1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/Analysis/VectorUtils.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/CodeGenCommonISel.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SelectionDAG.h" 24 #include "llvm/CodeGen/TargetRegisterInfo.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/MC/MCAsmInfo.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/Support/DivisionByConstantInfo.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/KnownBits.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include <cctype> 37 using namespace llvm; 38 39 /// NOTE: The TargetMachine owns TLOF. 40 TargetLowering::TargetLowering(const TargetMachine &tm) 41 : TargetLoweringBase(tm) {} 42 43 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 44 return nullptr; 45 } 46 47 bool TargetLowering::isPositionIndependent() const { 48 return getTargetMachine().isPositionIndependent(); 49 } 50 51 /// Check whether a given call node is in tail position within its function. If 52 /// so, it sets Chain to the input chain of the tail call. 53 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 54 SDValue &Chain) const { 55 const Function &F = DAG.getMachineFunction().getFunction(); 56 57 // First, check if tail calls have been disabled in this function. 58 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 59 return false; 60 61 // Conservatively require the attributes of the call to match those of 62 // the return. Ignore following attributes because they don't affect the 63 // call sequence. 64 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs()); 65 for (const auto &Attr : 66 {Attribute::Alignment, Attribute::Dereferenceable, 67 Attribute::DereferenceableOrNull, Attribute::NoAlias, 68 Attribute::NonNull, Attribute::NoUndef, Attribute::Range}) 69 CallerAttrs.removeAttribute(Attr); 70 71 if (CallerAttrs.hasAttributes()) 72 return false; 73 74 // It's not safe to eliminate the sign / zero extension of the return value. 75 if (CallerAttrs.contains(Attribute::ZExt) || 76 CallerAttrs.contains(Attribute::SExt)) 77 return false; 78 79 // Check if the only use is a function return node. 80 return isUsedByReturnOnly(Node, Chain); 81 } 82 83 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 84 const uint32_t *CallerPreservedMask, 85 const SmallVectorImpl<CCValAssign> &ArgLocs, 86 const SmallVectorImpl<SDValue> &OutVals) const { 87 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 88 const CCValAssign &ArgLoc = ArgLocs[I]; 89 if (!ArgLoc.isRegLoc()) 90 continue; 91 MCRegister Reg = ArgLoc.getLocReg(); 92 // Only look at callee saved registers. 93 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 94 continue; 95 // Check that we pass the value used for the caller. 96 // (We look for a CopyFromReg reading a virtual register that is used 97 // for the function live-in value of register Reg) 98 SDValue Value = OutVals[I]; 99 if (Value->getOpcode() == ISD::AssertZext) 100 Value = Value.getOperand(0); 101 if (Value->getOpcode() != ISD::CopyFromReg) 102 return false; 103 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 104 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 105 return false; 106 } 107 return true; 108 } 109 110 /// Set CallLoweringInfo attribute flags based on a call instruction 111 /// and called function attributes. 112 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 113 unsigned ArgIdx) { 114 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 115 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 116 IsNoExt = Call->paramHasAttr(ArgIdx, Attribute::NoExt); 117 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 118 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 119 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 120 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 121 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 122 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 123 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 124 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 125 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 126 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 127 Alignment = Call->getParamStackAlign(ArgIdx); 128 IndirectType = nullptr; 129 assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 && 130 "multiple ABI attributes?"); 131 if (IsByVal) { 132 IndirectType = Call->getParamByValType(ArgIdx); 133 if (!Alignment) 134 Alignment = Call->getParamAlign(ArgIdx); 135 } 136 if (IsPreallocated) 137 IndirectType = Call->getParamPreallocatedType(ArgIdx); 138 if (IsInAlloca) 139 IndirectType = Call->getParamInAllocaType(ArgIdx); 140 if (IsSRet) 141 IndirectType = Call->getParamStructRetType(ArgIdx); 142 } 143 144 /// Generate a libcall taking the given operands as arguments and returning a 145 /// result of type RetVT. 146 std::pair<SDValue, SDValue> 147 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 148 ArrayRef<SDValue> Ops, 149 MakeLibCallOptions CallOptions, 150 const SDLoc &dl, 151 SDValue InChain) const { 152 if (!InChain) 153 InChain = DAG.getEntryNode(); 154 155 TargetLowering::ArgListTy Args; 156 Args.reserve(Ops.size()); 157 158 TargetLowering::ArgListEntry Entry; 159 for (unsigned i = 0; i < Ops.size(); ++i) { 160 SDValue NewOp = Ops[i]; 161 Entry.Node = NewOp; 162 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 163 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 164 CallOptions.IsSExt); 165 Entry.IsZExt = !Entry.IsSExt; 166 167 if (CallOptions.IsSoften && 168 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 169 Entry.IsSExt = Entry.IsZExt = false; 170 } 171 Args.push_back(Entry); 172 } 173 174 if (LC == RTLIB::UNKNOWN_LIBCALL) 175 report_fatal_error("Unsupported library call operation!"); 176 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 177 getPointerTy(DAG.getDataLayout())); 178 179 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 180 TargetLowering::CallLoweringInfo CLI(DAG); 181 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 182 bool zeroExtend = !signExtend; 183 184 if (CallOptions.IsSoften && 185 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 186 signExtend = zeroExtend = false; 187 } 188 189 CLI.setDebugLoc(dl) 190 .setChain(InChain) 191 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 192 .setNoReturn(CallOptions.DoesNotReturn) 193 .setDiscardResult(!CallOptions.IsReturnValueUsed) 194 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 195 .setSExtResult(signExtend) 196 .setZExtResult(zeroExtend); 197 return LowerCallTo(CLI); 198 } 199 200 bool TargetLowering::findOptimalMemOpLowering( 201 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 202 unsigned SrcAS, const AttributeList &FuncAttributes) const { 203 if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() && 204 Op.getSrcAlign() < Op.getDstAlign()) 205 return false; 206 207 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 208 209 if (VT == MVT::Other) { 210 // Use the largest integer type whose alignment constraints are satisfied. 211 // We only need to check DstAlign here as SrcAlign is always greater or 212 // equal to DstAlign (or zero). 213 VT = MVT::LAST_INTEGER_VALUETYPE; 214 if (Op.isFixedDstAlign()) 215 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 216 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 217 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 218 assert(VT.isInteger()); 219 220 // Find the largest legal integer type. 221 MVT LVT = MVT::LAST_INTEGER_VALUETYPE; 222 while (!isTypeLegal(LVT)) 223 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 224 assert(LVT.isInteger()); 225 226 // If the type we've chosen is larger than the largest legal integer type 227 // then use that instead. 228 if (VT.bitsGT(LVT)) 229 VT = LVT; 230 } 231 232 unsigned NumMemOps = 0; 233 uint64_t Size = Op.size(); 234 while (Size) { 235 unsigned VTSize = VT.getSizeInBits() / 8; 236 while (VTSize > Size) { 237 // For now, only use non-vector load / store's for the left-over pieces. 238 EVT NewVT = VT; 239 unsigned NewVTSize; 240 241 bool Found = false; 242 if (VT.isVector() || VT.isFloatingPoint()) { 243 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 244 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 245 isSafeMemOpType(NewVT.getSimpleVT())) 246 Found = true; 247 else if (NewVT == MVT::i64 && 248 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 249 isSafeMemOpType(MVT::f64)) { 250 // i64 is usually not legal on 32-bit targets, but f64 may be. 251 NewVT = MVT::f64; 252 Found = true; 253 } 254 } 255 256 if (!Found) { 257 do { 258 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 259 if (NewVT == MVT::i8) 260 break; 261 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 262 } 263 NewVTSize = NewVT.getSizeInBits() / 8; 264 265 // If the new VT cannot cover all of the remaining bits, then consider 266 // issuing a (or a pair of) unaligned and overlapping load / store. 267 unsigned Fast; 268 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 269 allowsMisalignedMemoryAccesses( 270 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 271 MachineMemOperand::MONone, &Fast) && 272 Fast) 273 VTSize = Size; 274 else { 275 VT = NewVT; 276 VTSize = NewVTSize; 277 } 278 } 279 280 if (++NumMemOps > Limit) 281 return false; 282 283 MemOps.push_back(VT); 284 Size -= VTSize; 285 } 286 287 return true; 288 } 289 290 /// Soften the operands of a comparison. This code is shared among BR_CC, 291 /// SELECT_CC, and SETCC handlers. 292 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 293 SDValue &NewLHS, SDValue &NewRHS, 294 ISD::CondCode &CCCode, 295 const SDLoc &dl, const SDValue OldLHS, 296 const SDValue OldRHS) const { 297 SDValue Chain; 298 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 299 OldRHS, Chain); 300 } 301 302 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 303 SDValue &NewLHS, SDValue &NewRHS, 304 ISD::CondCode &CCCode, 305 const SDLoc &dl, const SDValue OldLHS, 306 const SDValue OldRHS, 307 SDValue &Chain, 308 bool IsSignaling) const { 309 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 310 // not supporting it. We can update this code when libgcc provides such 311 // functions. 312 313 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 314 && "Unsupported setcc type!"); 315 316 // Expand into one or more soft-fp libcall(s). 317 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 318 bool ShouldInvertCC = false; 319 switch (CCCode) { 320 case ISD::SETEQ: 321 case ISD::SETOEQ: 322 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 323 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 324 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 325 break; 326 case ISD::SETNE: 327 case ISD::SETUNE: 328 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 329 (VT == MVT::f64) ? RTLIB::UNE_F64 : 330 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 331 break; 332 case ISD::SETGE: 333 case ISD::SETOGE: 334 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 335 (VT == MVT::f64) ? RTLIB::OGE_F64 : 336 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 337 break; 338 case ISD::SETLT: 339 case ISD::SETOLT: 340 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 341 (VT == MVT::f64) ? RTLIB::OLT_F64 : 342 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 343 break; 344 case ISD::SETLE: 345 case ISD::SETOLE: 346 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 347 (VT == MVT::f64) ? RTLIB::OLE_F64 : 348 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 349 break; 350 case ISD::SETGT: 351 case ISD::SETOGT: 352 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 353 (VT == MVT::f64) ? RTLIB::OGT_F64 : 354 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 355 break; 356 case ISD::SETO: 357 ShouldInvertCC = true; 358 [[fallthrough]]; 359 case ISD::SETUO: 360 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 361 (VT == MVT::f64) ? RTLIB::UO_F64 : 362 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 363 break; 364 case ISD::SETONE: 365 // SETONE = O && UNE 366 ShouldInvertCC = true; 367 [[fallthrough]]; 368 case ISD::SETUEQ: 369 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 370 (VT == MVT::f64) ? RTLIB::UO_F64 : 371 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 372 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 373 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 374 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 375 break; 376 default: 377 // Invert CC for unordered comparisons 378 ShouldInvertCC = true; 379 switch (CCCode) { 380 case ISD::SETULT: 381 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 382 (VT == MVT::f64) ? RTLIB::OGE_F64 : 383 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 384 break; 385 case ISD::SETULE: 386 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 387 (VT == MVT::f64) ? RTLIB::OGT_F64 : 388 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 389 break; 390 case ISD::SETUGT: 391 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 392 (VT == MVT::f64) ? RTLIB::OLE_F64 : 393 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 394 break; 395 case ISD::SETUGE: 396 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 397 (VT == MVT::f64) ? RTLIB::OLT_F64 : 398 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 399 break; 400 default: llvm_unreachable("Do not know how to soften this setcc!"); 401 } 402 } 403 404 // Use the target specific return value for comparison lib calls. 405 EVT RetVT = getCmpLibcallReturnType(); 406 SDValue Ops[2] = {NewLHS, NewRHS}; 407 TargetLowering::MakeLibCallOptions CallOptions; 408 EVT OpsVT[2] = { OldLHS.getValueType(), 409 OldRHS.getValueType() }; 410 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 411 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 412 NewLHS = Call.first; 413 NewRHS = DAG.getConstant(0, dl, RetVT); 414 415 CCCode = getCmpLibcallCC(LC1); 416 if (ShouldInvertCC) { 417 assert(RetVT.isInteger()); 418 CCCode = getSetCCInverse(CCCode, RetVT); 419 } 420 421 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 422 // Update Chain. 423 Chain = Call.second; 424 } else { 425 EVT SetCCVT = 426 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 427 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 428 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 429 CCCode = getCmpLibcallCC(LC2); 430 if (ShouldInvertCC) 431 CCCode = getSetCCInverse(CCCode, RetVT); 432 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 433 if (Chain) 434 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 435 Call2.second); 436 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 437 Tmp.getValueType(), Tmp, NewLHS); 438 NewRHS = SDValue(); 439 } 440 } 441 442 /// Return the entry encoding for a jump table in the current function. The 443 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 444 unsigned TargetLowering::getJumpTableEncoding() const { 445 // In non-pic modes, just use the address of a block. 446 if (!isPositionIndependent()) 447 return MachineJumpTableInfo::EK_BlockAddress; 448 449 // In PIC mode, if the target supports a GPRel32 directive, use it. 450 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 451 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 452 453 // Otherwise, use a label difference. 454 return MachineJumpTableInfo::EK_LabelDifference32; 455 } 456 457 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 458 SelectionDAG &DAG) const { 459 // If our PIC model is GP relative, use the global offset table as the base. 460 unsigned JTEncoding = getJumpTableEncoding(); 461 462 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 463 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 464 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 465 466 return Table; 467 } 468 469 /// This returns the relocation base for the given PIC jumptable, the same as 470 /// getPICJumpTableRelocBase, but as an MCExpr. 471 const MCExpr * 472 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 473 unsigned JTI,MCContext &Ctx) const{ 474 // The normal PIC reloc base is the label at the start of the jump table. 475 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 476 } 477 478 SDValue TargetLowering::expandIndirectJTBranch(const SDLoc &dl, SDValue Value, 479 SDValue Addr, int JTI, 480 SelectionDAG &DAG) const { 481 SDValue Chain = Value; 482 // Jump table debug info is only needed if CodeView is enabled. 483 if (DAG.getTarget().getTargetTriple().isOSBinFormatCOFF()) { 484 Chain = DAG.getJumpTableDebugInfo(JTI, Chain, dl); 485 } 486 return DAG.getNode(ISD::BRIND, dl, MVT::Other, Chain, Addr); 487 } 488 489 bool 490 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 491 const TargetMachine &TM = getTargetMachine(); 492 const GlobalValue *GV = GA->getGlobal(); 493 494 // If the address is not even local to this DSO we will have to load it from 495 // a got and then add the offset. 496 if (!TM.shouldAssumeDSOLocal(GV)) 497 return false; 498 499 // If the code is position independent we will have to add a base register. 500 if (isPositionIndependent()) 501 return false; 502 503 // Otherwise we can do it. 504 return true; 505 } 506 507 //===----------------------------------------------------------------------===// 508 // Optimization Methods 509 //===----------------------------------------------------------------------===// 510 511 /// If the specified instruction has a constant integer operand and there are 512 /// bits set in that constant that are not demanded, then clear those bits and 513 /// return true. 514 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 515 const APInt &DemandedBits, 516 const APInt &DemandedElts, 517 TargetLoweringOpt &TLO) const { 518 SDLoc DL(Op); 519 unsigned Opcode = Op.getOpcode(); 520 521 // Early-out if we've ended up calling an undemanded node, leave this to 522 // constant folding. 523 if (DemandedBits.isZero() || DemandedElts.isZero()) 524 return false; 525 526 // Do target-specific constant optimization. 527 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 528 return TLO.New.getNode(); 529 530 // FIXME: ISD::SELECT, ISD::SELECT_CC 531 switch (Opcode) { 532 default: 533 break; 534 case ISD::XOR: 535 case ISD::AND: 536 case ISD::OR: { 537 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 538 if (!Op1C || Op1C->isOpaque()) 539 return false; 540 541 // If this is a 'not' op, don't touch it because that's a canonical form. 542 const APInt &C = Op1C->getAPIntValue(); 543 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 544 return false; 545 546 if (!C.isSubsetOf(DemandedBits)) { 547 EVT VT = Op.getValueType(); 548 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 549 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC, 550 Op->getFlags()); 551 return TLO.CombineTo(Op, NewOp); 552 } 553 554 break; 555 } 556 } 557 558 return false; 559 } 560 561 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 562 const APInt &DemandedBits, 563 TargetLoweringOpt &TLO) const { 564 EVT VT = Op.getValueType(); 565 APInt DemandedElts = VT.isVector() 566 ? APInt::getAllOnes(VT.getVectorNumElements()) 567 : APInt(1, 1); 568 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 569 } 570 571 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 572 /// This uses isTruncateFree/isZExtFree and ANY_EXTEND for the widening cast, 573 /// but it could be generalized for targets with other types of implicit 574 /// widening casts. 575 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 576 const APInt &DemandedBits, 577 TargetLoweringOpt &TLO) const { 578 assert(Op.getNumOperands() == 2 && 579 "ShrinkDemandedOp only supports binary operators!"); 580 assert(Op.getNode()->getNumValues() == 1 && 581 "ShrinkDemandedOp only supports nodes with one result!"); 582 583 EVT VT = Op.getValueType(); 584 SelectionDAG &DAG = TLO.DAG; 585 SDLoc dl(Op); 586 587 // Early return, as this function cannot handle vector types. 588 if (VT.isVector()) 589 return false; 590 591 assert(Op.getOperand(0).getValueType().getScalarSizeInBits() == BitWidth && 592 Op.getOperand(1).getValueType().getScalarSizeInBits() == BitWidth && 593 "ShrinkDemandedOp only supports operands that have the same size!"); 594 595 // Don't do this if the node has another user, which may require the 596 // full value. 597 if (!Op.getNode()->hasOneUse()) 598 return false; 599 600 // Search for the smallest integer type with free casts to and from 601 // Op's type. For expedience, just check power-of-2 integer types. 602 unsigned DemandedSize = DemandedBits.getActiveBits(); 603 for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize); 604 SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 605 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 606 if (isTruncateFree(VT, SmallVT) && isZExtFree(SmallVT, VT)) { 607 // We found a type with free casts. 608 SDValue X = DAG.getNode( 609 Op.getOpcode(), dl, SmallVT, 610 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 611 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 612 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 613 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, VT, X); 614 return TLO.CombineTo(Op, Z); 615 } 616 } 617 return false; 618 } 619 620 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 621 DAGCombinerInfo &DCI) const { 622 SelectionDAG &DAG = DCI.DAG; 623 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 624 !DCI.isBeforeLegalizeOps()); 625 KnownBits Known; 626 627 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 628 if (Simplified) { 629 DCI.AddToWorklist(Op.getNode()); 630 DCI.CommitTargetLoweringOpt(TLO); 631 } 632 return Simplified; 633 } 634 635 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 636 const APInt &DemandedElts, 637 DAGCombinerInfo &DCI) const { 638 SelectionDAG &DAG = DCI.DAG; 639 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 640 !DCI.isBeforeLegalizeOps()); 641 KnownBits Known; 642 643 bool Simplified = 644 SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO); 645 if (Simplified) { 646 DCI.AddToWorklist(Op.getNode()); 647 DCI.CommitTargetLoweringOpt(TLO); 648 } 649 return Simplified; 650 } 651 652 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 653 KnownBits &Known, 654 TargetLoweringOpt &TLO, 655 unsigned Depth, 656 bool AssumeSingleUse) const { 657 EVT VT = Op.getValueType(); 658 659 // Since the number of lanes in a scalable vector is unknown at compile time, 660 // we track one bit which is implicitly broadcast to all lanes. This means 661 // that all lanes in a scalable vector are considered demanded. 662 APInt DemandedElts = VT.isFixedLengthVector() 663 ? APInt::getAllOnes(VT.getVectorNumElements()) 664 : APInt(1, 1); 665 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 666 AssumeSingleUse); 667 } 668 669 // TODO: Under what circumstances can we create nodes? Constant folding? 670 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 671 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 672 SelectionDAG &DAG, unsigned Depth) const { 673 EVT VT = Op.getValueType(); 674 675 // Limit search depth. 676 if (Depth >= SelectionDAG::MaxRecursionDepth) 677 return SDValue(); 678 679 // Ignore UNDEFs. 680 if (Op.isUndef()) 681 return SDValue(); 682 683 // Not demanding any bits/elts from Op. 684 if (DemandedBits == 0 || DemandedElts == 0) 685 return DAG.getUNDEF(VT); 686 687 bool IsLE = DAG.getDataLayout().isLittleEndian(); 688 unsigned NumElts = DemandedElts.getBitWidth(); 689 unsigned BitWidth = DemandedBits.getBitWidth(); 690 KnownBits LHSKnown, RHSKnown; 691 switch (Op.getOpcode()) { 692 case ISD::BITCAST: { 693 if (VT.isScalableVector()) 694 return SDValue(); 695 696 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 697 EVT SrcVT = Src.getValueType(); 698 EVT DstVT = Op.getValueType(); 699 if (SrcVT == DstVT) 700 return Src; 701 702 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 703 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 704 if (NumSrcEltBits == NumDstEltBits) 705 if (SDValue V = SimplifyMultipleUseDemandedBits( 706 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 707 return DAG.getBitcast(DstVT, V); 708 709 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { 710 unsigned Scale = NumDstEltBits / NumSrcEltBits; 711 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 712 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 713 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 714 for (unsigned i = 0; i != Scale; ++i) { 715 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 716 unsigned BitOffset = EltOffset * NumSrcEltBits; 717 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 718 if (!Sub.isZero()) { 719 DemandedSrcBits |= Sub; 720 for (unsigned j = 0; j != NumElts; ++j) 721 if (DemandedElts[j]) 722 DemandedSrcElts.setBit((j * Scale) + i); 723 } 724 } 725 726 if (SDValue V = SimplifyMultipleUseDemandedBits( 727 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 728 return DAG.getBitcast(DstVT, V); 729 } 730 731 // TODO - bigendian once we have test coverage. 732 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { 733 unsigned Scale = NumSrcEltBits / NumDstEltBits; 734 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 735 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 736 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 737 for (unsigned i = 0; i != NumElts; ++i) 738 if (DemandedElts[i]) { 739 unsigned Offset = (i % Scale) * NumDstEltBits; 740 DemandedSrcBits.insertBits(DemandedBits, Offset); 741 DemandedSrcElts.setBit(i / Scale); 742 } 743 744 if (SDValue V = SimplifyMultipleUseDemandedBits( 745 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 746 return DAG.getBitcast(DstVT, V); 747 } 748 749 break; 750 } 751 case ISD::FREEZE: { 752 SDValue N0 = Op.getOperand(0); 753 if (DAG.isGuaranteedNotToBeUndefOrPoison(N0, DemandedElts, 754 /*PoisonOnly=*/false)) 755 return N0; 756 break; 757 } 758 case ISD::AND: { 759 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 760 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 761 762 // If all of the demanded bits are known 1 on one side, return the other. 763 // These bits cannot contribute to the result of the 'and' in this 764 // context. 765 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 766 return Op.getOperand(0); 767 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 768 return Op.getOperand(1); 769 break; 770 } 771 case ISD::OR: { 772 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 773 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 774 775 // If all of the demanded bits are known zero on one side, return the 776 // other. These bits cannot contribute to the result of the 'or' in this 777 // context. 778 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 779 return Op.getOperand(0); 780 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 781 return Op.getOperand(1); 782 break; 783 } 784 case ISD::XOR: { 785 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 786 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 787 788 // If all of the demanded bits are known zero on one side, return the 789 // other. 790 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 791 return Op.getOperand(0); 792 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 793 return Op.getOperand(1); 794 break; 795 } 796 case ISD::SHL: { 797 // If we are only demanding sign bits then we can use the shift source 798 // directly. 799 if (std::optional<uint64_t> MaxSA = 800 DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) { 801 SDValue Op0 = Op.getOperand(0); 802 unsigned ShAmt = *MaxSA; 803 unsigned NumSignBits = 804 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 805 unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero(); 806 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 807 return Op0; 808 } 809 break; 810 } 811 case ISD::SETCC: { 812 SDValue Op0 = Op.getOperand(0); 813 SDValue Op1 = Op.getOperand(1); 814 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 815 // If (1) we only need the sign-bit, (2) the setcc operands are the same 816 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 817 // -1, we may be able to bypass the setcc. 818 if (DemandedBits.isSignMask() && 819 Op0.getScalarValueSizeInBits() == BitWidth && 820 getBooleanContents(Op0.getValueType()) == 821 BooleanContent::ZeroOrNegativeOneBooleanContent) { 822 // If we're testing X < 0, then this compare isn't needed - just use X! 823 // FIXME: We're limiting to integer types here, but this should also work 824 // if we don't care about FP signed-zero. The use of SETLT with FP means 825 // that we don't care about NaNs. 826 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 827 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 828 return Op0; 829 } 830 break; 831 } 832 case ISD::SIGN_EXTEND_INREG: { 833 // If none of the extended bits are demanded, eliminate the sextinreg. 834 SDValue Op0 = Op.getOperand(0); 835 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 836 unsigned ExBits = ExVT.getScalarSizeInBits(); 837 if (DemandedBits.getActiveBits() <= ExBits && 838 shouldRemoveRedundantExtend(Op)) 839 return Op0; 840 // If the input is already sign extended, just drop the extension. 841 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 842 if (NumSignBits >= (BitWidth - ExBits + 1)) 843 return Op0; 844 break; 845 } 846 case ISD::ANY_EXTEND_VECTOR_INREG: 847 case ISD::SIGN_EXTEND_VECTOR_INREG: 848 case ISD::ZERO_EXTEND_VECTOR_INREG: { 849 if (VT.isScalableVector()) 850 return SDValue(); 851 852 // If we only want the lowest element and none of extended bits, then we can 853 // return the bitcasted source vector. 854 SDValue Src = Op.getOperand(0); 855 EVT SrcVT = Src.getValueType(); 856 EVT DstVT = Op.getValueType(); 857 if (IsLE && DemandedElts == 1 && 858 DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 859 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 860 return DAG.getBitcast(DstVT, Src); 861 } 862 break; 863 } 864 case ISD::INSERT_VECTOR_ELT: { 865 if (VT.isScalableVector()) 866 return SDValue(); 867 868 // If we don't demand the inserted element, return the base vector. 869 SDValue Vec = Op.getOperand(0); 870 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 871 EVT VecVT = Vec.getValueType(); 872 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 873 !DemandedElts[CIdx->getZExtValue()]) 874 return Vec; 875 break; 876 } 877 case ISD::INSERT_SUBVECTOR: { 878 if (VT.isScalableVector()) 879 return SDValue(); 880 881 SDValue Vec = Op.getOperand(0); 882 SDValue Sub = Op.getOperand(1); 883 uint64_t Idx = Op.getConstantOperandVal(2); 884 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 885 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 886 // If we don't demand the inserted subvector, return the base vector. 887 if (DemandedSubElts == 0) 888 return Vec; 889 break; 890 } 891 case ISD::VECTOR_SHUFFLE: { 892 assert(!VT.isScalableVector()); 893 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 894 895 // If all the demanded elts are from one operand and are inline, 896 // then we can use the operand directly. 897 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 898 for (unsigned i = 0; i != NumElts; ++i) { 899 int M = ShuffleMask[i]; 900 if (M < 0 || !DemandedElts[i]) 901 continue; 902 AllUndef = false; 903 IdentityLHS &= (M == (int)i); 904 IdentityRHS &= ((M - NumElts) == i); 905 } 906 907 if (AllUndef) 908 return DAG.getUNDEF(Op.getValueType()); 909 if (IdentityLHS) 910 return Op.getOperand(0); 911 if (IdentityRHS) 912 return Op.getOperand(1); 913 break; 914 } 915 default: 916 // TODO: Probably okay to remove after audit; here to reduce change size 917 // in initial enablement patch for scalable vectors 918 if (VT.isScalableVector()) 919 return SDValue(); 920 921 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 922 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 923 Op, DemandedBits, DemandedElts, DAG, Depth)) 924 return V; 925 break; 926 } 927 return SDValue(); 928 } 929 930 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 931 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 932 unsigned Depth) const { 933 EVT VT = Op.getValueType(); 934 // Since the number of lanes in a scalable vector is unknown at compile time, 935 // we track one bit which is implicitly broadcast to all lanes. This means 936 // that all lanes in a scalable vector are considered demanded. 937 APInt DemandedElts = VT.isFixedLengthVector() 938 ? APInt::getAllOnes(VT.getVectorNumElements()) 939 : APInt(1, 1); 940 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 941 Depth); 942 } 943 944 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 945 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 946 unsigned Depth) const { 947 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 948 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 949 Depth); 950 } 951 952 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1). 953 // or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1). 954 static SDValue combineShiftToAVG(SDValue Op, 955 TargetLowering::TargetLoweringOpt &TLO, 956 const TargetLowering &TLI, 957 const APInt &DemandedBits, 958 const APInt &DemandedElts, unsigned Depth) { 959 assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) && 960 "SRL or SRA node is required here!"); 961 // Is the right shift using an immediate value of 1? 962 ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 963 if (!N1C || !N1C->isOne()) 964 return SDValue(); 965 966 // We are looking for an avgfloor 967 // add(ext, ext) 968 // or one of these as a avgceil 969 // add(add(ext, ext), 1) 970 // add(add(ext, 1), ext) 971 // add(ext, add(ext, 1)) 972 SDValue Add = Op.getOperand(0); 973 if (Add.getOpcode() != ISD::ADD) 974 return SDValue(); 975 976 SDValue ExtOpA = Add.getOperand(0); 977 SDValue ExtOpB = Add.getOperand(1); 978 SDValue Add2; 979 auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3, SDValue A) { 980 ConstantSDNode *ConstOp; 981 if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) && 982 ConstOp->isOne()) { 983 ExtOpA = Op1; 984 ExtOpB = Op3; 985 Add2 = A; 986 return true; 987 } 988 if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) && 989 ConstOp->isOne()) { 990 ExtOpA = Op1; 991 ExtOpB = Op2; 992 Add2 = A; 993 return true; 994 } 995 return false; 996 }; 997 bool IsCeil = 998 (ExtOpA.getOpcode() == ISD::ADD && 999 MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB, ExtOpA)) || 1000 (ExtOpB.getOpcode() == ISD::ADD && 1001 MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA, ExtOpB)); 1002 1003 // If the shift is signed (sra): 1004 // - Needs >= 2 sign bit for both operands. 1005 // - Needs >= 2 zero bits. 1006 // If the shift is unsigned (srl): 1007 // - Needs >= 1 zero bit for both operands. 1008 // - Needs 1 demanded bit zero and >= 2 sign bits. 1009 SelectionDAG &DAG = TLO.DAG; 1010 unsigned ShiftOpc = Op.getOpcode(); 1011 bool IsSigned = false; 1012 unsigned KnownBits; 1013 unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth); 1014 unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth); 1015 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1; 1016 unsigned NumZeroA = 1017 DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros(); 1018 unsigned NumZeroB = 1019 DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros(); 1020 unsigned NumZero = std::min(NumZeroA, NumZeroB); 1021 1022 switch (ShiftOpc) { 1023 default: 1024 llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG"); 1025 case ISD::SRA: { 1026 if (NumZero >= 2 && NumSigned < NumZero) { 1027 IsSigned = false; 1028 KnownBits = NumZero; 1029 break; 1030 } 1031 if (NumSigned >= 1) { 1032 IsSigned = true; 1033 KnownBits = NumSigned; 1034 break; 1035 } 1036 return SDValue(); 1037 } 1038 case ISD::SRL: { 1039 if (NumZero >= 1 && NumSigned < NumZero) { 1040 IsSigned = false; 1041 KnownBits = NumZero; 1042 break; 1043 } 1044 if (NumSigned >= 1 && DemandedBits.isSignBitClear()) { 1045 IsSigned = true; 1046 KnownBits = NumSigned; 1047 break; 1048 } 1049 return SDValue(); 1050 } 1051 } 1052 1053 unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU) 1054 : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU); 1055 1056 // Find the smallest power-2 type that is legal for this vector size and 1057 // operation, given the original type size and the number of known sign/zero 1058 // bits. 1059 EVT VT = Op.getValueType(); 1060 unsigned MinWidth = 1061 std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8); 1062 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_ceil(MinWidth)); 1063 if (NVT.getScalarSizeInBits() > VT.getScalarSizeInBits()) 1064 return SDValue(); 1065 if (VT.isVector()) 1066 NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount()); 1067 if (TLO.LegalTypes() && !TLI.isOperationLegal(AVGOpc, NVT)) { 1068 // If we could not transform, and (both) adds are nuw/nsw, we can use the 1069 // larger type size to do the transform. 1070 if (TLO.LegalOperations() && !TLI.isOperationLegal(AVGOpc, VT)) 1071 return SDValue(); 1072 if (DAG.willNotOverflowAdd(IsSigned, Add.getOperand(0), 1073 Add.getOperand(1)) && 1074 (!Add2 || DAG.willNotOverflowAdd(IsSigned, Add2.getOperand(0), 1075 Add2.getOperand(1)))) 1076 NVT = VT; 1077 else 1078 return SDValue(); 1079 } 1080 1081 // Don't create a AVGFLOOR node with a scalar constant unless its legal as 1082 // this is likely to stop other folds (reassociation, value tracking etc.) 1083 if (!IsCeil && !TLI.isOperationLegal(AVGOpc, NVT) && 1084 (isa<ConstantSDNode>(ExtOpA) || isa<ConstantSDNode>(ExtOpB))) 1085 return SDValue(); 1086 1087 SDLoc DL(Op); 1088 SDValue ResultAVG = 1089 DAG.getNode(AVGOpc, DL, NVT, DAG.getExtOrTrunc(IsSigned, ExtOpA, DL, NVT), 1090 DAG.getExtOrTrunc(IsSigned, ExtOpB, DL, NVT)); 1091 return DAG.getExtOrTrunc(IsSigned, ResultAVG, DL, VT); 1092 } 1093 1094 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 1095 /// result of Op are ever used downstream. If we can use this information to 1096 /// simplify Op, create a new simplified DAG node and return true, returning the 1097 /// original and new nodes in Old and New. Otherwise, analyze the expression and 1098 /// return a mask of Known bits for the expression (used to simplify the 1099 /// caller). The Known bits may only be accurate for those bits in the 1100 /// OriginalDemandedBits and OriginalDemandedElts. 1101 bool TargetLowering::SimplifyDemandedBits( 1102 SDValue Op, const APInt &OriginalDemandedBits, 1103 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 1104 unsigned Depth, bool AssumeSingleUse) const { 1105 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 1106 assert(Op.getScalarValueSizeInBits() == BitWidth && 1107 "Mask size mismatches value type size!"); 1108 1109 // Don't know anything. 1110 Known = KnownBits(BitWidth); 1111 1112 EVT VT = Op.getValueType(); 1113 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 1114 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 1115 assert((!VT.isFixedLengthVector() || NumElts == VT.getVectorNumElements()) && 1116 "Unexpected vector size"); 1117 1118 APInt DemandedBits = OriginalDemandedBits; 1119 APInt DemandedElts = OriginalDemandedElts; 1120 SDLoc dl(Op); 1121 1122 // Undef operand. 1123 if (Op.isUndef()) 1124 return false; 1125 1126 // We can't simplify target constants. 1127 if (Op.getOpcode() == ISD::TargetConstant) 1128 return false; 1129 1130 if (Op.getOpcode() == ISD::Constant) { 1131 // We know all of the bits for a constant! 1132 Known = KnownBits::makeConstant(Op->getAsAPIntVal()); 1133 return false; 1134 } 1135 1136 if (Op.getOpcode() == ISD::ConstantFP) { 1137 // We know all of the bits for a floating point constant! 1138 Known = KnownBits::makeConstant( 1139 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 1140 return false; 1141 } 1142 1143 // Other users may use these bits. 1144 bool HasMultiUse = false; 1145 if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) { 1146 if (Depth >= SelectionDAG::MaxRecursionDepth) { 1147 // Limit search depth. 1148 return false; 1149 } 1150 // Allow multiple uses, just set the DemandedBits/Elts to all bits. 1151 DemandedBits = APInt::getAllOnes(BitWidth); 1152 DemandedElts = APInt::getAllOnes(NumElts); 1153 HasMultiUse = true; 1154 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 1155 // Not demanding any bits/elts from Op. 1156 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1157 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 1158 // Limit search depth. 1159 return false; 1160 } 1161 1162 KnownBits Known2; 1163 switch (Op.getOpcode()) { 1164 case ISD::SCALAR_TO_VECTOR: { 1165 if (VT.isScalableVector()) 1166 return false; 1167 if (!DemandedElts[0]) 1168 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1169 1170 KnownBits SrcKnown; 1171 SDValue Src = Op.getOperand(0); 1172 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 1173 APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth); 1174 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 1175 return true; 1176 1177 // Upper elements are undef, so only get the knownbits if we just demand 1178 // the bottom element. 1179 if (DemandedElts == 1) 1180 Known = SrcKnown.anyextOrTrunc(BitWidth); 1181 break; 1182 } 1183 case ISD::BUILD_VECTOR: 1184 // Collect the known bits that are shared by every demanded element. 1185 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 1186 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1187 return false; // Don't fall through, will infinitely loop. 1188 case ISD::SPLAT_VECTOR: { 1189 SDValue Scl = Op.getOperand(0); 1190 APInt DemandedSclBits = DemandedBits.zextOrTrunc(Scl.getValueSizeInBits()); 1191 KnownBits KnownScl; 1192 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1193 return true; 1194 1195 // Implicitly truncate the bits to match the official semantics of 1196 // SPLAT_VECTOR. 1197 Known = KnownScl.trunc(BitWidth); 1198 break; 1199 } 1200 case ISD::LOAD: { 1201 auto *LD = cast<LoadSDNode>(Op); 1202 if (getTargetConstantFromLoad(LD)) { 1203 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1204 return false; // Don't fall through, will infinitely loop. 1205 } 1206 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 1207 // If this is a ZEXTLoad and we are looking at the loaded value. 1208 EVT MemVT = LD->getMemoryVT(); 1209 unsigned MemBits = MemVT.getScalarSizeInBits(); 1210 Known.Zero.setBitsFrom(MemBits); 1211 return false; // Don't fall through, will infinitely loop. 1212 } 1213 break; 1214 } 1215 case ISD::INSERT_VECTOR_ELT: { 1216 if (VT.isScalableVector()) 1217 return false; 1218 SDValue Vec = Op.getOperand(0); 1219 SDValue Scl = Op.getOperand(1); 1220 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1221 EVT VecVT = Vec.getValueType(); 1222 1223 // If index isn't constant, assume we need all vector elements AND the 1224 // inserted element. 1225 APInt DemandedVecElts(DemandedElts); 1226 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1227 unsigned Idx = CIdx->getZExtValue(); 1228 DemandedVecElts.clearBit(Idx); 1229 1230 // Inserted element is not required. 1231 if (!DemandedElts[Idx]) 1232 return TLO.CombineTo(Op, Vec); 1233 } 1234 1235 KnownBits KnownScl; 1236 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1237 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1238 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1239 return true; 1240 1241 Known = KnownScl.anyextOrTrunc(BitWidth); 1242 1243 KnownBits KnownVec; 1244 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1245 Depth + 1)) 1246 return true; 1247 1248 if (!!DemandedVecElts) 1249 Known = Known.intersectWith(KnownVec); 1250 1251 return false; 1252 } 1253 case ISD::INSERT_SUBVECTOR: { 1254 if (VT.isScalableVector()) 1255 return false; 1256 // Demand any elements from the subvector and the remainder from the src its 1257 // inserted into. 1258 SDValue Src = Op.getOperand(0); 1259 SDValue Sub = Op.getOperand(1); 1260 uint64_t Idx = Op.getConstantOperandVal(2); 1261 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1262 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1263 APInt DemandedSrcElts = DemandedElts; 1264 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1265 1266 KnownBits KnownSub, KnownSrc; 1267 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1268 Depth + 1)) 1269 return true; 1270 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1271 Depth + 1)) 1272 return true; 1273 1274 Known.Zero.setAllBits(); 1275 Known.One.setAllBits(); 1276 if (!!DemandedSubElts) 1277 Known = Known.intersectWith(KnownSub); 1278 if (!!DemandedSrcElts) 1279 Known = Known.intersectWith(KnownSrc); 1280 1281 // Attempt to avoid multi-use src if we don't need anything from it. 1282 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1283 !DemandedSrcElts.isAllOnes()) { 1284 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1285 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1286 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1287 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1288 if (NewSub || NewSrc) { 1289 NewSub = NewSub ? NewSub : Sub; 1290 NewSrc = NewSrc ? NewSrc : Src; 1291 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1292 Op.getOperand(2)); 1293 return TLO.CombineTo(Op, NewOp); 1294 } 1295 } 1296 break; 1297 } 1298 case ISD::EXTRACT_SUBVECTOR: { 1299 if (VT.isScalableVector()) 1300 return false; 1301 // Offset the demanded elts by the subvector index. 1302 SDValue Src = Op.getOperand(0); 1303 if (Src.getValueType().isScalableVector()) 1304 break; 1305 uint64_t Idx = Op.getConstantOperandVal(1); 1306 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1307 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 1308 1309 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1310 Depth + 1)) 1311 return true; 1312 1313 // Attempt to avoid multi-use src if we don't need anything from it. 1314 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1315 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1316 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1317 if (DemandedSrc) { 1318 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1319 Op.getOperand(1)); 1320 return TLO.CombineTo(Op, NewOp); 1321 } 1322 } 1323 break; 1324 } 1325 case ISD::CONCAT_VECTORS: { 1326 if (VT.isScalableVector()) 1327 return false; 1328 Known.Zero.setAllBits(); 1329 Known.One.setAllBits(); 1330 EVT SubVT = Op.getOperand(0).getValueType(); 1331 unsigned NumSubVecs = Op.getNumOperands(); 1332 unsigned NumSubElts = SubVT.getVectorNumElements(); 1333 for (unsigned i = 0; i != NumSubVecs; ++i) { 1334 APInt DemandedSubElts = 1335 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1336 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1337 Known2, TLO, Depth + 1)) 1338 return true; 1339 // Known bits are shared by every demanded subvector element. 1340 if (!!DemandedSubElts) 1341 Known = Known.intersectWith(Known2); 1342 } 1343 break; 1344 } 1345 case ISD::VECTOR_SHUFFLE: { 1346 assert(!VT.isScalableVector()); 1347 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1348 1349 // Collect demanded elements from shuffle operands.. 1350 APInt DemandedLHS, DemandedRHS; 1351 if (!getShuffleDemandedElts(NumElts, ShuffleMask, DemandedElts, DemandedLHS, 1352 DemandedRHS)) 1353 break; 1354 1355 if (!!DemandedLHS || !!DemandedRHS) { 1356 SDValue Op0 = Op.getOperand(0); 1357 SDValue Op1 = Op.getOperand(1); 1358 1359 Known.Zero.setAllBits(); 1360 Known.One.setAllBits(); 1361 if (!!DemandedLHS) { 1362 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1363 Depth + 1)) 1364 return true; 1365 Known = Known.intersectWith(Known2); 1366 } 1367 if (!!DemandedRHS) { 1368 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1369 Depth + 1)) 1370 return true; 1371 Known = Known.intersectWith(Known2); 1372 } 1373 1374 // Attempt to avoid multi-use ops if we don't need anything from them. 1375 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1376 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1377 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1378 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1379 if (DemandedOp0 || DemandedOp1) { 1380 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1381 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1382 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1383 return TLO.CombineTo(Op, NewOp); 1384 } 1385 } 1386 break; 1387 } 1388 case ISD::AND: { 1389 SDValue Op0 = Op.getOperand(0); 1390 SDValue Op1 = Op.getOperand(1); 1391 1392 // If the RHS is a constant, check to see if the LHS would be zero without 1393 // using the bits from the RHS. Below, we use knowledge about the RHS to 1394 // simplify the LHS, here we're using information from the LHS to simplify 1395 // the RHS. 1396 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1, DemandedElts)) { 1397 // Do not increment Depth here; that can cause an infinite loop. 1398 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1399 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1400 if ((LHSKnown.Zero & DemandedBits) == 1401 (~RHSC->getAPIntValue() & DemandedBits)) 1402 return TLO.CombineTo(Op, Op0); 1403 1404 // If any of the set bits in the RHS are known zero on the LHS, shrink 1405 // the constant. 1406 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1407 DemandedElts, TLO)) 1408 return true; 1409 1410 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1411 // constant, but if this 'and' is only clearing bits that were just set by 1412 // the xor, then this 'and' can be eliminated by shrinking the mask of 1413 // the xor. For example, for a 32-bit X: 1414 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1415 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1416 LHSKnown.One == ~RHSC->getAPIntValue()) { 1417 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1418 return TLO.CombineTo(Op, Xor); 1419 } 1420 } 1421 1422 // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I) 1423 // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits). 1424 if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR && !VT.isScalableVector() && 1425 (Op0.getOperand(0).isUndef() || 1426 ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) && 1427 Op0->hasOneUse()) { 1428 unsigned NumSubElts = 1429 Op0.getOperand(1).getValueType().getVectorNumElements(); 1430 unsigned SubIdx = Op0.getConstantOperandVal(2); 1431 APInt DemandedSub = 1432 APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts); 1433 KnownBits KnownSubMask = 1434 TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1); 1435 if (DemandedBits.isSubsetOf(KnownSubMask.One)) { 1436 SDValue NewAnd = 1437 TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1); 1438 SDValue NewInsert = 1439 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd, 1440 Op0.getOperand(1), Op0.getOperand(2)); 1441 return TLO.CombineTo(Op, NewInsert); 1442 } 1443 } 1444 1445 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1446 Depth + 1)) 1447 return true; 1448 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1449 Known2, TLO, Depth + 1)) 1450 return true; 1451 1452 // If all of the demanded bits are known one on one side, return the other. 1453 // These bits cannot contribute to the result of the 'and'. 1454 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1455 return TLO.CombineTo(Op, Op0); 1456 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1457 return TLO.CombineTo(Op, Op1); 1458 // If all of the demanded bits in the inputs are known zeros, return zero. 1459 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1460 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1461 // If the RHS is a constant, see if we can simplify it. 1462 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1463 TLO)) 1464 return true; 1465 // If the operation can be done in a smaller type, do so. 1466 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1467 return true; 1468 1469 // Attempt to avoid multi-use ops if we don't need anything from them. 1470 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1471 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1472 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1473 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1474 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1475 if (DemandedOp0 || DemandedOp1) { 1476 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1477 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1478 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1479 return TLO.CombineTo(Op, NewOp); 1480 } 1481 } 1482 1483 Known &= Known2; 1484 break; 1485 } 1486 case ISD::OR: { 1487 SDValue Op0 = Op.getOperand(0); 1488 SDValue Op1 = Op.getOperand(1); 1489 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1490 Depth + 1)) { 1491 Op->dropFlags(SDNodeFlags::Disjoint); 1492 return true; 1493 } 1494 1495 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1496 Known2, TLO, Depth + 1)) { 1497 Op->dropFlags(SDNodeFlags::Disjoint); 1498 return true; 1499 } 1500 1501 // If all of the demanded bits are known zero on one side, return the other. 1502 // These bits cannot contribute to the result of the 'or'. 1503 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1504 return TLO.CombineTo(Op, Op0); 1505 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1506 return TLO.CombineTo(Op, Op1); 1507 // If the RHS is a constant, see if we can simplify it. 1508 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1509 return true; 1510 // If the operation can be done in a smaller type, do so. 1511 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1512 return true; 1513 1514 // Attempt to avoid multi-use ops if we don't need anything from them. 1515 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1516 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1517 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1518 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1519 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1520 if (DemandedOp0 || DemandedOp1) { 1521 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1522 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1523 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1524 return TLO.CombineTo(Op, NewOp); 1525 } 1526 } 1527 1528 // (or (and X, C1), (and (or X, Y), C2)) -> (or (and X, C1|C2), (and Y, C2)) 1529 // TODO: Use SimplifyMultipleUseDemandedBits to peek through masks. 1530 if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::AND && 1531 Op0->hasOneUse() && Op1->hasOneUse()) { 1532 // Attempt to match all commutations - m_c_Or would've been useful! 1533 for (int I = 0; I != 2; ++I) { 1534 SDValue X = Op.getOperand(I).getOperand(0); 1535 SDValue C1 = Op.getOperand(I).getOperand(1); 1536 SDValue Alt = Op.getOperand(1 - I).getOperand(0); 1537 SDValue C2 = Op.getOperand(1 - I).getOperand(1); 1538 if (Alt.getOpcode() == ISD::OR) { 1539 for (int J = 0; J != 2; ++J) { 1540 if (X == Alt.getOperand(J)) { 1541 SDValue Y = Alt.getOperand(1 - J); 1542 if (SDValue C12 = TLO.DAG.FoldConstantArithmetic(ISD::OR, dl, VT, 1543 {C1, C2})) { 1544 SDValue MaskX = TLO.DAG.getNode(ISD::AND, dl, VT, X, C12); 1545 SDValue MaskY = TLO.DAG.getNode(ISD::AND, dl, VT, Y, C2); 1546 return TLO.CombineTo( 1547 Op, TLO.DAG.getNode(ISD::OR, dl, VT, MaskX, MaskY)); 1548 } 1549 } 1550 } 1551 } 1552 } 1553 } 1554 1555 Known |= Known2; 1556 break; 1557 } 1558 case ISD::XOR: { 1559 SDValue Op0 = Op.getOperand(0); 1560 SDValue Op1 = Op.getOperand(1); 1561 1562 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1563 Depth + 1)) 1564 return true; 1565 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1566 Depth + 1)) 1567 return true; 1568 1569 // If all of the demanded bits are known zero on one side, return the other. 1570 // These bits cannot contribute to the result of the 'xor'. 1571 if (DemandedBits.isSubsetOf(Known.Zero)) 1572 return TLO.CombineTo(Op, Op0); 1573 if (DemandedBits.isSubsetOf(Known2.Zero)) 1574 return TLO.CombineTo(Op, Op1); 1575 // If the operation can be done in a smaller type, do so. 1576 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1577 return true; 1578 1579 // If all of the unknown bits are known to be zero on one side or the other 1580 // turn this into an *inclusive* or. 1581 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1582 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1583 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1584 1585 ConstantSDNode *C = isConstOrConstSplat(Op1, DemandedElts); 1586 if (C) { 1587 // If one side is a constant, and all of the set bits in the constant are 1588 // also known set on the other side, turn this into an AND, as we know 1589 // the bits will be cleared. 1590 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1591 // NB: it is okay if more bits are known than are requested 1592 if (C->getAPIntValue() == Known2.One) { 1593 SDValue ANDC = 1594 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1595 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1596 } 1597 1598 // If the RHS is a constant, see if we can change it. Don't alter a -1 1599 // constant because that's a 'not' op, and that is better for combining 1600 // and codegen. 1601 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1602 // We're flipping all demanded bits. Flip the undemanded bits too. 1603 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1604 return TLO.CombineTo(Op, New); 1605 } 1606 1607 unsigned Op0Opcode = Op0.getOpcode(); 1608 if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) { 1609 if (ConstantSDNode *ShiftC = 1610 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1611 // Don't crash on an oversized shift. We can not guarantee that a 1612 // bogus shift has been simplified to undef. 1613 if (ShiftC->getAPIntValue().ult(BitWidth)) { 1614 uint64_t ShiftAmt = ShiftC->getZExtValue(); 1615 APInt Ones = APInt::getAllOnes(BitWidth); 1616 Ones = Op0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) 1617 : Ones.lshr(ShiftAmt); 1618 if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) && 1619 isDesirableToCommuteXorWithShift(Op.getNode())) { 1620 // If the xor constant is a demanded mask, do a 'not' before the 1621 // shift: 1622 // xor (X << ShiftC), XorC --> (not X) << ShiftC 1623 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC 1624 SDValue Not = TLO.DAG.getNOT(dl, Op0.getOperand(0), VT); 1625 return TLO.CombineTo(Op, TLO.DAG.getNode(Op0Opcode, dl, VT, Not, 1626 Op0.getOperand(1))); 1627 } 1628 } 1629 } 1630 } 1631 } 1632 1633 // If we can't turn this into a 'not', try to shrink the constant. 1634 if (!C || !C->isAllOnes()) 1635 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1636 return true; 1637 1638 // Attempt to avoid multi-use ops if we don't need anything from them. 1639 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1640 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1641 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1642 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1643 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1644 if (DemandedOp0 || DemandedOp1) { 1645 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1646 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1647 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1648 return TLO.CombineTo(Op, NewOp); 1649 } 1650 } 1651 1652 Known ^= Known2; 1653 break; 1654 } 1655 case ISD::SELECT: 1656 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, 1657 Known, TLO, Depth + 1)) 1658 return true; 1659 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts, 1660 Known2, TLO, Depth + 1)) 1661 return true; 1662 1663 // If the operands are constants, see if we can simplify them. 1664 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1665 return true; 1666 1667 // Only known if known in both the LHS and RHS. 1668 Known = Known.intersectWith(Known2); 1669 break; 1670 case ISD::VSELECT: 1671 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, 1672 Known, TLO, Depth + 1)) 1673 return true; 1674 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts, 1675 Known2, TLO, Depth + 1)) 1676 return true; 1677 1678 // Only known if known in both the LHS and RHS. 1679 Known = Known.intersectWith(Known2); 1680 break; 1681 case ISD::SELECT_CC: 1682 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, DemandedElts, 1683 Known, TLO, Depth + 1)) 1684 return true; 1685 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, 1686 Known2, TLO, Depth + 1)) 1687 return true; 1688 1689 // If the operands are constants, see if we can simplify them. 1690 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1691 return true; 1692 1693 // Only known if known in both the LHS and RHS. 1694 Known = Known.intersectWith(Known2); 1695 break; 1696 case ISD::SETCC: { 1697 SDValue Op0 = Op.getOperand(0); 1698 SDValue Op1 = Op.getOperand(1); 1699 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1700 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1701 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1702 // -1, we may be able to bypass the setcc. 1703 if (DemandedBits.isSignMask() && 1704 Op0.getScalarValueSizeInBits() == BitWidth && 1705 getBooleanContents(Op0.getValueType()) == 1706 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1707 // If we're testing X < 0, then this compare isn't needed - just use X! 1708 // FIXME: We're limiting to integer types here, but this should also work 1709 // if we don't care about FP signed-zero. The use of SETLT with FP means 1710 // that we don't care about NaNs. 1711 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1712 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1713 return TLO.CombineTo(Op, Op0); 1714 1715 // TODO: Should we check for other forms of sign-bit comparisons? 1716 // Examples: X <= -1, X >= 0 1717 } 1718 if (getBooleanContents(Op0.getValueType()) == 1719 TargetLowering::ZeroOrOneBooleanContent && 1720 BitWidth > 1) 1721 Known.Zero.setBitsFrom(1); 1722 break; 1723 } 1724 case ISD::SHL: { 1725 SDValue Op0 = Op.getOperand(0); 1726 SDValue Op1 = Op.getOperand(1); 1727 EVT ShiftVT = Op1.getValueType(); 1728 1729 if (std::optional<uint64_t> KnownSA = 1730 TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) { 1731 unsigned ShAmt = *KnownSA; 1732 if (ShAmt == 0) 1733 return TLO.CombineTo(Op, Op0); 1734 1735 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1736 // single shift. We can do this if the bottom bits (which are shifted 1737 // out) are never demanded. 1738 // TODO - support non-uniform vector amounts. 1739 if (Op0.getOpcode() == ISD::SRL) { 1740 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1741 if (std::optional<uint64_t> InnerSA = 1742 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) { 1743 unsigned C1 = *InnerSA; 1744 unsigned Opc = ISD::SHL; 1745 int Diff = ShAmt - C1; 1746 if (Diff < 0) { 1747 Diff = -Diff; 1748 Opc = ISD::SRL; 1749 } 1750 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1751 return TLO.CombineTo( 1752 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1753 } 1754 } 1755 } 1756 1757 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1758 // are not demanded. This will likely allow the anyext to be folded away. 1759 // TODO - support non-uniform vector amounts. 1760 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1761 SDValue InnerOp = Op0.getOperand(0); 1762 EVT InnerVT = InnerOp.getValueType(); 1763 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1764 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1765 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1766 SDValue NarrowShl = TLO.DAG.getNode( 1767 ISD::SHL, dl, InnerVT, InnerOp, 1768 TLO.DAG.getShiftAmountConstant(ShAmt, InnerVT, dl)); 1769 return TLO.CombineTo( 1770 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1771 } 1772 1773 // Repeat the SHL optimization above in cases where an extension 1774 // intervenes: (shl (anyext (shr x, c1)), c2) to 1775 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1776 // aren't demanded (as above) and that the shifted upper c1 bits of 1777 // x aren't demanded. 1778 // TODO - support non-uniform vector amounts. 1779 if (InnerOp.getOpcode() == ISD::SRL && Op0.hasOneUse() && 1780 InnerOp.hasOneUse()) { 1781 if (std::optional<uint64_t> SA2 = TLO.DAG.getValidShiftAmount( 1782 InnerOp, DemandedElts, Depth + 2)) { 1783 unsigned InnerShAmt = *SA2; 1784 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1785 DemandedBits.getActiveBits() <= 1786 (InnerBits - InnerShAmt + ShAmt) && 1787 DemandedBits.countr_zero() >= ShAmt) { 1788 SDValue NewSA = 1789 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1790 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1791 InnerOp.getOperand(0)); 1792 return TLO.CombineTo( 1793 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1794 } 1795 } 1796 } 1797 } 1798 1799 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1800 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1801 Depth + 1)) { 1802 // Disable the nsw and nuw flags. We can no longer guarantee that we 1803 // won't wrap after simplification. 1804 Op->dropFlags(SDNodeFlags::NoWrap); 1805 return true; 1806 } 1807 Known.Zero <<= ShAmt; 1808 Known.One <<= ShAmt; 1809 // low bits known zero. 1810 Known.Zero.setLowBits(ShAmt); 1811 1812 // Attempt to avoid multi-use ops if we don't need anything from them. 1813 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1814 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1815 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1816 if (DemandedOp0) { 1817 SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1); 1818 return TLO.CombineTo(Op, NewOp); 1819 } 1820 } 1821 1822 // TODO: Can we merge this fold with the one below? 1823 // Try shrinking the operation as long as the shift amount will still be 1824 // in range. 1825 if (ShAmt < DemandedBits.getActiveBits() && !VT.isVector() && 1826 Op.getNode()->hasOneUse()) { 1827 // Search for the smallest integer type with free casts to and from 1828 // Op's type. For expedience, just check power-of-2 integer types. 1829 unsigned DemandedSize = DemandedBits.getActiveBits(); 1830 for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize); 1831 SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 1832 EVT SmallVT = EVT::getIntegerVT(*TLO.DAG.getContext(), SmallVTBits); 1833 if (isNarrowingProfitable(Op.getNode(), VT, SmallVT) && 1834 isTypeDesirableForOp(ISD::SHL, SmallVT) && 1835 isTruncateFree(VT, SmallVT) && isZExtFree(SmallVT, VT) && 1836 (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, SmallVT))) { 1837 assert(DemandedSize <= SmallVTBits && 1838 "Narrowed below demanded bits?"); 1839 // We found a type with free casts. 1840 SDValue NarrowShl = TLO.DAG.getNode( 1841 ISD::SHL, dl, SmallVT, 1842 TLO.DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 1843 TLO.DAG.getShiftAmountConstant(ShAmt, SmallVT, dl)); 1844 return TLO.CombineTo( 1845 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1846 } 1847 } 1848 } 1849 1850 // Narrow shift to lower half - similar to ShrinkDemandedOp. 1851 // (shl i64:x, K) -> (i64 zero_extend (shl (i32 (trunc i64:x)), K)) 1852 // Only do this if we demand the upper half so the knownbits are correct. 1853 unsigned HalfWidth = BitWidth / 2; 1854 if ((BitWidth % 2) == 0 && !VT.isVector() && ShAmt < HalfWidth && 1855 DemandedBits.countLeadingOnes() >= HalfWidth) { 1856 EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), HalfWidth); 1857 if (isNarrowingProfitable(Op.getNode(), VT, HalfVT) && 1858 isTypeDesirableForOp(ISD::SHL, HalfVT) && 1859 isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) && 1860 (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, HalfVT))) { 1861 // If we're demanding the upper bits at all, we must ensure 1862 // that the upper bits of the shift result are known to be zero, 1863 // which is equivalent to the narrow shift being NUW. 1864 if (bool IsNUW = (Known.countMinLeadingZeros() >= HalfWidth)) { 1865 bool IsNSW = Known.countMinSignBits() > HalfWidth; 1866 SDNodeFlags Flags; 1867 Flags.setNoSignedWrap(IsNSW); 1868 Flags.setNoUnsignedWrap(IsNUW); 1869 SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0); 1870 SDValue NewShiftAmt = 1871 TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl); 1872 SDValue NewShift = TLO.DAG.getNode(ISD::SHL, dl, HalfVT, NewOp, 1873 NewShiftAmt, Flags); 1874 SDValue NewExt = 1875 TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift); 1876 return TLO.CombineTo(Op, NewExt); 1877 } 1878 } 1879 } 1880 } else { 1881 // This is a variable shift, so we can't shift the demand mask by a known 1882 // amount. But if we are not demanding high bits, then we are not 1883 // demanding those bits from the pre-shifted operand either. 1884 if (unsigned CTLZ = DemandedBits.countl_zero()) { 1885 APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ)); 1886 if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO, 1887 Depth + 1)) { 1888 // Disable the nsw and nuw flags. We can no longer guarantee that we 1889 // won't wrap after simplification. 1890 Op->dropFlags(SDNodeFlags::NoWrap); 1891 return true; 1892 } 1893 Known.resetAll(); 1894 } 1895 } 1896 1897 // If we are only demanding sign bits then we can use the shift source 1898 // directly. 1899 if (std::optional<uint64_t> MaxSA = 1900 TLO.DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) { 1901 unsigned ShAmt = *MaxSA; 1902 unsigned NumSignBits = 1903 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1904 unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero(); 1905 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1906 return TLO.CombineTo(Op, Op0); 1907 } 1908 break; 1909 } 1910 case ISD::SRL: { 1911 SDValue Op0 = Op.getOperand(0); 1912 SDValue Op1 = Op.getOperand(1); 1913 EVT ShiftVT = Op1.getValueType(); 1914 1915 if (std::optional<uint64_t> KnownSA = 1916 TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) { 1917 unsigned ShAmt = *KnownSA; 1918 if (ShAmt == 0) 1919 return TLO.CombineTo(Op, Op0); 1920 1921 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1922 // single shift. We can do this if the top bits (which are shifted out) 1923 // are never demanded. 1924 // TODO - support non-uniform vector amounts. 1925 if (Op0.getOpcode() == ISD::SHL) { 1926 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1927 if (std::optional<uint64_t> InnerSA = 1928 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) { 1929 unsigned C1 = *InnerSA; 1930 unsigned Opc = ISD::SRL; 1931 int Diff = ShAmt - C1; 1932 if (Diff < 0) { 1933 Diff = -Diff; 1934 Opc = ISD::SHL; 1935 } 1936 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1937 return TLO.CombineTo( 1938 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1939 } 1940 } 1941 } 1942 1943 // If this is (srl (sra X, C1), ShAmt), see if we can combine this into a 1944 // single sra. We can do this if the top bits are never demanded. 1945 if (Op0.getOpcode() == ISD::SRA && Op0.hasOneUse()) { 1946 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1947 if (std::optional<uint64_t> InnerSA = 1948 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) { 1949 unsigned C1 = *InnerSA; 1950 // Clamp the combined shift amount if it exceeds the bit width. 1951 unsigned Combined = std::min(C1 + ShAmt, BitWidth - 1); 1952 SDValue NewSA = TLO.DAG.getConstant(Combined, dl, ShiftVT); 1953 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRA, dl, VT, 1954 Op0.getOperand(0), NewSA)); 1955 } 1956 } 1957 } 1958 1959 APInt InDemandedMask = (DemandedBits << ShAmt); 1960 1961 // If the shift is exact, then it does demand the low bits (and knows that 1962 // they are zero). 1963 if (Op->getFlags().hasExact()) 1964 InDemandedMask.setLowBits(ShAmt); 1965 1966 // Narrow shift to lower half - similar to ShrinkDemandedOp. 1967 // (srl i64:x, K) -> (i64 zero_extend (srl (i32 (trunc i64:x)), K)) 1968 if ((BitWidth % 2) == 0 && !VT.isVector()) { 1969 APInt HiBits = APInt::getHighBitsSet(BitWidth, BitWidth / 2); 1970 EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), BitWidth / 2); 1971 if (isNarrowingProfitable(Op.getNode(), VT, HalfVT) && 1972 isTypeDesirableForOp(ISD::SRL, HalfVT) && 1973 isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) && 1974 (!TLO.LegalOperations() || isOperationLegal(ISD::SRL, HalfVT)) && 1975 ((InDemandedMask.countLeadingZeros() >= (BitWidth / 2)) || 1976 TLO.DAG.MaskedValueIsZero(Op0, HiBits))) { 1977 SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0); 1978 SDValue NewShiftAmt = 1979 TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl); 1980 SDValue NewShift = 1981 TLO.DAG.getNode(ISD::SRL, dl, HalfVT, NewOp, NewShiftAmt); 1982 return TLO.CombineTo( 1983 Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift)); 1984 } 1985 } 1986 1987 // Compute the new bits that are at the top now. 1988 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1989 Depth + 1)) 1990 return true; 1991 Known.Zero.lshrInPlace(ShAmt); 1992 Known.One.lshrInPlace(ShAmt); 1993 // High bits known zero. 1994 Known.Zero.setHighBits(ShAmt); 1995 1996 // Attempt to avoid multi-use ops if we don't need anything from them. 1997 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1998 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1999 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 2000 if (DemandedOp0) { 2001 SDValue NewOp = TLO.DAG.getNode(ISD::SRL, dl, VT, DemandedOp0, Op1); 2002 return TLO.CombineTo(Op, NewOp); 2003 } 2004 } 2005 } else { 2006 // Use generic knownbits computation as it has support for non-uniform 2007 // shift amounts. 2008 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2009 } 2010 2011 // Try to match AVG patterns (after shift simplification). 2012 if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits, 2013 DemandedElts, Depth + 1)) 2014 return TLO.CombineTo(Op, AVG); 2015 2016 break; 2017 } 2018 case ISD::SRA: { 2019 SDValue Op0 = Op.getOperand(0); 2020 SDValue Op1 = Op.getOperand(1); 2021 EVT ShiftVT = Op1.getValueType(); 2022 2023 // If we only want bits that already match the signbit then we don't need 2024 // to shift. 2025 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countr_zero(); 2026 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 2027 NumHiDemandedBits) 2028 return TLO.CombineTo(Op, Op0); 2029 2030 // If this is an arithmetic shift right and only the low-bit is set, we can 2031 // always convert this into a logical shr, even if the shift amount is 2032 // variable. The low bit of the shift cannot be an input sign bit unless 2033 // the shift amount is >= the size of the datatype, which is undefined. 2034 if (DemandedBits.isOne()) 2035 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 2036 2037 if (std::optional<uint64_t> KnownSA = 2038 TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) { 2039 unsigned ShAmt = *KnownSA; 2040 if (ShAmt == 0) 2041 return TLO.CombineTo(Op, Op0); 2042 2043 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target 2044 // supports sext_inreg. 2045 if (Op0.getOpcode() == ISD::SHL) { 2046 if (std::optional<uint64_t> InnerSA = 2047 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) { 2048 unsigned LowBits = BitWidth - ShAmt; 2049 EVT ExtVT = EVT::getIntegerVT(*TLO.DAG.getContext(), LowBits); 2050 if (VT.isVector()) 2051 ExtVT = EVT::getVectorVT(*TLO.DAG.getContext(), ExtVT, 2052 VT.getVectorElementCount()); 2053 2054 if (*InnerSA == ShAmt) { 2055 if (!TLO.LegalOperations() || 2056 getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) == Legal) 2057 return TLO.CombineTo( 2058 Op, TLO.DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, 2059 Op0.getOperand(0), 2060 TLO.DAG.getValueType(ExtVT))); 2061 2062 // Even if we can't convert to sext_inreg, we might be able to 2063 // remove this shift pair if the input is already sign extended. 2064 unsigned NumSignBits = 2065 TLO.DAG.ComputeNumSignBits(Op0.getOperand(0), DemandedElts); 2066 if (NumSignBits > ShAmt) 2067 return TLO.CombineTo(Op, Op0.getOperand(0)); 2068 } 2069 } 2070 } 2071 2072 APInt InDemandedMask = (DemandedBits << ShAmt); 2073 2074 // If the shift is exact, then it does demand the low bits (and knows that 2075 // they are zero). 2076 if (Op->getFlags().hasExact()) 2077 InDemandedMask.setLowBits(ShAmt); 2078 2079 // If any of the demanded bits are produced by the sign extension, we also 2080 // demand the input sign bit. 2081 if (DemandedBits.countl_zero() < ShAmt) 2082 InDemandedMask.setSignBit(); 2083 2084 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 2085 Depth + 1)) 2086 return true; 2087 Known.Zero.lshrInPlace(ShAmt); 2088 Known.One.lshrInPlace(ShAmt); 2089 2090 // If the input sign bit is known to be zero, or if none of the top bits 2091 // are demanded, turn this into an unsigned shift right. 2092 if (Known.Zero[BitWidth - ShAmt - 1] || 2093 DemandedBits.countl_zero() >= ShAmt) { 2094 SDNodeFlags Flags; 2095 Flags.setExact(Op->getFlags().hasExact()); 2096 return TLO.CombineTo( 2097 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 2098 } 2099 2100 int Log2 = DemandedBits.exactLogBase2(); 2101 if (Log2 >= 0) { 2102 // The bit must come from the sign. 2103 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 2104 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 2105 } 2106 2107 if (Known.One[BitWidth - ShAmt - 1]) 2108 // New bits are known one. 2109 Known.One.setHighBits(ShAmt); 2110 2111 // Attempt to avoid multi-use ops if we don't need anything from them. 2112 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2113 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2114 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 2115 if (DemandedOp0) { 2116 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 2117 return TLO.CombineTo(Op, NewOp); 2118 } 2119 } 2120 } 2121 2122 // Try to match AVG patterns (after shift simplification). 2123 if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits, 2124 DemandedElts, Depth + 1)) 2125 return TLO.CombineTo(Op, AVG); 2126 2127 break; 2128 } 2129 case ISD::FSHL: 2130 case ISD::FSHR: { 2131 SDValue Op0 = Op.getOperand(0); 2132 SDValue Op1 = Op.getOperand(1); 2133 SDValue Op2 = Op.getOperand(2); 2134 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 2135 2136 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 2137 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 2138 2139 // For fshl, 0-shift returns the 1st arg. 2140 // For fshr, 0-shift returns the 2nd arg. 2141 if (Amt == 0) { 2142 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 2143 Known, TLO, Depth + 1)) 2144 return true; 2145 break; 2146 } 2147 2148 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 2149 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 2150 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 2151 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 2152 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 2153 Depth + 1)) 2154 return true; 2155 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 2156 Depth + 1)) 2157 return true; 2158 2159 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 2160 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 2161 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 2162 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 2163 Known = Known.unionWith(Known2); 2164 2165 // Attempt to avoid multi-use ops if we don't need anything from them. 2166 if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() || 2167 !DemandedElts.isAllOnes()) { 2168 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2169 Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1); 2170 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2171 Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1); 2172 if (DemandedOp0 || DemandedOp1) { 2173 DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0; 2174 DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1; 2175 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0, 2176 DemandedOp1, Op2); 2177 return TLO.CombineTo(Op, NewOp); 2178 } 2179 } 2180 } 2181 2182 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 2183 if (isPowerOf2_32(BitWidth)) { 2184 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 2185 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 2186 Known2, TLO, Depth + 1)) 2187 return true; 2188 } 2189 break; 2190 } 2191 case ISD::ROTL: 2192 case ISD::ROTR: { 2193 SDValue Op0 = Op.getOperand(0); 2194 SDValue Op1 = Op.getOperand(1); 2195 bool IsROTL = (Op.getOpcode() == ISD::ROTL); 2196 2197 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 2198 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 2199 return TLO.CombineTo(Op, Op0); 2200 2201 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 2202 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 2203 unsigned RevAmt = BitWidth - Amt; 2204 2205 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) 2206 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) 2207 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); 2208 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 2209 Depth + 1)) 2210 return true; 2211 2212 // rot*(x, 0) --> x 2213 if (Amt == 0) 2214 return TLO.CombineTo(Op, Op0); 2215 2216 // See if we don't demand either half of the rotated bits. 2217 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && 2218 DemandedBits.countr_zero() >= (IsROTL ? Amt : RevAmt)) { 2219 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); 2220 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); 2221 } 2222 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && 2223 DemandedBits.countl_zero() >= (IsROTL ? RevAmt : Amt)) { 2224 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); 2225 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 2226 } 2227 } 2228 2229 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 2230 if (isPowerOf2_32(BitWidth)) { 2231 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 2232 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 2233 Depth + 1)) 2234 return true; 2235 } 2236 break; 2237 } 2238 case ISD::SMIN: 2239 case ISD::SMAX: 2240 case ISD::UMIN: 2241 case ISD::UMAX: { 2242 unsigned Opc = Op.getOpcode(); 2243 SDValue Op0 = Op.getOperand(0); 2244 SDValue Op1 = Op.getOperand(1); 2245 2246 // If we're only demanding signbits, then we can simplify to OR/AND node. 2247 unsigned BitOp = 2248 (Opc == ISD::SMIN || Opc == ISD::UMAX) ? ISD::OR : ISD::AND; 2249 unsigned NumSignBits = 2250 std::min(TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1), 2251 TLO.DAG.ComputeNumSignBits(Op1, DemandedElts, Depth + 1)); 2252 unsigned NumDemandedUpperBits = BitWidth - DemandedBits.countr_zero(); 2253 if (NumSignBits >= NumDemandedUpperBits) 2254 return TLO.CombineTo(Op, TLO.DAG.getNode(BitOp, SDLoc(Op), VT, Op0, Op1)); 2255 2256 // Check if one arg is always less/greater than (or equal) to the other arg. 2257 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 2258 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 2259 switch (Opc) { 2260 case ISD::SMIN: 2261 if (std::optional<bool> IsSLE = KnownBits::sle(Known0, Known1)) 2262 return TLO.CombineTo(Op, *IsSLE ? Op0 : Op1); 2263 if (std::optional<bool> IsSLT = KnownBits::slt(Known0, Known1)) 2264 return TLO.CombineTo(Op, *IsSLT ? Op0 : Op1); 2265 Known = KnownBits::smin(Known0, Known1); 2266 break; 2267 case ISD::SMAX: 2268 if (std::optional<bool> IsSGE = KnownBits::sge(Known0, Known1)) 2269 return TLO.CombineTo(Op, *IsSGE ? Op0 : Op1); 2270 if (std::optional<bool> IsSGT = KnownBits::sgt(Known0, Known1)) 2271 return TLO.CombineTo(Op, *IsSGT ? Op0 : Op1); 2272 Known = KnownBits::smax(Known0, Known1); 2273 break; 2274 case ISD::UMIN: 2275 if (std::optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 2276 return TLO.CombineTo(Op, *IsULE ? Op0 : Op1); 2277 if (std::optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 2278 return TLO.CombineTo(Op, *IsULT ? Op0 : Op1); 2279 Known = KnownBits::umin(Known0, Known1); 2280 break; 2281 case ISD::UMAX: 2282 if (std::optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 2283 return TLO.CombineTo(Op, *IsUGE ? Op0 : Op1); 2284 if (std::optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 2285 return TLO.CombineTo(Op, *IsUGT ? Op0 : Op1); 2286 Known = KnownBits::umax(Known0, Known1); 2287 break; 2288 } 2289 break; 2290 } 2291 case ISD::BITREVERSE: { 2292 SDValue Src = Op.getOperand(0); 2293 APInt DemandedSrcBits = DemandedBits.reverseBits(); 2294 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 2295 Depth + 1)) 2296 return true; 2297 Known.One = Known2.One.reverseBits(); 2298 Known.Zero = Known2.Zero.reverseBits(); 2299 break; 2300 } 2301 case ISD::BSWAP: { 2302 SDValue Src = Op.getOperand(0); 2303 2304 // If the only bits demanded come from one byte of the bswap result, 2305 // just shift the input byte into position to eliminate the bswap. 2306 unsigned NLZ = DemandedBits.countl_zero(); 2307 unsigned NTZ = DemandedBits.countr_zero(); 2308 2309 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 2310 // we need all the bits down to bit 8. Likewise, round NLZ. If we 2311 // have 14 leading zeros, round to 8. 2312 NLZ = alignDown(NLZ, 8); 2313 NTZ = alignDown(NTZ, 8); 2314 // If we need exactly one byte, we can do this transformation. 2315 if (BitWidth - NLZ - NTZ == 8) { 2316 // Replace this with either a left or right shift to get the byte into 2317 // the right place. 2318 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL; 2319 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) { 2320 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ; 2321 SDValue ShAmt = TLO.DAG.getShiftAmountConstant(ShiftAmount, VT, dl); 2322 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt); 2323 return TLO.CombineTo(Op, NewOp); 2324 } 2325 } 2326 2327 APInt DemandedSrcBits = DemandedBits.byteSwap(); 2328 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 2329 Depth + 1)) 2330 return true; 2331 Known.One = Known2.One.byteSwap(); 2332 Known.Zero = Known2.Zero.byteSwap(); 2333 break; 2334 } 2335 case ISD::CTPOP: { 2336 // If only 1 bit is demanded, replace with PARITY as long as we're before 2337 // op legalization. 2338 // FIXME: Limit to scalars for now. 2339 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 2340 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 2341 Op.getOperand(0))); 2342 2343 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2344 break; 2345 } 2346 case ISD::SIGN_EXTEND_INREG: { 2347 SDValue Op0 = Op.getOperand(0); 2348 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2349 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 2350 2351 // If we only care about the highest bit, don't bother shifting right. 2352 if (DemandedBits.isSignMask()) { 2353 unsigned MinSignedBits = 2354 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1); 2355 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 2356 // However if the input is already sign extended we expect the sign 2357 // extension to be dropped altogether later and do not simplify. 2358 if (!AlreadySignExtended) { 2359 // Compute the correct shift amount type, which must be getShiftAmountTy 2360 // for scalar types after legalization. 2361 SDValue ShiftAmt = 2362 TLO.DAG.getShiftAmountConstant(BitWidth - ExVTBits, VT, dl); 2363 return TLO.CombineTo(Op, 2364 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 2365 } 2366 } 2367 2368 // If none of the extended bits are demanded, eliminate the sextinreg. 2369 if (DemandedBits.getActiveBits() <= ExVTBits) 2370 return TLO.CombineTo(Op, Op0); 2371 2372 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 2373 2374 // Since the sign extended bits are demanded, we know that the sign 2375 // bit is demanded. 2376 InputDemandedBits.setBit(ExVTBits - 1); 2377 2378 if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO, 2379 Depth + 1)) 2380 return true; 2381 2382 // If the sign bit of the input is known set or clear, then we know the 2383 // top bits of the result. 2384 2385 // If the input sign bit is known zero, convert this into a zero extension. 2386 if (Known.Zero[ExVTBits - 1]) 2387 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 2388 2389 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 2390 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 2391 Known.One.setBitsFrom(ExVTBits); 2392 Known.Zero &= Mask; 2393 } else { // Input sign bit unknown 2394 Known.Zero &= Mask; 2395 Known.One &= Mask; 2396 } 2397 break; 2398 } 2399 case ISD::BUILD_PAIR: { 2400 EVT HalfVT = Op.getOperand(0).getValueType(); 2401 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 2402 2403 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 2404 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 2405 2406 KnownBits KnownLo, KnownHi; 2407 2408 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 2409 return true; 2410 2411 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 2412 return true; 2413 2414 Known = KnownHi.concat(KnownLo); 2415 break; 2416 } 2417 case ISD::ZERO_EXTEND_VECTOR_INREG: 2418 if (VT.isScalableVector()) 2419 return false; 2420 [[fallthrough]]; 2421 case ISD::ZERO_EXTEND: { 2422 SDValue Src = Op.getOperand(0); 2423 EVT SrcVT = Src.getValueType(); 2424 unsigned InBits = SrcVT.getScalarSizeInBits(); 2425 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; 2426 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 2427 2428 // If none of the top bits are demanded, convert this into an any_extend. 2429 if (DemandedBits.getActiveBits() <= InBits) { 2430 // If we only need the non-extended bits of the bottom element 2431 // then we can just bitcast to the result. 2432 if (IsLE && IsVecInReg && DemandedElts == 1 && 2433 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2434 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2435 2436 unsigned Opc = 2437 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2438 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2439 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2440 } 2441 2442 APInt InDemandedBits = DemandedBits.trunc(InBits); 2443 APInt InDemandedElts = DemandedElts.zext(InElts); 2444 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2445 Depth + 1)) { 2446 Op->dropFlags(SDNodeFlags::NonNeg); 2447 return true; 2448 } 2449 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2450 Known = Known.zext(BitWidth); 2451 2452 // Attempt to avoid multi-use ops if we don't need anything from them. 2453 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2454 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2455 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2456 break; 2457 } 2458 case ISD::SIGN_EXTEND_VECTOR_INREG: 2459 if (VT.isScalableVector()) 2460 return false; 2461 [[fallthrough]]; 2462 case ISD::SIGN_EXTEND: { 2463 SDValue Src = Op.getOperand(0); 2464 EVT SrcVT = Src.getValueType(); 2465 unsigned InBits = SrcVT.getScalarSizeInBits(); 2466 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; 2467 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 2468 2469 APInt InDemandedElts = DemandedElts.zext(InElts); 2470 APInt InDemandedBits = DemandedBits.trunc(InBits); 2471 2472 // Since some of the sign extended bits are demanded, we know that the sign 2473 // bit is demanded. 2474 InDemandedBits.setBit(InBits - 1); 2475 2476 // If none of the top bits are demanded, convert this into an any_extend. 2477 if (DemandedBits.getActiveBits() <= InBits) { 2478 // If we only need the non-extended bits of the bottom element 2479 // then we can just bitcast to the result. 2480 if (IsLE && IsVecInReg && DemandedElts == 1 && 2481 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2482 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2483 2484 // Don't lose an all signbits 0/-1 splat on targets with 0/-1 booleans. 2485 if (getBooleanContents(VT) != ZeroOrNegativeOneBooleanContent || 2486 TLO.DAG.ComputeNumSignBits(Src, InDemandedElts, Depth + 1) != 2487 InBits) { 2488 unsigned Opc = 2489 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2490 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2491 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2492 } 2493 } 2494 2495 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2496 Depth + 1)) 2497 return true; 2498 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2499 2500 // If the sign bit is known one, the top bits match. 2501 Known = Known.sext(BitWidth); 2502 2503 // If the sign bit is known zero, convert this to a zero extend. 2504 if (Known.isNonNegative()) { 2505 unsigned Opc = 2506 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 2507 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) { 2508 SDNodeFlags Flags; 2509 if (!IsVecInReg) 2510 Flags |= SDNodeFlags::NonNeg; 2511 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src, Flags)); 2512 } 2513 } 2514 2515 // Attempt to avoid multi-use ops if we don't need anything from them. 2516 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2517 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2518 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2519 break; 2520 } 2521 case ISD::ANY_EXTEND_VECTOR_INREG: 2522 if (VT.isScalableVector()) 2523 return false; 2524 [[fallthrough]]; 2525 case ISD::ANY_EXTEND: { 2526 SDValue Src = Op.getOperand(0); 2527 EVT SrcVT = Src.getValueType(); 2528 unsigned InBits = SrcVT.getScalarSizeInBits(); 2529 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; 2530 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 2531 2532 // If we only need the bottom element then we can just bitcast. 2533 // TODO: Handle ANY_EXTEND? 2534 if (IsLE && IsVecInReg && DemandedElts == 1 && 2535 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2536 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2537 2538 APInt InDemandedBits = DemandedBits.trunc(InBits); 2539 APInt InDemandedElts = DemandedElts.zext(InElts); 2540 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2541 Depth + 1)) 2542 return true; 2543 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2544 Known = Known.anyext(BitWidth); 2545 2546 // Attempt to avoid multi-use ops if we don't need anything from them. 2547 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2548 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2549 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2550 break; 2551 } 2552 case ISD::TRUNCATE: { 2553 SDValue Src = Op.getOperand(0); 2554 2555 // Simplify the input, using demanded bit information, and compute the known 2556 // zero/one bits live out. 2557 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2558 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2559 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2560 Depth + 1)) 2561 return true; 2562 Known = Known.trunc(BitWidth); 2563 2564 // Attempt to avoid multi-use ops if we don't need anything from them. 2565 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2566 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2567 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2568 2569 // If the input is only used by this truncate, see if we can shrink it based 2570 // on the known demanded bits. 2571 switch (Src.getOpcode()) { 2572 default: 2573 break; 2574 case ISD::SRL: 2575 // Shrink SRL by a constant if none of the high bits shifted in are 2576 // demanded. 2577 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2578 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2579 // undesirable. 2580 break; 2581 2582 if (Src.getNode()->hasOneUse()) { 2583 if (isTruncateFree(Src, VT) && 2584 !isTruncateFree(Src.getValueType(), VT)) { 2585 // If truncate is only free at trunc(srl), do not turn it into 2586 // srl(trunc). The check is done by first check the truncate is free 2587 // at Src's opcode(srl), then check the truncate is not done by 2588 // referencing sub-register. In test, if both trunc(srl) and 2589 // srl(trunc)'s trunc are free, srl(trunc) performs better. If only 2590 // trunc(srl)'s trunc is free, trunc(srl) is better. 2591 break; 2592 } 2593 2594 std::optional<uint64_t> ShAmtC = 2595 TLO.DAG.getValidShiftAmount(Src, DemandedElts, Depth + 2); 2596 if (!ShAmtC || *ShAmtC >= BitWidth) 2597 break; 2598 uint64_t ShVal = *ShAmtC; 2599 2600 APInt HighBits = 2601 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2602 HighBits.lshrInPlace(ShVal); 2603 HighBits = HighBits.trunc(BitWidth); 2604 if (!(HighBits & DemandedBits)) { 2605 // None of the shifted in bits are needed. Add a truncate of the 2606 // shift input, then shift it. 2607 SDValue NewShAmt = TLO.DAG.getShiftAmountConstant(ShVal, VT, dl); 2608 SDValue NewTrunc = 2609 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2610 return TLO.CombineTo( 2611 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2612 } 2613 } 2614 break; 2615 } 2616 2617 break; 2618 } 2619 case ISD::AssertZext: { 2620 // AssertZext demands all of the high bits, plus any of the low bits 2621 // demanded by its users. 2622 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2623 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2624 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2625 TLO, Depth + 1)) 2626 return true; 2627 2628 Known.Zero |= ~InMask; 2629 Known.One &= (~Known.Zero); 2630 break; 2631 } 2632 case ISD::EXTRACT_VECTOR_ELT: { 2633 SDValue Src = Op.getOperand(0); 2634 SDValue Idx = Op.getOperand(1); 2635 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2636 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2637 2638 if (SrcEltCnt.isScalable()) 2639 return false; 2640 2641 // Demand the bits from every vector element without a constant index. 2642 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2643 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2644 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2645 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2646 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2647 2648 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2649 // anything about the extended bits. 2650 APInt DemandedSrcBits = DemandedBits; 2651 if (BitWidth > EltBitWidth) 2652 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2653 2654 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2655 Depth + 1)) 2656 return true; 2657 2658 // Attempt to avoid multi-use ops if we don't need anything from them. 2659 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2660 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2661 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2662 SDValue NewOp = 2663 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2664 return TLO.CombineTo(Op, NewOp); 2665 } 2666 } 2667 2668 Known = Known2; 2669 if (BitWidth > EltBitWidth) 2670 Known = Known.anyext(BitWidth); 2671 break; 2672 } 2673 case ISD::BITCAST: { 2674 if (VT.isScalableVector()) 2675 return false; 2676 SDValue Src = Op.getOperand(0); 2677 EVT SrcVT = Src.getValueType(); 2678 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2679 2680 // If this is an FP->Int bitcast and if the sign bit is the only 2681 // thing demanded, turn this into a FGETSIGN. 2682 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2683 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2684 SrcVT.isFloatingPoint()) { 2685 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2686 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2687 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2688 SrcVT != MVT::f128) { 2689 // Cannot eliminate/lower SHL for f128 yet. 2690 EVT Ty = OpVTLegal ? VT : MVT::i32; 2691 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2692 // place. We expect the SHL to be eliminated by other optimizations. 2693 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2694 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2695 if (!OpVTLegal && OpVTSizeInBits > 32) 2696 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2697 unsigned ShVal = Op.getValueSizeInBits() - 1; 2698 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2699 return TLO.CombineTo(Op, 2700 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2701 } 2702 } 2703 2704 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2705 // Demand the elt/bit if any of the original elts/bits are demanded. 2706 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { 2707 unsigned Scale = BitWidth / NumSrcEltBits; 2708 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2709 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2710 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2711 for (unsigned i = 0; i != Scale; ++i) { 2712 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 2713 unsigned BitOffset = EltOffset * NumSrcEltBits; 2714 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 2715 if (!Sub.isZero()) { 2716 DemandedSrcBits |= Sub; 2717 for (unsigned j = 0; j != NumElts; ++j) 2718 if (DemandedElts[j]) 2719 DemandedSrcElts.setBit((j * Scale) + i); 2720 } 2721 } 2722 2723 APInt KnownSrcUndef, KnownSrcZero; 2724 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2725 KnownSrcZero, TLO, Depth + 1)) 2726 return true; 2727 2728 KnownBits KnownSrcBits; 2729 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2730 KnownSrcBits, TLO, Depth + 1)) 2731 return true; 2732 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { 2733 // TODO - bigendian once we have test coverage. 2734 unsigned Scale = NumSrcEltBits / BitWidth; 2735 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2736 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2737 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2738 for (unsigned i = 0; i != NumElts; ++i) 2739 if (DemandedElts[i]) { 2740 unsigned Offset = (i % Scale) * BitWidth; 2741 DemandedSrcBits.insertBits(DemandedBits, Offset); 2742 DemandedSrcElts.setBit(i / Scale); 2743 } 2744 2745 if (SrcVT.isVector()) { 2746 APInt KnownSrcUndef, KnownSrcZero; 2747 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2748 KnownSrcZero, TLO, Depth + 1)) 2749 return true; 2750 } 2751 2752 KnownBits KnownSrcBits; 2753 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2754 KnownSrcBits, TLO, Depth + 1)) 2755 return true; 2756 2757 // Attempt to avoid multi-use ops if we don't need anything from them. 2758 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2759 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2760 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2761 SDValue NewOp = TLO.DAG.getBitcast(VT, DemandedSrc); 2762 return TLO.CombineTo(Op, NewOp); 2763 } 2764 } 2765 } 2766 2767 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2768 // recursive call where Known may be useful to the caller. 2769 if (Depth > 0) { 2770 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2771 return false; 2772 } 2773 break; 2774 } 2775 case ISD::MUL: 2776 if (DemandedBits.isPowerOf2()) { 2777 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 2778 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 2779 // odd (has LSB set), then the left-shifted low bit of X is the answer. 2780 unsigned CTZ = DemandedBits.countr_zero(); 2781 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 2782 if (C && C->getAPIntValue().countr_zero() == CTZ) { 2783 SDValue AmtC = TLO.DAG.getShiftAmountConstant(CTZ, VT, dl); 2784 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC); 2785 return TLO.CombineTo(Op, Shl); 2786 } 2787 } 2788 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: 2789 // X * X is odd iff X is odd. 2790 // 'Quadratic Reciprocity': X * X -> 0 for bit[1] 2791 if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) { 2792 SDValue One = TLO.DAG.getConstant(1, dl, VT); 2793 SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One); 2794 return TLO.CombineTo(Op, And1); 2795 } 2796 [[fallthrough]]; 2797 case ISD::ADD: 2798 case ISD::SUB: { 2799 // Add, Sub, and Mul don't demand any bits in positions beyond that 2800 // of the highest bit demanded of them. 2801 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2802 SDNodeFlags Flags = Op.getNode()->getFlags(); 2803 unsigned DemandedBitsLZ = DemandedBits.countl_zero(); 2804 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2805 KnownBits KnownOp0, KnownOp1; 2806 auto GetDemandedBitsLHSMask = [&](APInt Demanded, 2807 const KnownBits &KnownRHS) { 2808 if (Op.getOpcode() == ISD::MUL) 2809 Demanded.clearHighBits(KnownRHS.countMinTrailingZeros()); 2810 return Demanded; 2811 }; 2812 if (SimplifyDemandedBits(Op1, LoMask, DemandedElts, KnownOp1, TLO, 2813 Depth + 1) || 2814 SimplifyDemandedBits(Op0, GetDemandedBitsLHSMask(LoMask, KnownOp1), 2815 DemandedElts, KnownOp0, TLO, Depth + 1) || 2816 // See if the operation should be performed at a smaller bit width. 2817 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2818 // Disable the nsw and nuw flags. We can no longer guarantee that we 2819 // won't wrap after simplification. 2820 Op->dropFlags(SDNodeFlags::NoWrap); 2821 return true; 2822 } 2823 2824 // neg x with only low bit demanded is simply x. 2825 if (Op.getOpcode() == ISD::SUB && DemandedBits.isOne() && 2826 isNullConstant(Op0)) 2827 return TLO.CombineTo(Op, Op1); 2828 2829 // Attempt to avoid multi-use ops if we don't need anything from them. 2830 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2831 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2832 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2833 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2834 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2835 if (DemandedOp0 || DemandedOp1) { 2836 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2837 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2838 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, 2839 Flags & ~SDNodeFlags::NoWrap); 2840 return TLO.CombineTo(Op, NewOp); 2841 } 2842 } 2843 2844 // If we have a constant operand, we may be able to turn it into -1 if we 2845 // do not demand the high bits. This can make the constant smaller to 2846 // encode, allow more general folding, or match specialized instruction 2847 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2848 // is probably not useful (and could be detrimental). 2849 ConstantSDNode *C = isConstOrConstSplat(Op1); 2850 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2851 if (C && !C->isAllOnes() && !C->isOne() && 2852 (C->getAPIntValue() | HighMask).isAllOnes()) { 2853 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2854 // Disable the nsw and nuw flags. We can no longer guarantee that we 2855 // won't wrap after simplification. 2856 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, 2857 Flags & ~SDNodeFlags::NoWrap); 2858 return TLO.CombineTo(Op, NewOp); 2859 } 2860 2861 // Match a multiply with a disguised negated-power-of-2 and convert to a 2862 // an equivalent shift-left amount. 2863 // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2864 auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned { 2865 if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse()) 2866 return 0; 2867 2868 // Don't touch opaque constants. Also, ignore zero and power-of-2 2869 // multiplies. Those will get folded later. 2870 ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1)); 2871 if (MulC && !MulC->isOpaque() && !MulC->isZero() && 2872 !MulC->getAPIntValue().isPowerOf2()) { 2873 APInt UnmaskedC = MulC->getAPIntValue() | HighMask; 2874 if (UnmaskedC.isNegatedPowerOf2()) 2875 return (-UnmaskedC).logBase2(); 2876 } 2877 return 0; 2878 }; 2879 2880 auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, 2881 unsigned ShlAmt) { 2882 SDValue ShlAmtC = TLO.DAG.getShiftAmountConstant(ShlAmt, VT, dl); 2883 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC); 2884 SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl); 2885 return TLO.CombineTo(Op, Res); 2886 }; 2887 2888 if (isOperationLegalOrCustom(ISD::SHL, VT)) { 2889 if (Op.getOpcode() == ISD::ADD) { 2890 // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2891 if (unsigned ShAmt = getShiftLeftAmt(Op0)) 2892 return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt); 2893 // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC)) 2894 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2895 return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt); 2896 } 2897 if (Op.getOpcode() == ISD::SUB) { 2898 // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC)) 2899 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2900 return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt); 2901 } 2902 } 2903 2904 if (Op.getOpcode() == ISD::MUL) { 2905 Known = KnownBits::mul(KnownOp0, KnownOp1); 2906 } else { // Op.getOpcode() is either ISD::ADD or ISD::SUB. 2907 Known = KnownBits::computeForAddSub( 2908 Op.getOpcode() == ISD::ADD, Flags.hasNoSignedWrap(), 2909 Flags.hasNoUnsignedWrap(), KnownOp0, KnownOp1); 2910 } 2911 break; 2912 } 2913 default: 2914 // We also ask the target about intrinsics (which could be specific to it). 2915 if (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2916 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN) { 2917 // TODO: Probably okay to remove after audit; here to reduce change size 2918 // in initial enablement patch for scalable vectors 2919 if (Op.getValueType().isScalableVector()) 2920 break; 2921 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2922 Known, TLO, Depth)) 2923 return true; 2924 break; 2925 } 2926 2927 // Just use computeKnownBits to compute output bits. 2928 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2929 break; 2930 } 2931 2932 // If we know the value of all of the demanded bits, return this as a 2933 // constant. 2934 if (!isTargetCanonicalConstantNode(Op) && 2935 DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2936 // Avoid folding to a constant if any OpaqueConstant is involved. 2937 const SDNode *N = Op.getNode(); 2938 for (SDNode *Op : 2939 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2940 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 2941 if (C->isOpaque()) 2942 return false; 2943 } 2944 if (VT.isInteger()) 2945 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2946 if (VT.isFloatingPoint()) 2947 return TLO.CombineTo( 2948 Op, TLO.DAG.getConstantFP(APFloat(VT.getFltSemantics(), Known.One), 2949 dl, VT)); 2950 } 2951 2952 // A multi use 'all demanded elts' simplify failed to find any knownbits. 2953 // Try again just for the original demanded elts. 2954 // Ensure we do this AFTER constant folding above. 2955 if (HasMultiUse && Known.isUnknown() && !OriginalDemandedElts.isAllOnes()) 2956 Known = TLO.DAG.computeKnownBits(Op, OriginalDemandedElts, Depth); 2957 2958 return false; 2959 } 2960 2961 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2962 const APInt &DemandedElts, 2963 DAGCombinerInfo &DCI) const { 2964 SelectionDAG &DAG = DCI.DAG; 2965 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2966 !DCI.isBeforeLegalizeOps()); 2967 2968 APInt KnownUndef, KnownZero; 2969 bool Simplified = 2970 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2971 if (Simplified) { 2972 DCI.AddToWorklist(Op.getNode()); 2973 DCI.CommitTargetLoweringOpt(TLO); 2974 } 2975 2976 return Simplified; 2977 } 2978 2979 /// Given a vector binary operation and known undefined elements for each input 2980 /// operand, compute whether each element of the output is undefined. 2981 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2982 const APInt &UndefOp0, 2983 const APInt &UndefOp1) { 2984 EVT VT = BO.getValueType(); 2985 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2986 "Vector binop only"); 2987 2988 EVT EltVT = VT.getVectorElementType(); 2989 unsigned NumElts = VT.isFixedLengthVector() ? VT.getVectorNumElements() : 1; 2990 assert(UndefOp0.getBitWidth() == NumElts && 2991 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2992 2993 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2994 const APInt &UndefVals) { 2995 if (UndefVals[Index]) 2996 return DAG.getUNDEF(EltVT); 2997 2998 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2999 // Try hard to make sure that the getNode() call is not creating temporary 3000 // nodes. Ignore opaque integers because they do not constant fold. 3001 SDValue Elt = BV->getOperand(Index); 3002 auto *C = dyn_cast<ConstantSDNode>(Elt); 3003 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 3004 return Elt; 3005 } 3006 3007 return SDValue(); 3008 }; 3009 3010 APInt KnownUndef = APInt::getZero(NumElts); 3011 for (unsigned i = 0; i != NumElts; ++i) { 3012 // If both inputs for this element are either constant or undef and match 3013 // the element type, compute the constant/undef result for this element of 3014 // the vector. 3015 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 3016 // not handle FP constants. The code within getNode() should be refactored 3017 // to avoid the danger of creating a bogus temporary node here. 3018 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 3019 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 3020 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 3021 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 3022 KnownUndef.setBit(i); 3023 } 3024 return KnownUndef; 3025 } 3026 3027 bool TargetLowering::SimplifyDemandedVectorElts( 3028 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 3029 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 3030 bool AssumeSingleUse) const { 3031 EVT VT = Op.getValueType(); 3032 unsigned Opcode = Op.getOpcode(); 3033 APInt DemandedElts = OriginalDemandedElts; 3034 unsigned NumElts = DemandedElts.getBitWidth(); 3035 assert(VT.isVector() && "Expected vector op"); 3036 3037 KnownUndef = KnownZero = APInt::getZero(NumElts); 3038 3039 if (!shouldSimplifyDemandedVectorElts(Op, TLO)) 3040 return false; 3041 3042 // TODO: For now we assume we know nothing about scalable vectors. 3043 if (VT.isScalableVector()) 3044 return false; 3045 3046 assert(VT.getVectorNumElements() == NumElts && 3047 "Mask size mismatches value type element count!"); 3048 3049 // Undef operand. 3050 if (Op.isUndef()) { 3051 KnownUndef.setAllBits(); 3052 return false; 3053 } 3054 3055 // If Op has other users, assume that all elements are needed. 3056 if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) 3057 DemandedElts.setAllBits(); 3058 3059 // Not demanding any elements from Op. 3060 if (DemandedElts == 0) { 3061 KnownUndef.setAllBits(); 3062 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3063 } 3064 3065 // Limit search depth. 3066 if (Depth >= SelectionDAG::MaxRecursionDepth) 3067 return false; 3068 3069 SDLoc DL(Op); 3070 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 3071 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 3072 3073 // Helper for demanding the specified elements and all the bits of both binary 3074 // operands. 3075 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 3076 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 3077 TLO.DAG, Depth + 1); 3078 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 3079 TLO.DAG, Depth + 1); 3080 if (NewOp0 || NewOp1) { 3081 SDValue NewOp = 3082 TLO.DAG.getNode(Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, 3083 NewOp1 ? NewOp1 : Op1, Op->getFlags()); 3084 return TLO.CombineTo(Op, NewOp); 3085 } 3086 return false; 3087 }; 3088 3089 switch (Opcode) { 3090 case ISD::SCALAR_TO_VECTOR: { 3091 if (!DemandedElts[0]) { 3092 KnownUndef.setAllBits(); 3093 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3094 } 3095 SDValue ScalarSrc = Op.getOperand(0); 3096 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 3097 SDValue Src = ScalarSrc.getOperand(0); 3098 SDValue Idx = ScalarSrc.getOperand(1); 3099 EVT SrcVT = Src.getValueType(); 3100 3101 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 3102 3103 if (SrcEltCnt.isScalable()) 3104 return false; 3105 3106 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 3107 if (isNullConstant(Idx)) { 3108 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 3109 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 3110 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 3111 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 3112 TLO, Depth + 1)) 3113 return true; 3114 } 3115 } 3116 KnownUndef.setHighBits(NumElts - 1); 3117 break; 3118 } 3119 case ISD::BITCAST: { 3120 SDValue Src = Op.getOperand(0); 3121 EVT SrcVT = Src.getValueType(); 3122 3123 // We only handle vectors here. 3124 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 3125 if (!SrcVT.isVector()) 3126 break; 3127 3128 // Fast handling of 'identity' bitcasts. 3129 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 3130 if (NumSrcElts == NumElts) 3131 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 3132 KnownZero, TLO, Depth + 1); 3133 3134 APInt SrcDemandedElts, SrcZero, SrcUndef; 3135 3136 // Bitcast from 'large element' src vector to 'small element' vector, we 3137 // must demand a source element if any DemandedElt maps to it. 3138 if ((NumElts % NumSrcElts) == 0) { 3139 unsigned Scale = NumElts / NumSrcElts; 3140 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 3141 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 3142 TLO, Depth + 1)) 3143 return true; 3144 3145 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 3146 // of the large element. 3147 // TODO - bigendian once we have test coverage. 3148 if (IsLE) { 3149 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 3150 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 3151 for (unsigned i = 0; i != NumElts; ++i) 3152 if (DemandedElts[i]) { 3153 unsigned Ofs = (i % Scale) * EltSizeInBits; 3154 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 3155 } 3156 3157 KnownBits Known; 3158 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 3159 TLO, Depth + 1)) 3160 return true; 3161 3162 // The bitcast has split each wide element into a number of 3163 // narrow subelements. We have just computed the Known bits 3164 // for wide elements. See if element splitting results in 3165 // some subelements being zero. Only for demanded elements! 3166 for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) { 3167 if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits) 3168 .isAllOnes()) 3169 continue; 3170 for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) { 3171 unsigned Elt = Scale * SrcElt + SubElt; 3172 if (DemandedElts[Elt]) 3173 KnownZero.setBit(Elt); 3174 } 3175 } 3176 } 3177 3178 // If the src element is zero/undef then all the output elements will be - 3179 // only demanded elements are guaranteed to be correct. 3180 for (unsigned i = 0; i != NumSrcElts; ++i) { 3181 if (SrcDemandedElts[i]) { 3182 if (SrcZero[i]) 3183 KnownZero.setBits(i * Scale, (i + 1) * Scale); 3184 if (SrcUndef[i]) 3185 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 3186 } 3187 } 3188 } 3189 3190 // Bitcast from 'small element' src vector to 'large element' vector, we 3191 // demand all smaller source elements covered by the larger demanded element 3192 // of this vector. 3193 if ((NumSrcElts % NumElts) == 0) { 3194 unsigned Scale = NumSrcElts / NumElts; 3195 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 3196 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 3197 TLO, Depth + 1)) 3198 return true; 3199 3200 // If all the src elements covering an output element are zero/undef, then 3201 // the output element will be as well, assuming it was demanded. 3202 for (unsigned i = 0; i != NumElts; ++i) { 3203 if (DemandedElts[i]) { 3204 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 3205 KnownZero.setBit(i); 3206 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 3207 KnownUndef.setBit(i); 3208 } 3209 } 3210 } 3211 break; 3212 } 3213 case ISD::FREEZE: { 3214 SDValue N0 = Op.getOperand(0); 3215 if (TLO.DAG.isGuaranteedNotToBeUndefOrPoison(N0, DemandedElts, 3216 /*PoisonOnly=*/false)) 3217 return TLO.CombineTo(Op, N0); 3218 3219 // TODO: Replace this with the general fold from DAGCombiner::visitFREEZE 3220 // freeze(op(x, ...)) -> op(freeze(x), ...). 3221 if (N0.getOpcode() == ISD::SCALAR_TO_VECTOR && DemandedElts == 1) 3222 return TLO.CombineTo( 3223 Op, TLO.DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, 3224 TLO.DAG.getFreeze(N0.getOperand(0)))); 3225 break; 3226 } 3227 case ISD::BUILD_VECTOR: { 3228 // Check all elements and simplify any unused elements with UNDEF. 3229 if (!DemandedElts.isAllOnes()) { 3230 // Don't simplify BROADCASTS. 3231 if (llvm::any_of(Op->op_values(), 3232 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 3233 SmallVector<SDValue, 32> Ops(Op->ops()); 3234 bool Updated = false; 3235 for (unsigned i = 0; i != NumElts; ++i) { 3236 if (!DemandedElts[i] && !Ops[i].isUndef()) { 3237 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 3238 KnownUndef.setBit(i); 3239 Updated = true; 3240 } 3241 } 3242 if (Updated) 3243 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 3244 } 3245 } 3246 for (unsigned i = 0; i != NumElts; ++i) { 3247 SDValue SrcOp = Op.getOperand(i); 3248 if (SrcOp.isUndef()) { 3249 KnownUndef.setBit(i); 3250 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 3251 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 3252 KnownZero.setBit(i); 3253 } 3254 } 3255 break; 3256 } 3257 case ISD::CONCAT_VECTORS: { 3258 EVT SubVT = Op.getOperand(0).getValueType(); 3259 unsigned NumSubVecs = Op.getNumOperands(); 3260 unsigned NumSubElts = SubVT.getVectorNumElements(); 3261 for (unsigned i = 0; i != NumSubVecs; ++i) { 3262 SDValue SubOp = Op.getOperand(i); 3263 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 3264 APInt SubUndef, SubZero; 3265 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 3266 Depth + 1)) 3267 return true; 3268 KnownUndef.insertBits(SubUndef, i * NumSubElts); 3269 KnownZero.insertBits(SubZero, i * NumSubElts); 3270 } 3271 3272 // Attempt to avoid multi-use ops if we don't need anything from them. 3273 if (!DemandedElts.isAllOnes()) { 3274 bool FoundNewSub = false; 3275 SmallVector<SDValue, 2> DemandedSubOps; 3276 for (unsigned i = 0; i != NumSubVecs; ++i) { 3277 SDValue SubOp = Op.getOperand(i); 3278 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 3279 SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts( 3280 SubOp, SubElts, TLO.DAG, Depth + 1); 3281 DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp); 3282 FoundNewSub = NewSubOp ? true : FoundNewSub; 3283 } 3284 if (FoundNewSub) { 3285 SDValue NewOp = 3286 TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps); 3287 return TLO.CombineTo(Op, NewOp); 3288 } 3289 } 3290 break; 3291 } 3292 case ISD::INSERT_SUBVECTOR: { 3293 // Demand any elements from the subvector and the remainder from the src its 3294 // inserted into. 3295 SDValue Src = Op.getOperand(0); 3296 SDValue Sub = Op.getOperand(1); 3297 uint64_t Idx = Op.getConstantOperandVal(2); 3298 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3299 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3300 APInt DemandedSrcElts = DemandedElts; 3301 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 3302 3303 APInt SubUndef, SubZero; 3304 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 3305 Depth + 1)) 3306 return true; 3307 3308 // If none of the src operand elements are demanded, replace it with undef. 3309 if (!DemandedSrcElts && !Src.isUndef()) 3310 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 3311 TLO.DAG.getUNDEF(VT), Sub, 3312 Op.getOperand(2))); 3313 3314 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 3315 TLO, Depth + 1)) 3316 return true; 3317 KnownUndef.insertBits(SubUndef, Idx); 3318 KnownZero.insertBits(SubZero, Idx); 3319 3320 // Attempt to avoid multi-use ops if we don't need anything from them. 3321 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 3322 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 3323 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 3324 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 3325 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 3326 if (NewSrc || NewSub) { 3327 NewSrc = NewSrc ? NewSrc : Src; 3328 NewSub = NewSub ? NewSub : Sub; 3329 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 3330 NewSub, Op.getOperand(2)); 3331 return TLO.CombineTo(Op, NewOp); 3332 } 3333 } 3334 break; 3335 } 3336 case ISD::EXTRACT_SUBVECTOR: { 3337 // Offset the demanded elts by the subvector index. 3338 SDValue Src = Op.getOperand(0); 3339 if (Src.getValueType().isScalableVector()) 3340 break; 3341 uint64_t Idx = Op.getConstantOperandVal(1); 3342 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3343 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 3344 3345 APInt SrcUndef, SrcZero; 3346 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3347 Depth + 1)) 3348 return true; 3349 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 3350 KnownZero = SrcZero.extractBits(NumElts, Idx); 3351 3352 // Attempt to avoid multi-use ops if we don't need anything from them. 3353 if (!DemandedElts.isAllOnes()) { 3354 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 3355 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 3356 if (NewSrc) { 3357 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 3358 Op.getOperand(1)); 3359 return TLO.CombineTo(Op, NewOp); 3360 } 3361 } 3362 break; 3363 } 3364 case ISD::INSERT_VECTOR_ELT: { 3365 SDValue Vec = Op.getOperand(0); 3366 SDValue Scl = Op.getOperand(1); 3367 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3368 3369 // For a legal, constant insertion index, if we don't need this insertion 3370 // then strip it, else remove it from the demanded elts. 3371 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 3372 unsigned Idx = CIdx->getZExtValue(); 3373 if (!DemandedElts[Idx]) 3374 return TLO.CombineTo(Op, Vec); 3375 3376 APInt DemandedVecElts(DemandedElts); 3377 DemandedVecElts.clearBit(Idx); 3378 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 3379 KnownZero, TLO, Depth + 1)) 3380 return true; 3381 3382 KnownUndef.setBitVal(Idx, Scl.isUndef()); 3383 3384 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 3385 break; 3386 } 3387 3388 APInt VecUndef, VecZero; 3389 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 3390 Depth + 1)) 3391 return true; 3392 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 3393 break; 3394 } 3395 case ISD::VSELECT: { 3396 SDValue Sel = Op.getOperand(0); 3397 SDValue LHS = Op.getOperand(1); 3398 SDValue RHS = Op.getOperand(2); 3399 3400 // Try to transform the select condition based on the current demanded 3401 // elements. 3402 APInt UndefSel, ZeroSel; 3403 if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, ZeroSel, TLO, 3404 Depth + 1)) 3405 return true; 3406 3407 // See if we can simplify either vselect operand. 3408 APInt DemandedLHS(DemandedElts); 3409 APInt DemandedRHS(DemandedElts); 3410 APInt UndefLHS, ZeroLHS; 3411 APInt UndefRHS, ZeroRHS; 3412 if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO, 3413 Depth + 1)) 3414 return true; 3415 if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO, 3416 Depth + 1)) 3417 return true; 3418 3419 KnownUndef = UndefLHS & UndefRHS; 3420 KnownZero = ZeroLHS & ZeroRHS; 3421 3422 // If we know that the selected element is always zero, we don't need the 3423 // select value element. 3424 APInt DemandedSel = DemandedElts & ~KnownZero; 3425 if (DemandedSel != DemandedElts) 3426 if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, ZeroSel, TLO, 3427 Depth + 1)) 3428 return true; 3429 3430 break; 3431 } 3432 case ISD::VECTOR_SHUFFLE: { 3433 SDValue LHS = Op.getOperand(0); 3434 SDValue RHS = Op.getOperand(1); 3435 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 3436 3437 // Collect demanded elements from shuffle operands.. 3438 APInt DemandedLHS(NumElts, 0); 3439 APInt DemandedRHS(NumElts, 0); 3440 for (unsigned i = 0; i != NumElts; ++i) { 3441 int M = ShuffleMask[i]; 3442 if (M < 0 || !DemandedElts[i]) 3443 continue; 3444 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 3445 if (M < (int)NumElts) 3446 DemandedLHS.setBit(M); 3447 else 3448 DemandedRHS.setBit(M - NumElts); 3449 } 3450 3451 // See if we can simplify either shuffle operand. 3452 APInt UndefLHS, ZeroLHS; 3453 APInt UndefRHS, ZeroRHS; 3454 if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO, 3455 Depth + 1)) 3456 return true; 3457 if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO, 3458 Depth + 1)) 3459 return true; 3460 3461 // Simplify mask using undef elements from LHS/RHS. 3462 bool Updated = false; 3463 bool IdentityLHS = true, IdentityRHS = true; 3464 SmallVector<int, 32> NewMask(ShuffleMask); 3465 for (unsigned i = 0; i != NumElts; ++i) { 3466 int &M = NewMask[i]; 3467 if (M < 0) 3468 continue; 3469 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 3470 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 3471 Updated = true; 3472 M = -1; 3473 } 3474 IdentityLHS &= (M < 0) || (M == (int)i); 3475 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 3476 } 3477 3478 // Update legal shuffle masks based on demanded elements if it won't reduce 3479 // to Identity which can cause premature removal of the shuffle mask. 3480 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 3481 SDValue LegalShuffle = 3482 buildLegalVectorShuffle(VT, DL, LHS, RHS, NewMask, TLO.DAG); 3483 if (LegalShuffle) 3484 return TLO.CombineTo(Op, LegalShuffle); 3485 } 3486 3487 // Propagate undef/zero elements from LHS/RHS. 3488 for (unsigned i = 0; i != NumElts; ++i) { 3489 int M = ShuffleMask[i]; 3490 if (M < 0) { 3491 KnownUndef.setBit(i); 3492 } else if (M < (int)NumElts) { 3493 if (UndefLHS[M]) 3494 KnownUndef.setBit(i); 3495 if (ZeroLHS[M]) 3496 KnownZero.setBit(i); 3497 } else { 3498 if (UndefRHS[M - NumElts]) 3499 KnownUndef.setBit(i); 3500 if (ZeroRHS[M - NumElts]) 3501 KnownZero.setBit(i); 3502 } 3503 } 3504 break; 3505 } 3506 case ISD::ANY_EXTEND_VECTOR_INREG: 3507 case ISD::SIGN_EXTEND_VECTOR_INREG: 3508 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3509 APInt SrcUndef, SrcZero; 3510 SDValue Src = Op.getOperand(0); 3511 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3512 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts); 3513 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3514 Depth + 1)) 3515 return true; 3516 KnownZero = SrcZero.zextOrTrunc(NumElts); 3517 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 3518 3519 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 3520 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 3521 DemandedSrcElts == 1) { 3522 // aext - if we just need the bottom element then we can bitcast. 3523 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 3524 } 3525 3526 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 3527 // zext(undef) upper bits are guaranteed to be zero. 3528 if (DemandedElts.isSubsetOf(KnownUndef)) 3529 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3530 KnownUndef.clearAllBits(); 3531 3532 // zext - if we just need the bottom element then we can mask: 3533 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 3534 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && 3535 Op->isOnlyUserOf(Src.getNode()) && 3536 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 3537 SDLoc DL(Op); 3538 EVT SrcVT = Src.getValueType(); 3539 EVT SrcSVT = SrcVT.getScalarType(); 3540 SmallVector<SDValue> MaskElts; 3541 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 3542 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 3543 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 3544 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 3545 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 3546 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 3547 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 3548 } 3549 } 3550 } 3551 break; 3552 } 3553 3554 // TODO: There are more binop opcodes that could be handled here - MIN, 3555 // MAX, saturated math, etc. 3556 case ISD::ADD: { 3557 SDValue Op0 = Op.getOperand(0); 3558 SDValue Op1 = Op.getOperand(1); 3559 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) { 3560 APInt UndefLHS, ZeroLHS; 3561 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3562 Depth + 1, /*AssumeSingleUse*/ true)) 3563 return true; 3564 } 3565 [[fallthrough]]; 3566 } 3567 case ISD::AVGCEILS: 3568 case ISD::AVGCEILU: 3569 case ISD::AVGFLOORS: 3570 case ISD::AVGFLOORU: 3571 case ISD::OR: 3572 case ISD::XOR: 3573 case ISD::SUB: 3574 case ISD::FADD: 3575 case ISD::FSUB: 3576 case ISD::FMUL: 3577 case ISD::FDIV: 3578 case ISD::FREM: { 3579 SDValue Op0 = Op.getOperand(0); 3580 SDValue Op1 = Op.getOperand(1); 3581 3582 APInt UndefRHS, ZeroRHS; 3583 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3584 Depth + 1)) 3585 return true; 3586 APInt UndefLHS, ZeroLHS; 3587 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3588 Depth + 1)) 3589 return true; 3590 3591 KnownZero = ZeroLHS & ZeroRHS; 3592 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 3593 3594 // Attempt to avoid multi-use ops if we don't need anything from them. 3595 // TODO - use KnownUndef to relax the demandedelts? 3596 if (!DemandedElts.isAllOnes()) 3597 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3598 return true; 3599 break; 3600 } 3601 case ISD::SHL: 3602 case ISD::SRL: 3603 case ISD::SRA: 3604 case ISD::ROTL: 3605 case ISD::ROTR: { 3606 SDValue Op0 = Op.getOperand(0); 3607 SDValue Op1 = Op.getOperand(1); 3608 3609 APInt UndefRHS, ZeroRHS; 3610 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3611 Depth + 1)) 3612 return true; 3613 APInt UndefLHS, ZeroLHS; 3614 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3615 Depth + 1)) 3616 return true; 3617 3618 KnownZero = ZeroLHS; 3619 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 3620 3621 // Attempt to avoid multi-use ops if we don't need anything from them. 3622 // TODO - use KnownUndef to relax the demandedelts? 3623 if (!DemandedElts.isAllOnes()) 3624 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3625 return true; 3626 break; 3627 } 3628 case ISD::MUL: 3629 case ISD::MULHU: 3630 case ISD::MULHS: 3631 case ISD::AND: { 3632 SDValue Op0 = Op.getOperand(0); 3633 SDValue Op1 = Op.getOperand(1); 3634 3635 APInt SrcUndef, SrcZero; 3636 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 3637 Depth + 1)) 3638 return true; 3639 // If we know that a demanded element was zero in Op1 we don't need to 3640 // demand it in Op0 - its guaranteed to be zero. 3641 APInt DemandedElts0 = DemandedElts & ~SrcZero; 3642 if (SimplifyDemandedVectorElts(Op0, DemandedElts0, KnownUndef, KnownZero, 3643 TLO, Depth + 1)) 3644 return true; 3645 3646 KnownUndef &= DemandedElts0; 3647 KnownZero &= DemandedElts0; 3648 3649 // If every element pair has a zero/undef then just fold to zero. 3650 // fold (and x, undef) -> 0 / (and x, 0) -> 0 3651 // fold (mul x, undef) -> 0 / (mul x, 0) -> 0 3652 if (DemandedElts.isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef)) 3653 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3654 3655 // If either side has a zero element, then the result element is zero, even 3656 // if the other is an UNDEF. 3657 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 3658 // and then handle 'and' nodes with the rest of the binop opcodes. 3659 KnownZero |= SrcZero; 3660 KnownUndef &= SrcUndef; 3661 KnownUndef &= ~KnownZero; 3662 3663 // Attempt to avoid multi-use ops if we don't need anything from them. 3664 if (!DemandedElts.isAllOnes()) 3665 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3666 return true; 3667 break; 3668 } 3669 case ISD::TRUNCATE: 3670 case ISD::SIGN_EXTEND: 3671 case ISD::ZERO_EXTEND: 3672 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 3673 KnownZero, TLO, Depth + 1)) 3674 return true; 3675 3676 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 3677 // zext(undef) upper bits are guaranteed to be zero. 3678 if (DemandedElts.isSubsetOf(KnownUndef)) 3679 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3680 KnownUndef.clearAllBits(); 3681 } 3682 break; 3683 default: { 3684 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 3685 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 3686 KnownZero, TLO, Depth)) 3687 return true; 3688 } else { 3689 KnownBits Known; 3690 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 3691 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 3692 TLO, Depth, AssumeSingleUse)) 3693 return true; 3694 } 3695 break; 3696 } 3697 } 3698 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 3699 3700 // Constant fold all undef cases. 3701 // TODO: Handle zero cases as well. 3702 if (DemandedElts.isSubsetOf(KnownUndef)) 3703 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3704 3705 return false; 3706 } 3707 3708 /// Determine which of the bits specified in Mask are known to be either zero or 3709 /// one and return them in the Known. 3710 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3711 KnownBits &Known, 3712 const APInt &DemandedElts, 3713 const SelectionDAG &DAG, 3714 unsigned Depth) const { 3715 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3716 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3717 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3718 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3719 "Should use MaskedValueIsZero if you don't know whether Op" 3720 " is a target node!"); 3721 Known.resetAll(); 3722 } 3723 3724 void TargetLowering::computeKnownBitsForTargetInstr( 3725 GISelKnownBits &Analysis, Register R, KnownBits &Known, 3726 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 3727 unsigned Depth) const { 3728 Known.resetAll(); 3729 } 3730 3731 void TargetLowering::computeKnownBitsForFrameIndex( 3732 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 3733 // The low bits are known zero if the pointer is aligned. 3734 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 3735 } 3736 3737 Align TargetLowering::computeKnownAlignForTargetInstr( 3738 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 3739 unsigned Depth) const { 3740 return Align(1); 3741 } 3742 3743 /// This method can be implemented by targets that want to expose additional 3744 /// information about sign bits to the DAG Combiner. 3745 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3746 const APInt &, 3747 const SelectionDAG &, 3748 unsigned Depth) const { 3749 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3750 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3751 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3752 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3753 "Should use ComputeNumSignBits if you don't know whether Op" 3754 " is a target node!"); 3755 return 1; 3756 } 3757 3758 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3759 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3760 const MachineRegisterInfo &MRI, unsigned Depth) const { 3761 return 1; 3762 } 3763 3764 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3765 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3766 TargetLoweringOpt &TLO, unsigned Depth) const { 3767 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3768 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3769 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3770 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3771 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3772 " is a target node!"); 3773 return false; 3774 } 3775 3776 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3777 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3778 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3779 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3780 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3781 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3782 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3783 "Should use SimplifyDemandedBits if you don't know whether Op" 3784 " is a target node!"); 3785 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3786 return false; 3787 } 3788 3789 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3790 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3791 SelectionDAG &DAG, unsigned Depth) const { 3792 assert( 3793 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3794 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3795 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3796 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3797 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3798 " is a target node!"); 3799 return SDValue(); 3800 } 3801 3802 SDValue 3803 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3804 SDValue N1, MutableArrayRef<int> Mask, 3805 SelectionDAG &DAG) const { 3806 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3807 if (!LegalMask) { 3808 std::swap(N0, N1); 3809 ShuffleVectorSDNode::commuteMask(Mask); 3810 LegalMask = isShuffleMaskLegal(Mask, VT); 3811 } 3812 3813 if (!LegalMask) 3814 return SDValue(); 3815 3816 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3817 } 3818 3819 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3820 return nullptr; 3821 } 3822 3823 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3824 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3825 bool PoisonOnly, unsigned Depth) const { 3826 assert( 3827 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3828 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3829 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3830 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3831 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3832 " is a target node!"); 3833 3834 // If Op can't create undef/poison and none of its operands are undef/poison 3835 // then Op is never undef/poison. 3836 return !canCreateUndefOrPoisonForTargetNode(Op, DemandedElts, DAG, PoisonOnly, 3837 /*ConsiderFlags*/ true, Depth) && 3838 all_of(Op->ops(), [&](SDValue V) { 3839 return DAG.isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly, 3840 Depth + 1); 3841 }); 3842 } 3843 3844 bool TargetLowering::canCreateUndefOrPoisonForTargetNode( 3845 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3846 bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const { 3847 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3848 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3849 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3850 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3851 "Should use canCreateUndefOrPoison if you don't know whether Op" 3852 " is a target node!"); 3853 // Be conservative and return true. 3854 return true; 3855 } 3856 3857 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3858 const SelectionDAG &DAG, 3859 bool SNaN, 3860 unsigned Depth) const { 3861 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3862 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3863 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3864 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3865 "Should use isKnownNeverNaN if you don't know whether Op" 3866 " is a target node!"); 3867 return false; 3868 } 3869 3870 bool TargetLowering::isSplatValueForTargetNode(SDValue Op, 3871 const APInt &DemandedElts, 3872 APInt &UndefElts, 3873 const SelectionDAG &DAG, 3874 unsigned Depth) const { 3875 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3876 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3877 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3878 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3879 "Should use isSplatValue if you don't know whether Op" 3880 " is a target node!"); 3881 return false; 3882 } 3883 3884 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3885 // work with truncating build vectors and vectors with elements of less than 3886 // 8 bits. 3887 bool TargetLowering::isConstTrueVal(SDValue N) const { 3888 if (!N) 3889 return false; 3890 3891 unsigned EltWidth; 3892 APInt CVal; 3893 if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false, 3894 /*AllowTruncation=*/true)) { 3895 CVal = CN->getAPIntValue(); 3896 EltWidth = N.getValueType().getScalarSizeInBits(); 3897 } else 3898 return false; 3899 3900 // If this is a truncating splat, truncate the splat value. 3901 // Otherwise, we may fail to match the expected values below. 3902 if (EltWidth < CVal.getBitWidth()) 3903 CVal = CVal.trunc(EltWidth); 3904 3905 switch (getBooleanContents(N.getValueType())) { 3906 case UndefinedBooleanContent: 3907 return CVal[0]; 3908 case ZeroOrOneBooleanContent: 3909 return CVal.isOne(); 3910 case ZeroOrNegativeOneBooleanContent: 3911 return CVal.isAllOnes(); 3912 } 3913 3914 llvm_unreachable("Invalid boolean contents"); 3915 } 3916 3917 bool TargetLowering::isConstFalseVal(SDValue N) const { 3918 if (!N) 3919 return false; 3920 3921 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3922 if (!CN) { 3923 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3924 if (!BV) 3925 return false; 3926 3927 // Only interested in constant splats, we don't care about undef 3928 // elements in identifying boolean constants and getConstantSplatNode 3929 // returns NULL if all ops are undef; 3930 CN = BV->getConstantSplatNode(); 3931 if (!CN) 3932 return false; 3933 } 3934 3935 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3936 return !CN->getAPIntValue()[0]; 3937 3938 return CN->isZero(); 3939 } 3940 3941 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3942 bool SExt) const { 3943 if (VT == MVT::i1) 3944 return N->isOne(); 3945 3946 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3947 switch (Cnt) { 3948 case TargetLowering::ZeroOrOneBooleanContent: 3949 // An extended value of 1 is always true, unless its original type is i1, 3950 // in which case it will be sign extended to -1. 3951 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3952 case TargetLowering::UndefinedBooleanContent: 3953 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3954 return N->isAllOnes() && SExt; 3955 } 3956 llvm_unreachable("Unexpected enumeration."); 3957 } 3958 3959 /// This helper function of SimplifySetCC tries to optimize the comparison when 3960 /// either operand of the SetCC node is a bitwise-and instruction. 3961 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3962 ISD::CondCode Cond, const SDLoc &DL, 3963 DAGCombinerInfo &DCI) const { 3964 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3965 std::swap(N0, N1); 3966 3967 SelectionDAG &DAG = DCI.DAG; 3968 EVT OpVT = N0.getValueType(); 3969 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3970 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3971 return SDValue(); 3972 3973 // (X & Y) != 0 --> zextOrTrunc(X & Y) 3974 // iff everything but LSB is known zero: 3975 if (Cond == ISD::SETNE && isNullConstant(N1) && 3976 (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent || 3977 getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) { 3978 unsigned NumEltBits = OpVT.getScalarSizeInBits(); 3979 APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1); 3980 if (DAG.MaskedValueIsZero(N0, UpperBits)) 3981 return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT); 3982 } 3983 3984 // Try to eliminate a power-of-2 mask constant by converting to a signbit 3985 // test in a narrow type that we can truncate to with no cost. Examples: 3986 // (i32 X & 32768) == 0 --> (trunc X to i16) >= 0 3987 // (i32 X & 32768) != 0 --> (trunc X to i16) < 0 3988 // TODO: This conservatively checks for type legality on the source and 3989 // destination types. That may inhibit optimizations, but it also 3990 // allows setcc->shift transforms that may be more beneficial. 3991 auto *AndC = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3992 if (AndC && isNullConstant(N1) && AndC->getAPIntValue().isPowerOf2() && 3993 isTypeLegal(OpVT) && N0.hasOneUse()) { 3994 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), 3995 AndC->getAPIntValue().getActiveBits()); 3996 if (isTruncateFree(OpVT, NarrowVT) && isTypeLegal(NarrowVT)) { 3997 SDValue Trunc = DAG.getZExtOrTrunc(N0.getOperand(0), DL, NarrowVT); 3998 SDValue Zero = DAG.getConstant(0, DL, NarrowVT); 3999 return DAG.getSetCC(DL, VT, Trunc, Zero, 4000 Cond == ISD::SETEQ ? ISD::SETGE : ISD::SETLT); 4001 } 4002 } 4003 4004 // Match these patterns in any of their permutations: 4005 // (X & Y) == Y 4006 // (X & Y) != Y 4007 SDValue X, Y; 4008 if (N0.getOperand(0) == N1) { 4009 X = N0.getOperand(1); 4010 Y = N0.getOperand(0); 4011 } else if (N0.getOperand(1) == N1) { 4012 X = N0.getOperand(0); 4013 Y = N0.getOperand(1); 4014 } else { 4015 return SDValue(); 4016 } 4017 4018 // TODO: We should invert (X & Y) eq/ne 0 -> (X & Y) ne/eq Y if 4019 // `isXAndYEqZeroPreferableToXAndYEqY` is false. This is a bit difficult as 4020 // its liable to create and infinite loop. 4021 SDValue Zero = DAG.getConstant(0, DL, OpVT); 4022 if (isXAndYEqZeroPreferableToXAndYEqY(Cond, OpVT) && 4023 DAG.isKnownToBeAPowerOfTwo(Y)) { 4024 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 4025 // Note that where Y is variable and is known to have at most one bit set 4026 // (for example, if it is Z & 1) we cannot do this; the expressions are not 4027 // equivalent when Y == 0. 4028 assert(OpVT.isInteger()); 4029 Cond = ISD::getSetCCInverse(Cond, OpVT); 4030 if (DCI.isBeforeLegalizeOps() || 4031 isCondCodeLegal(Cond, N0.getSimpleValueType())) 4032 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 4033 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 4034 // If the target supports an 'and-not' or 'and-complement' logic operation, 4035 // try to use that to make a comparison operation more efficient. 4036 // But don't do this transform if the mask is a single bit because there are 4037 // more efficient ways to deal with that case (for example, 'bt' on x86 or 4038 // 'rlwinm' on PPC). 4039 4040 // Bail out if the compare operand that we want to turn into a zero is 4041 // already a zero (otherwise, infinite loop). 4042 if (isNullConstant(Y)) 4043 return SDValue(); 4044 4045 // Transform this into: ~X & Y == 0. 4046 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 4047 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 4048 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 4049 } 4050 4051 return SDValue(); 4052 } 4053 4054 /// There are multiple IR patterns that could be checking whether certain 4055 /// truncation of a signed number would be lossy or not. The pattern which is 4056 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 4057 /// We are looking for the following pattern: (KeptBits is a constant) 4058 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 4059 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 4060 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 4061 /// We will unfold it into the natural trunc+sext pattern: 4062 /// ((%x << C) a>> C) dstcond %x 4063 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 4064 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 4065 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 4066 const SDLoc &DL) const { 4067 // We must be comparing with a constant. 4068 ConstantSDNode *C1; 4069 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 4070 return SDValue(); 4071 4072 // N0 should be: add %x, (1 << (KeptBits-1)) 4073 if (N0->getOpcode() != ISD::ADD) 4074 return SDValue(); 4075 4076 // And we must be 'add'ing a constant. 4077 ConstantSDNode *C01; 4078 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 4079 return SDValue(); 4080 4081 SDValue X = N0->getOperand(0); 4082 EVT XVT = X.getValueType(); 4083 4084 // Validate constants ... 4085 4086 APInt I1 = C1->getAPIntValue(); 4087 4088 ISD::CondCode NewCond; 4089 if (Cond == ISD::CondCode::SETULT) { 4090 NewCond = ISD::CondCode::SETEQ; 4091 } else if (Cond == ISD::CondCode::SETULE) { 4092 NewCond = ISD::CondCode::SETEQ; 4093 // But need to 'canonicalize' the constant. 4094 I1 += 1; 4095 } else if (Cond == ISD::CondCode::SETUGT) { 4096 NewCond = ISD::CondCode::SETNE; 4097 // But need to 'canonicalize' the constant. 4098 I1 += 1; 4099 } else if (Cond == ISD::CondCode::SETUGE) { 4100 NewCond = ISD::CondCode::SETNE; 4101 } else 4102 return SDValue(); 4103 4104 APInt I01 = C01->getAPIntValue(); 4105 4106 auto checkConstants = [&I1, &I01]() -> bool { 4107 // Both of them must be power-of-two, and the constant from setcc is bigger. 4108 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 4109 }; 4110 4111 if (checkConstants()) { 4112 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 4113 } else { 4114 // What if we invert constants? (and the target predicate) 4115 I1.negate(); 4116 I01.negate(); 4117 assert(XVT.isInteger()); 4118 NewCond = getSetCCInverse(NewCond, XVT); 4119 if (!checkConstants()) 4120 return SDValue(); 4121 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 4122 } 4123 4124 // They are power-of-two, so which bit is set? 4125 const unsigned KeptBits = I1.logBase2(); 4126 const unsigned KeptBitsMinusOne = I01.logBase2(); 4127 4128 // Magic! 4129 if (KeptBits != (KeptBitsMinusOne + 1)) 4130 return SDValue(); 4131 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 4132 4133 // We don't want to do this in every single case. 4134 SelectionDAG &DAG = DCI.DAG; 4135 if (!shouldTransformSignedTruncationCheck(XVT, KeptBits)) 4136 return SDValue(); 4137 4138 // Unfold into: sext_inreg(%x) cond %x 4139 // Where 'cond' will be either 'eq' or 'ne'. 4140 SDValue SExtInReg = DAG.getNode( 4141 ISD::SIGN_EXTEND_INREG, DL, XVT, X, 4142 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), KeptBits))); 4143 return DAG.getSetCC(DL, SCCVT, SExtInReg, X, NewCond); 4144 } 4145 4146 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4147 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 4148 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 4149 DAGCombinerInfo &DCI, const SDLoc &DL) const { 4150 assert(isConstOrConstSplat(N1C) && isConstOrConstSplat(N1C)->isZero() && 4151 "Should be a comparison with 0."); 4152 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4153 "Valid only for [in]equality comparisons."); 4154 4155 unsigned NewShiftOpcode; 4156 SDValue X, C, Y; 4157 4158 SelectionDAG &DAG = DCI.DAG; 4159 4160 // Look for '(C l>>/<< Y)'. 4161 auto Match = [&NewShiftOpcode, &X, &C, &Y, &DAG, this](SDValue V) { 4162 // The shift should be one-use. 4163 if (!V.hasOneUse()) 4164 return false; 4165 unsigned OldShiftOpcode = V.getOpcode(); 4166 switch (OldShiftOpcode) { 4167 case ISD::SHL: 4168 NewShiftOpcode = ISD::SRL; 4169 break; 4170 case ISD::SRL: 4171 NewShiftOpcode = ISD::SHL; 4172 break; 4173 default: 4174 return false; // must be a logical shift. 4175 } 4176 // We should be shifting a constant. 4177 // FIXME: best to use isConstantOrConstantVector(). 4178 C = V.getOperand(0); 4179 ConstantSDNode *CC = 4180 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 4181 if (!CC) 4182 return false; 4183 Y = V.getOperand(1); 4184 4185 ConstantSDNode *XC = 4186 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 4187 return shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 4188 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 4189 }; 4190 4191 // LHS of comparison should be an one-use 'and'. 4192 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 4193 return SDValue(); 4194 4195 X = N0.getOperand(0); 4196 SDValue Mask = N0.getOperand(1); 4197 4198 // 'and' is commutative! 4199 if (!Match(Mask)) { 4200 std::swap(X, Mask); 4201 if (!Match(Mask)) 4202 return SDValue(); 4203 } 4204 4205 EVT VT = X.getValueType(); 4206 4207 // Produce: 4208 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 4209 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 4210 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 4211 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 4212 return T2; 4213 } 4214 4215 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 4216 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 4217 /// handle the commuted versions of these patterns. 4218 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 4219 ISD::CondCode Cond, const SDLoc &DL, 4220 DAGCombinerInfo &DCI) const { 4221 unsigned BOpcode = N0.getOpcode(); 4222 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 4223 "Unexpected binop"); 4224 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 4225 4226 // (X + Y) == X --> Y == 0 4227 // (X - Y) == X --> Y == 0 4228 // (X ^ Y) == X --> Y == 0 4229 SelectionDAG &DAG = DCI.DAG; 4230 EVT OpVT = N0.getValueType(); 4231 SDValue X = N0.getOperand(0); 4232 SDValue Y = N0.getOperand(1); 4233 if (X == N1) 4234 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 4235 4236 if (Y != N1) 4237 return SDValue(); 4238 4239 // (X + Y) == Y --> X == 0 4240 // (X ^ Y) == Y --> X == 0 4241 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 4242 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 4243 4244 // The shift would not be valid if the operands are boolean (i1). 4245 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 4246 return SDValue(); 4247 4248 // (X - Y) == Y --> X == Y << 1 4249 SDValue One = DAG.getShiftAmountConstant(1, OpVT, DL); 4250 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 4251 if (!DCI.isCalledByLegalizer()) 4252 DCI.AddToWorklist(YShl1.getNode()); 4253 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 4254 } 4255 4256 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 4257 SDValue N0, const APInt &C1, 4258 ISD::CondCode Cond, const SDLoc &dl, 4259 SelectionDAG &DAG) { 4260 // Look through truncs that don't change the value of a ctpop. 4261 // FIXME: Add vector support? Need to be careful with setcc result type below. 4262 SDValue CTPOP = N0; 4263 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 4264 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 4265 CTPOP = N0.getOperand(0); 4266 4267 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 4268 return SDValue(); 4269 4270 EVT CTVT = CTPOP.getValueType(); 4271 SDValue CTOp = CTPOP.getOperand(0); 4272 4273 // Expand a power-of-2-or-zero comparison based on ctpop: 4274 // (ctpop x) u< 2 -> (x & x-1) == 0 4275 // (ctpop x) u> 1 -> (x & x-1) != 0 4276 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 4277 // Keep the CTPOP if it is a cheap vector op. 4278 if (CTVT.isVector() && TLI.isCtpopFast(CTVT)) 4279 return SDValue(); 4280 4281 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 4282 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 4283 return SDValue(); 4284 if (C1 == 0 && (Cond == ISD::SETULT)) 4285 return SDValue(); // This is handled elsewhere. 4286 4287 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 4288 4289 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 4290 SDValue Result = CTOp; 4291 for (unsigned i = 0; i < Passes; i++) { 4292 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 4293 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 4294 } 4295 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 4296 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 4297 } 4298 4299 // Expand a power-of-2 comparison based on ctpop 4300 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 4301 // Keep the CTPOP if it is cheap. 4302 if (TLI.isCtpopFast(CTVT)) 4303 return SDValue(); 4304 4305 SDValue Zero = DAG.getConstant(0, dl, CTVT); 4306 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 4307 assert(CTVT.isInteger()); 4308 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 4309 4310 // Its not uncommon for known-never-zero X to exist in (ctpop X) eq/ne 1, so 4311 // check before emitting a potentially unnecessary op. 4312 if (DAG.isKnownNeverZero(CTOp)) { 4313 // (ctpop x) == 1 --> (x & x-1) == 0 4314 // (ctpop x) != 1 --> (x & x-1) != 0 4315 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 4316 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 4317 return RHS; 4318 } 4319 4320 // (ctpop x) == 1 --> (x ^ x-1) > x-1 4321 // (ctpop x) != 1 --> (x ^ x-1) <= x-1 4322 SDValue Xor = DAG.getNode(ISD::XOR, dl, CTVT, CTOp, Add); 4323 ISD::CondCode CmpCond = Cond == ISD::SETEQ ? ISD::SETUGT : ISD::SETULE; 4324 return DAG.getSetCC(dl, VT, Xor, Add, CmpCond); 4325 } 4326 4327 return SDValue(); 4328 } 4329 4330 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, 4331 ISD::CondCode Cond, const SDLoc &dl, 4332 SelectionDAG &DAG) { 4333 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 4334 return SDValue(); 4335 4336 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 4337 if (!C1 || !(C1->isZero() || C1->isAllOnes())) 4338 return SDValue(); 4339 4340 auto getRotateSource = [](SDValue X) { 4341 if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR) 4342 return X.getOperand(0); 4343 return SDValue(); 4344 }; 4345 4346 // Peek through a rotated value compared against 0 or -1: 4347 // (rot X, Y) == 0/-1 --> X == 0/-1 4348 // (rot X, Y) != 0/-1 --> X != 0/-1 4349 if (SDValue R = getRotateSource(N0)) 4350 return DAG.getSetCC(dl, VT, R, N1, Cond); 4351 4352 // Peek through an 'or' of a rotated value compared against 0: 4353 // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0 4354 // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0 4355 // 4356 // TODO: Add the 'and' with -1 sibling. 4357 // TODO: Recurse through a series of 'or' ops to find the rotate. 4358 EVT OpVT = N0.getValueType(); 4359 if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) { 4360 if (SDValue R = getRotateSource(N0.getOperand(0))) { 4361 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1)); 4362 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4363 } 4364 if (SDValue R = getRotateSource(N0.getOperand(1))) { 4365 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0)); 4366 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4367 } 4368 } 4369 4370 return SDValue(); 4371 } 4372 4373 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1, 4374 ISD::CondCode Cond, const SDLoc &dl, 4375 SelectionDAG &DAG) { 4376 // If we are testing for all-bits-clear, we might be able to do that with 4377 // less shifting since bit-order does not matter. 4378 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 4379 return SDValue(); 4380 4381 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 4382 if (!C1 || !C1->isZero()) 4383 return SDValue(); 4384 4385 if (!N0.hasOneUse() || 4386 (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR)) 4387 return SDValue(); 4388 4389 unsigned BitWidth = N0.getScalarValueSizeInBits(); 4390 auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2)); 4391 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 4392 return SDValue(); 4393 4394 // Canonicalize fshr as fshl to reduce pattern-matching. 4395 unsigned ShAmt = ShAmtC->getZExtValue(); 4396 if (N0.getOpcode() == ISD::FSHR) 4397 ShAmt = BitWidth - ShAmt; 4398 4399 // Match an 'or' with a specific operand 'Other' in either commuted variant. 4400 SDValue X, Y; 4401 auto matchOr = [&X, &Y](SDValue Or, SDValue Other) { 4402 if (Or.getOpcode() != ISD::OR || !Or.hasOneUse()) 4403 return false; 4404 if (Or.getOperand(0) == Other) { 4405 X = Or.getOperand(0); 4406 Y = Or.getOperand(1); 4407 return true; 4408 } 4409 if (Or.getOperand(1) == Other) { 4410 X = Or.getOperand(1); 4411 Y = Or.getOperand(0); 4412 return true; 4413 } 4414 return false; 4415 }; 4416 4417 EVT OpVT = N0.getValueType(); 4418 EVT ShAmtVT = N0.getOperand(2).getValueType(); 4419 SDValue F0 = N0.getOperand(0); 4420 SDValue F1 = N0.getOperand(1); 4421 if (matchOr(F0, F1)) { 4422 // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0 4423 SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT); 4424 SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt); 4425 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 4426 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4427 } 4428 if (matchOr(F1, F0)) { 4429 // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0 4430 SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT); 4431 SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt); 4432 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 4433 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4434 } 4435 4436 return SDValue(); 4437 } 4438 4439 /// Try to simplify a setcc built with the specified operands and cc. If it is 4440 /// unable to simplify it, return a null SDValue. 4441 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 4442 ISD::CondCode Cond, bool foldBooleans, 4443 DAGCombinerInfo &DCI, 4444 const SDLoc &dl) const { 4445 SelectionDAG &DAG = DCI.DAG; 4446 const DataLayout &Layout = DAG.getDataLayout(); 4447 EVT OpVT = N0.getValueType(); 4448 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4449 4450 // Constant fold or commute setcc. 4451 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 4452 return Fold; 4453 4454 bool N0ConstOrSplat = 4455 isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4456 bool N1ConstOrSplat = 4457 isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4458 4459 // Canonicalize toward having the constant on the RHS. 4460 // TODO: Handle non-splat vector constants. All undef causes trouble. 4461 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 4462 // infinite loop here when we encounter one. 4463 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 4464 if (N0ConstOrSplat && !N1ConstOrSplat && 4465 (DCI.isBeforeLegalizeOps() || 4466 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 4467 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4468 4469 // If we have a subtract with the same 2 non-constant operands as this setcc 4470 // -- but in reverse order -- then try to commute the operands of this setcc 4471 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 4472 // instruction on some targets. 4473 if (!N0ConstOrSplat && !N1ConstOrSplat && 4474 (DCI.isBeforeLegalizeOps() || 4475 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 4476 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 4477 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 4478 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4479 4480 if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG)) 4481 return V; 4482 4483 if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG)) 4484 return V; 4485 4486 if (auto *N1C = isConstOrConstSplat(N1)) { 4487 const APInt &C1 = N1C->getAPIntValue(); 4488 4489 // Optimize some CTPOP cases. 4490 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 4491 return V; 4492 4493 // For equality to 0 of a no-wrap multiply, decompose and test each op: 4494 // X * Y == 0 --> (X == 0) || (Y == 0) 4495 // X * Y != 0 --> (X != 0) && (Y != 0) 4496 // TODO: This bails out if minsize is set, but if the target doesn't have a 4497 // single instruction multiply for this type, it would likely be 4498 // smaller to decompose. 4499 if (C1.isZero() && (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4500 N0.getOpcode() == ISD::MUL && N0.hasOneUse() && 4501 (N0->getFlags().hasNoUnsignedWrap() || 4502 N0->getFlags().hasNoSignedWrap()) && 4503 !Attr.hasFnAttr(Attribute::MinSize)) { 4504 SDValue IsXZero = DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4505 SDValue IsYZero = DAG.getSetCC(dl, VT, N0.getOperand(1), N1, Cond); 4506 unsigned LogicOp = Cond == ISD::SETEQ ? ISD::OR : ISD::AND; 4507 return DAG.getNode(LogicOp, dl, VT, IsXZero, IsYZero); 4508 } 4509 4510 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 4511 // equality comparison, then we're just comparing whether X itself is 4512 // zero. 4513 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 4514 N0.getOperand(0).getOpcode() == ISD::CTLZ && 4515 llvm::has_single_bit<uint32_t>(N0.getScalarValueSizeInBits())) { 4516 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 4517 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4518 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 4519 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 4520 // (srl (ctlz x), 5) == 0 -> X != 0 4521 // (srl (ctlz x), 5) != 1 -> X != 0 4522 Cond = ISD::SETNE; 4523 } else { 4524 // (srl (ctlz x), 5) != 0 -> X == 0 4525 // (srl (ctlz x), 5) == 1 -> X == 0 4526 Cond = ISD::SETEQ; 4527 } 4528 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 4529 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 4530 Cond); 4531 } 4532 } 4533 } 4534 } 4535 4536 // FIXME: Support vectors. 4537 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4538 const APInt &C1 = N1C->getAPIntValue(); 4539 4540 // (zext x) == C --> x == (trunc C) 4541 // (sext x) == C --> x == (trunc C) 4542 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4543 DCI.isBeforeLegalize() && N0->hasOneUse()) { 4544 unsigned MinBits = N0.getValueSizeInBits(); 4545 SDValue PreExt; 4546 bool Signed = false; 4547 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 4548 // ZExt 4549 MinBits = N0->getOperand(0).getValueSizeInBits(); 4550 PreExt = N0->getOperand(0); 4551 } else if (N0->getOpcode() == ISD::AND) { 4552 // DAGCombine turns costly ZExts into ANDs 4553 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 4554 if ((C->getAPIntValue()+1).isPowerOf2()) { 4555 MinBits = C->getAPIntValue().countr_one(); 4556 PreExt = N0->getOperand(0); 4557 } 4558 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 4559 // SExt 4560 MinBits = N0->getOperand(0).getValueSizeInBits(); 4561 PreExt = N0->getOperand(0); 4562 Signed = true; 4563 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 4564 // ZEXTLOAD / SEXTLOAD 4565 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 4566 MinBits = LN0->getMemoryVT().getSizeInBits(); 4567 PreExt = N0; 4568 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 4569 Signed = true; 4570 MinBits = LN0->getMemoryVT().getSizeInBits(); 4571 PreExt = N0; 4572 } 4573 } 4574 4575 // Figure out how many bits we need to preserve this constant. 4576 unsigned ReqdBits = Signed ? C1.getSignificantBits() : C1.getActiveBits(); 4577 4578 // Make sure we're not losing bits from the constant. 4579 if (MinBits > 0 && 4580 MinBits < C1.getBitWidth() && 4581 MinBits >= ReqdBits) { 4582 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 4583 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 4584 // Will get folded away. 4585 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 4586 if (MinBits == 1 && C1 == 1) 4587 // Invert the condition. 4588 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 4589 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4590 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 4591 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 4592 } 4593 4594 // If truncating the setcc operands is not desirable, we can still 4595 // simplify the expression in some cases: 4596 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 4597 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 4598 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 4599 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 4600 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 4601 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 4602 SDValue TopSetCC = N0->getOperand(0); 4603 unsigned N0Opc = N0->getOpcode(); 4604 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 4605 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 4606 TopSetCC.getOpcode() == ISD::SETCC && 4607 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 4608 (isConstFalseVal(N1) || 4609 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 4610 4611 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 4612 (!N1C->isZero() && Cond == ISD::SETNE); 4613 4614 if (!Inverse) 4615 return TopSetCC; 4616 4617 ISD::CondCode InvCond = ISD::getSetCCInverse( 4618 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 4619 TopSetCC.getOperand(0).getValueType()); 4620 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 4621 TopSetCC.getOperand(1), 4622 InvCond); 4623 } 4624 } 4625 } 4626 4627 // If the LHS is '(and load, const)', the RHS is 0, the test is for 4628 // equality or unsigned, and all 1 bits of the const are in the same 4629 // partial word, see if we can shorten the load. 4630 if (DCI.isBeforeLegalize() && 4631 !ISD::isSignedIntSetCC(Cond) && 4632 N0.getOpcode() == ISD::AND && C1 == 0 && 4633 N0.getNode()->hasOneUse() && 4634 isa<LoadSDNode>(N0.getOperand(0)) && 4635 N0.getOperand(0).getNode()->hasOneUse() && 4636 isa<ConstantSDNode>(N0.getOperand(1))) { 4637 auto *Lod = cast<LoadSDNode>(N0.getOperand(0)); 4638 APInt bestMask; 4639 unsigned bestWidth = 0, bestOffset = 0; 4640 if (Lod->isSimple() && Lod->isUnindexed() && 4641 (Lod->getMemoryVT().isByteSized() || 4642 isPaddedAtMostSignificantBitsWhenStored(Lod->getMemoryVT()))) { 4643 unsigned memWidth = Lod->getMemoryVT().getStoreSizeInBits(); 4644 unsigned origWidth = N0.getValueSizeInBits(); 4645 unsigned maskWidth = origWidth; 4646 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 4647 // 8 bits, but have to be careful... 4648 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 4649 origWidth = Lod->getMemoryVT().getSizeInBits(); 4650 const APInt &Mask = N0.getConstantOperandAPInt(1); 4651 // Only consider power-of-2 widths (and at least one byte) as candiates 4652 // for the narrowed load. 4653 for (unsigned width = 8; width < origWidth; width *= 2) { 4654 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), width); 4655 if (!shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) 4656 continue; 4657 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 4658 // Avoid accessing any padding here for now (we could use memWidth 4659 // instead of origWidth here otherwise). 4660 unsigned maxOffset = origWidth - width; 4661 for (unsigned offset = 0; offset <= maxOffset; offset += 8) { 4662 if (Mask.isSubsetOf(newMask)) { 4663 unsigned ptrOffset = 4664 Layout.isLittleEndian() ? offset : memWidth - width - offset; 4665 unsigned IsFast = 0; 4666 Align NewAlign = commonAlignment(Lod->getAlign(), ptrOffset / 8); 4667 if (allowsMemoryAccess( 4668 *DAG.getContext(), Layout, newVT, Lod->getAddressSpace(), 4669 NewAlign, Lod->getMemOperand()->getFlags(), &IsFast) && 4670 IsFast) { 4671 bestOffset = ptrOffset / 8; 4672 bestMask = Mask.lshr(offset); 4673 bestWidth = width; 4674 break; 4675 } 4676 } 4677 newMask <<= 8; 4678 } 4679 if (bestWidth) 4680 break; 4681 } 4682 } 4683 if (bestWidth) { 4684 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 4685 SDValue Ptr = Lod->getBasePtr(); 4686 if (bestOffset != 0) 4687 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(bestOffset)); 4688 SDValue NewLoad = 4689 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 4690 Lod->getPointerInfo().getWithOffset(bestOffset), 4691 Lod->getOriginalAlign()); 4692 SDValue And = 4693 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 4694 DAG.getConstant(bestMask.trunc(bestWidth), dl, newVT)); 4695 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0LL, dl, newVT), Cond); 4696 } 4697 } 4698 4699 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 4700 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 4701 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 4702 4703 // If the comparison constant has bits in the upper part, the 4704 // zero-extended value could never match. 4705 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 4706 C1.getBitWidth() - InSize))) { 4707 switch (Cond) { 4708 case ISD::SETUGT: 4709 case ISD::SETUGE: 4710 case ISD::SETEQ: 4711 return DAG.getConstant(0, dl, VT); 4712 case ISD::SETULT: 4713 case ISD::SETULE: 4714 case ISD::SETNE: 4715 return DAG.getConstant(1, dl, VT); 4716 case ISD::SETGT: 4717 case ISD::SETGE: 4718 // True if the sign bit of C1 is set. 4719 return DAG.getConstant(C1.isNegative(), dl, VT); 4720 case ISD::SETLT: 4721 case ISD::SETLE: 4722 // True if the sign bit of C1 isn't set. 4723 return DAG.getConstant(C1.isNonNegative(), dl, VT); 4724 default: 4725 break; 4726 } 4727 } 4728 4729 // Otherwise, we can perform the comparison with the low bits. 4730 switch (Cond) { 4731 case ISD::SETEQ: 4732 case ISD::SETNE: 4733 case ISD::SETUGT: 4734 case ISD::SETUGE: 4735 case ISD::SETULT: 4736 case ISD::SETULE: { 4737 EVT newVT = N0.getOperand(0).getValueType(); 4738 // FIXME: Should use isNarrowingProfitable. 4739 if (DCI.isBeforeLegalizeOps() || 4740 (isOperationLegal(ISD::SETCC, newVT) && 4741 isCondCodeLegal(Cond, newVT.getSimpleVT()) && 4742 isTypeDesirableForOp(ISD::SETCC, newVT))) { 4743 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 4744 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 4745 4746 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 4747 NewConst, Cond); 4748 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 4749 } 4750 break; 4751 } 4752 default: 4753 break; // todo, be more careful with signed comparisons 4754 } 4755 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 4756 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4757 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 4758 OpVT)) { 4759 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 4760 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 4761 EVT ExtDstTy = N0.getValueType(); 4762 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 4763 4764 // If the constant doesn't fit into the number of bits for the source of 4765 // the sign extension, it is impossible for both sides to be equal. 4766 if (C1.getSignificantBits() > ExtSrcTyBits) 4767 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 4768 4769 assert(ExtDstTy == N0.getOperand(0).getValueType() && 4770 ExtDstTy != ExtSrcTy && "Unexpected types!"); 4771 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 4772 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 4773 DAG.getConstant(Imm, dl, ExtDstTy)); 4774 if (!DCI.isCalledByLegalizer()) 4775 DCI.AddToWorklist(ZextOp.getNode()); 4776 // Otherwise, make this a use of a zext. 4777 return DAG.getSetCC(dl, VT, ZextOp, 4778 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 4779 } else if ((N1C->isZero() || N1C->isOne()) && 4780 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4781 // SETCC (X), [0|1], [EQ|NE] -> X if X is known 0/1. i1 types are 4782 // excluded as they are handled below whilst checking for foldBooleans. 4783 if ((N0.getOpcode() == ISD::SETCC || VT.getScalarType() != MVT::i1) && 4784 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 4785 (N0.getValueType() == MVT::i1 || 4786 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4787 DAG.MaskedValueIsZero( 4788 N0, APInt::getBitsSetFrom(N0.getValueSizeInBits(), 1))) { 4789 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 4790 if (TrueWhenTrue) 4791 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 4792 // Invert the condition. 4793 if (N0.getOpcode() == ISD::SETCC) { 4794 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 4795 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 4796 if (DCI.isBeforeLegalizeOps() || 4797 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 4798 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 4799 } 4800 } 4801 4802 if ((N0.getOpcode() == ISD::XOR || 4803 (N0.getOpcode() == ISD::AND && 4804 N0.getOperand(0).getOpcode() == ISD::XOR && 4805 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 4806 isOneConstant(N0.getOperand(1))) { 4807 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 4808 // can only do this if the top bits are known zero. 4809 unsigned BitWidth = N0.getValueSizeInBits(); 4810 if (DAG.MaskedValueIsZero(N0, 4811 APInt::getHighBitsSet(BitWidth, 4812 BitWidth-1))) { 4813 // Okay, get the un-inverted input value. 4814 SDValue Val; 4815 if (N0.getOpcode() == ISD::XOR) { 4816 Val = N0.getOperand(0); 4817 } else { 4818 assert(N0.getOpcode() == ISD::AND && 4819 N0.getOperand(0).getOpcode() == ISD::XOR); 4820 // ((X^1)&1)^1 -> X & 1 4821 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 4822 N0.getOperand(0).getOperand(0), 4823 N0.getOperand(1)); 4824 } 4825 4826 return DAG.getSetCC(dl, VT, Val, N1, 4827 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4828 } 4829 } else if (N1C->isOne()) { 4830 SDValue Op0 = N0; 4831 if (Op0.getOpcode() == ISD::TRUNCATE) 4832 Op0 = Op0.getOperand(0); 4833 4834 if ((Op0.getOpcode() == ISD::XOR) && 4835 Op0.getOperand(0).getOpcode() == ISD::SETCC && 4836 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 4837 SDValue XorLHS = Op0.getOperand(0); 4838 SDValue XorRHS = Op0.getOperand(1); 4839 // Ensure that the input setccs return an i1 type or 0/1 value. 4840 if (Op0.getValueType() == MVT::i1 || 4841 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 4842 ZeroOrOneBooleanContent && 4843 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 4844 ZeroOrOneBooleanContent)) { 4845 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 4846 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 4847 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 4848 } 4849 } 4850 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 4851 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 4852 if (Op0.getValueType().bitsGT(VT)) 4853 Op0 = DAG.getNode(ISD::AND, dl, VT, 4854 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 4855 DAG.getConstant(1, dl, VT)); 4856 else if (Op0.getValueType().bitsLT(VT)) 4857 Op0 = DAG.getNode(ISD::AND, dl, VT, 4858 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 4859 DAG.getConstant(1, dl, VT)); 4860 4861 return DAG.getSetCC(dl, VT, Op0, 4862 DAG.getConstant(0, dl, Op0.getValueType()), 4863 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4864 } 4865 if (Op0.getOpcode() == ISD::AssertZext && 4866 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 4867 return DAG.getSetCC(dl, VT, Op0, 4868 DAG.getConstant(0, dl, Op0.getValueType()), 4869 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4870 } 4871 } 4872 4873 // Given: 4874 // icmp eq/ne (urem %x, %y), 0 4875 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 4876 // icmp eq/ne %x, 0 4877 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 4878 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4879 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 4880 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 4881 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 4882 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4883 } 4884 4885 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 4886 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 4887 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4888 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 4889 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 4890 N1C->isAllOnes()) { 4891 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4892 DAG.getConstant(0, dl, OpVT), 4893 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 4894 } 4895 4896 if (SDValue V = 4897 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 4898 return V; 4899 } 4900 4901 // These simplifications apply to splat vectors as well. 4902 // TODO: Handle more splat vector cases. 4903 if (auto *N1C = isConstOrConstSplat(N1)) { 4904 const APInt &C1 = N1C->getAPIntValue(); 4905 4906 APInt MinVal, MaxVal; 4907 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 4908 if (ISD::isSignedIntSetCC(Cond)) { 4909 MinVal = APInt::getSignedMinValue(OperandBitSize); 4910 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 4911 } else { 4912 MinVal = APInt::getMinValue(OperandBitSize); 4913 MaxVal = APInt::getMaxValue(OperandBitSize); 4914 } 4915 4916 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 4917 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 4918 // X >= MIN --> true 4919 if (C1 == MinVal) 4920 return DAG.getBoolConstant(true, dl, VT, OpVT); 4921 4922 if (!VT.isVector()) { // TODO: Support this for vectors. 4923 // X >= C0 --> X > (C0 - 1) 4924 APInt C = C1 - 1; 4925 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 4926 if ((DCI.isBeforeLegalizeOps() || 4927 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4928 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4929 isLegalICmpImmediate(C.getSExtValue())))) { 4930 return DAG.getSetCC(dl, VT, N0, 4931 DAG.getConstant(C, dl, N1.getValueType()), 4932 NewCC); 4933 } 4934 } 4935 } 4936 4937 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 4938 // X <= MAX --> true 4939 if (C1 == MaxVal) 4940 return DAG.getBoolConstant(true, dl, VT, OpVT); 4941 4942 // X <= C0 --> X < (C0 + 1) 4943 if (!VT.isVector()) { // TODO: Support this for vectors. 4944 APInt C = C1 + 1; 4945 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 4946 if ((DCI.isBeforeLegalizeOps() || 4947 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4948 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4949 isLegalICmpImmediate(C.getSExtValue())))) { 4950 return DAG.getSetCC(dl, VT, N0, 4951 DAG.getConstant(C, dl, N1.getValueType()), 4952 NewCC); 4953 } 4954 } 4955 } 4956 4957 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 4958 if (C1 == MinVal) 4959 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 4960 4961 // TODO: Support this for vectors after legalize ops. 4962 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4963 // Canonicalize setlt X, Max --> setne X, Max 4964 if (C1 == MaxVal) 4965 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4966 4967 // If we have setult X, 1, turn it into seteq X, 0 4968 if (C1 == MinVal+1) 4969 return DAG.getSetCC(dl, VT, N0, 4970 DAG.getConstant(MinVal, dl, N0.getValueType()), 4971 ISD::SETEQ); 4972 } 4973 } 4974 4975 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 4976 if (C1 == MaxVal) 4977 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 4978 4979 // TODO: Support this for vectors after legalize ops. 4980 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4981 // Canonicalize setgt X, Min --> setne X, Min 4982 if (C1 == MinVal) 4983 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4984 4985 // If we have setugt X, Max-1, turn it into seteq X, Max 4986 if (C1 == MaxVal-1) 4987 return DAG.getSetCC(dl, VT, N0, 4988 DAG.getConstant(MaxVal, dl, N0.getValueType()), 4989 ISD::SETEQ); 4990 } 4991 } 4992 4993 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4994 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4995 if (C1.isZero()) 4996 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4997 VT, N0, N1, Cond, DCI, dl)) 4998 return CC; 4999 5000 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 5001 // For example, when high 32-bits of i64 X are known clear: 5002 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 5003 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 5004 bool CmpZero = N1C->isZero(); 5005 bool CmpNegOne = N1C->isAllOnes(); 5006 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 5007 // Match or(lo,shl(hi,bw/2)) pattern. 5008 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 5009 unsigned EltBits = V.getScalarValueSizeInBits(); 5010 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 5011 return false; 5012 SDValue LHS = V.getOperand(0); 5013 SDValue RHS = V.getOperand(1); 5014 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 5015 // Unshifted element must have zero upperbits. 5016 if (RHS.getOpcode() == ISD::SHL && 5017 isa<ConstantSDNode>(RHS.getOperand(1)) && 5018 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 5019 DAG.MaskedValueIsZero(LHS, HiBits)) { 5020 Lo = LHS; 5021 Hi = RHS.getOperand(0); 5022 return true; 5023 } 5024 if (LHS.getOpcode() == ISD::SHL && 5025 isa<ConstantSDNode>(LHS.getOperand(1)) && 5026 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 5027 DAG.MaskedValueIsZero(RHS, HiBits)) { 5028 Lo = RHS; 5029 Hi = LHS.getOperand(0); 5030 return true; 5031 } 5032 return false; 5033 }; 5034 5035 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 5036 unsigned EltBits = N0.getScalarValueSizeInBits(); 5037 unsigned HalfBits = EltBits / 2; 5038 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 5039 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 5040 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 5041 SDValue NewN0 = 5042 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 5043 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 5044 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 5045 }; 5046 5047 SDValue Lo, Hi; 5048 if (IsConcat(N0, Lo, Hi)) 5049 return MergeConcat(Lo, Hi); 5050 5051 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 5052 SDValue Lo0, Lo1, Hi0, Hi1; 5053 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 5054 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 5055 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 5056 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 5057 } 5058 } 5059 } 5060 } 5061 5062 // If we have "setcc X, C0", check to see if we can shrink the immediate 5063 // by changing cc. 5064 // TODO: Support this for vectors after legalize ops. 5065 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 5066 // SETUGT X, SINTMAX -> SETLT X, 0 5067 // SETUGE X, SINTMIN -> SETLT X, 0 5068 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 5069 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 5070 return DAG.getSetCC(dl, VT, N0, 5071 DAG.getConstant(0, dl, N1.getValueType()), 5072 ISD::SETLT); 5073 5074 // SETULT X, SINTMIN -> SETGT X, -1 5075 // SETULE X, SINTMAX -> SETGT X, -1 5076 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 5077 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 5078 return DAG.getSetCC(dl, VT, N0, 5079 DAG.getAllOnesConstant(dl, N1.getValueType()), 5080 ISD::SETGT); 5081 } 5082 } 5083 5084 // Back to non-vector simplifications. 5085 // TODO: Can we do these for vector splats? 5086 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 5087 const APInt &C1 = N1C->getAPIntValue(); 5088 EVT ShValTy = N0.getValueType(); 5089 5090 // Fold bit comparisons when we can. This will result in an 5091 // incorrect value when boolean false is negative one, unless 5092 // the bitsize is 1 in which case the false value is the same 5093 // in practice regardless of the representation. 5094 if ((VT.getSizeInBits() == 1 || 5095 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 5096 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5097 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 5098 N0.getOpcode() == ISD::AND) { 5099 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5100 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 5101 // Perform the xform if the AND RHS is a single bit. 5102 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 5103 if (AndRHS->getAPIntValue().isPowerOf2() && 5104 !shouldAvoidTransformToShift(ShValTy, ShCt)) { 5105 return DAG.getNode( 5106 ISD::TRUNCATE, dl, VT, 5107 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 5108 DAG.getShiftAmountConstant(ShCt, ShValTy, dl))); 5109 } 5110 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 5111 // (X & 8) == 8 --> (X & 8) >> 3 5112 // Perform the xform if C1 is a single bit. 5113 unsigned ShCt = C1.logBase2(); 5114 if (C1.isPowerOf2() && !shouldAvoidTransformToShift(ShValTy, ShCt)) { 5115 return DAG.getNode( 5116 ISD::TRUNCATE, dl, VT, 5117 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 5118 DAG.getShiftAmountConstant(ShCt, ShValTy, dl))); 5119 } 5120 } 5121 } 5122 } 5123 5124 if (C1.getSignificantBits() <= 64 && 5125 !isLegalICmpImmediate(C1.getSExtValue())) { 5126 // (X & -256) == 256 -> (X >> 8) == 1 5127 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5128 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 5129 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5130 const APInt &AndRHSC = AndRHS->getAPIntValue(); 5131 if (AndRHSC.isNegatedPowerOf2() && C1.isSubsetOf(AndRHSC)) { 5132 unsigned ShiftBits = AndRHSC.countr_zero(); 5133 if (!shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 5134 SDValue Shift = DAG.getNode( 5135 ISD::SRL, dl, ShValTy, N0.getOperand(0), 5136 DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl)); 5137 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 5138 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 5139 } 5140 } 5141 } 5142 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 5143 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 5144 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 5145 // X < 0x100000000 -> (X >> 32) < 1 5146 // X >= 0x100000000 -> (X >> 32) >= 1 5147 // X <= 0x0ffffffff -> (X >> 32) < 1 5148 // X > 0x0ffffffff -> (X >> 32) >= 1 5149 unsigned ShiftBits; 5150 APInt NewC = C1; 5151 ISD::CondCode NewCond = Cond; 5152 if (AdjOne) { 5153 ShiftBits = C1.countr_one(); 5154 NewC = NewC + 1; 5155 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 5156 } else { 5157 ShiftBits = C1.countr_zero(); 5158 } 5159 NewC.lshrInPlace(ShiftBits); 5160 if (ShiftBits && NewC.getSignificantBits() <= 64 && 5161 isLegalICmpImmediate(NewC.getSExtValue()) && 5162 !shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 5163 SDValue Shift = 5164 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 5165 DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl)); 5166 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 5167 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 5168 } 5169 } 5170 } 5171 } 5172 5173 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 5174 auto *CFP = cast<ConstantFPSDNode>(N1); 5175 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 5176 5177 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 5178 // constant if knowing that the operand is non-nan is enough. We prefer to 5179 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 5180 // materialize 0.0. 5181 if (Cond == ISD::SETO || Cond == ISD::SETUO) 5182 return DAG.getSetCC(dl, VT, N0, N0, Cond); 5183 5184 // setcc (fneg x), C -> setcc swap(pred) x, -C 5185 if (N0.getOpcode() == ISD::FNEG) { 5186 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 5187 if (DCI.isBeforeLegalizeOps() || 5188 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 5189 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 5190 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 5191 } 5192 } 5193 5194 // setueq/setoeq X, (fabs Inf) -> is_fpclass X, fcInf 5195 if (isOperationLegalOrCustom(ISD::IS_FPCLASS, N0.getValueType()) && 5196 !isFPImmLegal(CFP->getValueAPF(), CFP->getValueType(0))) { 5197 bool IsFabs = N0.getOpcode() == ISD::FABS; 5198 SDValue Op = IsFabs ? N0.getOperand(0) : N0; 5199 if ((Cond == ISD::SETOEQ || Cond == ISD::SETUEQ) && CFP->isInfinity()) { 5200 FPClassTest Flag = CFP->isNegative() ? (IsFabs ? fcNone : fcNegInf) 5201 : (IsFabs ? fcInf : fcPosInf); 5202 if (Cond == ISD::SETUEQ) 5203 Flag |= fcNan; 5204 return DAG.getNode(ISD::IS_FPCLASS, dl, VT, Op, 5205 DAG.getTargetConstant(Flag, dl, MVT::i32)); 5206 } 5207 } 5208 5209 // If the condition is not legal, see if we can find an equivalent one 5210 // which is legal. 5211 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 5212 // If the comparison was an awkward floating-point == or != and one of 5213 // the comparison operands is infinity or negative infinity, convert the 5214 // condition to a less-awkward <= or >=. 5215 if (CFP->getValueAPF().isInfinity()) { 5216 bool IsNegInf = CFP->getValueAPF().isNegative(); 5217 ISD::CondCode NewCond = ISD::SETCC_INVALID; 5218 switch (Cond) { 5219 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 5220 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 5221 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 5222 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 5223 default: break; 5224 } 5225 if (NewCond != ISD::SETCC_INVALID && 5226 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 5227 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 5228 } 5229 } 5230 } 5231 5232 if (N0 == N1) { 5233 // The sext(setcc()) => setcc() optimization relies on the appropriate 5234 // constant being emitted. 5235 assert(!N0.getValueType().isInteger() && 5236 "Integer types should be handled by FoldSetCC"); 5237 5238 bool EqTrue = ISD::isTrueWhenEqual(Cond); 5239 unsigned UOF = ISD::getUnorderedFlavor(Cond); 5240 if (UOF == 2) // FP operators that are undefined on NaNs. 5241 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 5242 if (UOF == unsigned(EqTrue)) 5243 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 5244 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 5245 // if it is not already. 5246 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 5247 if (NewCond != Cond && 5248 (DCI.isBeforeLegalizeOps() || 5249 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 5250 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 5251 } 5252 5253 // ~X > ~Y --> Y > X 5254 // ~X < ~Y --> Y < X 5255 // ~X < C --> X > ~C 5256 // ~X > C --> X < ~C 5257 if ((isSignedIntSetCC(Cond) || isUnsignedIntSetCC(Cond)) && 5258 N0.getValueType().isInteger()) { 5259 if (isBitwiseNot(N0)) { 5260 if (isBitwiseNot(N1)) 5261 return DAG.getSetCC(dl, VT, N1.getOperand(0), N0.getOperand(0), Cond); 5262 5263 if (DAG.isConstantIntBuildVectorOrConstantInt(N1) && 5264 !DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(0))) { 5265 SDValue Not = DAG.getNOT(dl, N1, OpVT); 5266 return DAG.getSetCC(dl, VT, Not, N0.getOperand(0), Cond); 5267 } 5268 } 5269 } 5270 5271 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5272 N0.getValueType().isInteger()) { 5273 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 5274 N0.getOpcode() == ISD::XOR) { 5275 // Simplify (X+Y) == (X+Z) --> Y == Z 5276 if (N0.getOpcode() == N1.getOpcode()) { 5277 if (N0.getOperand(0) == N1.getOperand(0)) 5278 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 5279 if (N0.getOperand(1) == N1.getOperand(1)) 5280 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 5281 if (isCommutativeBinOp(N0.getOpcode())) { 5282 // If X op Y == Y op X, try other combinations. 5283 if (N0.getOperand(0) == N1.getOperand(1)) 5284 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 5285 Cond); 5286 if (N0.getOperand(1) == N1.getOperand(0)) 5287 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 5288 Cond); 5289 } 5290 } 5291 5292 // If RHS is a legal immediate value for a compare instruction, we need 5293 // to be careful about increasing register pressure needlessly. 5294 bool LegalRHSImm = false; 5295 5296 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 5297 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5298 // Turn (X+C1) == C2 --> X == C2-C1 5299 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) 5300 return DAG.getSetCC( 5301 dl, VT, N0.getOperand(0), 5302 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(), 5303 dl, N0.getValueType()), 5304 Cond); 5305 5306 // Turn (X^C1) == C2 --> X == C1^C2 5307 if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse()) 5308 return DAG.getSetCC( 5309 dl, VT, N0.getOperand(0), 5310 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(), 5311 dl, N0.getValueType()), 5312 Cond); 5313 } 5314 5315 // Turn (C1-X) == C2 --> X == C1-C2 5316 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) 5317 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) 5318 return DAG.getSetCC( 5319 dl, VT, N0.getOperand(1), 5320 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(), 5321 dl, N0.getValueType()), 5322 Cond); 5323 5324 // Could RHSC fold directly into a compare? 5325 if (RHSC->getValueType(0).getSizeInBits() <= 64) 5326 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 5327 } 5328 5329 // (X+Y) == X --> Y == 0 and similar folds. 5330 // Don't do this if X is an immediate that can fold into a cmp 5331 // instruction and X+Y has other uses. It could be an induction variable 5332 // chain, and the transform would increase register pressure. 5333 if (!LegalRHSImm || N0.hasOneUse()) 5334 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 5335 return V; 5336 } 5337 5338 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 5339 N1.getOpcode() == ISD::XOR) 5340 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 5341 return V; 5342 5343 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 5344 return V; 5345 } 5346 5347 // Fold remainder of division by a constant. 5348 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 5349 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 5350 // When division is cheap or optimizing for minimum size, 5351 // fall through to DIVREM creation by skipping this fold. 5352 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 5353 if (N0.getOpcode() == ISD::UREM) { 5354 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 5355 return Folded; 5356 } else if (N0.getOpcode() == ISD::SREM) { 5357 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 5358 return Folded; 5359 } 5360 } 5361 } 5362 5363 // Fold away ALL boolean setcc's. 5364 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 5365 SDValue Temp; 5366 switch (Cond) { 5367 default: llvm_unreachable("Unknown integer setcc!"); 5368 case ISD::SETEQ: // X == Y -> ~(X^Y) 5369 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 5370 N0 = DAG.getNOT(dl, Temp, OpVT); 5371 if (!DCI.isCalledByLegalizer()) 5372 DCI.AddToWorklist(Temp.getNode()); 5373 break; 5374 case ISD::SETNE: // X != Y --> (X^Y) 5375 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 5376 break; 5377 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 5378 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 5379 Temp = DAG.getNOT(dl, N0, OpVT); 5380 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 5381 if (!DCI.isCalledByLegalizer()) 5382 DCI.AddToWorklist(Temp.getNode()); 5383 break; 5384 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 5385 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 5386 Temp = DAG.getNOT(dl, N1, OpVT); 5387 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 5388 if (!DCI.isCalledByLegalizer()) 5389 DCI.AddToWorklist(Temp.getNode()); 5390 break; 5391 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 5392 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 5393 Temp = DAG.getNOT(dl, N0, OpVT); 5394 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 5395 if (!DCI.isCalledByLegalizer()) 5396 DCI.AddToWorklist(Temp.getNode()); 5397 break; 5398 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 5399 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 5400 Temp = DAG.getNOT(dl, N1, OpVT); 5401 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 5402 break; 5403 } 5404 if (VT.getScalarType() != MVT::i1) { 5405 if (!DCI.isCalledByLegalizer()) 5406 DCI.AddToWorklist(N0.getNode()); 5407 // FIXME: If running after legalize, we probably can't do this. 5408 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 5409 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 5410 } 5411 return N0; 5412 } 5413 5414 // Could not fold it. 5415 return SDValue(); 5416 } 5417 5418 /// Returns true (and the GlobalValue and the offset) if the node is a 5419 /// GlobalAddress + offset. 5420 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 5421 int64_t &Offset) const { 5422 5423 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 5424 5425 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 5426 GA = GASD->getGlobal(); 5427 Offset += GASD->getOffset(); 5428 return true; 5429 } 5430 5431 if (N->getOpcode() == ISD::ADD) { 5432 SDValue N1 = N->getOperand(0); 5433 SDValue N2 = N->getOperand(1); 5434 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 5435 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 5436 Offset += V->getSExtValue(); 5437 return true; 5438 } 5439 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 5440 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 5441 Offset += V->getSExtValue(); 5442 return true; 5443 } 5444 } 5445 } 5446 5447 return false; 5448 } 5449 5450 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 5451 DAGCombinerInfo &DCI) const { 5452 // Default implementation: no optimization. 5453 return SDValue(); 5454 } 5455 5456 //===----------------------------------------------------------------------===// 5457 // Inline Assembler Implementation Methods 5458 //===----------------------------------------------------------------------===// 5459 5460 TargetLowering::ConstraintType 5461 TargetLowering::getConstraintType(StringRef Constraint) const { 5462 unsigned S = Constraint.size(); 5463 5464 if (S == 1) { 5465 switch (Constraint[0]) { 5466 default: break; 5467 case 'r': 5468 return C_RegisterClass; 5469 case 'm': // memory 5470 case 'o': // offsetable 5471 case 'V': // not offsetable 5472 return C_Memory; 5473 case 'p': // Address. 5474 return C_Address; 5475 case 'n': // Simple Integer 5476 case 'E': // Floating Point Constant 5477 case 'F': // Floating Point Constant 5478 return C_Immediate; 5479 case 'i': // Simple Integer or Relocatable Constant 5480 case 's': // Relocatable Constant 5481 case 'X': // Allow ANY value. 5482 case 'I': // Target registers. 5483 case 'J': 5484 case 'K': 5485 case 'L': 5486 case 'M': 5487 case 'N': 5488 case 'O': 5489 case 'P': 5490 case '<': 5491 case '>': 5492 return C_Other; 5493 } 5494 } 5495 5496 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 5497 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 5498 return C_Memory; 5499 return C_Register; 5500 } 5501 return C_Unknown; 5502 } 5503 5504 /// Try to replace an X constraint, which matches anything, with another that 5505 /// has more specific requirements based on the type of the corresponding 5506 /// operand. 5507 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 5508 if (ConstraintVT.isInteger()) 5509 return "r"; 5510 if (ConstraintVT.isFloatingPoint()) 5511 return "f"; // works for many targets 5512 return nullptr; 5513 } 5514 5515 SDValue TargetLowering::LowerAsmOutputForConstraint( 5516 SDValue &Chain, SDValue &Glue, const SDLoc &DL, 5517 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 5518 return SDValue(); 5519 } 5520 5521 /// Lower the specified operand into the Ops vector. 5522 /// If it is invalid, don't add anything to Ops. 5523 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 5524 StringRef Constraint, 5525 std::vector<SDValue> &Ops, 5526 SelectionDAG &DAG) const { 5527 5528 if (Constraint.size() > 1) 5529 return; 5530 5531 char ConstraintLetter = Constraint[0]; 5532 switch (ConstraintLetter) { 5533 default: break; 5534 case 'X': // Allows any operand 5535 case 'i': // Simple Integer or Relocatable Constant 5536 case 'n': // Simple Integer 5537 case 's': { // Relocatable Constant 5538 5539 ConstantSDNode *C; 5540 uint64_t Offset = 0; 5541 5542 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 5543 // etc., since getelementpointer is variadic. We can't use 5544 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 5545 // while in this case the GA may be furthest from the root node which is 5546 // likely an ISD::ADD. 5547 while (true) { 5548 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 5549 // gcc prints these as sign extended. Sign extend value to 64 bits 5550 // now; without this it would get ZExt'd later in 5551 // ScheduleDAGSDNodes::EmitNode, which is very generic. 5552 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 5553 BooleanContent BCont = getBooleanContents(MVT::i64); 5554 ISD::NodeType ExtOpc = 5555 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 5556 int64_t ExtVal = 5557 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 5558 Ops.push_back( 5559 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 5560 return; 5561 } 5562 if (ConstraintLetter != 'n') { 5563 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 5564 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 5565 GA->getValueType(0), 5566 Offset + GA->getOffset())); 5567 return; 5568 } 5569 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 5570 Ops.push_back(DAG.getTargetBlockAddress( 5571 BA->getBlockAddress(), BA->getValueType(0), 5572 Offset + BA->getOffset(), BA->getTargetFlags())); 5573 return; 5574 } 5575 if (isa<BasicBlockSDNode>(Op)) { 5576 Ops.push_back(Op); 5577 return; 5578 } 5579 } 5580 const unsigned OpCode = Op.getOpcode(); 5581 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 5582 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 5583 Op = Op.getOperand(1); 5584 // Subtraction is not commutative. 5585 else if (OpCode == ISD::ADD && 5586 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 5587 Op = Op.getOperand(0); 5588 else 5589 return; 5590 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 5591 continue; 5592 } 5593 return; 5594 } 5595 break; 5596 } 5597 } 5598 } 5599 5600 void TargetLowering::CollectTargetIntrinsicOperands( 5601 const CallInst &I, SmallVectorImpl<SDValue> &Ops, SelectionDAG &DAG) const { 5602 } 5603 5604 std::pair<unsigned, const TargetRegisterClass *> 5605 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 5606 StringRef Constraint, 5607 MVT VT) const { 5608 if (!Constraint.starts_with("{")) 5609 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 5610 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 5611 5612 // Remove the braces from around the name. 5613 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 5614 5615 std::pair<unsigned, const TargetRegisterClass *> R = 5616 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 5617 5618 // Figure out which register class contains this reg. 5619 for (const TargetRegisterClass *RC : RI->regclasses()) { 5620 // If none of the value types for this register class are valid, we 5621 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5622 if (!isLegalRC(*RI, *RC)) 5623 continue; 5624 5625 for (const MCPhysReg &PR : *RC) { 5626 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 5627 std::pair<unsigned, const TargetRegisterClass *> S = 5628 std::make_pair(PR, RC); 5629 5630 // If this register class has the requested value type, return it, 5631 // otherwise keep searching and return the first class found 5632 // if no other is found which explicitly has the requested type. 5633 if (RI->isTypeLegalForClass(*RC, VT)) 5634 return S; 5635 if (!R.second) 5636 R = S; 5637 } 5638 } 5639 } 5640 5641 return R; 5642 } 5643 5644 //===----------------------------------------------------------------------===// 5645 // Constraint Selection. 5646 5647 /// Return true of this is an input operand that is a matching constraint like 5648 /// "4". 5649 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 5650 assert(!ConstraintCode.empty() && "No known constraint!"); 5651 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 5652 } 5653 5654 /// If this is an input matching constraint, this method returns the output 5655 /// operand it matches. 5656 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 5657 assert(!ConstraintCode.empty() && "No known constraint!"); 5658 return atoi(ConstraintCode.c_str()); 5659 } 5660 5661 /// Split up the constraint string from the inline assembly value into the 5662 /// specific constraints and their prefixes, and also tie in the associated 5663 /// operand values. 5664 /// If this returns an empty vector, and if the constraint string itself 5665 /// isn't empty, there was an error parsing. 5666 TargetLowering::AsmOperandInfoVector 5667 TargetLowering::ParseConstraints(const DataLayout &DL, 5668 const TargetRegisterInfo *TRI, 5669 const CallBase &Call) const { 5670 /// Information about all of the constraints. 5671 AsmOperandInfoVector ConstraintOperands; 5672 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 5673 unsigned maCount = 0; // Largest number of multiple alternative constraints. 5674 5675 // Do a prepass over the constraints, canonicalizing them, and building up the 5676 // ConstraintOperands list. 5677 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5678 unsigned ResNo = 0; // ResNo - The result number of the next output. 5679 unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number. 5680 5681 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 5682 ConstraintOperands.emplace_back(std::move(CI)); 5683 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 5684 5685 // Update multiple alternative constraint count. 5686 if (OpInfo.multipleAlternatives.size() > maCount) 5687 maCount = OpInfo.multipleAlternatives.size(); 5688 5689 OpInfo.ConstraintVT = MVT::Other; 5690 5691 // Compute the value type for each operand. 5692 switch (OpInfo.Type) { 5693 case InlineAsm::isOutput: 5694 // Indirect outputs just consume an argument. 5695 if (OpInfo.isIndirect) { 5696 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5697 break; 5698 } 5699 5700 // The return value of the call is this value. As such, there is no 5701 // corresponding argument. 5702 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 5703 if (auto *STy = dyn_cast<StructType>(Call.getType())) { 5704 OpInfo.ConstraintVT = 5705 getSimpleValueType(DL, STy->getElementType(ResNo)); 5706 } else { 5707 assert(ResNo == 0 && "Asm only has one result!"); 5708 OpInfo.ConstraintVT = 5709 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 5710 } 5711 ++ResNo; 5712 break; 5713 case InlineAsm::isInput: 5714 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5715 break; 5716 case InlineAsm::isLabel: 5717 OpInfo.CallOperandVal = cast<CallBrInst>(&Call)->getIndirectDest(LabelNo); 5718 ++LabelNo; 5719 continue; 5720 case InlineAsm::isClobber: 5721 // Nothing to do. 5722 break; 5723 } 5724 5725 if (OpInfo.CallOperandVal) { 5726 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 5727 if (OpInfo.isIndirect) { 5728 OpTy = Call.getParamElementType(ArgNo); 5729 assert(OpTy && "Indirect operand must have elementtype attribute"); 5730 } 5731 5732 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5733 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5734 if (STy->getNumElements() == 1) 5735 OpTy = STy->getElementType(0); 5736 5737 // If OpTy is not a single value, it may be a struct/union that we 5738 // can tile with integers. 5739 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5740 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5741 switch (BitSize) { 5742 default: break; 5743 case 1: 5744 case 8: 5745 case 16: 5746 case 32: 5747 case 64: 5748 case 128: 5749 OpTy = IntegerType::get(OpTy->getContext(), BitSize); 5750 break; 5751 } 5752 } 5753 5754 EVT VT = getAsmOperandValueType(DL, OpTy, true); 5755 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; 5756 ArgNo++; 5757 } 5758 } 5759 5760 // If we have multiple alternative constraints, select the best alternative. 5761 if (!ConstraintOperands.empty()) { 5762 if (maCount) { 5763 unsigned bestMAIndex = 0; 5764 int bestWeight = -1; 5765 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 5766 int weight = -1; 5767 unsigned maIndex; 5768 // Compute the sums of the weights for each alternative, keeping track 5769 // of the best (highest weight) one so far. 5770 for (maIndex = 0; maIndex < maCount; ++maIndex) { 5771 int weightSum = 0; 5772 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5773 cIndex != eIndex; ++cIndex) { 5774 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5775 if (OpInfo.Type == InlineAsm::isClobber) 5776 continue; 5777 5778 // If this is an output operand with a matching input operand, 5779 // look up the matching input. If their types mismatch, e.g. one 5780 // is an integer, the other is floating point, or their sizes are 5781 // different, flag it as an maCantMatch. 5782 if (OpInfo.hasMatchingInput()) { 5783 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5784 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5785 if ((OpInfo.ConstraintVT.isInteger() != 5786 Input.ConstraintVT.isInteger()) || 5787 (OpInfo.ConstraintVT.getSizeInBits() != 5788 Input.ConstraintVT.getSizeInBits())) { 5789 weightSum = -1; // Can't match. 5790 break; 5791 } 5792 } 5793 } 5794 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 5795 if (weight == -1) { 5796 weightSum = -1; 5797 break; 5798 } 5799 weightSum += weight; 5800 } 5801 // Update best. 5802 if (weightSum > bestWeight) { 5803 bestWeight = weightSum; 5804 bestMAIndex = maIndex; 5805 } 5806 } 5807 5808 // Now select chosen alternative in each constraint. 5809 for (AsmOperandInfo &cInfo : ConstraintOperands) 5810 if (cInfo.Type != InlineAsm::isClobber) 5811 cInfo.selectAlternative(bestMAIndex); 5812 } 5813 } 5814 5815 // Check and hook up tied operands, choose constraint code to use. 5816 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5817 cIndex != eIndex; ++cIndex) { 5818 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5819 5820 // If this is an output operand with a matching input operand, look up the 5821 // matching input. If their types mismatch, e.g. one is an integer, the 5822 // other is floating point, or their sizes are different, flag it as an 5823 // error. 5824 if (OpInfo.hasMatchingInput()) { 5825 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5826 5827 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5828 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5829 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5830 OpInfo.ConstraintVT); 5831 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5832 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5833 Input.ConstraintVT); 5834 const bool OutOpIsIntOrFP = OpInfo.ConstraintVT.isInteger() || 5835 OpInfo.ConstraintVT.isFloatingPoint(); 5836 const bool InOpIsIntOrFP = Input.ConstraintVT.isInteger() || 5837 Input.ConstraintVT.isFloatingPoint(); 5838 if ((OutOpIsIntOrFP != InOpIsIntOrFP) || 5839 (MatchRC.second != InputRC.second)) { 5840 report_fatal_error("Unsupported asm: input constraint" 5841 " with a matching output constraint of" 5842 " incompatible type!"); 5843 } 5844 } 5845 } 5846 } 5847 5848 return ConstraintOperands; 5849 } 5850 5851 /// Return a number indicating our preference for chosing a type of constraint 5852 /// over another, for the purpose of sorting them. Immediates are almost always 5853 /// preferrable (when they can be emitted). A higher return value means a 5854 /// stronger preference for one constraint type relative to another. 5855 /// FIXME: We should prefer registers over memory but doing so may lead to 5856 /// unrecoverable register exhaustion later. 5857 /// https://github.com/llvm/llvm-project/issues/20571 5858 static unsigned getConstraintPiority(TargetLowering::ConstraintType CT) { 5859 switch (CT) { 5860 case TargetLowering::C_Immediate: 5861 case TargetLowering::C_Other: 5862 return 4; 5863 case TargetLowering::C_Memory: 5864 case TargetLowering::C_Address: 5865 return 3; 5866 case TargetLowering::C_RegisterClass: 5867 return 2; 5868 case TargetLowering::C_Register: 5869 return 1; 5870 case TargetLowering::C_Unknown: 5871 return 0; 5872 } 5873 llvm_unreachable("Invalid constraint type"); 5874 } 5875 5876 /// Examine constraint type and operand type and determine a weight value. 5877 /// This object must already have been set up with the operand type 5878 /// and the current alternative constraint selected. 5879 TargetLowering::ConstraintWeight 5880 TargetLowering::getMultipleConstraintMatchWeight( 5881 AsmOperandInfo &info, int maIndex) const { 5882 InlineAsm::ConstraintCodeVector *rCodes; 5883 if (maIndex >= (int)info.multipleAlternatives.size()) 5884 rCodes = &info.Codes; 5885 else 5886 rCodes = &info.multipleAlternatives[maIndex].Codes; 5887 ConstraintWeight BestWeight = CW_Invalid; 5888 5889 // Loop over the options, keeping track of the most general one. 5890 for (const std::string &rCode : *rCodes) { 5891 ConstraintWeight weight = 5892 getSingleConstraintMatchWeight(info, rCode.c_str()); 5893 if (weight > BestWeight) 5894 BestWeight = weight; 5895 } 5896 5897 return BestWeight; 5898 } 5899 5900 /// Examine constraint type and operand type and determine a weight value. 5901 /// This object must already have been set up with the operand type 5902 /// and the current alternative constraint selected. 5903 TargetLowering::ConstraintWeight 5904 TargetLowering::getSingleConstraintMatchWeight( 5905 AsmOperandInfo &info, const char *constraint) const { 5906 ConstraintWeight weight = CW_Invalid; 5907 Value *CallOperandVal = info.CallOperandVal; 5908 // If we don't have a value, we can't do a match, 5909 // but allow it at the lowest weight. 5910 if (!CallOperandVal) 5911 return CW_Default; 5912 // Look at the constraint type. 5913 switch (*constraint) { 5914 case 'i': // immediate integer. 5915 case 'n': // immediate integer with a known value. 5916 if (isa<ConstantInt>(CallOperandVal)) 5917 weight = CW_Constant; 5918 break; 5919 case 's': // non-explicit intregal immediate. 5920 if (isa<GlobalValue>(CallOperandVal)) 5921 weight = CW_Constant; 5922 break; 5923 case 'E': // immediate float if host format. 5924 case 'F': // immediate float. 5925 if (isa<ConstantFP>(CallOperandVal)) 5926 weight = CW_Constant; 5927 break; 5928 case '<': // memory operand with autodecrement. 5929 case '>': // memory operand with autoincrement. 5930 case 'm': // memory operand. 5931 case 'o': // offsettable memory operand 5932 case 'V': // non-offsettable memory operand 5933 weight = CW_Memory; 5934 break; 5935 case 'r': // general register. 5936 case 'g': // general register, memory operand or immediate integer. 5937 // note: Clang converts "g" to "imr". 5938 if (CallOperandVal->getType()->isIntegerTy()) 5939 weight = CW_Register; 5940 break; 5941 case 'X': // any operand. 5942 default: 5943 weight = CW_Default; 5944 break; 5945 } 5946 return weight; 5947 } 5948 5949 /// If there are multiple different constraints that we could pick for this 5950 /// operand (e.g. "imr") try to pick the 'best' one. 5951 /// This is somewhat tricky: constraints (TargetLowering::ConstraintType) fall 5952 /// into seven classes: 5953 /// Register -> one specific register 5954 /// RegisterClass -> a group of regs 5955 /// Memory -> memory 5956 /// Address -> a symbolic memory reference 5957 /// Immediate -> immediate values 5958 /// Other -> magic values (such as "Flag Output Operands") 5959 /// Unknown -> something we don't recognize yet and can't handle 5960 /// Ideally, we would pick the most specific constraint possible: if we have 5961 /// something that fits into a register, we would pick it. The problem here 5962 /// is that if we have something that could either be in a register or in 5963 /// memory that use of the register could cause selection of *other* 5964 /// operands to fail: they might only succeed if we pick memory. Because of 5965 /// this the heuristic we use is: 5966 /// 5967 /// 1) If there is an 'other' constraint, and if the operand is valid for 5968 /// that constraint, use it. This makes us take advantage of 'i' 5969 /// constraints when available. 5970 /// 2) Otherwise, pick the most general constraint present. This prefers 5971 /// 'm' over 'r', for example. 5972 /// 5973 TargetLowering::ConstraintGroup TargetLowering::getConstraintPreferences( 5974 TargetLowering::AsmOperandInfo &OpInfo) const { 5975 ConstraintGroup Ret; 5976 5977 Ret.reserve(OpInfo.Codes.size()); 5978 for (StringRef Code : OpInfo.Codes) { 5979 TargetLowering::ConstraintType CType = getConstraintType(Code); 5980 5981 // Indirect 'other' or 'immediate' constraints are not allowed. 5982 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 5983 CType == TargetLowering::C_Register || 5984 CType == TargetLowering::C_RegisterClass)) 5985 continue; 5986 5987 // Things with matching constraints can only be registers, per gcc 5988 // documentation. This mainly affects "g" constraints. 5989 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 5990 continue; 5991 5992 Ret.emplace_back(Code, CType); 5993 } 5994 5995 std::stable_sort( 5996 Ret.begin(), Ret.end(), [](ConstraintPair a, ConstraintPair b) { 5997 return getConstraintPiority(a.second) > getConstraintPiority(b.second); 5998 }); 5999 6000 return Ret; 6001 } 6002 6003 /// If we have an immediate, see if we can lower it. Return true if we can, 6004 /// false otherwise. 6005 static bool lowerImmediateIfPossible(TargetLowering::ConstraintPair &P, 6006 SDValue Op, SelectionDAG *DAG, 6007 const TargetLowering &TLI) { 6008 6009 assert((P.second == TargetLowering::C_Other || 6010 P.second == TargetLowering::C_Immediate) && 6011 "need immediate or other"); 6012 6013 if (!Op.getNode()) 6014 return false; 6015 6016 std::vector<SDValue> ResultOps; 6017 TLI.LowerAsmOperandForConstraint(Op, P.first, ResultOps, *DAG); 6018 return !ResultOps.empty(); 6019 } 6020 6021 /// Determines the constraint code and constraint type to use for the specific 6022 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 6023 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 6024 SDValue Op, 6025 SelectionDAG *DAG) const { 6026 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 6027 6028 // Single-letter constraints ('r') are very common. 6029 if (OpInfo.Codes.size() == 1) { 6030 OpInfo.ConstraintCode = OpInfo.Codes[0]; 6031 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 6032 } else { 6033 ConstraintGroup G = getConstraintPreferences(OpInfo); 6034 if (G.empty()) 6035 return; 6036 6037 unsigned BestIdx = 0; 6038 for (const unsigned E = G.size(); 6039 BestIdx < E && (G[BestIdx].second == TargetLowering::C_Other || 6040 G[BestIdx].second == TargetLowering::C_Immediate); 6041 ++BestIdx) { 6042 if (lowerImmediateIfPossible(G[BestIdx], Op, DAG, *this)) 6043 break; 6044 // If we're out of constraints, just pick the first one. 6045 if (BestIdx + 1 == E) { 6046 BestIdx = 0; 6047 break; 6048 } 6049 } 6050 6051 OpInfo.ConstraintCode = G[BestIdx].first; 6052 OpInfo.ConstraintType = G[BestIdx].second; 6053 } 6054 6055 // 'X' matches anything. 6056 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 6057 // Constants are handled elsewhere. For Functions, the type here is the 6058 // type of the result, which is not what we want to look at; leave them 6059 // alone. 6060 Value *v = OpInfo.CallOperandVal; 6061 if (isa<ConstantInt>(v) || isa<Function>(v)) { 6062 return; 6063 } 6064 6065 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) { 6066 OpInfo.ConstraintCode = "i"; 6067 return; 6068 } 6069 6070 // Otherwise, try to resolve it to something we know about by looking at 6071 // the actual operand type. 6072 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 6073 OpInfo.ConstraintCode = Repl; 6074 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 6075 } 6076 } 6077 } 6078 6079 /// Given an exact SDIV by a constant, create a multiplication 6080 /// with the multiplicative inverse of the constant. 6081 /// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242 6082 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 6083 const SDLoc &dl, SelectionDAG &DAG, 6084 SmallVectorImpl<SDNode *> &Created) { 6085 SDValue Op0 = N->getOperand(0); 6086 SDValue Op1 = N->getOperand(1); 6087 EVT VT = N->getValueType(0); 6088 EVT SVT = VT.getScalarType(); 6089 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 6090 EVT ShSVT = ShVT.getScalarType(); 6091 6092 bool UseSRA = false; 6093 SmallVector<SDValue, 16> Shifts, Factors; 6094 6095 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 6096 if (C->isZero()) 6097 return false; 6098 APInt Divisor = C->getAPIntValue(); 6099 unsigned Shift = Divisor.countr_zero(); 6100 if (Shift) { 6101 Divisor.ashrInPlace(Shift); 6102 UseSRA = true; 6103 } 6104 APInt Factor = Divisor.multiplicativeInverse(); 6105 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 6106 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 6107 return true; 6108 }; 6109 6110 // Collect all magic values from the build vector. 6111 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 6112 return SDValue(); 6113 6114 SDValue Shift, Factor; 6115 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 6116 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 6117 Factor = DAG.getBuildVector(VT, dl, Factors); 6118 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 6119 assert(Shifts.size() == 1 && Factors.size() == 1 && 6120 "Expected matchUnaryPredicate to return one element for scalable " 6121 "vectors"); 6122 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 6123 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 6124 } else { 6125 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 6126 Shift = Shifts[0]; 6127 Factor = Factors[0]; 6128 } 6129 6130 SDValue Res = Op0; 6131 if (UseSRA) { 6132 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, SDNodeFlags::Exact); 6133 Created.push_back(Res.getNode()); 6134 } 6135 6136 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 6137 } 6138 6139 /// Given an exact UDIV by a constant, create a multiplication 6140 /// with the multiplicative inverse of the constant. 6141 /// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242 6142 static SDValue BuildExactUDIV(const TargetLowering &TLI, SDNode *N, 6143 const SDLoc &dl, SelectionDAG &DAG, 6144 SmallVectorImpl<SDNode *> &Created) { 6145 EVT VT = N->getValueType(0); 6146 EVT SVT = VT.getScalarType(); 6147 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 6148 EVT ShSVT = ShVT.getScalarType(); 6149 6150 bool UseSRL = false; 6151 SmallVector<SDValue, 16> Shifts, Factors; 6152 6153 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 6154 if (C->isZero()) 6155 return false; 6156 APInt Divisor = C->getAPIntValue(); 6157 unsigned Shift = Divisor.countr_zero(); 6158 if (Shift) { 6159 Divisor.lshrInPlace(Shift); 6160 UseSRL = true; 6161 } 6162 // Calculate the multiplicative inverse modulo BW. 6163 APInt Factor = Divisor.multiplicativeInverse(); 6164 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 6165 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 6166 return true; 6167 }; 6168 6169 SDValue Op1 = N->getOperand(1); 6170 6171 // Collect all magic values from the build vector. 6172 if (!ISD::matchUnaryPredicate(Op1, BuildUDIVPattern)) 6173 return SDValue(); 6174 6175 SDValue Shift, Factor; 6176 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 6177 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 6178 Factor = DAG.getBuildVector(VT, dl, Factors); 6179 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 6180 assert(Shifts.size() == 1 && Factors.size() == 1 && 6181 "Expected matchUnaryPredicate to return one element for scalable " 6182 "vectors"); 6183 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 6184 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 6185 } else { 6186 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 6187 Shift = Shifts[0]; 6188 Factor = Factors[0]; 6189 } 6190 6191 SDValue Res = N->getOperand(0); 6192 if (UseSRL) { 6193 Res = DAG.getNode(ISD::SRL, dl, VT, Res, Shift, SDNodeFlags::Exact); 6194 Created.push_back(Res.getNode()); 6195 } 6196 6197 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 6198 } 6199 6200 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 6201 SelectionDAG &DAG, 6202 SmallVectorImpl<SDNode *> &Created) const { 6203 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 6204 if (isIntDivCheap(N->getValueType(0), Attr)) 6205 return SDValue(N, 0); // Lower SDIV as SDIV 6206 return SDValue(); 6207 } 6208 6209 SDValue 6210 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor, 6211 SelectionDAG &DAG, 6212 SmallVectorImpl<SDNode *> &Created) const { 6213 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 6214 if (isIntDivCheap(N->getValueType(0), Attr)) 6215 return SDValue(N, 0); // Lower SREM as SREM 6216 return SDValue(); 6217 } 6218 6219 /// Build sdiv by power-of-2 with conditional move instructions 6220 /// Ref: "Hacker's Delight" by Henry Warren 10-1 6221 /// If conditional move/branch is preferred, we lower sdiv x, +/-2**k into: 6222 /// bgez x, label 6223 /// add x, x, 2**k-1 6224 /// label: 6225 /// sra res, x, k 6226 /// neg res, res (when the divisor is negative) 6227 SDValue TargetLowering::buildSDIVPow2WithCMov( 6228 SDNode *N, const APInt &Divisor, SelectionDAG &DAG, 6229 SmallVectorImpl<SDNode *> &Created) const { 6230 unsigned Lg2 = Divisor.countr_zero(); 6231 EVT VT = N->getValueType(0); 6232 6233 SDLoc DL(N); 6234 SDValue N0 = N->getOperand(0); 6235 SDValue Zero = DAG.getConstant(0, DL, VT); 6236 APInt Lg2Mask = APInt::getLowBitsSet(VT.getSizeInBits(), Lg2); 6237 SDValue Pow2MinusOne = DAG.getConstant(Lg2Mask, DL, VT); 6238 6239 // If N0 is negative, we need to add (Pow2 - 1) to it before shifting right. 6240 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6241 SDValue Cmp = DAG.getSetCC(DL, CCVT, N0, Zero, ISD::SETLT); 6242 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 6243 SDValue CMov = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 6244 6245 Created.push_back(Cmp.getNode()); 6246 Created.push_back(Add.getNode()); 6247 Created.push_back(CMov.getNode()); 6248 6249 // Divide by pow2. 6250 SDValue SRA = 6251 DAG.getNode(ISD::SRA, DL, VT, CMov, DAG.getConstant(Lg2, DL, VT)); 6252 6253 // If we're dividing by a positive value, we're done. Otherwise, we must 6254 // negate the result. 6255 if (Divisor.isNonNegative()) 6256 return SRA; 6257 6258 Created.push_back(SRA.getNode()); 6259 return DAG.getNode(ISD::SUB, DL, VT, Zero, SRA); 6260 } 6261 6262 /// Given an ISD::SDIV node expressing a divide by constant, 6263 /// return a DAG expression to select that will generate the same value by 6264 /// multiplying by a magic number. 6265 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 6266 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 6267 bool IsAfterLegalization, 6268 bool IsAfterLegalTypes, 6269 SmallVectorImpl<SDNode *> &Created) const { 6270 SDLoc dl(N); 6271 EVT VT = N->getValueType(0); 6272 EVT SVT = VT.getScalarType(); 6273 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6274 EVT ShSVT = ShVT.getScalarType(); 6275 unsigned EltBits = VT.getScalarSizeInBits(); 6276 EVT MulVT; 6277 6278 // Check to see if we can do this. 6279 // FIXME: We should be more aggressive here. 6280 if (!isTypeLegal(VT)) { 6281 // Limit this to simple scalars for now. 6282 if (VT.isVector() || !VT.isSimple()) 6283 return SDValue(); 6284 6285 // If this type will be promoted to a large enough type with a legal 6286 // multiply operation, we can go ahead and do this transform. 6287 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 6288 return SDValue(); 6289 6290 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 6291 if (MulVT.getSizeInBits() < (2 * EltBits) || 6292 !isOperationLegal(ISD::MUL, MulVT)) 6293 return SDValue(); 6294 } 6295 6296 // If the sdiv has an 'exact' bit we can use a simpler lowering. 6297 if (N->getFlags().hasExact()) 6298 return BuildExactSDIV(*this, N, dl, DAG, Created); 6299 6300 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 6301 6302 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 6303 if (C->isZero()) 6304 return false; 6305 6306 const APInt &Divisor = C->getAPIntValue(); 6307 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 6308 int NumeratorFactor = 0; 6309 int ShiftMask = -1; 6310 6311 if (Divisor.isOne() || Divisor.isAllOnes()) { 6312 // If d is +1/-1, we just multiply the numerator by +1/-1. 6313 NumeratorFactor = Divisor.getSExtValue(); 6314 magics.Magic = 0; 6315 magics.ShiftAmount = 0; 6316 ShiftMask = 0; 6317 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 6318 // If d > 0 and m < 0, add the numerator. 6319 NumeratorFactor = 1; 6320 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 6321 // If d < 0 and m > 0, subtract the numerator. 6322 NumeratorFactor = -1; 6323 } 6324 6325 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 6326 Factors.push_back(DAG.getSignedConstant(NumeratorFactor, dl, SVT)); 6327 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 6328 ShiftMasks.push_back(DAG.getSignedConstant(ShiftMask, dl, SVT)); 6329 return true; 6330 }; 6331 6332 SDValue N0 = N->getOperand(0); 6333 SDValue N1 = N->getOperand(1); 6334 6335 // Collect the shifts / magic values from each element. 6336 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 6337 return SDValue(); 6338 6339 SDValue MagicFactor, Factor, Shift, ShiftMask; 6340 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 6341 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 6342 Factor = DAG.getBuildVector(VT, dl, Factors); 6343 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 6344 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 6345 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 6346 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 6347 Shifts.size() == 1 && ShiftMasks.size() == 1 && 6348 "Expected matchUnaryPredicate to return one element for scalable " 6349 "vectors"); 6350 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 6351 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 6352 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 6353 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 6354 } else { 6355 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 6356 MagicFactor = MagicFactors[0]; 6357 Factor = Factors[0]; 6358 Shift = Shifts[0]; 6359 ShiftMask = ShiftMasks[0]; 6360 } 6361 6362 // Multiply the numerator (operand 0) by the magic value. 6363 // FIXME: We should support doing a MUL in a wider type. 6364 auto GetMULHS = [&](SDValue X, SDValue Y) { 6365 // If the type isn't legal, use a wider mul of the type calculated 6366 // earlier. 6367 if (!isTypeLegal(VT)) { 6368 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 6369 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 6370 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 6371 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 6372 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 6373 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6374 } 6375 6376 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 6377 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 6378 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 6379 SDValue LoHi = 6380 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 6381 return SDValue(LoHi.getNode(), 1); 6382 } 6383 // If type twice as wide legal, widen and use a mul plus a shift. 6384 unsigned Size = VT.getScalarSizeInBits(); 6385 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2); 6386 if (VT.isVector()) 6387 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 6388 VT.getVectorElementCount()); 6389 // Some targets like AMDGPU try to go from SDIV to SDIVREM which is then 6390 // custom lowered. This is very expensive so avoid it at all costs for 6391 // constant divisors. 6392 if ((!IsAfterLegalTypes && isOperationExpand(ISD::SDIV, VT) && 6393 isOperationCustom(ISD::SDIVREM, VT.getScalarType())) || 6394 isOperationLegalOrCustom(ISD::MUL, WideVT)) { 6395 X = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, X); 6396 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, Y); 6397 Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y); 6398 Y = DAG.getNode(ISD::SRL, dl, WideVT, Y, 6399 DAG.getShiftAmountConstant(EltBits, WideVT, dl)); 6400 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6401 } 6402 return SDValue(); 6403 }; 6404 6405 SDValue Q = GetMULHS(N0, MagicFactor); 6406 if (!Q) 6407 return SDValue(); 6408 6409 Created.push_back(Q.getNode()); 6410 6411 // (Optionally) Add/subtract the numerator using Factor. 6412 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 6413 Created.push_back(Factor.getNode()); 6414 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 6415 Created.push_back(Q.getNode()); 6416 6417 // Shift right algebraic by shift value. 6418 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 6419 Created.push_back(Q.getNode()); 6420 6421 // Extract the sign bit, mask it and add it to the quotient. 6422 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 6423 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 6424 Created.push_back(T.getNode()); 6425 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 6426 Created.push_back(T.getNode()); 6427 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 6428 } 6429 6430 /// Given an ISD::UDIV node expressing a divide by constant, 6431 /// return a DAG expression to select that will generate the same value by 6432 /// multiplying by a magic number. 6433 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 6434 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 6435 bool IsAfterLegalization, 6436 bool IsAfterLegalTypes, 6437 SmallVectorImpl<SDNode *> &Created) const { 6438 SDLoc dl(N); 6439 EVT VT = N->getValueType(0); 6440 EVT SVT = VT.getScalarType(); 6441 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6442 EVT ShSVT = ShVT.getScalarType(); 6443 unsigned EltBits = VT.getScalarSizeInBits(); 6444 EVT MulVT; 6445 6446 // Check to see if we can do this. 6447 // FIXME: We should be more aggressive here. 6448 if (!isTypeLegal(VT)) { 6449 // Limit this to simple scalars for now. 6450 if (VT.isVector() || !VT.isSimple()) 6451 return SDValue(); 6452 6453 // If this type will be promoted to a large enough type with a legal 6454 // multiply operation, we can go ahead and do this transform. 6455 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 6456 return SDValue(); 6457 6458 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 6459 if (MulVT.getSizeInBits() < (2 * EltBits) || 6460 !isOperationLegal(ISD::MUL, MulVT)) 6461 return SDValue(); 6462 } 6463 6464 // If the udiv has an 'exact' bit we can use a simpler lowering. 6465 if (N->getFlags().hasExact()) 6466 return BuildExactUDIV(*this, N, dl, DAG, Created); 6467 6468 SDValue N0 = N->getOperand(0); 6469 SDValue N1 = N->getOperand(1); 6470 6471 // Try to use leading zeros of the dividend to reduce the multiplier and 6472 // avoid expensive fixups. 6473 unsigned KnownLeadingZeros = DAG.computeKnownBits(N0).countMinLeadingZeros(); 6474 6475 bool UseNPQ = false, UsePreShift = false, UsePostShift = false; 6476 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 6477 6478 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 6479 if (C->isZero()) 6480 return false; 6481 const APInt& Divisor = C->getAPIntValue(); 6482 6483 SDValue PreShift, MagicFactor, NPQFactor, PostShift; 6484 6485 // Magic algorithm doesn't work for division by 1. We need to emit a select 6486 // at the end. 6487 if (Divisor.isOne()) { 6488 PreShift = PostShift = DAG.getUNDEF(ShSVT); 6489 MagicFactor = NPQFactor = DAG.getUNDEF(SVT); 6490 } else { 6491 UnsignedDivisionByConstantInfo magics = 6492 UnsignedDivisionByConstantInfo::get( 6493 Divisor, std::min(KnownLeadingZeros, Divisor.countl_zero())); 6494 6495 MagicFactor = DAG.getConstant(magics.Magic, dl, SVT); 6496 6497 assert(magics.PreShift < Divisor.getBitWidth() && 6498 "We shouldn't generate an undefined shift!"); 6499 assert(magics.PostShift < Divisor.getBitWidth() && 6500 "We shouldn't generate an undefined shift!"); 6501 assert((!magics.IsAdd || magics.PreShift == 0) && 6502 "Unexpected pre-shift"); 6503 PreShift = DAG.getConstant(magics.PreShift, dl, ShSVT); 6504 PostShift = DAG.getConstant(magics.PostShift, dl, ShSVT); 6505 NPQFactor = DAG.getConstant( 6506 magics.IsAdd ? APInt::getOneBitSet(EltBits, EltBits - 1) 6507 : APInt::getZero(EltBits), 6508 dl, SVT); 6509 UseNPQ |= magics.IsAdd; 6510 UsePreShift |= magics.PreShift != 0; 6511 UsePostShift |= magics.PostShift != 0; 6512 } 6513 6514 PreShifts.push_back(PreShift); 6515 MagicFactors.push_back(MagicFactor); 6516 NPQFactors.push_back(NPQFactor); 6517 PostShifts.push_back(PostShift); 6518 return true; 6519 }; 6520 6521 // Collect the shifts/magic values from each element. 6522 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 6523 return SDValue(); 6524 6525 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 6526 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 6527 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 6528 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 6529 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 6530 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 6531 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 6532 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 6533 NPQFactors.size() == 1 && PostShifts.size() == 1 && 6534 "Expected matchUnaryPredicate to return one for scalable vectors"); 6535 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 6536 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 6537 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 6538 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 6539 } else { 6540 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 6541 PreShift = PreShifts[0]; 6542 MagicFactor = MagicFactors[0]; 6543 PostShift = PostShifts[0]; 6544 } 6545 6546 SDValue Q = N0; 6547 if (UsePreShift) { 6548 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 6549 Created.push_back(Q.getNode()); 6550 } 6551 6552 // FIXME: We should support doing a MUL in a wider type. 6553 auto GetMULHU = [&](SDValue X, SDValue Y) { 6554 // If the type isn't legal, use a wider mul of the type calculated 6555 // earlier. 6556 if (!isTypeLegal(VT)) { 6557 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 6558 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 6559 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 6560 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 6561 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 6562 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6563 } 6564 6565 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 6566 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 6567 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 6568 SDValue LoHi = 6569 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 6570 return SDValue(LoHi.getNode(), 1); 6571 } 6572 // If type twice as wide legal, widen and use a mul plus a shift. 6573 unsigned Size = VT.getScalarSizeInBits(); 6574 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2); 6575 if (VT.isVector()) 6576 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 6577 VT.getVectorElementCount()); 6578 // Some targets like AMDGPU try to go from UDIV to UDIVREM which is then 6579 // custom lowered. This is very expensive so avoid it at all costs for 6580 // constant divisors. 6581 if ((!IsAfterLegalTypes && isOperationExpand(ISD::UDIV, VT) && 6582 isOperationCustom(ISD::UDIVREM, VT.getScalarType())) || 6583 isOperationLegalOrCustom(ISD::MUL, WideVT)) { 6584 X = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, X); 6585 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, Y); 6586 Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y); 6587 Y = DAG.getNode(ISD::SRL, dl, WideVT, Y, 6588 DAG.getShiftAmountConstant(EltBits, WideVT, dl)); 6589 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6590 } 6591 return SDValue(); // No mulhu or equivalent 6592 }; 6593 6594 // Multiply the numerator (operand 0) by the magic value. 6595 Q = GetMULHU(Q, MagicFactor); 6596 if (!Q) 6597 return SDValue(); 6598 6599 Created.push_back(Q.getNode()); 6600 6601 if (UseNPQ) { 6602 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 6603 Created.push_back(NPQ.getNode()); 6604 6605 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 6606 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 6607 if (VT.isVector()) 6608 NPQ = GetMULHU(NPQ, NPQFactor); 6609 else 6610 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 6611 6612 Created.push_back(NPQ.getNode()); 6613 6614 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 6615 Created.push_back(Q.getNode()); 6616 } 6617 6618 if (UsePostShift) { 6619 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 6620 Created.push_back(Q.getNode()); 6621 } 6622 6623 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6624 6625 SDValue One = DAG.getConstant(1, dl, VT); 6626 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 6627 return DAG.getSelect(dl, VT, IsOne, N0, Q); 6628 } 6629 6630 /// If all values in Values that *don't* match the predicate are same 'splat' 6631 /// value, then replace all values with that splat value. 6632 /// Else, if AlternativeReplacement was provided, then replace all values that 6633 /// do match predicate with AlternativeReplacement value. 6634 static void 6635 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 6636 std::function<bool(SDValue)> Predicate, 6637 SDValue AlternativeReplacement = SDValue()) { 6638 SDValue Replacement; 6639 // Is there a value for which the Predicate does *NOT* match? What is it? 6640 auto SplatValue = llvm::find_if_not(Values, Predicate); 6641 if (SplatValue != Values.end()) { 6642 // Does Values consist only of SplatValue's and values matching Predicate? 6643 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 6644 return Value == *SplatValue || Predicate(Value); 6645 })) // Then we shall replace values matching predicate with SplatValue. 6646 Replacement = *SplatValue; 6647 } 6648 if (!Replacement) { 6649 // Oops, we did not find the "baseline" splat value. 6650 if (!AlternativeReplacement) 6651 return; // Nothing to do. 6652 // Let's replace with provided value then. 6653 Replacement = AlternativeReplacement; 6654 } 6655 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 6656 } 6657 6658 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 6659 /// where the divisor is constant and the comparison target is zero, 6660 /// return a DAG expression that will generate the same comparison result 6661 /// using only multiplications, additions and shifts/rotations. 6662 /// Ref: "Hacker's Delight" 10-17. 6663 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 6664 SDValue CompTargetNode, 6665 ISD::CondCode Cond, 6666 DAGCombinerInfo &DCI, 6667 const SDLoc &DL) const { 6668 SmallVector<SDNode *, 5> Built; 6669 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6670 DCI, DL, Built)) { 6671 for (SDNode *N : Built) 6672 DCI.AddToWorklist(N); 6673 return Folded; 6674 } 6675 6676 return SDValue(); 6677 } 6678 6679 SDValue 6680 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 6681 SDValue CompTargetNode, ISD::CondCode Cond, 6682 DAGCombinerInfo &DCI, const SDLoc &DL, 6683 SmallVectorImpl<SDNode *> &Created) const { 6684 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 6685 // - D must be constant, with D = D0 * 2^K where D0 is odd 6686 // - P is the multiplicative inverse of D0 modulo 2^W 6687 // - Q = floor(((2^W) - 1) / D) 6688 // where W is the width of the common type of N and D. 6689 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6690 "Only applicable for (in)equality comparisons."); 6691 6692 SelectionDAG &DAG = DCI.DAG; 6693 6694 EVT VT = REMNode.getValueType(); 6695 EVT SVT = VT.getScalarType(); 6696 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6697 EVT ShSVT = ShVT.getScalarType(); 6698 6699 // If MUL is unavailable, we cannot proceed in any case. 6700 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6701 return SDValue(); 6702 6703 bool ComparingWithAllZeros = true; 6704 bool AllComparisonsWithNonZerosAreTautological = true; 6705 bool HadTautologicalLanes = false; 6706 bool AllLanesAreTautological = true; 6707 bool HadEvenDivisor = false; 6708 bool AllDivisorsArePowerOfTwo = true; 6709 bool HadTautologicalInvertedLanes = false; 6710 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 6711 6712 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 6713 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6714 if (CDiv->isZero()) 6715 return false; 6716 6717 const APInt &D = CDiv->getAPIntValue(); 6718 const APInt &Cmp = CCmp->getAPIntValue(); 6719 6720 ComparingWithAllZeros &= Cmp.isZero(); 6721 6722 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6723 // if C2 is not less than C1, the comparison is always false. 6724 // But we will only be able to produce the comparison that will give the 6725 // opposive tautological answer. So this lane would need to be fixed up. 6726 bool TautologicalInvertedLane = D.ule(Cmp); 6727 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 6728 6729 // If all lanes are tautological (either all divisors are ones, or divisor 6730 // is not greater than the constant we are comparing with), 6731 // we will prefer to avoid the fold. 6732 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 6733 HadTautologicalLanes |= TautologicalLane; 6734 AllLanesAreTautological &= TautologicalLane; 6735 6736 // If we are comparing with non-zero, we need'll need to subtract said 6737 // comparison value from the LHS. But there is no point in doing that if 6738 // every lane where we are comparing with non-zero is tautological.. 6739 if (!Cmp.isZero()) 6740 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 6741 6742 // Decompose D into D0 * 2^K 6743 unsigned K = D.countr_zero(); 6744 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6745 APInt D0 = D.lshr(K); 6746 6747 // D is even if it has trailing zeros. 6748 HadEvenDivisor |= (K != 0); 6749 // D is a power-of-two if D0 is one. 6750 // If all divisors are power-of-two, we will prefer to avoid the fold. 6751 AllDivisorsArePowerOfTwo &= D0.isOne(); 6752 6753 // P = inv(D0, 2^W) 6754 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6755 unsigned W = D.getBitWidth(); 6756 APInt P = D0.multiplicativeInverse(); 6757 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6758 6759 // Q = floor((2^W - 1) u/ D) 6760 // R = ((2^W - 1) u% D) 6761 APInt Q, R; 6762 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 6763 6764 // If we are comparing with zero, then that comparison constant is okay, 6765 // else it may need to be one less than that. 6766 if (Cmp.ugt(R)) 6767 Q -= 1; 6768 6769 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6770 "We are expecting that K is always less than all-ones for ShSVT"); 6771 6772 // If the lane is tautological the result can be constant-folded. 6773 if (TautologicalLane) { 6774 // Set P and K amount to a bogus values so we can try to splat them. 6775 P = 0; 6776 K = -1; 6777 // And ensure that comparison constant is tautological, 6778 // it will always compare true/false. 6779 Q = -1; 6780 } 6781 6782 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6783 KAmts.push_back( 6784 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K, /*isSigned=*/false, 6785 /*implicitTrunc=*/true), 6786 DL, ShSVT)); 6787 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6788 return true; 6789 }; 6790 6791 SDValue N = REMNode.getOperand(0); 6792 SDValue D = REMNode.getOperand(1); 6793 6794 // Collect the values from each element. 6795 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 6796 return SDValue(); 6797 6798 // If all lanes are tautological, the result can be constant-folded. 6799 if (AllLanesAreTautological) 6800 return SDValue(); 6801 6802 // If this is a urem by a powers-of-two, avoid the fold since it can be 6803 // best implemented as a bit test. 6804 if (AllDivisorsArePowerOfTwo) 6805 return SDValue(); 6806 6807 SDValue PVal, KVal, QVal; 6808 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6809 if (HadTautologicalLanes) { 6810 // Try to turn PAmts into a splat, since we don't care about the values 6811 // that are currently '0'. If we can't, just keep '0'`s. 6812 turnVectorIntoSplatVector(PAmts, isNullConstant); 6813 // Try to turn KAmts into a splat, since we don't care about the values 6814 // that are currently '-1'. If we can't, change them to '0'`s. 6815 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6816 DAG.getConstant(0, DL, ShSVT)); 6817 } 6818 6819 PVal = DAG.getBuildVector(VT, DL, PAmts); 6820 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6821 QVal = DAG.getBuildVector(VT, DL, QAmts); 6822 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6823 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 6824 "Expected matchBinaryPredicate to return one element for " 6825 "SPLAT_VECTORs"); 6826 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6827 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6828 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6829 } else { 6830 PVal = PAmts[0]; 6831 KVal = KAmts[0]; 6832 QVal = QAmts[0]; 6833 } 6834 6835 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 6836 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 6837 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 6838 assert(CompTargetNode.getValueType() == N.getValueType() && 6839 "Expecting that the types on LHS and RHS of comparisons match."); 6840 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 6841 } 6842 6843 // (mul N, P) 6844 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6845 Created.push_back(Op0.getNode()); 6846 6847 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6848 // divisors as a performance improvement, since rotating by 0 is a no-op. 6849 if (HadEvenDivisor) { 6850 // We need ROTR to do this. 6851 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6852 return SDValue(); 6853 // UREM: (rotr (mul N, P), K) 6854 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6855 Created.push_back(Op0.getNode()); 6856 } 6857 6858 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 6859 SDValue NewCC = 6860 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6861 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6862 if (!HadTautologicalInvertedLanes) 6863 return NewCC; 6864 6865 // If any lanes previously compared always-false, the NewCC will give 6866 // always-true result for them, so we need to fixup those lanes. 6867 // Or the other way around for inequality predicate. 6868 assert(VT.isVector() && "Can/should only get here for vectors."); 6869 Created.push_back(NewCC.getNode()); 6870 6871 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6872 // if C2 is not less than C1, the comparison is always false. 6873 // But we have produced the comparison that will give the 6874 // opposive tautological answer. So these lanes would need to be fixed up. 6875 SDValue TautologicalInvertedChannels = 6876 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 6877 Created.push_back(TautologicalInvertedChannels.getNode()); 6878 6879 // NOTE: we avoid letting illegal types through even if we're before legalize 6880 // ops – legalization has a hard time producing good code for this. 6881 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 6882 // If we have a vector select, let's replace the comparison results in the 6883 // affected lanes with the correct tautological result. 6884 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 6885 DL, SETCCVT, SETCCVT); 6886 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 6887 Replacement, NewCC); 6888 } 6889 6890 // Else, we can just invert the comparison result in the appropriate lanes. 6891 // 6892 // NOTE: see the note above VSELECT above. 6893 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 6894 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 6895 TautologicalInvertedChannels); 6896 6897 return SDValue(); // Don't know how to lower. 6898 } 6899 6900 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 6901 /// where the divisor is constant and the comparison target is zero, 6902 /// return a DAG expression that will generate the same comparison result 6903 /// using only multiplications, additions and shifts/rotations. 6904 /// Ref: "Hacker's Delight" 10-17. 6905 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 6906 SDValue CompTargetNode, 6907 ISD::CondCode Cond, 6908 DAGCombinerInfo &DCI, 6909 const SDLoc &DL) const { 6910 SmallVector<SDNode *, 7> Built; 6911 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6912 DCI, DL, Built)) { 6913 assert(Built.size() <= 7 && "Max size prediction failed."); 6914 for (SDNode *N : Built) 6915 DCI.AddToWorklist(N); 6916 return Folded; 6917 } 6918 6919 return SDValue(); 6920 } 6921 6922 SDValue 6923 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 6924 SDValue CompTargetNode, ISD::CondCode Cond, 6925 DAGCombinerInfo &DCI, const SDLoc &DL, 6926 SmallVectorImpl<SDNode *> &Created) const { 6927 // Derived from Hacker's Delight, 2nd Edition, by Hank Warren. Section 10-17. 6928 // Fold: 6929 // (seteq/ne (srem N, D), 0) 6930 // To: 6931 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 6932 // 6933 // - D must be constant, with D = D0 * 2^K where D0 is odd 6934 // - P is the multiplicative inverse of D0 modulo 2^W 6935 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 6936 // - Q = floor((2 * A) / (2^K)) 6937 // where W is the width of the common type of N and D. 6938 // 6939 // When D is a power of two (and thus D0 is 1), the normal 6940 // formula for A and Q don't apply, because the derivation 6941 // depends on D not dividing 2^(W-1), and thus theorem ZRS 6942 // does not apply. This specifically fails when N = INT_MIN. 6943 // 6944 // Instead, for power-of-two D, we use: 6945 // - A = 2^(W-1) 6946 // |-> Order-preserving map from [-2^(W-1), 2^(W-1) - 1] to [0,2^W - 1]) 6947 // - Q = 2^(W-K) - 1 6948 // |-> Test that the top K bits are zero after rotation 6949 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6950 "Only applicable for (in)equality comparisons."); 6951 6952 SelectionDAG &DAG = DCI.DAG; 6953 6954 EVT VT = REMNode.getValueType(); 6955 EVT SVT = VT.getScalarType(); 6956 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6957 EVT ShSVT = ShVT.getScalarType(); 6958 6959 // If we are after ops legalization, and MUL is unavailable, we can not 6960 // proceed. 6961 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6962 return SDValue(); 6963 6964 // TODO: Could support comparing with non-zero too. 6965 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 6966 if (!CompTarget || !CompTarget->isZero()) 6967 return SDValue(); 6968 6969 bool HadIntMinDivisor = false; 6970 bool HadOneDivisor = false; 6971 bool AllDivisorsAreOnes = true; 6972 bool HadEvenDivisor = false; 6973 bool NeedToApplyOffset = false; 6974 bool AllDivisorsArePowerOfTwo = true; 6975 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 6976 6977 auto BuildSREMPattern = [&](ConstantSDNode *C) { 6978 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6979 if (C->isZero()) 6980 return false; 6981 6982 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 6983 6984 // WARNING: this fold is only valid for positive divisors! 6985 APInt D = C->getAPIntValue(); 6986 if (D.isNegative()) 6987 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 6988 6989 HadIntMinDivisor |= D.isMinSignedValue(); 6990 6991 // If all divisors are ones, we will prefer to avoid the fold. 6992 HadOneDivisor |= D.isOne(); 6993 AllDivisorsAreOnes &= D.isOne(); 6994 6995 // Decompose D into D0 * 2^K 6996 unsigned K = D.countr_zero(); 6997 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6998 APInt D0 = D.lshr(K); 6999 7000 if (!D.isMinSignedValue()) { 7001 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 7002 // we don't care about this lane in this fold, we'll special-handle it. 7003 HadEvenDivisor |= (K != 0); 7004 } 7005 7006 // D is a power-of-two if D0 is one. This includes INT_MIN. 7007 // If all divisors are power-of-two, we will prefer to avoid the fold. 7008 AllDivisorsArePowerOfTwo &= D0.isOne(); 7009 7010 // P = inv(D0, 2^W) 7011 // 2^W requires W + 1 bits, so we have to extend and then truncate. 7012 unsigned W = D.getBitWidth(); 7013 APInt P = D0.multiplicativeInverse(); 7014 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 7015 7016 // A = floor((2^(W - 1) - 1) / D0) & -2^K 7017 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 7018 A.clearLowBits(K); 7019 7020 if (!D.isMinSignedValue()) { 7021 // If divisor INT_MIN, then we don't care about this lane in this fold, 7022 // we'll special-handle it. 7023 NeedToApplyOffset |= A != 0; 7024 } 7025 7026 // Q = floor((2 * A) / (2^K)) 7027 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 7028 7029 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 7030 "We are expecting that A is always less than all-ones for SVT"); 7031 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 7032 "We are expecting that K is always less than all-ones for ShSVT"); 7033 7034 // If D was a power of two, apply the alternate constant derivation. 7035 if (D0.isOne()) { 7036 // A = 2^(W-1) 7037 A = APInt::getSignedMinValue(W); 7038 // - Q = 2^(W-K) - 1 7039 Q = APInt::getAllOnes(W - K).zext(W); 7040 } 7041 7042 // If the divisor is 1 the result can be constant-folded. Likewise, we 7043 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 7044 if (D.isOne()) { 7045 // Set P, A and K to a bogus values so we can try to splat them. 7046 P = 0; 7047 A = -1; 7048 K = -1; 7049 7050 // x ?% 1 == 0 <--> true <--> x u<= -1 7051 Q = -1; 7052 } 7053 7054 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 7055 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 7056 KAmts.push_back( 7057 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K, /*isSigned=*/false, 7058 /*implicitTrunc=*/true), 7059 DL, ShSVT)); 7060 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 7061 return true; 7062 }; 7063 7064 SDValue N = REMNode.getOperand(0); 7065 SDValue D = REMNode.getOperand(1); 7066 7067 // Collect the values from each element. 7068 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 7069 return SDValue(); 7070 7071 // If this is a srem by a one, avoid the fold since it can be constant-folded. 7072 if (AllDivisorsAreOnes) 7073 return SDValue(); 7074 7075 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 7076 // since it can be best implemented as a bit test. 7077 if (AllDivisorsArePowerOfTwo) 7078 return SDValue(); 7079 7080 SDValue PVal, AVal, KVal, QVal; 7081 if (D.getOpcode() == ISD::BUILD_VECTOR) { 7082 if (HadOneDivisor) { 7083 // Try to turn PAmts into a splat, since we don't care about the values 7084 // that are currently '0'. If we can't, just keep '0'`s. 7085 turnVectorIntoSplatVector(PAmts, isNullConstant); 7086 // Try to turn AAmts into a splat, since we don't care about the 7087 // values that are currently '-1'. If we can't, change them to '0'`s. 7088 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 7089 DAG.getConstant(0, DL, SVT)); 7090 // Try to turn KAmts into a splat, since we don't care about the values 7091 // that are currently '-1'. If we can't, change them to '0'`s. 7092 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 7093 DAG.getConstant(0, DL, ShSVT)); 7094 } 7095 7096 PVal = DAG.getBuildVector(VT, DL, PAmts); 7097 AVal = DAG.getBuildVector(VT, DL, AAmts); 7098 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 7099 QVal = DAG.getBuildVector(VT, DL, QAmts); 7100 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 7101 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 7102 QAmts.size() == 1 && 7103 "Expected matchUnaryPredicate to return one element for scalable " 7104 "vectors"); 7105 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 7106 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 7107 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 7108 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 7109 } else { 7110 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 7111 PVal = PAmts[0]; 7112 AVal = AAmts[0]; 7113 KVal = KAmts[0]; 7114 QVal = QAmts[0]; 7115 } 7116 7117 // (mul N, P) 7118 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 7119 Created.push_back(Op0.getNode()); 7120 7121 if (NeedToApplyOffset) { 7122 // We need ADD to do this. 7123 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 7124 return SDValue(); 7125 7126 // (add (mul N, P), A) 7127 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 7128 Created.push_back(Op0.getNode()); 7129 } 7130 7131 // Rotate right only if any divisor was even. We avoid rotates for all-odd 7132 // divisors as a performance improvement, since rotating by 0 is a no-op. 7133 if (HadEvenDivisor) { 7134 // We need ROTR to do this. 7135 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 7136 return SDValue(); 7137 // SREM: (rotr (add (mul N, P), A), K) 7138 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 7139 Created.push_back(Op0.getNode()); 7140 } 7141 7142 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 7143 SDValue Fold = 7144 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 7145 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 7146 7147 // If we didn't have lanes with INT_MIN divisor, then we're done. 7148 if (!HadIntMinDivisor) 7149 return Fold; 7150 7151 // That fold is only valid for positive divisors. Which effectively means, 7152 // it is invalid for INT_MIN divisors. So if we have such a lane, 7153 // we must fix-up results for said lanes. 7154 assert(VT.isVector() && "Can/should only get here for vectors."); 7155 7156 // NOTE: we avoid letting illegal types through even if we're before legalize 7157 // ops – legalization has a hard time producing good code for the code that 7158 // follows. 7159 if (!isOperationLegalOrCustom(ISD::SETCC, SETCCVT) || 7160 !isOperationLegalOrCustom(ISD::AND, VT) || 7161 !isCondCodeLegalOrCustom(Cond, VT.getSimpleVT()) || 7162 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 7163 return SDValue(); 7164 7165 Created.push_back(Fold.getNode()); 7166 7167 SDValue IntMin = DAG.getConstant( 7168 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 7169 SDValue IntMax = DAG.getConstant( 7170 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 7171 SDValue Zero = 7172 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 7173 7174 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 7175 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 7176 Created.push_back(DivisorIsIntMin.getNode()); 7177 7178 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 7179 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 7180 Created.push_back(Masked.getNode()); 7181 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 7182 Created.push_back(MaskedIsZero.getNode()); 7183 7184 // To produce final result we need to blend 2 vectors: 'SetCC' and 7185 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 7186 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 7187 // constant-folded, select can get lowered to a shuffle with constant mask. 7188 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 7189 MaskedIsZero, Fold); 7190 7191 return Blended; 7192 } 7193 7194 bool TargetLowering:: 7195 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 7196 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 7197 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 7198 "be a constant integer"); 7199 return true; 7200 } 7201 7202 return false; 7203 } 7204 7205 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 7206 const DenormalMode &Mode) const { 7207 SDLoc DL(Op); 7208 EVT VT = Op.getValueType(); 7209 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7210 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 7211 7212 // This is specifically a check for the handling of denormal inputs, not the 7213 // result. 7214 if (Mode.Input == DenormalMode::PreserveSign || 7215 Mode.Input == DenormalMode::PositiveZero) { 7216 // Test = X == 0.0 7217 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 7218 } 7219 7220 // Testing it with denormal inputs to avoid wrong estimate. 7221 // 7222 // Test = fabs(X) < SmallestNormal 7223 const fltSemantics &FltSem = VT.getFltSemantics(); 7224 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 7225 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 7226 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 7227 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 7228 } 7229 7230 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 7231 bool LegalOps, bool OptForSize, 7232 NegatibleCost &Cost, 7233 unsigned Depth) const { 7234 // fneg is removable even if it has multiple uses. 7235 if (Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::VP_FNEG) { 7236 Cost = NegatibleCost::Cheaper; 7237 return Op.getOperand(0); 7238 } 7239 7240 // Don't recurse exponentially. 7241 if (Depth > SelectionDAG::MaxRecursionDepth) 7242 return SDValue(); 7243 7244 // Pre-increment recursion depth for use in recursive calls. 7245 ++Depth; 7246 const SDNodeFlags Flags = Op->getFlags(); 7247 const TargetOptions &Options = DAG.getTarget().Options; 7248 EVT VT = Op.getValueType(); 7249 unsigned Opcode = Op.getOpcode(); 7250 7251 // Don't allow anything with multiple uses unless we know it is free. 7252 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 7253 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 7254 isFPExtFree(VT, Op.getOperand(0).getValueType()); 7255 if (!IsFreeExtend) 7256 return SDValue(); 7257 } 7258 7259 auto RemoveDeadNode = [&](SDValue N) { 7260 if (N && N.getNode()->use_empty()) 7261 DAG.RemoveDeadNode(N.getNode()); 7262 }; 7263 7264 SDLoc DL(Op); 7265 7266 // Because getNegatedExpression can delete nodes we need a handle to keep 7267 // temporary nodes alive in case the recursion manages to create an identical 7268 // node. 7269 std::list<HandleSDNode> Handles; 7270 7271 switch (Opcode) { 7272 case ISD::ConstantFP: { 7273 // Don't invert constant FP values after legalization unless the target says 7274 // the negated constant is legal. 7275 bool IsOpLegal = 7276 isOperationLegal(ISD::ConstantFP, VT) || 7277 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 7278 OptForSize); 7279 7280 if (LegalOps && !IsOpLegal) 7281 break; 7282 7283 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 7284 V.changeSign(); 7285 SDValue CFP = DAG.getConstantFP(V, DL, VT); 7286 7287 // If we already have the use of the negated floating constant, it is free 7288 // to negate it even it has multiple uses. 7289 if (!Op.hasOneUse() && CFP.use_empty()) 7290 break; 7291 Cost = NegatibleCost::Neutral; 7292 return CFP; 7293 } 7294 case ISD::BUILD_VECTOR: { 7295 // Only permit BUILD_VECTOR of constants. 7296 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 7297 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 7298 })) 7299 break; 7300 7301 bool IsOpLegal = 7302 (isOperationLegal(ISD::ConstantFP, VT) && 7303 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 7304 llvm::all_of(Op->op_values(), [&](SDValue N) { 7305 return N.isUndef() || 7306 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 7307 OptForSize); 7308 }); 7309 7310 if (LegalOps && !IsOpLegal) 7311 break; 7312 7313 SmallVector<SDValue, 4> Ops; 7314 for (SDValue C : Op->op_values()) { 7315 if (C.isUndef()) { 7316 Ops.push_back(C); 7317 continue; 7318 } 7319 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 7320 V.changeSign(); 7321 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 7322 } 7323 Cost = NegatibleCost::Neutral; 7324 return DAG.getBuildVector(VT, DL, Ops); 7325 } 7326 case ISD::FADD: { 7327 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 7328 break; 7329 7330 // After operation legalization, it might not be legal to create new FSUBs. 7331 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 7332 break; 7333 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 7334 7335 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 7336 NegatibleCost CostX = NegatibleCost::Expensive; 7337 SDValue NegX = 7338 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 7339 // Prevent this node from being deleted by the next call. 7340 if (NegX) 7341 Handles.emplace_back(NegX); 7342 7343 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 7344 NegatibleCost CostY = NegatibleCost::Expensive; 7345 SDValue NegY = 7346 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 7347 7348 // We're done with the handles. 7349 Handles.clear(); 7350 7351 // Negate the X if its cost is less or equal than Y. 7352 if (NegX && (CostX <= CostY)) { 7353 Cost = CostX; 7354 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 7355 if (NegY != N) 7356 RemoveDeadNode(NegY); 7357 return N; 7358 } 7359 7360 // Negate the Y if it is not expensive. 7361 if (NegY) { 7362 Cost = CostY; 7363 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 7364 if (NegX != N) 7365 RemoveDeadNode(NegX); 7366 return N; 7367 } 7368 break; 7369 } 7370 case ISD::FSUB: { 7371 // We can't turn -(A-B) into B-A when we honor signed zeros. 7372 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 7373 break; 7374 7375 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 7376 // fold (fneg (fsub 0, Y)) -> Y 7377 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 7378 if (C->isZero()) { 7379 Cost = NegatibleCost::Cheaper; 7380 return Y; 7381 } 7382 7383 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 7384 Cost = NegatibleCost::Neutral; 7385 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 7386 } 7387 case ISD::FMUL: 7388 case ISD::FDIV: { 7389 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 7390 7391 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 7392 NegatibleCost CostX = NegatibleCost::Expensive; 7393 SDValue NegX = 7394 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 7395 // Prevent this node from being deleted by the next call. 7396 if (NegX) 7397 Handles.emplace_back(NegX); 7398 7399 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 7400 NegatibleCost CostY = NegatibleCost::Expensive; 7401 SDValue NegY = 7402 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 7403 7404 // We're done with the handles. 7405 Handles.clear(); 7406 7407 // Negate the X if its cost is less or equal than Y. 7408 if (NegX && (CostX <= CostY)) { 7409 Cost = CostX; 7410 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 7411 if (NegY != N) 7412 RemoveDeadNode(NegY); 7413 return N; 7414 } 7415 7416 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 7417 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 7418 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 7419 break; 7420 7421 // Negate the Y if it is not expensive. 7422 if (NegY) { 7423 Cost = CostY; 7424 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 7425 if (NegX != N) 7426 RemoveDeadNode(NegX); 7427 return N; 7428 } 7429 break; 7430 } 7431 case ISD::FMA: 7432 case ISD::FMAD: { 7433 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 7434 break; 7435 7436 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 7437 NegatibleCost CostZ = NegatibleCost::Expensive; 7438 SDValue NegZ = 7439 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 7440 // Give up if fail to negate the Z. 7441 if (!NegZ) 7442 break; 7443 7444 // Prevent this node from being deleted by the next two calls. 7445 Handles.emplace_back(NegZ); 7446 7447 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 7448 NegatibleCost CostX = NegatibleCost::Expensive; 7449 SDValue NegX = 7450 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 7451 // Prevent this node from being deleted by the next call. 7452 if (NegX) 7453 Handles.emplace_back(NegX); 7454 7455 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 7456 NegatibleCost CostY = NegatibleCost::Expensive; 7457 SDValue NegY = 7458 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 7459 7460 // We're done with the handles. 7461 Handles.clear(); 7462 7463 // Negate the X if its cost is less or equal than Y. 7464 if (NegX && (CostX <= CostY)) { 7465 Cost = std::min(CostX, CostZ); 7466 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 7467 if (NegY != N) 7468 RemoveDeadNode(NegY); 7469 return N; 7470 } 7471 7472 // Negate the Y if it is not expensive. 7473 if (NegY) { 7474 Cost = std::min(CostY, CostZ); 7475 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 7476 if (NegX != N) 7477 RemoveDeadNode(NegX); 7478 return N; 7479 } 7480 break; 7481 } 7482 7483 case ISD::FP_EXTEND: 7484 case ISD::FSIN: 7485 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 7486 OptForSize, Cost, Depth)) 7487 return DAG.getNode(Opcode, DL, VT, NegV); 7488 break; 7489 case ISD::FP_ROUND: 7490 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 7491 OptForSize, Cost, Depth)) 7492 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 7493 break; 7494 case ISD::SELECT: 7495 case ISD::VSELECT: { 7496 // fold (fneg (select C, LHS, RHS)) -> (select C, (fneg LHS), (fneg RHS)) 7497 // iff at least one cost is cheaper and the other is neutral/cheaper 7498 SDValue LHS = Op.getOperand(1); 7499 NegatibleCost CostLHS = NegatibleCost::Expensive; 7500 SDValue NegLHS = 7501 getNegatedExpression(LHS, DAG, LegalOps, OptForSize, CostLHS, Depth); 7502 if (!NegLHS || CostLHS > NegatibleCost::Neutral) { 7503 RemoveDeadNode(NegLHS); 7504 break; 7505 } 7506 7507 // Prevent this node from being deleted by the next call. 7508 Handles.emplace_back(NegLHS); 7509 7510 SDValue RHS = Op.getOperand(2); 7511 NegatibleCost CostRHS = NegatibleCost::Expensive; 7512 SDValue NegRHS = 7513 getNegatedExpression(RHS, DAG, LegalOps, OptForSize, CostRHS, Depth); 7514 7515 // We're done with the handles. 7516 Handles.clear(); 7517 7518 if (!NegRHS || CostRHS > NegatibleCost::Neutral || 7519 (CostLHS != NegatibleCost::Cheaper && 7520 CostRHS != NegatibleCost::Cheaper)) { 7521 RemoveDeadNode(NegLHS); 7522 RemoveDeadNode(NegRHS); 7523 break; 7524 } 7525 7526 Cost = std::min(CostLHS, CostRHS); 7527 return DAG.getSelect(DL, VT, Op.getOperand(0), NegLHS, NegRHS); 7528 } 7529 } 7530 7531 return SDValue(); 7532 } 7533 7534 //===----------------------------------------------------------------------===// 7535 // Legalization Utilities 7536 //===----------------------------------------------------------------------===// 7537 7538 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 7539 SDValue LHS, SDValue RHS, 7540 SmallVectorImpl<SDValue> &Result, 7541 EVT HiLoVT, SelectionDAG &DAG, 7542 MulExpansionKind Kind, SDValue LL, 7543 SDValue LH, SDValue RL, SDValue RH) const { 7544 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 7545 Opcode == ISD::SMUL_LOHI); 7546 7547 bool HasMULHS = (Kind == MulExpansionKind::Always) || 7548 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 7549 bool HasMULHU = (Kind == MulExpansionKind::Always) || 7550 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 7551 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 7552 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 7553 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 7554 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 7555 7556 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 7557 return false; 7558 7559 unsigned OuterBitSize = VT.getScalarSizeInBits(); 7560 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 7561 7562 // LL, LH, RL, and RH must be either all NULL or all set to a value. 7563 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 7564 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 7565 7566 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 7567 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 7568 bool Signed) -> bool { 7569 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 7570 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 7571 Hi = SDValue(Lo.getNode(), 1); 7572 return true; 7573 } 7574 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 7575 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 7576 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 7577 return true; 7578 } 7579 return false; 7580 }; 7581 7582 SDValue Lo, Hi; 7583 7584 if (!LL.getNode() && !RL.getNode() && 7585 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 7586 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 7587 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 7588 } 7589 7590 if (!LL.getNode()) 7591 return false; 7592 7593 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 7594 if (DAG.MaskedValueIsZero(LHS, HighMask) && 7595 DAG.MaskedValueIsZero(RHS, HighMask)) { 7596 // The inputs are both zero-extended. 7597 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 7598 Result.push_back(Lo); 7599 Result.push_back(Hi); 7600 if (Opcode != ISD::MUL) { 7601 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 7602 Result.push_back(Zero); 7603 Result.push_back(Zero); 7604 } 7605 return true; 7606 } 7607 } 7608 7609 if (!VT.isVector() && Opcode == ISD::MUL && 7610 DAG.ComputeMaxSignificantBits(LHS) <= InnerBitSize && 7611 DAG.ComputeMaxSignificantBits(RHS) <= InnerBitSize) { 7612 // The input values are both sign-extended. 7613 // TODO non-MUL case? 7614 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 7615 Result.push_back(Lo); 7616 Result.push_back(Hi); 7617 return true; 7618 } 7619 } 7620 7621 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 7622 SDValue Shift = DAG.getShiftAmountConstant(ShiftAmount, VT, dl); 7623 7624 if (!LH.getNode() && !RH.getNode() && 7625 isOperationLegalOrCustom(ISD::SRL, VT) && 7626 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 7627 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 7628 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 7629 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 7630 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 7631 } 7632 7633 if (!LH.getNode()) 7634 return false; 7635 7636 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 7637 return false; 7638 7639 Result.push_back(Lo); 7640 7641 if (Opcode == ISD::MUL) { 7642 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 7643 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 7644 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 7645 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 7646 Result.push_back(Hi); 7647 return true; 7648 } 7649 7650 // Compute the full width result. 7651 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 7652 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 7653 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 7654 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 7655 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 7656 }; 7657 7658 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 7659 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 7660 return false; 7661 7662 // This is effectively the add part of a multiply-add of half-sized operands, 7663 // so it cannot overflow. 7664 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 7665 7666 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 7667 return false; 7668 7669 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 7670 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7671 7672 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 7673 isOperationLegalOrCustom(ISD::ADDE, VT)); 7674 if (UseGlue) 7675 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 7676 Merge(Lo, Hi)); 7677 else 7678 Next = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(VT, BoolType), Next, 7679 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 7680 7681 SDValue Carry = Next.getValue(1); 7682 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7683 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 7684 7685 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 7686 return false; 7687 7688 if (UseGlue) 7689 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 7690 Carry); 7691 else 7692 Hi = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 7693 Zero, Carry); 7694 7695 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 7696 7697 if (Opcode == ISD::SMUL_LOHI) { 7698 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 7699 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 7700 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 7701 7702 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 7703 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 7704 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 7705 } 7706 7707 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7708 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 7709 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7710 return true; 7711 } 7712 7713 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 7714 SelectionDAG &DAG, MulExpansionKind Kind, 7715 SDValue LL, SDValue LH, SDValue RL, 7716 SDValue RH) const { 7717 SmallVector<SDValue, 2> Result; 7718 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 7719 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 7720 DAG, Kind, LL, LH, RL, RH); 7721 if (Ok) { 7722 assert(Result.size() == 2); 7723 Lo = Result[0]; 7724 Hi = Result[1]; 7725 } 7726 return Ok; 7727 } 7728 7729 // Optimize unsigned division or remainder by constants for types twice as large 7730 // as a legal VT. 7731 // 7732 // If (1 << (BitWidth / 2)) % Constant == 1, then the remainder 7733 // can be computed 7734 // as: 7735 // Sum += __builtin_uadd_overflow(Lo, High, &Sum); 7736 // Remainder = Sum % Constant 7737 // This is based on "Remainder by Summing Digits" from Hacker's Delight. 7738 // 7739 // For division, we can compute the remainder using the algorithm described 7740 // above, subtract it from the dividend to get an exact multiple of Constant. 7741 // Then multiply that exact multiply by the multiplicative inverse modulo 7742 // (1 << (BitWidth / 2)) to get the quotient. 7743 7744 // If Constant is even, we can shift right the dividend and the divisor by the 7745 // number of trailing zeros in Constant before applying the remainder algorithm. 7746 // If we're after the quotient, we can subtract this value from the shifted 7747 // dividend and multiply by the multiplicative inverse of the shifted divisor. 7748 // If we want the remainder, we shift the value left by the number of trailing 7749 // zeros and add the bits that were shifted out of the dividend. 7750 bool TargetLowering::expandDIVREMByConstant(SDNode *N, 7751 SmallVectorImpl<SDValue> &Result, 7752 EVT HiLoVT, SelectionDAG &DAG, 7753 SDValue LL, SDValue LH) const { 7754 unsigned Opcode = N->getOpcode(); 7755 EVT VT = N->getValueType(0); 7756 7757 // TODO: Support signed division/remainder. 7758 if (Opcode == ISD::SREM || Opcode == ISD::SDIV || Opcode == ISD::SDIVREM) 7759 return false; 7760 assert( 7761 (Opcode == ISD::UREM || Opcode == ISD::UDIV || Opcode == ISD::UDIVREM) && 7762 "Unexpected opcode"); 7763 7764 auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7765 if (!CN) 7766 return false; 7767 7768 APInt Divisor = CN->getAPIntValue(); 7769 unsigned BitWidth = Divisor.getBitWidth(); 7770 unsigned HBitWidth = BitWidth / 2; 7771 assert(VT.getScalarSizeInBits() == BitWidth && 7772 HiLoVT.getScalarSizeInBits() == HBitWidth && "Unexpected VTs"); 7773 7774 // Divisor needs to less than (1 << HBitWidth). 7775 APInt HalfMaxPlus1 = APInt::getOneBitSet(BitWidth, HBitWidth); 7776 if (Divisor.uge(HalfMaxPlus1)) 7777 return false; 7778 7779 // We depend on the UREM by constant optimization in DAGCombiner that requires 7780 // high multiply. 7781 if (!isOperationLegalOrCustom(ISD::MULHU, HiLoVT) && 7782 !isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT)) 7783 return false; 7784 7785 // Don't expand if optimizing for size. 7786 if (DAG.shouldOptForSize()) 7787 return false; 7788 7789 // Early out for 0 or 1 divisors. 7790 if (Divisor.ule(1)) 7791 return false; 7792 7793 // If the divisor is even, shift it until it becomes odd. 7794 unsigned TrailingZeros = 0; 7795 if (!Divisor[0]) { 7796 TrailingZeros = Divisor.countr_zero(); 7797 Divisor.lshrInPlace(TrailingZeros); 7798 } 7799 7800 SDLoc dl(N); 7801 SDValue Sum; 7802 SDValue PartialRem; 7803 7804 // If (1 << HBitWidth) % divisor == 1, we can add the two halves together and 7805 // then add in the carry. 7806 // TODO: If we can't split it in half, we might be able to split into 3 or 7807 // more pieces using a smaller bit width. 7808 if (HalfMaxPlus1.urem(Divisor).isOne()) { 7809 assert(!LL == !LH && "Expected both input halves or no input halves!"); 7810 if (!LL) 7811 std::tie(LL, LH) = DAG.SplitScalar(N->getOperand(0), dl, HiLoVT, HiLoVT); 7812 7813 // Shift the input by the number of TrailingZeros in the divisor. The 7814 // shifted out bits will be added to the remainder later. 7815 if (TrailingZeros) { 7816 // Save the shifted off bits if we need the remainder. 7817 if (Opcode != ISD::UDIV) { 7818 APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros); 7819 PartialRem = DAG.getNode(ISD::AND, dl, HiLoVT, LL, 7820 DAG.getConstant(Mask, dl, HiLoVT)); 7821 } 7822 7823 LL = DAG.getNode( 7824 ISD::OR, dl, HiLoVT, 7825 DAG.getNode(ISD::SRL, dl, HiLoVT, LL, 7826 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)), 7827 DAG.getNode(ISD::SHL, dl, HiLoVT, LH, 7828 DAG.getShiftAmountConstant(HBitWidth - TrailingZeros, 7829 HiLoVT, dl))); 7830 LH = DAG.getNode(ISD::SRL, dl, HiLoVT, LH, 7831 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)); 7832 } 7833 7834 // Use uaddo_carry if we can, otherwise use a compare to detect overflow. 7835 EVT SetCCType = 7836 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), HiLoVT); 7837 if (isOperationLegalOrCustom(ISD::UADDO_CARRY, HiLoVT)) { 7838 SDVTList VTList = DAG.getVTList(HiLoVT, SetCCType); 7839 Sum = DAG.getNode(ISD::UADDO, dl, VTList, LL, LH); 7840 Sum = DAG.getNode(ISD::UADDO_CARRY, dl, VTList, Sum, 7841 DAG.getConstant(0, dl, HiLoVT), Sum.getValue(1)); 7842 } else { 7843 Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, LL, LH); 7844 SDValue Carry = DAG.getSetCC(dl, SetCCType, Sum, LL, ISD::SETULT); 7845 // If the boolean for the target is 0 or 1, we can add the setcc result 7846 // directly. 7847 if (getBooleanContents(HiLoVT) == 7848 TargetLoweringBase::ZeroOrOneBooleanContent) 7849 Carry = DAG.getZExtOrTrunc(Carry, dl, HiLoVT); 7850 else 7851 Carry = DAG.getSelect(dl, HiLoVT, Carry, DAG.getConstant(1, dl, HiLoVT), 7852 DAG.getConstant(0, dl, HiLoVT)); 7853 Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, Sum, Carry); 7854 } 7855 } 7856 7857 // If we didn't find a sum, we can't do the expansion. 7858 if (!Sum) 7859 return false; 7860 7861 // Perform a HiLoVT urem on the Sum using truncated divisor. 7862 SDValue RemL = 7863 DAG.getNode(ISD::UREM, dl, HiLoVT, Sum, 7864 DAG.getConstant(Divisor.trunc(HBitWidth), dl, HiLoVT)); 7865 SDValue RemH = DAG.getConstant(0, dl, HiLoVT); 7866 7867 if (Opcode != ISD::UREM) { 7868 // Subtract the remainder from the shifted dividend. 7869 SDValue Dividend = DAG.getNode(ISD::BUILD_PAIR, dl, VT, LL, LH); 7870 SDValue Rem = DAG.getNode(ISD::BUILD_PAIR, dl, VT, RemL, RemH); 7871 7872 Dividend = DAG.getNode(ISD::SUB, dl, VT, Dividend, Rem); 7873 7874 // Multiply by the multiplicative inverse of the divisor modulo 7875 // (1 << BitWidth). 7876 APInt MulFactor = Divisor.multiplicativeInverse(); 7877 7878 SDValue Quotient = DAG.getNode(ISD::MUL, dl, VT, Dividend, 7879 DAG.getConstant(MulFactor, dl, VT)); 7880 7881 // Split the quotient into low and high parts. 7882 SDValue QuotL, QuotH; 7883 std::tie(QuotL, QuotH) = DAG.SplitScalar(Quotient, dl, HiLoVT, HiLoVT); 7884 Result.push_back(QuotL); 7885 Result.push_back(QuotH); 7886 } 7887 7888 if (Opcode != ISD::UDIV) { 7889 // If we shifted the input, shift the remainder left and add the bits we 7890 // shifted off the input. 7891 if (TrailingZeros) { 7892 APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros); 7893 RemL = DAG.getNode(ISD::SHL, dl, HiLoVT, RemL, 7894 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)); 7895 RemL = DAG.getNode(ISD::ADD, dl, HiLoVT, RemL, PartialRem); 7896 } 7897 Result.push_back(RemL); 7898 Result.push_back(DAG.getConstant(0, dl, HiLoVT)); 7899 } 7900 7901 return true; 7902 } 7903 7904 // Check that (every element of) Z is undef or not an exact multiple of BW. 7905 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 7906 return ISD::matchUnaryPredicate( 7907 Z, 7908 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 7909 true); 7910 } 7911 7912 static SDValue expandVPFunnelShift(SDNode *Node, SelectionDAG &DAG) { 7913 EVT VT = Node->getValueType(0); 7914 SDValue ShX, ShY; 7915 SDValue ShAmt, InvShAmt; 7916 SDValue X = Node->getOperand(0); 7917 SDValue Y = Node->getOperand(1); 7918 SDValue Z = Node->getOperand(2); 7919 SDValue Mask = Node->getOperand(3); 7920 SDValue VL = Node->getOperand(4); 7921 7922 unsigned BW = VT.getScalarSizeInBits(); 7923 bool IsFSHL = Node->getOpcode() == ISD::VP_FSHL; 7924 SDLoc DL(SDValue(Node, 0)); 7925 7926 EVT ShVT = Z.getValueType(); 7927 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7928 // fshl: X << C | Y >> (BW - C) 7929 // fshr: X << (BW - C) | Y >> C 7930 // where C = Z % BW is not zero 7931 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7932 ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL); 7933 InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitWidthC, ShAmt, Mask, VL); 7934 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt, Mask, 7935 VL); 7936 ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt, Mask, 7937 VL); 7938 } else { 7939 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 7940 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 7941 SDValue BitMask = DAG.getConstant(BW - 1, DL, ShVT); 7942 if (isPowerOf2_32(BW)) { 7943 // Z % BW -> Z & (BW - 1) 7944 ShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, Z, BitMask, Mask, VL); 7945 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 7946 SDValue NotZ = DAG.getNode(ISD::VP_XOR, DL, ShVT, Z, 7947 DAG.getAllOnesConstant(DL, ShVT), Mask, VL); 7948 InvShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, NotZ, BitMask, Mask, VL); 7949 } else { 7950 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7951 ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL); 7952 InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitMask, ShAmt, Mask, VL); 7953 } 7954 7955 SDValue One = DAG.getConstant(1, DL, ShVT); 7956 if (IsFSHL) { 7957 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, ShAmt, Mask, VL); 7958 SDValue ShY1 = DAG.getNode(ISD::VP_SRL, DL, VT, Y, One, Mask, VL); 7959 ShY = DAG.getNode(ISD::VP_SRL, DL, VT, ShY1, InvShAmt, Mask, VL); 7960 } else { 7961 SDValue ShX1 = DAG.getNode(ISD::VP_SHL, DL, VT, X, One, Mask, VL); 7962 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, ShX1, InvShAmt, Mask, VL); 7963 ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, ShAmt, Mask, VL); 7964 } 7965 } 7966 return DAG.getNode(ISD::VP_OR, DL, VT, ShX, ShY, Mask, VL); 7967 } 7968 7969 SDValue TargetLowering::expandFunnelShift(SDNode *Node, 7970 SelectionDAG &DAG) const { 7971 if (Node->isVPOpcode()) 7972 return expandVPFunnelShift(Node, DAG); 7973 7974 EVT VT = Node->getValueType(0); 7975 7976 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 7977 !isOperationLegalOrCustom(ISD::SRL, VT) || 7978 !isOperationLegalOrCustom(ISD::SUB, VT) || 7979 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7980 return SDValue(); 7981 7982 SDValue X = Node->getOperand(0); 7983 SDValue Y = Node->getOperand(1); 7984 SDValue Z = Node->getOperand(2); 7985 7986 unsigned BW = VT.getScalarSizeInBits(); 7987 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 7988 SDLoc DL(SDValue(Node, 0)); 7989 7990 EVT ShVT = Z.getValueType(); 7991 7992 // If a funnel shift in the other direction is more supported, use it. 7993 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 7994 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 7995 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 7996 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7997 // fshl X, Y, Z -> fshr X, Y, -Z 7998 // fshr X, Y, Z -> fshl X, Y, -Z 7999 SDValue Zero = DAG.getConstant(0, DL, ShVT); 8000 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 8001 } else { 8002 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 8003 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 8004 SDValue One = DAG.getConstant(1, DL, ShVT); 8005 if (IsFSHL) { 8006 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 8007 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 8008 } else { 8009 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 8010 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 8011 } 8012 Z = DAG.getNOT(DL, Z, ShVT); 8013 } 8014 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 8015 } 8016 8017 SDValue ShX, ShY; 8018 SDValue ShAmt, InvShAmt; 8019 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 8020 // fshl: X << C | Y >> (BW - C) 8021 // fshr: X << (BW - C) | Y >> C 8022 // where C = Z % BW is not zero 8023 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 8024 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 8025 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 8026 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 8027 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 8028 } else { 8029 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 8030 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 8031 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 8032 if (isPowerOf2_32(BW)) { 8033 // Z % BW -> Z & (BW - 1) 8034 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 8035 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 8036 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 8037 } else { 8038 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 8039 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 8040 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 8041 } 8042 8043 SDValue One = DAG.getConstant(1, DL, ShVT); 8044 if (IsFSHL) { 8045 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 8046 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 8047 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 8048 } else { 8049 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 8050 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 8051 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 8052 } 8053 } 8054 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 8055 } 8056 8057 // TODO: Merge with expandFunnelShift. 8058 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 8059 SelectionDAG &DAG) const { 8060 EVT VT = Node->getValueType(0); 8061 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 8062 bool IsLeft = Node->getOpcode() == ISD::ROTL; 8063 SDValue Op0 = Node->getOperand(0); 8064 SDValue Op1 = Node->getOperand(1); 8065 SDLoc DL(SDValue(Node, 0)); 8066 8067 EVT ShVT = Op1.getValueType(); 8068 SDValue Zero = DAG.getConstant(0, DL, ShVT); 8069 8070 // If a rotate in the other direction is more supported, use it. 8071 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 8072 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 8073 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 8074 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 8075 return DAG.getNode(RevRot, DL, VT, Op0, Sub); 8076 } 8077 8078 if (!AllowVectorOps && VT.isVector() && 8079 (!isOperationLegalOrCustom(ISD::SHL, VT) || 8080 !isOperationLegalOrCustom(ISD::SRL, VT) || 8081 !isOperationLegalOrCustom(ISD::SUB, VT) || 8082 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 8083 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 8084 return SDValue(); 8085 8086 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 8087 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 8088 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 8089 SDValue ShVal; 8090 SDValue HsVal; 8091 if (isPowerOf2_32(EltSizeInBits)) { 8092 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 8093 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 8094 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 8095 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 8096 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 8097 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 8098 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 8099 } else { 8100 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 8101 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 8102 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 8103 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 8104 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 8105 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 8106 SDValue One = DAG.getConstant(1, DL, ShVT); 8107 HsVal = 8108 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 8109 } 8110 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 8111 } 8112 8113 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 8114 SelectionDAG &DAG) const { 8115 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 8116 EVT VT = Node->getValueType(0); 8117 unsigned VTBits = VT.getScalarSizeInBits(); 8118 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 8119 8120 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 8121 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 8122 SDValue ShOpLo = Node->getOperand(0); 8123 SDValue ShOpHi = Node->getOperand(1); 8124 SDValue ShAmt = Node->getOperand(2); 8125 EVT ShAmtVT = ShAmt.getValueType(); 8126 EVT ShAmtCCVT = 8127 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 8128 SDLoc dl(Node); 8129 8130 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 8131 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 8132 // away during isel. 8133 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 8134 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 8135 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 8136 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 8137 : DAG.getConstant(0, dl, VT); 8138 8139 SDValue Tmp2, Tmp3; 8140 if (IsSHL) { 8141 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 8142 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 8143 } else { 8144 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 8145 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 8146 } 8147 8148 // If the shift amount is larger or equal than the width of a part we don't 8149 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 8150 // values for large shift amounts. 8151 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 8152 DAG.getConstant(VTBits, dl, ShAmtVT)); 8153 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 8154 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 8155 8156 if (IsSHL) { 8157 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 8158 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 8159 } else { 8160 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 8161 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 8162 } 8163 } 8164 8165 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 8166 SelectionDAG &DAG) const { 8167 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 8168 SDValue Src = Node->getOperand(OpNo); 8169 EVT SrcVT = Src.getValueType(); 8170 EVT DstVT = Node->getValueType(0); 8171 SDLoc dl(SDValue(Node, 0)); 8172 8173 // FIXME: Only f32 to i64 conversions are supported. 8174 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 8175 return false; 8176 8177 if (Node->isStrictFPOpcode()) 8178 // When a NaN is converted to an integer a trap is allowed. We can't 8179 // use this expansion here because it would eliminate that trap. Other 8180 // traps are also allowed and cannot be eliminated. See 8181 // IEEE 754-2008 sec 5.8. 8182 return false; 8183 8184 // Expand f32 -> i64 conversion 8185 // This algorithm comes from compiler-rt's implementation of fixsfdi: 8186 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 8187 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 8188 EVT IntVT = SrcVT.changeTypeToInteger(); 8189 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 8190 8191 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 8192 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 8193 SDValue Bias = DAG.getConstant(127, dl, IntVT); 8194 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 8195 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 8196 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 8197 8198 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 8199 8200 SDValue ExponentBits = DAG.getNode( 8201 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 8202 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 8203 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 8204 8205 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 8206 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 8207 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 8208 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 8209 8210 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 8211 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 8212 DAG.getConstant(0x00800000, dl, IntVT)); 8213 8214 R = DAG.getZExtOrTrunc(R, dl, DstVT); 8215 8216 R = DAG.getSelectCC( 8217 dl, Exponent, ExponentLoBit, 8218 DAG.getNode(ISD::SHL, dl, DstVT, R, 8219 DAG.getZExtOrTrunc( 8220 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 8221 dl, IntShVT)), 8222 DAG.getNode(ISD::SRL, dl, DstVT, R, 8223 DAG.getZExtOrTrunc( 8224 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 8225 dl, IntShVT)), 8226 ISD::SETGT); 8227 8228 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 8229 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 8230 8231 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 8232 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 8233 return true; 8234 } 8235 8236 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 8237 SDValue &Chain, 8238 SelectionDAG &DAG) const { 8239 SDLoc dl(SDValue(Node, 0)); 8240 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 8241 SDValue Src = Node->getOperand(OpNo); 8242 8243 EVT SrcVT = Src.getValueType(); 8244 EVT DstVT = Node->getValueType(0); 8245 EVT SetCCVT = 8246 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 8247 EVT DstSetCCVT = 8248 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 8249 8250 // Only expand vector types if we have the appropriate vector bit operations. 8251 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 8252 ISD::FP_TO_SINT; 8253 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 8254 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 8255 return false; 8256 8257 // If the maximum float value is smaller then the signed integer range, 8258 // the destination signmask can't be represented by the float, so we can 8259 // just use FP_TO_SINT directly. 8260 const fltSemantics &APFSem = SrcVT.getFltSemantics(); 8261 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 8262 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 8263 if (APFloat::opOverflow & 8264 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 8265 if (Node->isStrictFPOpcode()) { 8266 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 8267 { Node->getOperand(0), Src }); 8268 Chain = Result.getValue(1); 8269 } else 8270 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 8271 return true; 8272 } 8273 8274 // Don't expand it if there isn't cheap fsub instruction. 8275 if (!isOperationLegalOrCustom( 8276 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 8277 return false; 8278 8279 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 8280 SDValue Sel; 8281 8282 if (Node->isStrictFPOpcode()) { 8283 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 8284 Node->getOperand(0), /*IsSignaling*/ true); 8285 Chain = Sel.getValue(1); 8286 } else { 8287 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 8288 } 8289 8290 bool Strict = Node->isStrictFPOpcode() || 8291 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 8292 8293 if (Strict) { 8294 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 8295 // signmask then offset (the result of which should be fully representable). 8296 // Sel = Src < 0x8000000000000000 8297 // FltOfs = select Sel, 0, 0x8000000000000000 8298 // IntOfs = select Sel, 0, 0x8000000000000000 8299 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 8300 8301 // TODO: Should any fast-math-flags be set for the FSUB? 8302 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 8303 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 8304 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8305 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 8306 DAG.getConstant(0, dl, DstVT), 8307 DAG.getConstant(SignMask, dl, DstVT)); 8308 SDValue SInt; 8309 if (Node->isStrictFPOpcode()) { 8310 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 8311 { Chain, Src, FltOfs }); 8312 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 8313 { Val.getValue(1), Val }); 8314 Chain = SInt.getValue(1); 8315 } else { 8316 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 8317 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 8318 } 8319 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 8320 } else { 8321 // Expand based on maximum range of FP_TO_SINT: 8322 // True = fp_to_sint(Src) 8323 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 8324 // Result = select (Src < 0x8000000000000000), True, False 8325 8326 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 8327 // TODO: Should any fast-math-flags be set for the FSUB? 8328 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 8329 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 8330 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 8331 DAG.getConstant(SignMask, dl, DstVT)); 8332 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8333 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 8334 } 8335 return true; 8336 } 8337 8338 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 8339 SDValue &Chain, SelectionDAG &DAG) const { 8340 // This transform is not correct for converting 0 when rounding mode is set 8341 // to round toward negative infinity which will produce -0.0. So disable 8342 // under strictfp. 8343 if (Node->isStrictFPOpcode()) 8344 return false; 8345 8346 SDValue Src = Node->getOperand(0); 8347 EVT SrcVT = Src.getValueType(); 8348 EVT DstVT = Node->getValueType(0); 8349 8350 // If the input is known to be non-negative and SINT_TO_FP is legal then use 8351 // it. 8352 if (Node->getFlags().hasNonNeg() && 8353 isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT)) { 8354 Result = 8355 DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), DstVT, Node->getOperand(0)); 8356 return true; 8357 } 8358 8359 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 8360 return false; 8361 8362 // Only expand vector types if we have the appropriate vector bit 8363 // operations. 8364 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 8365 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 8366 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 8367 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 8368 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 8369 return false; 8370 8371 SDLoc dl(SDValue(Node, 0)); 8372 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 8373 8374 // Implementation of unsigned i64 to f64 following the algorithm in 8375 // __floatundidf in compiler_rt. This implementation performs rounding 8376 // correctly in all rounding modes with the exception of converting 0 8377 // when rounding toward negative infinity. In that case the fsub will 8378 // produce -0.0. This will be added to +0.0 and produce -0.0 which is 8379 // incorrect. 8380 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 8381 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 8382 llvm::bit_cast<double>(UINT64_C(0x4530000000100000)), dl, DstVT); 8383 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 8384 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 8385 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 8386 8387 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 8388 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 8389 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 8390 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 8391 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 8392 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 8393 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 8394 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 8395 return true; 8396 } 8397 8398 SDValue 8399 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node, 8400 SelectionDAG &DAG) const { 8401 unsigned Opcode = Node->getOpcode(); 8402 assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM || 8403 Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) && 8404 "Wrong opcode"); 8405 8406 if (Node->getFlags().hasNoNaNs()) { 8407 ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 8408 EVT VT = Node->getValueType(0); 8409 if ((!isCondCodeLegal(Pred, VT.getSimpleVT()) || 8410 !isOperationLegalOrCustom(ISD::VSELECT, VT)) && 8411 VT.isVector()) 8412 return SDValue(); 8413 SDValue Op1 = Node->getOperand(0); 8414 SDValue Op2 = Node->getOperand(1); 8415 SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred); 8416 // Copy FMF flags, but always set the no-signed-zeros flag 8417 // as this is implied by the FMINNUM/FMAXNUM semantics. 8418 SelCC->setFlags(Node->getFlags() | SDNodeFlags::NoSignedZeros); 8419 return SelCC; 8420 } 8421 8422 return SDValue(); 8423 } 8424 8425 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 8426 SelectionDAG &DAG) const { 8427 if (SDValue Expanded = expandVectorNaryOpBySplitting(Node, DAG)) 8428 return Expanded; 8429 8430 EVT VT = Node->getValueType(0); 8431 if (VT.isScalableVector()) 8432 report_fatal_error( 8433 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 8434 8435 SDLoc dl(Node); 8436 unsigned NewOp = 8437 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 8438 8439 if (isOperationLegalOrCustom(NewOp, VT)) { 8440 SDValue Quiet0 = Node->getOperand(0); 8441 SDValue Quiet1 = Node->getOperand(1); 8442 8443 if (!Node->getFlags().hasNoNaNs()) { 8444 // Insert canonicalizes if it's possible we need to quiet to get correct 8445 // sNaN behavior. 8446 if (!DAG.isKnownNeverSNaN(Quiet0)) { 8447 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 8448 Node->getFlags()); 8449 } 8450 if (!DAG.isKnownNeverSNaN(Quiet1)) { 8451 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 8452 Node->getFlags()); 8453 } 8454 } 8455 8456 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 8457 } 8458 8459 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 8460 // instead if there are no NaNs and there can't be an incompatible zero 8461 // compare: at least one operand isn't +/-0, or there are no signed-zeros. 8462 if ((Node->getFlags().hasNoNaNs() || 8463 (DAG.isKnownNeverNaN(Node->getOperand(0)) && 8464 DAG.isKnownNeverNaN(Node->getOperand(1)))) && 8465 (Node->getFlags().hasNoSignedZeros() || 8466 DAG.isKnownNeverZeroFloat(Node->getOperand(0)) || 8467 DAG.isKnownNeverZeroFloat(Node->getOperand(1)))) { 8468 unsigned IEEE2018Op = 8469 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 8470 if (isOperationLegalOrCustom(IEEE2018Op, VT)) 8471 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 8472 Node->getOperand(1), Node->getFlags()); 8473 } 8474 8475 if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG)) 8476 return SelCC; 8477 8478 return SDValue(); 8479 } 8480 8481 SDValue TargetLowering::expandFMINIMUM_FMAXIMUM(SDNode *N, 8482 SelectionDAG &DAG) const { 8483 if (SDValue Expanded = expandVectorNaryOpBySplitting(N, DAG)) 8484 return Expanded; 8485 8486 SDLoc DL(N); 8487 SDValue LHS = N->getOperand(0); 8488 SDValue RHS = N->getOperand(1); 8489 unsigned Opc = N->getOpcode(); 8490 EVT VT = N->getValueType(0); 8491 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8492 bool IsMax = Opc == ISD::FMAXIMUM; 8493 SDNodeFlags Flags = N->getFlags(); 8494 8495 // First, implement comparison not propagating NaN. If no native fmin or fmax 8496 // available, use plain select with setcc instead. 8497 SDValue MinMax; 8498 unsigned CompOpcIeee = IsMax ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE; 8499 unsigned CompOpc = IsMax ? ISD::FMAXNUM : ISD::FMINNUM; 8500 8501 // FIXME: We should probably define fminnum/fmaxnum variants with correct 8502 // signed zero behavior. 8503 bool MinMaxMustRespectOrderedZero = false; 8504 8505 if (isOperationLegalOrCustom(CompOpcIeee, VT)) { 8506 MinMax = DAG.getNode(CompOpcIeee, DL, VT, LHS, RHS, Flags); 8507 MinMaxMustRespectOrderedZero = true; 8508 } else if (isOperationLegalOrCustom(CompOpc, VT)) { 8509 MinMax = DAG.getNode(CompOpc, DL, VT, LHS, RHS, Flags); 8510 } else { 8511 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8512 return DAG.UnrollVectorOp(N); 8513 8514 // NaN (if exists) will be propagated later, so orderness doesn't matter. 8515 SDValue Compare = 8516 DAG.getSetCC(DL, CCVT, LHS, RHS, IsMax ? ISD::SETOGT : ISD::SETOLT); 8517 MinMax = DAG.getSelect(DL, VT, Compare, LHS, RHS, Flags); 8518 } 8519 8520 // Propagate any NaN of both operands 8521 if (!N->getFlags().hasNoNaNs() && 8522 (!DAG.isKnownNeverNaN(RHS) || !DAG.isKnownNeverNaN(LHS))) { 8523 ConstantFP *FPNaN = ConstantFP::get(*DAG.getContext(), 8524 APFloat::getNaN(VT.getFltSemantics())); 8525 MinMax = DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, LHS, RHS, ISD::SETUO), 8526 DAG.getConstantFP(*FPNaN, DL, VT), MinMax, Flags); 8527 } 8528 8529 // fminimum/fmaximum requires -0.0 less than +0.0 8530 if (!MinMaxMustRespectOrderedZero && !N->getFlags().hasNoSignedZeros() && 8531 !DAG.isKnownNeverZeroFloat(RHS) && !DAG.isKnownNeverZeroFloat(LHS)) { 8532 SDValue IsZero = DAG.getSetCC(DL, CCVT, MinMax, 8533 DAG.getConstantFP(0.0, DL, VT), ISD::SETOEQ); 8534 SDValue TestZero = 8535 DAG.getTargetConstant(IsMax ? fcPosZero : fcNegZero, DL, MVT::i32); 8536 SDValue LCmp = DAG.getSelect( 8537 DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, LHS, TestZero), LHS, 8538 MinMax, Flags); 8539 SDValue RCmp = DAG.getSelect( 8540 DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, RHS, TestZero), RHS, 8541 LCmp, Flags); 8542 MinMax = DAG.getSelect(DL, VT, IsZero, RCmp, MinMax, Flags); 8543 } 8544 8545 return MinMax; 8546 } 8547 8548 SDValue TargetLowering::expandFMINIMUMNUM_FMAXIMUMNUM(SDNode *Node, 8549 SelectionDAG &DAG) const { 8550 SDLoc DL(Node); 8551 SDValue LHS = Node->getOperand(0); 8552 SDValue RHS = Node->getOperand(1); 8553 unsigned Opc = Node->getOpcode(); 8554 EVT VT = Node->getValueType(0); 8555 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8556 bool IsMax = Opc == ISD::FMAXIMUMNUM; 8557 const TargetOptions &Options = DAG.getTarget().Options; 8558 SDNodeFlags Flags = Node->getFlags(); 8559 8560 unsigned NewOp = 8561 Opc == ISD::FMINIMUMNUM ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 8562 8563 if (isOperationLegalOrCustom(NewOp, VT)) { 8564 if (!Flags.hasNoNaNs()) { 8565 // Insert canonicalizes if it's possible we need to quiet to get correct 8566 // sNaN behavior. 8567 if (!DAG.isKnownNeverSNaN(LHS)) { 8568 LHS = DAG.getNode(ISD::FCANONICALIZE, DL, VT, LHS, Flags); 8569 } 8570 if (!DAG.isKnownNeverSNaN(RHS)) { 8571 RHS = DAG.getNode(ISD::FCANONICALIZE, DL, VT, RHS, Flags); 8572 } 8573 } 8574 8575 return DAG.getNode(NewOp, DL, VT, LHS, RHS, Flags); 8576 } 8577 8578 // We can use FMINIMUM/FMAXIMUM if there is no NaN, since it has 8579 // same behaviors for all of other cases: +0.0 vs -0.0 included. 8580 if (Flags.hasNoNaNs() || 8581 (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS))) { 8582 unsigned IEEE2019Op = 8583 Opc == ISD::FMINIMUMNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 8584 if (isOperationLegalOrCustom(IEEE2019Op, VT)) 8585 return DAG.getNode(IEEE2019Op, DL, VT, LHS, RHS, Flags); 8586 } 8587 8588 // FMINNUM/FMAXMUM returns qNaN if either operand is sNaN, and it may return 8589 // either one for +0.0 vs -0.0. 8590 if ((Flags.hasNoNaNs() || 8591 (DAG.isKnownNeverSNaN(LHS) && DAG.isKnownNeverSNaN(RHS))) && 8592 (Flags.hasNoSignedZeros() || DAG.isKnownNeverZeroFloat(LHS) || 8593 DAG.isKnownNeverZeroFloat(RHS))) { 8594 unsigned IEEE2008Op = Opc == ISD::FMINIMUMNUM ? ISD::FMINNUM : ISD::FMAXNUM; 8595 if (isOperationLegalOrCustom(IEEE2008Op, VT)) 8596 return DAG.getNode(IEEE2008Op, DL, VT, LHS, RHS, Flags); 8597 } 8598 8599 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8600 return DAG.UnrollVectorOp(Node); 8601 8602 // If only one operand is NaN, override it with another operand. 8603 if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(LHS)) { 8604 LHS = DAG.getSelectCC(DL, LHS, LHS, RHS, LHS, ISD::SETUO); 8605 } 8606 if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(RHS)) { 8607 RHS = DAG.getSelectCC(DL, RHS, RHS, LHS, RHS, ISD::SETUO); 8608 } 8609 8610 SDValue MinMax = 8611 DAG.getSelectCC(DL, LHS, RHS, LHS, RHS, IsMax ? ISD::SETGT : ISD::SETLT); 8612 // If MinMax is NaN, let's quiet it. 8613 if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(LHS) && 8614 !DAG.isKnownNeverNaN(RHS)) { 8615 MinMax = DAG.getNode(ISD::FCANONICALIZE, DL, VT, MinMax, Flags); 8616 } 8617 8618 // Fixup signed zero behavior. 8619 if (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros() || 8620 DAG.isKnownNeverZeroFloat(LHS) || DAG.isKnownNeverZeroFloat(RHS)) { 8621 return MinMax; 8622 } 8623 SDValue TestZero = 8624 DAG.getTargetConstant(IsMax ? fcPosZero : fcNegZero, DL, MVT::i32); 8625 SDValue IsZero = DAG.getSetCC(DL, CCVT, MinMax, 8626 DAG.getConstantFP(0.0, DL, VT), ISD::SETEQ); 8627 SDValue LCmp = DAG.getSelect( 8628 DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, LHS, TestZero), LHS, 8629 MinMax, Flags); 8630 SDValue RCmp = DAG.getSelect( 8631 DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, RHS, TestZero), RHS, LCmp, 8632 Flags); 8633 return DAG.getSelect(DL, VT, IsZero, RCmp, MinMax, Flags); 8634 } 8635 8636 /// Returns a true value if if this FPClassTest can be performed with an ordered 8637 /// fcmp to 0, and a false value if it's an unordered fcmp to 0. Returns 8638 /// std::nullopt if it cannot be performed as a compare with 0. 8639 static std::optional<bool> isFCmpEqualZero(FPClassTest Test, 8640 const fltSemantics &Semantics, 8641 const MachineFunction &MF) { 8642 FPClassTest OrderedMask = Test & ~fcNan; 8643 FPClassTest NanTest = Test & fcNan; 8644 bool IsOrdered = NanTest == fcNone; 8645 bool IsUnordered = NanTest == fcNan; 8646 8647 // Skip cases that are testing for only a qnan or snan. 8648 if (!IsOrdered && !IsUnordered) 8649 return std::nullopt; 8650 8651 if (OrderedMask == fcZero && 8652 MF.getDenormalMode(Semantics).Input == DenormalMode::IEEE) 8653 return IsOrdered; 8654 if (OrderedMask == (fcZero | fcSubnormal) && 8655 MF.getDenormalMode(Semantics).inputsAreZero()) 8656 return IsOrdered; 8657 return std::nullopt; 8658 } 8659 8660 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op, 8661 const FPClassTest OrigTestMask, 8662 SDNodeFlags Flags, const SDLoc &DL, 8663 SelectionDAG &DAG) const { 8664 EVT OperandVT = Op.getValueType(); 8665 assert(OperandVT.isFloatingPoint()); 8666 FPClassTest Test = OrigTestMask; 8667 8668 // Degenerated cases. 8669 if (Test == fcNone) 8670 return DAG.getBoolConstant(false, DL, ResultVT, OperandVT); 8671 if (Test == fcAllFlags) 8672 return DAG.getBoolConstant(true, DL, ResultVT, OperandVT); 8673 8674 // PPC double double is a pair of doubles, of which the higher part determines 8675 // the value class. 8676 if (OperandVT == MVT::ppcf128) { 8677 Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op, 8678 DAG.getConstant(1, DL, MVT::i32)); 8679 OperandVT = MVT::f64; 8680 } 8681 8682 // Floating-point type properties. 8683 EVT ScalarFloatVT = OperandVT.getScalarType(); 8684 const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext()); 8685 const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics(); 8686 bool IsF80 = (ScalarFloatVT == MVT::f80); 8687 8688 // Some checks can be implemented using float comparisons, if floating point 8689 // exceptions are ignored. 8690 if (Flags.hasNoFPExcept() && 8691 isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) { 8692 FPClassTest FPTestMask = Test; 8693 bool IsInvertedFP = false; 8694 8695 if (FPClassTest InvertedFPCheck = 8696 invertFPClassTestIfSimpler(FPTestMask, true)) { 8697 FPTestMask = InvertedFPCheck; 8698 IsInvertedFP = true; 8699 } 8700 8701 ISD::CondCode OrderedCmpOpcode = IsInvertedFP ? ISD::SETUNE : ISD::SETOEQ; 8702 ISD::CondCode UnorderedCmpOpcode = IsInvertedFP ? ISD::SETONE : ISD::SETUEQ; 8703 8704 // See if we can fold an | fcNan into an unordered compare. 8705 FPClassTest OrderedFPTestMask = FPTestMask & ~fcNan; 8706 8707 // Can't fold the ordered check if we're only testing for snan or qnan 8708 // individually. 8709 if ((FPTestMask & fcNan) != fcNan) 8710 OrderedFPTestMask = FPTestMask; 8711 8712 const bool IsOrdered = FPTestMask == OrderedFPTestMask; 8713 8714 if (std::optional<bool> IsCmp0 = 8715 isFCmpEqualZero(FPTestMask, Semantics, DAG.getMachineFunction()); 8716 IsCmp0 && (isCondCodeLegalOrCustom( 8717 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode, 8718 OperandVT.getScalarType().getSimpleVT()))) { 8719 8720 // If denormals could be implicitly treated as 0, this is not equivalent 8721 // to a compare with 0 since it will also be true for denormals. 8722 return DAG.getSetCC(DL, ResultVT, Op, 8723 DAG.getConstantFP(0.0, DL, OperandVT), 8724 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode); 8725 } 8726 8727 if (FPTestMask == fcNan && 8728 isCondCodeLegalOrCustom(IsInvertedFP ? ISD::SETO : ISD::SETUO, 8729 OperandVT.getScalarType().getSimpleVT())) 8730 return DAG.getSetCC(DL, ResultVT, Op, Op, 8731 IsInvertedFP ? ISD::SETO : ISD::SETUO); 8732 8733 bool IsOrderedInf = FPTestMask == fcInf; 8734 if ((FPTestMask == fcInf || FPTestMask == (fcInf | fcNan)) && 8735 isCondCodeLegalOrCustom(IsOrderedInf ? OrderedCmpOpcode 8736 : UnorderedCmpOpcode, 8737 OperandVT.getScalarType().getSimpleVT()) && 8738 isOperationLegalOrCustom(ISD::FABS, OperandVT.getScalarType()) && 8739 (isOperationLegal(ISD::ConstantFP, OperandVT.getScalarType()) || 8740 (OperandVT.isVector() && 8741 isOperationLegalOrCustom(ISD::BUILD_VECTOR, OperandVT)))) { 8742 // isinf(x) --> fabs(x) == inf 8743 SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op); 8744 SDValue Inf = 8745 DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT); 8746 return DAG.getSetCC(DL, ResultVT, Abs, Inf, 8747 IsOrderedInf ? OrderedCmpOpcode : UnorderedCmpOpcode); 8748 } 8749 8750 if ((OrderedFPTestMask == fcPosInf || OrderedFPTestMask == fcNegInf) && 8751 isCondCodeLegalOrCustom(IsOrdered ? OrderedCmpOpcode 8752 : UnorderedCmpOpcode, 8753 OperandVT.getSimpleVT())) { 8754 // isposinf(x) --> x == inf 8755 // isneginf(x) --> x == -inf 8756 // isposinf(x) || nan --> x u== inf 8757 // isneginf(x) || nan --> x u== -inf 8758 8759 SDValue Inf = DAG.getConstantFP( 8760 APFloat::getInf(Semantics, OrderedFPTestMask == fcNegInf), DL, 8761 OperandVT); 8762 return DAG.getSetCC(DL, ResultVT, Op, Inf, 8763 IsOrdered ? OrderedCmpOpcode : UnorderedCmpOpcode); 8764 } 8765 8766 if (OrderedFPTestMask == (fcSubnormal | fcZero) && !IsOrdered) { 8767 // TODO: Could handle ordered case, but it produces worse code for 8768 // x86. Maybe handle ordered if fabs is free? 8769 8770 ISD::CondCode OrderedOp = IsInvertedFP ? ISD::SETUGE : ISD::SETOLT; 8771 ISD::CondCode UnorderedOp = IsInvertedFP ? ISD::SETOGE : ISD::SETULT; 8772 8773 if (isCondCodeLegalOrCustom(IsOrdered ? OrderedOp : UnorderedOp, 8774 OperandVT.getScalarType().getSimpleVT())) { 8775 // (issubnormal(x) || iszero(x)) --> fabs(x) < smallest_normal 8776 8777 // TODO: Maybe only makes sense if fabs is free. Integer test of 8778 // exponent bits seems better for x86. 8779 SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op); 8780 SDValue SmallestNormal = DAG.getConstantFP( 8781 APFloat::getSmallestNormalized(Semantics), DL, OperandVT); 8782 return DAG.getSetCC(DL, ResultVT, Abs, SmallestNormal, 8783 IsOrdered ? OrderedOp : UnorderedOp); 8784 } 8785 } 8786 8787 if (FPTestMask == fcNormal) { 8788 // TODO: Handle unordered 8789 ISD::CondCode IsFiniteOp = IsInvertedFP ? ISD::SETUGE : ISD::SETOLT; 8790 ISD::CondCode IsNormalOp = IsInvertedFP ? ISD::SETOLT : ISD::SETUGE; 8791 8792 if (isCondCodeLegalOrCustom(IsFiniteOp, 8793 OperandVT.getScalarType().getSimpleVT()) && 8794 isCondCodeLegalOrCustom(IsNormalOp, 8795 OperandVT.getScalarType().getSimpleVT()) && 8796 isFAbsFree(OperandVT)) { 8797 // isnormal(x) --> fabs(x) < infinity && !(fabs(x) < smallest_normal) 8798 SDValue Inf = 8799 DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT); 8800 SDValue SmallestNormal = DAG.getConstantFP( 8801 APFloat::getSmallestNormalized(Semantics), DL, OperandVT); 8802 8803 SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op); 8804 SDValue IsFinite = DAG.getSetCC(DL, ResultVT, Abs, Inf, IsFiniteOp); 8805 SDValue IsNormal = 8806 DAG.getSetCC(DL, ResultVT, Abs, SmallestNormal, IsNormalOp); 8807 unsigned LogicOp = IsInvertedFP ? ISD::OR : ISD::AND; 8808 return DAG.getNode(LogicOp, DL, ResultVT, IsFinite, IsNormal); 8809 } 8810 } 8811 } 8812 8813 // Some checks may be represented as inversion of simpler check, for example 8814 // "inf|normal|subnormal|zero" => !"nan". 8815 bool IsInverted = false; 8816 8817 if (FPClassTest InvertedCheck = invertFPClassTestIfSimpler(Test, false)) { 8818 Test = InvertedCheck; 8819 IsInverted = true; 8820 } 8821 8822 // In the general case use integer operations. 8823 unsigned BitSize = OperandVT.getScalarSizeInBits(); 8824 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize); 8825 if (OperandVT.isVector()) 8826 IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT, 8827 OperandVT.getVectorElementCount()); 8828 SDValue OpAsInt = DAG.getBitcast(IntVT, Op); 8829 8830 // Various masks. 8831 APInt SignBit = APInt::getSignMask(BitSize); 8832 APInt ValueMask = APInt::getSignedMaxValue(BitSize); // All bits but sign. 8833 APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit. 8834 const unsigned ExplicitIntBitInF80 = 63; 8835 APInt ExpMask = Inf; 8836 if (IsF80) 8837 ExpMask.clearBit(ExplicitIntBitInF80); 8838 APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf; 8839 APInt QNaNBitMask = 8840 APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1); 8841 APInt InvertionMask = APInt::getAllOnes(ResultVT.getScalarSizeInBits()); 8842 8843 SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT); 8844 SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT); 8845 SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT); 8846 SDValue ZeroV = DAG.getConstant(0, DL, IntVT); 8847 SDValue InfV = DAG.getConstant(Inf, DL, IntVT); 8848 SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT); 8849 8850 SDValue Res; 8851 const auto appendResult = [&](SDValue PartialRes) { 8852 if (PartialRes) { 8853 if (Res) 8854 Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes); 8855 else 8856 Res = PartialRes; 8857 } 8858 }; 8859 8860 SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set. 8861 const auto getIntBitIsSet = [&]() -> SDValue { 8862 if (!IntBitIsSetV) { 8863 APInt IntBitMask(BitSize, 0); 8864 IntBitMask.setBit(ExplicitIntBitInF80); 8865 SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT); 8866 SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV); 8867 IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE); 8868 } 8869 return IntBitIsSetV; 8870 }; 8871 8872 // Split the value into sign bit and absolute value. 8873 SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV); 8874 SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt, 8875 DAG.getConstant(0, DL, IntVT), ISD::SETLT); 8876 8877 // Tests that involve more than one class should be processed first. 8878 SDValue PartialRes; 8879 8880 if (IsF80) 8881 ; // Detect finite numbers of f80 by checking individual classes because 8882 // they have different settings of the explicit integer bit. 8883 else if ((Test & fcFinite) == fcFinite) { 8884 // finite(V) ==> abs(V) < exp_mask 8885 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 8886 Test &= ~fcFinite; 8887 } else if ((Test & fcFinite) == fcPosFinite) { 8888 // finite(V) && V > 0 ==> V < exp_mask 8889 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT); 8890 Test &= ~fcPosFinite; 8891 } else if ((Test & fcFinite) == fcNegFinite) { 8892 // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1 8893 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 8894 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 8895 Test &= ~fcNegFinite; 8896 } 8897 appendResult(PartialRes); 8898 8899 if (FPClassTest PartialCheck = Test & (fcZero | fcSubnormal)) { 8900 // fcZero | fcSubnormal => test all exponent bits are 0 8901 // TODO: Handle sign bit specific cases 8902 if (PartialCheck == (fcZero | fcSubnormal)) { 8903 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ExpMaskV); 8904 SDValue ExpIsZero = 8905 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ); 8906 appendResult(ExpIsZero); 8907 Test &= ~PartialCheck & fcAllFlags; 8908 } 8909 } 8910 8911 // Check for individual classes. 8912 8913 if (unsigned PartialCheck = Test & fcZero) { 8914 if (PartialCheck == fcPosZero) 8915 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ); 8916 else if (PartialCheck == fcZero) 8917 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ); 8918 else // ISD::fcNegZero 8919 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ); 8920 appendResult(PartialRes); 8921 } 8922 8923 if (unsigned PartialCheck = Test & fcSubnormal) { 8924 // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set) 8925 // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set) 8926 SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV; 8927 SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT); 8928 SDValue VMinusOneV = 8929 DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT)); 8930 PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT); 8931 if (PartialCheck == fcNegSubnormal) 8932 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 8933 appendResult(PartialRes); 8934 } 8935 8936 if (unsigned PartialCheck = Test & fcInf) { 8937 if (PartialCheck == fcPosInf) 8938 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ); 8939 else if (PartialCheck == fcInf) 8940 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ); 8941 else { // ISD::fcNegInf 8942 APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt(); 8943 SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT); 8944 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ); 8945 } 8946 appendResult(PartialRes); 8947 } 8948 8949 if (unsigned PartialCheck = Test & fcNan) { 8950 APInt InfWithQnanBit = Inf | QNaNBitMask; 8951 SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT); 8952 if (PartialCheck == fcNan) { 8953 // isnan(V) ==> abs(V) > int(inf) 8954 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 8955 if (IsF80) { 8956 // Recognize unsupported values as NaNs for compatibility with glibc. 8957 // In them (exp(V)==0) == int_bit. 8958 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV); 8959 SDValue ExpIsZero = 8960 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ); 8961 SDValue IsPseudo = 8962 DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ); 8963 PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo); 8964 } 8965 } else if (PartialCheck == fcQNan) { 8966 // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit) 8967 PartialRes = 8968 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE); 8969 } else { // ISD::fcSNan 8970 // issignaling(V) ==> abs(V) > unsigned(Inf) && 8971 // abs(V) < (unsigned(Inf) | quiet_bit) 8972 SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 8973 SDValue IsNotQnan = 8974 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT); 8975 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan); 8976 } 8977 appendResult(PartialRes); 8978 } 8979 8980 if (unsigned PartialCheck = Test & fcNormal) { 8981 // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1)) 8982 APInt ExpLSB = ExpMask & ~(ExpMask.shl(1)); 8983 SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT); 8984 SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV); 8985 APInt ExpLimit = ExpMask - ExpLSB; 8986 SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT); 8987 PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT); 8988 if (PartialCheck == fcNegNormal) 8989 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 8990 else if (PartialCheck == fcPosNormal) { 8991 SDValue PosSignV = 8992 DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask); 8993 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV); 8994 } 8995 if (IsF80) 8996 PartialRes = 8997 DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet()); 8998 appendResult(PartialRes); 8999 } 9000 9001 if (!Res) 9002 return DAG.getConstant(IsInverted, DL, ResultVT); 9003 if (IsInverted) 9004 Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask); 9005 return Res; 9006 } 9007 9008 // Only expand vector types if we have the appropriate vector bit operations. 9009 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 9010 assert(VT.isVector() && "Expected vector type"); 9011 unsigned Len = VT.getScalarSizeInBits(); 9012 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 9013 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 9014 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 9015 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 9016 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 9017 } 9018 9019 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 9020 SDLoc dl(Node); 9021 EVT VT = Node->getValueType(0); 9022 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9023 SDValue Op = Node->getOperand(0); 9024 unsigned Len = VT.getScalarSizeInBits(); 9025 assert(VT.isInteger() && "CTPOP not implemented for this type."); 9026 9027 // TODO: Add support for irregular type lengths. 9028 if (!(Len <= 128 && Len % 8 == 0)) 9029 return SDValue(); 9030 9031 // Only expand vector types if we have the appropriate vector bit operations. 9032 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 9033 return SDValue(); 9034 9035 // This is the "best" algorithm from 9036 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 9037 SDValue Mask55 = 9038 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 9039 SDValue Mask33 = 9040 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 9041 SDValue Mask0F = 9042 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 9043 9044 // v = v - ((v >> 1) & 0x55555555...) 9045 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 9046 DAG.getNode(ISD::AND, dl, VT, 9047 DAG.getNode(ISD::SRL, dl, VT, Op, 9048 DAG.getConstant(1, dl, ShVT)), 9049 Mask55)); 9050 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 9051 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 9052 DAG.getNode(ISD::AND, dl, VT, 9053 DAG.getNode(ISD::SRL, dl, VT, Op, 9054 DAG.getConstant(2, dl, ShVT)), 9055 Mask33)); 9056 // v = (v + (v >> 4)) & 0x0F0F0F0F... 9057 Op = DAG.getNode(ISD::AND, dl, VT, 9058 DAG.getNode(ISD::ADD, dl, VT, Op, 9059 DAG.getNode(ISD::SRL, dl, VT, Op, 9060 DAG.getConstant(4, dl, ShVT))), 9061 Mask0F); 9062 9063 if (Len <= 8) 9064 return Op; 9065 9066 // Avoid the multiply if we only have 2 bytes to add. 9067 // TODO: Only doing this for scalars because vectors weren't as obviously 9068 // improved. 9069 if (Len == 16 && !VT.isVector()) { 9070 // v = (v + (v >> 8)) & 0x00FF; 9071 return DAG.getNode(ISD::AND, dl, VT, 9072 DAG.getNode(ISD::ADD, dl, VT, Op, 9073 DAG.getNode(ISD::SRL, dl, VT, Op, 9074 DAG.getConstant(8, dl, ShVT))), 9075 DAG.getConstant(0xFF, dl, VT)); 9076 } 9077 9078 // v = (v * 0x01010101...) >> (Len - 8) 9079 SDValue V; 9080 if (isOperationLegalOrCustomOrPromote( 9081 ISD::MUL, getTypeToTransformTo(*DAG.getContext(), VT))) { 9082 SDValue Mask01 = 9083 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 9084 V = DAG.getNode(ISD::MUL, dl, VT, Op, Mask01); 9085 } else { 9086 V = Op; 9087 for (unsigned Shift = 8; Shift < Len; Shift *= 2) { 9088 SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl); 9089 V = DAG.getNode(ISD::ADD, dl, VT, V, 9090 DAG.getNode(ISD::SHL, dl, VT, V, ShiftC)); 9091 } 9092 } 9093 return DAG.getNode(ISD::SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT)); 9094 } 9095 9096 SDValue TargetLowering::expandVPCTPOP(SDNode *Node, SelectionDAG &DAG) const { 9097 SDLoc dl(Node); 9098 EVT VT = Node->getValueType(0); 9099 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9100 SDValue Op = Node->getOperand(0); 9101 SDValue Mask = Node->getOperand(1); 9102 SDValue VL = Node->getOperand(2); 9103 unsigned Len = VT.getScalarSizeInBits(); 9104 assert(VT.isInteger() && "VP_CTPOP not implemented for this type."); 9105 9106 // TODO: Add support for irregular type lengths. 9107 if (!(Len <= 128 && Len % 8 == 0)) 9108 return SDValue(); 9109 9110 // This is same algorithm of expandCTPOP from 9111 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 9112 SDValue Mask55 = 9113 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 9114 SDValue Mask33 = 9115 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 9116 SDValue Mask0F = 9117 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 9118 9119 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5; 9120 9121 // v = v - ((v >> 1) & 0x55555555...) 9122 Tmp1 = DAG.getNode(ISD::VP_AND, dl, VT, 9123 DAG.getNode(ISD::VP_SRL, dl, VT, Op, 9124 DAG.getConstant(1, dl, ShVT), Mask, VL), 9125 Mask55, Mask, VL); 9126 Op = DAG.getNode(ISD::VP_SUB, dl, VT, Op, Tmp1, Mask, VL); 9127 9128 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 9129 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Op, Mask33, Mask, VL); 9130 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, 9131 DAG.getNode(ISD::VP_SRL, dl, VT, Op, 9132 DAG.getConstant(2, dl, ShVT), Mask, VL), 9133 Mask33, Mask, VL); 9134 Op = DAG.getNode(ISD::VP_ADD, dl, VT, Tmp2, Tmp3, Mask, VL); 9135 9136 // v = (v + (v >> 4)) & 0x0F0F0F0F... 9137 Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(4, dl, ShVT), 9138 Mask, VL), 9139 Tmp5 = DAG.getNode(ISD::VP_ADD, dl, VT, Op, Tmp4, Mask, VL); 9140 Op = DAG.getNode(ISD::VP_AND, dl, VT, Tmp5, Mask0F, Mask, VL); 9141 9142 if (Len <= 8) 9143 return Op; 9144 9145 // v = (v * 0x01010101...) >> (Len - 8) 9146 SDValue V; 9147 if (isOperationLegalOrCustomOrPromote( 9148 ISD::VP_MUL, getTypeToTransformTo(*DAG.getContext(), VT))) { 9149 SDValue Mask01 = 9150 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 9151 V = DAG.getNode(ISD::VP_MUL, dl, VT, Op, Mask01, Mask, VL); 9152 } else { 9153 V = Op; 9154 for (unsigned Shift = 8; Shift < Len; Shift *= 2) { 9155 SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl); 9156 V = DAG.getNode(ISD::VP_ADD, dl, VT, V, 9157 DAG.getNode(ISD::VP_SHL, dl, VT, V, ShiftC, Mask, VL), 9158 Mask, VL); 9159 } 9160 } 9161 return DAG.getNode(ISD::VP_SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT), 9162 Mask, VL); 9163 } 9164 9165 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 9166 SDLoc dl(Node); 9167 EVT VT = Node->getValueType(0); 9168 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9169 SDValue Op = Node->getOperand(0); 9170 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 9171 9172 // If the non-ZERO_UNDEF version is supported we can use that instead. 9173 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 9174 isOperationLegalOrCustom(ISD::CTLZ, VT)) 9175 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 9176 9177 // If the ZERO_UNDEF version is supported use that and handle the zero case. 9178 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 9179 EVT SetCCVT = 9180 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9181 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 9182 SDValue Zero = DAG.getConstant(0, dl, VT); 9183 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 9184 return DAG.getSelect(dl, VT, SrcIsZero, 9185 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 9186 } 9187 9188 // Only expand vector types if we have the appropriate vector bit operations. 9189 // This includes the operations needed to expand CTPOP if it isn't supported. 9190 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 9191 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 9192 !canExpandVectorCTPOP(*this, VT)) || 9193 !isOperationLegalOrCustom(ISD::SRL, VT) || 9194 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 9195 return SDValue(); 9196 9197 // for now, we do this: 9198 // x = x | (x >> 1); 9199 // x = x | (x >> 2); 9200 // ... 9201 // x = x | (x >>16); 9202 // x = x | (x >>32); // for 64-bit input 9203 // return popcount(~x); 9204 // 9205 // Ref: "Hacker's Delight" by Henry Warren 9206 for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) { 9207 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 9208 Op = DAG.getNode(ISD::OR, dl, VT, Op, 9209 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 9210 } 9211 Op = DAG.getNOT(dl, Op, VT); 9212 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 9213 } 9214 9215 SDValue TargetLowering::expandVPCTLZ(SDNode *Node, SelectionDAG &DAG) const { 9216 SDLoc dl(Node); 9217 EVT VT = Node->getValueType(0); 9218 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9219 SDValue Op = Node->getOperand(0); 9220 SDValue Mask = Node->getOperand(1); 9221 SDValue VL = Node->getOperand(2); 9222 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 9223 9224 // do this: 9225 // x = x | (x >> 1); 9226 // x = x | (x >> 2); 9227 // ... 9228 // x = x | (x >>16); 9229 // x = x | (x >>32); // for 64-bit input 9230 // return popcount(~x); 9231 for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) { 9232 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 9233 Op = DAG.getNode(ISD::VP_OR, dl, VT, Op, 9234 DAG.getNode(ISD::VP_SRL, dl, VT, Op, Tmp, Mask, VL), Mask, 9235 VL); 9236 } 9237 Op = DAG.getNode(ISD::VP_XOR, dl, VT, Op, DAG.getAllOnesConstant(dl, VT), 9238 Mask, VL); 9239 return DAG.getNode(ISD::VP_CTPOP, dl, VT, Op, Mask, VL); 9240 } 9241 9242 SDValue TargetLowering::CTTZTableLookup(SDNode *Node, SelectionDAG &DAG, 9243 const SDLoc &DL, EVT VT, SDValue Op, 9244 unsigned BitWidth) const { 9245 if (BitWidth != 32 && BitWidth != 64) 9246 return SDValue(); 9247 APInt DeBruijn = BitWidth == 32 ? APInt(32, 0x077CB531U) 9248 : APInt(64, 0x0218A392CD3D5DBFULL); 9249 const DataLayout &TD = DAG.getDataLayout(); 9250 MachinePointerInfo PtrInfo = 9251 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()); 9252 unsigned ShiftAmt = BitWidth - Log2_32(BitWidth); 9253 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 9254 SDValue Lookup = DAG.getNode( 9255 ISD::SRL, DL, VT, 9256 DAG.getNode(ISD::MUL, DL, VT, DAG.getNode(ISD::AND, DL, VT, Op, Neg), 9257 DAG.getConstant(DeBruijn, DL, VT)), 9258 DAG.getConstant(ShiftAmt, DL, VT)); 9259 Lookup = DAG.getSExtOrTrunc(Lookup, DL, getPointerTy(TD)); 9260 9261 SmallVector<uint8_t> Table(BitWidth, 0); 9262 for (unsigned i = 0; i < BitWidth; i++) { 9263 APInt Shl = DeBruijn.shl(i); 9264 APInt Lshr = Shl.lshr(ShiftAmt); 9265 Table[Lshr.getZExtValue()] = i; 9266 } 9267 9268 // Create a ConstantArray in Constant Pool 9269 auto *CA = ConstantDataArray::get(*DAG.getContext(), Table); 9270 SDValue CPIdx = DAG.getConstantPool(CA, getPointerTy(TD), 9271 TD.getPrefTypeAlign(CA->getType())); 9272 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, VT, DAG.getEntryNode(), 9273 DAG.getMemBasePlusOffset(CPIdx, Lookup, DL), 9274 PtrInfo, MVT::i8); 9275 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) 9276 return ExtLoad; 9277 9278 EVT SetCCVT = 9279 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9280 SDValue Zero = DAG.getConstant(0, DL, VT); 9281 SDValue SrcIsZero = DAG.getSetCC(DL, SetCCVT, Op, Zero, ISD::SETEQ); 9282 return DAG.getSelect(DL, VT, SrcIsZero, 9283 DAG.getConstant(BitWidth, DL, VT), ExtLoad); 9284 } 9285 9286 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 9287 SDLoc dl(Node); 9288 EVT VT = Node->getValueType(0); 9289 SDValue Op = Node->getOperand(0); 9290 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 9291 9292 // If the non-ZERO_UNDEF version is supported we can use that instead. 9293 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 9294 isOperationLegalOrCustom(ISD::CTTZ, VT)) 9295 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 9296 9297 // If the ZERO_UNDEF version is supported use that and handle the zero case. 9298 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 9299 EVT SetCCVT = 9300 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9301 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 9302 SDValue Zero = DAG.getConstant(0, dl, VT); 9303 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 9304 return DAG.getSelect(dl, VT, SrcIsZero, 9305 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 9306 } 9307 9308 // Only expand vector types if we have the appropriate vector bit operations. 9309 // This includes the operations needed to expand CTPOP if it isn't supported. 9310 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 9311 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 9312 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 9313 !canExpandVectorCTPOP(*this, VT)) || 9314 !isOperationLegalOrCustom(ISD::SUB, VT) || 9315 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 9316 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 9317 return SDValue(); 9318 9319 // Emit Table Lookup if ISD::CTLZ and ISD::CTPOP are not legal. 9320 if (!VT.isVector() && isOperationExpand(ISD::CTPOP, VT) && 9321 !isOperationLegal(ISD::CTLZ, VT)) 9322 if (SDValue V = CTTZTableLookup(Node, DAG, dl, VT, Op, NumBitsPerElt)) 9323 return V; 9324 9325 // for now, we use: { return popcount(~x & (x - 1)); } 9326 // unless the target has ctlz but not ctpop, in which case we use: 9327 // { return 32 - nlz(~x & (x-1)); } 9328 // Ref: "Hacker's Delight" by Henry Warren 9329 SDValue Tmp = DAG.getNode( 9330 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 9331 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 9332 9333 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 9334 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 9335 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 9336 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 9337 } 9338 9339 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 9340 } 9341 9342 SDValue TargetLowering::expandVPCTTZ(SDNode *Node, SelectionDAG &DAG) const { 9343 SDValue Op = Node->getOperand(0); 9344 SDValue Mask = Node->getOperand(1); 9345 SDValue VL = Node->getOperand(2); 9346 SDLoc dl(Node); 9347 EVT VT = Node->getValueType(0); 9348 9349 // Same as the vector part of expandCTTZ, use: popcount(~x & (x - 1)) 9350 SDValue Not = DAG.getNode(ISD::VP_XOR, dl, VT, Op, 9351 DAG.getAllOnesConstant(dl, VT), Mask, VL); 9352 SDValue MinusOne = DAG.getNode(ISD::VP_SUB, dl, VT, Op, 9353 DAG.getConstant(1, dl, VT), Mask, VL); 9354 SDValue Tmp = DAG.getNode(ISD::VP_AND, dl, VT, Not, MinusOne, Mask, VL); 9355 return DAG.getNode(ISD::VP_CTPOP, dl, VT, Tmp, Mask, VL); 9356 } 9357 9358 SDValue TargetLowering::expandVPCTTZElements(SDNode *N, 9359 SelectionDAG &DAG) const { 9360 // %cond = to_bool_vec %source 9361 // %splat = splat /*val=*/VL 9362 // %tz = step_vector 9363 // %v = vp.select %cond, /*true=*/tz, /*false=*/%splat 9364 // %r = vp.reduce.umin %v 9365 SDLoc DL(N); 9366 SDValue Source = N->getOperand(0); 9367 SDValue Mask = N->getOperand(1); 9368 SDValue EVL = N->getOperand(2); 9369 EVT SrcVT = Source.getValueType(); 9370 EVT ResVT = N->getValueType(0); 9371 EVT ResVecVT = 9372 EVT::getVectorVT(*DAG.getContext(), ResVT, SrcVT.getVectorElementCount()); 9373 9374 // Convert to boolean vector. 9375 if (SrcVT.getScalarType() != MVT::i1) { 9376 SDValue AllZero = DAG.getConstant(0, DL, SrcVT); 9377 SrcVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 9378 SrcVT.getVectorElementCount()); 9379 Source = DAG.getNode(ISD::VP_SETCC, DL, SrcVT, Source, AllZero, 9380 DAG.getCondCode(ISD::SETNE), Mask, EVL); 9381 } 9382 9383 SDValue ExtEVL = DAG.getZExtOrTrunc(EVL, DL, ResVT); 9384 SDValue Splat = DAG.getSplat(ResVecVT, DL, ExtEVL); 9385 SDValue StepVec = DAG.getStepVector(DL, ResVecVT); 9386 SDValue Select = 9387 DAG.getNode(ISD::VP_SELECT, DL, ResVecVT, Source, StepVec, Splat, EVL); 9388 return DAG.getNode(ISD::VP_REDUCE_UMIN, DL, ResVT, ExtEVL, Select, Mask, EVL); 9389 } 9390 9391 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 9392 bool IsNegative) const { 9393 SDLoc dl(N); 9394 EVT VT = N->getValueType(0); 9395 SDValue Op = N->getOperand(0); 9396 9397 // abs(x) -> smax(x,sub(0,x)) 9398 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 9399 isOperationLegal(ISD::SMAX, VT)) { 9400 SDValue Zero = DAG.getConstant(0, dl, VT); 9401 Op = DAG.getFreeze(Op); 9402 return DAG.getNode(ISD::SMAX, dl, VT, Op, 9403 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 9404 } 9405 9406 // abs(x) -> umin(x,sub(0,x)) 9407 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 9408 isOperationLegal(ISD::UMIN, VT)) { 9409 SDValue Zero = DAG.getConstant(0, dl, VT); 9410 Op = DAG.getFreeze(Op); 9411 return DAG.getNode(ISD::UMIN, dl, VT, Op, 9412 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 9413 } 9414 9415 // 0 - abs(x) -> smin(x, sub(0,x)) 9416 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 9417 isOperationLegal(ISD::SMIN, VT)) { 9418 SDValue Zero = DAG.getConstant(0, dl, VT); 9419 Op = DAG.getFreeze(Op); 9420 return DAG.getNode(ISD::SMIN, dl, VT, Op, 9421 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 9422 } 9423 9424 // Only expand vector types if we have the appropriate vector operations. 9425 if (VT.isVector() && 9426 (!isOperationLegalOrCustom(ISD::SRA, VT) || 9427 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 9428 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 9429 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 9430 return SDValue(); 9431 9432 Op = DAG.getFreeze(Op); 9433 SDValue Shift = DAG.getNode( 9434 ISD::SRA, dl, VT, Op, 9435 DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, dl)); 9436 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 9437 9438 // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y) 9439 if (!IsNegative) 9440 return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift); 9441 9442 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 9443 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 9444 } 9445 9446 SDValue TargetLowering::expandABD(SDNode *N, SelectionDAG &DAG) const { 9447 SDLoc dl(N); 9448 EVT VT = N->getValueType(0); 9449 SDValue LHS = DAG.getFreeze(N->getOperand(0)); 9450 SDValue RHS = DAG.getFreeze(N->getOperand(1)); 9451 bool IsSigned = N->getOpcode() == ISD::ABDS; 9452 9453 // abds(lhs, rhs) -> sub(smax(lhs,rhs), smin(lhs,rhs)) 9454 // abdu(lhs, rhs) -> sub(umax(lhs,rhs), umin(lhs,rhs)) 9455 unsigned MaxOpc = IsSigned ? ISD::SMAX : ISD::UMAX; 9456 unsigned MinOpc = IsSigned ? ISD::SMIN : ISD::UMIN; 9457 if (isOperationLegal(MaxOpc, VT) && isOperationLegal(MinOpc, VT)) { 9458 SDValue Max = DAG.getNode(MaxOpc, dl, VT, LHS, RHS); 9459 SDValue Min = DAG.getNode(MinOpc, dl, VT, LHS, RHS); 9460 return DAG.getNode(ISD::SUB, dl, VT, Max, Min); 9461 } 9462 9463 // abdu(lhs, rhs) -> or(usubsat(lhs,rhs), usubsat(rhs,lhs)) 9464 if (!IsSigned && isOperationLegal(ISD::USUBSAT, VT)) 9465 return DAG.getNode(ISD::OR, dl, VT, 9466 DAG.getNode(ISD::USUBSAT, dl, VT, LHS, RHS), 9467 DAG.getNode(ISD::USUBSAT, dl, VT, RHS, LHS)); 9468 9469 // If the subtract doesn't overflow then just use abs(sub()) 9470 // NOTE: don't use frozen operands for value tracking. 9471 bool IsNonNegative = DAG.SignBitIsZero(N->getOperand(1)) && 9472 DAG.SignBitIsZero(N->getOperand(0)); 9473 9474 if (DAG.willNotOverflowSub(IsSigned || IsNonNegative, N->getOperand(0), 9475 N->getOperand(1))) 9476 return DAG.getNode(ISD::ABS, dl, VT, 9477 DAG.getNode(ISD::SUB, dl, VT, LHS, RHS)); 9478 9479 if (DAG.willNotOverflowSub(IsSigned || IsNonNegative, N->getOperand(1), 9480 N->getOperand(0))) 9481 return DAG.getNode(ISD::ABS, dl, VT, 9482 DAG.getNode(ISD::SUB, dl, VT, RHS, LHS)); 9483 9484 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9485 ISD::CondCode CC = IsSigned ? ISD::CondCode::SETGT : ISD::CondCode::SETUGT; 9486 SDValue Cmp = DAG.getSetCC(dl, CCVT, LHS, RHS, CC); 9487 9488 // Branchless expansion iff cmp result is allbits: 9489 // abds(lhs, rhs) -> sub(sgt(lhs, rhs), xor(sgt(lhs, rhs), sub(lhs, rhs))) 9490 // abdu(lhs, rhs) -> sub(ugt(lhs, rhs), xor(ugt(lhs, rhs), sub(lhs, rhs))) 9491 if (CCVT == VT && getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 9492 SDValue Diff = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS); 9493 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Diff, Cmp); 9494 return DAG.getNode(ISD::SUB, dl, VT, Cmp, Xor); 9495 } 9496 9497 // Similar to the branchless expansion, use the (sign-extended) usubo overflow 9498 // flag if the (scalar) type is illegal as this is more likely to legalize 9499 // cleanly: 9500 // abdu(lhs, rhs) -> sub(xor(sub(lhs, rhs), uof(lhs, rhs)), uof(lhs, rhs)) 9501 if (!IsSigned && VT.isScalarInteger() && !isTypeLegal(VT)) { 9502 SDValue USubO = 9503 DAG.getNode(ISD::USUBO, dl, DAG.getVTList(VT, MVT::i1), {LHS, RHS}); 9504 SDValue Cmp = DAG.getNode(ISD::SIGN_EXTEND, dl, VT, USubO.getValue(1)); 9505 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, USubO.getValue(0), Cmp); 9506 return DAG.getNode(ISD::SUB, dl, VT, Xor, Cmp); 9507 } 9508 9509 // FIXME: Should really try to split the vector in case it's legal on a 9510 // subvector. 9511 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 9512 return DAG.UnrollVectorOp(N); 9513 9514 // abds(lhs, rhs) -> select(sgt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs)) 9515 // abdu(lhs, rhs) -> select(ugt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs)) 9516 return DAG.getSelect(dl, VT, Cmp, DAG.getNode(ISD::SUB, dl, VT, LHS, RHS), 9517 DAG.getNode(ISD::SUB, dl, VT, RHS, LHS)); 9518 } 9519 9520 SDValue TargetLowering::expandAVG(SDNode *N, SelectionDAG &DAG) const { 9521 SDLoc dl(N); 9522 EVT VT = N->getValueType(0); 9523 SDValue LHS = N->getOperand(0); 9524 SDValue RHS = N->getOperand(1); 9525 9526 unsigned Opc = N->getOpcode(); 9527 bool IsFloor = Opc == ISD::AVGFLOORS || Opc == ISD::AVGFLOORU; 9528 bool IsSigned = Opc == ISD::AVGCEILS || Opc == ISD::AVGFLOORS; 9529 unsigned SumOpc = IsFloor ? ISD::ADD : ISD::SUB; 9530 unsigned SignOpc = IsFloor ? ISD::AND : ISD::OR; 9531 unsigned ShiftOpc = IsSigned ? ISD::SRA : ISD::SRL; 9532 unsigned ExtOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 9533 assert((Opc == ISD::AVGFLOORS || Opc == ISD::AVGCEILS || 9534 Opc == ISD::AVGFLOORU || Opc == ISD::AVGCEILU) && 9535 "Unknown AVG node"); 9536 9537 // If the operands are already extended, we can add+shift. 9538 bool IsExt = 9539 (IsSigned && DAG.ComputeNumSignBits(LHS) >= 2 && 9540 DAG.ComputeNumSignBits(RHS) >= 2) || 9541 (!IsSigned && DAG.computeKnownBits(LHS).countMinLeadingZeros() >= 1 && 9542 DAG.computeKnownBits(RHS).countMinLeadingZeros() >= 1); 9543 if (IsExt) { 9544 SDValue Sum = DAG.getNode(ISD::ADD, dl, VT, LHS, RHS); 9545 if (!IsFloor) 9546 Sum = DAG.getNode(ISD::ADD, dl, VT, Sum, DAG.getConstant(1, dl, VT)); 9547 return DAG.getNode(ShiftOpc, dl, VT, Sum, 9548 DAG.getShiftAmountConstant(1, VT, dl)); 9549 } 9550 9551 // For scalars, see if we can efficiently extend/truncate to use add+shift. 9552 if (VT.isScalarInteger()) { 9553 unsigned BW = VT.getScalarSizeInBits(); 9554 EVT ExtVT = VT.getIntegerVT(*DAG.getContext(), 2 * BW); 9555 if (isTypeLegal(ExtVT) && isTruncateFree(ExtVT, VT)) { 9556 LHS = DAG.getNode(ExtOpc, dl, ExtVT, LHS); 9557 RHS = DAG.getNode(ExtOpc, dl, ExtVT, RHS); 9558 SDValue Avg = DAG.getNode(ISD::ADD, dl, ExtVT, LHS, RHS); 9559 if (!IsFloor) 9560 Avg = DAG.getNode(ISD::ADD, dl, ExtVT, Avg, 9561 DAG.getConstant(1, dl, ExtVT)); 9562 // Just use SRL as we will be truncating away the extended sign bits. 9563 Avg = DAG.getNode(ISD::SRL, dl, ExtVT, Avg, 9564 DAG.getShiftAmountConstant(1, ExtVT, dl)); 9565 return DAG.getNode(ISD::TRUNCATE, dl, VT, Avg); 9566 } 9567 } 9568 9569 // avgflooru(lhs, rhs) -> or(lshr(add(lhs, rhs),1),shl(overflow, typesize-1)) 9570 if (Opc == ISD::AVGFLOORU && VT.isScalarInteger() && !isTypeLegal(VT)) { 9571 SDValue UAddWithOverflow = 9572 DAG.getNode(ISD::UADDO, dl, DAG.getVTList(VT, MVT::i1), {RHS, LHS}); 9573 9574 SDValue Sum = UAddWithOverflow.getValue(0); 9575 SDValue Overflow = UAddWithOverflow.getValue(1); 9576 9577 // Right shift the sum by 1 9578 SDValue LShrVal = DAG.getNode(ISD::SRL, dl, VT, Sum, 9579 DAG.getShiftAmountConstant(1, VT, dl)); 9580 9581 SDValue ZeroExtOverflow = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Overflow); 9582 SDValue OverflowShl = DAG.getNode( 9583 ISD::SHL, dl, VT, ZeroExtOverflow, 9584 DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, dl)); 9585 9586 return DAG.getNode(ISD::OR, dl, VT, LShrVal, OverflowShl); 9587 } 9588 9589 // avgceils(lhs, rhs) -> sub(or(lhs,rhs),ashr(xor(lhs,rhs),1)) 9590 // avgceilu(lhs, rhs) -> sub(or(lhs,rhs),lshr(xor(lhs,rhs),1)) 9591 // avgfloors(lhs, rhs) -> add(and(lhs,rhs),ashr(xor(lhs,rhs),1)) 9592 // avgflooru(lhs, rhs) -> add(and(lhs,rhs),lshr(xor(lhs,rhs),1)) 9593 LHS = DAG.getFreeze(LHS); 9594 RHS = DAG.getFreeze(RHS); 9595 SDValue Sign = DAG.getNode(SignOpc, dl, VT, LHS, RHS); 9596 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 9597 SDValue Shift = 9598 DAG.getNode(ShiftOpc, dl, VT, Xor, DAG.getShiftAmountConstant(1, VT, dl)); 9599 return DAG.getNode(SumOpc, dl, VT, Sign, Shift); 9600 } 9601 9602 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 9603 SDLoc dl(N); 9604 EVT VT = N->getValueType(0); 9605 SDValue Op = N->getOperand(0); 9606 9607 if (!VT.isSimple()) 9608 return SDValue(); 9609 9610 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9611 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 9612 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 9613 default: 9614 return SDValue(); 9615 case MVT::i16: 9616 // Use a rotate by 8. This can be further expanded if necessary. 9617 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 9618 case MVT::i32: 9619 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 9620 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Op, 9621 DAG.getConstant(0xFF00, dl, VT)); 9622 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT)); 9623 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 9624 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 9625 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 9626 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 9627 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 9628 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 9629 case MVT::i64: 9630 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 9631 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Op, 9632 DAG.getConstant(255ULL<<8, dl, VT)); 9633 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT)); 9634 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Op, 9635 DAG.getConstant(255ULL<<16, dl, VT)); 9636 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT)); 9637 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Op, 9638 DAG.getConstant(255ULL<<24, dl, VT)); 9639 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT)); 9640 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 9641 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 9642 DAG.getConstant(255ULL<<24, dl, VT)); 9643 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 9644 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 9645 DAG.getConstant(255ULL<<16, dl, VT)); 9646 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 9647 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 9648 DAG.getConstant(255ULL<<8, dl, VT)); 9649 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 9650 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 9651 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 9652 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 9653 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 9654 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 9655 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 9656 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 9657 } 9658 } 9659 9660 SDValue TargetLowering::expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const { 9661 SDLoc dl(N); 9662 EVT VT = N->getValueType(0); 9663 SDValue Op = N->getOperand(0); 9664 SDValue Mask = N->getOperand(1); 9665 SDValue EVL = N->getOperand(2); 9666 9667 if (!VT.isSimple()) 9668 return SDValue(); 9669 9670 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9671 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 9672 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 9673 default: 9674 return SDValue(); 9675 case MVT::i16: 9676 Tmp1 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 9677 Mask, EVL); 9678 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 9679 Mask, EVL); 9680 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp1, Tmp2, Mask, EVL); 9681 case MVT::i32: 9682 Tmp4 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT), 9683 Mask, EVL); 9684 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Op, DAG.getConstant(0xFF00, dl, VT), 9685 Mask, EVL); 9686 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT), 9687 Mask, EVL); 9688 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 9689 Mask, EVL); 9690 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9691 DAG.getConstant(0xFF00, dl, VT), Mask, EVL); 9692 Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT), 9693 Mask, EVL); 9694 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL); 9695 Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL); 9696 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL); 9697 case MVT::i64: 9698 Tmp8 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT), 9699 Mask, EVL); 9700 Tmp7 = DAG.getNode(ISD::VP_AND, dl, VT, Op, 9701 DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL); 9702 Tmp7 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT), 9703 Mask, EVL); 9704 Tmp6 = DAG.getNode(ISD::VP_AND, dl, VT, Op, 9705 DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL); 9706 Tmp6 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT), 9707 Mask, EVL); 9708 Tmp5 = DAG.getNode(ISD::VP_AND, dl, VT, Op, 9709 DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL); 9710 Tmp5 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT), 9711 Mask, EVL); 9712 Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 9713 Mask, EVL); 9714 Tmp4 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp4, 9715 DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL); 9716 Tmp3 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT), 9717 Mask, EVL); 9718 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp3, 9719 DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL); 9720 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT), 9721 Mask, EVL); 9722 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9723 DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL); 9724 Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT), 9725 Mask, EVL); 9726 Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp7, Mask, EVL); 9727 Tmp6 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp6, Tmp5, Mask, EVL); 9728 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL); 9729 Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL); 9730 Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp6, Mask, EVL); 9731 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL); 9732 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp4, Mask, EVL); 9733 } 9734 } 9735 9736 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 9737 SDLoc dl(N); 9738 EVT VT = N->getValueType(0); 9739 SDValue Op = N->getOperand(0); 9740 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9741 unsigned Sz = VT.getScalarSizeInBits(); 9742 9743 SDValue Tmp, Tmp2, Tmp3; 9744 9745 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 9746 // and finally the i1 pairs. 9747 // TODO: We can easily support i4/i2 legal types if any target ever does. 9748 if (Sz >= 8 && isPowerOf2_32(Sz)) { 9749 // Create the masks - repeating the pattern every byte. 9750 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 9751 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 9752 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 9753 9754 // BSWAP if the type is wider than a single byte. 9755 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 9756 9757 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 9758 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 9759 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 9760 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 9761 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 9762 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 9763 9764 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 9765 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 9766 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 9767 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 9768 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 9769 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 9770 9771 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 9772 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 9773 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 9774 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 9775 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 9776 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 9777 return Tmp; 9778 } 9779 9780 Tmp = DAG.getConstant(0, dl, VT); 9781 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 9782 if (I < J) 9783 Tmp2 = 9784 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 9785 else 9786 Tmp2 = 9787 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 9788 9789 APInt Shift = APInt::getOneBitSet(Sz, J); 9790 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 9791 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 9792 } 9793 9794 return Tmp; 9795 } 9796 9797 SDValue TargetLowering::expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 9798 assert(N->getOpcode() == ISD::VP_BITREVERSE); 9799 9800 SDLoc dl(N); 9801 EVT VT = N->getValueType(0); 9802 SDValue Op = N->getOperand(0); 9803 SDValue Mask = N->getOperand(1); 9804 SDValue EVL = N->getOperand(2); 9805 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9806 unsigned Sz = VT.getScalarSizeInBits(); 9807 9808 SDValue Tmp, Tmp2, Tmp3; 9809 9810 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 9811 // and finally the i1 pairs. 9812 // TODO: We can easily support i4/i2 legal types if any target ever does. 9813 if (Sz >= 8 && isPowerOf2_32(Sz)) { 9814 // Create the masks - repeating the pattern every byte. 9815 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 9816 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 9817 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 9818 9819 // BSWAP if the type is wider than a single byte. 9820 Tmp = (Sz > 8 ? DAG.getNode(ISD::VP_BSWAP, dl, VT, Op, Mask, EVL) : Op); 9821 9822 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 9823 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT), 9824 Mask, EVL); 9825 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9826 DAG.getConstant(Mask4, dl, VT), Mask, EVL); 9827 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT), 9828 Mask, EVL); 9829 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT), 9830 Mask, EVL); 9831 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL); 9832 9833 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 9834 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT), 9835 Mask, EVL); 9836 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9837 DAG.getConstant(Mask2, dl, VT), Mask, EVL); 9838 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT), 9839 Mask, EVL); 9840 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT), 9841 Mask, EVL); 9842 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL); 9843 9844 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 9845 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT), 9846 Mask, EVL); 9847 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9848 DAG.getConstant(Mask1, dl, VT), Mask, EVL); 9849 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT), 9850 Mask, EVL); 9851 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT), 9852 Mask, EVL); 9853 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL); 9854 return Tmp; 9855 } 9856 return SDValue(); 9857 } 9858 9859 std::pair<SDValue, SDValue> 9860 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 9861 SelectionDAG &DAG) const { 9862 SDLoc SL(LD); 9863 SDValue Chain = LD->getChain(); 9864 SDValue BasePTR = LD->getBasePtr(); 9865 EVT SrcVT = LD->getMemoryVT(); 9866 EVT DstVT = LD->getValueType(0); 9867 ISD::LoadExtType ExtType = LD->getExtensionType(); 9868 9869 if (SrcVT.isScalableVector()) 9870 report_fatal_error("Cannot scalarize scalable vector loads"); 9871 9872 unsigned NumElem = SrcVT.getVectorNumElements(); 9873 9874 EVT SrcEltVT = SrcVT.getScalarType(); 9875 EVT DstEltVT = DstVT.getScalarType(); 9876 9877 // A vector must always be stored in memory as-is, i.e. without any padding 9878 // between the elements, since various code depend on it, e.g. in the 9879 // handling of a bitcast of a vector type to int, which may be done with a 9880 // vector store followed by an integer load. A vector that does not have 9881 // elements that are byte-sized must therefore be stored as an integer 9882 // built out of the extracted vector elements. 9883 if (!SrcEltVT.isByteSized()) { 9884 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 9885 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 9886 9887 unsigned NumSrcBits = SrcVT.getSizeInBits(); 9888 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 9889 9890 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 9891 SDValue SrcEltBitMask = DAG.getConstant( 9892 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 9893 9894 // Load the whole vector and avoid masking off the top bits as it makes 9895 // the codegen worse. 9896 SDValue Load = 9897 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 9898 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 9899 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 9900 9901 SmallVector<SDValue, 8> Vals; 9902 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 9903 unsigned ShiftIntoIdx = 9904 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 9905 SDValue ShiftAmount = DAG.getShiftAmountConstant( 9906 ShiftIntoIdx * SrcEltVT.getSizeInBits(), LoadVT, SL); 9907 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 9908 SDValue Elt = 9909 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 9910 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 9911 9912 if (ExtType != ISD::NON_EXTLOAD) { 9913 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 9914 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 9915 } 9916 9917 Vals.push_back(Scalar); 9918 } 9919 9920 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 9921 return std::make_pair(Value, Load.getValue(1)); 9922 } 9923 9924 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 9925 assert(SrcEltVT.isByteSized()); 9926 9927 SmallVector<SDValue, 8> Vals; 9928 SmallVector<SDValue, 8> LoadChains; 9929 9930 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 9931 SDValue ScalarLoad = 9932 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 9933 LD->getPointerInfo().getWithOffset(Idx * Stride), 9934 SrcEltVT, LD->getOriginalAlign(), 9935 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 9936 9937 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::getFixed(Stride)); 9938 9939 Vals.push_back(ScalarLoad.getValue(0)); 9940 LoadChains.push_back(ScalarLoad.getValue(1)); 9941 } 9942 9943 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 9944 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 9945 9946 return std::make_pair(Value, NewChain); 9947 } 9948 9949 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 9950 SelectionDAG &DAG) const { 9951 SDLoc SL(ST); 9952 9953 SDValue Chain = ST->getChain(); 9954 SDValue BasePtr = ST->getBasePtr(); 9955 SDValue Value = ST->getValue(); 9956 EVT StVT = ST->getMemoryVT(); 9957 9958 if (StVT.isScalableVector()) 9959 report_fatal_error("Cannot scalarize scalable vector stores"); 9960 9961 // The type of the data we want to save 9962 EVT RegVT = Value.getValueType(); 9963 EVT RegSclVT = RegVT.getScalarType(); 9964 9965 // The type of data as saved in memory. 9966 EVT MemSclVT = StVT.getScalarType(); 9967 9968 unsigned NumElem = StVT.getVectorNumElements(); 9969 9970 // A vector must always be stored in memory as-is, i.e. without any padding 9971 // between the elements, since various code depend on it, e.g. in the 9972 // handling of a bitcast of a vector type to int, which may be done with a 9973 // vector store followed by an integer load. A vector that does not have 9974 // elements that are byte-sized must therefore be stored as an integer 9975 // built out of the extracted vector elements. 9976 if (!MemSclVT.isByteSized()) { 9977 unsigned NumBits = StVT.getSizeInBits(); 9978 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 9979 9980 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 9981 9982 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 9983 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 9984 DAG.getVectorIdxConstant(Idx, SL)); 9985 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 9986 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 9987 unsigned ShiftIntoIdx = 9988 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 9989 SDValue ShiftAmount = 9990 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 9991 SDValue ShiftedElt = 9992 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 9993 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 9994 } 9995 9996 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 9997 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 9998 ST->getAAInfo()); 9999 } 10000 10001 // Store Stride in bytes 10002 unsigned Stride = MemSclVT.getSizeInBits() / 8; 10003 assert(Stride && "Zero stride!"); 10004 // Extract each of the elements from the original vector and save them into 10005 // memory individually. 10006 SmallVector<SDValue, 8> Stores; 10007 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 10008 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 10009 DAG.getVectorIdxConstant(Idx, SL)); 10010 10011 SDValue Ptr = 10012 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::getFixed(Idx * Stride)); 10013 10014 // This scalar TruncStore may be illegal, but we legalize it later. 10015 SDValue Store = DAG.getTruncStore( 10016 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 10017 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 10018 ST->getAAInfo()); 10019 10020 Stores.push_back(Store); 10021 } 10022 10023 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 10024 } 10025 10026 std::pair<SDValue, SDValue> 10027 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 10028 assert(LD->getAddressingMode() == ISD::UNINDEXED && 10029 "unaligned indexed loads not implemented!"); 10030 SDValue Chain = LD->getChain(); 10031 SDValue Ptr = LD->getBasePtr(); 10032 EVT VT = LD->getValueType(0); 10033 EVT LoadedVT = LD->getMemoryVT(); 10034 SDLoc dl(LD); 10035 auto &MF = DAG.getMachineFunction(); 10036 10037 if (VT.isFloatingPoint() || VT.isVector()) { 10038 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 10039 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 10040 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 10041 LoadedVT.isVector()) { 10042 // Scalarize the load and let the individual components be handled. 10043 return scalarizeVectorLoad(LD, DAG); 10044 } 10045 10046 // Expand to a (misaligned) integer load of the same size, 10047 // then bitconvert to floating point or vector. 10048 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 10049 LD->getMemOperand()); 10050 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 10051 if (LoadedVT != VT) 10052 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 10053 ISD::ANY_EXTEND, dl, VT, Result); 10054 10055 return std::make_pair(Result, newLoad.getValue(1)); 10056 } 10057 10058 // Copy the value to a (aligned) stack slot using (unaligned) integer 10059 // loads and stores, then do a (aligned) load from the stack slot. 10060 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 10061 unsigned LoadedBytes = LoadedVT.getStoreSize(); 10062 unsigned RegBytes = RegVT.getSizeInBits() / 8; 10063 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 10064 10065 // Make sure the stack slot is also aligned for the register type. 10066 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 10067 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 10068 SmallVector<SDValue, 8> Stores; 10069 SDValue StackPtr = StackBase; 10070 unsigned Offset = 0; 10071 10072 EVT PtrVT = Ptr.getValueType(); 10073 EVT StackPtrVT = StackPtr.getValueType(); 10074 10075 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 10076 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 10077 10078 // Do all but one copies using the full register width. 10079 for (unsigned i = 1; i < NumRegs; i++) { 10080 // Load one integer register's worth from the original location. 10081 SDValue Load = DAG.getLoad( 10082 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 10083 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 10084 LD->getAAInfo()); 10085 // Follow the load with a store to the stack slot. Remember the store. 10086 Stores.push_back(DAG.getStore( 10087 Load.getValue(1), dl, Load, StackPtr, 10088 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 10089 // Increment the pointers. 10090 Offset += RegBytes; 10091 10092 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 10093 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 10094 } 10095 10096 // The last copy may be partial. Do an extending load. 10097 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 10098 8 * (LoadedBytes - Offset)); 10099 SDValue Load = 10100 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 10101 LD->getPointerInfo().getWithOffset(Offset), MemVT, 10102 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 10103 LD->getAAInfo()); 10104 // Follow the load with a store to the stack slot. Remember the store. 10105 // On big-endian machines this requires a truncating store to ensure 10106 // that the bits end up in the right place. 10107 Stores.push_back(DAG.getTruncStore( 10108 Load.getValue(1), dl, Load, StackPtr, 10109 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 10110 10111 // The order of the stores doesn't matter - say it with a TokenFactor. 10112 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10113 10114 // Finally, perform the original load only redirected to the stack slot. 10115 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 10116 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 10117 LoadedVT); 10118 10119 // Callers expect a MERGE_VALUES node. 10120 return std::make_pair(Load, TF); 10121 } 10122 10123 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 10124 "Unaligned load of unsupported type."); 10125 10126 // Compute the new VT that is half the size of the old one. This is an 10127 // integer MVT. 10128 unsigned NumBits = LoadedVT.getSizeInBits(); 10129 EVT NewLoadedVT; 10130 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 10131 NumBits >>= 1; 10132 10133 Align Alignment = LD->getOriginalAlign(); 10134 unsigned IncrementSize = NumBits / 8; 10135 ISD::LoadExtType HiExtType = LD->getExtensionType(); 10136 10137 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 10138 if (HiExtType == ISD::NON_EXTLOAD) 10139 HiExtType = ISD::ZEXTLOAD; 10140 10141 // Load the value in two parts 10142 SDValue Lo, Hi; 10143 if (DAG.getDataLayout().isLittleEndian()) { 10144 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 10145 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 10146 LD->getAAInfo()); 10147 10148 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize)); 10149 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 10150 LD->getPointerInfo().getWithOffset(IncrementSize), 10151 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 10152 LD->getAAInfo()); 10153 } else { 10154 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 10155 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 10156 LD->getAAInfo()); 10157 10158 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize)); 10159 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 10160 LD->getPointerInfo().getWithOffset(IncrementSize), 10161 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 10162 LD->getAAInfo()); 10163 } 10164 10165 // aggregate the two parts 10166 SDValue ShiftAmount = DAG.getShiftAmountConstant(NumBits, VT, dl); 10167 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 10168 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 10169 10170 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 10171 Hi.getValue(1)); 10172 10173 return std::make_pair(Result, TF); 10174 } 10175 10176 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 10177 SelectionDAG &DAG) const { 10178 assert(ST->getAddressingMode() == ISD::UNINDEXED && 10179 "unaligned indexed stores not implemented!"); 10180 SDValue Chain = ST->getChain(); 10181 SDValue Ptr = ST->getBasePtr(); 10182 SDValue Val = ST->getValue(); 10183 EVT VT = Val.getValueType(); 10184 Align Alignment = ST->getOriginalAlign(); 10185 auto &MF = DAG.getMachineFunction(); 10186 EVT StoreMemVT = ST->getMemoryVT(); 10187 10188 SDLoc dl(ST); 10189 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 10190 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 10191 if (isTypeLegal(intVT)) { 10192 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 10193 StoreMemVT.isVector()) { 10194 // Scalarize the store and let the individual components be handled. 10195 SDValue Result = scalarizeVectorStore(ST, DAG); 10196 return Result; 10197 } 10198 // Expand to a bitconvert of the value to the integer type of the 10199 // same size, then a (misaligned) int store. 10200 // FIXME: Does not handle truncating floating point stores! 10201 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 10202 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 10203 Alignment, ST->getMemOperand()->getFlags()); 10204 return Result; 10205 } 10206 // Do a (aligned) store to a stack slot, then copy from the stack slot 10207 // to the final destination using (unaligned) integer loads and stores. 10208 MVT RegVT = getRegisterType( 10209 *DAG.getContext(), 10210 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 10211 EVT PtrVT = Ptr.getValueType(); 10212 unsigned StoredBytes = StoreMemVT.getStoreSize(); 10213 unsigned RegBytes = RegVT.getSizeInBits() / 8; 10214 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 10215 10216 // Make sure the stack slot is also aligned for the register type. 10217 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 10218 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 10219 10220 // Perform the original store, only redirected to the stack slot. 10221 SDValue Store = DAG.getTruncStore( 10222 Chain, dl, Val, StackPtr, 10223 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 10224 10225 EVT StackPtrVT = StackPtr.getValueType(); 10226 10227 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 10228 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 10229 SmallVector<SDValue, 8> Stores; 10230 unsigned Offset = 0; 10231 10232 // Do all but one copies using the full register width. 10233 for (unsigned i = 1; i < NumRegs; i++) { 10234 // Load one integer register's worth from the stack slot. 10235 SDValue Load = DAG.getLoad( 10236 RegVT, dl, Store, StackPtr, 10237 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 10238 // Store it to the final location. Remember the store. 10239 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 10240 ST->getPointerInfo().getWithOffset(Offset), 10241 ST->getOriginalAlign(), 10242 ST->getMemOperand()->getFlags())); 10243 // Increment the pointers. 10244 Offset += RegBytes; 10245 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 10246 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 10247 } 10248 10249 // The last store may be partial. Do a truncating store. On big-endian 10250 // machines this requires an extending load from the stack slot to ensure 10251 // that the bits are in the right place. 10252 EVT LoadMemVT = 10253 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 10254 10255 // Load from the stack slot. 10256 SDValue Load = DAG.getExtLoad( 10257 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 10258 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 10259 10260 Stores.push_back( 10261 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 10262 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 10263 ST->getOriginalAlign(), 10264 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 10265 // The order of the stores doesn't matter - say it with a TokenFactor. 10266 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10267 return Result; 10268 } 10269 10270 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 10271 "Unaligned store of unknown type."); 10272 // Get the half-size VT 10273 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 10274 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 10275 unsigned IncrementSize = NumBits / 8; 10276 10277 // Divide the stored value in two parts. 10278 SDValue ShiftAmount = 10279 DAG.getShiftAmountConstant(NumBits, Val.getValueType(), dl); 10280 SDValue Lo = Val; 10281 // If Val is a constant, replace the upper bits with 0. The SRL will constant 10282 // fold and not use the upper bits. A smaller constant may be easier to 10283 // materialize. 10284 if (auto *C = dyn_cast<ConstantSDNode>(Lo); C && !C->isOpaque()) 10285 Lo = DAG.getNode( 10286 ISD::AND, dl, VT, Lo, 10287 DAG.getConstant(APInt::getLowBitsSet(VT.getSizeInBits(), NumBits), dl, 10288 VT)); 10289 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 10290 10291 // Store the two parts 10292 SDValue Store1, Store2; 10293 Store1 = DAG.getTruncStore(Chain, dl, 10294 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 10295 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 10296 ST->getMemOperand()->getFlags()); 10297 10298 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize)); 10299 Store2 = DAG.getTruncStore( 10300 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 10301 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 10302 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 10303 10304 SDValue Result = 10305 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 10306 return Result; 10307 } 10308 10309 SDValue 10310 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 10311 const SDLoc &DL, EVT DataVT, 10312 SelectionDAG &DAG, 10313 bool IsCompressedMemory) const { 10314 SDValue Increment; 10315 EVT AddrVT = Addr.getValueType(); 10316 EVT MaskVT = Mask.getValueType(); 10317 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 10318 "Incompatible types of Data and Mask"); 10319 if (IsCompressedMemory) { 10320 if (DataVT.isScalableVector()) 10321 report_fatal_error( 10322 "Cannot currently handle compressed memory with scalable vectors"); 10323 // Incrementing the pointer according to number of '1's in the mask. 10324 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 10325 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 10326 if (MaskIntVT.getSizeInBits() < 32) { 10327 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 10328 MaskIntVT = MVT::i32; 10329 } 10330 10331 // Count '1's with POPCNT. 10332 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 10333 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 10334 // Scale is an element size in bytes. 10335 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 10336 AddrVT); 10337 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 10338 } else if (DataVT.isScalableVector()) { 10339 Increment = DAG.getVScale(DL, AddrVT, 10340 APInt(AddrVT.getFixedSizeInBits(), 10341 DataVT.getStoreSize().getKnownMinValue())); 10342 } else 10343 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 10344 10345 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 10346 } 10347 10348 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 10349 EVT VecVT, const SDLoc &dl, 10350 ElementCount SubEC) { 10351 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 10352 "Cannot index a scalable vector within a fixed-width vector"); 10353 10354 unsigned NElts = VecVT.getVectorMinNumElements(); 10355 unsigned NumSubElts = SubEC.getKnownMinValue(); 10356 EVT IdxVT = Idx.getValueType(); 10357 10358 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 10359 // If this is a constant index and we know the value plus the number of the 10360 // elements in the subvector minus one is less than the minimum number of 10361 // elements then it's safe to return Idx. 10362 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 10363 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 10364 return Idx; 10365 SDValue VS = 10366 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 10367 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 10368 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 10369 DAG.getConstant(NumSubElts, dl, IdxVT)); 10370 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 10371 } 10372 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 10373 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 10374 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 10375 DAG.getConstant(Imm, dl, IdxVT)); 10376 } 10377 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 10378 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 10379 DAG.getConstant(MaxIndex, dl, IdxVT)); 10380 } 10381 10382 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 10383 SDValue VecPtr, EVT VecVT, 10384 SDValue Index) const { 10385 return getVectorSubVecPointer( 10386 DAG, VecPtr, VecVT, 10387 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 10388 Index); 10389 } 10390 10391 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 10392 SDValue VecPtr, EVT VecVT, 10393 EVT SubVecVT, 10394 SDValue Index) const { 10395 SDLoc dl(Index); 10396 // Make sure the index type is big enough to compute in. 10397 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 10398 10399 EVT EltVT = VecVT.getVectorElementType(); 10400 10401 // Calculate the element offset and add it to the pointer. 10402 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 10403 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 10404 "Converting bits to bytes lost precision"); 10405 assert(SubVecVT.getVectorElementType() == EltVT && 10406 "Sub-vector must be a vector with matching element type"); 10407 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 10408 SubVecVT.getVectorElementCount()); 10409 10410 EVT IdxVT = Index.getValueType(); 10411 if (SubVecVT.isScalableVector()) 10412 Index = 10413 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 10414 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 10415 10416 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 10417 DAG.getConstant(EltSize, dl, IdxVT)); 10418 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 10419 } 10420 10421 //===----------------------------------------------------------------------===// 10422 // Implementation of Emulated TLS Model 10423 //===----------------------------------------------------------------------===// 10424 10425 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 10426 SelectionDAG &DAG) const { 10427 // Access to address of TLS varialbe xyz is lowered to a function call: 10428 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 10429 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10430 PointerType *VoidPtrType = PointerType::get(*DAG.getContext(), 0); 10431 SDLoc dl(GA); 10432 10433 ArgListTy Args; 10434 ArgListEntry Entry; 10435 const GlobalValue *GV = 10436 cast<GlobalValue>(GA->getGlobal()->stripPointerCastsAndAliases()); 10437 SmallString<32> NameString("__emutls_v."); 10438 NameString += GV->getName(); 10439 StringRef EmuTlsVarName(NameString); 10440 const GlobalVariable *EmuTlsVar = 10441 GV->getParent()->getNamedGlobal(EmuTlsVarName); 10442 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 10443 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 10444 Entry.Ty = VoidPtrType; 10445 Args.push_back(Entry); 10446 10447 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 10448 10449 TargetLowering::CallLoweringInfo CLI(DAG); 10450 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 10451 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 10452 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 10453 10454 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 10455 // At last for X86 targets, maybe good for other targets too? 10456 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10457 MFI.setAdjustsStack(true); // Is this only for X86 target? 10458 MFI.setHasCalls(true); 10459 10460 assert((GA->getOffset() == 0) && 10461 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 10462 return CallResult.first; 10463 } 10464 10465 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 10466 SelectionDAG &DAG) const { 10467 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 10468 if (!isCtlzFast()) 10469 return SDValue(); 10470 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 10471 SDLoc dl(Op); 10472 if (isNullConstant(Op.getOperand(1)) && CC == ISD::SETEQ) { 10473 EVT VT = Op.getOperand(0).getValueType(); 10474 SDValue Zext = Op.getOperand(0); 10475 if (VT.bitsLT(MVT::i32)) { 10476 VT = MVT::i32; 10477 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 10478 } 10479 unsigned Log2b = Log2_32(VT.getSizeInBits()); 10480 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 10481 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 10482 DAG.getConstant(Log2b, dl, MVT::i32)); 10483 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 10484 } 10485 return SDValue(); 10486 } 10487 10488 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 10489 SDValue Op0 = Node->getOperand(0); 10490 SDValue Op1 = Node->getOperand(1); 10491 EVT VT = Op0.getValueType(); 10492 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10493 unsigned Opcode = Node->getOpcode(); 10494 SDLoc DL(Node); 10495 10496 // umax(x,1) --> sub(x,cmpeq(x,0)) iff cmp result is allbits 10497 if (Opcode == ISD::UMAX && llvm::isOneOrOneSplat(Op1, true) && BoolVT == VT && 10498 getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 10499 Op0 = DAG.getFreeze(Op0); 10500 SDValue Zero = DAG.getConstant(0, DL, VT); 10501 return DAG.getNode(ISD::SUB, DL, VT, Op0, 10502 DAG.getSetCC(DL, VT, Op0, Zero, ISD::SETEQ)); 10503 } 10504 10505 // umin(x,y) -> sub(x,usubsat(x,y)) 10506 // TODO: Missing freeze(Op0)? 10507 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 10508 isOperationLegal(ISD::USUBSAT, VT)) { 10509 return DAG.getNode(ISD::SUB, DL, VT, Op0, 10510 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 10511 } 10512 10513 // umax(x,y) -> add(x,usubsat(y,x)) 10514 // TODO: Missing freeze(Op0)? 10515 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 10516 isOperationLegal(ISD::USUBSAT, VT)) { 10517 return DAG.getNode(ISD::ADD, DL, VT, Op0, 10518 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 10519 } 10520 10521 // FIXME: Should really try to split the vector in case it's legal on a 10522 // subvector. 10523 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 10524 return DAG.UnrollVectorOp(Node); 10525 10526 // Attempt to find an existing SETCC node that we can reuse. 10527 // TODO: Do we need a generic doesSETCCNodeExist? 10528 // TODO: Missing freeze(Op0)/freeze(Op1)? 10529 auto buildMinMax = [&](ISD::CondCode PrefCC, ISD::CondCode AltCC, 10530 ISD::CondCode PrefCommuteCC, 10531 ISD::CondCode AltCommuteCC) { 10532 SDVTList BoolVTList = DAG.getVTList(BoolVT); 10533 for (ISD::CondCode CC : {PrefCC, AltCC}) { 10534 if (DAG.doesNodeExist(ISD::SETCC, BoolVTList, 10535 {Op0, Op1, DAG.getCondCode(CC)})) { 10536 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 10537 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 10538 } 10539 } 10540 for (ISD::CondCode CC : {PrefCommuteCC, AltCommuteCC}) { 10541 if (DAG.doesNodeExist(ISD::SETCC, BoolVTList, 10542 {Op0, Op1, DAG.getCondCode(CC)})) { 10543 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 10544 return DAG.getSelect(DL, VT, Cond, Op1, Op0); 10545 } 10546 } 10547 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, PrefCC); 10548 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 10549 }; 10550 10551 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 10552 // -> Y = (A < B) ? B : A 10553 // -> Y = (A >= B) ? A : B 10554 // -> Y = (A <= B) ? B : A 10555 switch (Opcode) { 10556 case ISD::SMAX: 10557 return buildMinMax(ISD::SETGT, ISD::SETGE, ISD::SETLT, ISD::SETLE); 10558 case ISD::SMIN: 10559 return buildMinMax(ISD::SETLT, ISD::SETLE, ISD::SETGT, ISD::SETGE); 10560 case ISD::UMAX: 10561 return buildMinMax(ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE); 10562 case ISD::UMIN: 10563 return buildMinMax(ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE); 10564 } 10565 10566 llvm_unreachable("How did we get here?"); 10567 } 10568 10569 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 10570 unsigned Opcode = Node->getOpcode(); 10571 SDValue LHS = Node->getOperand(0); 10572 SDValue RHS = Node->getOperand(1); 10573 EVT VT = LHS.getValueType(); 10574 SDLoc dl(Node); 10575 10576 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 10577 assert(VT.isInteger() && "Expected operands to be integers"); 10578 10579 // usub.sat(a, b) -> umax(a, b) - b 10580 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 10581 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 10582 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 10583 } 10584 10585 // uadd.sat(a, b) -> umin(a, ~b) + b 10586 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 10587 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 10588 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 10589 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 10590 } 10591 10592 unsigned OverflowOp; 10593 switch (Opcode) { 10594 case ISD::SADDSAT: 10595 OverflowOp = ISD::SADDO; 10596 break; 10597 case ISD::UADDSAT: 10598 OverflowOp = ISD::UADDO; 10599 break; 10600 case ISD::SSUBSAT: 10601 OverflowOp = ISD::SSUBO; 10602 break; 10603 case ISD::USUBSAT: 10604 OverflowOp = ISD::USUBO; 10605 break; 10606 default: 10607 llvm_unreachable("Expected method to receive signed or unsigned saturation " 10608 "addition or subtraction node."); 10609 } 10610 10611 // FIXME: Should really try to split the vector in case it's legal on a 10612 // subvector. 10613 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 10614 return DAG.UnrollVectorOp(Node); 10615 10616 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 10617 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10618 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 10619 SDValue SumDiff = Result.getValue(0); 10620 SDValue Overflow = Result.getValue(1); 10621 SDValue Zero = DAG.getConstant(0, dl, VT); 10622 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 10623 10624 if (Opcode == ISD::UADDSAT) { 10625 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 10626 // (LHS + RHS) | OverflowMask 10627 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 10628 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 10629 } 10630 // Overflow ? 0xffff.... : (LHS + RHS) 10631 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 10632 } 10633 10634 if (Opcode == ISD::USUBSAT) { 10635 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 10636 // (LHS - RHS) & ~OverflowMask 10637 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 10638 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 10639 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 10640 } 10641 // Overflow ? 0 : (LHS - RHS) 10642 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 10643 } 10644 10645 if (Opcode == ISD::SADDSAT || Opcode == ISD::SSUBSAT) { 10646 APInt MinVal = APInt::getSignedMinValue(BitWidth); 10647 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 10648 10649 KnownBits KnownLHS = DAG.computeKnownBits(LHS); 10650 KnownBits KnownRHS = DAG.computeKnownBits(RHS); 10651 10652 // If either of the operand signs are known, then they are guaranteed to 10653 // only saturate in one direction. If non-negative they will saturate 10654 // towards SIGNED_MAX, if negative they will saturate towards SIGNED_MIN. 10655 // 10656 // In the case of ISD::SSUBSAT, 'x - y' is equivalent to 'x + (-y)', so the 10657 // sign of 'y' has to be flipped. 10658 10659 bool LHSIsNonNegative = KnownLHS.isNonNegative(); 10660 bool RHSIsNonNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNonNegative() 10661 : KnownRHS.isNegative(); 10662 if (LHSIsNonNegative || RHSIsNonNegative) { 10663 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 10664 return DAG.getSelect(dl, VT, Overflow, SatMax, SumDiff); 10665 } 10666 10667 bool LHSIsNegative = KnownLHS.isNegative(); 10668 bool RHSIsNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNegative() 10669 : KnownRHS.isNonNegative(); 10670 if (LHSIsNegative || RHSIsNegative) { 10671 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 10672 return DAG.getSelect(dl, VT, Overflow, SatMin, SumDiff); 10673 } 10674 } 10675 10676 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 10677 APInt MinVal = APInt::getSignedMinValue(BitWidth); 10678 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 10679 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 10680 DAG.getConstant(BitWidth - 1, dl, VT)); 10681 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 10682 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 10683 } 10684 10685 SDValue TargetLowering::expandCMP(SDNode *Node, SelectionDAG &DAG) const { 10686 unsigned Opcode = Node->getOpcode(); 10687 SDValue LHS = Node->getOperand(0); 10688 SDValue RHS = Node->getOperand(1); 10689 EVT VT = LHS.getValueType(); 10690 EVT ResVT = Node->getValueType(0); 10691 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10692 SDLoc dl(Node); 10693 10694 auto LTPredicate = (Opcode == ISD::UCMP ? ISD::SETULT : ISD::SETLT); 10695 auto GTPredicate = (Opcode == ISD::UCMP ? ISD::SETUGT : ISD::SETGT); 10696 SDValue IsLT = DAG.getSetCC(dl, BoolVT, LHS, RHS, LTPredicate); 10697 SDValue IsGT = DAG.getSetCC(dl, BoolVT, LHS, RHS, GTPredicate); 10698 10699 // We can't perform arithmetic on i1 values. Extending them would 10700 // probably result in worse codegen, so let's just use two selects instead. 10701 // Some targets are also just better off using selects rather than subtraction 10702 // because one of the conditions can be merged with one of the selects. 10703 // And finally, if we don't know the contents of high bits of a boolean value 10704 // we can't perform any arithmetic either. 10705 if (shouldExpandCmpUsingSelects(VT) || BoolVT.getScalarSizeInBits() == 1 || 10706 getBooleanContents(BoolVT) == UndefinedBooleanContent) { 10707 SDValue SelectZeroOrOne = 10708 DAG.getSelect(dl, ResVT, IsGT, DAG.getConstant(1, dl, ResVT), 10709 DAG.getConstant(0, dl, ResVT)); 10710 return DAG.getSelect(dl, ResVT, IsLT, DAG.getAllOnesConstant(dl, ResVT), 10711 SelectZeroOrOne); 10712 } 10713 10714 if (getBooleanContents(BoolVT) == ZeroOrNegativeOneBooleanContent) 10715 std::swap(IsGT, IsLT); 10716 return DAG.getSExtOrTrunc(DAG.getNode(ISD::SUB, dl, BoolVT, IsGT, IsLT), dl, 10717 ResVT); 10718 } 10719 10720 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 10721 unsigned Opcode = Node->getOpcode(); 10722 bool IsSigned = Opcode == ISD::SSHLSAT; 10723 SDValue LHS = Node->getOperand(0); 10724 SDValue RHS = Node->getOperand(1); 10725 EVT VT = LHS.getValueType(); 10726 SDLoc dl(Node); 10727 10728 assert((Node->getOpcode() == ISD::SSHLSAT || 10729 Node->getOpcode() == ISD::USHLSAT) && 10730 "Expected a SHLSAT opcode"); 10731 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 10732 assert(VT.isInteger() && "Expected operands to be integers"); 10733 10734 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 10735 return DAG.UnrollVectorOp(Node); 10736 10737 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 10738 10739 unsigned BW = VT.getScalarSizeInBits(); 10740 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10741 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 10742 SDValue Orig = 10743 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 10744 10745 SDValue SatVal; 10746 if (IsSigned) { 10747 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 10748 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 10749 SDValue Cond = 10750 DAG.getSetCC(dl, BoolVT, LHS, DAG.getConstant(0, dl, VT), ISD::SETLT); 10751 SatVal = DAG.getSelect(dl, VT, Cond, SatMin, SatMax); 10752 } else { 10753 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 10754 } 10755 SDValue Cond = DAG.getSetCC(dl, BoolVT, LHS, Orig, ISD::SETNE); 10756 return DAG.getSelect(dl, VT, Cond, SatVal, Result); 10757 } 10758 10759 void TargetLowering::forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, 10760 bool Signed, EVT WideVT, 10761 const SDValue LL, const SDValue LH, 10762 const SDValue RL, const SDValue RH, 10763 SDValue &Lo, SDValue &Hi) const { 10764 // We can fall back to a libcall with an illegal type for the MUL if we 10765 // have a libcall big enough. 10766 // Also, we can fall back to a division in some cases, but that's a big 10767 // performance hit in the general case. 10768 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 10769 if (WideVT == MVT::i16) 10770 LC = RTLIB::MUL_I16; 10771 else if (WideVT == MVT::i32) 10772 LC = RTLIB::MUL_I32; 10773 else if (WideVT == MVT::i64) 10774 LC = RTLIB::MUL_I64; 10775 else if (WideVT == MVT::i128) 10776 LC = RTLIB::MUL_I128; 10777 10778 if (LC == RTLIB::UNKNOWN_LIBCALL || !getLibcallName(LC)) { 10779 // We'll expand the multiplication by brute force because we have no other 10780 // options. This is a trivially-generalized version of the code from 10781 // Hacker's Delight (itself derived from Knuth's Algorithm M from section 10782 // 4.3.1). 10783 EVT VT = LL.getValueType(); 10784 unsigned Bits = VT.getSizeInBits(); 10785 unsigned HalfBits = Bits >> 1; 10786 SDValue Mask = 10787 DAG.getConstant(APInt::getLowBitsSet(Bits, HalfBits), dl, VT); 10788 SDValue LLL = DAG.getNode(ISD::AND, dl, VT, LL, Mask); 10789 SDValue RLL = DAG.getNode(ISD::AND, dl, VT, RL, Mask); 10790 10791 SDValue T = DAG.getNode(ISD::MUL, dl, VT, LLL, RLL); 10792 SDValue TL = DAG.getNode(ISD::AND, dl, VT, T, Mask); 10793 10794 SDValue Shift = DAG.getShiftAmountConstant(HalfBits, VT, dl); 10795 SDValue TH = DAG.getNode(ISD::SRL, dl, VT, T, Shift); 10796 SDValue LLH = DAG.getNode(ISD::SRL, dl, VT, LL, Shift); 10797 SDValue RLH = DAG.getNode(ISD::SRL, dl, VT, RL, Shift); 10798 10799 SDValue U = DAG.getNode(ISD::ADD, dl, VT, 10800 DAG.getNode(ISD::MUL, dl, VT, LLH, RLL), TH); 10801 SDValue UL = DAG.getNode(ISD::AND, dl, VT, U, Mask); 10802 SDValue UH = DAG.getNode(ISD::SRL, dl, VT, U, Shift); 10803 10804 SDValue V = DAG.getNode(ISD::ADD, dl, VT, 10805 DAG.getNode(ISD::MUL, dl, VT, LLL, RLH), UL); 10806 SDValue VH = DAG.getNode(ISD::SRL, dl, VT, V, Shift); 10807 10808 SDValue W = 10809 DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::MUL, dl, VT, LLH, RLH), 10810 DAG.getNode(ISD::ADD, dl, VT, UH, VH)); 10811 Lo = DAG.getNode(ISD::ADD, dl, VT, TL, 10812 DAG.getNode(ISD::SHL, dl, VT, V, Shift)); 10813 10814 Hi = DAG.getNode(ISD::ADD, dl, VT, W, 10815 DAG.getNode(ISD::ADD, dl, VT, 10816 DAG.getNode(ISD::MUL, dl, VT, RH, LL), 10817 DAG.getNode(ISD::MUL, dl, VT, RL, LH))); 10818 } else { 10819 // Attempt a libcall. 10820 SDValue Ret; 10821 TargetLowering::MakeLibCallOptions CallOptions; 10822 CallOptions.setSExt(Signed); 10823 CallOptions.setIsPostTypeLegalization(true); 10824 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 10825 // Halves of WideVT are packed into registers in different order 10826 // depending on platform endianness. This is usually handled by 10827 // the C calling convention, but we can't defer to it in 10828 // the legalizer. 10829 SDValue Args[] = {LL, LH, RL, RH}; 10830 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 10831 } else { 10832 SDValue Args[] = {LH, LL, RH, RL}; 10833 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 10834 } 10835 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 10836 "Ret value is a collection of constituent nodes holding result."); 10837 if (DAG.getDataLayout().isLittleEndian()) { 10838 // Same as above. 10839 Lo = Ret.getOperand(0); 10840 Hi = Ret.getOperand(1); 10841 } else { 10842 Lo = Ret.getOperand(1); 10843 Hi = Ret.getOperand(0); 10844 } 10845 } 10846 } 10847 10848 void TargetLowering::forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, 10849 bool Signed, const SDValue LHS, 10850 const SDValue RHS, SDValue &Lo, 10851 SDValue &Hi) const { 10852 EVT VT = LHS.getValueType(); 10853 assert(RHS.getValueType() == VT && "Mismatching operand types"); 10854 10855 SDValue HiLHS; 10856 SDValue HiRHS; 10857 if (Signed) { 10858 // The high part is obtained by SRA'ing all but one of the bits of low 10859 // part. 10860 unsigned LoSize = VT.getFixedSizeInBits(); 10861 HiLHS = DAG.getNode( 10862 ISD::SRA, dl, VT, LHS, 10863 DAG.getConstant(LoSize - 1, dl, getPointerTy(DAG.getDataLayout()))); 10864 HiRHS = DAG.getNode( 10865 ISD::SRA, dl, VT, RHS, 10866 DAG.getConstant(LoSize - 1, dl, getPointerTy(DAG.getDataLayout()))); 10867 } else { 10868 HiLHS = DAG.getConstant(0, dl, VT); 10869 HiRHS = DAG.getConstant(0, dl, VT); 10870 } 10871 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); 10872 forceExpandWideMUL(DAG, dl, Signed, WideVT, LHS, HiLHS, RHS, HiRHS, Lo, Hi); 10873 } 10874 10875 SDValue 10876 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 10877 assert((Node->getOpcode() == ISD::SMULFIX || 10878 Node->getOpcode() == ISD::UMULFIX || 10879 Node->getOpcode() == ISD::SMULFIXSAT || 10880 Node->getOpcode() == ISD::UMULFIXSAT) && 10881 "Expected a fixed point multiplication opcode"); 10882 10883 SDLoc dl(Node); 10884 SDValue LHS = Node->getOperand(0); 10885 SDValue RHS = Node->getOperand(1); 10886 EVT VT = LHS.getValueType(); 10887 unsigned Scale = Node->getConstantOperandVal(2); 10888 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 10889 Node->getOpcode() == ISD::UMULFIXSAT); 10890 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 10891 Node->getOpcode() == ISD::SMULFIXSAT); 10892 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10893 unsigned VTSize = VT.getScalarSizeInBits(); 10894 10895 if (!Scale) { 10896 // [us]mul.fix(a, b, 0) -> mul(a, b) 10897 if (!Saturating) { 10898 if (isOperationLegalOrCustom(ISD::MUL, VT)) 10899 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 10900 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 10901 SDValue Result = 10902 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 10903 SDValue Product = Result.getValue(0); 10904 SDValue Overflow = Result.getValue(1); 10905 SDValue Zero = DAG.getConstant(0, dl, VT); 10906 10907 APInt MinVal = APInt::getSignedMinValue(VTSize); 10908 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 10909 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 10910 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 10911 // Xor the inputs, if resulting sign bit is 0 the product will be 10912 // positive, else negative. 10913 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 10914 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 10915 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 10916 return DAG.getSelect(dl, VT, Overflow, Result, Product); 10917 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 10918 SDValue Result = 10919 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 10920 SDValue Product = Result.getValue(0); 10921 SDValue Overflow = Result.getValue(1); 10922 10923 APInt MaxVal = APInt::getMaxValue(VTSize); 10924 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 10925 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 10926 } 10927 } 10928 10929 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 10930 "Expected scale to be less than the number of bits if signed or at " 10931 "most the number of bits if unsigned."); 10932 assert(LHS.getValueType() == RHS.getValueType() && 10933 "Expected both operands to be the same type"); 10934 10935 // Get the upper and lower bits of the result. 10936 SDValue Lo, Hi; 10937 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 10938 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 10939 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VTSize * 2); 10940 if (VT.isVector()) 10941 WideVT = 10942 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 10943 if (isOperationLegalOrCustom(LoHiOp, VT)) { 10944 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 10945 Lo = Result.getValue(0); 10946 Hi = Result.getValue(1); 10947 } else if (isOperationLegalOrCustom(HiOp, VT)) { 10948 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 10949 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 10950 } else if (isOperationLegalOrCustom(ISD::MUL, WideVT)) { 10951 // Try for a multiplication using a wider type. 10952 unsigned Ext = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 10953 SDValue LHSExt = DAG.getNode(Ext, dl, WideVT, LHS); 10954 SDValue RHSExt = DAG.getNode(Ext, dl, WideVT, RHS); 10955 SDValue Res = DAG.getNode(ISD::MUL, dl, WideVT, LHSExt, RHSExt); 10956 Lo = DAG.getNode(ISD::TRUNCATE, dl, VT, Res); 10957 SDValue Shifted = 10958 DAG.getNode(ISD::SRA, dl, WideVT, Res, 10959 DAG.getShiftAmountConstant(VTSize, WideVT, dl)); 10960 Hi = DAG.getNode(ISD::TRUNCATE, dl, VT, Shifted); 10961 } else if (VT.isVector()) { 10962 return SDValue(); 10963 } else { 10964 forceExpandWideMUL(DAG, dl, Signed, LHS, RHS, Lo, Hi); 10965 } 10966 10967 if (Scale == VTSize) 10968 // Result is just the top half since we'd be shifting by the width of the 10969 // operand. Overflow impossible so this works for both UMULFIX and 10970 // UMULFIXSAT. 10971 return Hi; 10972 10973 // The result will need to be shifted right by the scale since both operands 10974 // are scaled. The result is given to us in 2 halves, so we only want part of 10975 // both in the result. 10976 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 10977 DAG.getShiftAmountConstant(Scale, VT, dl)); 10978 if (!Saturating) 10979 return Result; 10980 10981 if (!Signed) { 10982 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 10983 // widened multiplication) aren't all zeroes. 10984 10985 // Saturate to max if ((Hi >> Scale) != 0), 10986 // which is the same as if (Hi > ((1 << Scale) - 1)) 10987 APInt MaxVal = APInt::getMaxValue(VTSize); 10988 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 10989 dl, VT); 10990 Result = DAG.getSelectCC(dl, Hi, LowMask, 10991 DAG.getConstant(MaxVal, dl, VT), Result, 10992 ISD::SETUGT); 10993 10994 return Result; 10995 } 10996 10997 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 10998 // widened multiplication) aren't all ones or all zeroes. 10999 11000 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 11001 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 11002 11003 if (Scale == 0) { 11004 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 11005 DAG.getShiftAmountConstant(VTSize - 1, VT, dl)); 11006 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 11007 // Saturated to SatMin if wide product is negative, and SatMax if wide 11008 // product is positive ... 11009 SDValue Zero = DAG.getConstant(0, dl, VT); 11010 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 11011 ISD::SETLT); 11012 // ... but only if we overflowed. 11013 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 11014 } 11015 11016 // We handled Scale==0 above so all the bits to examine is in Hi. 11017 11018 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 11019 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 11020 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 11021 dl, VT); 11022 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 11023 // Saturate to min if (Hi >> (Scale - 1)) < -1), 11024 // which is the same as if (HI < (-1 << (Scale - 1)) 11025 SDValue HighMask = 11026 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 11027 dl, VT); 11028 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 11029 return Result; 11030 } 11031 11032 SDValue 11033 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 11034 SDValue LHS, SDValue RHS, 11035 unsigned Scale, SelectionDAG &DAG) const { 11036 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 11037 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 11038 "Expected a fixed point division opcode"); 11039 11040 EVT VT = LHS.getValueType(); 11041 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 11042 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 11043 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 11044 11045 // If there is enough room in the type to upscale the LHS or downscale the 11046 // RHS before the division, we can perform it in this type without having to 11047 // resize. For signed operations, the LHS headroom is the number of 11048 // redundant sign bits, and for unsigned ones it is the number of zeroes. 11049 // The headroom for the RHS is the number of trailing zeroes. 11050 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 11051 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 11052 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 11053 11054 // For signed saturating operations, we need to be able to detect true integer 11055 // division overflow; that is, when you have MIN / -EPS. However, this 11056 // is undefined behavior and if we emit divisions that could take such 11057 // values it may cause undesired behavior (arithmetic exceptions on x86, for 11058 // example). 11059 // Avoid this by requiring an extra bit so that we never get this case. 11060 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 11061 // signed saturating division, we need to emit a whopping 32-bit division. 11062 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 11063 return SDValue(); 11064 11065 unsigned LHSShift = std::min(LHSLead, Scale); 11066 unsigned RHSShift = Scale - LHSShift; 11067 11068 // At this point, we know that if we shift the LHS up by LHSShift and the 11069 // RHS down by RHSShift, we can emit a regular division with a final scaling 11070 // factor of Scale. 11071 11072 if (LHSShift) 11073 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 11074 DAG.getShiftAmountConstant(LHSShift, VT, dl)); 11075 if (RHSShift) 11076 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 11077 DAG.getShiftAmountConstant(RHSShift, VT, dl)); 11078 11079 SDValue Quot; 11080 if (Signed) { 11081 // For signed operations, if the resulting quotient is negative and the 11082 // remainder is nonzero, subtract 1 from the quotient to round towards 11083 // negative infinity. 11084 SDValue Rem; 11085 // FIXME: Ideally we would always produce an SDIVREM here, but if the 11086 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 11087 // we couldn't just form a libcall, but the type legalizer doesn't do it. 11088 if (isTypeLegal(VT) && 11089 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 11090 Quot = DAG.getNode(ISD::SDIVREM, dl, 11091 DAG.getVTList(VT, VT), 11092 LHS, RHS); 11093 Rem = Quot.getValue(1); 11094 Quot = Quot.getValue(0); 11095 } else { 11096 Quot = DAG.getNode(ISD::SDIV, dl, VT, 11097 LHS, RHS); 11098 Rem = DAG.getNode(ISD::SREM, dl, VT, 11099 LHS, RHS); 11100 } 11101 SDValue Zero = DAG.getConstant(0, dl, VT); 11102 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 11103 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 11104 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 11105 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 11106 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 11107 DAG.getConstant(1, dl, VT)); 11108 Quot = DAG.getSelect(dl, VT, 11109 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 11110 Sub1, Quot); 11111 } else 11112 Quot = DAG.getNode(ISD::UDIV, dl, VT, 11113 LHS, RHS); 11114 11115 return Quot; 11116 } 11117 11118 void TargetLowering::expandUADDSUBO( 11119 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 11120 SDLoc dl(Node); 11121 SDValue LHS = Node->getOperand(0); 11122 SDValue RHS = Node->getOperand(1); 11123 bool IsAdd = Node->getOpcode() == ISD::UADDO; 11124 11125 // If UADDO_CARRY/SUBO_CARRY is legal, use that instead. 11126 unsigned OpcCarry = IsAdd ? ISD::UADDO_CARRY : ISD::USUBO_CARRY; 11127 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 11128 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 11129 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 11130 { LHS, RHS, CarryIn }); 11131 Result = SDValue(NodeCarry.getNode(), 0); 11132 Overflow = SDValue(NodeCarry.getNode(), 1); 11133 return; 11134 } 11135 11136 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 11137 LHS.getValueType(), LHS, RHS); 11138 11139 EVT ResultType = Node->getValueType(1); 11140 EVT SetCCType = getSetCCResultType( 11141 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 11142 SDValue SetCC; 11143 if (IsAdd && isOneConstant(RHS)) { 11144 // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces 11145 // the live range of X. We assume comparing with 0 is cheap. 11146 // The general case (X + C) < C is not necessarily beneficial. Although we 11147 // reduce the live range of X, we may introduce the materialization of 11148 // constant C. 11149 SetCC = 11150 DAG.getSetCC(dl, SetCCType, Result, 11151 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ); 11152 } else if (IsAdd && isAllOnesConstant(RHS)) { 11153 // Special case: uaddo X, -1 overflows if X != 0. 11154 SetCC = 11155 DAG.getSetCC(dl, SetCCType, LHS, 11156 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETNE); 11157 } else { 11158 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 11159 SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 11160 } 11161 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 11162 } 11163 11164 void TargetLowering::expandSADDSUBO( 11165 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 11166 SDLoc dl(Node); 11167 SDValue LHS = Node->getOperand(0); 11168 SDValue RHS = Node->getOperand(1); 11169 bool IsAdd = Node->getOpcode() == ISD::SADDO; 11170 11171 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 11172 LHS.getValueType(), LHS, RHS); 11173 11174 EVT ResultType = Node->getValueType(1); 11175 EVT OType = getSetCCResultType( 11176 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 11177 11178 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 11179 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 11180 if (isOperationLegal(OpcSat, LHS.getValueType())) { 11181 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 11182 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 11183 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 11184 return; 11185 } 11186 11187 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 11188 11189 // For an addition, the result should be less than one of the operands (LHS) 11190 // if and only if the other operand (RHS) is negative, otherwise there will 11191 // be overflow. 11192 // For a subtraction, the result should be less than one of the operands 11193 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 11194 // otherwise there will be overflow. 11195 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 11196 SDValue ConditionRHS = 11197 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 11198 11199 Overflow = DAG.getBoolExtOrTrunc( 11200 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 11201 ResultType, ResultType); 11202 } 11203 11204 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 11205 SDValue &Overflow, SelectionDAG &DAG) const { 11206 SDLoc dl(Node); 11207 EVT VT = Node->getValueType(0); 11208 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 11209 SDValue LHS = Node->getOperand(0); 11210 SDValue RHS = Node->getOperand(1); 11211 bool isSigned = Node->getOpcode() == ISD::SMULO; 11212 11213 // For power-of-two multiplications we can use a simpler shift expansion. 11214 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 11215 const APInt &C = RHSC->getAPIntValue(); 11216 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 11217 if (C.isPowerOf2()) { 11218 // smulo(x, signed_min) is same as umulo(x, signed_min). 11219 bool UseArithShift = isSigned && !C.isMinSignedValue(); 11220 SDValue ShiftAmt = DAG.getShiftAmountConstant(C.logBase2(), VT, dl); 11221 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 11222 Overflow = DAG.getSetCC(dl, SetCCVT, 11223 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 11224 dl, VT, Result, ShiftAmt), 11225 LHS, ISD::SETNE); 11226 return true; 11227 } 11228 } 11229 11230 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 11231 if (VT.isVector()) 11232 WideVT = 11233 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 11234 11235 SDValue BottomHalf; 11236 SDValue TopHalf; 11237 static const unsigned Ops[2][3] = 11238 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 11239 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 11240 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 11241 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 11242 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 11243 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 11244 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 11245 RHS); 11246 TopHalf = BottomHalf.getValue(1); 11247 } else if (isTypeLegal(WideVT)) { 11248 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 11249 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 11250 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 11251 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 11252 SDValue ShiftAmt = 11253 DAG.getShiftAmountConstant(VT.getScalarSizeInBits(), WideVT, dl); 11254 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 11255 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 11256 } else { 11257 if (VT.isVector()) 11258 return false; 11259 11260 forceExpandWideMUL(DAG, dl, isSigned, LHS, RHS, BottomHalf, TopHalf); 11261 } 11262 11263 Result = BottomHalf; 11264 if (isSigned) { 11265 SDValue ShiftAmt = DAG.getShiftAmountConstant( 11266 VT.getScalarSizeInBits() - 1, BottomHalf.getValueType(), dl); 11267 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 11268 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 11269 } else { 11270 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 11271 DAG.getConstant(0, dl, VT), ISD::SETNE); 11272 } 11273 11274 // Truncate the result if SetCC returns a larger type than needed. 11275 EVT RType = Node->getValueType(1); 11276 if (RType.bitsLT(Overflow.getValueType())) 11277 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 11278 11279 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 11280 "Unexpected result type for S/UMULO legalization"); 11281 return true; 11282 } 11283 11284 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 11285 SDLoc dl(Node); 11286 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 11287 SDValue Op = Node->getOperand(0); 11288 EVT VT = Op.getValueType(); 11289 11290 if (VT.isScalableVector()) 11291 report_fatal_error( 11292 "Expanding reductions for scalable vectors is undefined."); 11293 11294 // Try to use a shuffle reduction for power of two vectors. 11295 if (VT.isPow2VectorType()) { 11296 while (VT.getVectorNumElements() > 1) { 11297 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 11298 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 11299 break; 11300 11301 SDValue Lo, Hi; 11302 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 11303 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi, Node->getFlags()); 11304 VT = HalfVT; 11305 } 11306 } 11307 11308 EVT EltVT = VT.getVectorElementType(); 11309 unsigned NumElts = VT.getVectorNumElements(); 11310 11311 SmallVector<SDValue, 8> Ops; 11312 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 11313 11314 SDValue Res = Ops[0]; 11315 for (unsigned i = 1; i < NumElts; i++) 11316 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 11317 11318 // Result type may be wider than element type. 11319 if (EltVT != Node->getValueType(0)) 11320 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 11321 return Res; 11322 } 11323 11324 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 11325 SDLoc dl(Node); 11326 SDValue AccOp = Node->getOperand(0); 11327 SDValue VecOp = Node->getOperand(1); 11328 SDNodeFlags Flags = Node->getFlags(); 11329 11330 EVT VT = VecOp.getValueType(); 11331 EVT EltVT = VT.getVectorElementType(); 11332 11333 if (VT.isScalableVector()) 11334 report_fatal_error( 11335 "Expanding reductions for scalable vectors is undefined."); 11336 11337 unsigned NumElts = VT.getVectorNumElements(); 11338 11339 SmallVector<SDValue, 8> Ops; 11340 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 11341 11342 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 11343 11344 SDValue Res = AccOp; 11345 for (unsigned i = 0; i < NumElts; i++) 11346 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 11347 11348 return Res; 11349 } 11350 11351 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 11352 SelectionDAG &DAG) const { 11353 EVT VT = Node->getValueType(0); 11354 SDLoc dl(Node); 11355 bool isSigned = Node->getOpcode() == ISD::SREM; 11356 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 11357 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 11358 SDValue Dividend = Node->getOperand(0); 11359 SDValue Divisor = Node->getOperand(1); 11360 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 11361 SDVTList VTs = DAG.getVTList(VT, VT); 11362 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 11363 return true; 11364 } 11365 if (isOperationLegalOrCustom(DivOpc, VT)) { 11366 // X % Y -> X-X/Y*Y 11367 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 11368 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 11369 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 11370 return true; 11371 } 11372 return false; 11373 } 11374 11375 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 11376 SelectionDAG &DAG) const { 11377 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 11378 SDLoc dl(SDValue(Node, 0)); 11379 SDValue Src = Node->getOperand(0); 11380 11381 // DstVT is the result type, while SatVT is the size to which we saturate 11382 EVT SrcVT = Src.getValueType(); 11383 EVT DstVT = Node->getValueType(0); 11384 11385 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 11386 unsigned SatWidth = SatVT.getScalarSizeInBits(); 11387 unsigned DstWidth = DstVT.getScalarSizeInBits(); 11388 assert(SatWidth <= DstWidth && 11389 "Expected saturation width smaller than result width"); 11390 11391 // Determine minimum and maximum integer values and their corresponding 11392 // floating-point values. 11393 APInt MinInt, MaxInt; 11394 if (IsSigned) { 11395 MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth); 11396 MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth); 11397 } else { 11398 MinInt = APInt::getMinValue(SatWidth).zext(DstWidth); 11399 MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth); 11400 } 11401 11402 // We cannot risk emitting FP_TO_XINT nodes with a source VT of [b]f16, as 11403 // libcall emission cannot handle this. Large result types will fail. 11404 if (SrcVT == MVT::f16 || SrcVT == MVT::bf16) { 11405 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 11406 SrcVT = Src.getValueType(); 11407 } 11408 11409 const fltSemantics &Sem = SrcVT.getFltSemantics(); 11410 APFloat MinFloat(Sem); 11411 APFloat MaxFloat(Sem); 11412 11413 APFloat::opStatus MinStatus = 11414 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 11415 APFloat::opStatus MaxStatus = 11416 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 11417 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 11418 !(MaxStatus & APFloat::opStatus::opInexact); 11419 11420 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 11421 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 11422 11423 // If the integer bounds are exactly representable as floats and min/max are 11424 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 11425 // of comparisons and selects. 11426 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 11427 isOperationLegal(ISD::FMAXNUM, SrcVT); 11428 if (AreExactFloatBounds && MinMaxLegal) { 11429 SDValue Clamped = Src; 11430 11431 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 11432 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 11433 // Clamp by MaxFloat from above. NaN cannot occur. 11434 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 11435 // Convert clamped value to integer. 11436 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 11437 dl, DstVT, Clamped); 11438 11439 // In the unsigned case we're done, because we mapped NaN to MinFloat, 11440 // which will cast to zero. 11441 if (!IsSigned) 11442 return FpToInt; 11443 11444 // Otherwise, select 0 if Src is NaN. 11445 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 11446 EVT SetCCVT = 11447 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 11448 SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO); 11449 return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, FpToInt); 11450 } 11451 11452 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 11453 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 11454 11455 // Result of direct conversion. The assumption here is that the operation is 11456 // non-trapping and it's fine to apply it to an out-of-range value if we 11457 // select it away later. 11458 SDValue FpToInt = 11459 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 11460 11461 SDValue Select = FpToInt; 11462 11463 EVT SetCCVT = 11464 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 11465 11466 // If Src ULT MinFloat, select MinInt. In particular, this also selects 11467 // MinInt if Src is NaN. 11468 SDValue ULT = DAG.getSetCC(dl, SetCCVT, Src, MinFloatNode, ISD::SETULT); 11469 Select = DAG.getSelect(dl, DstVT, ULT, MinIntNode, Select); 11470 // If Src OGT MaxFloat, select MaxInt. 11471 SDValue OGT = DAG.getSetCC(dl, SetCCVT, Src, MaxFloatNode, ISD::SETOGT); 11472 Select = DAG.getSelect(dl, DstVT, OGT, MaxIntNode, Select); 11473 11474 // In the unsigned case we are done, because we mapped NaN to MinInt, which 11475 // is already zero. 11476 if (!IsSigned) 11477 return Select; 11478 11479 // Otherwise, select 0 if Src is NaN. 11480 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 11481 SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO); 11482 return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, Select); 11483 } 11484 11485 SDValue TargetLowering::expandRoundInexactToOdd(EVT ResultVT, SDValue Op, 11486 const SDLoc &dl, 11487 SelectionDAG &DAG) const { 11488 EVT OperandVT = Op.getValueType(); 11489 if (OperandVT.getScalarType() == ResultVT.getScalarType()) 11490 return Op; 11491 EVT ResultIntVT = ResultVT.changeTypeToInteger(); 11492 // We are rounding binary64/binary128 -> binary32 -> bfloat16. This 11493 // can induce double-rounding which may alter the results. We can 11494 // correct for this using a trick explained in: Boldo, Sylvie, and 11495 // Guillaume Melquiond. "When double rounding is odd." 17th IMACS 11496 // World Congress. 2005. 11497 unsigned BitSize = OperandVT.getScalarSizeInBits(); 11498 EVT WideIntVT = OperandVT.changeTypeToInteger(); 11499 SDValue OpAsInt = DAG.getBitcast(WideIntVT, Op); 11500 SDValue SignBit = 11501 DAG.getNode(ISD::AND, dl, WideIntVT, OpAsInt, 11502 DAG.getConstant(APInt::getSignMask(BitSize), dl, WideIntVT)); 11503 SDValue AbsWide; 11504 if (isOperationLegalOrCustom(ISD::FABS, OperandVT)) { 11505 AbsWide = DAG.getNode(ISD::FABS, dl, OperandVT, Op); 11506 } else { 11507 SDValue ClearedSign = DAG.getNode( 11508 ISD::AND, dl, WideIntVT, OpAsInt, 11509 DAG.getConstant(APInt::getSignedMaxValue(BitSize), dl, WideIntVT)); 11510 AbsWide = DAG.getBitcast(OperandVT, ClearedSign); 11511 } 11512 SDValue AbsNarrow = DAG.getFPExtendOrRound(AbsWide, dl, ResultVT); 11513 SDValue AbsNarrowAsWide = DAG.getFPExtendOrRound(AbsNarrow, dl, OperandVT); 11514 11515 // We can keep the narrow value as-is if narrowing was exact (no 11516 // rounding error), the wide value was NaN (the narrow value is also 11517 // NaN and should be preserved) or if we rounded to the odd value. 11518 SDValue NarrowBits = DAG.getNode(ISD::BITCAST, dl, ResultIntVT, AbsNarrow); 11519 SDValue One = DAG.getConstant(1, dl, ResultIntVT); 11520 SDValue NegativeOne = DAG.getAllOnesConstant(dl, ResultIntVT); 11521 SDValue And = DAG.getNode(ISD::AND, dl, ResultIntVT, NarrowBits, One); 11522 EVT ResultIntVTCCVT = getSetCCResultType( 11523 DAG.getDataLayout(), *DAG.getContext(), And.getValueType()); 11524 SDValue Zero = DAG.getConstant(0, dl, ResultIntVT); 11525 // The result is already odd so we don't need to do anything. 11526 SDValue AlreadyOdd = DAG.getSetCC(dl, ResultIntVTCCVT, And, Zero, ISD::SETNE); 11527 11528 EVT WideSetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 11529 AbsWide.getValueType()); 11530 // We keep results which are exact, odd or NaN. 11531 SDValue KeepNarrow = 11532 DAG.getSetCC(dl, WideSetCCVT, AbsWide, AbsNarrowAsWide, ISD::SETUEQ); 11533 KeepNarrow = DAG.getNode(ISD::OR, dl, WideSetCCVT, KeepNarrow, AlreadyOdd); 11534 // We morally performed a round-down if AbsNarrow is smaller than 11535 // AbsWide. 11536 SDValue NarrowIsRd = 11537 DAG.getSetCC(dl, WideSetCCVT, AbsWide, AbsNarrowAsWide, ISD::SETOGT); 11538 // If the narrow value is odd or exact, pick it. 11539 // Otherwise, narrow is even and corresponds to either the rounded-up 11540 // or rounded-down value. If narrow is the rounded-down value, we want 11541 // the rounded-up value as it will be odd. 11542 SDValue Adjust = DAG.getSelect(dl, ResultIntVT, NarrowIsRd, One, NegativeOne); 11543 SDValue Adjusted = DAG.getNode(ISD::ADD, dl, ResultIntVT, NarrowBits, Adjust); 11544 Op = DAG.getSelect(dl, ResultIntVT, KeepNarrow, NarrowBits, Adjusted); 11545 int ShiftAmount = BitSize - ResultVT.getScalarSizeInBits(); 11546 SDValue ShiftCnst = DAG.getShiftAmountConstant(ShiftAmount, WideIntVT, dl); 11547 SignBit = DAG.getNode(ISD::SRL, dl, WideIntVT, SignBit, ShiftCnst); 11548 SignBit = DAG.getNode(ISD::TRUNCATE, dl, ResultIntVT, SignBit); 11549 Op = DAG.getNode(ISD::OR, dl, ResultIntVT, Op, SignBit); 11550 return DAG.getNode(ISD::BITCAST, dl, ResultVT, Op); 11551 } 11552 11553 SDValue TargetLowering::expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const { 11554 assert(Node->getOpcode() == ISD::FP_ROUND && "Unexpected opcode!"); 11555 SDValue Op = Node->getOperand(0); 11556 EVT VT = Node->getValueType(0); 11557 SDLoc dl(Node); 11558 if (VT.getScalarType() == MVT::bf16) { 11559 if (Node->getConstantOperandVal(1) == 1) { 11560 return DAG.getNode(ISD::FP_TO_BF16, dl, VT, Node->getOperand(0)); 11561 } 11562 EVT OperandVT = Op.getValueType(); 11563 SDValue IsNaN = DAG.getSetCC( 11564 dl, 11565 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), OperandVT), 11566 Op, Op, ISD::SETUO); 11567 11568 // We are rounding binary64/binary128 -> binary32 -> bfloat16. This 11569 // can induce double-rounding which may alter the results. We can 11570 // correct for this using a trick explained in: Boldo, Sylvie, and 11571 // Guillaume Melquiond. "When double rounding is odd." 17th IMACS 11572 // World Congress. 2005. 11573 EVT F32 = VT.isVector() ? VT.changeVectorElementType(MVT::f32) : MVT::f32; 11574 EVT I32 = F32.changeTypeToInteger(); 11575 Op = expandRoundInexactToOdd(F32, Op, dl, DAG); 11576 Op = DAG.getNode(ISD::BITCAST, dl, I32, Op); 11577 11578 // Conversions should set NaN's quiet bit. This also prevents NaNs from 11579 // turning into infinities. 11580 SDValue NaN = 11581 DAG.getNode(ISD::OR, dl, I32, Op, DAG.getConstant(0x400000, dl, I32)); 11582 11583 // Factor in the contribution of the low 16 bits. 11584 SDValue One = DAG.getConstant(1, dl, I32); 11585 SDValue Lsb = DAG.getNode(ISD::SRL, dl, I32, Op, 11586 DAG.getShiftAmountConstant(16, I32, dl)); 11587 Lsb = DAG.getNode(ISD::AND, dl, I32, Lsb, One); 11588 SDValue RoundingBias = 11589 DAG.getNode(ISD::ADD, dl, I32, DAG.getConstant(0x7fff, dl, I32), Lsb); 11590 SDValue Add = DAG.getNode(ISD::ADD, dl, I32, Op, RoundingBias); 11591 11592 // Don't round if we had a NaN, we don't want to turn 0x7fffffff into 11593 // 0x80000000. 11594 Op = DAG.getSelect(dl, I32, IsNaN, NaN, Add); 11595 11596 // Now that we have rounded, shift the bits into position. 11597 Op = DAG.getNode(ISD::SRL, dl, I32, Op, 11598 DAG.getShiftAmountConstant(16, I32, dl)); 11599 Op = DAG.getNode(ISD::BITCAST, dl, I32, Op); 11600 EVT I16 = I32.isVector() ? I32.changeVectorElementType(MVT::i16) : MVT::i16; 11601 Op = DAG.getNode(ISD::TRUNCATE, dl, I16, Op); 11602 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 11603 } 11604 return SDValue(); 11605 } 11606 11607 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 11608 SelectionDAG &DAG) const { 11609 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 11610 assert(Node->getValueType(0).isScalableVector() && 11611 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 11612 11613 EVT VT = Node->getValueType(0); 11614 SDValue V1 = Node->getOperand(0); 11615 SDValue V2 = Node->getOperand(1); 11616 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 11617 SDLoc DL(Node); 11618 11619 // Expand through memory thusly: 11620 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 11621 // Store V1, Ptr 11622 // Store V2, Ptr + sizeof(V1) 11623 // If (Imm < 0) 11624 // TrailingElts = -Imm 11625 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 11626 // else 11627 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 11628 // Res = Load Ptr 11629 11630 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 11631 11632 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 11633 VT.getVectorElementCount() * 2); 11634 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 11635 EVT PtrVT = StackPtr.getValueType(); 11636 auto &MF = DAG.getMachineFunction(); 11637 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 11638 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 11639 11640 // Store the lo part of CONCAT_VECTORS(V1, V2) 11641 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 11642 // Store the hi part of CONCAT_VECTORS(V1, V2) 11643 SDValue OffsetToV2 = DAG.getVScale( 11644 DL, PtrVT, 11645 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinValue())); 11646 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 11647 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 11648 11649 if (Imm >= 0) { 11650 // Load back the required element. getVectorElementPointer takes care of 11651 // clamping the index if it's out-of-bounds. 11652 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 11653 // Load the spliced result 11654 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 11655 MachinePointerInfo::getUnknownStack(MF)); 11656 } 11657 11658 uint64_t TrailingElts = -Imm; 11659 11660 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 11661 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 11662 SDValue TrailingBytes = 11663 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 11664 11665 if (TrailingElts > VT.getVectorMinNumElements()) { 11666 SDValue VLBytes = 11667 DAG.getVScale(DL, PtrVT, 11668 APInt(PtrVT.getFixedSizeInBits(), 11669 VT.getStoreSize().getKnownMinValue())); 11670 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 11671 } 11672 11673 // Calculate the start address of the spliced result. 11674 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 11675 11676 // Load the spliced result 11677 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 11678 MachinePointerInfo::getUnknownStack(MF)); 11679 } 11680 11681 SDValue TargetLowering::expandVECTOR_COMPRESS(SDNode *Node, 11682 SelectionDAG &DAG) const { 11683 SDLoc DL(Node); 11684 SDValue Vec = Node->getOperand(0); 11685 SDValue Mask = Node->getOperand(1); 11686 SDValue Passthru = Node->getOperand(2); 11687 11688 EVT VecVT = Vec.getValueType(); 11689 EVT ScalarVT = VecVT.getScalarType(); 11690 EVT MaskVT = Mask.getValueType(); 11691 EVT MaskScalarVT = MaskVT.getScalarType(); 11692 11693 // Needs to be handled by targets that have scalable vector types. 11694 if (VecVT.isScalableVector()) 11695 report_fatal_error("Cannot expand masked_compress for scalable vectors."); 11696 11697 SDValue StackPtr = DAG.CreateStackTemporary( 11698 VecVT.getStoreSize(), DAG.getReducedAlign(VecVT, /*UseABI=*/false)); 11699 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 11700 MachinePointerInfo PtrInfo = 11701 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 11702 11703 MVT PositionVT = getVectorIdxTy(DAG.getDataLayout()); 11704 SDValue Chain = DAG.getEntryNode(); 11705 SDValue OutPos = DAG.getConstant(0, DL, PositionVT); 11706 11707 bool HasPassthru = !Passthru.isUndef(); 11708 11709 // If we have a passthru vector, store it on the stack, overwrite the matching 11710 // positions and then re-write the last element that was potentially 11711 // overwritten even though mask[i] = false. 11712 if (HasPassthru) 11713 Chain = DAG.getStore(Chain, DL, Passthru, StackPtr, PtrInfo); 11714 11715 SDValue LastWriteVal; 11716 APInt PassthruSplatVal; 11717 bool IsSplatPassthru = 11718 ISD::isConstantSplatVector(Passthru.getNode(), PassthruSplatVal); 11719 11720 if (IsSplatPassthru) { 11721 // As we do not know which position we wrote to last, we cannot simply 11722 // access that index from the passthru vector. So we first check if passthru 11723 // is a splat vector, to use any element ... 11724 LastWriteVal = DAG.getConstant(PassthruSplatVal, DL, ScalarVT); 11725 } else if (HasPassthru) { 11726 // ... if it is not a splat vector, we need to get the passthru value at 11727 // position = popcount(mask) and re-load it from the stack before it is 11728 // overwritten in the loop below. 11729 EVT PopcountVT = ScalarVT.changeTypeToInteger(); 11730 SDValue Popcount = DAG.getNode( 11731 ISD::TRUNCATE, DL, MaskVT.changeVectorElementType(MVT::i1), Mask); 11732 Popcount = 11733 DAG.getNode(ISD::ZERO_EXTEND, DL, 11734 MaskVT.changeVectorElementType(PopcountVT), Popcount); 11735 Popcount = DAG.getNode(ISD::VECREDUCE_ADD, DL, PopcountVT, Popcount); 11736 SDValue LastElmtPtr = 11737 getVectorElementPointer(DAG, StackPtr, VecVT, Popcount); 11738 LastWriteVal = DAG.getLoad( 11739 ScalarVT, DL, Chain, LastElmtPtr, 11740 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 11741 Chain = LastWriteVal.getValue(1); 11742 } 11743 11744 unsigned NumElms = VecVT.getVectorNumElements(); 11745 for (unsigned I = 0; I < NumElms; I++) { 11746 SDValue Idx = DAG.getVectorIdxConstant(I, DL); 11747 11748 SDValue ValI = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, Vec, Idx); 11749 SDValue OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos); 11750 Chain = DAG.getStore( 11751 Chain, DL, ValI, OutPtr, 11752 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 11753 11754 // Get the mask value and add it to the current output position. This 11755 // either increments by 1 if MaskI is true or adds 0 otherwise. 11756 // Freeze in case we have poison/undef mask entries. 11757 SDValue MaskI = DAG.getFreeze( 11758 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskScalarVT, Mask, Idx)); 11759 MaskI = DAG.getFreeze(MaskI); 11760 MaskI = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, MaskI); 11761 MaskI = DAG.getNode(ISD::ZERO_EXTEND, DL, PositionVT, MaskI); 11762 OutPos = DAG.getNode(ISD::ADD, DL, PositionVT, OutPos, MaskI); 11763 11764 if (HasPassthru && I == NumElms - 1) { 11765 SDValue EndOfVector = 11766 DAG.getConstant(VecVT.getVectorNumElements() - 1, DL, PositionVT); 11767 SDValue AllLanesSelected = 11768 DAG.getSetCC(DL, MVT::i1, OutPos, EndOfVector, ISD::CondCode::SETUGT); 11769 OutPos = DAG.getNode(ISD::UMIN, DL, PositionVT, OutPos, EndOfVector); 11770 OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos); 11771 11772 // Re-write the last ValI if all lanes were selected. Otherwise, 11773 // overwrite the last write it with the passthru value. 11774 LastWriteVal = DAG.getSelect(DL, ScalarVT, AllLanesSelected, ValI, 11775 LastWriteVal, SDNodeFlags::Unpredictable); 11776 Chain = DAG.getStore( 11777 Chain, DL, LastWriteVal, OutPtr, 11778 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 11779 } 11780 } 11781 11782 return DAG.getLoad(VecVT, DL, Chain, StackPtr, PtrInfo); 11783 } 11784 11785 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 11786 SDValue &LHS, SDValue &RHS, 11787 SDValue &CC, SDValue Mask, 11788 SDValue EVL, bool &NeedInvert, 11789 const SDLoc &dl, SDValue &Chain, 11790 bool IsSignaling) const { 11791 MVT OpVT = LHS.getSimpleValueType(); 11792 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 11793 NeedInvert = false; 11794 assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset"); 11795 bool IsNonVP = !EVL; 11796 switch (getCondCodeAction(CCCode, OpVT)) { 11797 default: 11798 llvm_unreachable("Unknown condition code action!"); 11799 case TargetLowering::Legal: 11800 // Nothing to do. 11801 break; 11802 case TargetLowering::Expand: { 11803 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 11804 if (isCondCodeLegalOrCustom(InvCC, OpVT)) { 11805 std::swap(LHS, RHS); 11806 CC = DAG.getCondCode(InvCC); 11807 return true; 11808 } 11809 // Swapping operands didn't work. Try inverting the condition. 11810 bool NeedSwap = false; 11811 InvCC = getSetCCInverse(CCCode, OpVT); 11812 if (!isCondCodeLegalOrCustom(InvCC, OpVT)) { 11813 // If inverting the condition is not enough, try swapping operands 11814 // on top of it. 11815 InvCC = ISD::getSetCCSwappedOperands(InvCC); 11816 NeedSwap = true; 11817 } 11818 if (isCondCodeLegalOrCustom(InvCC, OpVT)) { 11819 CC = DAG.getCondCode(InvCC); 11820 NeedInvert = true; 11821 if (NeedSwap) 11822 std::swap(LHS, RHS); 11823 return true; 11824 } 11825 11826 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 11827 unsigned Opc = 0; 11828 switch (CCCode) { 11829 default: 11830 llvm_unreachable("Don't know how to expand this condition!"); 11831 case ISD::SETUO: 11832 if (isCondCodeLegal(ISD::SETUNE, OpVT)) { 11833 CC1 = ISD::SETUNE; 11834 CC2 = ISD::SETUNE; 11835 Opc = ISD::OR; 11836 break; 11837 } 11838 assert(isCondCodeLegal(ISD::SETOEQ, OpVT) && 11839 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 11840 NeedInvert = true; 11841 [[fallthrough]]; 11842 case ISD::SETO: 11843 assert(isCondCodeLegal(ISD::SETOEQ, OpVT) && 11844 "If SETO is expanded, SETOEQ must be legal!"); 11845 CC1 = ISD::SETOEQ; 11846 CC2 = ISD::SETOEQ; 11847 Opc = ISD::AND; 11848 break; 11849 case ISD::SETONE: 11850 case ISD::SETUEQ: 11851 // If the SETUO or SETO CC isn't legal, we might be able to use 11852 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 11853 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 11854 // the operands. 11855 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 11856 if (!isCondCodeLegal(CC2, OpVT) && (isCondCodeLegal(ISD::SETOGT, OpVT) || 11857 isCondCodeLegal(ISD::SETOLT, OpVT))) { 11858 CC1 = ISD::SETOGT; 11859 CC2 = ISD::SETOLT; 11860 Opc = ISD::OR; 11861 NeedInvert = ((unsigned)CCCode & 0x8U); 11862 break; 11863 } 11864 [[fallthrough]]; 11865 case ISD::SETOEQ: 11866 case ISD::SETOGT: 11867 case ISD::SETOGE: 11868 case ISD::SETOLT: 11869 case ISD::SETOLE: 11870 case ISD::SETUNE: 11871 case ISD::SETUGT: 11872 case ISD::SETUGE: 11873 case ISD::SETULT: 11874 case ISD::SETULE: 11875 // If we are floating point, assign and break, otherwise fall through. 11876 if (!OpVT.isInteger()) { 11877 // We can use the 4th bit to tell if we are the unordered 11878 // or ordered version of the opcode. 11879 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 11880 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 11881 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 11882 break; 11883 } 11884 // Fallthrough if we are unsigned integer. 11885 [[fallthrough]]; 11886 case ISD::SETLE: 11887 case ISD::SETGT: 11888 case ISD::SETGE: 11889 case ISD::SETLT: 11890 case ISD::SETNE: 11891 case ISD::SETEQ: 11892 // If all combinations of inverting the condition and swapping operands 11893 // didn't work then we have no means to expand the condition. 11894 llvm_unreachable("Don't know how to expand this condition!"); 11895 } 11896 11897 SDValue SetCC1, SetCC2; 11898 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 11899 // If we aren't the ordered or unorder operation, 11900 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 11901 if (IsNonVP) { 11902 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 11903 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 11904 } else { 11905 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL); 11906 SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL); 11907 } 11908 } else { 11909 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 11910 if (IsNonVP) { 11911 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 11912 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 11913 } else { 11914 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL); 11915 SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL); 11916 } 11917 } 11918 if (Chain) 11919 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 11920 SetCC2.getValue(1)); 11921 if (IsNonVP) 11922 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 11923 else { 11924 // Transform the binary opcode to the VP equivalent. 11925 assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode"); 11926 Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND; 11927 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL); 11928 } 11929 RHS = SDValue(); 11930 CC = SDValue(); 11931 return true; 11932 } 11933 } 11934 return false; 11935 } 11936 11937 SDValue TargetLowering::expandVectorNaryOpBySplitting(SDNode *Node, 11938 SelectionDAG &DAG) const { 11939 EVT VT = Node->getValueType(0); 11940 // Despite its documentation, GetSplitDestVTs will assert if VT cannot be 11941 // split into two equal parts. 11942 if (!VT.isVector() || !VT.getVectorElementCount().isKnownMultipleOf(2)) 11943 return SDValue(); 11944 11945 // Restrict expansion to cases where both parts can be concatenated. 11946 auto [LoVT, HiVT] = DAG.GetSplitDestVTs(VT); 11947 if (LoVT != HiVT || !isTypeLegal(LoVT)) 11948 return SDValue(); 11949 11950 SDLoc DL(Node); 11951 unsigned Opcode = Node->getOpcode(); 11952 11953 // Don't expand if the result is likely to be unrolled anyway. 11954 if (!isOperationLegalOrCustomOrPromote(Opcode, LoVT)) 11955 return SDValue(); 11956 11957 SmallVector<SDValue, 4> LoOps, HiOps; 11958 for (const SDValue &V : Node->op_values()) { 11959 auto [Lo, Hi] = DAG.SplitVector(V, DL, LoVT, HiVT); 11960 LoOps.push_back(Lo); 11961 HiOps.push_back(Hi); 11962 } 11963 11964 SDValue SplitOpLo = DAG.getNode(Opcode, DL, LoVT, LoOps); 11965 SDValue SplitOpHi = DAG.getNode(Opcode, DL, HiVT, HiOps); 11966 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, SplitOpLo, SplitOpHi); 11967 } 11968