand(1 - J); 1574 if (SDValue C12 = TLO.DAG.FoldConstantArithmetic(ISD::OR, dl, VT, 1575 {C1, C2})) { 1576 SDValue MaskX = TLO.DAG.getNode(ISD::AND, dl, VT, X, C12); 1577 SDValue MaskY = TLO.DAG.getNode(ISD::AND, dl, VT, Y, C2); 1578 return TLO.CombineTo( 1579 Op, TLO.DAG.getNode(ISD::OR, dl, VT, MaskX, MaskY)); 1580 } 1581 } 1582 } 1583 } 1584 } 1585 } 1586 1587 Known |= Known2; 1588 break; 1589 } 1590 case ISD::XOR: { 1591 SDValue Op0 = Op.getOperand(0); 1592 SDValue Op1 = Op.getOperand(1); 1593 1594 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1595 Depth + 1)) 1596 return true; 1597 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1598 Depth + 1)) 1599 return true; 1600 1601 // If all of the demanded bits are known zero on one side, return the other. 1602 // These bits cannot contribute to the result of the 'xor'. 1603 if (DemandedBits.isSubsetOf(Known.Zero)) 1604 return TLO.CombineTo(Op, Op0); 1605 if (DemandedBits.isSubsetOf(Known2.Zero)) 1606 return TLO.CombineTo(Op, Op1); 1607 // If the operation can be done in a smaller type, do so. 1608 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1609 return true; 1610 1611 // If all of the unknown bits are known to be zero on one side or the other 1612 // turn this into an *inclusive* or. 1613 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1614 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1615 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1616 1617 ConstantSDNode *C = isConstOrConstSplat(Op1, DemandedElts); 1618 if (C) { 1619 // If one side is a constant, and all of the set bits in the constant are 1620 // also known set on the other side, turn this into an AND, as we know 1621 // the bits will be cleared. 1622 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1623 // NB: it is okay if more bits are known than are requested 1624 if (C->getAPIntValue() == Known2.One) { 1625 SDValue ANDC = 1626 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1627 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1628 } 1629 1630 // If the RHS is a constant, see if we can change it. Don't alter a -1 1631 // constant because that's a 'not' op, and that is better for combining 1632 // and codegen. 1633 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1634 // We're flipping all demanded bits. Flip the undemanded bits too. 1635 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1636 return TLO.CombineTo(Op, New); 1637 } 1638 1639 unsigned Op0Opcode = Op0.getOpcode(); 1640 if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) { 1641 if (ConstantSDNode *ShiftC = 1642 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1643 // Don't crash on an oversized shift. We can not guarantee that a 1644 // bogus shift has been simplified to undef. 1645 if (ShiftC->getAPIntValue().ult(BitWidth)) { 1646 uint64_t ShiftAmt = ShiftC->getZExtValue(); 1647 APInt Ones = APInt::getAllOnes(BitWidth); 1648 Ones = Op0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) 1649 : Ones.lshr(ShiftAmt); 1650 if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) && 1651 isDesirableToCommuteXorWithShift(Op.getNode())) { 1652 // If the xor constant is a demanded mask, do a 'not' before the 1653 // shift: 1654 // xor (X << ShiftC), XorC --> (not X) << ShiftC 1655 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC 1656 SDValue Not = TLO.DAG.getNOT(dl, Op0.getOperand(0), VT); 1657 return TLO.CombineTo(Op, TLO.DAG.getNode(Op0Opcode, dl, VT, Not, 1658 Op0.getOperand(1))); 1659 } 1660 } 1661 } 1662 } 1663 } 1664 1665 // If we can't turn this into a 'not', try to shrink the constant. 1666 if (!C || !C->isAllOnes()) 1667 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1668 return true; 1669 1670 // Attempt to avoid multi-use ops if we don't need anything from them. 1671 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1672 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1673 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1674 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1675 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1676 if (DemandedOp0 || DemandedOp1) { 1677 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1678 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1679 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1680 return TLO.CombineTo(Op, NewOp); 1681 } 1682 } 1683 1684 Known ^= Known2; 1685 break; 1686 } 1687 case ISD::SELECT: 1688 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, 1689 Known, TLO, Depth + 1)) 1690 return true; 1691 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts, 1692 Known2, TLO, Depth + 1)) 1693 return true; 1694 1695 // If the operands are constants, see if we can simplify them. 1696 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1697 return true; 1698 1699 // Only known if known in both the LHS and RHS. 1700 Known = Known.intersectWith(Known2); 1701 break; 1702 case ISD::VSELECT: 1703 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, 1704 Known, TLO, Depth + 1)) 1705 return true; 1706 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts, 1707 Known2, TLO, Depth + 1)) 1708 return true; 1709 1710 // Only known if known in both the LHS and RHS. 1711 Known = Known.intersectWith(Known2); 1712 break; 1713 case ISD::SELECT_CC: 1714 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, DemandedElts, 1715 Known, TLO, Depth + 1)) 1716 return true; 1717 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, 1718 Known2, TLO, Depth + 1)) 1719 return true; 1720 1721 // If the operands are constants, see if we can simplify them. 1722 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1723 return true; 1724 1725 // Only known if known in both the LHS and RHS. 1726 Known = Known.intersectWith(Known2); 1727 break; 1728 case ISD::SETCC: { 1729 SDValue Op0 = Op.getOperand(0); 1730 SDValue Op1 = Op.getOperand(1); 1731 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1732 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1733 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1734 // -1, we may be able to bypass the setcc. 1735 if (DemandedBits.isSignMask() && 1736 Op0.getScalarValueSizeInBits() == BitWidth && 1737 getBooleanContents(Op0.getValueType()) == 1738 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1739 // If we're testing X < 0, then this compare isn't needed - just use X! 1740 // FIXME: We're limiting to integer types here, but this should also work 1741 // if we don't care about FP signed-zero. The use of SETLT with FP means 1742 // that we don't care about NaNs. 1743 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1744 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1745 return TLO.CombineTo(Op, Op0); 1746 1747 // TODO: Should we check for other forms of sign-bit comparisons? 1748 // Examples: X <= -1, X >= 0 1749 } 1750 if (getBooleanContents(Op0.getValueType()) == 1751 TargetLowering::ZeroOrOneBooleanContent && 1752 BitWidth > 1) 1753 Known.Zero.setBitsFrom(1); 1754 break; 1755 } 1756 case ISD::SHL: { 1757 SDValue Op0 = Op.getOperand(0); 1758 SDValue Op1 = Op.getOperand(1); 1759 EVT ShiftVT = Op1.getValueType(); 1760 1761 if (std::optional<uint64_t> KnownSA = 1762 TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) { 1763 unsigned ShAmt = *KnownSA; 1764 if (ShAmt == 0) 1765 return TLO.CombineTo(Op, Op0); 1766 1767 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1768 // single shift. We can do this if the bottom bits (which are shifted 1769 // out) are never demanded. 1770 // TODO - support non-uniform vector amounts. 1771 if (Op0.getOpcode() == ISD::SRL) { 1772 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1773 if (std::optional<uint64_t> InnerSA = 1774 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) { 1775 unsigned C1 = *InnerSA; 1776 unsigned Opc = ISD::SHL; 1777 int Diff = ShAmt - C1; 1778 if (Diff < 0) { 1779 Diff = -Diff; 1780 Opc = ISD::SRL; 1781 } 1782 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1783 return TLO.CombineTo( 1784 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1785 } 1786 } 1787 } 1788 1789 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1790 // are not demanded. This will likely allow the anyext to be folded away. 1791 // TODO - support non-uniform vector amounts. 1792 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1793 SDValue InnerOp = Op0.getOperand(0); 1794 EVT InnerVT = InnerOp.getValueType(); 1795 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1796 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1797 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1798 SDValue NarrowShl = TLO.DAG.getNode( 1799 ISD::SHL, dl, InnerVT, InnerOp, 1800 TLO.DAG.getShiftAmountConstant(ShAmt, InnerVT, dl)); 1801 return TLO.CombineTo( 1802 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1803 } 1804 1805 // Repeat the SHL optimization above in cases where an extension 1806 // intervenes: (shl (anyext (shr x, c1)), c2) to 1807 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1808 // aren't demanded (as above) and that the shifted upper c1 bits of 1809 // x aren't demanded. 1810 // TODO - support non-uniform vector amounts. 1811 if (InnerOp.getOpcode() == ISD::SRL && Op0.hasOneUse() && 1812 InnerOp.hasOneUse()) { 1813 if (std::optional<uint64_t> SA2 = TLO.DAG.getValidShiftAmount( 1814 InnerOp, DemandedElts, Depth + 2)) { 1815 unsigned InnerShAmt = *SA2; 1816 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1817 DemandedBits.getActiveBits() <= 1818 (InnerBits - InnerShAmt + ShAmt) && 1819 DemandedBits.countr_zero() >= ShAmt) { 1820 SDValue NewSA = 1821 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1822 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1823 InnerOp.getOperand(0)); 1824 return TLO.CombineTo( 1825 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1826 } 1827 } 1828 } 1829 } 1830 1831 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1832 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1833 Depth + 1)) { 1834 // Disable the nsw and nuw flags. We can no longer guarantee that we 1835 // won't wrap after simplification. 1836 Op->dropFlags(SDNodeFlags::NoWrap); 1837 return true; 1838 } 1839 Known.Zero <<= ShAmt; 1840 Known.One <<= ShAmt; 1841 // low bits known zero. 1842 Known.Zero.setLowBits(ShAmt); 1843 1844 // Attempt to avoid multi-use ops if we don't need anything from them. 1845 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1846 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1847 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1848 if (DemandedOp0) { 1849 SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1); 1850 return TLO.CombineTo(Op, NewOp); 1851 } 1852 } 1853 1854 // TODO: Can we merge this fold with the one below? 1855 // Try shrinking the operation as long as the shift amount will still be 1856 // in range. 1857 if (ShAmt < DemandedBits.getActiveBits() && !VT.isVector() && 1858 Op.getNode()->hasOneUse()) { 1859 // Search for the smallest integer type with free casts to and from 1860 // Op's type. For expedience, just check power-of-2 integer types. 1861 unsigned DemandedSize = DemandedBits.getActiveBits(); 1862 for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize); 1863 SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 1864 EVT SmallVT = EVT::getIntegerVT(*TLO.DAG.getContext(), SmallVTBits); 1865 if (isNarrowingProfitable(Op.getNode(), VT, SmallVT) && 1866 isTypeDesirableForOp(ISD::SHL, SmallVT) && 1867 isTruncateFree(VT, SmallVT) && isZExtFree(SmallVT, VT) && 1868 (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, SmallVT))) { 1869 assert(DemandedSize <= SmallVTBits && 1870 "Narrowed below demanded bits?"); 1871 // We found a type with free casts. 1872 SDValue NarrowShl = TLO.DAG.getNode( 1873 ISD::SHL, dl, SmallVT, 1874 TLO.DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 1875 TLO.DAG.getShiftAmountConstant(ShAmt, SmallVT, dl)); 1876 return TLO.CombineTo( 1877 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1878 } 1879 } 1880 } 1881 1882 // Narrow shift to lower half - similar to ShrinkDemandedOp. 1883 // (shl i64:x, K) -> (i64 zero_extend (shl (i32 (trunc i64:x)), K)) 1884 // Only do this if we demand the upper half so the knownbits are correct. 1885 unsigned HalfWidth = BitWidth / 2; 1886 if ((BitWidth % 2) == 0 && !VT.isVector() && ShAmt < HalfWidth && 1887 DemandedBits.countLeadingOnes() >= HalfWidth) { 1888 EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), HalfWidth); 1889 if (isNarrowingProfitable(Op.getNode(), VT, HalfVT) && 1890 isTypeDesirableForOp(ISD::SHL, HalfVT) && 1891 isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) && 1892 (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, HalfVT))) { 1893 // If we're demanding the upper bits at all, we must ensure 1894 // that the upper bits of the shift result are known to be zero, 1895 // which is equivalent to the narrow shift being NUW. 1896 if (bool IsNUW = (Known.countMinLeadingZeros() >= HalfWidth)) { 1897 bool IsNSW = Known.countMinSignBits() > HalfWidth; 1898 SDNodeFlags Flags; 1899 Flags.setNoSignedWrap(IsNSW); 1900 Flags.setNoUnsignedWrap(IsNUW); 1901 SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0); 1902 SDValue NewShiftAmt = 1903 TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl); 1904 SDValue NewShift = TLO.DAG.getNode(ISD::SHL, dl, HalfVT, NewOp, 1905 NewShiftAmt, Flags); 1906 SDValue NewExt = 1907 TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift); 1908 return TLO.CombineTo(Op, NewExt); 1909 } 1910 } 1911 } 1912 } else { 1913 // This is a variable shift, so we can't shift the demand mask by a known 1914 // amount. But if we are not demanding high bits, then we are not 1915 // demanding those bits from the pre-shifted operand either. 1916 if (unsigned CTLZ = DemandedBits.countl_zero()) { 1917 APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ)); 1918 if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO, 1919 Depth + 1)) { 1920 // Disable the nsw and nuw flags. We can no longer guarantee that we 1921 // won't wrap after simplification. 1922 Op->dropFlags(SDNodeFlags::NoWrap); 1923 return true; 1924 } 1925 Known.resetAll(); 1926 } 1927 } 1928 1929 // If we are only demanding sign bits then we can use the shift source 1930 // directly. 1931 if (std::optional<uint64_t> MaxSA = 1932 TLO.DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) { 1933 unsigned ShAmt = *MaxSA; 1934 unsigned NumSignBits = 1935 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1936 unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero(); 1937 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1938 return TLO.CombineTo(Op, Op0); 1939 } 1940 break; 1941 } 1942 case ISD::SRL: { 1943 SDValue Op0 = Op.getOperand(0); 1944 SDValue Op1 = Op.getOperand(1); 1945 EVT ShiftVT = Op1.getValueType(); 1946 1947 if (std::optional<uint64_t> KnownSA = 1948 TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) { 1949 unsigned ShAmt = *KnownSA; 1950 if (ShAmt == 0) 1951 return TLO.CombineTo(Op, Op0); 1952 1953 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1954 // single shift. We can do this if the top bits (which are shifted out) 1955 // are never demanded. 1956 // TODO - support non-uniform vector amounts. 1957 if (Op0.getOpcode() == ISD::SHL) { 1958 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1959 if (std::optional<uint64_t> InnerSA = 1960 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) { 1961 unsigned C1 = *InnerSA; 1962 unsigned Opc = ISD::SRL; 1963 int Diff = ShAmt - C1; 1964 if (Diff < 0) { 1965 Diff = -Diff; 1966 Opc = ISD::SHL; 1967 } 1968 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1969 return TLO.CombineTo( 1970 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1971 } 1972 } 1973 } 1974 1975 // If this is (srl (sra X, C1), ShAmt), see if we can combine this into a 1976 // single sra. We can do this if the top bits are never demanded. 1977 if (Op0.getOpcode() == ISD::SRA && Op0.hasOneUse()) { 1978 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1979 if (std::optional<uint64_t> InnerSA = 1980 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) { 1981 unsigned C1 = *InnerSA; 1982 // Clamp the combined shift amount if it exceeds the bit width. 1983 unsigned Combined = std::min(C1 + ShAmt, BitWidth - 1); 1984 SDValue NewSA = TLO.DAG.getConstant(Combined, dl, ShiftVT); 1985 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRA, dl, VT, 1986 Op0.getOperand(0), NewSA)); 1987 } 1988 } 1989 } 1990 1991 APInt InDemandedMask = (DemandedBits << ShAmt); 1992 1993 // If the shift is exact, then it does demand the low bits (and knows that 1994 // they are zero). 1995 if (Op->getFlags().hasExact()) 1996 InDemandedMask.setLowBits(ShAmt); 1997 1998 // Narrow shift to lower half - similar to ShrinkDemandedOp. 1999 // (srl i64:x, K) -> (i64 zero_extend (srl (i32 (trunc i64:x)), K)) 2000 if ((BitWidth % 2) == 0 && !VT.isVector()) { 2001 APInt HiBits = APInt::getHighBitsSet(BitWidth, BitWidth / 2); 2002 EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), BitWidth / 2); 2003 if (isNarrowingProfitable(Op.getNode(), VT, HalfVT) && 2004 isTypeDesirableForOp(ISD::SRL, HalfVT) && 2005 isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) && 2006 (!TLO.LegalOperations() || isOperationLegal(ISD::SRL, HalfVT)) && 2007 ((InDemandedMask.countLeadingZeros() >= (BitWidth / 2)) || 2008 TLO.DAG.MaskedValueIsZero(Op0, HiBits))) { 2009 SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0); 2010 SDValue NewShiftAmt = 2011 TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl); 2012 SDValue NewShift = 2013 TLO.DAG.getNode(ISD::SRL, dl, HalfVT, NewOp, NewShiftAmt); 2014 return TLO.CombineTo( 2015 Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift)); 2016 } 2017 } 2018 2019 // Compute the new bits that are at the top now. 2020 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 2021 Depth + 1)) 2022 return true; 2023 Known.Zero.lshrInPlace(ShAmt); 2024 Known.One.lshrInPlace(ShAmt); 2025 // High bits known zero. 2026 Known.Zero.setHighBits(ShAmt); 2027 2028 // Attempt to avoid multi-use ops if we don't need anything from them. 2029 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2030 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2031 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 2032 if (DemandedOp0) { 2033 SDValue NewOp = TLO.DAG.getNode(ISD::SRL, dl, VT, DemandedOp0, Op1); 2034 return TLO.CombineTo(Op, NewOp); 2035 } 2036 } 2037 } else { 2038 // Use generic knownbits computation as it has support for non-uniform 2039 // shift amounts. 2040 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2041 } 2042 2043 // If we are only demanding sign bits then we can use the shift source 2044 // directly. 2045 if (std::optional<uint64_t> MaxSA = 2046 TLO.DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) { 2047 unsigned ShAmt = *MaxSA; 2048 // Must already be signbits in DemandedBits bounds, and can't demand any 2049 // shifted in zeroes. 2050 if (DemandedBits.countl_zero() >= ShAmt) { 2051 unsigned NumSignBits = 2052 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 2053 if (DemandedBits.countr_zero() >= (BitWidth - NumSignBits)) 2054 return TLO.CombineTo(Op, Op0); 2055 } 2056 } 2057 2058 // Try to match AVG patterns (after shift simplification). 2059 if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits, 2060 DemandedElts, Depth + 1)) 2061 return TLO.CombineTo(Op, AVG); 2062 2063 break; 2064 } 2065 case ISD::SRA: { 2066 SDValue Op0 = Op.getOperand(0); 2067 SDValue Op1 = Op.getOperand(1); 2068 EVT ShiftVT = Op1.getValueType(); 2069 2070 // If we only want bits that already match the signbit then we don't need 2071 // to shift. 2072 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countr_zero(); 2073 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 2074 NumHiDemandedBits) 2075 return TLO.CombineTo(Op, Op0); 2076 2077 // If this is an arithmetic shift right and only the low-bit is set, we can 2078 // always convert this into a logical shr, even if the shift amount is 2079 // variable. The low bit of the shift cannot be an input sign bit unless 2080 // the shift amount is >= the size of the datatype, which is undefined. 2081 if (DemandedBits.isOne()) 2082 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 2083 2084 if (std::optional<uint64_t> KnownSA = 2085 TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) { 2086 unsigned ShAmt = *KnownSA; 2087 if (ShAmt == 0) 2088 return TLO.CombineTo(Op, Op0); 2089 2090 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target 2091 // supports sext_inreg. 2092 if (Op0.getOpcode() == ISD::SHL) { 2093 if (std::optional<uint64_t> InnerSA = 2094 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) { 2095 unsigned LowBits = BitWidth - ShAmt; 2096 EVT ExtVT = EVT::getIntegerVT(*TLO.DAG.getContext(), LowBits); 2097 if (VT.isVector()) 2098 ExtVT = EVT::getVectorVT(*TLO.DAG.getContext(), ExtVT, 2099 VT.getVectorElementCount()); 2100 2101 if (*InnerSA == ShAmt) { 2102 if (!TLO.LegalOperations() || 2103 getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) == Legal) 2104 return TLO.CombineTo( 2105 Op, TLO.DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, 2106 Op0.getOperand(0), 2107 TLO.DAG.getValueType(ExtVT))); 2108 2109 // Even if we can't convert to sext_inreg, we might be able to 2110 // remove this shift pair if the input is already sign extended. 2111 unsigned NumSignBits = 2112 TLO.DAG.ComputeNumSignBits(Op0.getOperand(0), DemandedElts); 2113 if (NumSignBits > ShAmt) 2114 return TLO.CombineTo(Op, Op0.getOperand(0)); 2115 } 2116 } 2117 } 2118 2119 APInt InDemandedMask = (DemandedBits << ShAmt); 2120 2121 // If the shift is exact, then it does demand the low bits (and knows that 2122 // they are zero). 2123 if (Op->getFlags().hasExact()) 2124 InDemandedMask.setLowBits(ShAmt); 2125 2126 // If any of the demanded bits are produced by the sign extension, we also 2127 // demand the input sign bit. 2128 if (DemandedBits.countl_zero() < ShAmt) 2129 InDemandedMask.setSignBit(); 2130 2131 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 2132 Depth + 1)) 2133 return true; 2134 Known.Zero.lshrInPlace(ShAmt); 2135 Known.One.lshrInPlace(ShAmt); 2136 2137 // If the input sign bit is known to be zero, or if none of the top bits 2138 // are demanded, turn this into an unsigned shift right. 2139 if (Known.Zero[BitWidth - ShAmt - 1] || 2140 DemandedBits.countl_zero() >= ShAmt) { 2141 SDNodeFlags Flags; 2142 Flags.setExact(Op->getFlags().hasExact()); 2143 return TLO.CombineTo( 2144 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 2145 } 2146 2147 int Log2 = DemandedBits.exactLogBase2(); 2148 if (Log2 >= 0) { 2149 // The bit must come from the sign. 2150 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 2151 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 2152 } 2153 2154 if (Known.One[BitWidth - ShAmt - 1]) 2155 // New bits are known one. 2156 Known.One.setHighBits(ShAmt); 2157 2158 // Attempt to avoid multi-use ops if we don't need anything from them. 2159 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2160 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2161 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 2162 if (DemandedOp0) { 2163 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 2164 return TLO.CombineTo(Op, NewOp); 2165 } 2166 } 2167 } 2168 2169 // Try to match AVG patterns (after shift simplification). 2170 if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits, 2171 DemandedElts, Depth + 1)) 2172 return TLO.CombineTo(Op, AVG); 2173 2174 break; 2175 } 2176 case ISD::FSHL: 2177 case ISD::FSHR: { 2178 SDValue Op0 = Op.getOperand(0); 2179 SDValue Op1 = Op.getOperand(1); 2180 SDValue Op2 = Op.getOperand(2); 2181 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 2182 2183 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 2184 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 2185 2186 // For fshl, 0-shift returns the 1st arg. 2187 // For fshr, 0-shift returns the 2nd arg. 2188 if (Amt == 0) { 2189 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 2190 Known, TLO, Depth + 1)) 2191 return true; 2192 break; 2193 } 2194 2195 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 2196 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 2197 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 2198 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 2199 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 2200 Depth + 1)) 2201 return true; 2202 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 2203 Depth + 1)) 2204 return true; 2205 2206 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 2207 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 2208 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 2209 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 2210 Known = Known.unionWith(Known2); 2211 2212 // Attempt to avoid multi-use ops if we don't need anything from them. 2213 if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() || 2214 !DemandedElts.isAllOnes()) { 2215 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2216 Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1); 2217 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2218 Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1); 2219 if (DemandedOp0 || DemandedOp1) { 2220 DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0; 2221 DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1; 2222 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0, 2223 DemandedOp1, Op2); 2224 return TLO.CombineTo(Op, NewOp); 2225 } 2226 } 2227 } 2228 2229 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 2230 if (isPowerOf2_32(BitWidth)) { 2231 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 2232 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 2233 Known2, TLO, Depth + 1)) 2234 return true; 2235 } 2236 break; 2237 } 2238 case ISD::ROTL: 2239 case ISD::ROTR: { 2240 SDValue Op0 = Op.getOperand(0); 2241 SDValue Op1 = Op.getOperand(1); 2242 bool IsROTL = (Op.getOpcode() == ISD::ROTL); 2243 2244 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 2245 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 2246 return TLO.CombineTo(Op, Op0); 2247 2248 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 2249 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 2250 unsigned RevAmt = BitWidth - Amt; 2251 2252 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) 2253 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) 2254 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); 2255 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 2256 Depth + 1)) 2257 return true; 2258 2259 // rot*(x, 0) --> x 2260 if (Amt == 0) 2261 return TLO.CombineTo(Op, Op0); 2262 2263 // See if we don't demand either half of the rotated bits. 2264 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && 2265 DemandedBits.countr_zero() >= (IsROTL ? Amt : RevAmt)) { 2266 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); 2267 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); 2268 } 2269 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && 2270 DemandedBits.countl_zero() >= (IsROTL ? RevAmt : Amt)) { 2271 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); 2272 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 2273 } 2274 } 2275 2276 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 2277 if (isPowerOf2_32(BitWidth)) { 2278 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 2279 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 2280 Depth + 1)) 2281 return true; 2282 } 2283 break; 2284 } 2285 case ISD::SMIN: 2286 case ISD::SMAX: 2287 case ISD::UMIN: 2288 case ISD::UMAX: { 2289 unsigned Opc = Op.getOpcode(); 2290 SDValue Op0 = Op.getOperand(0); 2291 SDValue Op1 = Op.getOperand(1); 2292 2293 // If we're only demanding signbits, then we can simplify to OR/AND node. 2294 unsigned BitOp = 2295 (Opc == ISD::SMIN || Opc == ISD::UMAX) ? ISD::OR : ISD::AND; 2296 unsigned NumSignBits = 2297 std::min(TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1), 2298 TLO.DAG.ComputeNumSignBits(Op1, DemandedElts, Depth + 1)); 2299 unsigned NumDemandedUpperBits = BitWidth - DemandedBits.countr_zero(); 2300 if (NumSignBits >= NumDemandedUpperBits) 2301 return TLO.CombineTo(Op, TLO.DAG.getNode(BitOp, SDLoc(Op), VT, Op0, Op1)); 2302 2303 // Check if one arg is always less/greater than (or equal) to the other arg. 2304 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 2305 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 2306 switch (Opc) { 2307 case ISD::SMIN: 2308 if (std::optional<bool> IsSLE = KnownBits::sle(Known0, Known1)) 2309 return TLO.CombineTo(Op, *IsSLE ? Op0 : Op1); 2310 if (std::optional<bool> IsSLT = KnownBits::slt(Known0, Known1)) 2311 return TLO.CombineTo(Op, *IsSLT ? Op0 : Op1); 2312 Known = KnownBits::smin(Known0, Known1); 2313 break; 2314 case ISD::SMAX: 2315 if (std::optional<bool> IsSGE = KnownBits::sge(Known0, Known1)) 2316 return TLO.CombineTo(Op, *IsSGE ? Op0 : Op1); 2317 if (std::optional<bool> IsSGT = KnownBits::sgt(Known0, Known1)) 2318 return TLO.CombineTo(Op, *IsSGT ? Op0 : Op1); 2319 Known = KnownBits::smax(Known0, Known1); 2320 break; 2321 case ISD::UMIN: 2322 if (std::optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 2323 return TLO.CombineTo(Op, *IsULE ? Op0 : Op1); 2324 if (std::optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 2325 return TLO.CombineTo(Op, *IsULT ? Op0 : Op1); 2326 Known = KnownBits::umin(Known0, Known1); 2327 break; 2328 case ISD::UMAX: 2329 if (std::optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 2330 return TLO.CombineTo(Op, *IsUGE ? Op0 : Op1); 2331 if (std::optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 2332 return TLO.CombineTo(Op, *IsUGT ? Op0 : Op1); 2333 Known = KnownBits::umax(Known0, Known1); 2334 break; 2335 } 2336 break; 2337 } 2338 case ISD::BITREVERSE: { 2339 SDValue Src = Op.getOperand(0); 2340 APInt DemandedSrcBits = DemandedBits.reverseBits(); 2341 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 2342 Depth + 1)) 2343 return true; 2344 Known.One = Known2.One.reverseBits(); 2345 Known.Zero = Known2.Zero.reverseBits(); 2346 break; 2347 } 2348 case ISD::BSWAP: { 2349 SDValue Src = Op.getOperand(0); 2350 2351 // If the only bits demanded come from one byte of the bswap result, 2352 // just shift the input byte into position to eliminate the bswap. 2353 unsigned NLZ = DemandedBits.countl_zero(); 2354 unsigned NTZ = DemandedBits.countr_zero(); 2355 2356 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 2357 // we need all the bits down to bit 8. Likewise, round NLZ. If we 2358 // have 14 leading zeros, round to 8. 2359 NLZ = alignDown(NLZ, 8); 2360 NTZ = alignDown(NTZ, 8); 2361 // If we need exactly one byte, we can do this transformation. 2362 if (BitWidth - NLZ - NTZ == 8) { 2363 // Replace this with either a left or right shift to get the byte into 2364 // the right place. 2365 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL; 2366 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) { 2367 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ; 2368 SDValue ShAmt = TLO.DAG.getShiftAmountConstant(ShiftAmount, VT, dl); 2369 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt); 2370 return TLO.CombineTo(Op, NewOp); 2371 } 2372 } 2373 2374 APInt DemandedSrcBits = DemandedBits.byteSwap(); 2375 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 2376 Depth + 1)) 2377 return true; 2378 Known.One = Known2.One.byteSwap(); 2379 Known.Zero = Known2.Zero.byteSwap(); 2380 break; 2381 } 2382 case ISD::CTPOP: { 2383 // If only 1 bit is demanded, replace with PARITY as long as we're before 2384 // op legalization. 2385 // FIXME: Limit to scalars for now. 2386 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 2387 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 2388 Op.getOperand(0))); 2389 2390 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2391 break; 2392 } 2393 case ISD::SIGN_EXTEND_INREG: { 2394 SDValue Op0 = Op.getOperand(0); 2395 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2396 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 2397 2398 // If we only care about the highest bit, don't bother shifting right. 2399 if (DemandedBits.isSignMask()) { 2400 unsigned MinSignedBits = 2401 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1); 2402 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 2403 // However if the input is already sign extended we expect the sign 2404 // extension to be dropped altogether later and do not simplify. 2405 if (!AlreadySignExtended) { 2406 // Compute the correct shift amount type, which must be getShiftAmountTy 2407 // for scalar types after legalization. 2408 SDValue ShiftAmt = 2409 TLO.DAG.getShiftAmountConstant(BitWidth - ExVTBits, VT, dl); 2410 return TLO.CombineTo(Op, 2411 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 2412 } 2413 } 2414 2415 // If none of the extended bits are demanded, eliminate the sextinreg. 2416 if (DemandedBits.getActiveBits() <= ExVTBits) 2417 return TLO.CombineTo(Op, Op0); 2418 2419 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 2420 2421 // Since the sign extended bits are demanded, we know that the sign 2422 // bit is demanded. 2423 InputDemandedBits.setBit(ExVTBits - 1); 2424 2425 if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO, 2426 Depth + 1)) 2427 return true; 2428 2429 // If the sign bit of the input is known set or clear, then we know the 2430 // top bits of the result. 2431 2432 // If the input sign bit is known zero, convert this into a zero extension. 2433 if (Known.Zero[ExVTBits - 1]) 2434 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 2435 2436 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 2437 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 2438 Known.One.setBitsFrom(ExVTBits); 2439 Known.Zero &= Mask; 2440 } else { // Input sign bit unknown 2441 Known.Zero &= Mask; 2442 Known.One &= Mask; 2443 } 2444 break; 2445 } 2446 case ISD::BUILD_PAIR: { 2447 EVT HalfVT = Op.getOperand(0).getValueType(); 2448 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 2449 2450 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 2451 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 2452 2453 KnownBits KnownLo, KnownHi; 2454 2455 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 2456 return true; 2457 2458 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 2459 return true; 2460 2461 Known = KnownHi.concat(KnownLo); 2462 break; 2463 } 2464 case ISD::ZERO_EXTEND_VECTOR_INREG: 2465 if (VT.isScalableVector()) 2466 return false; 2467 [[fallthrough]]; 2468 case ISD::ZERO_EXTEND: { 2469 SDValue Src = Op.getOperand(0); 2470 EVT SrcVT = Src.getValueType(); 2471 unsigned InBits = SrcVT.getScalarSizeInBits(); 2472 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; 2473 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 2474 2475 // If none of the top bits are demanded, convert this into an any_extend. 2476 if (DemandedBits.getActiveBits() <= InBits) { 2477 // If we only need the non-extended bits of the bottom element 2478 // then we can just bitcast to the result. 2479 if (IsLE && IsVecInReg && DemandedElts == 1 && 2480 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2481 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2482 2483 unsigned Opc = 2484 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2485 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2486 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2487 } 2488 2489 APInt InDemandedBits = DemandedBits.trunc(InBits); 2490 APInt InDemandedElts = DemandedElts.zext(InElts); 2491 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2492 Depth + 1)) { 2493 Op->dropFlags(SDNodeFlags::NonNeg); 2494 return true; 2495 } 2496 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2497 Known = Known.zext(BitWidth); 2498 2499 // Attempt to avoid multi-use ops if we don't need anything from them. 2500 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2501 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2502 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2503 break; 2504 } 2505 case ISD::SIGN_EXTEND_VECTOR_INREG: 2506 if (VT.isScalableVector()) 2507 return false; 2508 [[fallthrough]]; 2509 case ISD::SIGN_EXTEND: { 2510 SDValue Src = Op.getOperand(0); 2511 EVT SrcVT = Src.getValueType(); 2512 unsigned InBits = SrcVT.getScalarSizeInBits(); 2513 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; 2514 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 2515 2516 APInt InDemandedElts = DemandedElts.zext(InElts); 2517 APInt InDemandedBits = DemandedBits.trunc(InBits); 2518 2519 // Since some of the sign extended bits are demanded, we know that the sign 2520 // bit is demanded. 2521 InDemandedBits.setBit(InBits - 1); 2522 2523 // If none of the top bits are demanded, convert this into an any_extend. 2524 if (DemandedBits.getActiveBits() <= InBits) { 2525 // If we only need the non-extended bits of the bottom element 2526 // then we can just bitcast to the result. 2527 if (IsLE && IsVecInReg && DemandedElts == 1 && 2528 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2529 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2530 2531 // Don't lose an all signbits 0/-1 splat on targets with 0/-1 booleans. 2532 if (getBooleanContents(VT) != ZeroOrNegativeOneBooleanContent || 2533 TLO.DAG.ComputeNumSignBits(Src, InDemandedElts, Depth + 1) != 2534 InBits) { 2535 unsigned Opc = 2536 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2537 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2538 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2539 } 2540 } 2541 2542 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2543 Depth + 1)) 2544 return true; 2545 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2546 2547 // If the sign bit is known one, the top bits match. 2548 Known = Known.sext(BitWidth); 2549 2550 // If the sign bit is known zero, convert this to a zero extend. 2551 if (Known.isNonNegative()) { 2552 unsigned Opc = 2553 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 2554 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) { 2555 SDNodeFlags Flags; 2556 if (!IsVecInReg) 2557 Flags |= SDNodeFlags::NonNeg; 2558 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src, Flags)); 2559 } 2560 } 2561 2562 // Attempt to avoid multi-use ops if we don't need anything from them. 2563 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2564 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2565 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2566 break; 2567 } 2568 case ISD::ANY_EXTEND_VECTOR_INREG: 2569 if (VT.isScalableVector()) 2570 return false; 2571 [[fallthrough]]; 2572 case ISD::ANY_EXTEND: { 2573 SDValue Src = Op.getOperand(0); 2574 EVT SrcVT = Src.getValueType(); 2575 unsigned InBits = SrcVT.getScalarSizeInBits(); 2576 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; 2577 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 2578 2579 // If we only need the bottom element then we can just bitcast. 2580 // TODO: Handle ANY_EXTEND? 2581 if (IsLE && IsVecInReg && DemandedElts == 1 && 2582 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2583 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2584 2585 APInt InDemandedBits = DemandedBits.trunc(InBits); 2586 APInt InDemandedElts = DemandedElts.zext(InElts); 2587 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2588 Depth + 1)) 2589 return true; 2590 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2591 Known = Known.anyext(BitWidth); 2592 2593 // Attempt to avoid multi-use ops if we don't need anything from them. 2594 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2595 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2596 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2597 break; 2598 } 2599 case ISD::TRUNCATE: { 2600 SDValue Src = Op.getOperand(0); 2601 2602 // Simplify the input, using demanded bit information, and compute the known 2603 // zero/one bits live out. 2604 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2605 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2606 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2607 Depth + 1)) { 2608 // Disable the nsw and nuw flags. We can no longer guarantee that we 2609 // won't wrap after simplification. 2610 Op->dropFlags(SDNodeFlags::NoWrap); 2611 return true; 2612 } 2613 Known = Known.trunc(BitWidth); 2614 2615 // Attempt to avoid multi-use ops if we don't need anything from them. 2616 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2617 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2618 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2619 2620 // If the input is only used by this truncate, see if we can shrink it based 2621 // on the known demanded bits. 2622 switch (Src.getOpcode()) { 2623 default: 2624 break; 2625 case ISD::SRL: 2626 // Shrink SRL by a constant if none of the high bits shifted in are 2627 // demanded. 2628 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2629 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2630 // undesirable. 2631 break; 2632 2633 if (Src.getNode()->hasOneUse()) { 2634 if (isTruncateFree(Src, VT) && 2635 !isTruncateFree(Src.getValueType(), VT)) { 2636 // If truncate is only free at trunc(srl), do not turn it into 2637 // srl(trunc). The check is done by first check the truncate is free 2638 // at Src's opcode(srl), then check the truncate is not done by 2639 // referencing sub-register. In test, if both trunc(srl) and 2640 // srl(trunc)'s trunc are free, srl(trunc) performs better. If only 2641 // trunc(srl)'s trunc is free, trunc(srl) is better. 2642 break; 2643 } 2644 2645 std::optional<uint64_t> ShAmtC = 2646 TLO.DAG.getValidShiftAmount(Src, DemandedElts, Depth + 2); 2647 if (!ShAmtC || *ShAmtC >= BitWidth) 2648 break; 2649 uint64_t ShVal = *ShAmtC; 2650 2651 APInt HighBits = 2652 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2653 HighBits.lshrInPlace(ShVal); 2654 HighBits = HighBits.trunc(BitWidth); 2655 if (!(HighBits & DemandedBits)) { 2656 // None of the shifted in bits are needed. Add a truncate of the 2657 // shift input, then shift it. 2658 SDValue NewShAmt = TLO.DAG.getShiftAmountConstant(ShVal, VT, dl); 2659 SDValue NewTrunc = 2660 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2661 return TLO.CombineTo( 2662 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2663 } 2664 } 2665 break; 2666 } 2667 2668 break; 2669 } 2670 case ISD::AssertZext: { 2671 // AssertZext demands all of the high bits, plus any of the low bits 2672 // demanded by its users. 2673 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2674 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2675 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2676 TLO, Depth + 1)) 2677 return true; 2678 2679 Known.Zero |= ~InMask; 2680 Known.One &= (~Known.Zero); 2681 break; 2682 } 2683 case ISD::EXTRACT_VECTOR_ELT: { 2684 SDValue Src = Op.getOperand(0); 2685 SDValue Idx = Op.getOperand(1); 2686 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2687 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2688 2689 if (SrcEltCnt.isScalable()) 2690 return false; 2691 2692 // Demand the bits from every vector element without a constant index. 2693 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2694 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2695 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2696 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2697 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2698 2699 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2700 // anything about the extended bits. 2701 APInt DemandedSrcBits = DemandedBits; 2702 if (BitWidth > EltBitWidth) 2703 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2704 2705 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2706 Depth + 1)) 2707 return true; 2708 2709 // Attempt to avoid multi-use ops if we don't need anything from them. 2710 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2711 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2712 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2713 SDValue NewOp = 2714 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2715 return TLO.CombineTo(Op, NewOp); 2716 } 2717 } 2718 2719 Known = Known2; 2720 if (BitWidth > EltBitWidth) 2721 Known = Known.anyext(BitWidth); 2722 break; 2723 } 2724 case ISD::BITCAST: { 2725 if (VT.isScalableVector()) 2726 return false; 2727 SDValue Src = Op.getOperand(0); 2728 EVT SrcVT = Src.getValueType(); 2729 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2730 2731 // If this is an FP->Int bitcast and if the sign bit is the only 2732 // thing demanded, turn this into a FGETSIGN. 2733 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2734 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2735 SrcVT.isFloatingPoint()) { 2736 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2737 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2738 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2739 SrcVT != MVT::f128) { 2740 // Cannot eliminate/lower SHL for f128 yet. 2741 EVT Ty = OpVTLegal ? VT : MVT::i32; 2742 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2743 // place. We expect the SHL to be eliminated by other optimizations. 2744 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2745 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2746 if (!OpVTLegal && OpVTSizeInBits > 32) 2747 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2748 unsigned ShVal = Op.getValueSizeInBits() - 1; 2749 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2750 return TLO.CombineTo(Op, 2751 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2752 } 2753 } 2754 2755 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2756 // Demand the elt/bit if any of the original elts/bits are demanded. 2757 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { 2758 unsigned Scale = BitWidth / NumSrcEltBits; 2759 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2760 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2761 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2762 for (unsigned i = 0; i != Scale; ++i) { 2763 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 2764 unsigned BitOffset = EltOffset * NumSrcEltBits; 2765 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 2766 if (!Sub.isZero()) { 2767 DemandedSrcBits |= Sub; 2768 for (unsigned j = 0; j != NumElts; ++j) 2769 if (DemandedElts[j]) 2770 DemandedSrcElts.setBit((j * Scale) + i); 2771 } 2772 } 2773 2774 APInt KnownSrcUndef, KnownSrcZero; 2775 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2776 KnownSrcZero, TLO, Depth + 1)) 2777 return true; 2778 2779 KnownBits KnownSrcBits; 2780 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2781 KnownSrcBits, TLO, Depth + 1)) 2782 return true; 2783 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { 2784 // TODO - bigendian once we have test coverage. 2785 unsigned Scale = NumSrcEltBits / BitWidth; 2786 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2787 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2788 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2789 for (unsigned i = 0; i != NumElts; ++i) 2790 if (DemandedElts[i]) { 2791 unsigned Offset = (i % Scale) * BitWidth; 2792 DemandedSrcBits.insertBits(DemandedBits, Offset); 2793 DemandedSrcElts.setBit(i / Scale); 2794 } 2795 2796 if (SrcVT.isVector()) { 2797 APInt KnownSrcUndef, KnownSrcZero; 2798 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2799 KnownSrcZero, TLO, Depth + 1)) 2800 return true; 2801 } 2802 2803 KnownBits KnownSrcBits; 2804 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2805 KnownSrcBits, TLO, Depth + 1)) 2806 return true; 2807 2808 // Attempt to avoid multi-use ops if we don't need anything from them. 2809 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2810 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2811 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2812 SDValue NewOp = TLO.DAG.getBitcast(VT, DemandedSrc); 2813 return TLO.CombineTo(Op, NewOp); 2814 } 2815 } 2816 } 2817 2818 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2819 // recursive call where Known may be useful to the caller. 2820 if (Depth > 0) { 2821 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2822 return false; 2823 } 2824 break; 2825 } 2826 case ISD::MUL: 2827 if (DemandedBits.isPowerOf2()) { 2828 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 2829 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 2830 // odd (has LSB set), then the left-shifted low bit of X is the answer. 2831 unsigned CTZ = DemandedBits.countr_zero(); 2832 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 2833 if (C && C->getAPIntValue().countr_zero() == CTZ) { 2834 SDValue AmtC = TLO.DAG.getShiftAmountConstant(CTZ, VT, dl); 2835 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC); 2836 return TLO.CombineTo(Op, Shl); 2837 } 2838 } 2839 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: 2840 // X * X is odd iff X is odd. 2841 // 'Quadratic Reciprocity': X * X -> 0 for bit[1] 2842 if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) { 2843 SDValue One = TLO.DAG.getConstant(1, dl, VT); 2844 SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One); 2845 return TLO.CombineTo(Op, And1); 2846 } 2847 [[fallthrough]]; 2848 case ISD::ADD: 2849 case ISD::SUB: { 2850 // Add, Sub, and Mul don't demand any bits in positions beyond that 2851 // of the highest bit demanded of them. 2852 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2853 SDNodeFlags Flags = Op.getNode()->getFlags(); 2854 unsigned DemandedBitsLZ = DemandedBits.countl_zero(); 2855 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2856 KnownBits KnownOp0, KnownOp1; 2857 auto GetDemandedBitsLHSMask = [&](APInt Demanded, 2858 const KnownBits &KnownRHS) { 2859 if (Op.getOpcode() == ISD::MUL) 2860 Demanded.clearHighBits(KnownRHS.countMinTrailingZeros()); 2861 return Demanded; 2862 }; 2863 if (SimplifyDemandedBits(Op1, LoMask, DemandedElts, KnownOp1, TLO, 2864 Depth + 1) || 2865 SimplifyDemandedBits(Op0, GetDemandedBitsLHSMask(LoMask, KnownOp1), 2866 DemandedElts, KnownOp0, TLO, Depth + 1) || 2867 // See if the operation should be performed at a smaller bit width. 2868 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2869 // Disable the nsw and nuw flags. We can no longer guarantee that we 2870 // won't wrap after simplification. 2871 Op->dropFlags(SDNodeFlags::NoWrap); 2872 return true; 2873 } 2874 2875 // neg x with only low bit demanded is simply x. 2876 if (Op.getOpcode() == ISD::SUB && DemandedBits.isOne() && 2877 isNullConstant(Op0)) 2878 return TLO.CombineTo(Op, Op1); 2879 2880 // Attempt to avoid multi-use ops if we don't need anything from them. 2881 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2882 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2883 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2884 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2885 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2886 if (DemandedOp0 || DemandedOp1) { 2887 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2888 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2889 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, 2890 Flags & ~SDNodeFlags::NoWrap); 2891 return TLO.CombineTo(Op, NewOp); 2892 } 2893 } 2894 2895 // If we have a constant operand, we may be able to turn it into -1 if we 2896 // do not demand the high bits. This can make the constant smaller to 2897 // encode, allow more general folding, or match specialized instruction 2898 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2899 // is probably not useful (and could be detrimental). 2900 ConstantSDNode *C = isConstOrConstSplat(Op1); 2901 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2902 if (C && !C->isAllOnes() && !C->isOne() && 2903 (C->getAPIntValue() | HighMask).isAllOnes()) { 2904 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2905 // Disable the nsw and nuw flags. We can no longer guarantee that we 2906 // won't wrap after simplification. 2907 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, 2908 Flags & ~SDNodeFlags::NoWrap); 2909 return TLO.CombineTo(Op, NewOp); 2910 } 2911 2912 // Match a multiply with a disguised negated-power-of-2 and convert to a 2913 // an equivalent shift-left amount. 2914 // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2915 auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned { 2916 if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse()) 2917 return 0; 2918 2919 // Don't touch opaque constants. Also, ignore zero and power-of-2 2920 // multiplies. Those will get folded later. 2921 ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1)); 2922 if (MulC && !MulC->isOpaque() && !MulC->isZero() && 2923 !MulC->getAPIntValue().isPowerOf2()) { 2924 APInt UnmaskedC = MulC->getAPIntValue() | HighMask; 2925 if (UnmaskedC.isNegatedPowerOf2()) 2926 return (-UnmaskedC).logBase2(); 2927 } 2928 return 0; 2929 }; 2930 2931 auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, 2932 unsigned ShlAmt) { 2933 SDValue ShlAmtC = TLO.DAG.getShiftAmountConstant(ShlAmt, VT, dl); 2934 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC); 2935 SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl); 2936 return TLO.CombineTo(Op, Res); 2937 }; 2938 2939 if (isOperationLegalOrCustom(ISD::SHL, VT)) { 2940 if (Op.getOpcode() == ISD::ADD) { 2941 // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2942 if (unsigned ShAmt = getShiftLeftAmt(Op0)) 2943 return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt); 2944 // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC)) 2945 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2946 return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt); 2947 } 2948 if (Op.getOpcode() == ISD::SUB) { 2949 // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC)) 2950 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2951 return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt); 2952 } 2953 } 2954 2955 if (Op.getOpcode() == ISD::MUL) { 2956 Known = KnownBits::mul(KnownOp0, KnownOp1); 2957 } else { // Op.getOpcode() is either ISD::ADD or ISD::SUB. 2958 Known = KnownBits::computeForAddSub( 2959 Op.getOpcode() == ISD::ADD, Flags.hasNoSignedWrap(), 2960 Flags.hasNoUnsignedWrap(), KnownOp0, KnownOp1); 2961 } 2962 break; 2963 } 2964 default: 2965 // We also ask the target about intrinsics (which could be specific to it). 2966 if (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2967 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN) { 2968 // TODO: Probably okay to remove after audit; here to reduce change size 2969 // in initial enablement patch for scalable vectors 2970 if (Op.getValueType().isScalableVector()) 2971 break; 2972 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2973 Known, TLO, Depth)) 2974 return true; 2975 break; 2976 } 2977 2978 // Just use computeKnownBits to compute output bits. 2979 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2980 break; 2981 } 2982 2983 // If we know the value of all of the demanded bits, return this as a 2984 // constant. 2985 if (!isTargetCanonicalConstantNode(Op) && 2986 DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2987 // Avoid folding to a constant if any OpaqueConstant is involved. 2988 const SDNode *N = Op.getNode(); 2989 for (SDNode *Op : 2990 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2991 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 2992 if (C->isOpaque()) 2993 return false; 2994 } 2995 if (VT.isInteger()) 2996 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2997 if (VT.isFloatingPoint()) 2998 return TLO.CombineTo( 2999 Op, TLO.DAG.getConstantFP(APFloat(VT.getFltSemantics(), Known.One), 3000 dl, VT)); 3001 } 3002 3003 // A multi use 'all demanded elts' simplify failed to find any knownbits. 3004 // Try again just for the original demanded elts. 3005 // Ensure we do this AFTER constant folding above. 3006 if (HasMultiUse && Known.isUnknown() && !OriginalDemandedElts.isAllOnes()) 3007 Known = TLO.DAG.computeKnownBits(Op, OriginalDemandedElts, Depth); 3008 3009 return false; 3010 } 3011 3012 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 3013 const APInt &DemandedElts, 3014 DAGCombinerInfo &DCI) const { 3015 SelectionDAG &DAG = DCI.DAG; 3016 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 3017 !DCI.isBeforeLegalizeOps()); 3018 3019 APInt KnownUndef, KnownZero; 3020 bool Simplified = 3021 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 3022 if (Simplified) { 3023 DCI.AddToWorklist(Op.getNode()); 3024 DCI.CommitTargetLoweringOpt(TLO); 3025 } 3026 3027 return Simplified; 3028 } 3029 3030 /// Given a vector binary operation and known undefined elements for each input 3031 /// operand, compute whether each element of the output is undefined. 3032 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 3033 const APInt &UndefOp0, 3034 const APInt &UndefOp1) { 3035 EVT VT = BO.getValueType(); 3036 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 3037 "Vector binop only"); 3038 3039 EVT EltVT = VT.getVectorElementType(); 3040 unsigned NumElts = VT.isFixedLengthVector() ? VT.getVectorNumElements() : 1; 3041 assert(UndefOp0.getBitWidth() == NumElts && 3042 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 3043 3044 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 3045 const APInt &UndefVals) { 3046 if (UndefVals[Index]) 3047 return DAG.getUNDEF(EltVT); 3048 3049 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 3050 // Try hard to make sure that the getNode() call is not creating temporary 3051 // nodes. Ignore opaque integers because they do not constant fold. 3052 SDValue Elt = BV->getOperand(Index); 3053 auto *C = dyn_cast<ConstantSDNode>(Elt); 3054 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 3055 return Elt; 3056 } 3057 3058 return SDValue(); 3059 }; 3060 3061 APInt KnownUndef = APInt::getZero(NumElts); 3062 for (unsigned i = 0; i != NumElts; ++i) { 3063 // If both inputs for this element are either constant or undef and match 3064 // the element type, compute the constant/undef result for this element of 3065 // the vector. 3066 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 3067 // not handle FP constants. The code within getNode() should be refactored 3068 // to avoid the danger of creating a bogus temporary node here. 3069 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 3070 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 3071 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 3072 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 3073 KnownUndef.setBit(i); 3074 } 3075 return KnownUndef; 3076 } 3077 3078 bool TargetLowering::SimplifyDemandedVectorElts( 3079 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 3080 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 3081 bool AssumeSingleUse) const { 3082 EVT VT = Op.getValueType(); 3083 unsigned Opcode = Op.getOpcode(); 3084 APInt DemandedElts = OriginalDemandedElts; 3085 unsigned NumElts = DemandedElts.getBitWidth(); 3086 assert(VT.isVector() && "Expected vector op"); 3087 3088 KnownUndef = KnownZero = APInt::getZero(NumElts); 3089 3090 if (!shouldSimplifyDemandedVectorElts(Op, TLO)) 3091 return false; 3092 3093 // TODO: For now we assume we know nothing about scalable vectors. 3094 if (VT.isScalableVector()) 3095 return false; 3096 3097 assert(VT.getVectorNumElements() == NumElts && 3098 "Mask size mismatches value type element count!"); 3099 3100 // Undef operand. 3101 if (Op.isUndef()) { 3102 KnownUndef.setAllBits(); 3103 return false; 3104 } 3105 3106 // If Op has other users, assume that all elements are needed. 3107 if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) 3108 DemandedElts.setAllBits(); 3109 3110 // Not demanding any elements from Op. 3111 if (DemandedElts == 0) { 3112 KnownUndef.setAllBits(); 3113 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3114 } 3115 3116 // Limit search depth. 3117 if (Depth >= SelectionDAG::MaxRecursionDepth) 3118 return false; 3119 3120 SDLoc DL(Op); 3121 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 3122 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 3123 3124 // Helper for demanding the specified elements and all the bits of both binary 3125 // operands. 3126 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 3127 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 3128 TLO.DAG, Depth + 1); 3129 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 3130 TLO.DAG, Depth + 1); 3131 if (NewOp0 || NewOp1) { 3132 SDValue NewOp = 3133 TLO.DAG.getNode(Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, 3134 NewOp1 ? NewOp1 : Op1, Op->getFlags()); 3135 return TLO.CombineTo(Op, NewOp); 3136 } 3137 return false; 3138 }; 3139 3140 switch (Opcode) { 3141 case ISD::SCALAR_TO_VECTOR: { 3142 if (!DemandedElts[0]) { 3143 KnownUndef.setAllBits(); 3144 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3145 } 3146 SDValue ScalarSrc = Op.getOperand(0); 3147 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 3148 SDValue Src = ScalarSrc.getOperand(0); 3149 SDValue Idx = ScalarSrc.getOperand(1); 3150 EVT SrcVT = Src.getValueType(); 3151 3152 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 3153 3154 if (SrcEltCnt.isScalable()) 3155 return false; 3156 3157 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 3158 if (isNullConstant(Idx)) { 3159 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 3160 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 3161 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 3162 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 3163 TLO, Depth + 1)) 3164 return true; 3165 } 3166 } 3167 KnownUndef.setHighBits(NumElts - 1); 3168 break; 3169 } 3170 case ISD::BITCAST: { 3171 SDValue Src = Op.getOperand(0); 3172 EVT SrcVT = Src.getValueType(); 3173 3174 // We only handle vectors here. 3175 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 3176 if (!SrcVT.isVector()) 3177 break; 3178 3179 // Fast handling of 'identity' bitcasts. 3180 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 3181 if (NumSrcElts == NumElts) 3182 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 3183 KnownZero, TLO, Depth + 1); 3184 3185 APInt SrcDemandedElts, SrcZero, SrcUndef; 3186 3187 // Bitcast from 'large element' src vector to 'small element' vector, we 3188 // must demand a source element if any DemandedElt maps to it. 3189 if ((NumElts % NumSrcElts) == 0) { 3190 unsigned Scale = NumElts / NumSrcElts; 3191 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 3192 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 3193 TLO, Depth + 1)) 3194 return true; 3195 3196 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 3197 // of the large element. 3198 // TODO - bigendian once we have test coverage. 3199 if (IsLE) { 3200 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 3201 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 3202 for (unsigned i = 0; i != NumElts; ++i) 3203 if (DemandedElts[i]) { 3204 unsigned Ofs = (i % Scale) * EltSizeInBits; 3205 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 3206 } 3207 3208 KnownBits Known; 3209 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 3210 TLO, Depth + 1)) 3211 return true; 3212 3213 // The bitcast has split each wide element into a number of 3214 // narrow subelements. We have just computed the Known bits 3215 // for wide elements. See if element splitting results in 3216 // some subelements being zero. Only for demanded elements! 3217 for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) { 3218 if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits) 3219 .isAllOnes()) 3220 continue; 3221 for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) { 3222 unsigned Elt = Scale * SrcElt + SubElt; 3223 if (DemandedElts[Elt]) 3224 KnownZero.setBit(Elt); 3225 } 3226 } 3227 } 3228 3229 // If the src element is zero/undef then all the output elements will be - 3230 // only demanded elements are guaranteed to be correct. 3231 for (unsigned i = 0; i != NumSrcElts; ++i) { 3232 if (SrcDemandedElts[i]) { 3233 if (SrcZero[i]) 3234 KnownZero.setBits(i * Scale, (i + 1) * Scale); 3235 if (SrcUndef[i]) 3236 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 3237 } 3238 } 3239 } 3240 3241 // Bitcast from 'small element' src vector to 'large element' vector, we 3242 // demand all smaller source elements covered by the larger demanded element 3243 // of this vector. 3244 if ((NumSrcElts % NumElts) == 0) { 3245 unsigned Scale = NumSrcElts / NumElts; 3246 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 3247 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 3248 TLO, Depth + 1)) 3249 return true; 3250 3251 // If all the src elements covering an output element are zero/undef, then 3252 // the output element will be as well, assuming it was demanded. 3253 for (unsigned i = 0; i != NumElts; ++i) { 3254 if (DemandedElts[i]) { 3255 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 3256 KnownZero.setBit(i); 3257 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 3258 KnownUndef.setBit(i); 3259 } 3260 } 3261 } 3262 break; 3263 } 3264 case ISD::FREEZE: { 3265 SDValue N0 = Op.getOperand(0); 3266 if (TLO.DAG.isGuaranteedNotToBeUndefOrPoison(N0, DemandedElts, 3267 /*PoisonOnly=*/false)) 3268 return TLO.CombineTo(Op, N0); 3269 3270 // TODO: Replace this with the general fold from DAGCombiner::visitFREEZE 3271 // freeze(op(x, ...)) -> op(freeze(x), ...). 3272 if (N0.getOpcode() == ISD::SCALAR_TO_VECTOR && DemandedElts == 1) 3273 return TLO.CombineTo( 3274 Op, TLO.DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, 3275 TLO.DAG.getFreeze(N0.getOperand(0)))); 3276 break; 3277 } 3278 case ISD::BUILD_VECTOR: { 3279 // Check all elements and simplify any unused elements with UNDEF. 3280 if (!DemandedElts.isAllOnes()) { 3281 // Don't simplify BROADCASTS. 3282 if (llvm::any_of(Op->op_values(), 3283 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 3284 SmallVector<SDValue, 32> Ops(Op->ops()); 3285 bool Updated = false; 3286 for (unsigned i = 0; i != NumElts; ++i) { 3287 if (!DemandedElts[i] && !Ops[i].isUndef()) { 3288 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 3289 KnownUndef.setBit(i); 3290 Updated = true; 3291 } 3292 } 3293 if (Updated) 3294 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 3295 } 3296 } 3297 for (unsigned i = 0; i != NumElts; ++i) { 3298 SDValue SrcOp = Op.getOperand(i); 3299 if (SrcOp.isUndef()) { 3300 KnownUndef.setBit(i); 3301 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 3302 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 3303 KnownZero.setBit(i); 3304 } 3305 } 3306 break; 3307 } 3308 case ISD::CONCAT_VECTORS: { 3309 EVT SubVT = Op.getOperand(0).getValueType(); 3310 unsigned NumSubVecs = Op.getNumOperands(); 3311 unsigned NumSubElts = SubVT.getVectorNumElements(); 3312 for (unsigned i = 0; i != NumSubVecs; ++i) { 3313 SDValue SubOp = Op.getOperand(i); 3314 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 3315 APInt SubUndef, SubZero; 3316 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 3317 Depth + 1)) 3318 return true; 3319 KnownUndef.insertBits(SubUndef, i * NumSubElts); 3320 KnownZero.insertBits(SubZero, i * NumSubElts); 3321 } 3322 3323 // Attempt to avoid multi-use ops if we don't need anything from them. 3324 if (!DemandedElts.isAllOnes()) { 3325 bool FoundNewSub = false; 3326 SmallVector<SDValue, 2> DemandedSubOps; 3327 for (unsigned i = 0; i != NumSubVecs; ++i) { 3328 SDValue SubOp = Op.getOperand(i); 3329 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 3330 SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts( 3331 SubOp, SubElts, TLO.DAG, Depth + 1); 3332 DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp); 3333 FoundNewSub = NewSubOp ? true : FoundNewSub; 3334 } 3335 if (FoundNewSub) { 3336 SDValue NewOp = 3337 TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps); 3338 return TLO.CombineTo(Op, NewOp); 3339 } 3340 } 3341 break; 3342 } 3343 case ISD::INSERT_SUBVECTOR: { 3344 // Demand any elements from the subvector and the remainder from the src its 3345 // inserted into. 3346 SDValue Src = Op.getOperand(0); 3347 SDValue Sub = Op.getOperand(1); 3348 uint64_t Idx = Op.getConstantOperandVal(2); 3349 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3350 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3351 APInt DemandedSrcElts = DemandedElts; 3352 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 3353 3354 APInt SubUndef, SubZero; 3355 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 3356 Depth + 1)) 3357 return true; 3358 3359 // If none of the src operand elements are demanded, replace it with undef. 3360 if (!DemandedSrcElts && !Src.isUndef()) 3361 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 3362 TLO.DAG.getUNDEF(VT), Sub, 3363 Op.getOperand(2))); 3364 3365 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 3366 TLO, Depth + 1)) 3367 return true; 3368 KnownUndef.insertBits(SubUndef, Idx); 3369 KnownZero.insertBits(SubZero, Idx); 3370 3371 // Attempt to avoid multi-use ops if we don't need anything from them. 3372 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 3373 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 3374 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 3375 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 3376 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 3377 if (NewSrc || NewSub) { 3378 NewSrc = NewSrc ? NewSrc : Src; 3379 NewSub = NewSub ? NewSub : Sub; 3380 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 3381 NewSub, Op.getOperand(2)); 3382 return TLO.CombineTo(Op, NewOp); 3383 } 3384 } 3385 break; 3386 } 3387 case ISD::EXTRACT_SUBVECTOR: { 3388 // Offset the demanded elts by the subvector index. 3389 SDValue Src = Op.getOperand(0); 3390 if (Src.getValueType().isScalableVector()) 3391 break; 3392 uint64_t Idx = Op.getConstantOperandVal(1); 3393 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3394 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 3395 3396 APInt SrcUndef, SrcZero; 3397 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3398 Depth + 1)) 3399 return true; 3400 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 3401 KnownZero = SrcZero.extractBits(NumElts, Idx); 3402 3403 // Attempt to avoid multi-use ops if we don't need anything from them. 3404 if (!DemandedElts.isAllOnes()) { 3405 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 3406 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 3407 if (NewSrc) { 3408 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 3409 Op.getOperand(1)); 3410 return TLO.CombineTo(Op, NewOp); 3411 } 3412 } 3413 break; 3414 } 3415 case ISD::INSERT_VECTOR_ELT: { 3416 SDValue Vec = Op.getOperand(0); 3417 SDValue Scl = Op.getOperand(1); 3418 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3419 3420 // For a legal, constant insertion index, if we don't need this insertion 3421 // then strip it, else remove it from the demanded elts. 3422 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 3423 unsigned Idx = CIdx->getZExtValue(); 3424 if (!DemandedElts[Idx]) 3425 return TLO.CombineTo(Op, Vec); 3426 3427 APInt DemandedVecElts(DemandedElts); 3428 DemandedVecElts.clearBit(Idx); 3429 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 3430 KnownZero, TLO, Depth + 1)) 3431 return true; 3432 3433 KnownUndef.setBitVal(Idx, Scl.isUndef()); 3434 3435 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 3436 break; 3437 } 3438 3439 APInt VecUndef, VecZero; 3440 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 3441 Depth + 1)) 3442 return true; 3443 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 3444 break; 3445 } 3446 case ISD::VSELECT: { 3447 SDValue Sel = Op.getOperand(0); 3448 SDValue LHS = Op.getOperand(1); 3449 SDValue RHS = Op.getOperand(2); 3450 3451 // Try to transform the select condition based on the current demanded 3452 // elements. 3453 APInt UndefSel, ZeroSel; 3454 if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, ZeroSel, TLO, 3455 Depth + 1)) 3456 return true; 3457 3458 // See if we can simplify either vselect operand. 3459 APInt DemandedLHS(DemandedElts); 3460 APInt DemandedRHS(DemandedElts); 3461 APInt UndefLHS, ZeroLHS; 3462 APInt UndefRHS, ZeroRHS; 3463 if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO, 3464 Depth + 1)) 3465 return true; 3466 if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO, 3467 Depth + 1)) 3468 return true; 3469 3470 KnownUndef = UndefLHS & UndefRHS; 3471 KnownZero = ZeroLHS & ZeroRHS; 3472 3473 // If we know that the selected element is always zero, we don't need the 3474 // select value element. 3475 APInt DemandedSel = DemandedElts & ~KnownZero; 3476 if (DemandedSel != DemandedElts) 3477 if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, ZeroSel, TLO, 3478 Depth + 1)) 3479 return true; 3480 3481 break; 3482 } 3483 case ISD::VECTOR_SHUFFLE: { 3484 SDValue LHS = Op.getOperand(0); 3485 SDValue RHS = Op.getOperand(1); 3486 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 3487 3488 // Collect demanded elements from shuffle operands.. 3489 APInt DemandedLHS(NumElts, 0); 3490 APInt DemandedRHS(NumElts, 0); 3491 for (unsigned i = 0; i != NumElts; ++i) { 3492 int M = ShuffleMask[i]; 3493 if (M < 0 || !DemandedElts[i]) 3494 continue; 3495 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 3496 if (M < (int)NumElts) 3497 DemandedLHS.setBit(M); 3498 else 3499 DemandedRHS.setBit(M - NumElts); 3500 } 3501 3502 // See if we can simplify either shuffle operand. 3503 APInt UndefLHS, ZeroLHS; 3504 APInt UndefRHS, ZeroRHS; 3505 if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO, 3506 Depth + 1)) 3507 return true; 3508 if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO, 3509 Depth + 1)) 3510 return true; 3511 3512 // Simplify mask using undef elements from LHS/RHS. 3513 bool Updated = false; 3514 bool IdentityLHS = true, IdentityRHS = true; 3515 SmallVector<int, 32> NewMask(ShuffleMask); 3516 for (unsigned i = 0; i != NumElts; ++i) { 3517 int &M = NewMask[i]; 3518 if (M < 0) 3519 continue; 3520 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 3521 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 3522 Updated = true; 3523 M = -1; 3524 } 3525 IdentityLHS &= (M < 0) || (M == (int)i); 3526 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 3527 } 3528 3529 // Update legal shuffle masks based on demanded elements if it won't reduce 3530 // to Identity which can cause premature removal of the shuffle mask. 3531 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 3532 SDValue LegalShuffle = 3533 buildLegalVectorShuffle(VT, DL, LHS, RHS, NewMask, TLO.DAG); 3534 if (LegalShuffle) 3535 return TLO.CombineTo(Op, LegalShuffle); 3536 } 3537 3538 // Propagate undef/zero elements from LHS/RHS. 3539 for (unsigned i = 0; i != NumElts; ++i) { 3540 int M = ShuffleMask[i]; 3541 if (M < 0) { 3542 KnownUndef.setBit(i); 3543 } else if (M < (int)NumElts) { 3544 if (UndefLHS[M]) 3545 KnownUndef.setBit(i); 3546 if (ZeroLHS[M]) 3547 KnownZero.setBit(i); 3548 } else { 3549 if (UndefRHS[M - NumElts]) 3550 KnownUndef.setBit(i); 3551 if (ZeroRHS[M - NumElts]) 3552 KnownZero.setBit(i); 3553 } 3554 } 3555 break; 3556 } 3557 case ISD::ANY_EXTEND_VECTOR_INREG: 3558 case ISD::SIGN_EXTEND_VECTOR_INREG: 3559 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3560 APInt SrcUndef, SrcZero; 3561 SDValue Src = Op.getOperand(0); 3562 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3563 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts); 3564 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3565 Depth + 1)) 3566 return true; 3567 KnownZero = SrcZero.zextOrTrunc(NumElts); 3568 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 3569 3570 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 3571 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 3572 DemandedSrcElts == 1) { 3573 // aext - if we just need the bottom element then we can bitcast. 3574 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 3575 } 3576 3577 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 3578 // zext(undef) upper bits are guaranteed to be zero. 3579 if (DemandedElts.isSubsetOf(KnownUndef)) 3580 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3581 KnownUndef.clearAllBits(); 3582 3583 // zext - if we just need the bottom element then we can mask: 3584 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 3585 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && 3586 Op->isOnlyUserOf(Src.getNode()) && 3587 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 3588 SDLoc DL(Op); 3589 EVT SrcVT = Src.getValueType(); 3590 EVT SrcSVT = SrcVT.getScalarType(); 3591 SmallVector<SDValue> MaskElts; 3592 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 3593 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 3594 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 3595 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 3596 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 3597 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 3598 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 3599 } 3600 } 3601 } 3602 break; 3603 } 3604 3605 // TODO: There are more binop opcodes that could be handled here - MIN, 3606 // MAX, saturated math, etc. 3607 case ISD::ADD: { 3608 SDValue Op0 = Op.getOperand(0); 3609 SDValue Op1 = Op.getOperand(1); 3610 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) { 3611 APInt UndefLHS, ZeroLHS; 3612 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3613 Depth + 1, /*AssumeSingleUse*/ true)) 3614 return true; 3615 } 3616 [[fallthrough]]; 3617 } 3618 case ISD::AVGCEILS: 3619 case ISD::AVGCEILU: 3620 case ISD::AVGFLOORS: 3621 case ISD::AVGFLOORU: 3622 case ISD::OR: 3623 case ISD::XOR: 3624 case ISD::SUB: 3625 case ISD::FADD: 3626 case ISD::FSUB: 3627 case ISD::FMUL: 3628 case ISD::FDIV: 3629 case ISD::FREM: { 3630 SDValue Op0 = Op.getOperand(0); 3631 SDValue Op1 = Op.getOperand(1); 3632 3633 APInt UndefRHS, ZeroRHS; 3634 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3635 Depth + 1)) 3636 return true; 3637 APInt UndefLHS, ZeroLHS; 3638 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3639 Depth + 1)) 3640 return true; 3641 3642 KnownZero = ZeroLHS & ZeroRHS; 3643 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 3644 3645 // Attempt to avoid multi-use ops if we don't need anything from them. 3646 // TODO - use KnownUndef to relax the demandedelts? 3647 if (!DemandedElts.isAllOnes()) 3648 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3649 return true; 3650 break; 3651 } 3652 case ISD::SHL: 3653 case ISD::SRL: 3654 case ISD::SRA: 3655 case ISD::ROTL: 3656 case ISD::ROTR: { 3657 SDValue Op0 = Op.getOperand(0); 3658 SDValue Op1 = Op.getOperand(1); 3659 3660 APInt UndefRHS, ZeroRHS; 3661 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3662 Depth + 1)) 3663 return true; 3664 APInt UndefLHS, ZeroLHS; 3665 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3666 Depth + 1)) 3667 return true; 3668 3669 KnownZero = ZeroLHS; 3670 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 3671 3672 // Attempt to avoid multi-use ops if we don't need anything from them. 3673 // TODO - use KnownUndef to relax the demandedelts? 3674 if (!DemandedElts.isAllOnes()) 3675 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3676 return true; 3677 break; 3678 } 3679 case ISD::MUL: 3680 case ISD::MULHU: 3681 case ISD::MULHS: 3682 case ISD::AND: { 3683 SDValue Op0 = Op.getOperand(0); 3684 SDValue Op1 = Op.getOperand(1); 3685 3686 APInt SrcUndef, SrcZero; 3687 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 3688 Depth + 1)) 3689 return true; 3690 // If we know that a demanded element was zero in Op1 we don't need to 3691 // demand it in Op0 - its guaranteed to be zero. 3692 APInt DemandedElts0 = DemandedElts & ~SrcZero; 3693 if (SimplifyDemandedVectorElts(Op0, DemandedElts0, KnownUndef, KnownZero, 3694 TLO, Depth + 1)) 3695 return true; 3696 3697 KnownUndef &= DemandedElts0; 3698 KnownZero &= DemandedElts0; 3699 3700 // If every element pair has a zero/undef then just fold to zero. 3701 // fold (and x, undef) -> 0 / (and x, 0) -> 0 3702 // fold (mul x, undef) -> 0 / (mul x, 0) -> 0 3703 if (DemandedElts.isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef)) 3704 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3705 3706 // If either side has a zero element, then the result element is zero, even 3707 // if the other is an UNDEF. 3708 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 3709 // and then handle 'and' nodes with the rest of the binop opcodes. 3710 KnownZero |= SrcZero; 3711 KnownUndef &= SrcUndef; 3712 KnownUndef &= ~KnownZero; 3713 3714 // Attempt to avoid multi-use ops if we don't need anything from them. 3715 if (!DemandedElts.isAllOnes()) 3716 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3717 return true; 3718 break; 3719 } 3720 case ISD::TRUNCATE: 3721 case ISD::SIGN_EXTEND: 3722 case ISD::ZERO_EXTEND: 3723 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 3724 KnownZero, TLO, Depth + 1)) 3725 return true; 3726 3727 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 3728 // zext(undef) upper bits are guaranteed to be zero. 3729 if (DemandedElts.isSubsetOf(KnownUndef)) 3730 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3731 KnownUndef.clearAllBits(); 3732 } 3733 break; 3734 default: { 3735 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 3736 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 3737 KnownZero, TLO, Depth)) 3738 return true; 3739 } else { 3740 KnownBits Known; 3741 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 3742 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 3743 TLO, Depth, AssumeSingleUse)) 3744 return true; 3745 } 3746 break; 3747 } 3748 } 3749 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 3750 3751 // Constant fold all undef cases. 3752 // TODO: Handle zero cases as well. 3753 if (DemandedElts.isSubsetOf(KnownUndef)) 3754 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3755 3756 return false; 3757 } 3758 3759 /// Determine which of the bits specified in Mask are known to be either zero or 3760 /// one and return them in the Known. 3761 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3762 KnownBits &Known, 3763 const APInt &DemandedElts, 3764 const SelectionDAG &DAG, 3765 unsigned Depth) const { 3766 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3767 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3768 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3769 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3770 "Should use MaskedValueIsZero if you don't know whether Op" 3771 " is a target node!"); 3772 Known.resetAll(); 3773 } 3774 3775 void TargetLowering::computeKnownBitsForTargetInstr( 3776 GISelKnownBits &Analysis, Register R, KnownBits &Known, 3777 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 3778 unsigned Depth) const { 3779 Known.resetAll(); 3780 } 3781 3782 void TargetLowering::computeKnownBitsForFrameIndex( 3783 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 3784 // The low bits are known zero if the pointer is aligned. 3785 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 3786 } 3787 3788 Align TargetLowering::computeKnownAlignForTargetInstr( 3789 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 3790 unsigned Depth) const { 3791 return Align(1); 3792 } 3793 3794 /// This method can be implemented by targets that want to expose additional 3795 /// information about sign bits to the DAG Combiner. 3796 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3797 const APInt &, 3798 const SelectionDAG &, 3799 unsigned Depth) const { 3800 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3801 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3802 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3803 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3804 "Should use ComputeNumSignBits if you don't know whether Op" 3805 " is a target node!"); 3806 return 1; 3807 } 3808 3809 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3810 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3811 const MachineRegisterInfo &MRI, unsigned Depth) const { 3812 return 1; 3813 } 3814 3815 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3816 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3817 TargetLoweringOpt &TLO, unsigned Depth) const { 3818 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3819 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3820 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3821 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3822 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3823 " is a target node!"); 3824 return false; 3825 } 3826 3827 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3828 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3829 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3830 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3831 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3832 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3833 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3834 "Should use SimplifyDemandedBits if you don't know whether Op" 3835 " is a target node!"); 3836 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3837 return false; 3838 } 3839 3840 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3841 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3842 SelectionDAG &DAG, unsigned Depth) const { 3843 assert( 3844 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3845 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3846 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3847 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3848 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3849 " is a target node!"); 3850 return SDValue(); 3851 } 3852 3853 SDValue 3854 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3855 SDValue N1, MutableArrayRef<int> Mask, 3856 SelectionDAG &DAG) const { 3857 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3858 if (!LegalMask) { 3859 std::swap(N0, N1); 3860 ShuffleVectorSDNode::commuteMask(Mask); 3861 LegalMask = isShuffleMaskLegal(Mask, VT); 3862 } 3863 3864 if (!LegalMask) 3865 return SDValue(); 3866 3867 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3868 } 3869 3870 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3871 return nullptr; 3872 } 3873 3874 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3875 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3876 bool PoisonOnly, unsigned Depth) const { 3877 assert( 3878 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3879 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3880 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3881 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3882 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3883 " is a target node!"); 3884 3885 // If Op can't create undef/poison and none of its operands are undef/poison 3886 // then Op is never undef/poison. 3887 return !canCreateUndefOrPoisonForTargetNode(Op, DemandedElts, DAG, PoisonOnly, 3888 /*ConsiderFlags*/ true, Depth) && 3889 all_of(Op->ops(), [&](SDValue V) { 3890 return DAG.isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly, 3891 Depth + 1); 3892 }); 3893 } 3894 3895 bool TargetLowering::canCreateUndefOrPoisonForTargetNode( 3896 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3897 bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const { 3898 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3899 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3900 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3901 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3902 "Should use canCreateUndefOrPoison if you don't know whether Op" 3903 " is a target node!"); 3904 // Be conservative and return true. 3905 return true; 3906 } 3907 3908 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3909 const SelectionDAG &DAG, 3910 bool SNaN, 3911 unsigned Depth) const { 3912 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3913 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3914 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3915 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3916 "Should use isKnownNeverNaN if you don't know whether Op" 3917 " is a target node!"); 3918 return false; 3919 } 3920 3921 bool TargetLowering::isSplatValueForTargetNode(SDValue Op, 3922 const APInt &DemandedElts, 3923 APInt &UndefElts, 3924 const SelectionDAG &DAG, 3925 unsigned Depth) const { 3926 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3927 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3928 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3929 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3930 "Should use isSplatValue if you don't know whether Op" 3931 " is a target node!"); 3932 return false; 3933 } 3934 3935 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3936 // work with truncating build vectors and vectors with elements of less than 3937 // 8 bits. 3938 bool TargetLowering::isConstTrueVal(SDValue N) const { 3939 if (!N) 3940 return false; 3941 3942 unsigned EltWidth; 3943 APInt CVal; 3944 if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false, 3945 /*AllowTruncation=*/true)) { 3946 CVal = CN->getAPIntValue(); 3947 EltWidth = N.getValueType().getScalarSizeInBits(); 3948 } else 3949 return false; 3950 3951 // If this is a truncating splat, truncate the splat value. 3952 // Otherwise, we may fail to match the expected values below. 3953 if (EltWidth < CVal.getBitWidth()) 3954 CVal = CVal.trunc(EltWidth); 3955 3956 switch (getBooleanContents(N.getValueType())) { 3957 case UndefinedBooleanContent: 3958 return CVal[0]; 3959 case ZeroOrOneBooleanContent: 3960 return CVal.isOne(); 3961 case ZeroOrNegativeOneBooleanContent: 3962 return CVal.isAllOnes(); 3963 } 3964 3965 llvm_unreachable("Invalid boolean contents"); 3966 } 3967 3968 bool TargetLowering::isConstFalseVal(SDValue N) const { 3969 if (!N) 3970 return false; 3971 3972 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3973 if (!CN) { 3974 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3975 if (!BV) 3976 return false; 3977 3978 // Only interested in constant splats, we don't care about undef 3979 // elements in identifying boolean constants and getConstantSplatNode 3980 // returns NULL if all ops are undef; 3981 CN = BV->getConstantSplatNode(); 3982 if (!CN) 3983 return false; 3984 } 3985 3986 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3987 return !CN->getAPIntValue()[0]; 3988 3989 return CN->isZero(); 3990 } 3991 3992 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3993 bool SExt) const { 3994 if (VT == MVT::i1) 3995 return N->isOne(); 3996 3997 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3998 switch (Cnt) { 3999 case TargetLowering::ZeroOrOneBooleanContent: 4000 // An extended value of 1 is always true, unless its original type is i1, 4001 // in which case it will be sign extended to -1. 4002 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 4003 case TargetLowering::UndefinedBooleanContent: 4004 case TargetLowering::ZeroOrNegativeOneBooleanContent: 4005 return N->isAllOnes() && SExt; 4006 } 4007 llvm_unreachable("Unexpected enumeration."); 4008 } 4009 4010 /// This helper function of SimplifySetCC tries to optimize the comparison when 4011 /// either operand of the SetCC node is a bitwise-and instruction. 4012 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 4013 ISD::CondCode Cond, const SDLoc &DL, 4014 DAGCombinerInfo &DCI) const { 4015 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 4016 std::swap(N0, N1); 4017 4018 SelectionDAG &DAG = DCI.DAG; 4019 EVT OpVT = N0.getValueType(); 4020 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 4021 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 4022 return SDValue(); 4023 4024 // (X & Y) != 0 --> zextOrTrunc(X & Y) 4025 // iff everything but LSB is known zero: 4026 if (Cond == ISD::SETNE && isNullConstant(N1) && 4027 (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent || 4028 getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) { 4029 unsigned NumEltBits = OpVT.getScalarSizeInBits(); 4030 APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1); 4031 if (DAG.MaskedValueIsZero(N0, UpperBits)) 4032 return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT); 4033 } 4034 4035 // Try to eliminate a power-of-2 mask constant by converting to a signbit 4036 // test in a narrow type that we can truncate to with no cost. Examples: 4037 // (i32 X & 32768) == 0 --> (trunc X to i16) >= 0 4038 // (i32 X & 32768) != 0 --> (trunc X to i16) < 0 4039 // TODO: This conservatively checks for type legality on the source and 4040 // destination types. That may inhibit optimizations, but it also 4041 // allows setcc->shift transforms that may be more beneficial. 4042 auto *AndC = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 4043 if (AndC && isNullConstant(N1) && AndC->getAPIntValue().isPowerOf2() && 4044 isTypeLegal(OpVT) && N0.hasOneUse()) { 4045 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), 4046 AndC->getAPIntValue().getActiveBits()); 4047 if (isTruncateFree(OpVT, NarrowVT) && isTypeLegal(NarrowVT)) { 4048 SDValue Trunc = DAG.getZExtOrTrunc(N0.getOperand(0), DL, NarrowVT); 4049 SDValue Zero = DAG.getConstant(0, DL, NarrowVT); 4050 return DAG.getSetCC(DL, VT, Trunc, Zero, 4051 Cond == ISD::SETEQ ? ISD::SETGE : ISD::SETLT); 4052 } 4053 } 4054 4055 // Match these patterns in any of their permutations: 4056 // (X & Y) == Y 4057 // (X & Y) != Y 4058 SDValue X, Y; 4059 if (N0.getOperand(0) == N1) { 4060 X = N0.getOperand(1); 4061 Y = N0.getOperand(0); 4062 } else if (N0.getOperand(1) == N1) { 4063 X = N0.getOperand(0); 4064 Y = N0.getOperand(1); 4065 } else { 4066 return SDValue(); 4067 } 4068 4069 // TODO: We should invert (X & Y) eq/ne 0 -> (X & Y) ne/eq Y if 4070 // `isXAndYEqZeroPreferableToXAndYEqY` is false. This is a bit difficult as 4071 // its liable to create and infinite loop. 4072 SDValue Zero = DAG.getConstant(0, DL, OpVT); 4073 if (isXAndYEqZeroPreferableToXAndYEqY(Cond, OpVT) && 4074 DAG.isKnownToBeAPowerOfTwo(Y)) { 4075 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 4076 // Note that where Y is variable and is known to have at most one bit set 4077 // (for example, if it is Z & 1) we cannot do this; the expressions are not 4078 // equivalent when Y == 0. 4079 assert(OpVT.isInteger()); 4080 Cond = ISD::getSetCCInverse(Cond, OpVT); 4081 if (DCI.isBeforeLegalizeOps() || 4082 isCondCodeLegal(Cond, N0.getSimpleValueType())) 4083 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 4084 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 4085 // If the target supports an 'and-not' or 'and-complement' logic operation, 4086 // try to use that to make a comparison operation more efficient. 4087 // But don't do this transform if the mask is a single bit because there are 4088 // more efficient ways to deal with that case (for example, 'bt' on x86 or 4089 // 'rlwinm' on PPC). 4090 4091 // Bail out if the compare operand that we want to turn into a zero is 4092 // already a zero (otherwise, infinite loop). 4093 if (isNullConstant(Y)) 4094 return SDValue(); 4095 4096 // Transform this into: ~X & Y == 0. 4097 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 4098 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 4099 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 4100 } 4101 4102 return SDValue(); 4103 } 4104 4105 /// There are multiple IR patterns that could be checking whether certain 4106 /// truncation of a signed number would be lossy or not. The pattern which is 4107 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 4108 /// We are looking for the following pattern: (KeptBits is a constant) 4109 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 4110 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 4111 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 4112 /// We will unfold it into the natural trunc+sext pattern: 4113 /// ((%x << C) a>> C) dstcond %x 4114 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 4115 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 4116 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 4117 const SDLoc &DL) const { 4118 // We must be comparing with a constant. 4119 ConstantSDNode *C1; 4120 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 4121 return SDValue(); 4122 4123 // N0 should be: add %x, (1 << (KeptBits-1)) 4124 if (N0->getOpcode() != ISD::ADD) 4125 return SDValue(); 4126 4127 // And we must be 'add'ing a constant. 4128 ConstantSDNode *C01; 4129 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 4130 return SDValue(); 4131 4132 SDValue X = N0->getOperand(0); 4133 EVT XVT = X.getValueType(); 4134 4135 // Validate constants ... 4136 4137 APInt I1 = C1->getAPIntValue(); 4138 4139 ISD::CondCode NewCond; 4140 if (Cond == ISD::CondCode::SETULT) { 4141 NewCond = ISD::CondCode::SETEQ; 4142 } else if (Cond == ISD::CondCode::SETULE) { 4143 NewCond = ISD::CondCode::SETEQ; 4144 // But need to 'canonicalize' the constant. 4145 I1 += 1; 4146 } else if (Cond == ISD::CondCode::SETUGT) { 4147 NewCond = ISD::CondCode::SETNE; 4148 // But need to 'canonicalize' the constant. 4149 I1 += 1; 4150 } else if (Cond == ISD::CondCode::SETUGE) { 4151 NewCond = ISD::CondCode::SETNE; 4152 } else 4153 return SDValue(); 4154 4155 APInt I01 = C01->getAPIntValue(); 4156 4157 auto checkConstants = [&I1, &I01]() -> bool { 4158 // Both of them must be power-of-two, and the constant from setcc is bigger. 4159 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 4160 }; 4161 4162 if (checkConstants()) { 4163 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 4164 } else { 4165 // What if we invert constants? (and the target predicate) 4166 I1.negate(); 4167 I01.negate(); 4168 assert(XVT.isInteger()); 4169 NewCond = getSetCCInverse(NewCond, XVT); 4170 if (!checkConstants()) 4171 return SDValue(); 4172 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 4173 } 4174 4175 // They are power-of-two, so which bit is set? 4176 const unsigned KeptBits = I1.logBase2(); 4177 const unsigned KeptBitsMinusOne = I01.logBase2(); 4178 4179 // Magic! 4180 if (KeptBits != (KeptBitsMinusOne + 1)) 4181 return SDValue(); 4182 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 4183 4184 // We don't want to do this in every single case. 4185 SelectionDAG &DAG = DCI.DAG; 4186 if (!shouldTransformSignedTruncationCheck(XVT, KeptBits)) 4187 return SDValue(); 4188 4189 // Unfold into: sext_inreg(%x) cond %x 4190 // Where 'cond' will be either 'eq' or 'ne'. 4191 SDValue SExtInReg = DAG.getNode( 4192 ISD::SIGN_EXTEND_INREG, DL, XVT, X, 4193 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), KeptBits))); 4194 return DAG.getSetCC(DL, SCCVT, SExtInReg, X, NewCond); 4195 } 4196 4197 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4198 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 4199 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 4200 DAGCombinerInfo &DCI, const SDLoc &DL) const { 4201 assert(isConstOrConstSplat(N1C) && isConstOrConstSplat(N1C)->isZero() && 4202 "Should be a comparison with 0."); 4203 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4204 "Valid only for [in]equality comparisons."); 4205 4206 unsigned NewShiftOpcode; 4207 SDValue X, C, Y; 4208 4209 SelectionDAG &DAG = DCI.DAG; 4210 4211 // Look for '(C l>>/<< Y)'. 4212 auto Match = [&NewShiftOpcode, &X, &C, &Y, &DAG, this](SDValue V) { 4213 // The shift should be one-use. 4214 if (!V.hasOneUse()) 4215 return false; 4216 unsigned OldShiftOpcode = V.getOpcode(); 4217 switch (OldShiftOpcode) { 4218 case ISD::SHL: 4219 NewShiftOpcode = ISD::SRL; 4220 break; 4221 case ISD::SRL: 4222 NewShiftOpcode = ISD::SHL; 4223 break; 4224 default: 4225 return false; // must be a logical shift. 4226 } 4227 // We should be shifting a constant. 4228 // FIXME: best to use isConstantOrConstantVector(). 4229 C = V.getOperand(0); 4230 ConstantSDNode *CC = 4231 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 4232 if (!CC) 4233 return false; 4234 Y = V.getOperand(1); 4235 4236 ConstantSDNode *XC = 4237 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 4238 return shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 4239 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 4240 }; 4241 4242 // LHS of comparison should be an one-use 'and'. 4243 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 4244 return SDValue(); 4245 4246 X = N0.getOperand(0); 4247 SDValue Mask = N0.getOperand(1); 4248 4249 // 'and' is commutative! 4250 if (!Match(Mask)) { 4251 std::swap(X, Mask); 4252 if (!Match(Mask)) 4253 return SDValue(); 4254 } 4255 4256 EVT VT = X.getValueType(); 4257 4258 // Produce: 4259 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 4260 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 4261 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 4262 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 4263 return T2; 4264 } 4265 4266 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 4267 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 4268 /// handle the commuted versions of these patterns. 4269 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 4270 ISD::CondCode Cond, const SDLoc &DL, 4271 DAGCombinerInfo &DCI) const { 4272 unsigned BOpcode = N0.getOpcode(); 4273 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 4274 "Unexpected binop"); 4275 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 4276 4277 // (X + Y) == X --> Y == 0 4278 // (X - Y) == X --> Y == 0 4279 // (X ^ Y) == X --> Y == 0 4280 SelectionDAG &DAG = DCI.DAG; 4281 EVT OpVT = N0.getValueType(); 4282 SDValue X = N0.getOperand(0); 4283 SDValue Y = N0.getOperand(1); 4284 if (X == N1) 4285 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 4286 4287 if (Y != N1) 4288 return SDValue(); 4289 4290 // (X + Y) == Y --> X == 0 4291 // (X ^ Y) == Y --> X == 0 4292 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 4293 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 4294 4295 // The shift would not be valid if the operands are boolean (i1). 4296 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 4297 return SDValue(); 4298 4299 // (X - Y) == Y --> X == Y << 1 4300 SDValue One = DAG.getShiftAmountConstant(1, OpVT, DL); 4301 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 4302 if (!DCI.isCalledByLegalizer()) 4303 DCI.AddToWorklist(YShl1.getNode()); 4304 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 4305 } 4306 4307 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 4308 SDValue N0, const APInt &C1, 4309 ISD::CondCode Cond, const SDLoc &dl, 4310 SelectionDAG &DAG) { 4311 // Look through truncs that don't change the value of a ctpop. 4312 // FIXME: Add vector support? Need to be careful with setcc result type below. 4313 SDValue CTPOP = N0; 4314 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 4315 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 4316 CTPOP = N0.getOperand(0); 4317 4318 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 4319 return SDValue(); 4320 4321 EVT CTVT = CTPOP.getValueType(); 4322 SDValue CTOp = CTPOP.getOperand(0); 4323 4324 // Expand a power-of-2-or-zero comparison based on ctpop: 4325 // (ctpop x) u< 2 -> (x & x-1) == 0 4326 // (ctpop x) u> 1 -> (x & x-1) != 0 4327 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 4328 // Keep the CTPOP if it is a cheap vector op. 4329 if (CTVT.isVector() && TLI.isCtpopFast(CTVT)) 4330 return SDValue(); 4331 4332 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 4333 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 4334 return SDValue(); 4335 if (C1 == 0 && (Cond == ISD::SETULT)) 4336 return SDValue(); // This is handled elsewhere. 4337 4338 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 4339 4340 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 4341 SDValue Result = CTOp; 4342 for (unsigned i = 0; i < Passes; i++) { 4343 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 4344 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 4345 } 4346 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 4347 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 4348 } 4349 4350 // Expand a power-of-2 comparison based on ctpop 4351 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 4352 // Keep the CTPOP if it is cheap. 4353 if (TLI.isCtpopFast(CTVT)) 4354 return SDValue(); 4355 4356 SDValue Zero = DAG.getConstant(0, dl, CTVT); 4357 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 4358 assert(CTVT.isInteger()); 4359 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 4360 4361 // Its not uncommon for known-never-zero X to exist in (ctpop X) eq/ne 1, so 4362 // check before emitting a potentially unnecessary op. 4363 if (DAG.isKnownNeverZero(CTOp)) { 4364 // (ctpop x) == 1 --> (x & x-1) == 0 4365 // (ctpop x) != 1 --> (x & x-1) != 0 4366 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 4367 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 4368 return RHS; 4369 } 4370 4371 // (ctpop x) == 1 --> (x ^ x-1) > x-1 4372 // (ctpop x) != 1 --> (x ^ x-1) <= x-1 4373 SDValue Xor = DAG.getNode(ISD::XOR, dl, CTVT, CTOp, Add); 4374 ISD::CondCode CmpCond = Cond == ISD::SETEQ ? ISD::SETUGT : ISD::SETULE; 4375 return DAG.getSetCC(dl, VT, Xor, Add, CmpCond); 4376 } 4377 4378 return SDValue(); 4379 } 4380 4381 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, 4382 ISD::CondCode Cond, const SDLoc &dl, 4383 SelectionDAG &DAG) { 4384 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 4385 return SDValue(); 4386 4387 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 4388 if (!C1 || !(C1->isZero() || C1->isAllOnes())) 4389 return SDValue(); 4390 4391 auto getRotateSource = [](SDValue X) { 4392 if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR) 4393 return X.getOperand(0); 4394 return SDValue(); 4395 }; 4396 4397 // Peek through a rotated value compared against 0 or -1: 4398 // (rot X, Y) == 0/-1 --> X == 0/-1 4399 // (rot X, Y) != 0/-1 --> X != 0/-1 4400 if (SDValue R = getRotateSource(N0)) 4401 return DAG.getSetCC(dl, VT, R, N1, Cond); 4402 4403 // Peek through an 'or' of a rotated value compared against 0: 4404 // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0 4405 // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0 4406 // 4407 // TODO: Add the 'and' with -1 sibling. 4408 // TODO: Recurse through a series of 'or' ops to find the rotate. 4409 EVT OpVT = N0.getValueType(); 4410 if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) { 4411 if (SDValue R = getRotateSource(N0.getOperand(0))) { 4412 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1)); 4413 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4414 } 4415 if (SDValue R = getRotateSource(N0.getOperand(1))) { 4416 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0)); 4417 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4418 } 4419 } 4420 4421 return SDValue(); 4422 } 4423 4424 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1, 4425 ISD::CondCode Cond, const SDLoc &dl, 4426 SelectionDAG &DAG) { 4427 // If we are testing for all-bits-clear, we might be able to do that with 4428 // less shifting since bit-order does not matter. 4429 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 4430 return SDValue(); 4431 4432 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 4433 if (!C1 || !C1->isZero()) 4434 return SDValue(); 4435 4436 if (!N0.hasOneUse() || 4437 (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR)) 4438 return SDValue(); 4439 4440 unsigned BitWidth = N0.getScalarValueSizeInBits(); 4441 auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2)); 4442 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 4443 return SDValue(); 4444 4445 // Canonicalize fshr as fshl to reduce pattern-matching. 4446 unsigned ShAmt = ShAmtC->getZExtValue(); 4447 if (N0.getOpcode() == ISD::FSHR) 4448 ShAmt = BitWidth - ShAmt; 4449 4450 // Match an 'or' with a specific operand 'Other' in either commuted variant. 4451 SDValue X, Y; 4452 auto matchOr = [&X, &Y](SDValue Or, SDValue Other) { 4453 if (Or.getOpcode() != ISD::OR || !Or.hasOneUse()) 4454 return false; 4455 if (Or.getOperand(0) == Other) { 4456 X = Or.getOperand(0); 4457 Y = Or.getOperand(1); 4458 return true; 4459 } 4460 if (Or.getOperand(1) == Other) { 4461 X = Or.getOperand(1); 4462 Y = Or.getOperand(0); 4463 return true; 4464 } 4465 return false; 4466 }; 4467 4468 EVT OpVT = N0.getValueType(); 4469 EVT ShAmtVT = N0.getOperand(2).getValueType(); 4470 SDValue F0 = N0.getOperand(0); 4471 SDValue F1 = N0.getOperand(1); 4472 if (matchOr(F0, F1)) { 4473 // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0 4474 SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT); 4475 SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt); 4476 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 4477 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4478 } 4479 if (matchOr(F1, F0)) { 4480 // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0 4481 SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT); 4482 SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt); 4483 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 4484 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4485 } 4486 4487 return SDValue(); 4488 } 4489 4490 /// Try to simplify a setcc built with the specified operands and cc. If it is 4491 /// unable to simplify it, return a null SDValue. 4492 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 4493 ISD::CondCode Cond, bool foldBooleans, 4494 DAGCombinerInfo &DCI, 4495 const SDLoc &dl) const { 4496 SelectionDAG &DAG = DCI.DAG; 4497 const DataLayout &Layout = DAG.getDataLayout(); 4498 EVT OpVT = N0.getValueType(); 4499 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4500 4501 // Constant fold or commute setcc. 4502 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 4503 return Fold; 4504 4505 bool N0ConstOrSplat = 4506 isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4507 bool N1ConstOrSplat = 4508 isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4509 4510 // Canonicalize toward having the constant on the RHS. 4511 // TODO: Handle non-splat vector constants. All undef causes trouble. 4512 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 4513 // infinite loop here when we encounter one. 4514 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 4515 if (N0ConstOrSplat && !N1ConstOrSplat && 4516 (DCI.isBeforeLegalizeOps() || 4517 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 4518 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4519 4520 // If we have a subtract with the same 2 non-constant operands as this setcc 4521 // -- but in reverse order -- then try to commute the operands of this setcc 4522 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 4523 // instruction on some targets. 4524 if (!N0ConstOrSplat && !N1ConstOrSplat && 4525 (DCI.isBeforeLegalizeOps() || 4526 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 4527 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 4528 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 4529 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4530 4531 if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG)) 4532 return V; 4533 4534 if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG)) 4535 return V; 4536 4537 if (auto *N1C = isConstOrConstSplat(N1)) { 4538 const APInt &C1 = N1C->getAPIntValue(); 4539 4540 // Optimize some CTPOP cases. 4541 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 4542 return V; 4543 4544 // For equality to 0 of a no-wrap multiply, decompose and test each op: 4545 // X * Y == 0 --> (X == 0) || (Y == 0) 4546 // X * Y != 0 --> (X != 0) && (Y != 0) 4547 // TODO: This bails out if minsize is set, but if the target doesn't have a 4548 // single instruction multiply for this type, it would likely be 4549 // smaller to decompose. 4550 if (C1.isZero() && (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4551 N0.getOpcode() == ISD::MUL && N0.hasOneUse() && 4552 (N0->getFlags().hasNoUnsignedWrap() || 4553 N0->getFlags().hasNoSignedWrap()) && 4554 !Attr.hasFnAttr(Attribute::MinSize)) { 4555 SDValue IsXZero = DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4556 SDValue IsYZero = DAG.getSetCC(dl, VT, N0.getOperand(1), N1, Cond); 4557 unsigned LogicOp = Cond == ISD::SETEQ ? ISD::OR : ISD::AND; 4558 return DAG.getNode(LogicOp, dl, VT, IsXZero, IsYZero); 4559 } 4560 4561 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 4562 // equality comparison, then we're just comparing whether X itself is 4563 // zero. 4564 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 4565 N0.getOperand(0).getOpcode() == ISD::CTLZ && 4566 llvm::has_single_bit<uint32_t>(N0.getScalarValueSizeInBits())) { 4567 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 4568 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4569 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 4570 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 4571 // (srl (ctlz x), 5) == 0 -> X != 0 4572 // (srl (ctlz x), 5) != 1 -> X != 0 4573 Cond = ISD::SETNE; 4574 } else { 4575 // (srl (ctlz x), 5) != 0 -> X == 0 4576 // (srl (ctlz x), 5) == 1 -> X == 0 4577 Cond = ISD::SETEQ; 4578 } 4579 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 4580 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 4581 Cond); 4582 } 4583 } 4584 } 4585 } 4586 4587 // FIXME: Support vectors. 4588 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4589 const APInt &C1 = N1C->getAPIntValue(); 4590 4591 // (zext x) == C --> x == (trunc C) 4592 // (sext x) == C --> x == (trunc C) 4593 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4594 DCI.isBeforeLegalize() && N0->hasOneUse()) { 4595 unsigned MinBits = N0.getValueSizeInBits(); 4596 SDValue PreExt; 4597 bool Signed = false; 4598 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 4599 // ZExt 4600 MinBits = N0->getOperand(0).getValueSizeInBits(); 4601 PreExt = N0->getOperand(0); 4602 } else if (N0->getOpcode() == ISD::AND) { 4603 // DAGCombine turns costly ZExts into ANDs 4604 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 4605 if ((C->getAPIntValue()+1).isPowerOf2()) { 4606 MinBits = C->getAPIntValue().countr_one(); 4607 PreExt = N0->getOperand(0); 4608 } 4609 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 4610 // SExt 4611 MinBits = N0->getOperand(0).getValueSizeInBits(); 4612 PreExt = N0->getOperand(0); 4613 Signed = true; 4614 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 4615 // ZEXTLOAD / SEXTLOAD 4616 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 4617 MinBits = LN0->getMemoryVT().getSizeInBits(); 4618 PreExt = N0; 4619 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 4620 Signed = true; 4621 MinBits = LN0->getMemoryVT().getSizeInBits(); 4622 PreExt = N0; 4623 } 4624 } 4625 4626 // Figure out how many bits we need to preserve this constant. 4627 unsigned ReqdBits = Signed ? C1.getSignificantBits() : C1.getActiveBits(); 4628 4629 // Make sure we're not losing bits from the constant. 4630 if (MinBits > 0 && 4631 MinBits < C1.getBitWidth() && 4632 MinBits >= ReqdBits) { 4633 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 4634 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 4635 // Will get folded away. 4636 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 4637 if (MinBits == 1 && C1 == 1) 4638 // Invert the condition. 4639 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 4640 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4641 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 4642 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 4643 } 4644 4645 // If truncating the setcc operands is not desirable, we can still 4646 // simplify the expression in some cases: 4647 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 4648 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 4649 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 4650 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 4651 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 4652 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 4653 SDValue TopSetCC = N0->getOperand(0); 4654 unsigned N0Opc = N0->getOpcode(); 4655 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 4656 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 4657 TopSetCC.getOpcode() == ISD::SETCC && 4658 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 4659 (isConstFalseVal(N1) || 4660 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 4661 4662 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 4663 (!N1C->isZero() && Cond == ISD::SETNE); 4664 4665 if (!Inverse) 4666 return TopSetCC; 4667 4668 ISD::CondCode InvCond = ISD::getSetCCInverse( 4669 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 4670 TopSetCC.getOperand(0).getValueType()); 4671 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 4672 TopSetCC.getOperand(1), 4673 InvCond); 4674 } 4675 } 4676 } 4677 4678 // If the LHS is '(and load, const)', the RHS is 0, the test is for 4679 // equality or unsigned, and all 1 bits of the const are in the same 4680 // partial word, see if we can shorten the load. 4681 if (DCI.isBeforeLegalize() && 4682 !ISD::isSignedIntSetCC(Cond) && 4683 N0.getOpcode() == ISD::AND && C1 == 0 && 4684 N0.getNode()->hasOneUse() && 4685 isa<LoadSDNode>(N0.getOperand(0)) && 4686 N0.getOperand(0).getNode()->hasOneUse() && 4687 isa<ConstantSDNode>(N0.getOperand(1))) { 4688 auto *Lod = cast<LoadSDNode>(N0.getOperand(0)); 4689 APInt bestMask; 4690 unsigned bestWidth = 0, bestOffset = 0; 4691 if (Lod->isSimple() && Lod->isUnindexed() && 4692 (Lod->getMemoryVT().isByteSized() || 4693 isPaddedAtMostSignificantBitsWhenStored(Lod->getMemoryVT()))) { 4694 unsigned memWidth = Lod->getMemoryVT().getStoreSizeInBits(); 4695 unsigned origWidth = N0.getValueSizeInBits(); 4696 unsigned maskWidth = origWidth; 4697 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 4698 // 8 bits, but have to be careful... 4699 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 4700 origWidth = Lod->getMemoryVT().getSizeInBits(); 4701 const APInt &Mask = N0.getConstantOperandAPInt(1); 4702 // Only consider power-of-2 widths (and at least one byte) as candiates 4703 // for the narrowed load. 4704 for (unsigned width = 8; width < origWidth; width *= 2) { 4705 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), width); 4706 if (!shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) 4707 continue; 4708 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 4709 // Avoid accessing any padding here for now (we could use memWidth 4710 // instead of origWidth here otherwise). 4711 unsigned maxOffset = origWidth - width; 4712 for (unsigned offset = 0; offset <= maxOffset; offset += 8) { 4713 if (Mask.isSubsetOf(newMask)) { 4714 unsigned ptrOffset = 4715 Layout.isLittleEndian() ? offset : memWidth - width - offset; 4716 unsigned IsFast = 0; 4717 Align NewAlign = commonAlignment(Lod->getAlign(), ptrOffset / 8); 4718 if (allowsMemoryAccess( 4719 *DAG.getContext(), Layout, newVT, Lod->getAddressSpace(), 4720 NewAlign, Lod->getMemOperand()->getFlags(), &IsFast) && 4721 IsFast) { 4722 bestOffset = ptrOffset / 8; 4723 bestMask = Mask.lshr(offset); 4724 bestWidth = width; 4725 break; 4726 } 4727 } 4728 newMask <<= 8; 4729 } 4730 if (bestWidth) 4731 break; 4732 } 4733 } 4734 if (bestWidth) { 4735 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 4736 SDValue Ptr = Lod->getBasePtr(); 4737 if (bestOffset != 0) 4738 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(bestOffset)); 4739 SDValue NewLoad = 4740 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 4741 Lod->getPointerInfo().getWithOffset(bestOffset), 4742 Lod->getOriginalAlign()); 4743 SDValue And = 4744 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 4745 DAG.getConstant(bestMask.trunc(bestWidth), dl, newVT)); 4746 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0LL, dl, newVT), Cond); 4747 } 4748 } 4749 4750 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 4751 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 4752 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 4753 4754 // If the comparison constant has bits in the upper part, the 4755 // zero-extended value could never match. 4756 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 4757 C1.getBitWidth() - InSize))) { 4758 switch (Cond) { 4759 case ISD::SETUGT: 4760 case ISD::SETUGE: 4761 case ISD::SETEQ: 4762 return DAG.getConstant(0, dl, VT); 4763 case ISD::SETULT: 4764 case ISD::SETULE: 4765 case ISD::SETNE: 4766 return DAG.getConstant(1, dl, VT); 4767 case ISD::SETGT: 4768 case ISD::SETGE: 4769 // True if the sign bit of C1 is set. 4770 return DAG.getConstant(C1.isNegative(), dl, VT); 4771 case ISD::SETLT: 4772 case ISD::SETLE: 4773 // True if the sign bit of C1 isn't set. 4774 return DAG.getConstant(C1.isNonNegative(), dl, VT); 4775 default: 4776 break; 4777 } 4778 } 4779 4780 // Otherwise, we can perform the comparison with the low bits. 4781 switch (Cond) { 4782 case ISD::SETEQ: 4783 case ISD::SETNE: 4784 case ISD::SETUGT: 4785 case ISD::SETUGE: 4786 case ISD::SETULT: 4787 case ISD::SETULE: { 4788 EVT newVT = N0.getOperand(0).getValueType(); 4789 // FIXME: Should use isNarrowingProfitable. 4790 if (DCI.isBeforeLegalizeOps() || 4791 (isOperationLegal(ISD::SETCC, newVT) && 4792 isCondCodeLegal(Cond, newVT.getSimpleVT()) && 4793 isTypeDesirableForOp(ISD::SETCC, newVT))) { 4794 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 4795 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 4796 4797 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 4798 NewConst, Cond); 4799 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 4800 } 4801 break; 4802 } 4803 default: 4804 break; // todo, be more careful with signed comparisons 4805 } 4806 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 4807 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4808 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 4809 OpVT)) { 4810 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 4811 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 4812 EVT ExtDstTy = N0.getValueType(); 4813 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 4814 4815 // If the constant doesn't fit into the number of bits for the source of 4816 // the sign extension, it is impossible for both sides to be equal. 4817 if (C1.getSignificantBits() > ExtSrcTyBits) 4818 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 4819 4820 assert(ExtDstTy == N0.getOperand(0).getValueType() && 4821 ExtDstTy != ExtSrcTy && "Unexpected types!"); 4822 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 4823 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 4824 DAG.getConstant(Imm, dl, ExtDstTy)); 4825 if (!DCI.isCalledByLegalizer()) 4826 DCI.AddToWorklist(ZextOp.getNode()); 4827 // Otherwise, make this a use of a zext. 4828 return DAG.getSetCC(dl, VT, ZextOp, 4829 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 4830 } else if ((N1C->isZero() || N1C->isOne()) && 4831 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4832 // SETCC (X), [0|1], [EQ|NE] -> X if X is known 0/1. i1 types are 4833 // excluded as they are handled below whilst checking for foldBooleans. 4834 if ((N0.getOpcode() == ISD::SETCC || VT.getScalarType() != MVT::i1) && 4835 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 4836 (N0.getValueType() == MVT::i1 || 4837 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4838 DAG.MaskedValueIsZero( 4839 N0, APInt::getBitsSetFrom(N0.getValueSizeInBits(), 1))) { 4840 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 4841 if (TrueWhenTrue) 4842 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 4843 // Invert the condition. 4844 if (N0.getOpcode() == ISD::SETCC) { 4845 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 4846 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 4847 if (DCI.isBeforeLegalizeOps() || 4848 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 4849 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 4850 } 4851 } 4852 4853 if ((N0.getOpcode() == ISD::XOR || 4854 (N0.getOpcode() == ISD::AND && 4855 N0.getOperand(0).getOpcode() == ISD::XOR && 4856 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 4857 isOneConstant(N0.getOperand(1))) { 4858 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 4859 // can only do this if the top bits are known zero. 4860 unsigned BitWidth = N0.getValueSizeInBits(); 4861 if (DAG.MaskedValueIsZero(N0, 4862 APInt::getHighBitsSet(BitWidth, 4863 BitWidth-1))) { 4864 // Okay, get the un-inverted input value. 4865 SDValue Val; 4866 if (N0.getOpcode() == ISD::XOR) { 4867 Val = N0.getOperand(0); 4868 } else { 4869 assert(N0.getOpcode() == ISD::AND && 4870 N0.getOperand(0).getOpcode() == ISD::XOR); 4871 // ((X^1)&1)^1 -> X & 1 4872 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 4873 N0.getOperand(0).getOperand(0), 4874 N0.getOperand(1)); 4875 } 4876 4877 return DAG.getSetCC(dl, VT, Val, N1, 4878 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4879 } 4880 } else if (N1C->isOne()) { 4881 SDValue Op0 = N0; 4882 if (Op0.getOpcode() == ISD::TRUNCATE) 4883 Op0 = Op0.getOperand(0); 4884 4885 if ((Op0.getOpcode() == ISD::XOR) && 4886 Op0.getOperand(0).getOpcode() == ISD::SETCC && 4887 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 4888 SDValue XorLHS = Op0.getOperand(0); 4889 SDValue XorRHS = Op0.getOperand(1); 4890 // Ensure that the input setccs return an i1 type or 0/1 value. 4891 if (Op0.getValueType() == MVT::i1 || 4892 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 4893 ZeroOrOneBooleanContent && 4894 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 4895 ZeroOrOneBooleanContent)) { 4896 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 4897 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 4898 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 4899 } 4900 } 4901 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 4902 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 4903 if (Op0.getValueType().bitsGT(VT)) 4904 Op0 = DAG.getNode(ISD::AND, dl, VT, 4905 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 4906 DAG.getConstant(1, dl, VT)); 4907 else if (Op0.getValueType().bitsLT(VT)) 4908 Op0 = DAG.getNode(ISD::AND, dl, VT, 4909 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 4910 DAG.getConstant(1, dl, VT)); 4911 4912 return DAG.getSetCC(dl, VT, Op0, 4913 DAG.getConstant(0, dl, Op0.getValueType()), 4914 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4915 } 4916 if (Op0.getOpcode() == ISD::AssertZext && 4917 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 4918 return DAG.getSetCC(dl, VT, Op0, 4919 DAG.getConstant(0, dl, Op0.getValueType()), 4920 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4921 } 4922 } 4923 4924 // Given: 4925 // icmp eq/ne (urem %x, %y), 0 4926 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 4927 // icmp eq/ne %x, 0 4928 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 4929 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4930 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 4931 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 4932 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 4933 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4934 } 4935 4936 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 4937 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 4938 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4939 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 4940 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 4941 N1C->isAllOnes()) { 4942 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4943 DAG.getConstant(0, dl, OpVT), 4944 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 4945 } 4946 4947 if (SDValue V = 4948 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 4949 return V; 4950 } 4951 4952 // These simplifications apply to splat vectors as well. 4953 // TODO: Handle more splat vector cases. 4954 if (auto *N1C = isConstOrConstSplat(N1)) { 4955 const APInt &C1 = N1C->getAPIntValue(); 4956 4957 APInt MinVal, MaxVal; 4958 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 4959 if (ISD::isSignedIntSetCC(Cond)) { 4960 MinVal = APInt::getSignedMinValue(OperandBitSize); 4961 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 4962 } else { 4963 MinVal = APInt::getMinValue(OperandBitSize); 4964 MaxVal = APInt::getMaxValue(OperandBitSize); 4965 } 4966 4967 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 4968 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 4969 // X >= MIN --> true 4970 if (C1 == MinVal) 4971 return DAG.getBoolConstant(true, dl, VT, OpVT); 4972 4973 if (!VT.isVector()) { // TODO: Support this for vectors. 4974 // X >= C0 --> X > (C0 - 1) 4975 APInt C = C1 - 1; 4976 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 4977 if ((DCI.isBeforeLegalizeOps() || 4978 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4979 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4980 isLegalICmpImmediate(C.getSExtValue())))) { 4981 return DAG.getSetCC(dl, VT, N0, 4982 DAG.getConstant(C, dl, N1.getValueType()), 4983 NewCC); 4984 } 4985 } 4986 } 4987 4988 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 4989 // X <= MAX --> true 4990 if (C1 == MaxVal) 4991 return DAG.getBoolConstant(true, dl, VT, OpVT); 4992 4993 // X <= C0 --> X < (C0 + 1) 4994 if (!VT.isVector()) { // TODO: Support this for vectors. 4995 APInt C = C1 + 1; 4996 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 4997 if ((DCI.isBeforeLegalizeOps() || 4998 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4999 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 5000 isLegalICmpImmediate(C.getSExtValue())))) { 5001 return DAG.getSetCC(dl, VT, N0, 5002 DAG.getConstant(C, dl, N1.getValueType()), 5003 NewCC); 5004 } 5005 } 5006 } 5007 5008 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 5009 if (C1 == MinVal) 5010 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 5011 5012 // TODO: Support this for vectors after legalize ops. 5013 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 5014 // Canonicalize setlt X, Max --> setne X, Max 5015 if (C1 == MaxVal) 5016 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 5017 5018 // If we have setult X, 1, turn it into seteq X, 0 5019 if (C1 == MinVal+1) 5020 return DAG.getSetCC(dl, VT, N0, 5021 DAG.getConstant(MinVal, dl, N0.getValueType()), 5022 ISD::SETEQ); 5023 } 5024 } 5025 5026 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 5027 if (C1 == MaxVal) 5028 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 5029 5030 // TODO: Support this for vectors after legalize ops. 5031 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 5032 // Canonicalize setgt X, Min --> setne X, Min 5033 if (C1 == MinVal) 5034 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 5035 5036 // If we have setugt X, Max-1, turn it into seteq X, Max 5037 if (C1 == MaxVal-1) 5038 return DAG.getSetCC(dl, VT, N0, 5039 DAG.getConstant(MaxVal, dl, N0.getValueType()), 5040 ISD::SETEQ); 5041 } 5042 } 5043 5044 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 5045 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 5046 if (C1.isZero()) 5047 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 5048 VT, N0, N1, Cond, DCI, dl)) 5049 return CC; 5050 5051 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 5052 // For example, when high 32-bits of i64 X are known clear: 5053 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 5054 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 5055 bool CmpZero = N1C->isZero(); 5056 bool CmpNegOne = N1C->isAllOnes(); 5057 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 5058 // Match or(lo,shl(hi,bw/2)) pattern. 5059 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 5060 unsigned EltBits = V.getScalarValueSizeInBits(); 5061 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 5062 return false; 5063 SDValue LHS = V.getOperand(0); 5064 SDValue RHS = V.getOperand(1); 5065 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 5066 // Unshifted element must have zero upperbits. 5067 if (RHS.getOpcode() == ISD::SHL && 5068 isa<ConstantSDNode>(RHS.getOperand(1)) && 5069 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 5070 DAG.MaskedValueIsZero(LHS, HiBits)) { 5071 Lo = LHS; 5072 Hi = RHS.getOperand(0); 5073 return true; 5074 } 5075 if (LHS.getOpcode() == ISD::SHL && 5076 isa<ConstantSDNode>(LHS.getOperand(1)) && 5077 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 5078 DAG.MaskedValueIsZero(RHS, HiBits)) { 5079 Lo = RHS; 5080 Hi = LHS.getOperand(0); 5081 return true; 5082 } 5083 return false; 5084 }; 5085 5086 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 5087 unsigned EltBits = N0.getScalarValueSizeInBits(); 5088 unsigned HalfBits = EltBits / 2; 5089 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 5090 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 5091 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 5092 SDValue NewN0 = 5093 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 5094 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 5095 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 5096 }; 5097 5098 SDValue Lo, Hi; 5099 if (IsConcat(N0, Lo, Hi)) 5100 return MergeConcat(Lo, Hi); 5101 5102 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 5103 SDValue Lo0, Lo1, Hi0, Hi1; 5104 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 5105 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 5106 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 5107 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 5108 } 5109 } 5110 } 5111 } 5112 5113 // If we have "setcc X, C0", check to see if we can shrink the immediate 5114 // by changing cc. 5115 // TODO: Support this for vectors after legalize ops. 5116 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 5117 // SETUGT X, SINTMAX -> SETLT X, 0 5118 // SETUGE X, SINTMIN -> SETLT X, 0 5119 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 5120 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 5121 return DAG.getSetCC(dl, VT, N0, 5122 DAG.getConstant(0, dl, N1.getValueType()), 5123 ISD::SETLT); 5124 5125 // SETULT X, SINTMIN -> SETGT X, -1 5126 // SETULE X, SINTMAX -> SETGT X, -1 5127 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 5128 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 5129 return DAG.getSetCC(dl, VT, N0, 5130 DAG.getAllOnesConstant(dl, N1.getValueType()), 5131 ISD::SETGT); 5132 } 5133 } 5134 5135 // Back to non-vector simplifications. 5136 // TODO: Can we do these for vector splats? 5137 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 5138 const APInt &C1 = N1C->getAPIntValue(); 5139 EVT ShValTy = N0.getValueType(); 5140 5141 // Fold bit comparisons when we can. This will result in an 5142 // incorrect value when boolean false is negative one, unless 5143 // the bitsize is 1 in which case the false value is the same 5144 // in practice regardless of the representation. 5145 if ((VT.getSizeInBits() == 1 || 5146 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 5147 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5148 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 5149 N0.getOpcode() == ISD::AND) { 5150 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5151 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 5152 // Perform the xform if the AND RHS is a single bit. 5153 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 5154 if (AndRHS->getAPIntValue().isPowerOf2() && 5155 !shouldAvoidTransformToShift(ShValTy, ShCt)) { 5156 return DAG.getNode( 5157 ISD::TRUNCATE, dl, VT, 5158 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 5159 DAG.getShiftAmountConstant(ShCt, ShValTy, dl))); 5160 } 5161 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 5162 // (X & 8) == 8 --> (X & 8) >> 3 5163 // Perform the xform if C1 is a single bit. 5164 unsigned ShCt = C1.logBase2(); 5165 if (C1.isPowerOf2() && !shouldAvoidTransformToShift(ShValTy, ShCt)) { 5166 return DAG.getNode( 5167 ISD::TRUNCATE, dl, VT, 5168 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 5169 DAG.getShiftAmountConstant(ShCt, ShValTy, dl))); 5170 } 5171 } 5172 } 5173 } 5174 5175 if (C1.getSignificantBits() <= 64 && 5176 !isLegalICmpImmediate(C1.getSExtValue())) { 5177 // (X & -256) == 256 -> (X >> 8) == 1 5178 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5179 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 5180 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5181 const APInt &AndRHSC = AndRHS->getAPIntValue(); 5182 if (AndRHSC.isNegatedPowerOf2() && C1.isSubsetOf(AndRHSC)) { 5183 unsigned ShiftBits = AndRHSC.countr_zero(); 5184 if (!shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 5185 SDValue Shift = DAG.getNode( 5186 ISD::SRL, dl, ShValTy, N0.getOperand(0), 5187 DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl)); 5188 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 5189 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 5190 } 5191 } 5192 } 5193 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 5194 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 5195 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 5196 // X < 0x100000000 -> (X >> 32) < 1 5197 // X >= 0x100000000 -> (X >> 32) >= 1 5198 // X <= 0x0ffffffff -> (X >> 32) < 1 5199 // X > 0x0ffffffff -> (X >> 32) >= 1 5200 unsigned ShiftBits; 5201 APInt NewC = C1; 5202 ISD::CondCode NewCond = Cond; 5203 if (AdjOne) { 5204 ShiftBits = C1.countr_one(); 5205 NewC = NewC + 1; 5206 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 5207 } else { 5208 ShiftBits = C1.countr_zero(); 5209 } 5210 NewC.lshrInPlace(ShiftBits); 5211 if (ShiftBits && NewC.getSignificantBits() <= 64 && 5212 isLegalICmpImmediate(NewC.getSExtValue()) && 5213 !shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 5214 SDValue Shift = 5215 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 5216 DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl)); 5217 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 5218 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 5219 } 5220 } 5221 } 5222 } 5223 5224 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 5225 auto *CFP = cast<ConstantFPSDNode>(N1); 5226 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 5227 5228 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 5229 // constant if knowing that the operand is non-nan is enough. We prefer to 5230 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 5231 // materialize 0.0. 5232 if (Cond == ISD::SETO || Cond == ISD::SETUO) 5233 return DAG.getSetCC(dl, VT, N0, N0, Cond); 5234 5235 // setcc (fneg x), C -> setcc swap(pred) x, -C 5236 if (N0.getOpcode() == ISD::FNEG) { 5237 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 5238 if (DCI.isBeforeLegalizeOps() || 5239 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 5240 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 5241 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 5242 } 5243 } 5244 5245 // setueq/setoeq X, (fabs Inf) -> is_fpclass X, fcInf 5246 if (isOperationLegalOrCustom(ISD::IS_FPCLASS, N0.getValueType()) && 5247 !isFPImmLegal(CFP->getValueAPF(), CFP->getValueType(0))) { 5248 bool IsFabs = N0.getOpcode() == ISD::FABS; 5249 SDValue Op = IsFabs ? N0.getOperand(0) : N0; 5250 if ((Cond == ISD::SETOEQ || Cond == ISD::SETUEQ) && CFP->isInfinity()) { 5251 FPClassTest Flag = CFP->isNegative() ? (IsFabs ? fcNone : fcNegInf) 5252 : (IsFabs ? fcInf : fcPosInf); 5253 if (Cond == ISD::SETUEQ) 5254 Flag |= fcNan; 5255 return DAG.getNode(ISD::IS_FPCLASS, dl, VT, Op, 5256 DAG.getTargetConstant(Flag, dl, MVT::i32)); 5257 } 5258 } 5259 5260 // If the condition is not legal, see if we can find an equivalent one 5261 // which is legal. 5262 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 5263 // If the comparison was an awkward floating-point == or != and one of 5264 // the comparison operands is infinity or negative infinity, convert the 5265 // condition to a less-awkward <= or >=. 5266 if (CFP->getValueAPF().isInfinity()) { 5267 bool IsNegInf = CFP->getValueAPF().isNegative(); 5268 ISD::CondCode NewCond = ISD::SETCC_INVALID; 5269 switch (Cond) { 5270 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 5271 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 5272 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 5273 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 5274 default: break; 5275 } 5276 if (NewCond != ISD::SETCC_INVALID && 5277 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 5278 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 5279 } 5280 } 5281 } 5282 5283 if (N0 == N1) { 5284 // The sext(setcc()) => setcc() optimization relies on the appropriate 5285 // constant being emitted. 5286 assert(!N0.getValueType().isInteger() && 5287 "Integer types should be handled by FoldSetCC"); 5288 5289 bool EqTrue = ISD::isTrueWhenEqual(Cond); 5290 unsigned UOF = ISD::getUnorderedFlavor(Cond); 5291 if (UOF == 2) // FP operators that are undefined on NaNs. 5292 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 5293 if (UOF == unsigned(EqTrue)) 5294 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 5295 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 5296 // if it is not already. 5297 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 5298 if (NewCond != Cond && 5299 (DCI.isBeforeLegalizeOps() || 5300 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 5301 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 5302 } 5303 5304 // ~X > ~Y --> Y > X 5305 // ~X < ~Y --> Y < X 5306 // ~X < C --> X > ~C 5307 // ~X > C --> X < ~C 5308 if ((isSignedIntSetCC(Cond) || isUnsignedIntSetCC(Cond)) && 5309 N0.getValueType().isInteger()) { 5310 if (isBitwiseNot(N0)) { 5311 if (isBitwiseNot(N1)) 5312 return DAG.getSetCC(dl, VT, N1.getOperand(0), N0.getOperand(0), Cond); 5313 5314 if (DAG.isConstantIntBuildVectorOrConstantInt(N1) && 5315 !DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(0))) { 5316 SDValue Not = DAG.getNOT(dl, N1, OpVT); 5317 return DAG.getSetCC(dl, VT, Not, N0.getOperand(0), Cond); 5318 } 5319 } 5320 } 5321 5322 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5323 N0.getValueType().isInteger()) { 5324 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 5325 N0.getOpcode() == ISD::XOR) { 5326 // Simplify (X+Y) == (X+Z) --> Y == Z 5327 if (N0.getOpcode() == N1.getOpcode()) { 5328 if (N0.getOperand(0) == N1.getOperand(0)) 5329 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 5330 if (N0.getOperand(1) == N1.getOperand(1)) 5331 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 5332 if (isCommutativeBinOp(N0.getOpcode())) { 5333 // If X op Y == Y op X, try other combinations. 5334 if (N0.getOperand(0) == N1.getOperand(1)) 5335 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 5336 Cond); 5337 if (N0.getOperand(1) == N1.getOperand(0)) 5338 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 5339 Cond); 5340 } 5341 } 5342 5343 // If RHS is a legal immediate value for a compare instruction, we need 5344 // to be careful about increasing register pressure needlessly. 5345 bool LegalRHSImm = false; 5346 5347 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 5348 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5349 // Turn (X+C1) == C2 --> X == C2-C1 5350 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) 5351 return DAG.getSetCC( 5352 dl, VT, N0.getOperand(0), 5353 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(), 5354 dl, N0.getValueType()), 5355 Cond); 5356 5357 // Turn (X^C1) == C2 --> X == C1^C2 5358 if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse()) 5359 return DAG.getSetCC( 5360 dl, VT, N0.getOperand(0), 5361 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(), 5362 dl, N0.getValueType()), 5363 Cond); 5364 } 5365 5366 // Turn (C1-X) == C2 --> X == C1-C2 5367 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) 5368 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) 5369 return DAG.getSetCC( 5370 dl, VT, N0.getOperand(1), 5371 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(), 5372 dl, N0.getValueType()), 5373 Cond); 5374 5375 // Could RHSC fold directly into a compare? 5376 if (RHSC->getValueType(0).getSizeInBits() <= 64) 5377 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 5378 } 5379 5380 // (X+Y) == X --> Y == 0 and similar folds. 5381 // Don't do this if X is an immediate that can fold into a cmp 5382 // instruction and X+Y has other uses. It could be an induction variable 5383 // chain, and the transform would increase register pressure. 5384 if (!LegalRHSImm || N0.hasOneUse()) 5385 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 5386 return V; 5387 } 5388 5389 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 5390 N1.getOpcode() == ISD::XOR) 5391 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 5392 return V; 5393 5394 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 5395 return V; 5396 } 5397 5398 // Fold remainder of division by a constant. 5399 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 5400 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 5401 // When division is cheap or optimizing for minimum size, 5402 // fall through to DIVREM creation by skipping this fold. 5403 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 5404 if (N0.getOpcode() == ISD::UREM) { 5405 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 5406 return Folded; 5407 } else if (N0.getOpcode() == ISD::SREM) { 5408 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 5409 return Folded; 5410 } 5411 } 5412 } 5413 5414 // Fold away ALL boolean setcc's. 5415 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 5416 SDValue Temp; 5417 switch (Cond) { 5418 default: llvm_unreachable("Unknown integer setcc!"); 5419 case ISD::SETEQ: // X == Y -> ~(X^Y) 5420 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 5421 N0 = DAG.getNOT(dl, Temp, OpVT); 5422 if (!DCI.isCalledByLegalizer()) 5423 DCI.AddToWorklist(Temp.getNode()); 5424 break; 5425 case ISD::SETNE: // X != Y --> (X^Y) 5426 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 5427 break; 5428 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 5429 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 5430 Temp = DAG.getNOT(dl, N0, OpVT); 5431 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 5432 if (!DCI.isCalledByLegalizer()) 5433 DCI.AddToWorklist(Temp.getNode()); 5434 break; 5435 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 5436 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 5437 Temp = DAG.getNOT(dl, N1, OpVT); 5438 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 5439 if (!DCI.isCalledByLegalizer()) 5440 DCI.AddToWorklist(Temp.getNode()); 5441 break; 5442 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 5443 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 5444 Temp = DAG.getNOT(dl, N0, OpVT); 5445 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 5446 if (!DCI.isCalledByLegalizer()) 5447 DCI.AddToWorklist(Temp.getNode()); 5448 break; 5449 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 5450 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 5451 Temp = DAG.getNOT(dl, N1, OpVT); 5452 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 5453 break; 5454 } 5455 if (VT.getScalarType() != MVT::i1) { 5456 if (!DCI.isCalledByLegalizer()) 5457 DCI.AddToWorklist(N0.getNode()); 5458 // FIXME: If running after legalize, we probably can't do this. 5459 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 5460 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 5461 } 5462 return N0; 5463 } 5464 5465 // Could not fold it. 5466 return SDValue(); 5467 } 5468 5469 /// Returns true (and the GlobalValue and the offset) if the node is a 5470 /// GlobalAddress + offset. 5471 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 5472 int64_t &Offset) const { 5473 5474 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 5475 5476 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 5477 GA = GASD->getGlobal(); 5478 Offset += GASD->getOffset(); 5479 return true; 5480 } 5481 5482 if (N->getOpcode() == ISD::ADD) { 5483 SDValue N1 = N->getOperand(0); 5484 SDValue N2 = N->getOperand(1); 5485 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 5486 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 5487 Offset += V->getSExtValue(); 5488 return true; 5489 } 5490 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 5491 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 5492 Offset += V->getSExtValue(); 5493 return true; 5494 } 5495 } 5496 } 5497 5498 return false; 5499 } 5500 5501 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 5502 DAGCombinerInfo &DCI) const { 5503 // Default implementation: no optimization. 5504 return SDValue(); 5505 } 5506 5507 //===----------------------------------------------------------------------===// 5508 // Inline Assembler Implementation Methods 5509 //===----------------------------------------------------------------------===// 5510 5511 TargetLowering::ConstraintType 5512 TargetLowering::getConstraintType(StringRef Constraint) const { 5513 unsigned S = Constraint.size(); 5514 5515 if (S == 1) { 5516 switch (Constraint[0]) { 5517 default: break; 5518 case 'r': 5519 return C_RegisterClass; 5520 case 'm': // memory 5521 case 'o': // offsetable 5522 case 'V': // not offsetable 5523 return C_Memory; 5524 case 'p': // Address. 5525 return C_Address; 5526 case 'n': // Simple Integer 5527 case 'E': // Floating Point Constant 5528 case 'F': // Floating Point Constant 5529 return C_Immediate; 5530 case 'i': // Simple Integer or Relocatable Constant 5531 case 's': // Relocatable Constant 5532 case 'X': // Allow ANY value. 5533 case 'I': // Target registers. 5534 case 'J': 5535 case 'K': 5536 case 'L': 5537 case 'M': 5538 case 'N': 5539 case 'O': 5540 case 'P': 5541 case '<': 5542 case '>': 5543 return C_Other; 5544 } 5545 } 5546 5547 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 5548 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 5549 return C_Memory; 5550 return C_Register; 5551 } 5552 return C_Unknown; 5553 } 5554 5555 /// Try to replace an X constraint, which matches anything, with another that 5556 /// has more specific requirements based on the type of the corresponding 5557 /// operand. 5558 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 5559 if (ConstraintVT.isInteger()) 5560 return "r"; 5561 if (ConstraintVT.isFloatingPoint()) 5562 return "f"; // works for many targets 5563 return nullptr; 5564 } 5565 5566 SDValue TargetLowering::LowerAsmOutputForConstraint( 5567 SDValue &Chain, SDValue &Glue, const SDLoc &DL, 5568 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 5569 return SDValue(); 5570 } 5571 5572 /// Lower the specified operand into the Ops vector. 5573 /// If it is invalid, don't add anything to Ops. 5574 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 5575 StringRef Constraint, 5576 std::vector<SDValue> &Ops, 5577 SelectionDAG &DAG) const { 5578 5579 if (Constraint.size() > 1) 5580 return; 5581 5582 char ConstraintLetter = Constraint[0]; 5583 switch (ConstraintLetter) { 5584 default: break; 5585 case 'X': // Allows any operand 5586 case 'i': // Simple Integer or Relocatable Constant 5587 case 'n': // Simple Integer 5588 case 's': { // Relocatable Constant 5589 5590 ConstantSDNode *C; 5591 uint64_t Offset = 0; 5592 5593 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 5594 // etc., since getelementpointer is variadic. We can't use 5595 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 5596 // while in this case the GA may be furthest from the root node which is 5597 // likely an ISD::ADD. 5598 while (true) { 5599 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 5600 // gcc prints these as sign extended. Sign extend value to 64 bits 5601 // now; without this it would get ZExt'd later in 5602 // ScheduleDAGSDNodes::EmitNode, which is very generic. 5603 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 5604 BooleanContent BCont = getBooleanContents(MVT::i64); 5605 ISD::NodeType ExtOpc = 5606 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 5607 int64_t ExtVal = 5608 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 5609 Ops.push_back( 5610 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 5611 return; 5612 } 5613 if (ConstraintLetter != 'n') { 5614 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 5615 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 5616 GA->getValueType(0), 5617 Offset + GA->getOffset())); 5618 return; 5619 } 5620 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 5621 Ops.push_back(DAG.getTargetBlockAddress( 5622 BA->getBlockAddress(), BA->getValueType(0), 5623 Offset + BA->getOffset(), BA->getTargetFlags())); 5624 return; 5625 } 5626 if (isa<BasicBlockSDNode>(Op)) { 5627 Ops.push_back(Op); 5628 return; 5629 } 5630 } 5631 const unsigned OpCode = Op.getOpcode(); 5632 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 5633 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 5634 Op = Op.getOperand(1); 5635 // Subtraction is not commutative. 5636 else if (OpCode == ISD::ADD && 5637 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 5638 Op = Op.getOperand(0); 5639 else 5640 return; 5641 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 5642 continue; 5643 } 5644 return; 5645 } 5646 break; 5647 } 5648 } 5649 } 5650 5651 void TargetLowering::CollectTargetIntrinsicOperands( 5652 const CallInst &I, SmallVectorImpl<SDValue> &Ops, SelectionDAG &DAG) const { 5653 } 5654 5655 std::pair<unsigned, const TargetRegisterClass *> 5656 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 5657 StringRef Constraint, 5658 MVT VT) const { 5659 if (!Constraint.starts_with("{")) 5660 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 5661 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 5662 5663 // Remove the braces from around the name. 5664 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 5665 5666 std::pair<unsigned, const TargetRegisterClass *> R = 5667 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 5668 5669 // Figure out which register class contains this reg. 5670 for (const TargetRegisterClass *RC : RI->regclasses()) { 5671 // If none of the value types for this register class are valid, we 5672 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5673 if (!isLegalRC(*RI, *RC)) 5674 continue; 5675 5676 for (const MCPhysReg &PR : *RC) { 5677 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 5678 std::pair<unsigned, const TargetRegisterClass *> S = 5679 std::make_pair(PR, RC); 5680 5681 // If this register class has the requested value type, return it, 5682 // otherwise keep searching and return the first class found 5683 // if no other is found which explicitly has the requested type. 5684 if (RI->isTypeLegalForClass(*RC, VT)) 5685 return S; 5686 if (!R.second) 5687 R = S; 5688 } 5689 } 5690 } 5691 5692 return R; 5693 } 5694 5695 //===----------------------------------------------------------------------===// 5696 // Constraint Selection. 5697 5698 /// Return true of this is an input operand that is a matching constraint like 5699 /// "4". 5700 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 5701 assert(!ConstraintCode.empty() && "No known constraint!"); 5702 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 5703 } 5704 5705 /// If this is an input matching constraint, this method returns the output 5706 /// operand it matches. 5707 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 5708 assert(!ConstraintCode.empty() && "No known constraint!"); 5709 return atoi(ConstraintCode.c_str()); 5710 } 5711 5712 /// Split up the constraint string from the inline assembly value into the 5713 /// specific constraints and their prefixes, and also tie in the associated 5714 /// operand values. 5715 /// If this returns an empty vector, and if the constraint string itself 5716 /// isn't empty, there was an error parsing. 5717 TargetLowering::AsmOperandInfoVector 5718 TargetLowering::ParseConstraints(const DataLayout &DL, 5719 const TargetRegisterInfo *TRI, 5720 const CallBase &Call) const { 5721 /// Information about all of the constraints. 5722 AsmOperandInfoVector ConstraintOperands; 5723 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 5724 unsigned maCount = 0; // Largest number of multiple alternative constraints. 5725 5726 // Do a prepass over the constraints, canonicalizing them, and building up the 5727 // ConstraintOperands list. 5728 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5729 unsigned ResNo = 0; // ResNo - The result number of the next output. 5730 unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number. 5731 5732 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 5733 ConstraintOperands.emplace_back(std::move(CI)); 5734 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 5735 5736 // Update multiple alternative constraint count. 5737 if (OpInfo.multipleAlternatives.size() > maCount) 5738 maCount = OpInfo.multipleAlternatives.size(); 5739 5740 OpInfo.ConstraintVT = MVT::Other; 5741 5742 // Compute the value type for each operand. 5743 switch (OpInfo.Type) { 5744 case InlineAsm::isOutput: 5745 // Indirect outputs just consume an argument. 5746 if (OpInfo.isIndirect) { 5747 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5748 break; 5749 } 5750 5751 // The return value of the call is this value. As such, there is no 5752 // corresponding argument. 5753 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 5754 if (auto *STy = dyn_cast<StructType>(Call.getType())) { 5755 OpInfo.ConstraintVT = 5756 getSimpleValueType(DL, STy->getElementType(ResNo)); 5757 } else { 5758 assert(ResNo == 0 && "Asm only has one result!"); 5759 OpInfo.ConstraintVT = 5760 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 5761 } 5762 ++ResNo; 5763 break; 5764 case InlineAsm::isInput: 5765 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5766 break; 5767 case InlineAsm::isLabel: 5768 OpInfo.CallOperandVal = cast<CallBrInst>(&Call)->getIndirectDest(LabelNo); 5769 ++LabelNo; 5770 continue; 5771 case InlineAsm::isClobber: 5772 // Nothing to do. 5773 break; 5774 } 5775 5776 if (OpInfo.CallOperandVal) { 5777 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 5778 if (OpInfo.isIndirect) { 5779 OpTy = Call.getParamElementType(ArgNo); 5780 assert(OpTy && "Indirect operand must have elementtype attribute"); 5781 } 5782 5783 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5784 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5785 if (STy->getNumElements() == 1) 5786 OpTy = STy->getElementType(0); 5787 5788 // If OpTy is not a single value, it may be a struct/union that we 5789 // can tile with integers. 5790 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5791 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5792 switch (BitSize) { 5793 default: break; 5794 case 1: 5795 case 8: 5796 case 16: 5797 case 32: 5798 case 64: 5799 case 128: 5800 OpTy = IntegerType::get(OpTy->getContext(), BitSize); 5801 break; 5802 } 5803 } 5804 5805 EVT VT = getAsmOperandValueType(DL, OpTy, true); 5806 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; 5807 ArgNo++; 5808 } 5809 } 5810 5811 // If we have multiple alternative constraints, select the best alternative. 5812 if (!ConstraintOperands.empty()) { 5813 if (maCount) { 5814 unsigned bestMAIndex = 0; 5815 int bestWeight = -1; 5816 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 5817 int weight = -1; 5818 unsigned maIndex; 5819 // Compute the sums of the weights for each alternative, keeping track 5820 // of the best (highest weight) one so far. 5821 for (maIndex = 0; maIndex < maCount; ++maIndex) { 5822 int weightSum = 0; 5823 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5824 cIndex != eIndex; ++cIndex) { 5825 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5826 if (OpInfo.Type == InlineAsm::isClobber) 5827 continue; 5828 5829 // If this is an output operand with a matching input operand, 5830 // look up the matching input. If their types mismatch, e.g. one 5831 // is an integer, the other is floating point, or their sizes are 5832 // different, flag it as an maCantMatch. 5833 if (OpInfo.hasMatchingInput()) { 5834 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5835 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5836 if ((OpInfo.ConstraintVT.isInteger() != 5837 Input.ConstraintVT.isInteger()) || 5838 (OpInfo.ConstraintVT.getSizeInBits() != 5839 Input.ConstraintVT.getSizeInBits())) { 5840 weightSum = -1; // Can't match. 5841 break; 5842 } 5843 } 5844 } 5845 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 5846 if (weight == -1) { 5847 weightSum = -1; 5848 break; 5849 } 5850 weightSum += weight; 5851 } 5852 // Update best. 5853 if (weightSum > bestWeight) { 5854 bestWeight = weightSum; 5855 bestMAIndex = maIndex; 5856 } 5857 } 5858 5859 // Now select chosen alternative in each constraint. 5860 for (AsmOperandInfo &cInfo : ConstraintOperands) 5861 if (cInfo.Type != InlineAsm::isClobber) 5862 cInfo.selectAlternative(bestMAIndex); 5863 } 5864 } 5865 5866 // Check and hook up tied operands, choose constraint code to use. 5867 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5868 cIndex != eIndex; ++cIndex) { 5869 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5870 5871 // If this is an output operand with a matching input operand, look up the 5872 // matching input. If their types mismatch, e.g. one is an integer, the 5873 // other is floating point, or their sizes are different, flag it as an 5874 // error. 5875 if (OpInfo.hasMatchingInput()) { 5876 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5877 5878 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5879 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5880 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5881 OpInfo.ConstraintVT); 5882 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5883 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5884 Input.ConstraintVT); 5885 const bool OutOpIsIntOrFP = OpInfo.ConstraintVT.isInteger() || 5886 OpInfo.ConstraintVT.isFloatingPoint(); 5887 const bool InOpIsIntOrFP = Input.ConstraintVT.isInteger() || 5888 Input.ConstraintVT.isFloatingPoint(); 5889 if ((OutOpIsIntOrFP != InOpIsIntOrFP) || 5890 (MatchRC.second != InputRC.second)) { 5891 report_fatal_error("Unsupported asm: input constraint" 5892 " with a matching output constraint of" 5893 " incompatible type!"); 5894 } 5895 } 5896 } 5897 } 5898 5899 return ConstraintOperands; 5900 } 5901 5902 /// Return a number indicating our preference for chosing a type of constraint 5903 /// over another, for the purpose of sorting them. Immediates are almost always 5904 /// preferrable (when they can be emitted). A higher return value means a 5905 /// stronger preference for one constraint type relative to another. 5906 /// FIXME: We should prefer registers over memory but doing so may lead to 5907 /// unrecoverable register exhaustion later. 5908 /// https://github.com/llvm/llvm-project/issues/20571 5909 static unsigned getConstraintPiority(TargetLowering::ConstraintType CT) { 5910 switch (CT) { 5911 case TargetLowering::C_Immediate: 5912 case TargetLowering::C_Other: 5913 return 4; 5914 case TargetLowering::C_Memory: 5915 case TargetLowering::C_Address: 5916 return 3; 5917 case TargetLowering::C_RegisterClass: 5918 return 2; 5919 case TargetLowering::C_Register: 5920 return 1; 5921 case TargetLowering::C_Unknown: 5922 return 0; 5923 } 5924 llvm_unreachable("Invalid constraint type"); 5925 } 5926 5927 /// Examine constraint type and operand type and determine a weight value. 5928 /// This object must already have been set up with the operand type 5929 /// and the current alternative constraint selected. 5930 TargetLowering::ConstraintWeight 5931 TargetLowering::getMultipleConstraintMatchWeight( 5932 AsmOperandInfo &info, int maIndex) const { 5933 InlineAsm::ConstraintCodeVector *rCodes; 5934 if (maIndex >= (int)info.multipleAlternatives.size()) 5935 rCodes = &info.Codes; 5936 else 5937 rCodes = &info.multipleAlternatives[maIndex].Codes; 5938 ConstraintWeight BestWeight = CW_Invalid; 5939 5940 // Loop over the options, keeping track of the most general one. 5941 for (const std::string &rCode : *rCodes) { 5942 ConstraintWeight weight = 5943 getSingleConstraintMatchWeight(info, rCode.c_str()); 5944 if (weight > BestWeight) 5945 BestWeight = weight; 5946 } 5947 5948 return BestWeight; 5949 } 5950 5951 /// Examine constraint type and operand type and determine a weight value. 5952 /// This object must already have been set up with the operand type 5953 /// and the current alternative constraint selected. 5954 TargetLowering::ConstraintWeight 5955 TargetLowering::getSingleConstraintMatchWeight( 5956 AsmOperandInfo &info, const char *constraint) const { 5957 ConstraintWeight weight = CW_Invalid; 5958 Value *CallOperandVal = info.CallOperandVal; 5959 // If we don't have a value, we can't do a match, 5960 // but allow it at the lowest weight. 5961 if (!CallOperandVal) 5962 return CW_Default; 5963 // Look at the constraint type. 5964 switch (*constraint) { 5965 case 'i': // immediate integer. 5966 case 'n': // immediate integer with a known value. 5967 if (isa<ConstantInt>(CallOperandVal)) 5968 weight = CW_Constant; 5969 break; 5970 case 's': // non-explicit intregal immediate. 5971 if (isa<GlobalValue>(CallOperandVal)) 5972 weight = CW_Constant; 5973 break; 5974 case 'E': // immediate float if host format. 5975 case 'F': // immediate float. 5976 if (isa<ConstantFP>(CallOperandVal)) 5977 weight = CW_Constant; 5978 break; 5979 case '<': // memory operand with autodecrement. 5980 case '>': // memory operand with autoincrement. 5981 case 'm': // memory operand. 5982 case 'o': // offsettable memory operand 5983 case 'V': // non-offsettable memory operand 5984 weight = CW_Memory; 5985 break; 5986 case 'r': // general register. 5987 case 'g': // general register, memory operand or immediate integer. 5988 // note: Clang converts "g" to "imr". 5989 if (CallOperandVal->getType()->isIntegerTy()) 5990 weight = CW_Register; 5991 break; 5992 case 'X': // any operand. 5993 default: 5994 weight = CW_Default; 5995 break; 5996 } 5997 return weight; 5998 } 5999 6000 /// If there are multiple different constraints that we could pick for this 6001 /// operand (e.g. "imr") try to pick the 'best' one. 6002 /// This is somewhat tricky: constraints (TargetLowering::ConstraintType) fall 6003 /// into seven classes: 6004 /// Register -> one specific register 6005 /// RegisterClass -> a group of regs 6006 /// Memory -> memory 6007 /// Address -> a symbolic memory reference 6008 /// Immediate -> immediate values 6009 /// Other -> magic values (such as "Flag Output Operands") 6010 /// Unknown -> something we don't recognize yet and can't handle 6011 /// Ideally, we would pick the most specific constraint possible: if we have 6012 /// something that fits into a register, we would pick it. The problem here 6013 /// is that if we have something that could either be in a register or in 6014 /// memory that use of the register could cause selection of *other* 6015 /// operands to fail: they might only succeed if we pick memory. Because of 6016 /// this the heuristic we use is: 6017 /// 6018 /// 1) If there is an 'other' constraint, and if the operand is valid for 6019 /// that constraint, use it. This makes us take advantage of 'i' 6020 /// constraints when available. 6021 /// 2) Otherwise, pick the most general constraint present. This prefers 6022 /// 'm' over 'r', for example. 6023 /// 6024 TargetLowering::ConstraintGroup TargetLowering::getConstraintPreferences( 6025 TargetLowering::AsmOperandInfo &OpInfo) const { 6026 ConstraintGroup Ret; 6027 6028 Ret.reserve(OpInfo.Codes.size()); 6029 for (StringRef Code : OpInfo.Codes) { 6030 TargetLowering::ConstraintType CType = getConstraintType(Code); 6031 6032 // Indirect 'other' or 'immediate' constraints are not allowed. 6033 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 6034 CType == TargetLowering::C_Register || 6035 CType == TargetLowering::C_RegisterClass)) 6036 continue; 6037 6038 // Things with matching constraints can only be registers, per gcc 6039 // documentation. This mainly affects "g" constraints. 6040 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 6041 continue; 6042 6043 Ret.emplace_back(Code, CType); 6044 } 6045 6046 std::stable_sort( 6047 Ret.begin(), Ret.end(), [](ConstraintPair a, ConstraintPair b) { 6048 return getConstraintPiority(a.second) > getConstraintPiority(b.second); 6049 }); 6050 6051 return Ret; 6052 } 6053 6054 /// If we have an immediate, see if we can lower it. Return true if we can, 6055 /// false otherwise. 6056 static bool lowerImmediateIfPossible(TargetLowering::ConstraintPair &P, 6057 SDValue Op, SelectionDAG *DAG, 6058 const TargetLowering &TLI) { 6059 6060 assert((P.second == TargetLowering::C_Other || 6061 P.second == TargetLowering::C_Immediate) && 6062 "need immediate or other"); 6063 6064 if (!Op.getNode()) 6065 return false; 6066 6067 std::vector<SDValue> ResultOps; 6068 TLI.LowerAsmOperandForConstraint(Op, P.first, ResultOps, *DAG); 6069 return !ResultOps.empty(); 6070 } 6071 6072 /// Determines the constraint code and constraint type to use for the specific 6073 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 6074 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 6075 SDValue Op, 6076 SelectionDAG *DAG) const { 6077 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 6078 6079 // Single-letter constraints ('r') are very common. 6080 if (OpInfo.Codes.size() == 1) { 6081 OpInfo.ConstraintCode = OpInfo.Codes[0]; 6082 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 6083 } else { 6084 ConstraintGroup G = getConstraintPreferences(OpInfo); 6085 if (G.empty()) 6086 return; 6087 6088 unsigned BestIdx = 0; 6089 for (const unsigned E = G.size(); 6090 BestIdx < E && (G[BestIdx].second == TargetLowering::C_Other || 6091 G[BestIdx].second == TargetLowering::C_Immediate); 6092 ++BestIdx) { 6093 if (lowerImmediateIfPossible(G[BestIdx], Op, DAG, *this)) 6094 break; 6095 // If we're out of constraints, just pick the first one. 6096 if (BestIdx + 1 == E) { 6097 BestIdx = 0; 6098 break; 6099 } 6100 } 6101 6102 OpInfo.ConstraintCode = G[BestIdx].first; 6103 OpInfo.ConstraintType = G[BestIdx].second; 6104 } 6105 6106 // 'X' matches anything. 6107 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 6108 // Constants are handled elsewhere. For Functions, the type here is the 6109 // type of the result, which is not what we want to look at; leave them 6110 // alone. 6111 Value *v = OpInfo.CallOperandVal; 6112 if (isa<ConstantInt>(v) || isa<Function>(v)) { 6113 return; 6114 } 6115 6116 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) { 6117 OpInfo.ConstraintCode = "i"; 6118 return; 6119 } 6120 6121 // Otherwise, try to resolve it to something we know about by looking at 6122 // the actual operand type. 6123 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 6124 OpInfo.ConstraintCode = Repl; 6125 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 6126 } 6127 } 6128 } 6129 6130 /// Given an exact SDIV by a constant, create a multiplication 6131 /// with the multiplicative inverse of the constant. 6132 /// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242 6133 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 6134 const SDLoc &dl, SelectionDAG &DAG, 6135 SmallVectorImpl<SDNode *> &Created) { 6136 SDValue Op0 = N->getOperand(0); 6137 SDValue Op1 = N->getOperand(1); 6138 EVT VT = N->getValueType(0); 6139 EVT SVT = VT.getScalarType(); 6140 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 6141 EVT ShSVT = ShVT.getScalarType(); 6142 6143 bool UseSRA = false; 6144 SmallVector<SDValue, 16> Shifts, Factors; 6145 6146 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 6147 if (C->isZero()) 6148 return false; 6149 APInt Divisor = C->getAPIntValue(); 6150 unsigned Shift = Divisor.countr_zero(); 6151 if (Shift) { 6152 Divisor.ashrInPlace(Shift); 6153 UseSRA = true; 6154 } 6155 APInt Factor = Divisor.multiplicativeInverse(); 6156 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 6157 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 6158 return true; 6159 }; 6160 6161 // Collect all magic values from the build vector. 6162 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 6163 return SDValue(); 6164 6165 SDValue Shift, Factor; 6166 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 6167 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 6168 Factor = DAG.getBuildVector(VT, dl, Factors); 6169 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 6170 assert(Shifts.size() == 1 && Factors.size() == 1 && 6171 "Expected matchUnaryPredicate to return one element for scalable " 6172 "vectors"); 6173 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 6174 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 6175 } else { 6176 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 6177 Shift = Shifts[0]; 6178 Factor = Factors[0]; 6179 } 6180 6181 SDValue Res = Op0; 6182 if (UseSRA) { 6183 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, SDNodeFlags::Exact); 6184 Created.push_back(Res.getNode()); 6185 } 6186 6187 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 6188 } 6189 6190 /// Given an exact UDIV by a constant, create a multiplication 6191 /// with the multiplicative inverse of the constant. 6192 /// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242 6193 static SDValue BuildExactUDIV(const TargetLowering &TLI, SDNode *N, 6194 const SDLoc &dl, SelectionDAG &DAG, 6195 SmallVectorImpl<SDNode *> &Created) { 6196 EVT VT = N->getValueType(0); 6197 EVT SVT = VT.getScalarType(); 6198 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 6199 EVT ShSVT = ShVT.getScalarType(); 6200 6201 bool UseSRL = false; 6202 SmallVector<SDValue, 16> Shifts, Factors; 6203 6204 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 6205 if (C->isZero()) 6206 return false; 6207 APInt Divisor = C->getAPIntValue(); 6208 unsigned Shift = Divisor.countr_zero(); 6209 if (Shift) { 6210 Divisor.lshrInPlace(Shift); 6211 UseSRL = true; 6212 } 6213 // Calculate the multiplicative inverse modulo BW. 6214 APInt Factor = Divisor.multiplicativeInverse(); 6215 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 6216 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 6217 return true; 6218 }; 6219 6220 SDValue Op1 = N->getOperand(1); 6221 6222 // Collect all magic values from the build vector. 6223 if (!ISD::matchUnaryPredicate(Op1, BuildUDIVPattern)) 6224 return SDValue(); 6225 6226 SDValue Shift, Factor; 6227 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 6228 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 6229 Factor = DAG.getBuildVector(VT, dl, Factors); 6230 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 6231 assert(Shifts.size() == 1 && Factors.size() == 1 && 6232 "Expected matchUnaryPredicate to return one element for scalable " 6233 "vectors"); 6234 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 6235 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 6236 } else { 6237 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 6238 Shift = Shifts[0]; 6239 Factor = Factors[0]; 6240 } 6241 6242 SDValue Res = N->getOperand(0); 6243 if (UseSRL) { 6244 Res = DAG.getNode(ISD::SRL, dl, VT, Res, Shift, SDNodeFlags::Exact); 6245 Created.push_back(Res.getNode()); 6246 } 6247 6248 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 6249 } 6250 6251 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 6252 SelectionDAG &DAG, 6253 SmallVectorImpl<SDNode *> &Created) const { 6254 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 6255 if (isIntDivCheap(N->getValueType(0), Attr)) 6256 return SDValue(N, 0); // Lower SDIV as SDIV 6257 return SDValue(); 6258 } 6259 6260 SDValue 6261 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor, 6262 SelectionDAG &DAG, 6263 SmallVectorImpl<SDNode *> &Created) const { 6264 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 6265 if (isIntDivCheap(N->getValueType(0), Attr)) 6266 return SDValue(N, 0); // Lower SREM as SREM 6267 return SDValue(); 6268 } 6269 6270 /// Build sdiv by power-of-2 with conditional move instructions 6271 /// Ref: "Hacker's Delight" by Henry Warren 10-1 6272 /// If conditional move/branch is preferred, we lower sdiv x, +/-2**k into: 6273 /// bgez x, label 6274 /// add x, x, 2**k-1 6275 /// label: 6276 /// sra res, x, k 6277 /// neg res, res (when the divisor is negative) 6278 SDValue TargetLowering::buildSDIVPow2WithCMov( 6279 SDNode *N, const APInt &Divisor, SelectionDAG &DAG, 6280 SmallVectorImpl<SDNode *> &Created) const { 6281 unsigned Lg2 = Divisor.countr_zero(); 6282 EVT VT = N->getValueType(0); 6283 6284 SDLoc DL(N); 6285 SDValue N0 = N->getOperand(0); 6286 SDValue Zero = DAG.getConstant(0, DL, VT); 6287 APInt Lg2Mask = APInt::getLowBitsSet(VT.getSizeInBits(), Lg2); 6288 SDValue Pow2MinusOne = DAG.getConstant(Lg2Mask, DL, VT); 6289 6290 // If N0 is negative, we need to add (Pow2 - 1) to it before shifting right. 6291 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6292 SDValue Cmp = DAG.getSetCC(DL, CCVT, N0, Zero, ISD::SETLT); 6293 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 6294 SDValue CMov = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 6295 6296 Created.push_back(Cmp.getNode()); 6297 Created.push_back(Add.getNode()); 6298 Created.push_back(CMov.getNode()); 6299 6300 // Divide by pow2. 6301 SDValue SRA = 6302 DAG.getNode(ISD::SRA, DL, VT, CMov, DAG.getConstant(Lg2, DL, VT)); 6303 6304 // If we're dividing by a positive value, we're done. Otherwise, we must 6305 // negate the result. 6306 if (Divisor.isNonNegative()) 6307 return SRA; 6308 6309 Created.push_back(SRA.getNode()); 6310 return DAG.getNode(ISD::SUB, DL, VT, Zero, SRA); 6311 } 6312 6313 /// Given an ISD::SDIV node expressing a divide by constant, 6314 /// return a DAG expression to select that will generate the same value by 6315 /// multiplying by a magic number. 6316 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 6317 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 6318 bool IsAfterLegalization, 6319 bool IsAfterLegalTypes, 6320 SmallVectorImpl<SDNode *> &Created) const { 6321 SDLoc dl(N); 6322 EVT VT = N->getValueType(0); 6323 EVT SVT = VT.getScalarType(); 6324 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6325 EVT ShSVT = ShVT.getScalarType(); 6326 unsigned EltBits = VT.getScalarSizeInBits(); 6327 EVT MulVT; 6328 6329 // Check to see if we can do this. 6330 // FIXME: We should be more aggressive here. 6331 if (!isTypeLegal(VT)) { 6332 // Limit this to simple scalars for now. 6333 if (VT.isVector() || !VT.isSimple()) 6334 return SDValue(); 6335 6336 // If this type will be promoted to a large enough type with a legal 6337 // multiply operation, we can go ahead and do this transform. 6338 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 6339 return SDValue(); 6340 6341 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 6342 if (MulVT.getSizeInBits() < (2 * EltBits) || 6343 !isOperationLegal(ISD::MUL, MulVT)) 6344 return SDValue(); 6345 } 6346 6347 // If the sdiv has an 'exact' bit we can use a simpler lowering. 6348 if (N->getFlags().hasExact()) 6349 return BuildExactSDIV(*this, N, dl, DAG, Created); 6350 6351 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 6352 6353 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 6354 if (C->isZero()) 6355 return false; 6356 6357 const APInt &Divisor = C->getAPIntValue(); 6358 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 6359 int NumeratorFactor = 0; 6360 int ShiftMask = -1; 6361 6362 if (Divisor.isOne() || Divisor.isAllOnes()) { 6363 // If d is +1/-1, we just multiply the numerator by +1/-1. 6364 NumeratorFactor = Divisor.getSExtValue(); 6365 magics.Magic = 0; 6366 magics.ShiftAmount = 0; 6367 ShiftMask = 0; 6368 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 6369 // If d > 0 and m < 0, add the numerator. 6370 NumeratorFactor = 1; 6371 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 6372 // If d < 0 and m > 0, subtract the numerator. 6373 NumeratorFactor = -1; 6374 } 6375 6376 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 6377 Factors.push_back(DAG.getSignedConstant(NumeratorFactor, dl, SVT)); 6378 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 6379 ShiftMasks.push_back(DAG.getSignedConstant(ShiftMask, dl, SVT)); 6380 return true; 6381 }; 6382 6383 SDValue N0 = N->getOperand(0); 6384 SDValue N1 = N->getOperand(1); 6385 6386 // Collect the shifts / magic values from each element. 6387 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 6388 return SDValue(); 6389 6390 SDValue MagicFactor, Factor, Shift, ShiftMask; 6391 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 6392 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 6393 Factor = DAG.getBuildVector(VT, dl, Factors); 6394 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 6395 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 6396 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 6397 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 6398 Shifts.size() == 1 && ShiftMasks.size() == 1 && 6399 "Expected matchUnaryPredicate to return one element for scalable " 6400 "vectors"); 6401 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 6402 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 6403 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 6404 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 6405 } else { 6406 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 6407 MagicFactor = MagicFactors[0]; 6408 Factor = Factors[0]; 6409 Shift = Shifts[0]; 6410 ShiftMask = ShiftMasks[0]; 6411 } 6412 6413 // Multiply the numerator (operand 0) by the magic value. 6414 // FIXME: We should support doing a MUL in a wider type. 6415 auto GetMULHS = [&](SDValue X, SDValue Y) { 6416 // If the type isn't legal, use a wider mul of the type calculated 6417 // earlier. 6418 if (!isTypeLegal(VT)) { 6419 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 6420 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 6421 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 6422 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 6423 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 6424 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6425 } 6426 6427 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 6428 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 6429 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 6430 SDValue LoHi = 6431 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 6432 return SDValue(LoHi.getNode(), 1); 6433 } 6434 // If type twice as wide legal, widen and use a mul plus a shift. 6435 unsigned Size = VT.getScalarSizeInBits(); 6436 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2); 6437 if (VT.isVector()) 6438 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 6439 VT.getVectorElementCount()); 6440 // Some targets like AMDGPU try to go from SDIV to SDIVREM which is then 6441 // custom lowered. This is very expensive so avoid it at all costs for 6442 // constant divisors. 6443 if ((!IsAfterLegalTypes && isOperationExpand(ISD::SDIV, VT) && 6444 isOperationCustom(ISD::SDIVREM, VT.getScalarType())) || 6445 isOperationLegalOrCustom(ISD::MUL, WideVT)) { 6446 X = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, X); 6447 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, Y); 6448 Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y); 6449 Y = DAG.getNode(ISD::SRL, dl, WideVT, Y, 6450 DAG.getShiftAmountConstant(EltBits, WideVT, dl)); 6451 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6452 } 6453 return SDValue(); 6454 }; 6455 6456 SDValue Q = GetMULHS(N0, MagicFactor); 6457 if (!Q) 6458 return SDValue(); 6459 6460 Created.push_back(Q.getNode()); 6461 6462 // (Optionally) Add/subtract the numerator using Factor. 6463 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 6464 Created.push_back(Factor.getNode()); 6465 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 6466 Created.push_back(Q.getNode()); 6467 6468 // Shift right algebraic by shift value. 6469 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 6470 Created.push_back(Q.getNode()); 6471 6472 // Extract the sign bit, mask it and add it to the quotient. 6473 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 6474 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 6475 Created.push_back(T.getNode()); 6476 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 6477 Created.push_back(T.getNode()); 6478 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 6479 } 6480 6481 /// Given an ISD::UDIV node expressing a divide by constant, 6482 /// return a DAG expression to select that will generate the same value by 6483 /// multiplying by a magic number. 6484 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 6485 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 6486 bool IsAfterLegalization, 6487 bool IsAfterLegalTypes, 6488 SmallVectorImpl<SDNode *> &Created) const { 6489 SDLoc dl(N); 6490 EVT VT = N->getValueType(0); 6491 EVT SVT = VT.getScalarType(); 6492 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6493 EVT ShSVT = ShVT.getScalarType(); 6494 unsigned EltBits = VT.getScalarSizeInBits(); 6495 EVT MulVT; 6496 6497 // Check to see if we can do this. 6498 // FIXME: We should be more aggressive here. 6499 if (!isTypeLegal(VT)) { 6500 // Limit this to simple scalars for now. 6501 if (VT.isVector() || !VT.isSimple()) 6502 return SDValue(); 6503 6504 // If this type will be promoted to a large enough type with a legal 6505 // multiply operation, we can go ahead and do this transform. 6506 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 6507 return SDValue(); 6508 6509 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 6510 if (MulVT.getSizeInBits() < (2 * EltBits) || 6511 !isOperationLegal(ISD::MUL, MulVT)) 6512 return SDValue(); 6513 } 6514 6515 // If the udiv has an 'exact' bit we can use a simpler lowering. 6516 if (N->getFlags().hasExact()) 6517 return BuildExactUDIV(*this, N, dl, DAG, Created); 6518 6519 SDValue N0 = N->getOperand(0); 6520 SDValue N1 = N->getOperand(1); 6521 6522 // Try to use leading zeros of the dividend to reduce the multiplier and 6523 // avoid expensive fixups. 6524 unsigned KnownLeadingZeros = DAG.computeKnownBits(N0).countMinLeadingZeros(); 6525 6526 bool UseNPQ = false, UsePreShift = false, UsePostShift = false; 6527 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 6528 6529 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 6530 if (C->isZero()) 6531 return false; 6532 const APInt& Divisor = C->getAPIntValue(); 6533 6534 SDValue PreShift, MagicFactor, NPQFactor, PostShift; 6535 6536 // Magic algorithm doesn't work for division by 1. We need to emit a select 6537 // at the end. 6538 if (Divisor.isOne()) { 6539 PreShift = PostShift = DAG.getUNDEF(ShSVT); 6540 MagicFactor = NPQFactor = DAG.getUNDEF(SVT); 6541 } else { 6542 UnsignedDivisionByConstantInfo magics = 6543 UnsignedDivisionByConstantInfo::get( 6544 Divisor, std::min(KnownLeadingZeros, Divisor.countl_zero())); 6545 6546 MagicFactor = DAG.getConstant(magics.Magic, dl, SVT); 6547 6548 assert(magics.PreShift < Divisor.getBitWidth() && 6549 "We shouldn't generate an undefined shift!"); 6550 assert(magics.PostShift < Divisor.getBitWidth() && 6551 "We shouldn't generate an undefined shift!"); 6552 assert((!magics.IsAdd || magics.PreShift == 0) && 6553 "Unexpected pre-shift"); 6554 PreShift = DAG.getConstant(magics.PreShift, dl, ShSVT); 6555 PostShift = DAG.getConstant(magics.PostShift, dl, ShSVT); 6556 NPQFactor = DAG.getConstant( 6557 magics.IsAdd ? APInt::getOneBitSet(EltBits, EltBits - 1) 6558 : APInt::getZero(EltBits), 6559 dl, SVT); 6560 UseNPQ |= magics.IsAdd; 6561 UsePreShift |= magics.PreShift != 0; 6562 UsePostShift |= magics.PostShift != 0; 6563 } 6564 6565 PreShifts.push_back(PreShift); 6566 MagicFactors.push_back(MagicFactor); 6567 NPQFactors.push_back(NPQFactor); 6568 PostShifts.push_back(PostShift); 6569 return true; 6570 }; 6571 6572 // Collect the shifts/magic values from each element. 6573 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 6574 return SDValue(); 6575 6576 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 6577 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 6578 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 6579 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 6580 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 6581 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 6582 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 6583 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 6584 NPQFactors.size() == 1 && PostShifts.size() == 1 && 6585 "Expected matchUnaryPredicate to return one for scalable vectors"); 6586 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 6587 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 6588 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 6589 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 6590 } else { 6591 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 6592 PreShift = PreShifts[0]; 6593 MagicFactor = MagicFactors[0]; 6594 PostShift = PostShifts[0]; 6595 } 6596 6597 SDValue Q = N0; 6598 if (UsePreShift) { 6599 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 6600 Created.push_back(Q.getNode()); 6601 } 6602 6603 // FIXME: We should support doing a MUL in a wider type. 6604 auto GetMULHU = [&](SDValue X, SDValue Y) { 6605 // If the type isn't legal, use a wider mul of the type calculated 6606 // earlier. 6607 if (!isTypeLegal(VT)) { 6608 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 6609 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 6610 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 6611 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 6612 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 6613 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6614 } 6615 6616 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 6617 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 6618 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 6619 SDValue LoHi = 6620 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 6621 return SDValue(LoHi.getNode(), 1); 6622 } 6623 // If type twice as wide legal, widen and use a mul plus a shift. 6624 unsigned Size = VT.getScalarSizeInBits(); 6625 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2); 6626 if (VT.isVector()) 6627 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 6628 VT.getVectorElementCount()); 6629 // Some targets like AMDGPU try to go from UDIV to UDIVREM which is then 6630 // custom lowered. This is very expensive so avoid it at all costs for 6631 // constant divisors. 6632 if ((!IsAfterLegalTypes && isOperationExpand(ISD::UDIV, VT) && 6633 isOperationCustom(ISD::UDIVREM, VT.getScalarType())) || 6634 isOperationLegalOrCustom(ISD::MUL, WideVT)) { 6635 X = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, X); 6636 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, Y); 6637 Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y); 6638 Y = DAG.getNode(ISD::SRL, dl, WideVT, Y, 6639 DAG.getShiftAmountConstant(EltBits, WideVT, dl)); 6640 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6641 } 6642 return SDValue(); // No mulhu or equivalent 6643 }; 6644 6645 // Multiply the numerator (operand 0) by the magic value. 6646 Q = GetMULHU(Q, MagicFactor); 6647 if (!Q) 6648 return SDValue(); 6649 6650 Created.push_back(Q.getNode()); 6651 6652 if (UseNPQ) { 6653 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 6654 Created.push_back(NPQ.getNode()); 6655 6656 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 6657 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 6658 if (VT.isVector()) 6659 NPQ = GetMULHU(NPQ, NPQFactor); 6660 else 6661 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 6662 6663 Created.push_back(NPQ.getNode()); 6664 6665 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 6666 Created.push_back(Q.getNode()); 6667 } 6668 6669 if (UsePostShift) { 6670 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 6671 Created.push_back(Q.getNode()); 6672 } 6673 6674 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6675 6676 SDValue One = DAG.getConstant(1, dl, VT); 6677 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 6678 return DAG.getSelect(dl, VT, IsOne, N0, Q); 6679 } 6680 6681 /// If all values in Values that *don't* match the predicate are same 'splat' 6682 /// value, then replace all values with that splat value. 6683 /// Else, if AlternativeReplacement was provided, then replace all values that 6684 /// do match predicate with AlternativeReplacement value. 6685 static void 6686 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 6687 std::function<bool(SDValue)> Predicate, 6688 SDValue AlternativeReplacement = SDValue()) { 6689 SDValue Replacement; 6690 // Is there a value for which the Predicate does *NOT* match? What is it? 6691 auto SplatValue = llvm::find_if_not(Values, Predicate); 6692 if (SplatValue != Values.end()) { 6693 // Does Values consist only of SplatValue's and values matching Predicate? 6694 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 6695 return Value == *SplatValue || Predicate(Value); 6696 })) // Then we shall replace values matching predicate with SplatValue. 6697 Replacement = *SplatValue; 6698 } 6699 if (!Replacement) { 6700 // Oops, we did not find the "baseline" splat value. 6701 if (!AlternativeReplacement) 6702 return; // Nothing to do. 6703 // Let's replace with provided value then. 6704 Replacement = AlternativeReplacement; 6705 } 6706 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 6707 } 6708 6709 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 6710 /// where the divisor is constant and the comparison target is zero, 6711 /// return a DAG expression that will generate the same comparison result 6712 /// using only multiplications, additions and shifts/rotations. 6713 /// Ref: "Hacker's Delight" 10-17. 6714 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 6715 SDValue CompTargetNode, 6716 ISD::CondCode Cond, 6717 DAGCombinerInfo &DCI, 6718 const SDLoc &DL) const { 6719 SmallVector<SDNode *, 5> Built; 6720 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6721 DCI, DL, Built)) { 6722 for (SDNode *N : Built) 6723 DCI.AddToWorklist(N); 6724 return Folded; 6725 } 6726 6727 return SDValue(); 6728 } 6729 6730 SDValue 6731 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 6732 SDValue CompTargetNode, ISD::CondCode Cond, 6733 DAGCombinerInfo &DCI, const SDLoc &DL, 6734 SmallVectorImpl<SDNode *> &Created) const { 6735 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 6736 // - D must be constant, with D = D0 * 2^K where D0 is odd 6737 // - P is the multiplicative inverse of D0 modulo 2^W 6738 // - Q = floor(((2^W) - 1) / D) 6739 // where W is the width of the common type of N and D. 6740 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6741 "Only applicable for (in)equality comparisons."); 6742 6743 SelectionDAG &DAG = DCI.DAG; 6744 6745 EVT VT = REMNode.getValueType(); 6746 EVT SVT = VT.getScalarType(); 6747 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6748 EVT ShSVT = ShVT.getScalarType(); 6749 6750 // If MUL is unavailable, we cannot proceed in any case. 6751 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6752 return SDValue(); 6753 6754 bool ComparingWithAllZeros = true; 6755 bool AllComparisonsWithNonZerosAreTautological = true; 6756 bool HadTautologicalLanes = false; 6757 bool AllLanesAreTautological = true; 6758 bool HadEvenDivisor = false; 6759 bool AllDivisorsArePowerOfTwo = true; 6760 bool HadTautologicalInvertedLanes = false; 6761 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 6762 6763 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 6764 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6765 if (CDiv->isZero()) 6766 return false; 6767 6768 const APInt &D = CDiv->getAPIntValue(); 6769 const APInt &Cmp = CCmp->getAPIntValue(); 6770 6771 ComparingWithAllZeros &= Cmp.isZero(); 6772 6773 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6774 // if C2 is not less than C1, the comparison is always false. 6775 // But we will only be able to produce the comparison that will give the 6776 // opposive tautological answer. So this lane would need to be fixed up. 6777 bool TautologicalInvertedLane = D.ule(Cmp); 6778 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 6779 6780 // If all lanes are tautological (either all divisors are ones, or divisor 6781 // is not greater than the constant we are comparing with), 6782 // we will prefer to avoid the fold. 6783 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 6784 HadTautologicalLanes |= TautologicalLane; 6785 AllLanesAreTautological &= TautologicalLane; 6786 6787 // If we are comparing with non-zero, we need'll need to subtract said 6788 // comparison value from the LHS. But there is no point in doing that if 6789 // every lane where we are comparing with non-zero is tautological.. 6790 if (!Cmp.isZero()) 6791 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 6792 6793 // Decompose D into D0 * 2^K 6794 unsigned K = D.countr_zero(); 6795 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6796 APInt D0 = D.lshr(K); 6797 6798 // D is even if it has trailing zeros. 6799 HadEvenDivisor |= (K != 0); 6800 // D is a power-of-two if D0 is one. 6801 // If all divisors are power-of-two, we will prefer to avoid the fold. 6802 AllDivisorsArePowerOfTwo &= D0.isOne(); 6803 6804 // P = inv(D0, 2^W) 6805 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6806 unsigned W = D.getBitWidth(); 6807 APInt P = D0.multiplicativeInverse(); 6808 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6809 6810 // Q = floor((2^W - 1) u/ D) 6811 // R = ((2^W - 1) u% D) 6812 APInt Q, R; 6813 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 6814 6815 // If we are comparing with zero, then that comparison constant is okay, 6816 // else it may need to be one less than that. 6817 if (Cmp.ugt(R)) 6818 Q -= 1; 6819 6820 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6821 "We are expecting that K is always less than all-ones for ShSVT"); 6822 6823 // If the lane is tautological the result can be constant-folded. 6824 if (TautologicalLane) { 6825 // Set P and K amount to a bogus values so we can try to splat them. 6826 P = 0; 6827 K = -1; 6828 // And ensure that comparison constant is tautological, 6829 // it will always compare true/false. 6830 Q = -1; 6831 } 6832 6833 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6834 KAmts.push_back( 6835 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K, /*isSigned=*/false, 6836 /*implicitTrunc=*/true), 6837 DL, ShSVT)); 6838 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6839 return true; 6840 }; 6841 6842 SDValue N = REMNode.getOperand(0); 6843 SDValue D = REMNode.getOperand(1); 6844 6845 // Collect the values from each element. 6846 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 6847 return SDValue(); 6848 6849 // If all lanes are tautological, the result can be constant-folded. 6850 if (AllLanesAreTautological) 6851 return SDValue(); 6852 6853 // If this is a urem by a powers-of-two, avoid the fold since it can be 6854 // best implemented as a bit test. 6855 if (AllDivisorsArePowerOfTwo) 6856 return SDValue(); 6857 6858 SDValue PVal, KVal, QVal; 6859 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6860 if (HadTautologicalLanes) { 6861 // Try to turn PAmts into a splat, since we don't care about the values 6862 // that are currently '0'. If we can't, just keep '0'`s. 6863 turnVectorIntoSplatVector(PAmts, isNullConstant); 6864 // Try to turn KAmts into a splat, since we don't care about the values 6865 // that are currently '-1'. If we can't, change them to '0'`s. 6866 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6867 DAG.getConstant(0, DL, ShSVT)); 6868 } 6869 6870 PVal = DAG.getBuildVector(VT, DL, PAmts); 6871 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6872 QVal = DAG.getBuildVector(VT, DL, QAmts); 6873 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6874 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 6875 "Expected matchBinaryPredicate to return one element for " 6876 "SPLAT_VECTORs"); 6877 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6878 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6879 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6880 } else { 6881 PVal = PAmts[0]; 6882 KVal = KAmts[0]; 6883 QVal = QAmts[0]; 6884 } 6885 6886 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 6887 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 6888 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 6889 assert(CompTargetNode.getValueType() == N.getValueType() && 6890 "Expecting that the types on LHS and RHS of comparisons match."); 6891 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 6892 } 6893 6894 // (mul N, P) 6895 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6896 Created.push_back(Op0.getNode()); 6897 6898 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6899 // divisors as a performance improvement, since rotating by 0 is a no-op. 6900 if (HadEvenDivisor) { 6901 // We need ROTR to do this. 6902 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6903 return SDValue(); 6904 // UREM: (rotr (mul N, P), K) 6905 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6906 Created.push_back(Op0.getNode()); 6907 } 6908 6909 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 6910 SDValue NewCC = 6911 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6912 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6913 if (!HadTautologicalInvertedLanes) 6914 return NewCC; 6915 6916 // If any lanes previously compared always-false, the NewCC will give 6917 // always-true result for them, so we need to fixup those lanes. 6918 // Or the other way around for inequality predicate. 6919 assert(VT.isVector() && "Can/should only get here for vectors."); 6920 Created.push_back(NewCC.getNode()); 6921 6922 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6923 // if C2 is not less than C1, the comparison is always false. 6924 // But we have produced the comparison that will give the 6925 // opposive tautological answer. So these lanes would need to be fixed up. 6926 SDValue TautologicalInvertedChannels = 6927 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 6928 Created.push_back(TautologicalInvertedChannels.getNode()); 6929 6930 // NOTE: we avoid letting illegal types through even if we're before legalize 6931 // ops – legalization has a hard time producing good code for this. 6932 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 6933 // If we have a vector select, let's replace the comparison results in the 6934 // affected lanes with the correct tautological result. 6935 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 6936 DL, SETCCVT, SETCCVT); 6937 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 6938 Replacement, NewCC); 6939 } 6940 6941 // Else, we can just invert the comparison result in the appropriate lanes. 6942 // 6943 // NOTE: see the note above VSELECT above. 6944 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 6945 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 6946 TautologicalInvertedChannels); 6947 6948 return SDValue(); // Don't know how to lower. 6949 } 6950 6951 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 6952 /// where the divisor is constant and the comparison target is zero, 6953 /// return a DAG expression that will generate the same comparison result 6954 /// using only multiplications, additions and shifts/rotations. 6955 /// Ref: "Hacker's Delight" 10-17. 6956 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 6957 SDValue CompTargetNode, 6958 ISD::CondCode Cond, 6959 DAGCombinerInfo &DCI, 6960 const SDLoc &DL) const { 6961 SmallVector<SDNode *, 7> Built; 6962 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6963 DCI, DL, Built)) { 6964 assert(Built.size() <= 7 && "Max size prediction failed."); 6965 for (SDNode *N : Built) 6966 DCI.AddToWorklist(N); 6967 return Folded; 6968 } 6969 6970 return SDValue(); 6971 } 6972 6973 SDValue 6974 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 6975 SDValue CompTargetNode, ISD::CondCode Cond, 6976 DAGCombinerInfo &DCI, const SDLoc &DL, 6977 SmallVectorImpl<SDNode *> &Created) const { 6978 // Derived from Hacker's Delight, 2nd Edition, by Hank Warren. Section 10-17. 6979 // Fold: 6980 // (seteq/ne (srem N, D), 0) 6981 // To: 6982 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 6983 // 6984 // - D must be constant, with D = D0 * 2^K where D0 is odd 6985 // - P is the multiplicative inverse of D0 modulo 2^W 6986 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 6987 // - Q = floor((2 * A) / (2^K)) 6988 // where W is the width of the common type of N and D. 6989 // 6990 // When D is a power of two (and thus D0 is 1), the normal 6991 // formula for A and Q don't apply, because the derivation 6992 // depends on D not dividing 2^(W-1), and thus theorem ZRS 6993 // does not apply. This specifically fails when N = INT_MIN. 6994 // 6995 // Instead, for power-of-two D, we use: 6996 // - A = 2^(W-1) 6997 // |-> Order-preserving map from [-2^(W-1), 2^(W-1) - 1] to [0,2^W - 1]) 6998 // - Q = 2^(W-K) - 1 6999 // |-> Test that the top K bits are zero after rotation 7000 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 7001 "Only applicable for (in)equality comparisons."); 7002 7003 SelectionDAG &DAG = DCI.DAG; 7004 7005 EVT VT = REMNode.getValueType(); 7006 EVT SVT = VT.getScalarType(); 7007 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7008 EVT ShSVT = ShVT.getScalarType(); 7009 7010 // If we are after ops legalization, and MUL is unavailable, we can not 7011 // proceed. 7012 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 7013 return SDValue(); 7014 7015 // TODO: Could support comparing with non-zero too. 7016 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 7017 if (!CompTarget || !CompTarget->isZero()) 7018 return SDValue(); 7019 7020 bool HadIntMinDivisor = false; 7021 bool HadOneDivisor = false; 7022 bool AllDivisorsAreOnes = true; 7023 bool HadEvenDivisor = false; 7024 bool NeedToApplyOffset = false; 7025 bool AllDivisorsArePowerOfTwo = true; 7026 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 7027 7028 auto BuildSREMPattern = [&](ConstantSDNode *C) { 7029 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 7030 if (C->isZero()) 7031 return false; 7032 7033 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 7034 7035 // WARNING: this fold is only valid for positive divisors! 7036 APInt D = C->getAPIntValue(); 7037 if (D.isNegative()) 7038 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 7039 7040 HadIntMinDivisor |= D.isMinSignedValue(); 7041 7042 // If all divisors are ones, we will prefer to avoid the fold. 7043 HadOneDivisor |= D.isOne(); 7044 AllDivisorsAreOnes &= D.isOne(); 7045 7046 // Decompose D into D0 * 2^K 7047 unsigned K = D.countr_zero(); 7048 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 7049 APInt D0 = D.lshr(K); 7050 7051 if (!D.isMinSignedValue()) { 7052 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 7053 // we don't care about this lane in this fold, we'll special-handle it. 7054 HadEvenDivisor |= (K != 0); 7055 } 7056 7057 // D is a power-of-two if D0 is one. This includes INT_MIN. 7058 // If all divisors are power-of-two, we will prefer to avoid the fold. 7059 AllDivisorsArePowerOfTwo &= D0.isOne(); 7060 7061 // P = inv(D0, 2^W) 7062 // 2^W requires W + 1 bits, so we have to extend and then truncate. 7063 unsigned W = D.getBitWidth(); 7064 APInt P = D0.multiplicativeInverse(); 7065 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 7066 7067 // A = floor((2^(W - 1) - 1) / D0) & -2^K 7068 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 7069 A.clearLowBits(K); 7070 7071 if (!D.isMinSignedValue()) { 7072 // If divisor INT_MIN, then we don't care about this lane in this fold, 7073 // we'll special-handle it. 7074 NeedToApplyOffset |= A != 0; 7075 } 7076 7077 // Q = floor((2 * A) / (2^K)) 7078 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 7079 7080 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 7081 "We are expecting that A is always less than all-ones for SVT"); 7082 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 7083 "We are expecting that K is always less than all-ones for ShSVT"); 7084 7085 // If D was a power of two, apply the alternate constant derivation. 7086 if (D0.isOne()) { 7087 // A = 2^(W-1) 7088 A = APInt::getSignedMinValue(W); 7089 // - Q = 2^(W-K) - 1 7090 Q = APInt::getAllOnes(W - K).zext(W); 7091 } 7092 7093 // If the divisor is 1 the result can be constant-folded. Likewise, we 7094 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 7095 if (D.isOne()) { 7096 // Set P, A and K to a bogus values so we can try to splat them. 7097 P = 0; 7098 A = -1; 7099 K = -1; 7100 7101 // x ?% 1 == 0 <--> true <--> x u<= -1 7102 Q = -1; 7103 } 7104 7105 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 7106 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 7107 KAmts.push_back( 7108 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K, /*isSigned=*/false, 7109 /*implicitTrunc=*/true), 7110 DL, ShSVT)); 7111 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 7112 return true; 7113 }; 7114 7115 SDValue N = REMNode.getOperand(0); 7116 SDValue D = REMNode.getOperand(1); 7117 7118 // Collect the values from each element. 7119 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 7120 return SDValue(); 7121 7122 // If this is a srem by a one, avoid the fold since it can be constant-folded. 7123 if (AllDivisorsAreOnes) 7124 return SDValue(); 7125 7126 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 7127 // since it can be best implemented as a bit test. 7128 if (AllDivisorsArePowerOfTwo) 7129 return SDValue(); 7130 7131 SDValue PVal, AVal, KVal, QVal; 7132 if (D.getOpcode() == ISD::BUILD_VECTOR) { 7133 if (HadOneDivisor) { 7134 // Try to turn PAmts into a splat, since we don't care about the values 7135 // that are currently '0'. If we can't, just keep '0'`s. 7136 turnVectorIntoSplatVector(PAmts, isNullConstant); 7137 // Try to turn AAmts into a splat, since we don't care about the 7138 // values that are currently '-1'. If we can't, change them to '0'`s. 7139 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 7140 DAG.getConstant(0, DL, SVT)); 7141 // Try to turn KAmts into a splat, since we don't care about the values 7142 // that are currently '-1'. If we can't, change them to '0'`s. 7143 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 7144 DAG.getConstant(0, DL, ShSVT)); 7145 } 7146 7147 PVal = DAG.getBuildVector(VT, DL, PAmts); 7148 AVal = DAG.getBuildVector(VT, DL, AAmts); 7149 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 7150 QVal = DAG.getBuildVector(VT, DL, QAmts); 7151 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 7152 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 7153 QAmts.size() == 1 && 7154 "Expected matchUnaryPredicate to return one element for scalable " 7155 "vectors"); 7156 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 7157 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 7158 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 7159 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 7160 } else { 7161 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 7162 PVal = PAmts[0]; 7163 AVal = AAmts[0]; 7164 KVal = KAmts[0]; 7165 QVal = QAmts[0]; 7166 } 7167 7168 // (mul N, P) 7169 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 7170 Created.push_back(Op0.getNode()); 7171 7172 if (NeedToApplyOffset) { 7173 // We need ADD to do this. 7174 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 7175 return SDValue(); 7176 7177 // (add (mul N, P), A) 7178 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 7179 Created.push_back(Op0.getNode()); 7180 } 7181 7182 // Rotate right only if any divisor was even. We avoid rotates for all-odd 7183 // divisors as a performance improvement, since rotating by 0 is a no-op. 7184 if (HadEvenDivisor) { 7185 // We need ROTR to do this. 7186 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 7187 return SDValue(); 7188 // SREM: (rotr (add (mul N, P), A), K) 7189 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 7190 Created.push_back(Op0.getNode()); 7191 } 7192 7193 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 7194 SDValue Fold = 7195 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 7196 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 7197 7198 // If we didn't have lanes with INT_MIN divisor, then we're done. 7199 if (!HadIntMinDivisor) 7200 return Fold; 7201 7202 // That fold is only valid for positive divisors. Which effectively means, 7203 // it is invalid for INT_MIN divisors. So if we have such a lane, 7204 // we must fix-up results for said lanes. 7205 assert(VT.isVector() && "Can/should only get here for vectors."); 7206 7207 // NOTE: we avoid letting illegal types through even if we're before legalize 7208 // ops – legalization has a hard time producing good code for the code that 7209 // follows. 7210 if (!isOperationLegalOrCustom(ISD::SETCC, SETCCVT) || 7211 !isOperationLegalOrCustom(ISD::AND, VT) || 7212 !isCondCodeLegalOrCustom(Cond, VT.getSimpleVT()) || 7213 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 7214 return SDValue(); 7215 7216 Created.push_back(Fold.getNode()); 7217 7218 SDValue IntMin = DAG.getConstant( 7219 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 7220 SDValue IntMax = DAG.getConstant( 7221 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 7222 SDValue Zero = 7223 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 7224 7225 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 7226 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 7227 Created.push_back(DivisorIsIntMin.getNode()); 7228 7229 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 7230 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 7231 Created.push_back(Masked.getNode()); 7232 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 7233 Created.push_back(MaskedIsZero.getNode()); 7234 7235 // To produce final result we need to blend 2 vectors: 'SetCC' and 7236 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 7237 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 7238 // constant-folded, select can get lowered to a shuffle with constant mask. 7239 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 7240 MaskedIsZero, Fold); 7241 7242 return Blended; 7243 } 7244 7245 bool TargetLowering:: 7246 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 7247 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 7248 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 7249 "be a constant integer"); 7250 return true; 7251 } 7252 7253 return false; 7254 } 7255 7256 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 7257 const DenormalMode &Mode) const { 7258 SDLoc DL(Op); 7259 EVT VT = Op.getValueType(); 7260 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7261 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 7262 7263 // This is specifically a check for the handling of denormal inputs, not the 7264 // result. 7265 if (Mode.Input == DenormalMode::PreserveSign || 7266 Mode.Input == DenormalMode::PositiveZero) { 7267 // Test = X == 0.0 7268 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 7269 } 7270 7271 // Testing it with denormal inputs to avoid wrong estimate. 7272 // 7273 // Test = fabs(X) < SmallestNormal 7274 const fltSemantics &FltSem = VT.getFltSemantics(); 7275 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 7276 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 7277 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 7278 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 7279 } 7280 7281 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 7282 bool LegalOps, bool OptForSize, 7283 NegatibleCost &Cost, 7284 unsigned Depth) const { 7285 // fneg is removable even if it has multiple uses. 7286 if (Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::VP_FNEG) { 7287 Cost = NegatibleCost::Cheaper; 7288 return Op.getOperand(0); 7289 } 7290 7291 // Don't recurse exponentially. 7292 if (Depth > SelectionDAG::MaxRecursionDepth) 7293 return SDValue(); 7294 7295 // Pre-increment recursion depth for use in recursive calls. 7296 ++Depth; 7297 const SDNodeFlags Flags = Op->getFlags(); 7298 const TargetOptions &Options = DAG.getTarget().Options; 7299 EVT VT = Op.getValueType(); 7300 unsigned Opcode = Op.getOpcode(); 7301 7302 // Don't allow anything with multiple uses unless we know it is free. 7303 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 7304 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 7305 isFPExtFree(VT, Op.getOperand(0).getValueType()); 7306 if (!IsFreeExtend) 7307 return SDValue(); 7308 } 7309 7310 auto RemoveDeadNode = [&](SDValue N) { 7311 if (N && N.getNode()->use_empty()) 7312 DAG.RemoveDeadNode(N.getNode()); 7313 }; 7314 7315 SDLoc DL(Op); 7316 7317 // Because getNegatedExpression can delete nodes we need a handle to keep 7318 // temporary nodes alive in case the recursion manages to create an identical 7319 // node. 7320 std::list<HandleSDNode> Handles; 7321 7322 switch (Opcode) { 7323 case ISD::ConstantFP: { 7324 // Don't invert constant FP values after legalization unless the target says 7325 // the negated constant is legal. 7326 bool IsOpLegal = 7327 isOperationLegal(ISD::ConstantFP, VT) || 7328 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 7329 OptForSize); 7330 7331 if (LegalOps && !IsOpLegal) 7332 break; 7333 7334 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 7335 V.changeSign(); 7336 SDValue CFP = DAG.getConstantFP(V, DL, VT); 7337 7338 // If we already have the use of the negated floating constant, it is free 7339 // to negate it even it has multiple uses. 7340 if (!Op.hasOneUse() && CFP.use_empty()) 7341 break; 7342 Cost = NegatibleCost::Neutral; 7343 return CFP; 7344 } 7345 case ISD::BUILD_VECTOR: { 7346 // Only permit BUILD_VECTOR of constants. 7347 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 7348 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 7349 })) 7350 break; 7351 7352 bool IsOpLegal = 7353 (isOperationLegal(ISD::ConstantFP, VT) && 7354 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 7355 llvm::all_of(Op->op_values(), [&](SDValue N) { 7356 return N.isUndef() || 7357 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 7358 OptForSize); 7359 }); 7360 7361 if (LegalOps && !IsOpLegal) 7362 break; 7363 7364 SmallVector<SDValue, 4> Ops; 7365 for (SDValue C : Op->op_values()) { 7366 if (C.isUndef()) { 7367 Ops.push_back(C); 7368 continue; 7369 } 7370 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 7371 V.changeSign(); 7372 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 7373 } 7374 Cost = NegatibleCost::Neutral; 7375 return DAG.getBuildVector(VT, DL, Ops); 7376 } 7377 case ISD::FADD: { 7378 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 7379 break; 7380 7381 // After operation legalization, it might not be legal to create new FSUBs. 7382 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 7383 break; 7384 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 7385 7386 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 7387 NegatibleCost CostX = NegatibleCost::Expensive; 7388 SDValue NegX = 7389 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 7390 // Prevent this node from being deleted by the next call. 7391 if (NegX) 7392 Handles.emplace_back(NegX); 7393 7394 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 7395 NegatibleCost CostY = NegatibleCost::Expensive; 7396 SDValue NegY = 7397 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 7398 7399 // We're done with the handles. 7400 Handles.clear(); 7401 7402 // Negate the X if its cost is less or equal than Y. 7403 if (NegX && (CostX <= CostY)) { 7404 Cost = CostX; 7405 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 7406 if (NegY != N) 7407 RemoveDeadNode(NegY); 7408 return N; 7409 } 7410 7411 // Negate the Y if it is not expensive. 7412 if (NegY) { 7413 Cost = CostY; 7414 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 7415 if (NegX != N) 7416 RemoveDeadNode(NegX); 7417 return N; 7418 } 7419 break; 7420 } 7421 case ISD::FSUB: { 7422 // We can't turn -(A-B) into B-A when we honor signed zeros. 7423 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 7424 break; 7425 7426 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 7427 // fold (fneg (fsub 0, Y)) -> Y 7428 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 7429 if (C->isZero()) { 7430 Cost = NegatibleCost::Cheaper; 7431 return Y; 7432 } 7433 7434 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 7435 Cost = NegatibleCost::Neutral; 7436 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 7437 } 7438 case ISD::FMUL: 7439 case ISD::FDIV: { 7440 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 7441 7442 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 7443 NegatibleCost CostX = NegatibleCost::Expensive; 7444 SDValue NegX = 7445 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 7446 // Prevent this node from being deleted by the next call. 7447 if (NegX) 7448 Handles.emplace_back(NegX); 7449 7450 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 7451 NegatibleCost CostY = NegatibleCost::Expensive; 7452 SDValue NegY = 7453 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 7454 7455 // We're done with the handles. 7456 Handles.clear(); 7457 7458 // Negate the X if its cost is less or equal than Y. 7459 if (NegX && (CostX <= CostY)) { 7460 Cost = CostX; 7461 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 7462 if (NegY != N) 7463 RemoveDeadNode(NegY); 7464 return N; 7465 } 7466 7467 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 7468 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 7469 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 7470 break; 7471 7472 // Negate the Y if it is not expensive. 7473 if (NegY) { 7474 Cost = CostY; 7475 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 7476 if (NegX != N) 7477 RemoveDeadNode(NegX); 7478 return N; 7479 } 7480 break; 7481 } 7482 case ISD::FMA: 7483 case ISD::FMAD: { 7484 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 7485 break; 7486 7487 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 7488 NegatibleCost CostZ = NegatibleCost::Expensive; 7489 SDValue NegZ = 7490 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 7491 // Give up if fail to negate the Z. 7492 if (!NegZ) 7493 break; 7494 7495 // Prevent this node from being deleted by the next two calls. 7496 Handles.emplace_back(NegZ); 7497 7498 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 7499 NegatibleCost CostX = NegatibleCost::Expensive; 7500 SDValue NegX = 7501 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 7502 // Prevent this node from being deleted by the next call. 7503 if (NegX) 7504 Handles.emplace_back(NegX); 7505 7506 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 7507 NegatibleCost CostY = NegatibleCost::Expensive; 7508 SDValue NegY = 7509 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 7510 7511 // We're done with the handles. 7512 Handles.clear(); 7513 7514 // Negate the X if its cost is less or equal than Y. 7515 if (NegX && (CostX <= CostY)) { 7516 Cost = std::min(CostX, CostZ); 7517 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 7518 if (NegY != N) 7519 RemoveDeadNode(NegY); 7520 return N; 7521 } 7522 7523 // Negate the Y if it is not expensive. 7524 if (NegY) { 7525 Cost = std::min(CostY, CostZ); 7526 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 7527 if (NegX != N) 7528 RemoveDeadNode(NegX); 7529 return N; 7530 } 7531 break; 7532 } 7533 7534 case ISD::FP_EXTEND: 7535 case ISD::FSIN: 7536 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 7537 OptForSize, Cost, Depth)) 7538 return DAG.getNode(Opcode, DL, VT, NegV); 7539 break; 7540 case ISD::FP_ROUND: 7541 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 7542 OptForSize, Cost, Depth)) 7543 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 7544 break; 7545 case ISD::SELECT: 7546 case ISD::VSELECT: { 7547 // fold (fneg (select C, LHS, RHS)) -> (select C, (fneg LHS), (fneg RHS)) 7548 // iff at least one cost is cheaper and the other is neutral/cheaper 7549 SDValue LHS = Op.getOperand(1); 7550 NegatibleCost CostLHS = NegatibleCost::Expensive; 7551 SDValue NegLHS = 7552 getNegatedExpression(LHS, DAG, LegalOps, OptForSize, CostLHS, Depth); 7553 if (!NegLHS || CostLHS > NegatibleCost::Neutral) { 7554 RemoveDeadNode(NegLHS); 7555 break; 7556 } 7557 7558 // Prevent this node from being deleted by the next call. 7559 Handles.emplace_back(NegLHS); 7560 7561 SDValue RHS = Op.getOperand(2); 7562 NegatibleCost CostRHS = NegatibleCost::Expensive; 7563 SDValue NegRHS = 7564 getNegatedExpression(RHS, DAG, LegalOps, OptForSize, CostRHS, Depth); 7565 7566 // We're done with the handles. 7567 Handles.clear(); 7568 7569 if (!NegRHS || CostRHS > NegatibleCost::Neutral || 7570 (CostLHS != NegatibleCost::Cheaper && 7571 CostRHS != NegatibleCost::Cheaper)) { 7572 RemoveDeadNode(NegLHS); 7573 RemoveDeadNode(NegRHS); 7574 break; 7575 } 7576 7577 Cost = std::min(CostLHS, CostRHS); 7578 return DAG.getSelect(DL, VT, Op.getOperand(0), NegLHS, NegRHS); 7579 } 7580 } 7581 7582 return SDValue(); 7583 } 7584 7585 //===----------------------------------------------------------------------===// 7586 // Legalization Utilities 7587 //===----------------------------------------------------------------------===// 7588 7589 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 7590 SDValue LHS, SDValue RHS, 7591 SmallVectorImpl<SDValue> &Result, 7592 EVT HiLoVT, SelectionDAG &DAG, 7593 MulExpansionKind Kind, SDValue LL, 7594 SDValue LH, SDValue RL, SDValue RH) const { 7595 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 7596 Opcode == ISD::SMUL_LOHI); 7597 7598 bool HasMULHS = (Kind == MulExpansionKind::Always) || 7599 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 7600 bool HasMULHU = (Kind == MulExpansionKind::Always) || 7601 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 7602 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 7603 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 7604 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 7605 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 7606 7607 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 7608 return false; 7609 7610 unsigned OuterBitSize = VT.getScalarSizeInBits(); 7611 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 7612 7613 // LL, LH, RL, and RH must be either all NULL or all set to a value. 7614 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 7615 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 7616 7617 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 7618 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 7619 bool Signed) -> bool { 7620 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 7621 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 7622 Hi = SDValue(Lo.getNode(), 1); 7623 return true; 7624 } 7625 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 7626 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 7627 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 7628 return true; 7629 } 7630 return false; 7631 }; 7632 7633 SDValue Lo, Hi; 7634 7635 if (!LL.getNode() && !RL.getNode() && 7636 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 7637 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 7638 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 7639 } 7640 7641 if (!LL.getNode()) 7642 return false; 7643 7644 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 7645 if (DAG.MaskedValueIsZero(LHS, HighMask) && 7646 DAG.MaskedValueIsZero(RHS, HighMask)) { 7647 // The inputs are both zero-extended. 7648 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 7649 Result.push_back(Lo); 7650 Result.push_back(Hi); 7651 if (Opcode != ISD::MUL) { 7652 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 7653 Result.push_back(Zero); 7654 Result.push_back(Zero); 7655 } 7656 return true; 7657 } 7658 } 7659 7660 if (!VT.isVector() && Opcode == ISD::MUL && 7661 DAG.ComputeMaxSignificantBits(LHS) <= InnerBitSize && 7662 DAG.ComputeMaxSignificantBits(RHS) <= InnerBitSize) { 7663 // The input values are both sign-extended. 7664 // TODO non-MUL case? 7665 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 7666 Result.push_back(Lo); 7667 Result.push_back(Hi); 7668 return true; 7669 } 7670 } 7671 7672 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 7673 SDValue Shift = DAG.getShiftAmountConstant(ShiftAmount, VT, dl); 7674 7675 if (!LH.getNode() && !RH.getNode() && 7676 isOperationLegalOrCustom(ISD::SRL, VT) && 7677 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 7678 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 7679 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 7680 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 7681 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 7682 } 7683 7684 if (!LH.getNode()) 7685 return false; 7686 7687 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 7688 return false; 7689 7690 Result.push_back(Lo); 7691 7692 if (Opcode == ISD::MUL) { 7693 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 7694 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 7695 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 7696 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 7697 Result.push_back(Hi); 7698 return true; 7699 } 7700 7701 // Compute the full width result. 7702 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 7703 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 7704 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 7705 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 7706 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 7707 }; 7708 7709 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 7710 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 7711 return false; 7712 7713 // This is effectively the add part of a multiply-add of half-sized operands, 7714 // so it cannot overflow. 7715 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 7716 7717 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 7718 return false; 7719 7720 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 7721 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7722 7723 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 7724 isOperationLegalOrCustom(ISD::ADDE, VT)); 7725 if (UseGlue) 7726 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 7727 Merge(Lo, Hi)); 7728 else 7729 Next = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(VT, BoolType), Next, 7730 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 7731 7732 SDValue Carry = Next.getValue(1); 7733 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7734 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 7735 7736 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 7737 return false; 7738 7739 if (UseGlue) 7740 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 7741 Carry); 7742 else 7743 Hi = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 7744 Zero, Carry); 7745 7746 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 7747 7748 if (Opcode == ISD::SMUL_LOHI) { 7749 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 7750 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 7751 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 7752 7753 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 7754 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 7755 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 7756 } 7757 7758 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7759 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 7760 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7761 return true; 7762 } 7763 7764 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 7765 SelectionDAG &DAG, MulExpansionKind Kind, 7766 SDValue LL, SDValue LH, SDValue RL, 7767 SDValue RH) const { 7768 SmallVector<SDValue, 2> Result; 7769 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 7770 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 7771 DAG, Kind, LL, LH, RL, RH); 7772 if (Ok) { 7773 assert(Result.size() == 2); 7774 Lo = Result[0]; 7775 Hi = Result[1]; 7776 } 7777 return Ok; 7778 } 7779 7780 // Optimize unsigned division or remainder by constants for types twice as large 7781 // as a legal VT. 7782 // 7783 // If (1 << (BitWidth / 2)) % Constant == 1, then the remainder 7784 // can be computed 7785 // as: 7786 // Sum += __builtin_uadd_overflow(Lo, High, &Sum); 7787 // Remainder = Sum % Constant 7788 // This is based on "Remainder by Summing Digits" from Hacker's Delight. 7789 // 7790 // For division, we can compute the remainder using the algorithm described 7791 // above, subtract it from the dividend to get an exact multiple of Constant. 7792 // Then multiply that exact multiply by the multiplicative inverse modulo 7793 // (1 << (BitWidth / 2)) to get the quotient. 7794 7795 // If Constant is even, we can shift right the dividend and the divisor by the 7796 // number of trailing zeros in Constant before applying the remainder algorithm. 7797 // If we're after the quotient, we can subtract this value from the shifted 7798 // dividend and multiply by the multiplicative inverse of the shifted divisor. 7799 // If we want the remainder, we shift the value left by the number of trailing 7800 // zeros and add the bits that were shifted out of the dividend. 7801 bool TargetLowering::expandDIVREMByConstant(SDNode *N, 7802 SmallVectorImpl<SDValue> &Result, 7803 EVT HiLoVT, SelectionDAG &DAG, 7804 SDValue LL, SDValue LH) const { 7805 unsigned Opcode = N->getOpcode(); 7806 EVT VT = N->getValueType(0); 7807 7808 // TODO: Support signed division/remainder. 7809 if (Opcode == ISD::SREM || Opcode == ISD::SDIV || Opcode == ISD::SDIVREM) 7810 return false; 7811 assert( 7812 (Opcode == ISD::UREM || Opcode == ISD::UDIV || Opcode == ISD::UDIVREM) && 7813 "Unexpected opcode"); 7814 7815 auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7816 if (!CN) 7817 return false; 7818 7819 APInt Divisor = CN->getAPIntValue(); 7820 unsigned BitWidth = Divisor.getBitWidth(); 7821 unsigned HBitWidth = BitWidth / 2; 7822 assert(VT.getScalarSizeInBits() == BitWidth && 7823 HiLoVT.getScalarSizeInBits() == HBitWidth && "Unexpected VTs"); 7824 7825 // Divisor needs to less than (1 << HBitWidth). 7826 APInt HalfMaxPlus1 = APInt::getOneBitSet(BitWidth, HBitWidth); 7827 if (Divisor.uge(HalfMaxPlus1)) 7828 return false; 7829 7830 // We depend on the UREM by constant optimization in DAGCombiner that requires 7831 // high multiply. 7832 if (!isOperationLegalOrCustom(ISD::MULHU, HiLoVT) && 7833 !isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT)) 7834 return false; 7835 7836 // Don't expand if optimizing for size. 7837 if (DAG.shouldOptForSize()) 7838 return false; 7839 7840 // Early out for 0 or 1 divisors. 7841 if (Divisor.ule(1)) 7842 return false; 7843 7844 // If the divisor is even, shift it until it becomes odd. 7845 unsigned TrailingZeros = 0; 7846 if (!Divisor[0]) { 7847 TrailingZeros = Divisor.countr_zero(); 7848 Divisor.lshrInPlace(TrailingZeros); 7849 } 7850 7851 SDLoc dl(N); 7852 SDValue Sum; 7853 SDValue PartialRem; 7854 7855 // If (1 << HBitWidth) % divisor == 1, we can add the two halves together and 7856 // then add in the carry. 7857 // TODO: If we can't split it in half, we might be able to split into 3 or 7858 // more pieces using a smaller bit width. 7859 if (HalfMaxPlus1.urem(Divisor).isOne()) { 7860 assert(!LL == !LH && "Expected both input halves or no input halves!"); 7861 if (!LL) 7862 std::tie(LL, LH) = DAG.SplitScalar(N->getOperand(0), dl, HiLoVT, HiLoVT); 7863 7864 // Shift the input by the number of TrailingZeros in the divisor. The 7865 // shifted out bits will be added to the remainder later. 7866 if (TrailingZeros) { 7867 // Save the shifted off bits if we need the remainder. 7868 if (Opcode != ISD::UDIV) { 7869 APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros); 7870 PartialRem = DAG.getNode(ISD::AND, dl, HiLoVT, LL, 7871 DAG.getConstant(Mask, dl, HiLoVT)); 7872 } 7873 7874 LL = DAG.getNode( 7875 ISD::OR, dl, HiLoVT, 7876 DAG.getNode(ISD::SRL, dl, HiLoVT, LL, 7877 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)), 7878 DAG.getNode(ISD::SHL, dl, HiLoVT, LH, 7879 DAG.getShiftAmountConstant(HBitWidth - TrailingZeros, 7880 HiLoVT, dl))); 7881 LH = DAG.getNode(ISD::SRL, dl, HiLoVT, LH, 7882 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)); 7883 } 7884 7885 // Use uaddo_carry if we can, otherwise use a compare to detect overflow. 7886 EVT SetCCType = 7887 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), HiLoVT); 7888 if (isOperationLegalOrCustom(ISD::UADDO_CARRY, HiLoVT)) { 7889 SDVTList VTList = DAG.getVTList(HiLoVT, SetCCType); 7890 Sum = DAG.getNode(ISD::UADDO, dl, VTList, LL, LH); 7891 Sum = DAG.getNode(ISD::UADDO_CARRY, dl, VTList, Sum, 7892 DAG.getConstant(0, dl, HiLoVT), Sum.getValue(1)); 7893 } else { 7894 Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, LL, LH); 7895 SDValue Carry = DAG.getSetCC(dl, SetCCType, Sum, LL, ISD::SETULT); 7896 // If the boolean for the target is 0 or 1, we can add the setcc result 7897 // directly. 7898 if (getBooleanContents(HiLoVT) == 7899 TargetLoweringBase::ZeroOrOneBooleanContent) 7900 Carry = DAG.getZExtOrTrunc(Carry, dl, HiLoVT); 7901 else 7902 Carry = DAG.getSelect(dl, HiLoVT, Carry, DAG.getConstant(1, dl, HiLoVT), 7903 DAG.getConstant(0, dl, HiLoVT)); 7904 Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, Sum, Carry); 7905 } 7906 } 7907 7908 // If we didn't find a sum, we can't do the expansion. 7909 if (!Sum) 7910 return false; 7911 7912 // Perform a HiLoVT urem on the Sum using truncated divisor. 7913 SDValue RemL = 7914 DAG.getNode(ISD::UREM, dl, HiLoVT, Sum, 7915 DAG.getConstant(Divisor.trunc(HBitWidth), dl, HiLoVT)); 7916 SDValue RemH = DAG.getConstant(0, dl, HiLoVT); 7917 7918 if (Opcode != ISD::UREM) { 7919 // Subtract the remainder from the shifted dividend. 7920 SDValue Dividend = DAG.getNode(ISD::BUILD_PAIR, dl, VT, LL, LH); 7921 SDValue Rem = DAG.getNode(ISD::BUILD_PAIR, dl, VT, RemL, RemH); 7922 7923 Dividend = DAG.getNode(ISD::SUB, dl, VT, Dividend, Rem); 7924 7925 // Multiply by the multiplicative inverse of the divisor modulo 7926 // (1 << BitWidth). 7927 APInt MulFactor = Divisor.multiplicativeInverse(); 7928 7929 SDValue Quotient = DAG.getNode(ISD::MUL, dl, VT, Dividend, 7930 DAG.getConstant(MulFactor, dl, VT)); 7931 7932 // Split the quotient into low and high parts. 7933 SDValue QuotL, QuotH; 7934 std::tie(QuotL, QuotH) = DAG.SplitScalar(Quotient, dl, HiLoVT, HiLoVT); 7935 Result.push_back(QuotL); 7936 Result.push_back(QuotH); 7937 } 7938 7939 if (Opcode != ISD::UDIV) { 7940 // If we shifted the input, shift the remainder left and add the bits we 7941 // shifted off the input. 7942 if (TrailingZeros) { 7943 APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros); 7944 RemL = DAG.getNode(ISD::SHL, dl, HiLoVT, RemL, 7945 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)); 7946 RemL = DAG.getNode(ISD::ADD, dl, HiLoVT, RemL, PartialRem); 7947 } 7948 Result.push_back(RemL); 7949 Result.push_back(DAG.getConstant(0, dl, HiLoVT)); 7950 } 7951 7952 return true; 7953 } 7954 7955 // Check that (every element of) Z is undef or not an exact multiple of BW. 7956 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 7957 return ISD::matchUnaryPredicate( 7958 Z, 7959 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 7960 true); 7961 } 7962 7963 static SDValue expandVPFunnelShift(SDNode *Node, SelectionDAG &DAG) { 7964 EVT VT = Node->getValueType(0); 7965 SDValue ShX, ShY; 7966 SDValue ShAmt, InvShAmt; 7967 SDValue X = Node->getOperand(0); 7968 SDValue Y = Node->getOperand(1); 7969 SDValue Z = Node->getOperand(2); 7970 SDValue Mask = Node->getOperand(3); 7971 SDValue VL = Node->getOperand(4); 7972 7973 unsigned BW = VT.getScalarSizeInBits(); 7974 bool IsFSHL = Node->getOpcode() == ISD::VP_FSHL; 7975 SDLoc DL(SDValue(Node, 0)); 7976 7977 EVT ShVT = Z.getValueType(); 7978 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7979 // fshl: X << C | Y >> (BW - C) 7980 // fshr: X << (BW - C) | Y >> C 7981 // where C = Z % BW is not zero 7982 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7983 ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL); 7984 InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitWidthC, ShAmt, Mask, VL); 7985 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt, Mask, 7986 VL); 7987 ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt, Mask, 7988 VL); 7989 } else { 7990 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 7991 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 7992 SDValue BitMask = DAG.getConstant(BW - 1, DL, ShVT); 7993 if (isPowerOf2_32(BW)) { 7994 // Z % BW -> Z & (BW - 1) 7995 ShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, Z, BitMask, Mask, VL); 7996 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 7997 SDValue NotZ = DAG.getNode(ISD::VP_XOR, DL, ShVT, Z, 7998 DAG.getAllOnesConstant(DL, ShVT), Mask, VL); 7999 InvShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, NotZ, BitMask, Mask, VL); 8000 } else { 8001 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 8002 ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL); 8003 InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitMask, ShAmt, Mask, VL); 8004 } 8005 8006 SDValue One = DAG.getConstant(1, DL, ShVT); 8007 if (IsFSHL) { 8008 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, ShAmt, Mask, VL); 8009 SDValue ShY1 = DAG.getNode(ISD::VP_SRL, DL, VT, Y, One, Mask, VL); 8010 ShY = DAG.getNode(ISD::VP_SRL, DL, VT, ShY1, InvShAmt, Mask, VL); 8011 } else { 8012 SDValue ShX1 = DAG.getNode(ISD::VP_SHL, DL, VT, X, One, Mask, VL); 8013 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, ShX1, InvShAmt, Mask, VL); 8014 ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, ShAmt, Mask, VL); 8015 } 8016 } 8017 return DAG.getNode(ISD::VP_OR, DL, VT, ShX, ShY, Mask, VL); 8018 } 8019 8020 SDValue TargetLowering::expandFunnelShift(SDNode *Node, 8021 SelectionDAG &DAG) const { 8022 if (Node->isVPOpcode()) 8023 return expandVPFunnelShift(Node, DAG); 8024 8025 EVT VT = Node->getValueType(0); 8026 8027 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 8028 !isOperationLegalOrCustom(ISD::SRL, VT) || 8029 !isOperationLegalOrCustom(ISD::SUB, VT) || 8030 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 8031 return SDValue(); 8032 8033 SDValue X = Node->getOperand(0); 8034 SDValue Y = Node->getOperand(1); 8035 SDValue Z = Node->getOperand(2); 8036 8037 unsigned BW = VT.getScalarSizeInBits(); 8038 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 8039 SDLoc DL(SDValue(Node, 0)); 8040 8041 EVT ShVT = Z.getValueType(); 8042 8043 // If a funnel shift in the other direction is more supported, use it. 8044 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 8045 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 8046 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 8047 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 8048 // fshl X, Y, Z -> fshr X, Y, -Z 8049 // fshr X, Y, Z -> fshl X, Y, -Z 8050 SDValue Zero = DAG.getConstant(0, DL, ShVT); 8051 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 8052 } else { 8053 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 8054 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 8055 SDValue One = DAG.getConstant(1, DL, ShVT); 8056 if (IsFSHL) { 8057 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 8058 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 8059 } else { 8060 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 8061 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 8062 } 8063 Z = DAG.getNOT(DL, Z, ShVT); 8064 } 8065 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 8066 } 8067 8068 SDValue ShX, ShY; 8069 SDValue ShAmt, InvShAmt; 8070 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 8071 // fshl: X << C | Y >> (BW - C) 8072 // fshr: X << (BW - C) | Y >> C 8073 // where C = Z % BW is not zero 8074 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 8075 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 8076 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 8077 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 8078 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 8079 } else { 8080 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 8081 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 8082 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 8083 if (isPowerOf2_32(BW)) { 8084 // Z % BW -> Z & (BW - 1) 8085 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 8086 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 8087 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 8088 } else { 8089 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 8090 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 8091 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 8092 } 8093 8094 SDValue One = DAG.getConstant(1, DL, ShVT); 8095 if (IsFSHL) { 8096 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 8097 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 8098 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 8099 } else { 8100 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 8101 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 8102 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 8103 } 8104 } 8105 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 8106 } 8107 8108 // TODO: Merge with expandFunnelShift. 8109 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 8110 SelectionDAG &DAG) const { 8111 EVT VT = Node->getValueType(0); 8112 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 8113 bool IsLeft = Node->getOpcode() == ISD::ROTL; 8114 SDValue Op0 = Node->getOperand(0); 8115 SDValue Op1 = Node->getOperand(1); 8116 SDLoc DL(SDValue(Node, 0)); 8117 8118 EVT ShVT = Op1.getValueType(); 8119 SDValue Zero = DAG.getConstant(0, DL, ShVT); 8120 8121 // If a rotate in the other direction is more supported, use it. 8122 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 8123 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 8124 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 8125 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 8126 return DAG.getNode(RevRot, DL, VT, Op0, Sub); 8127 } 8128 8129 if (!AllowVectorOps && VT.isVector() && 8130 (!isOperationLegalOrCustom(ISD::SHL, VT) || 8131 !isOperationLegalOrCustom(ISD::SRL, VT) || 8132 !isOperationLegalOrCustom(ISD::SUB, VT) || 8133 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 8134 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 8135 return SDValue(); 8136 8137 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 8138 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 8139 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 8140 SDValue ShVal; 8141 SDValue HsVal; 8142 if (isPowerOf2_32(EltSizeInBits)) { 8143 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 8144 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 8145 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 8146 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 8147 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 8148 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 8149 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 8150 } else { 8151 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 8152 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 8153 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 8154 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 8155 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 8156 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 8157 SDValue One = DAG.getConstant(1, DL, ShVT); 8158 HsVal = 8159 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 8160 } 8161 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 8162 } 8163 8164 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 8165 SelectionDAG &DAG) const { 8166 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 8167 EVT VT = Node->getValueType(0); 8168 unsigned VTBits = VT.getScalarSizeInBits(); 8169 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 8170 8171 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 8172 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 8173 SDValue ShOpLo = Node->getOperand(0); 8174 SDValue ShOpHi = Node->getOperand(1); 8175 SDValue ShAmt = Node->getOperand(2); 8176 EVT ShAmtVT = ShAmt.getValueType(); 8177 EVT ShAmtCCVT = 8178 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 8179 SDLoc dl(Node); 8180 8181 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 8182 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 8183 // away during isel. 8184 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 8185 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 8186 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 8187 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 8188 : DAG.getConstant(0, dl, VT); 8189 8190 SDValue Tmp2, Tmp3; 8191 if (IsSHL) { 8192 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 8193 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 8194 } else { 8195 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 8196 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 8197 } 8198 8199 // If the shift amount is larger or equal than the width of a part we don't 8200 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 8201 // values for large shift amounts. 8202 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 8203 DAG.getConstant(VTBits, dl, ShAmtVT)); 8204 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 8205 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 8206 8207 if (IsSHL) { 8208 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 8209 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 8210 } else { 8211 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 8212 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 8213 } 8214 } 8215 8216 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 8217 SelectionDAG &DAG) const { 8218 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 8219 SDValue Src = Node->getOperand(OpNo); 8220 EVT SrcVT = Src.getValueType(); 8221 EVT DstVT = Node->getValueType(0); 8222 SDLoc dl(SDValue(Node, 0)); 8223 8224 // FIXME: Only f32 to i64 conversions are supported. 8225 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 8226 return false; 8227 8228 if (Node->isStrictFPOpcode()) 8229 // When a NaN is converted to an integer a trap is allowed. We can't 8230 // use this expansion here because it would eliminate that trap. Other 8231 // traps are also allowed and cannot be eliminated. See 8232 // IEEE 754-2008 sec 5.8. 8233 return false; 8234 8235 // Expand f32 -> i64 conversion 8236 // This algorithm comes from compiler-rt's implementation of fixsfdi: 8237 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 8238 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 8239 EVT IntVT = SrcVT.changeTypeToInteger(); 8240 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 8241 8242 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 8243 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 8244 SDValue Bias = DAG.getConstant(127, dl, IntVT); 8245 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 8246 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 8247 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 8248 8249 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 8250 8251 SDValue ExponentBits = DAG.getNode( 8252 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 8253 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 8254 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 8255 8256 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 8257 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 8258 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 8259 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 8260 8261 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 8262 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 8263 DAG.getConstant(0x00800000, dl, IntVT)); 8264 8265 R = DAG.getZExtOrTrunc(R, dl, DstVT); 8266 8267 R = DAG.getSelectCC( 8268 dl, Exponent, ExponentLoBit, 8269 DAG.getNode(ISD::SHL, dl, DstVT, R, 8270 DAG.getZExtOrTrunc( 8271 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 8272 dl, IntShVT)), 8273 DAG.getNode(ISD::SRL, dl, DstVT, R, 8274 DAG.getZExtOrTrunc( 8275 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 8276 dl, IntShVT)), 8277 ISD::SETGT); 8278 8279 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 8280 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 8281 8282 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 8283 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 8284 return true; 8285 } 8286 8287 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 8288 SDValue &Chain, 8289 SelectionDAG &DAG) const { 8290 SDLoc dl(SDValue(Node, 0)); 8291 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 8292 SDValue Src = Node->getOperand(OpNo); 8293 8294 EVT SrcVT = Src.getValueType(); 8295 EVT DstVT = Node->getValueType(0); 8296 EVT SetCCVT = 8297 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 8298 EVT DstSetCCVT = 8299 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 8300 8301 // Only expand vector types if we have the appropriate vector bit operations. 8302 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 8303 ISD::FP_TO_SINT; 8304 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 8305 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 8306 return false; 8307 8308 // If the maximum float value is smaller then the signed integer range, 8309 // the destination signmask can't be represented by the float, so we can 8310 // just use FP_TO_SINT directly. 8311 const fltSemantics &APFSem = SrcVT.getFltSemantics(); 8312 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 8313 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 8314 if (APFloat::opOverflow & 8315 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 8316 if (Node->isStrictFPOpcode()) { 8317 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 8318 { Node->getOperand(0), Src }); 8319 Chain = Result.getValue(1); 8320 } else 8321 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 8322 return true; 8323 } 8324 8325 // Don't expand it if there isn't cheap fsub instruction. 8326 if (!isOperationLegalOrCustom( 8327 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 8328 return false; 8329 8330 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 8331 SDValue Sel; 8332 8333 if (Node->isStrictFPOpcode()) { 8334 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 8335 Node->getOperand(0), /*IsSignaling*/ true); 8336 Chain = Sel.getValue(1); 8337 } else { 8338 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 8339 } 8340 8341 bool Strict = Node->isStrictFPOpcode() || 8342 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 8343 8344 if (Strict) { 8345 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 8346 // signmask then offset (the result of which should be fully representable). 8347 // Sel = Src < 0x8000000000000000 8348 // FltOfs = select Sel, 0, 0x8000000000000000 8349 // IntOfs = select Sel, 0, 0x8000000000000000 8350 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 8351 8352 // TODO: Should any fast-math-flags be set for the FSUB? 8353 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 8354 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 8355 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8356 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 8357 DAG.getConstant(0, dl, DstVT), 8358 DAG.getConstant(SignMask, dl, DstVT)); 8359 SDValue SInt; 8360 if (Node->isStrictFPOpcode()) { 8361 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 8362 { Chain, Src, FltOfs }); 8363 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 8364 { Val.getValue(1), Val }); 8365 Chain = SInt.getValue(1); 8366 } else { 8367 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 8368 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 8369 } 8370 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 8371 } else { 8372 // Expand based on maximum range of FP_TO_SINT: 8373 // True = fp_to_sint(Src) 8374 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 8375 // Result = select (Src < 0x8000000000000000), True, False 8376 8377 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 8378 // TODO: Should any fast-math-flags be set for the FSUB? 8379 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 8380 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 8381 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 8382 DAG.getConstant(SignMask, dl, DstVT)); 8383 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8384 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 8385 } 8386 return true; 8387 } 8388 8389 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 8390 SDValue &Chain, SelectionDAG &DAG) const { 8391 // This transform is not correct for converting 0 when rounding mode is set 8392 // to round toward negative infinity which will produce -0.0. So disable 8393 // under strictfp. 8394 if (Node->isStrictFPOpcode()) 8395 return false; 8396 8397 SDValue Src = Node->getOperand(0); 8398 EVT SrcVT = Src.getValueType(); 8399 EVT DstVT = Node->getValueType(0); 8400 8401 // If the input is known to be non-negative and SINT_TO_FP is legal then use 8402 // it. 8403 if (Node->getFlags().hasNonNeg() && 8404 isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT)) { 8405 Result = 8406 DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), DstVT, Node->getOperand(0)); 8407 return true; 8408 } 8409 8410 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 8411 return false; 8412 8413 // Only expand vector types if we have the appropriate vector bit 8414 // operations. 8415 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 8416 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 8417 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 8418 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 8419 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 8420 return false; 8421 8422 SDLoc dl(SDValue(Node, 0)); 8423 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 8424 8425 // Implementation of unsigned i64 to f64 following the algorithm in 8426 // __floatundidf in compiler_rt. This implementation performs rounding 8427 // correctly in all rounding modes with the exception of converting 0 8428 // when rounding toward negative infinity. In that case the fsub will 8429 // produce -0.0. This will be added to +0.0 and produce -0.0 which is 8430 // incorrect. 8431 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 8432 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 8433 llvm::bit_cast<double>(UINT64_C(0x4530000000100000)), dl, DstVT); 8434 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 8435 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 8436 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 8437 8438 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 8439 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 8440 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 8441 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 8442 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 8443 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 8444 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 8445 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 8446 return true; 8447 } 8448 8449 SDValue 8450 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node, 8451 SelectionDAG &DAG) const { 8452 unsigned Opcode = Node->getOpcode(); 8453 assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM || 8454 Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) && 8455 "Wrong opcode"); 8456 8457 if (Node->getFlags().hasNoNaNs()) { 8458 ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 8459 EVT VT = Node->getValueType(0); 8460 if ((!isCondCodeLegal(Pred, VT.getSimpleVT()) || 8461 !isOperationLegalOrCustom(ISD::VSELECT, VT)) && 8462 VT.isVector()) 8463 return SDValue(); 8464 SDValue Op1 = Node->getOperand(0); 8465 SDValue Op2 = Node->getOperand(1); 8466 SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred); 8467 // Copy FMF flags, but always set the no-signed-zeros flag 8468 // as this is implied by the FMINNUM/FMAXNUM semantics. 8469 SelCC->setFlags(Node->getFlags() | SDNodeFlags::NoSignedZeros); 8470 return SelCC; 8471 } 8472 8473 return SDValue(); 8474 } 8475 8476 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 8477 SelectionDAG &DAG) const { 8478 if (SDValue Expanded = expandVectorNaryOpBySplitting(Node, DAG)) 8479 return Expanded; 8480 8481 EVT VT = Node->getValueType(0); 8482 if (VT.isScalableVector()) 8483 report_fatal_error( 8484 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 8485 8486 SDLoc dl(Node); 8487 unsigned NewOp = 8488 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 8489 8490 if (isOperationLegalOrCustom(NewOp, VT)) { 8491 SDValue Quiet0 = Node->getOperand(0); 8492 SDValue Quiet1 = Node->getOperand(1); 8493 8494 if (!Node->getFlags().hasNoNaNs()) { 8495 // Insert canonicalizes if it's possible we need to quiet to get correct 8496 // sNaN behavior. 8497 if (!DAG.isKnownNeverSNaN(Quiet0)) { 8498 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 8499 Node->getFlags()); 8500 } 8501 if (!DAG.isKnownNeverSNaN(Quiet1)) { 8502 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 8503 Node->getFlags()); 8504 } 8505 } 8506 8507 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 8508 } 8509 8510 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 8511 // instead if there are no NaNs and there can't be an incompatible zero 8512 // compare: at least one operand isn't +/-0, or there are no signed-zeros. 8513 if ((Node->getFlags().hasNoNaNs() || 8514 (DAG.isKnownNeverNaN(Node->getOperand(0)) && 8515 DAG.isKnownNeverNaN(Node->getOperand(1)))) && 8516 (Node->getFlags().hasNoSignedZeros() || 8517 DAG.isKnownNeverZeroFloat(Node->getOperand(0)) || 8518 DAG.isKnownNeverZeroFloat(Node->getOperand(1)))) { 8519 unsigned IEEE2018Op = 8520 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 8521 if (isOperationLegalOrCustom(IEEE2018Op, VT)) 8522 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 8523 Node->getOperand(1), Node->getFlags()); 8524 } 8525 8526 if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG)) 8527 return SelCC; 8528 8529 return SDValue(); 8530 } 8531 8532 SDValue TargetLowering::expandFMINIMUM_FMAXIMUM(SDNode *N, 8533 SelectionDAG &DAG) const { 8534 if (SDValue Expanded = expandVectorNaryOpBySplitting(N, DAG)) 8535 return Expanded; 8536 8537 SDLoc DL(N); 8538 SDValue LHS = N->getOperand(0); 8539 SDValue RHS = N->getOperand(1); 8540 unsigned Opc = N->getOpcode(); 8541 EVT VT = N->getValueType(0); 8542 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8543 bool IsMax = Opc == ISD::FMAXIMUM; 8544 SDNodeFlags Flags = N->getFlags(); 8545 8546 // First, implement comparison not propagating NaN. If no native fmin or fmax 8547 // available, use plain select with setcc instead. 8548 SDValue MinMax; 8549 unsigned CompOpcIeee = IsMax ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE; 8550 unsigned CompOpc = IsMax ? ISD::FMAXNUM : ISD::FMINNUM; 8551 8552 // FIXME: We should probably define fminnum/fmaxnum variants with correct 8553 // signed zero behavior. 8554 bool MinMaxMustRespectOrderedZero = false; 8555 8556 if (isOperationLegalOrCustom(CompOpcIeee, VT)) { 8557 MinMax = DAG.getNode(CompOpcIeee, DL, VT, LHS, RHS, Flags); 8558 MinMaxMustRespectOrderedZero = true; 8559 } else if (isOperationLegalOrCustom(CompOpc, VT)) { 8560 MinMax = DAG.getNode(CompOpc, DL, VT, LHS, RHS, Flags); 8561 } else { 8562 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8563 return DAG.UnrollVectorOp(N); 8564 8565 // NaN (if exists) will be propagated later, so orderness doesn't matter. 8566 SDValue Compare = 8567 DAG.getSetCC(DL, CCVT, LHS, RHS, IsMax ? ISD::SETOGT : ISD::SETOLT); 8568 MinMax = DAG.getSelect(DL, VT, Compare, LHS, RHS, Flags); 8569 } 8570 8571 // Propagate any NaN of both operands 8572 if (!N->getFlags().hasNoNaNs() && 8573 (!DAG.isKnownNeverNaN(RHS) || !DAG.isKnownNeverNaN(LHS))) { 8574 ConstantFP *FPNaN = ConstantFP::get(*DAG.getContext(), 8575 APFloat::getNaN(VT.getFltSemantics())); 8576 MinMax = DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, LHS, RHS, ISD::SETUO), 8577 DAG.getConstantFP(*FPNaN, DL, VT), MinMax, Flags); 8578 } 8579 8580 // fminimum/fmaximum requires -0.0 less than +0.0 8581 if (!MinMaxMustRespectOrderedZero && !N->getFlags().hasNoSignedZeros() && 8582 !DAG.isKnownNeverZeroFloat(RHS) && !DAG.isKnownNeverZeroFloat(LHS)) { 8583 SDValue IsZero = DAG.getSetCC(DL, CCVT, MinMax, 8584 DAG.getConstantFP(0.0, DL, VT), ISD::SETOEQ); 8585 SDValue TestZero = 8586 DAG.getTargetConstant(IsMax ? fcPosZero : fcNegZero, DL, MVT::i32); 8587 SDValue LCmp = DAG.getSelect( 8588 DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, LHS, TestZero), LHS, 8589 MinMax, Flags); 8590 SDValue RCmp = DAG.getSelect( 8591 DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, RHS, TestZero), RHS, 8592 LCmp, Flags); 8593 MinMax = DAG.getSelect(DL, VT, IsZero, RCmp, MinMax, Flags); 8594 } 8595 8596 return MinMax; 8597 } 8598 8599 SDValue TargetLowering::expandFMINIMUMNUM_FMAXIMUMNUM(SDNode *Node, 8600 SelectionDAG &DAG) const { 8601 SDLoc DL(Node); 8602 SDValue LHS = Node->getOperand(0); 8603 SDValue RHS = Node->getOperand(1); 8604 unsigned Opc = Node->getOpcode(); 8605 EVT VT = Node->getValueType(0); 8606 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8607 bool IsMax = Opc == ISD::FMAXIMUMNUM; 8608 const TargetOptions &Options = DAG.getTarget().Options; 8609 SDNodeFlags Flags = Node->getFlags(); 8610 8611 unsigned NewOp = 8612 Opc == ISD::FMINIMUMNUM ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 8613 8614 if (isOperationLegalOrCustom(NewOp, VT)) { 8615 if (!Flags.hasNoNaNs()) { 8616 // Insert canonicalizes if it's possible we need to quiet to get correct 8617 // sNaN behavior. 8618 if (!DAG.isKnownNeverSNaN(LHS)) { 8619 LHS = DAG.getNode(ISD::FCANONICALIZE, DL, VT, LHS, Flags); 8620 } 8621 if (!DAG.isKnownNeverSNaN(RHS)) { 8622 RHS = DAG.getNode(ISD::FCANONICALIZE, DL, VT, RHS, Flags); 8623 } 8624 } 8625 8626 return DAG.getNode(NewOp, DL, VT, LHS, RHS, Flags); 8627 } 8628 8629 // We can use FMINIMUM/FMAXIMUM if there is no NaN, since it has 8630 // same behaviors for all of other cases: +0.0 vs -0.0 included. 8631 if (Flags.hasNoNaNs() || 8632 (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS))) { 8633 unsigned IEEE2019Op = 8634 Opc == ISD::FMINIMUMNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 8635 if (isOperationLegalOrCustom(IEEE2019Op, VT)) 8636 return DAG.getNode(IEEE2019Op, DL, VT, LHS, RHS, Flags); 8637 } 8638 8639 // FMINNUM/FMAXMUM returns qNaN if either operand is sNaN, and it may return 8640 // either one for +0.0 vs -0.0. 8641 if ((Flags.hasNoNaNs() || 8642 (DAG.isKnownNeverSNaN(LHS) && DAG.isKnownNeverSNaN(RHS))) && 8643 (Flags.hasNoSignedZeros() || DAG.isKnownNeverZeroFloat(LHS) || 8644 DAG.isKnownNeverZeroFloat(RHS))) { 8645 unsigned IEEE2008Op = Opc == ISD::FMINIMUMNUM ? ISD::FMINNUM : ISD::FMAXNUM; 8646 if (isOperationLegalOrCustom(IEEE2008Op, VT)) 8647 return DAG.getNode(IEEE2008Op, DL, VT, LHS, RHS, Flags); 8648 } 8649 8650 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8651 return DAG.UnrollVectorOp(Node); 8652 8653 // If only one operand is NaN, override it with another operand. 8654 if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(LHS)) { 8655 LHS = DAG.getSelectCC(DL, LHS, LHS, RHS, LHS, ISD::SETUO); 8656 } 8657 if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(RHS)) { 8658 RHS = DAG.getSelectCC(DL, RHS, RHS, LHS, RHS, ISD::SETUO); 8659 } 8660 8661 SDValue MinMax = 8662 DAG.getSelectCC(DL, LHS, RHS, LHS, RHS, IsMax ? ISD::SETGT : ISD::SETLT); 8663 // If MinMax is NaN, let's quiet it. 8664 if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(LHS) && 8665 !DAG.isKnownNeverNaN(RHS)) { 8666 MinMax = DAG.getNode(ISD::FCANONICALIZE, DL, VT, MinMax, Flags); 8667 } 8668 8669 // Fixup signed zero behavior. 8670 if (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros() || 8671 DAG.isKnownNeverZeroFloat(LHS) || DAG.isKnownNeverZeroFloat(RHS)) { 8672 return MinMax; 8673 } 8674 SDValue TestZero = 8675 DAG.getTargetConstant(IsMax ? fcPosZero : fcNegZero, DL, MVT::i32); 8676 SDValue IsZero = DAG.getSetCC(DL, CCVT, MinMax, 8677 DAG.getConstantFP(0.0, DL, VT), ISD::SETEQ); 8678 SDValue LCmp = DAG.getSelect( 8679 DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, LHS, TestZero), LHS, 8680 MinMax, Flags); 8681 SDValue RCmp = DAG.getSelect( 8682 DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, RHS, TestZero), RHS, LCmp, 8683 Flags); 8684 return DAG.getSelect(DL, VT, IsZero, RCmp, MinMax, Flags); 8685 } 8686 8687 /// Returns a true value if if this FPClassTest can be performed with an ordered 8688 /// fcmp to 0, and a false value if it's an unordered fcmp to 0. Returns 8689 /// std::nullopt if it cannot be performed as a compare with 0. 8690 static std::optional<bool> isFCmpEqualZero(FPClassTest Test, 8691 const fltSemantics &Semantics, 8692 const MachineFunction &MF) { 8693 FPClassTest OrderedMask = Test & ~fcNan; 8694 FPClassTest NanTest = Test & fcNan; 8695 bool IsOrdered = NanTest == fcNone; 8696 bool IsUnordered = NanTest == fcNan; 8697 8698 // Skip cases that are testing for only a qnan or snan. 8699 if (!IsOrdered && !IsUnordered) 8700 return std::nullopt; 8701 8702 if (OrderedMask == fcZero && 8703 MF.getDenormalMode(Semantics).Input == DenormalMode::IEEE) 8704 return IsOrdered; 8705 if (OrderedMask == (fcZero | fcSubnormal) && 8706 MF.getDenormalMode(Semantics).inputsAreZero()) 8707 return IsOrdered; 8708 return std::nullopt; 8709 } 8710 8711 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op, 8712 const FPClassTest OrigTestMask, 8713 SDNodeFlags Flags, const SDLoc &DL, 8714 SelectionDAG &DAG) const { 8715 EVT OperandVT = Op.getValueType(); 8716 assert(OperandVT.isFloatingPoint()); 8717 FPClassTest Test = OrigTestMask; 8718 8719 // Degenerated cases. 8720 if (Test == fcNone) 8721 return DAG.getBoolConstant(false, DL, ResultVT, OperandVT); 8722 if (Test == fcAllFlags) 8723 return DAG.getBoolConstant(true, DL, ResultVT, OperandVT); 8724 8725 // PPC double double is a pair of doubles, of which the higher part determines 8726 // the value class. 8727 if (OperandVT == MVT::ppcf128) { 8728 Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op, 8729 DAG.getConstant(1, DL, MVT::i32)); 8730 OperandVT = MVT::f64; 8731 } 8732 8733 // Floating-point type properties. 8734 EVT ScalarFloatVT = OperandVT.getScalarType(); 8735 const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext()); 8736 const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics(); 8737 bool IsF80 = (ScalarFloatVT == MVT::f80); 8738 8739 // Some checks can be implemented using float comparisons, if floating point 8740 // exceptions are ignored. 8741 if (Flags.hasNoFPExcept() && 8742 isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) { 8743 FPClassTest FPTestMask = Test; 8744 bool IsInvertedFP = false; 8745 8746 if (FPClassTest InvertedFPCheck = 8747 invertFPClassTestIfSimpler(FPTestMask, true)) { 8748 FPTestMask = InvertedFPCheck; 8749 IsInvertedFP = true; 8750 } 8751 8752 ISD::CondCode OrderedCmpOpcode = IsInvertedFP ? ISD::SETUNE : ISD::SETOEQ; 8753 ISD::CondCode UnorderedCmpOpcode = IsInvertedFP ? ISD::SETONE : ISD::SETUEQ; 8754 8755 // See if we can fold an | fcNan into an unordered compare. 8756 FPClassTest OrderedFPTestMask = FPTestMask & ~fcNan; 8757 8758 // Can't fold the ordered check if we're only testing for snan or qnan 8759 // individually. 8760 if ((FPTestMask & fcNan) != fcNan) 8761 OrderedFPTestMask = FPTestMask; 8762 8763 const bool IsOrdered = FPTestMask == OrderedFPTestMask; 8764 8765 if (std::optional<bool> IsCmp0 = 8766 isFCmpEqualZero(FPTestMask, Semantics, DAG.getMachineFunction()); 8767 IsCmp0 && (isCondCodeLegalOrCustom( 8768 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode, 8769 OperandVT.getScalarType().getSimpleVT()))) { 8770 8771 // If denormals could be implicitly treated as 0, this is not equivalent 8772 // to a compare with 0 since it will also be true for denormals. 8773 return DAG.getSetCC(DL, ResultVT, Op, 8774 DAG.getConstantFP(0.0, DL, OperandVT), 8775 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode); 8776 } 8777 8778 if (FPTestMask == fcNan && 8779 isCondCodeLegalOrCustom(IsInvertedFP ? ISD::SETO : ISD::SETUO, 8780 OperandVT.getScalarType().getSimpleVT())) 8781 return DAG.getSetCC(DL, ResultVT, Op, Op, 8782 IsInvertedFP ? ISD::SETO : ISD::SETUO); 8783 8784 bool IsOrderedInf = FPTestMask == fcInf; 8785 if ((FPTestMask == fcInf || FPTestMask == (fcInf | fcNan)) && 8786 isCondCodeLegalOrCustom(IsOrderedInf ? OrderedCmpOpcode 8787 : UnorderedCmpOpcode, 8788 OperandVT.getScalarType().getSimpleVT()) && 8789 isOperationLegalOrCustom(ISD::FABS, OperandVT.getScalarType()) && 8790 (isOperationLegal(ISD::ConstantFP, OperandVT.getScalarType()) || 8791 (OperandVT.isVector() && 8792 isOperationLegalOrCustom(ISD::BUILD_VECTOR, OperandVT)))) { 8793 // isinf(x) --> fabs(x) == inf 8794 SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op); 8795 SDValue Inf = 8796 DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT); 8797 return DAG.getSetCC(DL, ResultVT, Abs, Inf, 8798 IsOrderedInf ? OrderedCmpOpcode : UnorderedCmpOpcode); 8799 } 8800 8801 if ((OrderedFPTestMask == fcPosInf || OrderedFPTestMask == fcNegInf) && 8802 isCondCodeLegalOrCustom(IsOrdered ? OrderedCmpOpcode 8803 : UnorderedCmpOpcode, 8804 OperandVT.getSimpleVT())) { 8805 // isposinf(x) --> x == inf 8806 // isneginf(x) --> x == -inf 8807 // isposinf(x) || nan --> x u== inf 8808 // isneginf(x) || nan --> x u== -inf 8809 8810 SDValue Inf = DAG.getConstantFP( 8811 APFloat::getInf(Semantics, OrderedFPTestMask == fcNegInf), DL, 8812 OperandVT); 8813 return DAG.getSetCC(DL, ResultVT, Op, Inf, 8814 IsOrdered ? OrderedCmpOpcode : UnorderedCmpOpcode); 8815 } 8816 8817 if (OrderedFPTestMask == (fcSubnormal | fcZero) && !IsOrdered) { 8818 // TODO: Could handle ordered case, but it produces worse code for 8819 // x86. Maybe handle ordered if fabs is free? 8820 8821 ISD::CondCode OrderedOp = IsInvertedFP ? ISD::SETUGE : ISD::SETOLT; 8822 ISD::CondCode UnorderedOp = IsInvertedFP ? ISD::SETOGE : ISD::SETULT; 8823 8824 if (isCondCodeLegalOrCustom(IsOrdered ? OrderedOp : UnorderedOp, 8825 OperandVT.getScalarType().getSimpleVT())) { 8826 // (issubnormal(x) || iszero(x)) --> fabs(x) < smallest_normal 8827 8828 // TODO: Maybe only makes sense if fabs is free. Integer test of 8829 // exponent bits seems better for x86. 8830 SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op); 8831 SDValue SmallestNormal = DAG.getConstantFP( 8832 APFloat::getSmallestNormalized(Semantics), DL, OperandVT); 8833 return DAG.getSetCC(DL, ResultVT, Abs, SmallestNormal, 8834 IsOrdered ? OrderedOp : UnorderedOp); 8835 } 8836 } 8837 8838 if (FPTestMask == fcNormal) { 8839 // TODO: Handle unordered 8840 ISD::CondCode IsFiniteOp = IsInvertedFP ? ISD::SETUGE : ISD::SETOLT; 8841 ISD::CondCode IsNormalOp = IsInvertedFP ? ISD::SETOLT : ISD::SETUGE; 8842 8843 if (isCondCodeLegalOrCustom(IsFiniteOp, 8844 OperandVT.getScalarType().getSimpleVT()) && 8845 isCondCodeLegalOrCustom(IsNormalOp, 8846 OperandVT.getScalarType().getSimpleVT()) && 8847 isFAbsFree(OperandVT)) { 8848 // isnormal(x) --> fabs(x) < infinity && !(fabs(x) < smallest_normal) 8849 SDValue Inf = 8850 DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT); 8851 SDValue SmallestNormal = DAG.getConstantFP( 8852 APFloat::getSmallestNormalized(Semantics), DL, OperandVT); 8853 8854 SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op); 8855 SDValue IsFinite = DAG.getSetCC(DL, ResultVT, Abs, Inf, IsFiniteOp); 8856 SDValue IsNormal = 8857 DAG.getSetCC(DL, ResultVT, Abs, SmallestNormal, IsNormalOp); 8858 unsigned LogicOp = IsInvertedFP ? ISD::OR : ISD::AND; 8859 return DAG.getNode(LogicOp, DL, ResultVT, IsFinite, IsNormal); 8860 } 8861 } 8862 } 8863 8864 // Some checks may be represented as inversion of simpler check, for example 8865 // "inf|normal|subnormal|zero" => !"nan". 8866 bool IsInverted = false; 8867 8868 if (FPClassTest InvertedCheck = invertFPClassTestIfSimpler(Test, false)) { 8869 Test = InvertedCheck; 8870 IsInverted = true; 8871 } 8872 8873 // In the general case use integer operations. 8874 unsigned BitSize = OperandVT.getScalarSizeInBits(); 8875 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize); 8876 if (OperandVT.isVector()) 8877 IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT, 8878 OperandVT.getVectorElementCount()); 8879 SDValue OpAsInt = DAG.getBitcast(IntVT, Op); 8880 8881 // Various masks. 8882 APInt SignBit = APInt::getSignMask(BitSize); 8883 APInt ValueMask = APInt::getSignedMaxValue(BitSize); // All bits but sign. 8884 APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit. 8885 const unsigned ExplicitIntBitInF80 = 63; 8886 APInt ExpMask = Inf; 8887 if (IsF80) 8888 ExpMask.clearBit(ExplicitIntBitInF80); 8889 APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf; 8890 APInt QNaNBitMask = 8891 APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1); 8892 APInt InvertionMask = APInt::getAllOnes(ResultVT.getScalarSizeInBits()); 8893 8894 SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT); 8895 SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT); 8896 SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT); 8897 SDValue ZeroV = DAG.getConstant(0, DL, IntVT); 8898 SDValue InfV = DAG.getConstant(Inf, DL, IntVT); 8899 SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT); 8900 8901 SDValue Res; 8902 const auto appendResult = [&](SDValue PartialRes) { 8903 if (PartialRes) { 8904 if (Res) 8905 Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes); 8906 else 8907 Res = PartialRes; 8908 } 8909 }; 8910 8911 SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set. 8912 const auto getIntBitIsSet = [&]() -> SDValue { 8913 if (!IntBitIsSetV) { 8914 APInt IntBitMask(BitSize, 0); 8915 IntBitMask.setBit(ExplicitIntBitInF80); 8916 SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT); 8917 SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV); 8918 IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE); 8919 } 8920 return IntBitIsSetV; 8921 }; 8922 8923 // Split the value into sign bit and absolute value. 8924 SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV); 8925 SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt, 8926 DAG.getConstant(0, DL, IntVT), ISD::SETLT); 8927 8928 // Tests that involve more than one class should be processed first. 8929 SDValue PartialRes; 8930 8931 if (IsF80) 8932 ; // Detect finite numbers of f80 by checking individual classes because 8933 // they have different settings of the explicit integer bit. 8934 else if ((Test & fcFinite) == fcFinite) { 8935 // finite(V) ==> abs(V) < exp_mask 8936 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 8937 Test &= ~fcFinite; 8938 } else if ((Test & fcFinite) == fcPosFinite) { 8939 // finite(V) && V > 0 ==> V < exp_mask 8940 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT); 8941 Test &= ~fcPosFinite; 8942 } else if ((Test & fcFinite) == fcNegFinite) { 8943 // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1 8944 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 8945 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 8946 Test &= ~fcNegFinite; 8947 } 8948 appendResult(PartialRes); 8949 8950 if (FPClassTest PartialCheck = Test & (fcZero | fcSubnormal)) { 8951 // fcZero | fcSubnormal => test all exponent bits are 0 8952 // TODO: Handle sign bit specific cases 8953 if (PartialCheck == (fcZero | fcSubnormal)) { 8954 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ExpMaskV); 8955 SDValue ExpIsZero = 8956 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ); 8957 appendResult(ExpIsZero); 8958 Test &= ~PartialCheck & fcAllFlags; 8959 } 8960 } 8961 8962 // Check for individual classes. 8963 8964 if (unsigned PartialCheck = Test & fcZero) { 8965 if (PartialCheck == fcPosZero) 8966 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ); 8967 else if (PartialCheck == fcZero) 8968 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ); 8969 else // ISD::fcNegZero 8970 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ); 8971 appendResult(PartialRes); 8972 } 8973 8974 if (unsigned PartialCheck = Test & fcSubnormal) { 8975 // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set) 8976 // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set) 8977 SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV; 8978 SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT); 8979 SDValue VMinusOneV = 8980 DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT)); 8981 PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT); 8982 if (PartialCheck == fcNegSubnormal) 8983 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 8984 appendResult(PartialRes); 8985 } 8986 8987 if (unsigned PartialCheck = Test & fcInf) { 8988 if (PartialCheck == fcPosInf) 8989 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ); 8990 else if (PartialCheck == fcInf) 8991 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ); 8992 else { // ISD::fcNegInf 8993 APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt(); 8994 SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT); 8995 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ); 8996 } 8997 appendResult(PartialRes); 8998 } 8999 9000 if (unsigned PartialCheck = Test & fcNan) { 9001 APInt InfWithQnanBit = Inf | QNaNBitMask; 9002 SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT); 9003 if (PartialCheck == fcNan) { 9004 // isnan(V) ==> abs(V) > int(inf) 9005 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 9006 if (IsF80) { 9007 // Recognize unsupported values as NaNs for compatibility with glibc. 9008 // In them (exp(V)==0) == int_bit. 9009 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV); 9010 SDValue ExpIsZero = 9011 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ); 9012 SDValue IsPseudo = 9013 DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ); 9014 PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo); 9015 } 9016 } else if (PartialCheck == fcQNan) { 9017 // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit) 9018 PartialRes = 9019 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE); 9020 } else { // ISD::fcSNan 9021 // issignaling(V) ==> abs(V) > unsigned(Inf) && 9022 // abs(V) < (unsigned(Inf) | quiet_bit) 9023 SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 9024 SDValue IsNotQnan = 9025 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT); 9026 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan); 9027 } 9028 appendResult(PartialRes); 9029 } 9030 9031 if (unsigned PartialCheck = Test & fcNormal) { 9032 // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1)) 9033 APInt ExpLSB = ExpMask & ~(ExpMask.shl(1)); 9034 SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT); 9035 SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV); 9036 APInt ExpLimit = ExpMask - ExpLSB; 9037 SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT); 9038 PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT); 9039 if (PartialCheck == fcNegNormal) 9040 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 9041 else if (PartialCheck == fcPosNormal) { 9042 SDValue PosSignV = 9043 DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask); 9044 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV); 9045 } 9046 if (IsF80) 9047 PartialRes = 9048 DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet()); 9049 appendResult(PartialRes); 9050 } 9051 9052 if (!Res) 9053 return DAG.getConstant(IsInverted, DL, ResultVT); 9054 if (IsInverted) 9055 Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask); 9056 return Res; 9057 } 9058 9059 // Only expand vector types if we have the appropriate vector bit operations. 9060 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 9061 assert(VT.isVector() && "Expected vector type"); 9062 unsigned Len = VT.getScalarSizeInBits(); 9063 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 9064 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 9065 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 9066 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 9067 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 9068 } 9069 9070 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 9071 SDLoc dl(Node); 9072 EVT VT = Node->getValueType(0); 9073 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9074 SDValue Op = Node->getOperand(0); 9075 unsigned Len = VT.getScalarSizeInBits(); 9076 assert(VT.isInteger() && "CTPOP not implemented for this type."); 9077 9078 // TODO: Add support for irregular type lengths. 9079 if (!(Len <= 128 && Len % 8 == 0)) 9080 return SDValue(); 9081 9082 // Only expand vector types if we have the appropriate vector bit operations. 9083 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 9084 return SDValue(); 9085 9086 // This is the "best" algorithm from 9087 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 9088 SDValue Mask55 = 9089 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 9090 SDValue Mask33 = 9091 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 9092 SDValue Mask0F = 9093 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 9094 9095 // v = v - ((v >> 1) & 0x55555555...) 9096 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 9097 DAG.getNode(ISD::AND, dl, VT, 9098 DAG.getNode(ISD::SRL, dl, VT, Op, 9099 DAG.getConstant(1, dl, ShVT)), 9100 Mask55)); 9101 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 9102 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 9103 DAG.getNode(ISD::AND, dl, VT, 9104 DAG.getNode(ISD::SRL, dl, VT, Op, 9105 DAG.getConstant(2, dl, ShVT)), 9106 Mask33)); 9107 // v = (v + (v >> 4)) & 0x0F0F0F0F... 9108 Op = DAG.getNode(ISD::AND, dl, VT, 9109 DAG.getNode(ISD::ADD, dl, VT, Op, 9110 DAG.getNode(ISD::SRL, dl, VT, Op, 9111 DAG.getConstant(4, dl, ShVT))), 9112 Mask0F); 9113 9114 if (Len <= 8) 9115 return Op; 9116 9117 // Avoid the multiply if we only have 2 bytes to add. 9118 // TODO: Only doing this for scalars because vectors weren't as obviously 9119 // improved. 9120 if (Len == 16 && !VT.isVector()) { 9121 // v = (v + (v >> 8)) & 0x00FF; 9122 return DAG.getNode(ISD::AND, dl, VT, 9123 DAG.getNode(ISD::ADD, dl, VT, Op, 9124 DAG.getNode(ISD::SRL, dl, VT, Op, 9125 DAG.getConstant(8, dl, ShVT))), 9126 DAG.getConstant(0xFF, dl, VT)); 9127 } 9128 9129 // v = (v * 0x01010101...) >> (Len - 8) 9130 SDValue V; 9131 if (isOperationLegalOrCustomOrPromote( 9132 ISD::MUL, getTypeToTransformTo(*DAG.getContext(), VT))) { 9133 SDValue Mask01 = 9134 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 9135 V = DAG.getNode(ISD::MUL, dl, VT, Op, Mask01); 9136 } else { 9137 V = Op; 9138 for (unsigned Shift = 8; Shift < Len; Shift *= 2) { 9139 SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl); 9140 V = DAG.getNode(ISD::ADD, dl, VT, V, 9141 DAG.getNode(ISD::SHL, dl, VT, V, ShiftC)); 9142 } 9143 } 9144 return DAG.getNode(ISD::SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT)); 9145 } 9146 9147 SDValue TargetLowering::expandVPCTPOP(SDNode *Node, SelectionDAG &DAG) const { 9148 SDLoc dl(Node); 9149 EVT VT = Node->getValueType(0); 9150 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9151 SDValue Op = Node->getOperand(0); 9152 SDValue Mask = Node->getOperand(1); 9153 SDValue VL = Node->getOperand(2); 9154 unsigned Len = VT.getScalarSizeInBits(); 9155 assert(VT.isInteger() && "VP_CTPOP not implemented for this type."); 9156 9157 // TODO: Add support for irregular type lengths. 9158 if (!(Len <= 128 && Len % 8 == 0)) 9159 return SDValue(); 9160 9161 // This is same algorithm of expandCTPOP from 9162 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 9163 SDValue Mask55 = 9164 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 9165 SDValue Mask33 = 9166 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 9167 SDValue Mask0F = 9168 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 9169 9170 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5; 9171 9172 // v = v - ((v >> 1) & 0x55555555...) 9173 Tmp1 = DAG.getNode(ISD::VP_AND, dl, VT, 9174 DAG.getNode(ISD::VP_SRL, dl, VT, Op, 9175 DAG.getConstant(1, dl, ShVT), Mask, VL), 9176 Mask55, Mask, VL); 9177 Op = DAG.getNode(ISD::VP_SUB, dl, VT, Op, Tmp1, Mask, VL); 9178 9179 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 9180 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Op, Mask33, Mask, VL); 9181 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, 9182 DAG.getNode(ISD::VP_SRL, dl, VT, Op, 9183 DAG.getConstant(2, dl, ShVT), Mask, VL), 9184 Mask33, Mask, VL); 9185 Op = DAG.getNode(ISD::VP_ADD, dl, VT, Tmp2, Tmp3, Mask, VL); 9186 9187 // v = (v + (v >> 4)) & 0x0F0F0F0F... 9188 Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(4, dl, ShVT), 9189 Mask, VL), 9190 Tmp5 = DAG.getNode(ISD::VP_ADD, dl, VT, Op, Tmp4, Mask, VL); 9191 Op = DAG.getNode(ISD::VP_AND, dl, VT, Tmp5, Mask0F, Mask, VL); 9192 9193 if (Len <= 8) 9194 return Op; 9195 9196 // v = (v * 0x01010101...) >> (Len - 8) 9197 SDValue V; 9198 if (isOperationLegalOrCustomOrPromote( 9199 ISD::VP_MUL, getTypeToTransformTo(*DAG.getContext(), VT))) { 9200 SDValue Mask01 = 9201 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 9202 V = DAG.getNode(ISD::VP_MUL, dl, VT, Op, Mask01, Mask, VL); 9203 } else { 9204 V = Op; 9205 for (unsigned Shift = 8; Shift < Len; Shift *= 2) { 9206 SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl); 9207 V = DAG.getNode(ISD::VP_ADD, dl, VT, V, 9208 DAG.getNode(ISD::VP_SHL, dl, VT, V, ShiftC, Mask, VL), 9209 Mask, VL); 9210 } 9211 } 9212 return DAG.getNode(ISD::VP_SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT), 9213 Mask, VL); 9214 } 9215 9216 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 9217 SDLoc dl(Node); 9218 EVT VT = Node->getValueType(0); 9219 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9220 SDValue Op = Node->getOperand(0); 9221 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 9222 9223 // If the non-ZERO_UNDEF version is supported we can use that instead. 9224 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 9225 isOperationLegalOrCustom(ISD::CTLZ, VT)) 9226 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 9227 9228 // If the ZERO_UNDEF version is supported use that and handle the zero case. 9229 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 9230 EVT SetCCVT = 9231 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9232 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 9233 SDValue Zero = DAG.getConstant(0, dl, VT); 9234 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 9235 return DAG.getSelect(dl, VT, SrcIsZero, 9236 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 9237 } 9238 9239 // Only expand vector types if we have the appropriate vector bit operations. 9240 // This includes the operations needed to expand CTPOP if it isn't supported. 9241 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 9242 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 9243 !canExpandVectorCTPOP(*this, VT)) || 9244 !isOperationLegalOrCustom(ISD::SRL, VT) || 9245 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 9246 return SDValue(); 9247 9248 // for now, we do this: 9249 // x = x | (x >> 1); 9250 // x = x | (x >> 2); 9251 // ... 9252 // x = x | (x >>16); 9253 // x = x | (x >>32); // for 64-bit input 9254 // return popcount(~x); 9255 // 9256 // Ref: "Hacker's Delight" by Henry Warren 9257 for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) { 9258 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 9259 Op = DAG.getNode(ISD::OR, dl, VT, Op, 9260 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 9261 } 9262 Op = DAG.getNOT(dl, Op, VT); 9263 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 9264 } 9265 9266 SDValue TargetLowering::expandVPCTLZ(SDNode *Node, SelectionDAG &DAG) const { 9267 SDLoc dl(Node); 9268 EVT VT = Node->getValueType(0); 9269 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9270 SDValue Op = Node->getOperand(0); 9271 SDValue Mask = Node->getOperand(1); 9272 SDValue VL = Node->getOperand(2); 9273 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 9274 9275 // do this: 9276 // x = x | (x >> 1); 9277 // x = x | (x >> 2); 9278 // ... 9279 // x = x | (x >>16); 9280 // x = x | (x >>32); // for 64-bit input 9281 // return popcount(~x); 9282 for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) { 9283 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 9284 Op = DAG.getNode(ISD::VP_OR, dl, VT, Op, 9285 DAG.getNode(ISD::VP_SRL, dl, VT, Op, Tmp, Mask, VL), Mask, 9286 VL); 9287 } 9288 Op = DAG.getNode(ISD::VP_XOR, dl, VT, Op, DAG.getAllOnesConstant(dl, VT), 9289 Mask, VL); 9290 return DAG.getNode(ISD::VP_CTPOP, dl, VT, Op, Mask, VL); 9291 } 9292 9293 SDValue TargetLowering::CTTZTableLookup(SDNode *Node, SelectionDAG &DAG, 9294 const SDLoc &DL, EVT VT, SDValue Op, 9295 unsigned BitWidth) const { 9296 if (BitWidth != 32 && BitWidth != 64) 9297 return SDValue(); 9298 APInt DeBruijn = BitWidth == 32 ? APInt(32, 0x077CB531U) 9299 : APInt(64, 0x0218A392CD3D5DBFULL); 9300 const DataLayout &TD = DAG.getDataLayout(); 9301 MachinePointerInfo PtrInfo = 9302 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()); 9303 unsigned ShiftAmt = BitWidth - Log2_32(BitWidth); 9304 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 9305 SDValue Lookup = DAG.getNode( 9306 ISD::SRL, DL, VT, 9307 DAG.getNode(ISD::MUL, DL, VT, DAG.getNode(ISD::AND, DL, VT, Op, Neg), 9308 DAG.getConstant(DeBruijn, DL, VT)), 9309 DAG.getConstant(ShiftAmt, DL, VT)); 9310 Lookup = DAG.getSExtOrTrunc(Lookup, DL, getPointerTy(TD)); 9311 9312 SmallVector<uint8_t> Table(BitWidth, 0); 9313 for (unsigned i = 0; i < BitWidth; i++) { 9314 APInt Shl = DeBruijn.shl(i); 9315 APInt Lshr = Shl.lshr(ShiftAmt); 9316 Table[Lshr.getZExtValue()] = i; 9317 } 9318 9319 // Create a ConstantArray in Constant Pool 9320 auto *CA = ConstantDataArray::get(*DAG.getContext(), Table); 9321 SDValue CPIdx = DAG.getConstantPool(CA, getPointerTy(TD), 9322 TD.getPrefTypeAlign(CA->getType())); 9323 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, VT, DAG.getEntryNode(), 9324 DAG.getMemBasePlusOffset(CPIdx, Lookup, DL), 9325 PtrInfo, MVT::i8); 9326 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) 9327 return ExtLoad; 9328 9329 EVT SetCCVT = 9330 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9331 SDValue Zero = DAG.getConstant(0, DL, VT); 9332 SDValue SrcIsZero = DAG.getSetCC(DL, SetCCVT, Op, Zero, ISD::SETEQ); 9333 return DAG.getSelect(DL, VT, SrcIsZero, 9334 DAG.getConstant(BitWidth, DL, VT), ExtLoad); 9335 } 9336 9337 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 9338 SDLoc dl(Node); 9339 EVT VT = Node->getValueType(0); 9340 SDValue Op = Node->getOperand(0); 9341 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 9342 9343 // If the non-ZERO_UNDEF version is supported we can use that instead. 9344 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 9345 isOperationLegalOrCustom(ISD::CTTZ, VT)) 9346 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 9347 9348 // If the ZERO_UNDEF version is supported use that and handle the zero case. 9349 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 9350 EVT SetCCVT = 9351 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9352 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 9353 SDValue Zero = DAG.getConstant(0, dl, VT); 9354 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 9355 return DAG.getSelect(dl, VT, SrcIsZero, 9356 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 9357 } 9358 9359 // Only expand vector types if we have the appropriate vector bit operations. 9360 // This includes the operations needed to expand CTPOP if it isn't supported. 9361 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 9362 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 9363 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 9364 !canExpandVectorCTPOP(*this, VT)) || 9365 !isOperationLegalOrCustom(ISD::SUB, VT) || 9366 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 9367 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 9368 return SDValue(); 9369 9370 // Emit Table Lookup if ISD::CTLZ and ISD::CTPOP are not legal. 9371 if (!VT.isVector() && isOperationExpand(ISD::CTPOP, VT) && 9372 !isOperationLegal(ISD::CTLZ, VT)) 9373 if (SDValue V = CTTZTableLookup(Node, DAG, dl, VT, Op, NumBitsPerElt)) 9374 return V; 9375 9376 // for now, we use: { return popcount(~x & (x - 1)); } 9377 // unless the target has ctlz but not ctpop, in which case we use: 9378 // { return 32 - nlz(~x & (x-1)); } 9379 // Ref: "Hacker's Delight" by Henry Warren 9380 SDValue Tmp = DAG.getNode( 9381 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 9382 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 9383 9384 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 9385 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 9386 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 9387 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 9388 } 9389 9390 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 9391 } 9392 9393 SDValue TargetLowering::expandVPCTTZ(SDNode *Node, SelectionDAG &DAG) const { 9394 SDValue Op = Node->getOperand(0); 9395 SDValue Mask = Node->getOperand(1); 9396 SDValue VL = Node->getOperand(2); 9397 SDLoc dl(Node); 9398 EVT VT = Node->getValueType(0); 9399 9400 // Same as the vector part of expandCTTZ, use: popcount(~x & (x - 1)) 9401 SDValue Not = DAG.getNode(ISD::VP_XOR, dl, VT, Op, 9402 DAG.getAllOnesConstant(dl, VT), Mask, VL); 9403 SDValue MinusOne = DAG.getNode(ISD::VP_SUB, dl, VT, Op, 9404 DAG.getConstant(1, dl, VT), Mask, VL); 9405 SDValue Tmp = DAG.getNode(ISD::VP_AND, dl, VT, Not, MinusOne, Mask, VL); 9406 return DAG.getNode(ISD::VP_CTPOP, dl, VT, Tmp, Mask, VL); 9407 } 9408 9409 SDValue TargetLowering::expandVPCTTZElements(SDNode *N, 9410 SelectionDAG &DAG) const { 9411 // %cond = to_bool_vec %source 9412 // %splat = splat /*val=*/VL 9413 // %tz = step_vector 9414 // %v = vp.select %cond, /*true=*/tz, /*false=*/%splat 9415 // %r = vp.reduce.umin %v 9416 SDLoc DL(N); 9417 SDValue Source = N->getOperand(0); 9418 SDValue Mask = N->getOperand(1); 9419 SDValue EVL = N->getOperand(2); 9420 EVT SrcVT = Source.getValueType(); 9421 EVT ResVT = N->getValueType(0); 9422 EVT ResVecVT = 9423 EVT::getVectorVT(*DAG.getContext(), ResVT, SrcVT.getVectorElementCount()); 9424 9425 // Convert to boolean vector. 9426 if (SrcVT.getScalarType() != MVT::i1) { 9427 SDValue AllZero = DAG.getConstant(0, DL, SrcVT); 9428 SrcVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 9429 SrcVT.getVectorElementCount()); 9430 Source = DAG.getNode(ISD::VP_SETCC, DL, SrcVT, Source, AllZero, 9431 DAG.getCondCode(ISD::SETNE), Mask, EVL); 9432 } 9433 9434 SDValue ExtEVL = DAG.getZExtOrTrunc(EVL, DL, ResVT); 9435 SDValue Splat = DAG.getSplat(ResVecVT, DL, ExtEVL); 9436 SDValue StepVec = DAG.getStepVector(DL, ResVecVT); 9437 SDValue Select = 9438 DAG.getNode(ISD::VP_SELECT, DL, ResVecVT, Source, StepVec, Splat, EVL); 9439 return DAG.getNode(ISD::VP_REDUCE_UMIN, DL, ResVT, ExtEVL, Select, Mask, EVL); 9440 } 9441 9442 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 9443 bool IsNegative) const { 9444 SDLoc dl(N); 9445 EVT VT = N->getValueType(0); 9446 SDValue Op = N->getOperand(0); 9447 9448 // abs(x) -> smax(x,sub(0,x)) 9449 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 9450 isOperationLegal(ISD::SMAX, VT)) { 9451 SDValue Zero = DAG.getConstant(0, dl, VT); 9452 Op = DAG.getFreeze(Op); 9453 return DAG.getNode(ISD::SMAX, dl, VT, Op, 9454 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 9455 } 9456 9457 // abs(x) -> umin(x,sub(0,x)) 9458 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 9459 isOperationLegal(ISD::UMIN, VT)) { 9460 SDValue Zero = DAG.getConstant(0, dl, VT); 9461 Op = DAG.getFreeze(Op); 9462 return DAG.getNode(ISD::UMIN, dl, VT, Op, 9463 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 9464 } 9465 9466 // 0 - abs(x) -> smin(x, sub(0,x)) 9467 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 9468 isOperationLegal(ISD::SMIN, VT)) { 9469 SDValue Zero = DAG.getConstant(0, dl, VT); 9470 Op = DAG.getFreeze(Op); 9471 return DAG.getNode(ISD::SMIN, dl, VT, Op, 9472 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 9473 } 9474 9475 // Only expand vector types if we have the appropriate vector operations. 9476 if (VT.isVector() && 9477 (!isOperationLegalOrCustom(ISD::SRA, VT) || 9478 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 9479 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 9480 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 9481 return SDValue(); 9482 9483 Op = DAG.getFreeze(Op); 9484 SDValue Shift = DAG.getNode( 9485 ISD::SRA, dl, VT, Op, 9486 DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, dl)); 9487 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 9488 9489 // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y) 9490 if (!IsNegative) 9491 return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift); 9492 9493 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 9494 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 9495 } 9496 9497 SDValue TargetLowering::expandABD(SDNode *N, SelectionDAG &DAG) const { 9498 SDLoc dl(N); 9499 EVT VT = N->getValueType(0); 9500 SDValue LHS = DAG.getFreeze(N->getOperand(0)); 9501 SDValue RHS = DAG.getFreeze(N->getOperand(1)); 9502 bool IsSigned = N->getOpcode() == ISD::ABDS; 9503 9504 // abds(lhs, rhs) -> sub(smax(lhs,rhs), smin(lhs,rhs)) 9505 // abdu(lhs, rhs) -> sub(umax(lhs,rhs), umin(lhs,rhs)) 9506 unsigned MaxOpc = IsSigned ? ISD::SMAX : ISD::UMAX; 9507 unsigned MinOpc = IsSigned ? ISD::SMIN : ISD::UMIN; 9508 if (isOperationLegal(MaxOpc, VT) && isOperationLegal(MinOpc, VT)) { 9509 SDValue Max = DAG.getNode(MaxOpc, dl, VT, LHS, RHS); 9510 SDValue Min = DAG.getNode(MinOpc, dl, VT, LHS, RHS); 9511 return DAG.getNode(ISD::SUB, dl, VT, Max, Min); 9512 } 9513 9514 // abdu(lhs, rhs) -> or(usubsat(lhs,rhs), usubsat(rhs,lhs)) 9515 if (!IsSigned && isOperationLegal(ISD::USUBSAT, VT)) 9516 return DAG.getNode(ISD::OR, dl, VT, 9517 DAG.getNode(ISD::USUBSAT, dl, VT, LHS, RHS), 9518 DAG.getNode(ISD::USUBSAT, dl, VT, RHS, LHS)); 9519 9520 // If the subtract doesn't overflow then just use abs(sub()) 9521 // NOTE: don't use frozen operands for value tracking. 9522 bool IsNonNegative = DAG.SignBitIsZero(N->getOperand(1)) && 9523 DAG.SignBitIsZero(N->getOperand(0)); 9524 9525 if (DAG.willNotOverflowSub(IsSigned || IsNonNegative, N->getOperand(0), 9526 N->getOperand(1))) 9527 return DAG.getNode(ISD::ABS, dl, VT, 9528 DAG.getNode(ISD::SUB, dl, VT, LHS, RHS)); 9529 9530 if (DAG.willNotOverflowSub(IsSigned || IsNonNegative, N->getOperand(1), 9531 N->getOperand(0))) 9532 return DAG.getNode(ISD::ABS, dl, VT, 9533 DAG.getNode(ISD::SUB, dl, VT, RHS, LHS)); 9534 9535 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9536 ISD::CondCode CC = IsSigned ? ISD::CondCode::SETGT : ISD::CondCode::SETUGT; 9537 SDValue Cmp = DAG.getSetCC(dl, CCVT, LHS, RHS, CC); 9538 9539 // Branchless expansion iff cmp result is allbits: 9540 // abds(lhs, rhs) -> sub(sgt(lhs, rhs), xor(sgt(lhs, rhs), sub(lhs, rhs))) 9541 // abdu(lhs, rhs) -> sub(ugt(lhs, rhs), xor(ugt(lhs, rhs), sub(lhs, rhs))) 9542 if (CCVT == VT && getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 9543 SDValue Diff = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS); 9544 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Diff, Cmp); 9545 return DAG.getNode(ISD::SUB, dl, VT, Cmp, Xor); 9546 } 9547 9548 // Similar to the branchless expansion, use the (sign-extended) usubo overflow 9549 // flag if the (scalar) type is illegal as this is more likely to legalize 9550 // cleanly: 9551 // abdu(lhs, rhs) -> sub(xor(sub(lhs, rhs), uof(lhs, rhs)), uof(lhs, rhs)) 9552 if (!IsSigned && VT.isScalarInteger() && !isTypeLegal(VT)) { 9553 SDValue USubO = 9554 DAG.getNode(ISD::USUBO, dl, DAG.getVTList(VT, MVT::i1), {LHS, RHS}); 9555 SDValue Cmp = DAG.getNode(ISD::SIGN_EXTEND, dl, VT, USubO.getValue(1)); 9556 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, USubO.getValue(0), Cmp); 9557 return DAG.getNode(ISD::SUB, dl, VT, Xor, Cmp); 9558 } 9559 9560 // FIXME: Should really try to split the vector in case it's legal on a 9561 // subvector. 9562 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 9563 return DAG.UnrollVectorOp(N); 9564 9565 // abds(lhs, rhs) -> select(sgt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs)) 9566 // abdu(lhs, rhs) -> select(ugt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs)) 9567 return DAG.getSelect(dl, VT, Cmp, DAG.getNode(ISD::SUB, dl, VT, LHS, RHS), 9568 DAG.getNode(ISD::SUB, dl, VT, RHS, LHS)); 9569 } 9570 9571 SDValue TargetLowering::expandAVG(SDNode *N, SelectionDAG &DAG) const { 9572 SDLoc dl(N); 9573 EVT VT = N->getValueType(0); 9574 SDValue LHS = N->getOperand(0); 9575 SDValue RHS = N->getOperand(1); 9576 9577 unsigned Opc = N->getOpcode(); 9578 bool IsFloor = Opc == ISD::AVGFLOORS || Opc == ISD::AVGFLOORU; 9579 bool IsSigned = Opc == ISD::AVGCEILS || Opc == ISD::AVGFLOORS; 9580 unsigned SumOpc = IsFloor ? ISD::ADD : ISD::SUB; 9581 unsigned SignOpc = IsFloor ? ISD::AND : ISD::OR; 9582 unsigned ShiftOpc = IsSigned ? ISD::SRA : ISD::SRL; 9583 unsigned ExtOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 9584 assert((Opc == ISD::AVGFLOORS || Opc == ISD::AVGCEILS || 9585 Opc == ISD::AVGFLOORU || Opc == ISD::AVGCEILU) && 9586 "Unknown AVG node"); 9587 9588 // If the operands are already extended, we can add+shift. 9589 bool IsExt = 9590 (IsSigned && DAG.ComputeNumSignBits(LHS) >= 2 && 9591 DAG.ComputeNumSignBits(RHS) >= 2) || 9592 (!IsSigned && DAG.computeKnownBits(LHS).countMinLeadingZeros() >= 1 && 9593 DAG.computeKnownBits(RHS).countMinLeadingZeros() >= 1); 9594 if (IsExt) { 9595 SDValue Sum = DAG.getNode(ISD::ADD, dl, VT, LHS, RHS); 9596 if (!IsFloor) 9597 Sum = DAG.getNode(ISD::ADD, dl, VT, Sum, DAG.getConstant(1, dl, VT)); 9598 return DAG.getNode(ShiftOpc, dl, VT, Sum, 9599 DAG.getShiftAmountConstant(1, VT, dl)); 9600 } 9601 9602 // For scalars, see if we can efficiently extend/truncate to use add+shift. 9603 if (VT.isScalarInteger()) { 9604 unsigned BW = VT.getScalarSizeInBits(); 9605 EVT ExtVT = VT.getIntegerVT(*DAG.getContext(), 2 * BW); 9606 if (isTypeLegal(ExtVT) && isTruncateFree(ExtVT, VT)) { 9607 LHS = DAG.getNode(ExtOpc, dl, ExtVT, LHS); 9608 RHS = DAG.getNode(ExtOpc, dl, ExtVT, RHS); 9609 SDValue Avg = DAG.getNode(ISD::ADD, dl, ExtVT, LHS, RHS); 9610 if (!IsFloor) 9611 Avg = DAG.getNode(ISD::ADD, dl, ExtVT, Avg, 9612 DAG.getConstant(1, dl, ExtVT)); 9613 // Just use SRL as we will be truncating away the extended sign bits. 9614 Avg = DAG.getNode(ISD::SRL, dl, ExtVT, Avg, 9615 DAG.getShiftAmountConstant(1, ExtVT, dl)); 9616 return DAG.getNode(ISD::TRUNCATE, dl, VT, Avg); 9617 } 9618 } 9619 9620 // avgflooru(lhs, rhs) -> or(lshr(add(lhs, rhs),1),shl(overflow, typesize-1)) 9621 if (Opc == ISD::AVGFLOORU && VT.isScalarInteger() && !isTypeLegal(VT)) { 9622 SDValue UAddWithOverflow = 9623 DAG.getNode(ISD::UADDO, dl, DAG.getVTList(VT, MVT::i1), {RHS, LHS}); 9624 9625 SDValue Sum = UAddWithOverflow.getValue(0); 9626 SDValue Overflow = UAddWithOverflow.getValue(1); 9627 9628 // Right shift the sum by 1 9629 SDValue LShrVal = DAG.getNode(ISD::SRL, dl, VT, Sum, 9630 DAG.getShiftAmountConstant(1, VT, dl)); 9631 9632 SDValue ZeroExtOverflow = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Overflow); 9633 SDValue OverflowShl = DAG.getNode( 9634 ISD::SHL, dl, VT, ZeroExtOverflow, 9635 DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, dl)); 9636 9637 return DAG.getNode(ISD::OR, dl, VT, LShrVal, OverflowShl); 9638 } 9639 9640 // avgceils(lhs, rhs) -> sub(or(lhs,rhs),ashr(xor(lhs,rhs),1)) 9641 // avgceilu(lhs, rhs) -> sub(or(lhs,rhs),lshr(xor(lhs,rhs),1)) 9642 // avgfloors(lhs, rhs) -> add(and(lhs,rhs),ashr(xor(lhs,rhs),1)) 9643 // avgflooru(lhs, rhs) -> add(and(lhs,rhs),lshr(xor(lhs,rhs),1)) 9644 LHS = DAG.getFreeze(LHS); 9645 RHS = DAG.getFreeze(RHS); 9646 SDValue Sign = DAG.getNode(SignOpc, dl, VT, LHS, RHS); 9647 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 9648 SDValue Shift = 9649 DAG.getNode(ShiftOpc, dl, VT, Xor, DAG.getShiftAmountConstant(1, VT, dl)); 9650 return DAG.getNode(SumOpc, dl, VT, Sign, Shift); 9651 } 9652 9653 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 9654 SDLoc dl(N); 9655 EVT VT = N->getValueType(0); 9656 SDValue Op = N->getOperand(0); 9657 9658 if (!VT.isSimple()) 9659 return SDValue(); 9660 9661 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9662 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 9663 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 9664 default: 9665 return SDValue(); 9666 case MVT::i16: 9667 // Use a rotate by 8. This can be further expanded if necessary. 9668 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 9669 case MVT::i32: 9670 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 9671 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Op, 9672 DAG.getConstant(0xFF00, dl, VT)); 9673 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT)); 9674 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 9675 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 9676 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 9677 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 9678 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 9679 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 9680 case MVT::i64: 9681 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 9682 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Op, 9683 DAG.getConstant(255ULL<<8, dl, VT)); 9684 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT)); 9685 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Op, 9686 DAG.getConstant(255ULL<<16, dl, VT)); 9687 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT)); 9688 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Op, 9689 DAG.getConstant(255ULL<<24, dl, VT)); 9690 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT)); 9691 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 9692 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 9693 DAG.getConstant(255ULL<<24, dl, VT)); 9694 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 9695 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 9696 DAG.getConstant(255ULL<<16, dl, VT)); 9697 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 9698 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 9699 DAG.getConstant(255ULL<<8, dl, VT)); 9700 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 9701 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 9702 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 9703 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 9704 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 9705 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 9706 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 9707 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 9708 } 9709 } 9710 9711 SDValue TargetLowering::expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const { 9712 SDLoc dl(N); 9713 EVT VT = N->getValueType(0); 9714 SDValue Op = N->getOperand(0); 9715 SDValue Mask = N->getOperand(1); 9716 SDValue EVL = N->getOperand(2); 9717 9718 if (!VT.isSimple()) 9719 return SDValue(); 9720 9721 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9722 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 9723 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 9724 default: 9725 return SDValue(); 9726 case MVT::i16: 9727 Tmp1 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 9728 Mask, EVL); 9729 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 9730 Mask, EVL); 9731 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp1, Tmp2, Mask, EVL); 9732 case MVT::i32: 9733 Tmp4 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT), 9734 Mask, EVL); 9735 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Op, DAG.getConstant(0xFF00, dl, VT), 9736 Mask, EVL); 9737 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT), 9738 Mask, EVL); 9739 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 9740 Mask, EVL); 9741 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9742 DAG.getConstant(0xFF00, dl, VT), Mask, EVL); 9743 Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT), 9744 Mask, EVL); 9745 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL); 9746 Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL); 9747 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL); 9748 case MVT::i64: 9749 Tmp8 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT), 9750 Mask, EVL); 9751 Tmp7 = DAG.getNode(ISD::VP_AND, dl, VT, Op, 9752 DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL); 9753 Tmp7 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT), 9754 Mask, EVL); 9755 Tmp6 = DAG.getNode(ISD::VP_AND, dl, VT, Op, 9756 DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL); 9757 Tmp6 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT), 9758 Mask, EVL); 9759 Tmp5 = DAG.getNode(ISD::VP_AND, dl, VT, Op, 9760 DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL); 9761 Tmp5 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT), 9762 Mask, EVL); 9763 Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 9764 Mask, EVL); 9765 Tmp4 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp4, 9766 DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL); 9767 Tmp3 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT), 9768 Mask, EVL); 9769 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp3, 9770 DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL); 9771 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT), 9772 Mask, EVL); 9773 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9774 DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL); 9775 Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT), 9776 Mask, EVL); 9777 Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp7, Mask, EVL); 9778 Tmp6 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp6, Tmp5, Mask, EVL); 9779 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL); 9780 Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL); 9781 Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp6, Mask, EVL); 9782 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL); 9783 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp4, Mask, EVL); 9784 } 9785 } 9786 9787 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 9788 SDLoc dl(N); 9789 EVT VT = N->getValueType(0); 9790 SDValue Op = N->getOperand(0); 9791 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9792 unsigned Sz = VT.getScalarSizeInBits(); 9793 9794 SDValue Tmp, Tmp2, Tmp3; 9795 9796 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 9797 // and finally the i1 pairs. 9798 // TODO: We can easily support i4/i2 legal types if any target ever does. 9799 if (Sz >= 8 && isPowerOf2_32(Sz)) { 9800 // Create the masks - repeating the pattern every byte. 9801 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 9802 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 9803 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 9804 9805 // BSWAP if the type is wider than a single byte. 9806 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 9807 9808 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 9809 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 9810 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 9811 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 9812 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 9813 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 9814 9815 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 9816 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 9817 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 9818 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 9819 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 9820 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 9821 9822 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 9823 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 9824 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 9825 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 9826 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 9827 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 9828 return Tmp; 9829 } 9830 9831 Tmp = DAG.getConstant(0, dl, VT); 9832 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 9833 if (I < J) 9834 Tmp2 = 9835 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 9836 else 9837 Tmp2 = 9838 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 9839 9840 APInt Shift = APInt::getOneBitSet(Sz, J); 9841 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 9842 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 9843 } 9844 9845 return Tmp; 9846 } 9847 9848 SDValue TargetLowering::expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 9849 assert(N->getOpcode() == ISD::VP_BITREVERSE); 9850 9851 SDLoc dl(N); 9852 EVT VT = N->getValueType(0); 9853 SDValue Op = N->getOperand(0); 9854 SDValue Mask = N->getOperand(1); 9855 SDValue EVL = N->getOperand(2); 9856 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9857 unsigned Sz = VT.getScalarSizeInBits(); 9858 9859 SDValue Tmp, Tmp2, Tmp3; 9860 9861 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 9862 // and finally the i1 pairs. 9863 // TODO: We can easily support i4/i2 legal types if any target ever does. 9864 if (Sz >= 8 && isPowerOf2_32(Sz)) { 9865 // Create the masks - repeating the pattern every byte. 9866 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 9867 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 9868 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 9869 9870 // BSWAP if the type is wider than a single byte. 9871 Tmp = (Sz > 8 ? DAG.getNode(ISD::VP_BSWAP, dl, VT, Op, Mask, EVL) : Op); 9872 9873 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 9874 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT), 9875 Mask, EVL); 9876 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9877 DAG.getConstant(Mask4, dl, VT), Mask, EVL); 9878 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT), 9879 Mask, EVL); 9880 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT), 9881 Mask, EVL); 9882 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL); 9883 9884 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 9885 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT), 9886 Mask, EVL); 9887 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9888 DAG.getConstant(Mask2, dl, VT), Mask, EVL); 9889 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT), 9890 Mask, EVL); 9891 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT), 9892 Mask, EVL); 9893 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL); 9894 9895 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 9896 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT), 9897 Mask, EVL); 9898 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9899 DAG.getConstant(Mask1, dl, VT), Mask, EVL); 9900 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT), 9901 Mask, EVL); 9902 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT), 9903 Mask, EVL); 9904 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL); 9905 return Tmp; 9906 } 9907 return SDValue(); 9908 } 9909 9910 std::pair<SDValue, SDValue> 9911 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 9912 SelectionDAG &DAG) const { 9913 SDLoc SL(LD); 9914 SDValue Chain = LD->getChain(); 9915 SDValue BasePTR = LD->getBasePtr(); 9916 EVT SrcVT = LD->getMemoryVT(); 9917 EVT DstVT = LD->getValueType(0); 9918 ISD::LoadExtType ExtType = LD->getExtensionType(); 9919 9920 if (SrcVT.isScalableVector()) 9921 report_fatal_error("Cannot scalarize scalable vector loads"); 9922 9923 unsigned NumElem = SrcVT.getVectorNumElements(); 9924 9925 EVT SrcEltVT = SrcVT.getScalarType(); 9926 EVT DstEltVT = DstVT.getScalarType(); 9927 9928 // A vector must always be stored in memory as-is, i.e. without any padding 9929 // between the elements, since various code depend on it, e.g. in the 9930 // handling of a bitcast of a vector type to int, which may be done with a 9931 // vector store followed by an integer load. A vector that does not have 9932 // elements that are byte-sized must therefore be stored as an integer 9933 // built out of the extracted vector elements. 9934 if (!SrcEltVT.isByteSized()) { 9935 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 9936 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 9937 9938 unsigned NumSrcBits = SrcVT.getSizeInBits(); 9939 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 9940 9941 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 9942 SDValue SrcEltBitMask = DAG.getConstant( 9943 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 9944 9945 // Load the whole vector and avoid masking off the top bits as it makes 9946 // the codegen worse. 9947 SDValue Load = 9948 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 9949 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 9950 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 9951 9952 SmallVector<SDValue, 8> Vals; 9953 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 9954 unsigned ShiftIntoIdx = 9955 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 9956 SDValue ShiftAmount = DAG.getShiftAmountConstant( 9957 ShiftIntoIdx * SrcEltVT.getSizeInBits(), LoadVT, SL); 9958 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 9959 SDValue Elt = 9960 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 9961 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 9962 9963 if (ExtType != ISD::NON_EXTLOAD) { 9964 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 9965 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 9966 } 9967 9968 Vals.push_back(Scalar); 9969 } 9970 9971 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 9972 return std::make_pair(Value, Load.getValue(1)); 9973 } 9974 9975 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 9976 assert(SrcEltVT.isByteSized()); 9977 9978 SmallVector<SDValue, 8> Vals; 9979 SmallVector<SDValue, 8> LoadChains; 9980 9981 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 9982 SDValue ScalarLoad = 9983 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 9984 LD->getPointerInfo().getWithOffset(Idx * Stride), 9985 SrcEltVT, LD->getOriginalAlign(), 9986 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 9987 9988 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::getFixed(Stride)); 9989 9990 Vals.push_back(ScalarLoad.getValue(0)); 9991 LoadChains.push_back(ScalarLoad.getValue(1)); 9992 } 9993 9994 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 9995 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 9996 9997 return std::make_pair(Value, NewChain); 9998 } 9999 10000 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 10001 SelectionDAG &DAG) const { 10002 SDLoc SL(ST); 10003 10004 SDValue Chain = ST->getChain(); 10005 SDValue BasePtr = ST->getBasePtr(); 10006 SDValue Value = ST->getValue(); 10007 EVT StVT = ST->getMemoryVT(); 10008 10009 if (StVT.isScalableVector()) 10010 report_fatal_error("Cannot scalarize scalable vector stores"); 10011 10012 // The type of the data we want to save 10013 EVT RegVT = Value.getValueType(); 10014 EVT RegSclVT = RegVT.getScalarType(); 10015 10016 // The type of data as saved in memory. 10017 EVT MemSclVT = StVT.getScalarType(); 10018 10019 unsigned NumElem = StVT.getVectorNumElements(); 10020 10021 // A vector must always be stored in memory as-is, i.e. without any padding 10022 // between the elements, since various code depend on it, e.g. in the 10023 // handling of a bitcast of a vector type to int, which may be done with a 10024 // vector store followed by an integer load. A vector that does not have 10025 // elements that are byte-sized must therefore be stored as an integer 10026 // built out of the extracted vector elements. 10027 if (!MemSclVT.isByteSized()) { 10028 unsigned NumBits = StVT.getSizeInBits(); 10029 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 10030 10031 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 10032 10033 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 10034 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 10035 DAG.getVectorIdxConstant(Idx, SL)); 10036 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 10037 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 10038 unsigned ShiftIntoIdx = 10039 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 10040 SDValue ShiftAmount = 10041 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 10042 SDValue ShiftedElt = 10043 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 10044 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 10045 } 10046 10047 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 10048 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 10049 ST->getAAInfo()); 10050 } 10051 10052 // Store Stride in bytes 10053 unsigned Stride = MemSclVT.getSizeInBits() / 8; 10054 assert(Stride && "Zero stride!"); 10055 // Extract each of the elements from the original vector and save them into 10056 // memory individually. 10057 SmallVector<SDValue, 8> Stores; 10058 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 10059 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 10060 DAG.getVectorIdxConstant(Idx, SL)); 10061 10062 SDValue Ptr = 10063 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::getFixed(Idx * Stride)); 10064 10065 // This scalar TruncStore may be illegal, but we legalize it later. 10066 SDValue Store = DAG.getTruncStore( 10067 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 10068 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 10069 ST->getAAInfo()); 10070 10071 Stores.push_back(Store); 10072 } 10073 10074 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 10075 } 10076 10077 std::pair<SDValue, SDValue> 10078 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 10079 assert(LD->getAddressingMode() == ISD::UNINDEXED && 10080 "unaligned indexed loads not implemented!"); 10081 SDValue Chain = LD->getChain(); 10082 SDValue Ptr = LD->getBasePtr(); 10083 EVT VT = LD->getValueType(0); 10084 EVT LoadedVT = LD->getMemoryVT(); 10085 SDLoc dl(LD); 10086 auto &MF = DAG.getMachineFunction(); 10087 10088 if (VT.isFloatingPoint() || VT.isVector()) { 10089 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 10090 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 10091 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 10092 LoadedVT.isVector()) { 10093 // Scalarize the load and let the individual components be handled. 10094 return scalarizeVectorLoad(LD, DAG); 10095 } 10096 10097 // Expand to a (misaligned) integer load of the same size, 10098 // then bitconvert to floating point or vector. 10099 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 10100 LD->getMemOperand()); 10101 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 10102 if (LoadedVT != VT) 10103 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 10104 ISD::ANY_EXTEND, dl, VT, Result); 10105 10106 return std::make_pair(Result, newLoad.getValue(1)); 10107 } 10108 10109 // Copy the value to a (aligned) stack slot using (unaligned) integer 10110 // loads and stores, then do a (aligned) load from the stack slot. 10111 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 10112 unsigned LoadedBytes = LoadedVT.getStoreSize(); 10113 unsigned RegBytes = RegVT.getSizeInBits() / 8; 10114 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 10115 10116 // Make sure the stack slot is also aligned for the register type. 10117 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 10118 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 10119 SmallVector<SDValue, 8> Stores; 10120 SDValue StackPtr = StackBase; 10121 unsigned Offset = 0; 10122 10123 EVT PtrVT = Ptr.getValueType(); 10124 EVT StackPtrVT = StackPtr.getValueType(); 10125 10126 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 10127 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 10128 10129 // Do all but one copies using the full register width. 10130 for (unsigned i = 1; i < NumRegs; i++) { 10131 // Load one integer register's worth from the original location. 10132 SDValue Load = DAG.getLoad( 10133 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 10134 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 10135 LD->getAAInfo()); 10136 // Follow the load with a store to the stack slot. Remember the store. 10137 Stores.push_back(DAG.getStore( 10138 Load.getValue(1), dl, Load, StackPtr, 10139 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 10140 // Increment the pointers. 10141 Offset += RegBytes; 10142 10143 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 10144 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 10145 } 10146 10147 // The last copy may be partial. Do an extending load. 10148 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 10149 8 * (LoadedBytes - Offset)); 10150 SDValue Load = 10151 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 10152 LD->getPointerInfo().getWithOffset(Offset), MemVT, 10153 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 10154 LD->getAAInfo()); 10155 // Follow the load with a store to the stack slot. Remember the store. 10156 // On big-endian machines this requires a truncating store to ensure 10157 // that the bits end up in the right place. 10158 Stores.push_back(DAG.getTruncStore( 10159 Load.getValue(1), dl, Load, StackPtr, 10160 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 10161 10162 // The order of the stores doesn't matter - say it with a TokenFactor. 10163 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10164 10165 // Finally, perform the original load only redirected to the stack slot. 10166 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 10167 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 10168 LoadedVT); 10169 10170 // Callers expect a MERGE_VALUES node. 10171 return std::make_pair(Load, TF); 10172 } 10173 10174 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 10175 "Unaligned load of unsupported type."); 10176 10177 // Compute the new VT that is half the size of the old one. This is an 10178 // integer MVT. 10179 unsigned NumBits = LoadedVT.getSizeInBits(); 10180 EVT NewLoadedVT; 10181 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 10182 NumBits >>= 1; 10183 10184 Align Alignment = LD->getOriginalAlign(); 10185 unsigned IncrementSize = NumBits / 8; 10186 ISD::LoadExtType HiExtType = LD->getExtensionType(); 10187 10188 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 10189 if (HiExtType == ISD::NON_EXTLOAD) 10190 HiExtType = ISD::ZEXTLOAD; 10191 10192 // Load the value in two parts 10193 SDValue Lo, Hi; 10194 if (DAG.getDataLayout().isLittleEndian()) { 10195 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 10196 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 10197 LD->getAAInfo()); 10198 10199 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize)); 10200 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 10201 LD->getPointerInfo().getWithOffset(IncrementSize), 10202 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 10203 LD->getAAInfo()); 10204 } else { 10205 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 10206 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 10207 LD->getAAInfo()); 10208 10209 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize)); 10210 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 10211 LD->getPointerInfo().getWithOffset(IncrementSize), 10212 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 10213 LD->getAAInfo()); 10214 } 10215 10216 // aggregate the two parts 10217 SDValue ShiftAmount = DAG.getShiftAmountConstant(NumBits, VT, dl); 10218 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 10219 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 10220 10221 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 10222 Hi.getValue(1)); 10223 10224 return std::make_pair(Result, TF); 10225 } 10226 10227 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 10228 SelectionDAG &DAG) const { 10229 assert(ST->getAddressingMode() == ISD::UNINDEXED && 10230 "unaligned indexed stores not implemented!"); 10231 SDValue Chain = ST->getChain(); 10232 SDValue Ptr = ST->getBasePtr(); 10233 SDValue Val = ST->getValue(); 10234 EVT VT = Val.getValueType(); 10235 Align Alignment = ST->getOriginalAlign(); 10236 auto &MF = DAG.getMachineFunction(); 10237 EVT StoreMemVT = ST->getMemoryVT(); 10238 10239 SDLoc dl(ST); 10240 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 10241 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 10242 if (isTypeLegal(intVT)) { 10243 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 10244 StoreMemVT.isVector()) { 10245 // Scalarize the store and let the individual components be handled. 10246 SDValue Result = scalarizeVectorStore(ST, DAG); 10247 return Result; 10248 } 10249 // Expand to a bitconvert of the value to the integer type of the 10250 // same size, then a (misaligned) int store. 10251 // FIXME: Does not handle truncating floating point stores! 10252 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 10253 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 10254 Alignment, ST->getMemOperand()->getFlags()); 10255 return Result; 10256 } 10257 // Do a (aligned) store to a stack slot, then copy from the stack slot 10258 // to the final destination using (unaligned) integer loads and stores. 10259 MVT RegVT = getRegisterType( 10260 *DAG.getContext(), 10261 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 10262 EVT PtrVT = Ptr.getValueType(); 10263 unsigned StoredBytes = StoreMemVT.getStoreSize(); 10264 unsigned RegBytes = RegVT.getSizeInBits() / 8; 10265 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 10266 10267 // Make sure the stack slot is also aligned for the register type. 10268 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 10269 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 10270 10271 // Perform the original store, only redirected to the stack slot. 10272 SDValue Store = DAG.getTruncStore( 10273 Chain, dl, Val, StackPtr, 10274 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 10275 10276 EVT StackPtrVT = StackPtr.getValueType(); 10277 10278 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 10279 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 10280 SmallVector<SDValue, 8> Stores; 10281 unsigned Offset = 0; 10282 10283 // Do all but one copies using the full register width. 10284 for (unsigned i = 1; i < NumRegs; i++) { 10285 // Load one integer register's worth from the stack slot. 10286 SDValue Load = DAG.getLoad( 10287 RegVT, dl, Store, StackPtr, 10288 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 10289 // Store it to the final location. Remember the store. 10290 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 10291 ST->getPointerInfo().getWithOffset(Offset), 10292 ST->getOriginalAlign(), 10293 ST->getMemOperand()->getFlags())); 10294 // Increment the pointers. 10295 Offset += RegBytes; 10296 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 10297 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 10298 } 10299 10300 // The last store may be partial. Do a truncating store. On big-endian 10301 // machines this requires an extending load from the stack slot to ensure 10302 // that the bits are in the right place. 10303 EVT LoadMemVT = 10304 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 10305 10306 // Load from the stack slot. 10307 SDValue Load = DAG.getExtLoad( 10308 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 10309 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 10310 10311 Stores.push_back( 10312 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 10313 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 10314 ST->getOriginalAlign(), 10315 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 10316 // The order of the stores doesn't matter - say it with a TokenFactor. 10317 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10318 return Result; 10319 } 10320 10321 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 10322 "Unaligned store of unknown type."); 10323 // Get the half-size VT 10324 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 10325 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 10326 unsigned IncrementSize = NumBits / 8; 10327 10328 // Divide the stored value in two parts. 10329 SDValue ShiftAmount = 10330 DAG.getShiftAmountConstant(NumBits, Val.getValueType(), dl); 10331 SDValue Lo = Val; 10332 // If Val is a constant, replace the upper bits with 0. The SRL will constant 10333 // fold and not use the upper bits. A smaller constant may be easier to 10334 // materialize. 10335 if (auto *C = dyn_cast<ConstantSDNode>(Lo); C && !C->isOpaque()) 10336 Lo = DAG.getNode( 10337 ISD::AND, dl, VT, Lo, 10338 DAG.getConstant(APInt::getLowBitsSet(VT.getSizeInBits(), NumBits), dl, 10339 VT)); 10340 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 10341 10342 // Store the two parts 10343 SDValue Store1, Store2; 10344 Store1 = DAG.getTruncStore(Chain, dl, 10345 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 10346 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 10347 ST->getMemOperand()->getFlags()); 10348 10349 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize)); 10350 Store2 = DAG.getTruncStore( 10351 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 10352 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 10353 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 10354 10355 SDValue Result = 10356 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 10357 return Result; 10358 } 10359 10360 SDValue 10361 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 10362 const SDLoc &DL, EVT DataVT, 10363 SelectionDAG &DAG, 10364 bool IsCompressedMemory) const { 10365 SDValue Increment; 10366 EVT AddrVT = Addr.getValueType(); 10367 EVT MaskVT = Mask.getValueType(); 10368 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 10369 "Incompatible types of Data and Mask"); 10370 if (IsCompressedMemory) { 10371 if (DataVT.isScalableVector()) 10372 report_fatal_error( 10373 "Cannot currently handle compressed memory with scalable vectors"); 10374 // Incrementing the pointer according to number of '1's in the mask. 10375 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 10376 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 10377 if (MaskIntVT.getSizeInBits() < 32) { 10378 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 10379 MaskIntVT = MVT::i32; 10380 } 10381 10382 // Count '1's with POPCNT. 10383 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 10384 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 10385 // Scale is an element size in bytes. 10386 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 10387 AddrVT); 10388 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 10389 } else if (DataVT.isScalableVector()) { 10390 Increment = DAG.getVScale(DL, AddrVT, 10391 APInt(AddrVT.getFixedSizeInBits(), 10392 DataVT.getStoreSize().getKnownMinValue())); 10393 } else 10394 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 10395 10396 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 10397 } 10398 10399 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 10400 EVT VecVT, const SDLoc &dl, 10401 ElementCount SubEC) { 10402 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 10403 "Cannot index a scalable vector within a fixed-width vector"); 10404 10405 unsigned NElts = VecVT.getVectorMinNumElements(); 10406 unsigned NumSubElts = SubEC.getKnownMinValue(); 10407 EVT IdxVT = Idx.getValueType(); 10408 10409 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 10410 // If this is a constant index and we know the value plus the number of the 10411 // elements in the subvector minus one is less than the minimum number of 10412 // elements then it's safe to return Idx. 10413 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 10414 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 10415 return Idx; 10416 SDValue VS = 10417 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 10418 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 10419 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 10420 DAG.getConstant(NumSubElts, dl, IdxVT)); 10421 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 10422 } 10423 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 10424 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 10425 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 10426 DAG.getConstant(Imm, dl, IdxVT)); 10427 } 10428 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 10429 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 10430 DAG.getConstant(MaxIndex, dl, IdxVT)); 10431 } 10432 10433 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 10434 SDValue VecPtr, EVT VecVT, 10435 SDValue Index) const { 10436 return getVectorSubVecPointer( 10437 DAG, VecPtr, VecVT, 10438 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 10439 Index); 10440 } 10441 10442 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 10443 SDValue VecPtr, EVT VecVT, 10444 EVT SubVecVT, 10445 SDValue Index) const { 10446 SDLoc dl(Index); 10447 // Make sure the index type is big enough to compute in. 10448 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 10449 10450 EVT EltVT = VecVT.getVectorElementType(); 10451 10452 // Calculate the element offset and add it to the pointer. 10453 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 10454 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 10455 "Converting bits to bytes lost precision"); 10456 assert(SubVecVT.getVectorElementType() == EltVT && 10457 "Sub-vector must be a vector with matching element type"); 10458 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 10459 SubVecVT.getVectorElementCount()); 10460 10461 EVT IdxVT = Index.getValueType(); 10462 if (SubVecVT.isScalableVector()) 10463 Index = 10464 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 10465 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 10466 10467 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 10468 DAG.getConstant(EltSize, dl, IdxVT)); 10469 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 10470 } 10471 10472 //===----------------------------------------------------------------------===// 10473 // Implementation of Emulated TLS Model 10474 //===----------------------------------------------------------------------===// 10475 10476 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 10477 SelectionDAG &DAG) const { 10478 // Access to address of TLS varialbe xyz is lowered to a function call: 10479 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 10480 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10481 PointerType *VoidPtrType = PointerType::get(*DAG.getContext(), 0); 10482 SDLoc dl(GA); 10483 10484 ArgListTy Args; 10485 ArgListEntry Entry; 10486 const GlobalValue *GV = 10487 cast<GlobalValue>(GA->getGlobal()->stripPointerCastsAndAliases()); 10488 SmallString<32> NameString("__emutls_v."); 10489 NameString += GV->getName(); 10490 StringRef EmuTlsVarName(NameString); 10491 const GlobalVariable *EmuTlsVar = 10492 GV->getParent()->getNamedGlobal(EmuTlsVarName); 10493 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 10494 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 10495 Entry.Ty = VoidPtrType; 10496 Args.push_back(Entry); 10497 10498 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 10499 10500 TargetLowering::CallLoweringInfo CLI(DAG); 10501 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 10502 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 10503 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 10504 10505 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 10506 // At last for X86 targets, maybe good for other targets too? 10507 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10508 MFI.setAdjustsStack(true); // Is this only for X86 target? 10509 MFI.setHasCalls(true); 10510 10511 assert((GA->getOffset() == 0) && 10512 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 10513 return CallResult.first; 10514 } 10515 10516 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 10517 SelectionDAG &DAG) const { 10518 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 10519 if (!isCtlzFast()) 10520 return SDValue(); 10521 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 10522 SDLoc dl(Op); 10523 if (isNullConstant(Op.getOperand(1)) && CC == ISD::SETEQ) { 10524 EVT VT = Op.getOperand(0).getValueType(); 10525 SDValue Zext = Op.getOperand(0); 10526 if (VT.bitsLT(MVT::i32)) { 10527 VT = MVT::i32; 10528 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 10529 } 10530 unsigned Log2b = Log2_32(VT.getSizeInBits()); 10531 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 10532 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 10533 DAG.getConstant(Log2b, dl, MVT::i32)); 10534 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 10535 } 10536 return SDValue(); 10537 } 10538 10539 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 10540 SDValue Op0 = Node->getOperand(0); 10541 SDValue Op1 = Node->getOperand(1); 10542 EVT VT = Op0.getValueType(); 10543 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10544 unsigned Opcode = Node->getOpcode(); 10545 SDLoc DL(Node); 10546 10547 // umax(x,1) --> sub(x,cmpeq(x,0)) iff cmp result is allbits 10548 if (Opcode == ISD::UMAX && llvm::isOneOrOneSplat(Op1, true) && BoolVT == VT && 10549 getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 10550 Op0 = DAG.getFreeze(Op0); 10551 SDValue Zero = DAG.getConstant(0, DL, VT); 10552 return DAG.getNode(ISD::SUB, DL, VT, Op0, 10553 DAG.getSetCC(DL, VT, Op0, Zero, ISD::SETEQ)); 10554 } 10555 10556 // umin(x,y) -> sub(x,usubsat(x,y)) 10557 // TODO: Missing freeze(Op0)? 10558 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 10559 isOperationLegal(ISD::USUBSAT, VT)) { 10560 return DAG.getNode(ISD::SUB, DL, VT, Op0, 10561 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 10562 } 10563 10564 // umax(x,y) -> add(x,usubsat(y,x)) 10565 // TODO: Missing freeze(Op0)? 10566 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 10567 isOperationLegal(ISD::USUBSAT, VT)) { 10568 return DAG.getNode(ISD::ADD, DL, VT, Op0, 10569 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 10570 } 10571 10572 // FIXME: Should really try to split the vector in case it's legal on a 10573 // subvector. 10574 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 10575 return DAG.UnrollVectorOp(Node); 10576 10577 // Attempt to find an existing SETCC node that we can reuse. 10578 // TODO: Do we need a generic doesSETCCNodeExist? 10579 // TODO: Missing freeze(Op0)/freeze(Op1)? 10580 auto buildMinMax = [&](ISD::CondCode PrefCC, ISD::CondCode AltCC, 10581 ISD::CondCode PrefCommuteCC, 10582 ISD::CondCode AltCommuteCC) { 10583 SDVTList BoolVTList = DAG.getVTList(BoolVT); 10584 for (ISD::CondCode CC : {PrefCC, AltCC}) { 10585 if (DAG.doesNodeExist(ISD::SETCC, BoolVTList, 10586 {Op0, Op1, DAG.getCondCode(CC)})) { 10587 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 10588 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 10589 } 10590 } 10591 for (ISD::CondCode CC : {PrefCommuteCC, AltCommuteCC}) { 10592 if (DAG.doesNodeExist(ISD::SETCC, BoolVTList, 10593 {Op0, Op1, DAG.getCondCode(CC)})) { 10594 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 10595 return DAG.getSelect(DL, VT, Cond, Op1, Op0); 10596 } 10597 } 10598 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, PrefCC); 10599 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 10600 }; 10601 10602 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 10603 // -> Y = (A < B) ? B : A 10604 // -> Y = (A >= B) ? A : B 10605 // -> Y = (A <= B) ? B : A 10606 switch (Opcode) { 10607 case ISD::SMAX: 10608 return buildMinMax(ISD::SETGT, ISD::SETGE, ISD::SETLT, ISD::SETLE); 10609 case ISD::SMIN: 10610 return buildMinMax(ISD::SETLT, ISD::SETLE, ISD::SETGT, ISD::SETGE); 10611 case ISD::UMAX: 10612 return buildMinMax(ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE); 10613 case ISD::UMIN: 10614 return buildMinMax(ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE); 10615 } 10616 10617 llvm_unreachable("How did we get here?"); 10618 } 10619 10620 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 10621 unsigned Opcode = Node->getOpcode(); 10622 SDValue LHS = Node->getOperand(0); 10623 SDValue RHS = Node->getOperand(1); 10624 EVT VT = LHS.getValueType(); 10625 SDLoc dl(Node); 10626 10627 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 10628 assert(VT.isInteger() && "Expected operands to be integers"); 10629 10630 // usub.sat(a, b) -> umax(a, b) - b 10631 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 10632 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 10633 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 10634 } 10635 10636 // uadd.sat(a, b) -> umin(a, ~b) + b 10637 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 10638 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 10639 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 10640 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 10641 } 10642 10643 unsigned OverflowOp; 10644 switch (Opcode) { 10645 case ISD::SADDSAT: 10646 OverflowOp = ISD::SADDO; 10647 break; 10648 case ISD::UADDSAT: 10649 OverflowOp = ISD::UADDO; 10650 break; 10651 case ISD::SSUBSAT: 10652 OverflowOp = ISD::SSUBO; 10653 break; 10654 case ISD::USUBSAT: 10655 OverflowOp = ISD::USUBO; 10656 break; 10657 default: 10658 llvm_unreachable("Expected method to receive signed or unsigned saturation " 10659 "addition or subtraction node."); 10660 } 10661 10662 // FIXME: Should really try to split the vector in case it's legal on a 10663 // subvector. 10664 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 10665 return DAG.UnrollVectorOp(Node); 10666 10667 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 10668 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10669 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 10670 SDValue SumDiff = Result.getValue(0); 10671 SDValue Overflow = Result.getValue(1); 10672 SDValue Zero = DAG.getConstant(0, dl, VT); 10673 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 10674 10675 if (Opcode == ISD::UADDSAT) { 10676 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 10677 // (LHS + RHS) | OverflowMask 10678 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 10679 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 10680 } 10681 // Overflow ? 0xffff.... : (LHS + RHS) 10682 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 10683 } 10684 10685 if (Opcode == ISD::USUBSAT) { 10686 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 10687 // (LHS - RHS) & ~OverflowMask 10688 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 10689 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 10690 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 10691 } 10692 // Overflow ? 0 : (LHS - RHS) 10693 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 10694 } 10695 10696 if (Opcode == ISD::SADDSAT || Opcode == ISD::SSUBSAT) { 10697 APInt MinVal = APInt::getSignedMinValue(BitWidth); 10698 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 10699 10700 KnownBits KnownLHS = DAG.computeKnownBits(LHS); 10701 KnownBits KnownRHS = DAG.computeKnownBits(RHS); 10702 10703 // If either of the operand signs are known, then they are guaranteed to 10704 // only saturate in one direction. If non-negative they will saturate 10705 // towards SIGNED_MAX, if negative they will saturate towards SIGNED_MIN. 10706 // 10707 // In the case of ISD::SSUBSAT, 'x - y' is equivalent to 'x + (-y)', so the 10708 // sign of 'y' has to be flipped. 10709 10710 bool LHSIsNonNegative = KnownLHS.isNonNegative(); 10711 bool RHSIsNonNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNonNegative() 10712 : KnownRHS.isNegative(); 10713 if (LHSIsNonNegative || RHSIsNonNegative) { 10714 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 10715 return DAG.getSelect(dl, VT, Overflow, SatMax, SumDiff); 10716 } 10717 10718 bool LHSIsNegative = KnownLHS.isNegative(); 10719 bool RHSIsNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNegative() 10720 : KnownRHS.isNonNegative(); 10721 if (LHSIsNegative || RHSIsNegative) { 10722 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 10723 return DAG.getSelect(dl, VT, Overflow, SatMin, SumDiff); 10724 } 10725 } 10726 10727 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 10728 APInt MinVal = APInt::getSignedMinValue(BitWidth); 10729 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 10730 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 10731 DAG.getConstant(BitWidth - 1, dl, VT)); 10732 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 10733 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 10734 } 10735 10736 SDValue TargetLowering::expandCMP(SDNode *Node, SelectionDAG &DAG) const { 10737 unsigned Opcode = Node->getOpcode(); 10738 SDValue LHS = Node->getOperand(0); 10739 SDValue RHS = Node->getOperand(1); 10740 EVT VT = LHS.getValueType(); 10741 EVT ResVT = Node->getValueType(0); 10742 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10743 SDLoc dl(Node); 10744 10745 auto LTPredicate = (Opcode == ISD::UCMP ? ISD::SETULT : ISD::SETLT); 10746 auto GTPredicate = (Opcode == ISD::UCMP ? ISD::SETUGT : ISD::SETGT); 10747 SDValue IsLT = DAG.getSetCC(dl, BoolVT, LHS, RHS, LTPredicate); 10748 SDValue IsGT = DAG.getSetCC(dl, BoolVT, LHS, RHS, GTPredicate); 10749 10750 // We can't perform arithmetic on i1 values. Extending them would 10751 // probably result in worse codegen, so let's just use two selects instead. 10752 // Some targets are also just better off using selects rather than subtraction 10753 // because one of the conditions can be merged with one of the selects. 10754 // And finally, if we don't know the contents of high bits of a boolean value 10755 // we can't perform any arithmetic either. 10756 if (shouldExpandCmpUsingSelects(VT) || BoolVT.getScalarSizeInBits() == 1 || 10757 getBooleanContents(BoolVT) == UndefinedBooleanContent) { 10758 SDValue SelectZeroOrOne = 10759 DAG.getSelect(dl, ResVT, IsGT, DAG.getConstant(1, dl, ResVT), 10760 DAG.getConstant(0, dl, ResVT)); 10761 return DAG.getSelect(dl, ResVT, IsLT, DAG.getAllOnesConstant(dl, ResVT), 10762 SelectZeroOrOne); 10763 } 10764 10765 if (getBooleanContents(BoolVT) == ZeroOrNegativeOneBooleanContent) 10766 std::swap(IsGT, IsLT); 10767 return DAG.getSExtOrTrunc(DAG.getNode(ISD::SUB, dl, BoolVT, IsGT, IsLT), dl, 10768 ResVT); 10769 } 10770 10771 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 10772 unsigned Opcode = Node->getOpcode(); 10773 bool IsSigned = Opcode == ISD::SSHLSAT; 10774 SDValue LHS = Node->getOperand(0); 10775 SDValue RHS = Node->getOperand(1); 10776 EVT VT = LHS.getValueType(); 10777 SDLoc dl(Node); 10778 10779 assert((Node->getOpcode() == ISD::SSHLSAT || 10780 Node->getOpcode() == ISD::USHLSAT) && 10781 "Expected a SHLSAT opcode"); 10782 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 10783 assert(VT.isInteger() && "Expected operands to be integers"); 10784 10785 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 10786 return DAG.UnrollVectorOp(Node); 10787 10788 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 10789 10790 unsigned BW = VT.getScalarSizeInBits(); 10791 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10792 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 10793 SDValue Orig = 10794 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 10795 10796 SDValue SatVal; 10797 if (IsSigned) { 10798 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 10799 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 10800 SDValue Cond = 10801 DAG.getSetCC(dl, BoolVT, LHS, DAG.getConstant(0, dl, VT), ISD::SETLT); 10802 SatVal = DAG.getSelect(dl, VT, Cond, SatMin, SatMax); 10803 } else { 10804 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 10805 } 10806 SDValue Cond = DAG.getSetCC(dl, BoolVT, LHS, Orig, ISD::SETNE); 10807 return DAG.getSelect(dl, VT, Cond, SatVal, Result); 10808 } 10809 10810 void TargetLowering::forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, 10811 bool Signed, EVT WideVT, 10812 const SDValue LL, const SDValue LH, 10813 const SDValue RL, const SDValue RH, 10814 SDValue &Lo, SDValue &Hi) const { 10815 // We can fall back to a libcall with an illegal type for the MUL if we 10816 // have a libcall big enough. 10817 // Also, we can fall back to a division in some cases, but that's a big 10818 // performance hit in the general case. 10819 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 10820 if (WideVT == MVT::i16) 10821 LC = RTLIB::MUL_I16; 10822 else if (WideVT == MVT::i32) 10823 LC = RTLIB::MUL_I32; 10824 else if (WideVT == MVT::i64) 10825 LC = RTLIB::MUL_I64; 10826 else if (WideVT == MVT::i128) 10827 LC = RTLIB::MUL_I128; 10828 10829 if (LC == RTLIB::UNKNOWN_LIBCALL || !getLibcallName(LC)) { 10830 // We'll expand the multiplication by brute force because we have no other 10831 // options. This is a trivially-generalized version of the code from 10832 // Hacker's Delight (itself derived from Knuth's Algorithm M from section 10833 // 4.3.1). 10834 EVT VT = LL.getValueType(); 10835 unsigned Bits = VT.getSizeInBits(); 10836 unsigned HalfBits = Bits >> 1; 10837 SDValue Mask = 10838 DAG.getConstant(APInt::getLowBitsSet(Bits, HalfBits), dl, VT); 10839 SDValue LLL = DAG.getNode(ISD::AND, dl, VT, LL, Mask); 10840 SDValue RLL = DAG.getNode(ISD::AND, dl, VT, RL, Mask); 10841 10842 SDValue T = DAG.getNode(ISD::MUL, dl, VT, LLL, RLL); 10843 SDValue TL = DAG.getNode(ISD::AND, dl, VT, T, Mask); 10844 10845 SDValue Shift = DAG.getShiftAmountConstant(HalfBits, VT, dl); 10846 SDValue TH = DAG.getNode(ISD::SRL, dl, VT, T, Shift); 10847 SDValue LLH = DAG.getNode(ISD::SRL, dl, VT, LL, Shift); 10848 SDValue RLH = DAG.getNode(ISD::SRL, dl, VT, RL, Shift); 10849 10850 SDValue U = DAG.getNode(ISD::ADD, dl, VT, 10851 DAG.getNode(ISD::MUL, dl, VT, LLH, RLL), TH); 10852 SDValue UL = DAG.getNode(ISD::AND, dl, VT, U, Mask); 10853 SDValue UH = DAG.getNode(ISD::SRL, dl, VT, U, Shift); 10854 10855 SDValue V = DAG.getNode(ISD::ADD, dl, VT, 10856 DAG.getNode(ISD::MUL, dl, VT, LLL, RLH), UL); 10857 SDValue VH = DAG.getNode(ISD::SRL, dl, VT, V, Shift); 10858 10859 SDValue W = 10860 DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::MUL, dl, VT, LLH, RLH), 10861 DAG.getNode(ISD::ADD, dl, VT, UH, VH)); 10862 Lo = DAG.getNode(ISD::ADD, dl, VT, TL, 10863 DAG.getNode(ISD::SHL, dl, VT, V, Shift)); 10864 10865 Hi = DAG.getNode(ISD::ADD, dl, VT, W, 10866 DAG.getNode(ISD::ADD, dl, VT, 10867 DAG.getNode(ISD::MUL, dl, VT, RH, LL), 10868 DAG.getNode(ISD::MUL, dl, VT, RL, LH))); 10869 } else { 10870 // Attempt a libcall. 10871 SDValue Ret; 10872 TargetLowering::MakeLibCallOptions CallOptions; 10873 CallOptions.setSExt(Signed); 10874 CallOptions.setIsPostTypeLegalization(true); 10875 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 10876 // Halves of WideVT are packed into registers in different order 10877 // depending on platform endianness. This is usually handled by 10878 // the C calling convention, but we can't defer to it in 10879 // the legalizer. 10880 SDValue Args[] = {LL, LH, RL, RH}; 10881 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 10882 } else { 10883 SDValue Args[] = {LH, LL, RH, RL}; 10884 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 10885 } 10886 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 10887 "Ret value is a collection of constituent nodes holding result."); 10888 if (DAG.getDataLayout().isLittleEndian()) { 10889 // Same as above. 10890 Lo = Ret.getOperand(0); 10891 Hi = Ret.getOperand(1); 10892 } else { 10893 Lo = Ret.getOperand(1); 10894 Hi = Ret.getOperand(0); 10895 } 10896 } 10897 } 10898 10899 void TargetLowering::forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, 10900 bool Signed, const SDValue LHS, 10901 const SDValue RHS, SDValue &Lo, 10902 SDValue &Hi) const { 10903 EVT VT = LHS.getValueType(); 10904 assert(RHS.getValueType() == VT && "Mismatching operand types"); 10905 10906 SDValue HiLHS; 10907 SDValue HiRHS; 10908 if (Signed) { 10909 // The high part is obtained by SRA'ing all but one of the bits of low 10910 // part. 10911 unsigned LoSize = VT.getFixedSizeInBits(); 10912 HiLHS = DAG.getNode( 10913 ISD::SRA, dl, VT, LHS, 10914 DAG.getConstant(LoSize - 1, dl, getPointerTy(DAG.getDataLayout()))); 10915 HiRHS = DAG.getNode( 10916 ISD::SRA, dl, VT, RHS, 10917 DAG.getConstant(LoSize - 1, dl, getPointerTy(DAG.getDataLayout()))); 10918 } else { 10919 HiLHS = DAG.getConstant(0, dl, VT); 10920 HiRHS = DAG.getConstant(0, dl, VT); 10921 } 10922 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); 10923 forceExpandWideMUL(DAG, dl, Signed, WideVT, LHS, HiLHS, RHS, HiRHS, Lo, Hi); 10924 } 10925 10926 SDValue 10927 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 10928 assert((Node->getOpcode() == ISD::SMULFIX || 10929 Node->getOpcode() == ISD::UMULFIX || 10930 Node->getOpcode() == ISD::SMULFIXSAT || 10931 Node->getOpcode() == ISD::UMULFIXSAT) && 10932 "Expected a fixed point multiplication opcode"); 10933 10934 SDLoc dl(Node); 10935 SDValue LHS = Node->getOperand(0); 10936 SDValue RHS = Node->getOperand(1); 10937 EVT VT = LHS.getValueType(); 10938 unsigned Scale = Node->getConstantOperandVal(2); 10939 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 10940 Node->getOpcode() == ISD::UMULFIXSAT); 10941 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 10942 Node->getOpcode() == ISD::SMULFIXSAT); 10943 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10944 unsigned VTSize = VT.getScalarSizeInBits(); 10945 10946 if (!Scale) { 10947 // [us]mul.fix(a, b, 0) -> mul(a, b) 10948 if (!Saturating) { 10949 if (isOperationLegalOrCustom(ISD::MUL, VT)) 10950 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 10951 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 10952 SDValue Result = 10953 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 10954 SDValue Product = Result.getValue(0); 10955 SDValue Overflow = Result.getValue(1); 10956 SDValue Zero = DAG.getConstant(0, dl, VT); 10957 10958 APInt MinVal = APInt::getSignedMinValue(VTSize); 10959 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 10960 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 10961 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 10962 // Xor the inputs, if resulting sign bit is 0 the product will be 10963 // positive, else negative. 10964 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 10965 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 10966 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 10967 return DAG.getSelect(dl, VT, Overflow, Result, Product); 10968 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 10969 SDValue Result = 10970 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 10971 SDValue Product = Result.getValue(0); 10972 SDValue Overflow = Result.getValue(1); 10973 10974 APInt MaxVal = APInt::getMaxValue(VTSize); 10975 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 10976 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 10977 } 10978 } 10979 10980 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 10981 "Expected scale to be less than the number of bits if signed or at " 10982 "most the number of bits if unsigned."); 10983 assert(LHS.getValueType() == RHS.getValueType() && 10984 "Expected both operands to be the same type"); 10985 10986 // Get the upper and lower bits of the result. 10987 SDValue Lo, Hi; 10988 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 10989 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 10990 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VTSize * 2); 10991 if (VT.isVector()) 10992 WideVT = 10993 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 10994 if (isOperationLegalOrCustom(LoHiOp, VT)) { 10995 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 10996 Lo = Result.getValue(0); 10997 Hi = Result.getValue(1); 10998 } else if (isOperationLegalOrCustom(HiOp, VT)) { 10999 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 11000 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 11001 } else if (isOperationLegalOrCustom(ISD::MUL, WideVT)) { 11002 // Try for a multiplication using a wider type. 11003 unsigned Ext = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 11004 SDValue LHSExt = DAG.getNode(Ext, dl, WideVT, LHS); 11005 SDValue RHSExt = DAG.getNode(Ext, dl, WideVT, RHS); 11006 SDValue Res = DAG.getNode(ISD::MUL, dl, WideVT, LHSExt, RHSExt); 11007 Lo = DAG.getNode(ISD::TRUNCATE, dl, VT, Res); 11008 SDValue Shifted = 11009 DAG.getNode(ISD::SRA, dl, WideVT, Res, 11010 DAG.getShiftAmountConstant(VTSize, WideVT, dl)); 11011 Hi = DAG.getNode(ISD::TRUNCATE, dl, VT, Shifted); 11012 } else if (VT.isVector()) { 11013 return SDValue(); 11014 } else { 11015 forceExpandWideMUL(DAG, dl, Signed, LHS, RHS, Lo, Hi); 11016 } 11017 11018 if (Scale == VTSize) 11019 // Result is just the top half since we'd be shifting by the width of the 11020 // operand. Overflow impossible so this works for both UMULFIX and 11021 // UMULFIXSAT. 11022 return Hi; 11023 11024 // The result will need to be shifted right by the scale since both operands 11025 // are scaled. The result is given to us in 2 halves, so we only want part of 11026 // both in the result. 11027 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 11028 DAG.getShiftAmountConstant(Scale, VT, dl)); 11029 if (!Saturating) 11030 return Result; 11031 11032 if (!Signed) { 11033 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 11034 // widened multiplication) aren't all zeroes. 11035 11036 // Saturate to max if ((Hi >> Scale) != 0), 11037 // which is the same as if (Hi > ((1 << Scale) - 1)) 11038 APInt MaxVal = APInt::getMaxValue(VTSize); 11039 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 11040 dl, VT); 11041 Result = DAG.getSelectCC(dl, Hi, LowMask, 11042 DAG.getConstant(MaxVal, dl, VT), Result, 11043 ISD::SETUGT); 11044 11045 return Result; 11046 } 11047 11048 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 11049 // widened multiplication) aren't all ones or all zeroes. 11050 11051 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 11052 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 11053 11054 if (Scale == 0) { 11055 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 11056 DAG.getShiftAmountConstant(VTSize - 1, VT, dl)); 11057 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 11058 // Saturated to SatMin if wide product is negative, and SatMax if wide 11059 // product is positive ... 11060 SDValue Zero = DAG.getConstant(0, dl, VT); 11061 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 11062 ISD::SETLT); 11063 // ... but only if we overflowed. 11064 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 11065 } 11066 11067 // We handled Scale==0 above so all the bits to examine is in Hi. 11068 11069 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 11070 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 11071 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 11072 dl, VT); 11073 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 11074 // Saturate to min if (Hi >> (Scale - 1)) < -1), 11075 // which is the same as if (HI < (-1 << (Scale - 1)) 11076 SDValue HighMask = 11077 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 11078 dl, VT); 11079 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 11080 return Result; 11081 } 11082 11083 SDValue 11084 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 11085 SDValue LHS, SDValue RHS, 11086 unsigned Scale, SelectionDAG &DAG) const { 11087 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 11088 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 11089 "Expected a fixed point division opcode"); 11090 11091 EVT VT = LHS.getValueType(); 11092 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 11093 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 11094 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 11095 11096 // If there is enough room in the type to upscale the LHS or downscale the 11097 // RHS before the division, we can perform it in this type without having to 11098 // resize. For signed operations, the LHS headroom is the number of 11099 // redundant sign bits, and for unsigned ones it is the number of zeroes. 11100 // The headroom for the RHS is the number of trailing zeroes. 11101 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 11102 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 11103 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 11104 11105 // For signed saturating operations, we need to be able to detect true integer 11106 // division overflow; that is, when you have MIN / -EPS. However, this 11107 // is undefined behavior and if we emit divisions that could take such 11108 // values it may cause undesired behavior (arithmetic exceptions on x86, for 11109 // example). 11110 // Avoid this by requiring an extra bit so that we never get this case. 11111 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 11112 // signed saturating division, we need to emit a whopping 32-bit division. 11113 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 11114 return SDValue(); 11115 11116 unsigned LHSShift = std::min(LHSLead, Scale); 11117 unsigned RHSShift = Scale - LHSShift; 11118 11119 // At this point, we know that if we shift the LHS up by LHSShift and the 11120 // RHS down by RHSShift, we can emit a regular division with a final scaling 11121 // factor of Scale. 11122 11123 if (LHSShift) 11124 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 11125 DAG.getShiftAmountConstant(LHSShift, VT, dl)); 11126 if (RHSShift) 11127 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 11128 DAG.getShiftAmountConstant(RHSShift, VT, dl)); 11129 11130 SDValue Quot; 11131 if (Signed) { 11132 // For signed operations, if the resulting quotient is negative and the 11133 // remainder is nonzero, subtract 1 from the quotient to round towards 11134 // negative infinity. 11135 SDValue Rem; 11136 // FIXME: Ideally we would always produce an SDIVREM here, but if the 11137 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 11138 // we couldn't just form a libcall, but the type legalizer doesn't do it. 11139 if (isTypeLegal(VT) && 11140 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 11141 Quot = DAG.getNode(ISD::SDIVREM, dl, 11142 DAG.getVTList(VT, VT), 11143 LHS, RHS); 11144 Rem = Quot.getValue(1); 11145 Quot = Quot.getValue(0); 11146 } else { 11147 Quot = DAG.getNode(ISD::SDIV, dl, VT, 11148 LHS, RHS); 11149 Rem = DAG.getNode(ISD::SREM, dl, VT, 11150 LHS, RHS); 11151 } 11152 SDValue Zero = DAG.getConstant(0, dl, VT); 11153 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 11154 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 11155 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 11156 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 11157 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 11158 DAG.getConstant(1, dl, VT)); 11159 Quot = DAG.getSelect(dl, VT, 11160 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 11161 Sub1, Quot); 11162 } else 11163 Quot = DAG.getNode(ISD::UDIV, dl, VT, 11164 LHS, RHS); 11165 11166 return Quot; 11167 } 11168 11169 void TargetLowering::expandUADDSUBO( 11170 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 11171 SDLoc dl(Node); 11172 SDValue LHS = Node->getOperand(0); 11173 SDValue RHS = Node->getOperand(1); 11174 bool IsAdd = Node->getOpcode() == ISD::UADDO; 11175 11176 // If UADDO_CARRY/SUBO_CARRY is legal, use that instead. 11177 unsigned OpcCarry = IsAdd ? ISD::UADDO_CARRY : ISD::USUBO_CARRY; 11178 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 11179 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 11180 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 11181 { LHS, RHS, CarryIn }); 11182 Result = SDValue(NodeCarry.getNode(), 0); 11183 Overflow = SDValue(NodeCarry.getNode(), 1); 11184 return; 11185 } 11186 11187 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 11188 LHS.getValueType(), LHS, RHS); 11189 11190 EVT ResultType = Node->getValueType(1); 11191 EVT SetCCType = getSetCCResultType( 11192 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 11193 SDValue SetCC; 11194 if (IsAdd && isOneConstant(RHS)) { 11195 // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces 11196 // the live range of X. We assume comparing with 0 is cheap. 11197 // The general case (X + C) < C is not necessarily beneficial. Although we 11198 // reduce the live range of X, we may introduce the materialization of 11199 // constant C. 11200 SetCC = 11201 DAG.getSetCC(dl, SetCCType, Result, 11202 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ); 11203 } else if (IsAdd && isAllOnesConstant(RHS)) { 11204 // Special case: uaddo X, -1 overflows if X != 0. 11205 SetCC = 11206 DAG.getSetCC(dl, SetCCType, LHS, 11207 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETNE); 11208 } else { 11209 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 11210 SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 11211 } 11212 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 11213 } 11214 11215 void TargetLowering::expandSADDSUBO( 11216 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 11217 SDLoc dl(Node); 11218 SDValue LHS = Node->getOperand(0); 11219 SDValue RHS = Node->getOperand(1); 11220 bool IsAdd = Node->getOpcode() == ISD::SADDO; 11221 11222 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 11223 LHS.getValueType(), LHS, RHS); 11224 11225 EVT ResultType = Node->getValueType(1); 11226 EVT OType = getSetCCResultType( 11227 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 11228 11229 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 11230 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 11231 if (isOperationLegal(OpcSat, LHS.getValueType())) { 11232 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 11233 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 11234 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 11235 return; 11236 } 11237 11238 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 11239 11240 // For an addition, the result should be less than one of the operands (LHS) 11241 // if and only if the other operand (RHS) is negative, otherwise there will 11242 // be overflow. 11243 // For a subtraction, the result should be less than one of the operands 11244 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 11245 // otherwise there will be overflow. 11246 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 11247 SDValue ConditionRHS = 11248 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 11249 11250 Overflow = DAG.getBoolExtOrTrunc( 11251 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 11252 ResultType, ResultType); 11253 } 11254 11255 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 11256 SDValue &Overflow, SelectionDAG &DAG) const { 11257 SDLoc dl(Node); 11258 EVT VT = Node->getValueType(0); 11259 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 11260 SDValue LHS = Node->getOperand(0); 11261 SDValue RHS = Node->getOperand(1); 11262 bool isSigned = Node->getOpcode() == ISD::SMULO; 11263 11264 // For power-of-two multiplications we can use a simpler shift expansion. 11265 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 11266 const APInt &C = RHSC->getAPIntValue(); 11267 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 11268 if (C.isPowerOf2()) { 11269 // smulo(x, signed_min) is same as umulo(x, signed_min). 11270 bool UseArithShift = isSigned && !C.isMinSignedValue(); 11271 SDValue ShiftAmt = DAG.getShiftAmountConstant(C.logBase2(), VT, dl); 11272 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 11273 Overflow = DAG.getSetCC(dl, SetCCVT, 11274 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 11275 dl, VT, Result, ShiftAmt), 11276 LHS, ISD::SETNE); 11277 return true; 11278 } 11279 } 11280 11281 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 11282 if (VT.isVector()) 11283 WideVT = 11284 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 11285 11286 SDValue BottomHalf; 11287 SDValue TopHalf; 11288 static const unsigned Ops[2][3] = 11289 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 11290 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 11291 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 11292 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 11293 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 11294 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 11295 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 11296 RHS); 11297 TopHalf = BottomHalf.getValue(1); 11298 } else if (isTypeLegal(WideVT)) { 11299 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 11300 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 11301 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 11302 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 11303 SDValue ShiftAmt = 11304 DAG.getShiftAmountConstant(VT.getScalarSizeInBits(), WideVT, dl); 11305 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 11306 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 11307 } else { 11308 if (VT.isVector()) 11309 return false; 11310 11311 forceExpandWideMUL(DAG, dl, isSigned, LHS, RHS, BottomHalf, TopHalf); 11312 } 11313 11314 Result = BottomHalf; 11315 if (isSigned) { 11316 SDValue ShiftAmt = DAG.getShiftAmountConstant( 11317 VT.getScalarSizeInBits() - 1, BottomHalf.getValueType(), dl); 11318 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 11319 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 11320 } else { 11321 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 11322 DAG.getConstant(0, dl, VT), ISD::SETNE); 11323 } 11324 11325 // Truncate the result if SetCC returns a larger type than needed. 11326 EVT RType = Node->getValueType(1); 11327 if (RType.bitsLT(Overflow.getValueType())) 11328 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 11329 11330 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 11331 "Unexpected result type for S/UMULO legalization"); 11332 return true; 11333 } 11334 11335 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 11336 SDLoc dl(Node); 11337 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 11338 SDValue Op = Node->getOperand(0); 11339 EVT VT = Op.getValueType(); 11340 11341 if (VT.isScalableVector()) 11342 report_fatal_error( 11343 "Expanding reductions for scalable vectors is undefined."); 11344 11345 // Try to use a shuffle reduction for power of two vectors. 11346 if (VT.isPow2VectorType()) { 11347 while (VT.getVectorNumElements() > 1) { 11348 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 11349 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 11350 break; 11351 11352 SDValue Lo, Hi; 11353 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 11354 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi, Node->getFlags()); 11355 VT = HalfVT; 11356 } 11357 } 11358 11359 EVT EltVT = VT.getVectorElementType(); 11360 unsigned NumElts = VT.getVectorNumElements(); 11361 11362 SmallVector<SDValue, 8> Ops; 11363 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 11364 11365 SDValue Res = Ops[0]; 11366 for (unsigned i = 1; i < NumElts; i++) 11367 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 11368 11369 // Result type may be wider than element type. 11370 if (EltVT != Node->getValueType(0)) 11371 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 11372 return Res; 11373 } 11374 11375 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 11376 SDLoc dl(Node); 11377 SDValue AccOp = Node->getOperand(0); 11378 SDValue VecOp = Node->getOperand(1); 11379 SDNodeFlags Flags = Node->getFlags(); 11380 11381 EVT VT = VecOp.getValueType(); 11382 EVT EltVT = VT.getVectorElementType(); 11383 11384 if (VT.isScalableVector()) 11385 report_fatal_error( 11386 "Expanding reductions for scalable vectors is undefined."); 11387 11388 unsigned NumElts = VT.getVectorNumElements(); 11389 11390 SmallVector<SDValue, 8> Ops; 11391 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 11392 11393 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 11394 11395 SDValue Res = AccOp; 11396 for (unsigned i = 0; i < NumElts; i++) 11397 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 11398 11399 return Res; 11400 } 11401 11402 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 11403 SelectionDAG &DAG) const { 11404 EVT VT = Node->getValueType(0); 11405 SDLoc dl(Node); 11406 bool isSigned = Node->getOpcode() == ISD::SREM; 11407 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 11408 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 11409 SDValue Dividend = Node->getOperand(0); 11410 SDValue Divisor = Node->getOperand(1); 11411 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 11412 SDVTList VTs = DAG.getVTList(VT, VT); 11413 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 11414 return true; 11415 } 11416 if (isOperationLegalOrCustom(DivOpc, VT)) { 11417 // X % Y -> X-X/Y*Y 11418 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 11419 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 11420 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 11421 return true; 11422 } 11423 return false; 11424 } 11425 11426 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 11427 SelectionDAG &DAG) const { 11428 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 11429 SDLoc dl(SDValue(Node, 0)); 11430 SDValue Src = Node->getOperand(0); 11431 11432 // DstVT is the result type, while SatVT is the size to which we saturate 11433 EVT SrcVT = Src.getValueType(); 11434 EVT DstVT = Node->getValueType(0); 11435 11436 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 11437 unsigned SatWidth = SatVT.getScalarSizeInBits(); 11438 unsigned DstWidth = DstVT.getScalarSizeInBits(); 11439 assert(SatWidth <= DstWidth && 11440 "Expected saturation width smaller than result width"); 11441 11442 // Determine minimum and maximum integer values and their corresponding 11443 // floating-point values. 11444 APInt MinInt, MaxInt; 11445 if (IsSigned) { 11446 MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth); 11447 MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth); 11448 } else { 11449 MinInt = APInt::getMinValue(SatWidth).zext(DstWidth); 11450 MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth); 11451 } 11452 11453 // We cannot risk emitting FP_TO_XINT nodes with a source VT of [b]f16, as 11454 // libcall emission cannot handle this. Large result types will fail. 11455 if (SrcVT == MVT::f16 || SrcVT == MVT::bf16) { 11456 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 11457 SrcVT = Src.getValueType(); 11458 } 11459 11460 const fltSemantics &Sem = SrcVT.getFltSemantics(); 11461 APFloat MinFloat(Sem); 11462 APFloat MaxFloat(Sem); 11463 11464 APFloat::opStatus MinStatus = 11465 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 11466 APFloat::opStatus MaxStatus = 11467 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 11468 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 11469 !(MaxStatus & APFloat::opStatus::opInexact); 11470 11471 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 11472 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 11473 11474 // If the integer bounds are exactly representable as floats and min/max are 11475 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 11476 // of comparisons and selects. 11477 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 11478 isOperationLegal(ISD::FMAXNUM, SrcVT); 11479 if (AreExactFloatBounds && MinMaxLegal) { 11480 SDValue Clamped = Src; 11481 11482 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 11483 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 11484 // Clamp by MaxFloat from above. NaN cannot occur. 11485 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 11486 // Convert clamped value to integer. 11487 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 11488 dl, DstVT, Clamped); 11489 11490 // In the unsigned case we're done, because we mapped NaN to MinFloat, 11491 // which will cast to zero. 11492 if (!IsSigned) 11493 return FpToInt; 11494 11495 // Otherwise, select 0 if Src is NaN. 11496 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 11497 EVT SetCCVT = 11498 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 11499 SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO); 11500 return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, FpToInt); 11501 } 11502 11503 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 11504 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 11505 11506 // Result of direct conversion. The assumption here is that the operation is 11507 // non-trapping and it's fine to apply it to an out-of-range value if we 11508 // select it away later. 11509 SDValue FpToInt = 11510 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 11511 11512 SDValue Select = FpToInt; 11513 11514 EVT SetCCVT = 11515 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 11516 11517 // If Src ULT MinFloat, select MinInt. In particular, this also selects 11518 // MinInt if Src is NaN. 11519 SDValue ULT = DAG.getSetCC(dl, SetCCVT, Src, MinFloatNode, ISD::SETULT); 11520 Select = DAG.getSelect(dl, DstVT, ULT, MinIntNode, Select); 11521 // If Src OGT MaxFloat, select MaxInt. 11522 SDValue OGT = DAG.getSetCC(dl, SetCCVT, Src, MaxFloatNode, ISD::SETOGT); 11523 Select = DAG.getSelect(dl, DstVT, OGT, MaxIntNode, Select); 11524 11525 // In the unsigned case we are done, because we mapped NaN to MinInt, which 11526 // is already zero. 11527 if (!IsSigned) 11528 return Select; 11529 11530 // Otherwise, select 0 if Src is NaN. 11531 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 11532 SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO); 11533 return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, Select); 11534 } 11535 11536 SDValue TargetLowering::expandRoundInexactToOdd(EVT ResultVT, SDValue Op, 11537 const SDLoc &dl, 11538 SelectionDAG &DAG) const { 11539 EVT OperandVT = Op.getValueType(); 11540 if (OperandVT.getScalarType() == ResultVT.getScalarType()) 11541 return Op; 11542 EVT ResultIntVT = ResultVT.changeTypeToInteger(); 11543 // We are rounding binary64/binary128 -> binary32 -> bfloat16. This 11544 // can induce double-rounding which may alter the results. We can 11545 // correct for this using a trick explained in: Boldo, Sylvie, and 11546 // Guillaume Melquiond. "When double rounding is odd." 17th IMACS 11547 // World Congress. 2005. 11548 unsigned BitSize = OperandVT.getScalarSizeInBits(); 11549 EVT WideIntVT = OperandVT.changeTypeToInteger(); 11550 SDValue OpAsInt = DAG.getBitcast(WideIntVT, Op); 11551 SDValue SignBit = 11552 DAG.getNode(ISD::AND, dl, WideIntVT, OpAsInt, 11553 DAG.getConstant(APInt::getSignMask(BitSize), dl, WideIntVT)); 11554 SDValue AbsWide; 11555 if (isOperationLegalOrCustom(ISD::FABS, OperandVT)) { 11556 AbsWide = DAG.getNode(ISD::FABS, dl, OperandVT, Op); 11557 } else { 11558 SDValue ClearedSign = DAG.getNode( 11559 ISD::AND, dl, WideIntVT, OpAsInt, 11560 DAG.getConstant(APInt::getSignedMaxValue(BitSize), dl, WideIntVT)); 11561 AbsWide = DAG.getBitcast(OperandVT, ClearedSign); 11562 } 11563 SDValue AbsNarrow = DAG.getFPExtendOrRound(AbsWide, dl, ResultVT); 11564 SDValue AbsNarrowAsWide = DAG.getFPExtendOrRound(AbsNarrow, dl, OperandVT); 11565 11566 // We can keep the narrow value as-is if narrowing was exact (no 11567 // rounding error), the wide value was NaN (the narrow value is also 11568 // NaN and should be preserved) or if we rounded to the odd value. 11569 SDValue NarrowBits = DAG.getNode(ISD::BITCAST, dl, ResultIntVT, AbsNarrow); 11570 SDValue One = DAG.getConstant(1, dl, ResultIntVT); 11571 SDValue NegativeOne = DAG.getAllOnesConstant(dl, ResultIntVT); 11572 SDValue And = DAG.getNode(ISD::AND, dl, ResultIntVT, NarrowBits, One); 11573 EVT ResultIntVTCCVT = getSetCCResultType( 11574 DAG.getDataLayout(), *DAG.getContext(), And.getValueType()); 11575 SDValue Zero = DAG.getConstant(0, dl, ResultIntVT); 11576 // The result is already odd so we don't need to do anything. 11577 SDValue AlreadyOdd = DAG.getSetCC(dl, ResultIntVTCCVT, And, Zero, ISD::SETNE); 11578 11579 EVT WideSetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 11580 AbsWide.getValueType()); 11581 // We keep results which are exact, odd or NaN. 11582 SDValue KeepNarrow = 11583 DAG.getSetCC(dl, WideSetCCVT, AbsWide, AbsNarrowAsWide, ISD::SETUEQ); 11584 KeepNarrow = DAG.getNode(ISD::OR, dl, WideSetCCVT, KeepNarrow, AlreadyOdd); 11585 // We morally performed a round-down if AbsNarrow is smaller than 11586 // AbsWide. 11587 SDValue NarrowIsRd = 11588 DAG.getSetCC(dl, WideSetCCVT, AbsWide, AbsNarrowAsWide, ISD::SETOGT); 11589 // If the narrow value is odd or exact, pick it. 11590 // Otherwise, narrow is even and corresponds to either the rounded-up 11591 // or rounded-down value. If narrow is the rounded-down value, we want 11592 // the rounded-up value as it will be odd. 11593 SDValue Adjust = DAG.getSelect(dl, ResultIntVT, NarrowIsRd, One, NegativeOne); 11594 SDValue Adjusted = DAG.getNode(ISD::ADD, dl, ResultIntVT, NarrowBits, Adjust); 11595 Op = DAG.getSelect(dl, ResultIntVT, KeepNarrow, NarrowBits, Adjusted); 11596 int ShiftAmount = BitSize - ResultVT.getScalarSizeInBits(); 11597 SDValue ShiftCnst = DAG.getShiftAmountConstant(ShiftAmount, WideIntVT, dl); 11598 SignBit = DAG.getNode(ISD::SRL, dl, WideIntVT, SignBit, ShiftCnst); 11599 SignBit = DAG.getNode(ISD::TRUNCATE, dl, ResultIntVT, SignBit); 11600 Op = DAG.getNode(ISD::OR, dl, ResultIntVT, Op, SignBit); 11601 return DAG.getNode(ISD::BITCAST, dl, ResultVT, Op); 11602 } 11603 11604 SDValue TargetLowering::expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const { 11605 assert(Node->getOpcode() == ISD::FP_ROUND && "Unexpected opcode!"); 11606 SDValue Op = Node->getOperand(0); 11607 EVT VT = Node->getValueType(0); 11608 SDLoc dl(Node); 11609 if (VT.getScalarType() == MVT::bf16) { 11610 if (Node->getConstantOperandVal(1) == 1) { 11611 return DAG.getNode(ISD::FP_TO_BF16, dl, VT, Node->getOperand(0)); 11612 } 11613 EVT OperandVT = Op.getValueType(); 11614 SDValue IsNaN = DAG.getSetCC( 11615 dl, 11616 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), OperandVT), 11617 Op, Op, ISD::SETUO); 11618 11619 // We are rounding binary64/binary128 -> binary32 -> bfloat16. This 11620 // can induce double-rounding which may alter the results. We can 11621 // correct for this using a trick explained in: Boldo, Sylvie, and 11622 // Guillaume Melquiond. "When double rounding is odd." 17th IMACS 11623 // World Congress. 2005. 11624 EVT F32 = VT.isVector() ? VT.changeVectorElementType(MVT::f32) : MVT::f32; 11625 EVT I32 = F32.changeTypeToInteger(); 11626 Op = expandRoundInexactToOdd(F32, Op, dl, DAG); 11627 Op = DAG.getNode(ISD::BITCAST, dl, I32, Op); 11628 11629 // Conversions should set NaN's quiet bit. This also prevents NaNs from 11630 // turning into infinities. 11631 SDValue NaN = 11632 DAG.getNode(ISD::OR, dl, I32, Op, DAG.getConstant(0x400000, dl, I32)); 11633 11634 // Factor in the contribution of the low 16 bits. 11635 SDValue One = DAG.getConstant(1, dl, I32); 11636 SDValue Lsb = DAG.getNode(ISD::SRL, dl, I32, Op, 11637 DAG.getShiftAmountConstant(16, I32, dl)); 11638 Lsb = DAG.getNode(ISD::AND, dl, I32, Lsb, One); 11639 SDValue RoundingBias = 11640 DAG.getNode(ISD::ADD, dl, I32, DAG.getConstant(0x7fff, dl, I32), Lsb); 11641 SDValue Add = DAG.getNode(ISD::ADD, dl, I32, Op, RoundingBias); 11642 11643 // Don't round if we had a NaN, we don't want to turn 0x7fffffff into 11644 // 0x80000000. 11645 Op = DAG.getSelect(dl, I32, IsNaN, NaN, Add); 11646 11647 // Now that we have rounded, shift the bits into position. 11648 Op = DAG.getNode(ISD::SRL, dl, I32, Op, 11649 DAG.getShiftAmountConstant(16, I32, dl)); 11650 Op = DAG.getNode(ISD::BITCAST, dl, I32, Op); 11651 EVT I16 = I32.isVector() ? I32.changeVectorElementType(MVT::i16) : MVT::i16; 11652 Op = DAG.getNode(ISD::TRUNCATE, dl, I16, Op); 11653 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 11654 } 11655 return SDValue(); 11656 } 11657 11658 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 11659 SelectionDAG &DAG) const { 11660 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 11661 assert(Node->getValueType(0).isScalableVector() && 11662 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 11663 11664 EVT VT = Node->getValueType(0); 11665 SDValue V1 = Node->getOperand(0); 11666 SDValue V2 = Node->getOperand(1); 11667 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 11668 SDLoc DL(Node); 11669 11670 // Expand through memory thusly: 11671 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 11672 // Store V1, Ptr 11673 // Store V2, Ptr + sizeof(V1) 11674 // If (Imm < 0) 11675 // TrailingElts = -Imm 11676 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 11677 // else 11678 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 11679 // Res = Load Ptr 11680 11681 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 11682 11683 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 11684 VT.getVectorElementCount() * 2); 11685 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 11686 EVT PtrVT = StackPtr.getValueType(); 11687 auto &MF = DAG.getMachineFunction(); 11688 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 11689 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 11690 11691 // Store the lo part of CONCAT_VECTORS(V1, V2) 11692 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 11693 // Store the hi part of CONCAT_VECTORS(V1, V2) 11694 SDValue OffsetToV2 = DAG.getVScale( 11695 DL, PtrVT, 11696 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinValue())); 11697 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 11698 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 11699 11700 if (Imm >= 0) { 11701 // Load back the required element. getVectorElementPointer takes care of 11702 // clamping the index if it's out-of-bounds. 11703 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 11704 // Load the spliced result 11705 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 11706 MachinePointerInfo::getUnknownStack(MF)); 11707 } 11708 11709 uint64_t TrailingElts = -Imm; 11710 11711 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 11712 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 11713 SDValue TrailingBytes = 11714 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 11715 11716 if (TrailingElts > VT.getVectorMinNumElements()) { 11717 SDValue VLBytes = 11718 DAG.getVScale(DL, PtrVT, 11719 APInt(PtrVT.getFixedSizeInBits(), 11720 VT.getStoreSize().getKnownMinValue())); 11721 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 11722 } 11723 11724 // Calculate the start address of the spliced result. 11725 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 11726 11727 // Load the spliced result 11728 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 11729 MachinePointerInfo::getUnknownStack(MF)); 11730 } 11731 11732 SDValue TargetLowering::expandVECTOR_COMPRESS(SDNode *Node, 11733 SelectionDAG &DAG) const { 11734 SDLoc DL(Node); 11735 SDValue Vec = Node->getOperand(0); 11736 SDValue Mask = Node->getOperand(1); 11737 SDValue Passthru = Node->getOperand(2); 11738 11739 EVT VecVT = Vec.getValueType(); 11740 EVT ScalarVT = VecVT.getScalarType(); 11741 EVT MaskVT = Mask.getValueType(); 11742 EVT MaskScalarVT = MaskVT.getScalarType(); 11743 11744 // Needs to be handled by targets that have scalable vector types. 11745 if (VecVT.isScalableVector()) 11746 report_fatal_error("Cannot expand masked_compress for scalable vectors."); 11747 11748 SDValue StackPtr = DAG.CreateStackTemporary( 11749 VecVT.getStoreSize(), DAG.getReducedAlign(VecVT, /*UseABI=*/false)); 11750 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 11751 MachinePointerInfo PtrInfo = 11752 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 11753 11754 MVT PositionVT = getVectorIdxTy(DAG.getDataLayout()); 11755 SDValue Chain = DAG.getEntryNode(); 11756 SDValue OutPos = DAG.getConstant(0, DL, PositionVT); 11757 11758 bool HasPassthru = !Passthru.isUndef(); 11759 11760 // If we have a passthru vector, store it on the stack, overwrite the matching 11761 // positions and then re-write the last element that was potentially 11762 // overwritten even though mask[i] = false. 11763 if (HasPassthru) 11764 Chain = DAG.getStore(Chain, DL, Passthru, StackPtr, PtrInfo); 11765 11766 SDValue LastWriteVal; 11767 APInt PassthruSplatVal; 11768 bool IsSplatPassthru = 11769 ISD::isConstantSplatVector(Passthru.getNode(), PassthruSplatVal); 11770 11771 if (IsSplatPassthru) { 11772 // As we do not know which position we wrote to last, we cannot simply 11773 // access that index from the passthru vector. So we first check if passthru 11774 // is a splat vector, to use any element ... 11775 LastWriteVal = DAG.getConstant(PassthruSplatVal, DL, ScalarVT); 11776 } else if (HasPassthru) { 11777 // ... if it is not a splat vector, we need to get the passthru value at 11778 // position = popcount(mask) and re-load it from the stack before it is 11779 // overwritten in the loop below. 11780 EVT PopcountVT = ScalarVT.changeTypeToInteger(); 11781 SDValue Popcount = DAG.getNode( 11782 ISD::TRUNCATE, DL, MaskVT.changeVectorElementType(MVT::i1), Mask); 11783 Popcount = 11784 DAG.getNode(ISD::ZERO_EXTEND, DL, 11785 MaskVT.changeVectorElementType(PopcountVT), Popcount); 11786 Popcount = DAG.getNode(ISD::VECREDUCE_ADD, DL, PopcountVT, Popcount); 11787 SDValue LastElmtPtr = 11788 getVectorElementPointer(DAG, StackPtr, VecVT, Popcount); 11789 LastWriteVal = DAG.getLoad( 11790 ScalarVT, DL, Chain, LastElmtPtr, 11791 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 11792 Chain = LastWriteVal.getValue(1); 11793 } 11794 11795 unsigned NumElms = VecVT.getVectorNumElements(); 11796 for (unsigned I = 0; I < NumElms; I++) { 11797 SDValue Idx = DAG.getVectorIdxConstant(I, DL); 11798 11799 SDValue ValI = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, Vec, Idx); 11800 SDValue OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos); 11801 Chain = DAG.getStore( 11802 Chain, DL, ValI, OutPtr, 11803 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 11804 11805 // Get the mask value and add it to the current output position. This 11806 // either increments by 1 if MaskI is true or adds 0 otherwise. 11807 // Freeze in case we have poison/undef mask entries. 11808 SDValue MaskI = DAG.getFreeze( 11809 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskScalarVT, Mask, Idx)); 11810 MaskI = DAG.getFreeze(MaskI); 11811 MaskI = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, MaskI); 11812 MaskI = DAG.getNode(ISD::ZERO_EXTEND, DL, PositionVT, MaskI); 11813 OutPos = DAG.getNode(ISD::ADD, DL, PositionVT, OutPos, MaskI); 11814 11815 if (HasPassthru && I == NumElms - 1) { 11816 SDValue EndOfVector = 11817 DAG.getConstant(VecVT.getVectorNumElements() - 1, DL, PositionVT); 11818 SDValue AllLanesSelected = 11819 DAG.getSetCC(DL, MVT::i1, OutPos, EndOfVector, ISD::CondCode::SETUGT); 11820 OutPos = DAG.getNode(ISD::UMIN, DL, PositionVT, OutPos, EndOfVector); 11821 OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos); 11822 11823 // Re-write the last ValI if all lanes were selected. Otherwise, 11824 // overwrite the last write it with the passthru value. 11825 LastWriteVal = DAG.getSelect(DL, ScalarVT, AllLanesSelected, ValI, 11826 LastWriteVal, SDNodeFlags::Unpredictable); 11827 Chain = DAG.getStore( 11828 Chain, DL, LastWriteVal, OutPtr, 11829 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 11830 } 11831 } 11832 11833 return DAG.getLoad(VecVT, DL, Chain, StackPtr, PtrInfo); 11834 } 11835 11836 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 11837 SDValue &LHS, SDValue &RHS, 11838 SDValue &CC, SDValue Mask, 11839 SDValue EVL, bool &NeedInvert, 11840 const SDLoc &dl, SDValue &Chain, 11841 bool IsSignaling) const { 11842 MVT OpVT = LHS.getSimpleValueType(); 11843 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 11844 NeedInvert = false; 11845 assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset"); 11846 bool IsNonVP = !EVL; 11847 switch (getCondCodeAction(CCCode, OpVT)) { 11848 default: 11849 llvm_unreachable("Unknown condition code action!"); 11850 case TargetLowering::Legal: 11851 // Nothing to do. 11852 break; 11853 case TargetLowering::Expand: { 11854 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 11855 if (isCondCodeLegalOrCustom(InvCC, OpVT)) { 11856 std::swap(LHS, RHS); 11857 CC = DAG.getCondCode(InvCC); 11858 return true; 11859 } 11860 // Swapping operands didn't work. Try inverting the condition. 11861 bool NeedSwap = false; 11862 InvCC = getSetCCInverse(CCCode, OpVT); 11863 if (!isCondCodeLegalOrCustom(InvCC, OpVT)) { 11864 // If inverting the condition is not enough, try swapping operands 11865 // on top of it. 11866 InvCC = ISD::getSetCCSwappedOperands(InvCC); 11867 NeedSwap = true; 11868 } 11869 if (isCondCodeLegalOrCustom(InvCC, OpVT)) { 11870 CC = DAG.getCondCode(InvCC); 11871 NeedInvert = true; 11872 if (NeedSwap) 11873 std::swap(LHS, RHS); 11874 return true; 11875 } 11876 11877 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 11878 unsigned Opc = 0; 11879 switch (CCCode) { 11880 default: 11881 llvm_unreachable("Don't know how to expand this condition!"); 11882 case ISD::SETUO: 11883 if (isCondCodeLegal(ISD::SETUNE, OpVT)) { 11884 CC1 = ISD::SETUNE; 11885 CC2 = ISD::SETUNE; 11886 Opc = ISD::OR; 11887 break; 11888 } 11889 assert(isCondCodeLegal(ISD::SETOEQ, OpVT) && 11890 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 11891 NeedInvert = true; 11892 [[fallthrough]]; 11893 case ISD::SETO: 11894 assert(isCondCodeLegal(ISD::SETOEQ, OpVT) && 11895 "If SETO is expanded, SETOEQ must be legal!"); 11896 CC1 = ISD::SETOEQ; 11897 CC2 = ISD::SETOEQ; 11898 Opc = ISD::AND; 11899 break; 11900 case ISD::SETONE: 11901 case ISD::SETUEQ: 11902 // If the SETUO or SETO CC isn't legal, we might be able to use 11903 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 11904 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 11905 // the operands. 11906 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 11907 if (!isCondCodeLegal(CC2, OpVT) && (isCondCodeLegal(ISD::SETOGT, OpVT) || 11908 isCondCodeLegal(ISD::SETOLT, OpVT))) { 11909 CC1 = ISD::SETOGT; 11910 CC2 = ISD::SETOLT; 11911 Opc = ISD::OR; 11912 NeedInvert = ((unsigned)CCCode & 0x8U); 11913 break; 11914 } 11915 [[fallthrough]]; 11916 case ISD::SETOEQ: 11917 case ISD::SETOGT: 11918 case ISD::SETOGE: 11919 case ISD::SETOLT: 11920 case ISD::SETOLE: 11921 case ISD::SETUNE: 11922 case ISD::SETUGT: 11923 case ISD::SETUGE: 11924 case ISD::SETULT: 11925 case ISD::SETULE: 11926 // If we are floating point, assign and break, otherwise fall through. 11927 if (!OpVT.isInteger()) { 11928 // We can use the 4th bit to tell if we are the unordered 11929 // or ordered version of the opcode. 11930 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 11931 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 11932 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 11933 break; 11934 } 11935 // Fallthrough if we are unsigned integer. 11936 [[fallthrough]]; 11937 case ISD::SETLE: 11938 case ISD::SETGT: 11939 case ISD::SETGE: 11940 case ISD::SETLT: 11941 case ISD::SETNE: 11942 case ISD::SETEQ: 11943 // If all combinations of inverting the condition and swapping operands 11944 // didn't work then we have no means to expand the condition. 11945 llvm_unreachable("Don't know how to expand this condition!"); 11946 } 11947 11948 SDValue SetCC1, SetCC2; 11949 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 11950 // If we aren't the ordered or unorder operation, 11951 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 11952 if (IsNonVP) { 11953 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 11954 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 11955 } else { 11956 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL); 11957 SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL); 11958 } 11959 } else { 11960 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 11961 if (IsNonVP) { 11962 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 11963 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 11964 } else { 11965 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL); 11966 SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL); 11967 } 11968 } 11969 if (Chain) 11970 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 11971 SetCC2.getValue(1)); 11972 if (IsNonVP) 11973 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 11974 else { 11975 // Transform the binary opcode to the VP equivalent. 11976 assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode"); 11977 Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND; 11978 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL); 11979 } 11980 RHS = SDValue(); 11981 CC = SDValue(); 11982 return true; 11983 } 11984 } 11985 return false; 11986 } 11987 11988 SDValue TargetLowering::expandVectorNaryOpBySplitting(SDNode *Node, 11989 SelectionDAG &DAG) const { 11990 EVT VT = Node->getValueType(0); 11991 // Despite its documentation, GetSplitDestVTs will assert if VT cannot be 11992 // split into two equal parts. 11993 if (!VT.isVector() || !VT.getVectorElementCount().isKnownMultipleOf(2)) 11994 return SDValue(); 11995 11996 // Restrict expansion to cases where both parts can be concatenated. 11997 auto [LoVT, HiVT] = DAG.GetSplitDestVTs(VT); 11998 if (LoVT != HiVT || !isTypeLegal(LoVT)) 11999 return SDValue(); 12000 12001 SDLoc DL(Node); 12002 unsigned Opcode = Node->getOpcode(); 12003 12004 // Don't expand if the result is likely to be unrolled anyway. 12005 if (!isOperationLegalOrCustomOrPromote(Opcode, LoVT)) 12006 return SDValue(); 12007 12008 SmallVector<SDValue, 4> LoOps, HiOps; 12009 for (const SDValue &V : Node->op_values()) { 12010 auto [Lo, Hi] = DAG.SplitVector(V, DL, LoVT, HiVT); 12011 LoOps.push_back(Lo); 12012 HiOps.push_back(Hi); 12013 } 12014 12015 SDValue SplitOpLo = DAG.getNode(Opcode, DL, LoVT, LoOps); 12016 SDValue SplitOpHi = DAG.getNode(Opcode, DL, HiVT, HiOps); 12017 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, SplitOpLo, SplitOpHi); 12018 } 12019