xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp (revision caa8aa551bf8d2f29e76aad4ac6dcea6940eef13)
1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/Analysis/VectorUtils.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/CodeGenCommonISel.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/TargetRegisterInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCExpr.h"
30 #include "llvm/Support/DivisionByConstantInfo.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/KnownBits.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40     : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function &F = DAG.getMachineFunction().getFunction();
55 
56   // First, check if tail calls have been disabled in this function.
57   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
58     return false;
59 
60   // Conservatively require the attributes of the call to match those of
61   // the return. Ignore following attributes because they don't affect the
62   // call sequence.
63   AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
64   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
65                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
66                            Attribute::NonNull, Attribute::NoUndef,
67                            Attribute::Range, Attribute::NoFPClass})
68     CallerAttrs.removeAttribute(Attr);
69 
70   if (CallerAttrs.hasAttributes())
71     return false;
72 
73   // It's not safe to eliminate the sign / zero extension of the return value.
74   if (CallerAttrs.contains(Attribute::ZExt) ||
75       CallerAttrs.contains(Attribute::SExt))
76     return false;
77 
78   // Check if the only use is a function return node.
79   return isUsedByReturnOnly(Node, Chain);
80 }
81 
82 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
83     const uint32_t *CallerPreservedMask,
84     const SmallVectorImpl<CCValAssign> &ArgLocs,
85     const SmallVectorImpl<SDValue> &OutVals) const {
86   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
87     const CCValAssign &ArgLoc = ArgLocs[I];
88     if (!ArgLoc.isRegLoc())
89       continue;
90     MCRegister Reg = ArgLoc.getLocReg();
91     // Only look at callee saved registers.
92     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
93       continue;
94     // Check that we pass the value used for the caller.
95     // (We look for a CopyFromReg reading a virtual register that is used
96     //  for the function live-in value of register Reg)
97     SDValue Value = OutVals[I];
98     if (Value->getOpcode() == ISD::AssertZext)
99       Value = Value.getOperand(0);
100     if (Value->getOpcode() != ISD::CopyFromReg)
101       return false;
102     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
103     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
104       return false;
105   }
106   return true;
107 }
108 
109 /// Set CallLoweringInfo attribute flags based on a call instruction
110 /// and called function attributes.
111 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
112                                                      unsigned ArgIdx) {
113   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
114   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
115   IsNoExt = Call->paramHasAttr(ArgIdx, Attribute::NoExt);
116   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
117   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
118   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
119   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
120   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
121   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
122   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
123   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
124   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
125   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
126   Alignment = Call->getParamStackAlign(ArgIdx);
127   IndirectType = nullptr;
128   assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 &&
129          "multiple ABI attributes?");
130   if (IsByVal) {
131     IndirectType = Call->getParamByValType(ArgIdx);
132     if (!Alignment)
133       Alignment = Call->getParamAlign(ArgIdx);
134   }
135   if (IsPreallocated)
136     IndirectType = Call->getParamPreallocatedType(ArgIdx);
137   if (IsInAlloca)
138     IndirectType = Call->getParamInAllocaType(ArgIdx);
139   if (IsSRet)
140     IndirectType = Call->getParamStructRetType(ArgIdx);
141 }
142 
143 /// Generate a libcall taking the given operands as arguments and returning a
144 /// result of type RetVT.
145 std::pair<SDValue, SDValue>
146 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
147                             ArrayRef<SDValue> Ops,
148                             MakeLibCallOptions CallOptions,
149                             const SDLoc &dl,
150                             SDValue InChain) const {
151   if (!InChain)
152     InChain = DAG.getEntryNode();
153 
154   TargetLowering::ArgListTy Args;
155   Args.reserve(Ops.size());
156 
157   TargetLowering::ArgListEntry Entry;
158   for (unsigned i = 0; i < Ops.size(); ++i) {
159     SDValue NewOp = Ops[i];
160     Entry.Node = NewOp;
161     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
162     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
163                                                  CallOptions.IsSigned);
164     Entry.IsZExt = !Entry.IsSExt;
165 
166     if (CallOptions.IsSoften &&
167         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
168       Entry.IsSExt = Entry.IsZExt = false;
169     }
170     Args.push_back(Entry);
171   }
172 
173   if (LC == RTLIB::UNKNOWN_LIBCALL)
174     report_fatal_error("Unsupported library call operation!");
175   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
176                                          getPointerTy(DAG.getDataLayout()));
177 
178   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
179   TargetLowering::CallLoweringInfo CLI(DAG);
180   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSigned);
181   bool zeroExtend = !signExtend;
182 
183   if (CallOptions.IsSoften &&
184       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
185     signExtend = zeroExtend = false;
186   }
187 
188   CLI.setDebugLoc(dl)
189       .setChain(InChain)
190       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
191       .setNoReturn(CallOptions.DoesNotReturn)
192       .setDiscardResult(!CallOptions.IsReturnValueUsed)
193       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
194       .setSExtResult(signExtend)
195       .setZExtResult(zeroExtend);
196   return LowerCallTo(CLI);
197 }
198 
199 bool TargetLowering::findOptimalMemOpLowering(
200     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
201     unsigned SrcAS, const AttributeList &FuncAttributes) const {
202   if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() &&
203       Op.getSrcAlign() < Op.getDstAlign())
204     return false;
205 
206   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
207 
208   if (VT == MVT::Other) {
209     // Use the largest integer type whose alignment constraints are satisfied.
210     // We only need to check DstAlign here as SrcAlign is always greater or
211     // equal to DstAlign (or zero).
212     VT = MVT::LAST_INTEGER_VALUETYPE;
213     if (Op.isFixedDstAlign())
214       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
215              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
216         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
217     assert(VT.isInteger());
218 
219     // Find the largest legal integer type.
220     MVT LVT = MVT::LAST_INTEGER_VALUETYPE;
221     while (!isTypeLegal(LVT))
222       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
223     assert(LVT.isInteger());
224 
225     // If the type we've chosen is larger than the largest legal integer type
226     // then use that instead.
227     if (VT.bitsGT(LVT))
228       VT = LVT;
229   }
230 
231   unsigned NumMemOps = 0;
232   uint64_t Size = Op.size();
233   while (Size) {
234     unsigned VTSize = VT.getSizeInBits() / 8;
235     while (VTSize > Size) {
236       // For now, only use non-vector load / store's for the left-over pieces.
237       EVT NewVT = VT;
238       unsigned NewVTSize;
239 
240       bool Found = false;
241       if (VT.isVector() || VT.isFloatingPoint()) {
242         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
243         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
244             isSafeMemOpType(NewVT.getSimpleVT()))
245           Found = true;
246         else if (NewVT == MVT::i64 &&
247                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
248                  isSafeMemOpType(MVT::f64)) {
249           // i64 is usually not legal on 32-bit targets, but f64 may be.
250           NewVT = MVT::f64;
251           Found = true;
252         }
253       }
254 
255       if (!Found) {
256         do {
257           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
258           if (NewVT == MVT::i8)
259             break;
260         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
261       }
262       NewVTSize = NewVT.getSizeInBits() / 8;
263 
264       // If the new VT cannot cover all of the remaining bits, then consider
265       // issuing a (or a pair of) unaligned and overlapping load / store.
266       unsigned Fast;
267       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
268           allowsMisalignedMemoryAccesses(
269               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
270               MachineMemOperand::MONone, &Fast) &&
271           Fast)
272         VTSize = Size;
273       else {
274         VT = NewVT;
275         VTSize = NewVTSize;
276       }
277     }
278 
279     if (++NumMemOps > Limit)
280       return false;
281 
282     MemOps.push_back(VT);
283     Size -= VTSize;
284   }
285 
286   return true;
287 }
288 
289 /// Soften the operands of a comparison. This code is shared among BR_CC,
290 /// SELECT_CC, and SETCC handlers.
291 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
292                                          SDValue &NewLHS, SDValue &NewRHS,
293                                          ISD::CondCode &CCCode,
294                                          const SDLoc &dl, const SDValue OldLHS,
295                                          const SDValue OldRHS) const {
296   SDValue Chain;
297   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
298                              OldRHS, Chain);
299 }
300 
301 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
302                                          SDValue &NewLHS, SDValue &NewRHS,
303                                          ISD::CondCode &CCCode,
304                                          const SDLoc &dl, const SDValue OldLHS,
305                                          const SDValue OldRHS,
306                                          SDValue &Chain,
307                                          bool IsSignaling) const {
308   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
309   // not supporting it. We can update this code when libgcc provides such
310   // functions.
311 
312   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
313          && "Unsupported setcc type!");
314 
315   // Expand into one or more soft-fp libcall(s).
316   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
317   bool ShouldInvertCC = false;
318   switch (CCCode) {
319   case ISD::SETEQ:
320   case ISD::SETOEQ:
321     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
322           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
323           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
324     break;
325   case ISD::SETNE:
326   case ISD::SETUNE:
327     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
328           (VT == MVT::f64) ? RTLIB::UNE_F64 :
329           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
330     break;
331   case ISD::SETGE:
332   case ISD::SETOGE:
333     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
334           (VT == MVT::f64) ? RTLIB::OGE_F64 :
335           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
336     break;
337   case ISD::SETLT:
338   case ISD::SETOLT:
339     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
340           (VT == MVT::f64) ? RTLIB::OLT_F64 :
341           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
342     break;
343   case ISD::SETLE:
344   case ISD::SETOLE:
345     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
346           (VT == MVT::f64) ? RTLIB::OLE_F64 :
347           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
348     break;
349   case ISD::SETGT:
350   case ISD::SETOGT:
351     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
352           (VT == MVT::f64) ? RTLIB::OGT_F64 :
353           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
354     break;
355   case ISD::SETO:
356     ShouldInvertCC = true;
357     [[fallthrough]];
358   case ISD::SETUO:
359     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
360           (VT == MVT::f64) ? RTLIB::UO_F64 :
361           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
362     break;
363   case ISD::SETONE:
364     // SETONE = O && UNE
365     ShouldInvertCC = true;
366     [[fallthrough]];
367   case ISD::SETUEQ:
368     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
369           (VT == MVT::f64) ? RTLIB::UO_F64 :
370           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
371     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
372           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
373           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
374     break;
375   default:
376     // Invert CC for unordered comparisons
377     ShouldInvertCC = true;
378     switch (CCCode) {
379     case ISD::SETULT:
380       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
381             (VT == MVT::f64) ? RTLIB::OGE_F64 :
382             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
383       break;
384     case ISD::SETULE:
385       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
386             (VT == MVT::f64) ? RTLIB::OGT_F64 :
387             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
388       break;
389     case ISD::SETUGT:
390       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
391             (VT == MVT::f64) ? RTLIB::OLE_F64 :
392             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
393       break;
394     case ISD::SETUGE:
395       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
396             (VT == MVT::f64) ? RTLIB::OLT_F64 :
397             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
398       break;
399     default: llvm_unreachable("Do not know how to soften this setcc!");
400     }
401   }
402 
403   // Use the target specific return value for comparison lib calls.
404   EVT RetVT = getCmpLibcallReturnType();
405   SDValue Ops[2] = {NewLHS, NewRHS};
406   TargetLowering::MakeLibCallOptions CallOptions;
407   EVT OpsVT[2] = { OldLHS.getValueType(),
408                    OldRHS.getValueType() };
409   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
410   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
411   NewLHS = Call.first;
412   NewRHS = DAG.getConstant(0, dl, RetVT);
413 
414   CCCode = getCmpLibcallCC(LC1);
415   if (ShouldInvertCC) {
416     assert(RetVT.isInteger());
417     CCCode = getSetCCInverse(CCCode, RetVT);
418   }
419 
420   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
421     // Update Chain.
422     Chain = Call.second;
423   } else {
424     EVT SetCCVT =
425         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
426     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
427     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
428     CCCode = getCmpLibcallCC(LC2);
429     if (ShouldInvertCC)
430       CCCode = getSetCCInverse(CCCode, RetVT);
431     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
432     if (Chain)
433       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
434                           Call2.second);
435     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
436                          Tmp.getValueType(), Tmp, NewLHS);
437     NewRHS = SDValue();
438   }
439 }
440 
441 /// Return the entry encoding for a jump table in the current function. The
442 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
443 unsigned TargetLowering::getJumpTableEncoding() const {
444   // In non-pic modes, just use the address of a block.
445   if (!isPositionIndependent())
446     return MachineJumpTableInfo::EK_BlockAddress;
447 
448   // In PIC mode, if the target supports a GPRel32 directive, use it.
449   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
450     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
451 
452   // Otherwise, use a label difference.
453   return MachineJumpTableInfo::EK_LabelDifference32;
454 }
455 
456 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
457                                                  SelectionDAG &DAG) const {
458   // If our PIC model is GP relative, use the global offset table as the base.
459   unsigned JTEncoding = getJumpTableEncoding();
460 
461   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
462       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
463     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
464 
465   return Table;
466 }
467 
468 /// This returns the relocation base for the given PIC jumptable, the same as
469 /// getPICJumpTableRelocBase, but as an MCExpr.
470 const MCExpr *
471 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
472                                              unsigned JTI,MCContext &Ctx) const{
473   // The normal PIC reloc base is the label at the start of the jump table.
474   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
475 }
476 
477 SDValue TargetLowering::expandIndirectJTBranch(const SDLoc &dl, SDValue Value,
478                                                SDValue Addr, int JTI,
479                                                SelectionDAG &DAG) const {
480   SDValue Chain = Value;
481   // Jump table debug info is only needed if CodeView is enabled.
482   if (DAG.getTarget().getTargetTriple().isOSBinFormatCOFF()) {
483     Chain = DAG.getJumpTableDebugInfo(JTI, Chain, dl);
484   }
485   return DAG.getNode(ISD::BRIND, dl, MVT::Other, Chain, Addr);
486 }
487 
488 bool
489 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
490   const TargetMachine &TM = getTargetMachine();
491   const GlobalValue *GV = GA->getGlobal();
492 
493   // If the address is not even local to this DSO we will have to load it from
494   // a got and then add the offset.
495   if (!TM.shouldAssumeDSOLocal(GV))
496     return false;
497 
498   // If the code is position independent we will have to add a base register.
499   if (isPositionIndependent())
500     return false;
501 
502   // Otherwise we can do it.
503   return true;
504 }
505 
506 //===----------------------------------------------------------------------===//
507 //  Optimization Methods
508 //===----------------------------------------------------------------------===//
509 
510 /// If the specified instruction has a constant integer operand and there are
511 /// bits set in that constant that are not demanded, then clear those bits and
512 /// return true.
513 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
514                                             const APInt &DemandedBits,
515                                             const APInt &DemandedElts,
516                                             TargetLoweringOpt &TLO) const {
517   SDLoc DL(Op);
518   unsigned Opcode = Op.getOpcode();
519 
520   // Early-out if we've ended up calling an undemanded node, leave this to
521   // constant folding.
522   if (DemandedBits.isZero() || DemandedElts.isZero())
523     return false;
524 
525   // Do target-specific constant optimization.
526   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
527     return TLO.New.getNode();
528 
529   // FIXME: ISD::SELECT, ISD::SELECT_CC
530   switch (Opcode) {
531   default:
532     break;
533   case ISD::XOR:
534   case ISD::AND:
535   case ISD::OR: {
536     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
537     if (!Op1C || Op1C->isOpaque())
538       return false;
539 
540     // If this is a 'not' op, don't touch it because that's a canonical form.
541     const APInt &C = Op1C->getAPIntValue();
542     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
543       return false;
544 
545     if (!C.isSubsetOf(DemandedBits)) {
546       EVT VT = Op.getValueType();
547       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
548       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC,
549                                       Op->getFlags());
550       return TLO.CombineTo(Op, NewOp);
551     }
552 
553     break;
554   }
555   }
556 
557   return false;
558 }
559 
560 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
561                                             const APInt &DemandedBits,
562                                             TargetLoweringOpt &TLO) const {
563   EVT VT = Op.getValueType();
564   APInt DemandedElts = VT.isVector()
565                            ? APInt::getAllOnes(VT.getVectorNumElements())
566                            : APInt(1, 1);
567   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
568 }
569 
570 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
571 /// This uses isTruncateFree/isZExtFree and ANY_EXTEND for the widening cast,
572 /// but it could be generalized for targets with other types of implicit
573 /// widening casts.
574 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
575                                       const APInt &DemandedBits,
576                                       TargetLoweringOpt &TLO) const {
577   assert(Op.getNumOperands() == 2 &&
578          "ShrinkDemandedOp only supports binary operators!");
579   assert(Op.getNode()->getNumValues() == 1 &&
580          "ShrinkDemandedOp only supports nodes with one result!");
581 
582   EVT VT = Op.getValueType();
583   SelectionDAG &DAG = TLO.DAG;
584   SDLoc dl(Op);
585 
586   // Early return, as this function cannot handle vector types.
587   if (VT.isVector())
588     return false;
589 
590   assert(Op.getOperand(0).getValueType().getScalarSizeInBits() == BitWidth &&
591          Op.getOperand(1).getValueType().getScalarSizeInBits() == BitWidth &&
592          "ShrinkDemandedOp only supports operands that have the same size!");
593 
594   // Don't do this if the node has another user, which may require the
595   // full value.
596   if (!Op.getNode()->hasOneUse())
597     return false;
598 
599   // Search for the smallest integer type with free casts to and from
600   // Op's type. For expedience, just check power-of-2 integer types.
601   unsigned DemandedSize = DemandedBits.getActiveBits();
602   for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize);
603        SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
604     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
605     if (isTruncateFree(VT, SmallVT) && isZExtFree(SmallVT, VT)) {
606       // We found a type with free casts.
607 
608       // If the operation has the 'disjoint' flag, then the
609       // operands on the new node are also disjoint.
610       SDNodeFlags Flags(Op->getFlags().hasDisjoint() ? SDNodeFlags::Disjoint
611                                                      : SDNodeFlags::None);
612       SDValue X = DAG.getNode(
613           Op.getOpcode(), dl, SmallVT,
614           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
615           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)), Flags);
616       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
617       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, VT, X);
618       return TLO.CombineTo(Op, Z);
619     }
620   }
621   return false;
622 }
623 
624 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
625                                           DAGCombinerInfo &DCI) const {
626   SelectionDAG &DAG = DCI.DAG;
627   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
628                         !DCI.isBeforeLegalizeOps());
629   KnownBits Known;
630 
631   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
632   if (Simplified) {
633     DCI.AddToWorklist(Op.getNode());
634     DCI.CommitTargetLoweringOpt(TLO);
635   }
636   return Simplified;
637 }
638 
639 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
640                                           const APInt &DemandedElts,
641                                           DAGCombinerInfo &DCI) const {
642   SelectionDAG &DAG = DCI.DAG;
643   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
644                         !DCI.isBeforeLegalizeOps());
645   KnownBits Known;
646 
647   bool Simplified =
648       SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
649   if (Simplified) {
650     DCI.AddToWorklist(Op.getNode());
651     DCI.CommitTargetLoweringOpt(TLO);
652   }
653   return Simplified;
654 }
655 
656 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
657                                           KnownBits &Known,
658                                           TargetLoweringOpt &TLO,
659                                           unsigned Depth,
660                                           bool AssumeSingleUse) const {
661   EVT VT = Op.getValueType();
662 
663   // Since the number of lanes in a scalable vector is unknown at compile time,
664   // we track one bit which is implicitly broadcast to all lanes.  This means
665   // that all lanes in a scalable vector are considered demanded.
666   APInt DemandedElts = VT.isFixedLengthVector()
667                            ? APInt::getAllOnes(VT.getVectorNumElements())
668                            : APInt(1, 1);
669   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
670                               AssumeSingleUse);
671 }
672 
673 // TODO: Under what circumstances can we create nodes? Constant folding?
674 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
675     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
676     SelectionDAG &DAG, unsigned Depth) const {
677   EVT VT = Op.getValueType();
678 
679   // Limit search depth.
680   if (Depth >= SelectionDAG::MaxRecursionDepth)
681     return SDValue();
682 
683   // Ignore UNDEFs.
684   if (Op.isUndef())
685     return SDValue();
686 
687   // Not demanding any bits/elts from Op.
688   if (DemandedBits == 0 || DemandedElts == 0)
689     return DAG.getUNDEF(VT);
690 
691   bool IsLE = DAG.getDataLayout().isLittleEndian();
692   unsigned NumElts = DemandedElts.getBitWidth();
693   unsigned BitWidth = DemandedBits.getBitWidth();
694   KnownBits LHSKnown, RHSKnown;
695   switch (Op.getOpcode()) {
696   case ISD::BITCAST: {
697     if (VT.isScalableVector())
698       return SDValue();
699 
700     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
701     EVT SrcVT = Src.getValueType();
702     EVT DstVT = Op.getValueType();
703     if (SrcVT == DstVT)
704       return Src;
705 
706     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
707     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
708     if (NumSrcEltBits == NumDstEltBits)
709       if (SDValue V = SimplifyMultipleUseDemandedBits(
710               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
711         return DAG.getBitcast(DstVT, V);
712 
713     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
714       unsigned Scale = NumDstEltBits / NumSrcEltBits;
715       unsigned NumSrcElts = SrcVT.getVectorNumElements();
716       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
717       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
718       for (unsigned i = 0; i != Scale; ++i) {
719         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
720         unsigned BitOffset = EltOffset * NumSrcEltBits;
721         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
722         if (!Sub.isZero()) {
723           DemandedSrcBits |= Sub;
724           for (unsigned j = 0; j != NumElts; ++j)
725             if (DemandedElts[j])
726               DemandedSrcElts.setBit((j * Scale) + i);
727         }
728       }
729 
730       if (SDValue V = SimplifyMultipleUseDemandedBits(
731               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
732         return DAG.getBitcast(DstVT, V);
733     }
734 
735     // TODO - bigendian once we have test coverage.
736     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
737       unsigned Scale = NumSrcEltBits / NumDstEltBits;
738       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
739       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
740       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
741       for (unsigned i = 0; i != NumElts; ++i)
742         if (DemandedElts[i]) {
743           unsigned Offset = (i % Scale) * NumDstEltBits;
744           DemandedSrcBits.insertBits(DemandedBits, Offset);
745           DemandedSrcElts.setBit(i / Scale);
746         }
747 
748       if (SDValue V = SimplifyMultipleUseDemandedBits(
749               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
750         return DAG.getBitcast(DstVT, V);
751     }
752 
753     break;
754   }
755   case ISD::FREEZE: {
756     SDValue N0 = Op.getOperand(0);
757     if (DAG.isGuaranteedNotToBeUndefOrPoison(N0, DemandedElts,
758                                              /*PoisonOnly=*/false))
759       return N0;
760     break;
761   }
762   case ISD::AND: {
763     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
764     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
765 
766     // If all of the demanded bits are known 1 on one side, return the other.
767     // These bits cannot contribute to the result of the 'and' in this
768     // context.
769     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
770       return Op.getOperand(0);
771     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
772       return Op.getOperand(1);
773     break;
774   }
775   case ISD::OR: {
776     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
777     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
778 
779     // If all of the demanded bits are known zero on one side, return the
780     // other.  These bits cannot contribute to the result of the 'or' in this
781     // context.
782     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
783       return Op.getOperand(0);
784     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
785       return Op.getOperand(1);
786     break;
787   }
788   case ISD::XOR: {
789     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
790     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
791 
792     // If all of the demanded bits are known zero on one side, return the
793     // other.
794     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
795       return Op.getOperand(0);
796     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
797       return Op.getOperand(1);
798     break;
799   }
800   case ISD::ADD: {
801     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
802     if (RHSKnown.isZero())
803       return Op.getOperand(0);
804 
805     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
806     if (LHSKnown.isZero())
807       return Op.getOperand(1);
808     break;
809   }
810   case ISD::SHL: {
811     // If we are only demanding sign bits then we can use the shift source
812     // directly.
813     if (std::optional<uint64_t> MaxSA =
814             DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
815       SDValue Op0 = Op.getOperand(0);
816       unsigned ShAmt = *MaxSA;
817       unsigned NumSignBits =
818           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
819       unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero();
820       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
821         return Op0;
822     }
823     break;
824   }
825   case ISD::SRL: {
826     // If we are only demanding sign bits then we can use the shift source
827     // directly.
828     if (std::optional<uint64_t> MaxSA =
829             DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
830       SDValue Op0 = Op.getOperand(0);
831       unsigned ShAmt = *MaxSA;
832       // Must already be signbits in DemandedBits bounds, and can't demand any
833       // shifted in zeroes.
834       if (DemandedBits.countl_zero() >= ShAmt) {
835         unsigned NumSignBits =
836             DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
837         if (DemandedBits.countr_zero() >= (BitWidth - NumSignBits))
838           return Op0;
839       }
840     }
841     break;
842   }
843   case ISD::SETCC: {
844     SDValue Op0 = Op.getOperand(0);
845     SDValue Op1 = Op.getOperand(1);
846     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
847     // If (1) we only need the sign-bit, (2) the setcc operands are the same
848     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
849     // -1, we may be able to bypass the setcc.
850     if (DemandedBits.isSignMask() &&
851         Op0.getScalarValueSizeInBits() == BitWidth &&
852         getBooleanContents(Op0.getValueType()) ==
853             BooleanContent::ZeroOrNegativeOneBooleanContent) {
854       // If we're testing X < 0, then this compare isn't needed - just use X!
855       // FIXME: We're limiting to integer types here, but this should also work
856       // if we don't care about FP signed-zero. The use of SETLT with FP means
857       // that we don't care about NaNs.
858       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
859           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
860         return Op0;
861     }
862     break;
863   }
864   case ISD::SIGN_EXTEND_INREG: {
865     // If none of the extended bits are demanded, eliminate the sextinreg.
866     SDValue Op0 = Op.getOperand(0);
867     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
868     unsigned ExBits = ExVT.getScalarSizeInBits();
869     if (DemandedBits.getActiveBits() <= ExBits &&
870         shouldRemoveRedundantExtend(Op))
871       return Op0;
872     // If the input is already sign extended, just drop the extension.
873     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
874     if (NumSignBits >= (BitWidth - ExBits + 1))
875       return Op0;
876     break;
877   }
878   case ISD::ANY_EXTEND_VECTOR_INREG:
879   case ISD::SIGN_EXTEND_VECTOR_INREG:
880   case ISD::ZERO_EXTEND_VECTOR_INREG: {
881     if (VT.isScalableVector())
882       return SDValue();
883 
884     // If we only want the lowest element and none of extended bits, then we can
885     // return the bitcasted source vector.
886     SDValue Src = Op.getOperand(0);
887     EVT SrcVT = Src.getValueType();
888     EVT DstVT = Op.getValueType();
889     if (IsLE && DemandedElts == 1 &&
890         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
891         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
892       return DAG.getBitcast(DstVT, Src);
893     }
894     break;
895   }
896   case ISD::INSERT_VECTOR_ELT: {
897     if (VT.isScalableVector())
898       return SDValue();
899 
900     // If we don't demand the inserted element, return the base vector.
901     SDValue Vec = Op.getOperand(0);
902     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
903     EVT VecVT = Vec.getValueType();
904     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
905         !DemandedElts[CIdx->getZExtValue()])
906       return Vec;
907     break;
908   }
909   case ISD::INSERT_SUBVECTOR: {
910     if (VT.isScalableVector())
911       return SDValue();
912 
913     SDValue Vec = Op.getOperand(0);
914     SDValue Sub = Op.getOperand(1);
915     uint64_t Idx = Op.getConstantOperandVal(2);
916     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
917     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
918     // If we don't demand the inserted subvector, return the base vector.
919     if (DemandedSubElts == 0)
920       return Vec;
921     break;
922   }
923   case ISD::VECTOR_SHUFFLE: {
924     assert(!VT.isScalableVector());
925     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
926 
927     // If all the demanded elts are from one operand and are inline,
928     // then we can use the operand directly.
929     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
930     for (unsigned i = 0; i != NumElts; ++i) {
931       int M = ShuffleMask[i];
932       if (M < 0 || !DemandedElts[i])
933         continue;
934       AllUndef = false;
935       IdentityLHS &= (M == (int)i);
936       IdentityRHS &= ((M - NumElts) == i);
937     }
938 
939     if (AllUndef)
940       return DAG.getUNDEF(Op.getValueType());
941     if (IdentityLHS)
942       return Op.getOperand(0);
943     if (IdentityRHS)
944       return Op.getOperand(1);
945     break;
946   }
947   default:
948     // TODO: Probably okay to remove after audit; here to reduce change size
949     // in initial enablement patch for scalable vectors
950     if (VT.isScalableVector())
951       return SDValue();
952 
953     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
954       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
955               Op, DemandedBits, DemandedElts, DAG, Depth))
956         return V;
957     break;
958   }
959   return SDValue();
960 }
961 
962 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
963     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
964     unsigned Depth) const {
965   EVT VT = Op.getValueType();
966   // Since the number of lanes in a scalable vector is unknown at compile time,
967   // we track one bit which is implicitly broadcast to all lanes.  This means
968   // that all lanes in a scalable vector are considered demanded.
969   APInt DemandedElts = VT.isFixedLengthVector()
970                            ? APInt::getAllOnes(VT.getVectorNumElements())
971                            : APInt(1, 1);
972   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
973                                          Depth);
974 }
975 
976 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
977     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
978     unsigned Depth) const {
979   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
980   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
981                                          Depth);
982 }
983 
984 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
985 //      or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
986 static SDValue combineShiftToAVG(SDValue Op,
987                                  TargetLowering::TargetLoweringOpt &TLO,
988                                  const TargetLowering &TLI,
989                                  const APInt &DemandedBits,
990                                  const APInt &DemandedElts, unsigned Depth) {
991   assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
992          "SRL or SRA node is required here!");
993   // Is the right shift using an immediate value of 1?
994   ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
995   if (!N1C || !N1C->isOne())
996     return SDValue();
997 
998   // We are looking for an avgfloor
999   // add(ext, ext)
1000   // or one of these as a avgceil
1001   // add(add(ext, ext), 1)
1002   // add(add(ext, 1), ext)
1003   // add(ext, add(ext, 1))
1004   SDValue Add = Op.getOperand(0);
1005   if (Add.getOpcode() != ISD::ADD)
1006     return SDValue();
1007 
1008   SDValue ExtOpA = Add.getOperand(0);
1009   SDValue ExtOpB = Add.getOperand(1);
1010   SDValue Add2;
1011   auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3, SDValue A) {
1012     ConstantSDNode *ConstOp;
1013     if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
1014         ConstOp->isOne()) {
1015       ExtOpA = Op1;
1016       ExtOpB = Op3;
1017       Add2 = A;
1018       return true;
1019     }
1020     if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
1021         ConstOp->isOne()) {
1022       ExtOpA = Op1;
1023       ExtOpB = Op2;
1024       Add2 = A;
1025       return true;
1026     }
1027     return false;
1028   };
1029   bool IsCeil =
1030       (ExtOpA.getOpcode() == ISD::ADD &&
1031        MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB, ExtOpA)) ||
1032       (ExtOpB.getOpcode() == ISD::ADD &&
1033        MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA, ExtOpB));
1034 
1035   // If the shift is signed (sra):
1036   //  - Needs >= 2 sign bit for both operands.
1037   //  - Needs >= 2 zero bits.
1038   // If the shift is unsigned (srl):
1039   //  - Needs >= 1 zero bit for both operands.
1040   //  - Needs 1 demanded bit zero and >= 2 sign bits.
1041   SelectionDAG &DAG = TLO.DAG;
1042   unsigned ShiftOpc = Op.getOpcode();
1043   bool IsSigned = false;
1044   unsigned KnownBits;
1045   unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
1046   unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
1047   unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
1048   unsigned NumZeroA =
1049       DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
1050   unsigned NumZeroB =
1051       DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
1052   unsigned NumZero = std::min(NumZeroA, NumZeroB);
1053 
1054   switch (ShiftOpc) {
1055   default:
1056     llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
1057   case ISD::SRA: {
1058     if (NumZero >= 2 && NumSigned < NumZero) {
1059       IsSigned = false;
1060       KnownBits = NumZero;
1061       break;
1062     }
1063     if (NumSigned >= 1) {
1064       IsSigned = true;
1065       KnownBits = NumSigned;
1066       break;
1067     }
1068     return SDValue();
1069   }
1070   case ISD::SRL: {
1071     if (NumZero >= 1 && NumSigned < NumZero) {
1072       IsSigned = false;
1073       KnownBits = NumZero;
1074       break;
1075     }
1076     if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
1077       IsSigned = true;
1078       KnownBits = NumSigned;
1079       break;
1080     }
1081     return SDValue();
1082   }
1083   }
1084 
1085   unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
1086                            : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
1087 
1088   // Find the smallest power-2 type that is legal for this vector size and
1089   // operation, given the original type size and the number of known sign/zero
1090   // bits.
1091   EVT VT = Op.getValueType();
1092   unsigned MinWidth =
1093       std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
1094   EVT NVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_ceil(MinWidth));
1095   if (NVT.getScalarSizeInBits() > VT.getScalarSizeInBits())
1096     return SDValue();
1097   if (VT.isVector())
1098     NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
1099   if (TLO.LegalTypes() && !TLI.isOperationLegal(AVGOpc, NVT)) {
1100     // If we could not transform, and (both) adds are nuw/nsw, we can use the
1101     // larger type size to do the transform.
1102     if (TLO.LegalOperations() && !TLI.isOperationLegal(AVGOpc, VT))
1103       return SDValue();
1104     if (DAG.willNotOverflowAdd(IsSigned, Add.getOperand(0),
1105                                Add.getOperand(1)) &&
1106         (!Add2 || DAG.willNotOverflowAdd(IsSigned, Add2.getOperand(0),
1107                                          Add2.getOperand(1))))
1108       NVT = VT;
1109     else
1110       return SDValue();
1111   }
1112 
1113   // Don't create a AVGFLOOR node with a scalar constant unless its legal as
1114   // this is likely to stop other folds (reassociation, value tracking etc.)
1115   if (!IsCeil && !TLI.isOperationLegal(AVGOpc, NVT) &&
1116       (isa<ConstantSDNode>(ExtOpA) || isa<ConstantSDNode>(ExtOpB)))
1117     return SDValue();
1118 
1119   SDLoc DL(Op);
1120   SDValue ResultAVG =
1121       DAG.getNode(AVGOpc, DL, NVT, DAG.getExtOrTrunc(IsSigned, ExtOpA, DL, NVT),
1122                   DAG.getExtOrTrunc(IsSigned, ExtOpB, DL, NVT));
1123   return DAG.getExtOrTrunc(IsSigned, ResultAVG, DL, VT);
1124 }
1125 
1126 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
1127 /// result of Op are ever used downstream. If we can use this information to
1128 /// simplify Op, create a new simplified DAG node and return true, returning the
1129 /// original and new nodes in Old and New. Otherwise, analyze the expression and
1130 /// return a mask of Known bits for the expression (used to simplify the
1131 /// caller).  The Known bits may only be accurate for those bits in the
1132 /// OriginalDemandedBits and OriginalDemandedElts.
1133 bool TargetLowering::SimplifyDemandedBits(
1134     SDValue Op, const APInt &OriginalDemandedBits,
1135     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
1136     unsigned Depth, bool AssumeSingleUse) const {
1137   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
1138   assert(Op.getScalarValueSizeInBits() == BitWidth &&
1139          "Mask size mismatches value type size!");
1140 
1141   // Don't know anything.
1142   Known = KnownBits(BitWidth);
1143 
1144   EVT VT = Op.getValueType();
1145   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
1146   unsigned NumElts = OriginalDemandedElts.getBitWidth();
1147   assert((!VT.isFixedLengthVector() || NumElts == VT.getVectorNumElements()) &&
1148          "Unexpected vector size");
1149 
1150   APInt DemandedBits = OriginalDemandedBits;
1151   APInt DemandedElts = OriginalDemandedElts;
1152   SDLoc dl(Op);
1153 
1154   // Undef operand.
1155   if (Op.isUndef())
1156     return false;
1157 
1158   // We can't simplify target constants.
1159   if (Op.getOpcode() == ISD::TargetConstant)
1160     return false;
1161 
1162   if (Op.getOpcode() == ISD::Constant) {
1163     // We know all of the bits for a constant!
1164     Known = KnownBits::makeConstant(Op->getAsAPIntVal());
1165     return false;
1166   }
1167 
1168   if (Op.getOpcode() == ISD::ConstantFP) {
1169     // We know all of the bits for a floating point constant!
1170     Known = KnownBits::makeConstant(
1171         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
1172     return false;
1173   }
1174 
1175   // Other users may use these bits.
1176   bool HasMultiUse = false;
1177   if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) {
1178     if (Depth >= SelectionDAG::MaxRecursionDepth) {
1179       // Limit search depth.
1180       return false;
1181     }
1182     // Allow multiple uses, just set the DemandedBits/Elts to all bits.
1183     DemandedBits = APInt::getAllOnes(BitWidth);
1184     DemandedElts = APInt::getAllOnes(NumElts);
1185     HasMultiUse = true;
1186   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1187     // Not demanding any bits/elts from Op.
1188     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1189   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
1190     // Limit search depth.
1191     return false;
1192   }
1193 
1194   KnownBits Known2;
1195   switch (Op.getOpcode()) {
1196   case ISD::SCALAR_TO_VECTOR: {
1197     if (VT.isScalableVector())
1198       return false;
1199     if (!DemandedElts[0])
1200       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1201 
1202     KnownBits SrcKnown;
1203     SDValue Src = Op.getOperand(0);
1204     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1205     APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth);
1206     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
1207       return true;
1208 
1209     // Upper elements are undef, so only get the knownbits if we just demand
1210     // the bottom element.
1211     if (DemandedElts == 1)
1212       Known = SrcKnown.anyextOrTrunc(BitWidth);
1213     break;
1214   }
1215   case ISD::BUILD_VECTOR:
1216     // Collect the known bits that are shared by every demanded element.
1217     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
1218     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1219     return false; // Don't fall through, will infinitely loop.
1220   case ISD::SPLAT_VECTOR: {
1221     SDValue Scl = Op.getOperand(0);
1222     APInt DemandedSclBits = DemandedBits.zextOrTrunc(Scl.getValueSizeInBits());
1223     KnownBits KnownScl;
1224     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1225       return true;
1226 
1227     // Implicitly truncate the bits to match the official semantics of
1228     // SPLAT_VECTOR.
1229     Known = KnownScl.trunc(BitWidth);
1230     break;
1231   }
1232   case ISD::LOAD: {
1233     auto *LD = cast<LoadSDNode>(Op);
1234     if (getTargetConstantFromLoad(LD)) {
1235       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1236       return false; // Don't fall through, will infinitely loop.
1237     }
1238     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1239       // If this is a ZEXTLoad and we are looking at the loaded value.
1240       EVT MemVT = LD->getMemoryVT();
1241       unsigned MemBits = MemVT.getScalarSizeInBits();
1242       Known.Zero.setBitsFrom(MemBits);
1243       return false; // Don't fall through, will infinitely loop.
1244     }
1245     break;
1246   }
1247   case ISD::INSERT_VECTOR_ELT: {
1248     if (VT.isScalableVector())
1249       return false;
1250     SDValue Vec = Op.getOperand(0);
1251     SDValue Scl = Op.getOperand(1);
1252     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1253     EVT VecVT = Vec.getValueType();
1254 
1255     // If index isn't constant, assume we need all vector elements AND the
1256     // inserted element.
1257     APInt DemandedVecElts(DemandedElts);
1258     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1259       unsigned Idx = CIdx->getZExtValue();
1260       DemandedVecElts.clearBit(Idx);
1261 
1262       // Inserted element is not required.
1263       if (!DemandedElts[Idx])
1264         return TLO.CombineTo(Op, Vec);
1265     }
1266 
1267     KnownBits KnownScl;
1268     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1269     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1270     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1271       return true;
1272 
1273     Known = KnownScl.anyextOrTrunc(BitWidth);
1274 
1275     KnownBits KnownVec;
1276     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1277                              Depth + 1))
1278       return true;
1279 
1280     if (!!DemandedVecElts)
1281       Known = Known.intersectWith(KnownVec);
1282 
1283     return false;
1284   }
1285   case ISD::INSERT_SUBVECTOR: {
1286     if (VT.isScalableVector())
1287       return false;
1288     // Demand any elements from the subvector and the remainder from the src its
1289     // inserted into.
1290     SDValue Src = Op.getOperand(0);
1291     SDValue Sub = Op.getOperand(1);
1292     uint64_t Idx = Op.getConstantOperandVal(2);
1293     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1294     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1295     APInt DemandedSrcElts = DemandedElts;
1296     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1297 
1298     KnownBits KnownSub, KnownSrc;
1299     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1300                              Depth + 1))
1301       return true;
1302     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1303                              Depth + 1))
1304       return true;
1305 
1306     Known.Zero.setAllBits();
1307     Known.One.setAllBits();
1308     if (!!DemandedSubElts)
1309       Known = Known.intersectWith(KnownSub);
1310     if (!!DemandedSrcElts)
1311       Known = Known.intersectWith(KnownSrc);
1312 
1313     // Attempt to avoid multi-use src if we don't need anything from it.
1314     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1315         !DemandedSrcElts.isAllOnes()) {
1316       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1317           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1318       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1319           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1320       if (NewSub || NewSrc) {
1321         NewSub = NewSub ? NewSub : Sub;
1322         NewSrc = NewSrc ? NewSrc : Src;
1323         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1324                                         Op.getOperand(2));
1325         return TLO.CombineTo(Op, NewOp);
1326       }
1327     }
1328     break;
1329   }
1330   case ISD::EXTRACT_SUBVECTOR: {
1331     if (VT.isScalableVector())
1332       return false;
1333     // Offset the demanded elts by the subvector index.
1334     SDValue Src = Op.getOperand(0);
1335     if (Src.getValueType().isScalableVector())
1336       break;
1337     uint64_t Idx = Op.getConstantOperandVal(1);
1338     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1339     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
1340 
1341     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1342                              Depth + 1))
1343       return true;
1344 
1345     // Attempt to avoid multi-use src if we don't need anything from it.
1346     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1347       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1348           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1349       if (DemandedSrc) {
1350         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1351                                         Op.getOperand(1));
1352         return TLO.CombineTo(Op, NewOp);
1353       }
1354     }
1355     break;
1356   }
1357   case ISD::CONCAT_VECTORS: {
1358     if (VT.isScalableVector())
1359       return false;
1360     Known.Zero.setAllBits();
1361     Known.One.setAllBits();
1362     EVT SubVT = Op.getOperand(0).getValueType();
1363     unsigned NumSubVecs = Op.getNumOperands();
1364     unsigned NumSubElts = SubVT.getVectorNumElements();
1365     for (unsigned i = 0; i != NumSubVecs; ++i) {
1366       APInt DemandedSubElts =
1367           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1368       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1369                                Known2, TLO, Depth + 1))
1370         return true;
1371       // Known bits are shared by every demanded subvector element.
1372       if (!!DemandedSubElts)
1373         Known = Known.intersectWith(Known2);
1374     }
1375     break;
1376   }
1377   case ISD::VECTOR_SHUFFLE: {
1378     assert(!VT.isScalableVector());
1379     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1380 
1381     // Collect demanded elements from shuffle operands..
1382     APInt DemandedLHS, DemandedRHS;
1383     if (!getShuffleDemandedElts(NumElts, ShuffleMask, DemandedElts, DemandedLHS,
1384                                 DemandedRHS))
1385       break;
1386 
1387     if (!!DemandedLHS || !!DemandedRHS) {
1388       SDValue Op0 = Op.getOperand(0);
1389       SDValue Op1 = Op.getOperand(1);
1390 
1391       Known.Zero.setAllBits();
1392       Known.One.setAllBits();
1393       if (!!DemandedLHS) {
1394         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1395                                  Depth + 1))
1396           return true;
1397         Known = Known.intersectWith(Known2);
1398       }
1399       if (!!DemandedRHS) {
1400         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1401                                  Depth + 1))
1402           return true;
1403         Known = Known.intersectWith(Known2);
1404       }
1405 
1406       // Attempt to avoid multi-use ops if we don't need anything from them.
1407       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1408           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1409       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1410           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1411       if (DemandedOp0 || DemandedOp1) {
1412         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1413         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1414         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1415         return TLO.CombineTo(Op, NewOp);
1416       }
1417     }
1418     break;
1419   }
1420   case ISD::AND: {
1421     SDValue Op0 = Op.getOperand(0);
1422     SDValue Op1 = Op.getOperand(1);
1423 
1424     // If the RHS is a constant, check to see if the LHS would be zero without
1425     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1426     // simplify the LHS, here we're using information from the LHS to simplify
1427     // the RHS.
1428     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1, DemandedElts)) {
1429       // Do not increment Depth here; that can cause an infinite loop.
1430       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1431       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1432       if ((LHSKnown.Zero & DemandedBits) ==
1433           (~RHSC->getAPIntValue() & DemandedBits))
1434         return TLO.CombineTo(Op, Op0);
1435 
1436       // If any of the set bits in the RHS are known zero on the LHS, shrink
1437       // the constant.
1438       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1439                                  DemandedElts, TLO))
1440         return true;
1441 
1442       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1443       // constant, but if this 'and' is only clearing bits that were just set by
1444       // the xor, then this 'and' can be eliminated by shrinking the mask of
1445       // the xor. For example, for a 32-bit X:
1446       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1447       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1448           LHSKnown.One == ~RHSC->getAPIntValue()) {
1449         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1450         return TLO.CombineTo(Op, Xor);
1451       }
1452     }
1453 
1454     // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I)
1455     // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits).
1456     if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR && !VT.isScalableVector() &&
1457         (Op0.getOperand(0).isUndef() ||
1458          ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) &&
1459         Op0->hasOneUse()) {
1460       unsigned NumSubElts =
1461           Op0.getOperand(1).getValueType().getVectorNumElements();
1462       unsigned SubIdx = Op0.getConstantOperandVal(2);
1463       APInt DemandedSub =
1464           APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts);
1465       KnownBits KnownSubMask =
1466           TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1);
1467       if (DemandedBits.isSubsetOf(KnownSubMask.One)) {
1468         SDValue NewAnd =
1469             TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1);
1470         SDValue NewInsert =
1471             TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd,
1472                             Op0.getOperand(1), Op0.getOperand(2));
1473         return TLO.CombineTo(Op, NewInsert);
1474       }
1475     }
1476 
1477     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1478                              Depth + 1))
1479       return true;
1480     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1481                              Known2, TLO, Depth + 1))
1482       return true;
1483 
1484     // If all of the demanded bits are known one on one side, return the other.
1485     // These bits cannot contribute to the result of the 'and'.
1486     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1487       return TLO.CombineTo(Op, Op0);
1488     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1489       return TLO.CombineTo(Op, Op1);
1490     // If all of the demanded bits in the inputs are known zeros, return zero.
1491     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1492       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1493     // If the RHS is a constant, see if we can simplify it.
1494     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1495                                TLO))
1496       return true;
1497     // If the operation can be done in a smaller type, do so.
1498     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1499       return true;
1500 
1501     // Attempt to avoid multi-use ops if we don't need anything from them.
1502     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1503       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1504           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1505       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1506           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1507       if (DemandedOp0 || DemandedOp1) {
1508         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1509         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1510         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1511         return TLO.CombineTo(Op, NewOp);
1512       }
1513     }
1514 
1515     Known &= Known2;
1516     break;
1517   }
1518   case ISD::OR: {
1519     SDValue Op0 = Op.getOperand(0);
1520     SDValue Op1 = Op.getOperand(1);
1521     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1522                              Depth + 1)) {
1523       Op->dropFlags(SDNodeFlags::Disjoint);
1524       return true;
1525     }
1526 
1527     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1528                              Known2, TLO, Depth + 1)) {
1529       Op->dropFlags(SDNodeFlags::Disjoint);
1530       return true;
1531     }
1532 
1533     // If all of the demanded bits are known zero on one side, return the other.
1534     // These bits cannot contribute to the result of the 'or'.
1535     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1536       return TLO.CombineTo(Op, Op0);
1537     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1538       return TLO.CombineTo(Op, Op1);
1539     // If the RHS is a constant, see if we can simplify it.
1540     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1541       return true;
1542     // If the operation can be done in a smaller type, do so.
1543     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1544       return true;
1545 
1546     // Attempt to avoid multi-use ops if we don't need anything from them.
1547     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1548       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1549           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1550       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1551           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1552       if (DemandedOp0 || DemandedOp1) {
1553         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1554         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1555         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1556         return TLO.CombineTo(Op, NewOp);
1557       }
1558     }
1559 
1560     // (or (and X, C1), (and (or X, Y), C2)) -> (or (and X, C1|C2), (and Y, C2))
1561     // TODO: Use SimplifyMultipleUseDemandedBits to peek through masks.
1562     if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::AND &&
1563         Op0->hasOneUse() && Op1->hasOneUse()) {
1564       // Attempt to match all commutations - m_c_Or would've been useful!
1565       for (int I = 0; I != 2; ++I) {
1566         SDValue X = Op.getOperand(I).getOperand(0);
1567         SDValue C1 = Op.getOperand(I).getOperand(1);
1568         SDValue Alt = Op.getOperand(1 - I).getOperand(0);
1569         SDValue C2 = Op.getOperand(1 - I).getOperand(1);
1570         if (Alt.getOpcode() == ISD::OR) {
1571           for (int J = 0; J != 2; ++J) {
1572             if (X == Alt.getOperand(J)) {
1573               SDValue Y = Alt.getOperand(1 - J);
1574               if (SDValue C12 = TLO.DAG.FoldConstantArithmetic(ISD::OR, dl, VT,
1575                                                                {C1, C2})) {
1576                 SDValue MaskX = TLO.DAG.getNode(ISD::AND, dl, VT, X, C12);
1577                 SDValue MaskY = TLO.DAG.getNode(ISD::AND, dl, VT, Y, C2);
1578                 return TLO.CombineTo(
1579                     Op, TLO.DAG.getNode(ISD::OR, dl, VT, MaskX, MaskY));
1580               }
1581             }
1582           }
1583         }
1584       }
1585     }
1586 
1587     Known |= Known2;
1588     break;
1589   }
1590   case ISD::XOR: {
1591     SDValue Op0 = Op.getOperand(0);
1592     SDValue Op1 = Op.getOperand(1);
1593 
1594     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1595                              Depth + 1))
1596       return true;
1597     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1598                              Depth + 1))
1599       return true;
1600 
1601     // If all of the demanded bits are known zero on one side, return the other.
1602     // These bits cannot contribute to the result of the 'xor'.
1603     if (DemandedBits.isSubsetOf(Known.Zero))
1604       return TLO.CombineTo(Op, Op0);
1605     if (DemandedBits.isSubsetOf(Known2.Zero))
1606       return TLO.CombineTo(Op, Op1);
1607     // If the operation can be done in a smaller type, do so.
1608     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1609       return true;
1610 
1611     // If all of the unknown bits are known to be zero on one side or the other
1612     // turn this into an *inclusive* or.
1613     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1614     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1615       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1616 
1617     ConstantSDNode *C = isConstOrConstSplat(Op1, DemandedElts);
1618     if (C) {
1619       // If one side is a constant, and all of the set bits in the constant are
1620       // also known set on the other side, turn this into an AND, as we know
1621       // the bits will be cleared.
1622       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1623       // NB: it is okay if more bits are known than are requested
1624       if (C->getAPIntValue() == Known2.One) {
1625         SDValue ANDC =
1626             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1627         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1628       }
1629 
1630       // If the RHS is a constant, see if we can change it. Don't alter a -1
1631       // constant because that's a 'not' op, and that is better for combining
1632       // and codegen.
1633       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1634         // We're flipping all demanded bits. Flip the undemanded bits too.
1635         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1636         return TLO.CombineTo(Op, New);
1637       }
1638 
1639       unsigned Op0Opcode = Op0.getOpcode();
1640       if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) {
1641         if (ConstantSDNode *ShiftC =
1642                 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1643           // Don't crash on an oversized shift. We can not guarantee that a
1644           // bogus shift has been simplified to undef.
1645           if (ShiftC->getAPIntValue().ult(BitWidth)) {
1646             uint64_t ShiftAmt = ShiftC->getZExtValue();
1647             APInt Ones = APInt::getAllOnes(BitWidth);
1648             Ones = Op0Opcode == ISD::SHL ? Ones.shl(ShiftAmt)
1649                                          : Ones.lshr(ShiftAmt);
1650             if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) &&
1651                 isDesirableToCommuteXorWithShift(Op.getNode())) {
1652               // If the xor constant is a demanded mask, do a 'not' before the
1653               // shift:
1654               // xor (X << ShiftC), XorC --> (not X) << ShiftC
1655               // xor (X >> ShiftC), XorC --> (not X) >> ShiftC
1656               SDValue Not = TLO.DAG.getNOT(dl, Op0.getOperand(0), VT);
1657               return TLO.CombineTo(Op, TLO.DAG.getNode(Op0Opcode, dl, VT, Not,
1658                                                        Op0.getOperand(1)));
1659             }
1660           }
1661         }
1662       }
1663     }
1664 
1665     // If we can't turn this into a 'not', try to shrink the constant.
1666     if (!C || !C->isAllOnes())
1667       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1668         return true;
1669 
1670     // Attempt to avoid multi-use ops if we don't need anything from them.
1671     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1672       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1673           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1674       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1675           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1676       if (DemandedOp0 || DemandedOp1) {
1677         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1678         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1679         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1680         return TLO.CombineTo(Op, NewOp);
1681       }
1682     }
1683 
1684     Known ^= Known2;
1685     break;
1686   }
1687   case ISD::SELECT:
1688     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1689                              Known, TLO, Depth + 1))
1690       return true;
1691     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
1692                              Known2, TLO, Depth + 1))
1693       return true;
1694 
1695     // If the operands are constants, see if we can simplify them.
1696     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1697       return true;
1698 
1699     // Only known if known in both the LHS and RHS.
1700     Known = Known.intersectWith(Known2);
1701     break;
1702   case ISD::VSELECT:
1703     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1704                              Known, TLO, Depth + 1))
1705       return true;
1706     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
1707                              Known2, TLO, Depth + 1))
1708       return true;
1709 
1710     // Only known if known in both the LHS and RHS.
1711     Known = Known.intersectWith(Known2);
1712     break;
1713   case ISD::SELECT_CC:
1714     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, DemandedElts,
1715                              Known, TLO, Depth + 1))
1716       return true;
1717     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1718                              Known2, TLO, Depth + 1))
1719       return true;
1720 
1721     // If the operands are constants, see if we can simplify them.
1722     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1723       return true;
1724 
1725     // Only known if known in both the LHS and RHS.
1726     Known = Known.intersectWith(Known2);
1727     break;
1728   case ISD::SETCC: {
1729     SDValue Op0 = Op.getOperand(0);
1730     SDValue Op1 = Op.getOperand(1);
1731     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1732     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1733     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1734     // -1, we may be able to bypass the setcc.
1735     if (DemandedBits.isSignMask() &&
1736         Op0.getScalarValueSizeInBits() == BitWidth &&
1737         getBooleanContents(Op0.getValueType()) ==
1738             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1739       // If we're testing X < 0, then this compare isn't needed - just use X!
1740       // FIXME: We're limiting to integer types here, but this should also work
1741       // if we don't care about FP signed-zero. The use of SETLT with FP means
1742       // that we don't care about NaNs.
1743       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1744           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1745         return TLO.CombineTo(Op, Op0);
1746 
1747       // TODO: Should we check for other forms of sign-bit comparisons?
1748       // Examples: X <= -1, X >= 0
1749     }
1750     if (getBooleanContents(Op0.getValueType()) ==
1751             TargetLowering::ZeroOrOneBooleanContent &&
1752         BitWidth > 1)
1753       Known.Zero.setBitsFrom(1);
1754     break;
1755   }
1756   case ISD::SHL: {
1757     SDValue Op0 = Op.getOperand(0);
1758     SDValue Op1 = Op.getOperand(1);
1759     EVT ShiftVT = Op1.getValueType();
1760 
1761     if (std::optional<uint64_t> KnownSA =
1762             TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) {
1763       unsigned ShAmt = *KnownSA;
1764       if (ShAmt == 0)
1765         return TLO.CombineTo(Op, Op0);
1766 
1767       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1768       // single shift.  We can do this if the bottom bits (which are shifted
1769       // out) are never demanded.
1770       // TODO - support non-uniform vector amounts.
1771       if (Op0.getOpcode() == ISD::SRL) {
1772         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1773           if (std::optional<uint64_t> InnerSA =
1774                   TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
1775             unsigned C1 = *InnerSA;
1776             unsigned Opc = ISD::SHL;
1777             int Diff = ShAmt - C1;
1778             if (Diff < 0) {
1779               Diff = -Diff;
1780               Opc = ISD::SRL;
1781             }
1782             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1783             return TLO.CombineTo(
1784                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1785           }
1786         }
1787       }
1788 
1789       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1790       // are not demanded. This will likely allow the anyext to be folded away.
1791       // TODO - support non-uniform vector amounts.
1792       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1793         SDValue InnerOp = Op0.getOperand(0);
1794         EVT InnerVT = InnerOp.getValueType();
1795         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1796         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1797             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1798           SDValue NarrowShl = TLO.DAG.getNode(
1799               ISD::SHL, dl, InnerVT, InnerOp,
1800               TLO.DAG.getShiftAmountConstant(ShAmt, InnerVT, dl));
1801           return TLO.CombineTo(
1802               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1803         }
1804 
1805         // Repeat the SHL optimization above in cases where an extension
1806         // intervenes: (shl (anyext (shr x, c1)), c2) to
1807         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1808         // aren't demanded (as above) and that the shifted upper c1 bits of
1809         // x aren't demanded.
1810         // TODO - support non-uniform vector amounts.
1811         if (InnerOp.getOpcode() == ISD::SRL && Op0.hasOneUse() &&
1812             InnerOp.hasOneUse()) {
1813           if (std::optional<uint64_t> SA2 = TLO.DAG.getValidShiftAmount(
1814                   InnerOp, DemandedElts, Depth + 2)) {
1815             unsigned InnerShAmt = *SA2;
1816             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1817                 DemandedBits.getActiveBits() <=
1818                     (InnerBits - InnerShAmt + ShAmt) &&
1819                 DemandedBits.countr_zero() >= ShAmt) {
1820               SDValue NewSA =
1821                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1822               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1823                                                InnerOp.getOperand(0));
1824               return TLO.CombineTo(
1825                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1826             }
1827           }
1828         }
1829       }
1830 
1831       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1832       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1833                                Depth + 1)) {
1834         // Disable the nsw and nuw flags. We can no longer guarantee that we
1835         // won't wrap after simplification.
1836         Op->dropFlags(SDNodeFlags::NoWrap);
1837         return true;
1838       }
1839       Known.Zero <<= ShAmt;
1840       Known.One <<= ShAmt;
1841       // low bits known zero.
1842       Known.Zero.setLowBits(ShAmt);
1843 
1844       // Attempt to avoid multi-use ops if we don't need anything from them.
1845       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1846         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1847             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1848         if (DemandedOp0) {
1849           SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1);
1850           return TLO.CombineTo(Op, NewOp);
1851         }
1852       }
1853 
1854       // TODO: Can we merge this fold with the one below?
1855       // Try shrinking the operation as long as the shift amount will still be
1856       // in range.
1857       if (ShAmt < DemandedBits.getActiveBits() && !VT.isVector() &&
1858           Op.getNode()->hasOneUse()) {
1859         // Search for the smallest integer type with free casts to and from
1860         // Op's type. For expedience, just check power-of-2 integer types.
1861         unsigned DemandedSize = DemandedBits.getActiveBits();
1862         for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize);
1863              SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1864           EVT SmallVT = EVT::getIntegerVT(*TLO.DAG.getContext(), SmallVTBits);
1865           if (isNarrowingProfitable(Op.getNode(), VT, SmallVT) &&
1866               isTypeDesirableForOp(ISD::SHL, SmallVT) &&
1867               isTruncateFree(VT, SmallVT) && isZExtFree(SmallVT, VT) &&
1868               (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, SmallVT))) {
1869             assert(DemandedSize <= SmallVTBits &&
1870                    "Narrowed below demanded bits?");
1871             // We found a type with free casts.
1872             SDValue NarrowShl = TLO.DAG.getNode(
1873                 ISD::SHL, dl, SmallVT,
1874                 TLO.DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
1875                 TLO.DAG.getShiftAmountConstant(ShAmt, SmallVT, dl));
1876             return TLO.CombineTo(
1877                 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1878           }
1879         }
1880       }
1881 
1882       // Narrow shift to lower half - similar to ShrinkDemandedOp.
1883       // (shl i64:x, K) -> (i64 zero_extend (shl (i32 (trunc i64:x)), K))
1884       // Only do this if we demand the upper half so the knownbits are correct.
1885       unsigned HalfWidth = BitWidth / 2;
1886       if ((BitWidth % 2) == 0 && !VT.isVector() && ShAmt < HalfWidth &&
1887           DemandedBits.countLeadingOnes() >= HalfWidth) {
1888         EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), HalfWidth);
1889         if (isNarrowingProfitable(Op.getNode(), VT, HalfVT) &&
1890             isTypeDesirableForOp(ISD::SHL, HalfVT) &&
1891             isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) &&
1892             (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, HalfVT))) {
1893           // If we're demanding the upper bits at all, we must ensure
1894           // that the upper bits of the shift result are known to be zero,
1895           // which is equivalent to the narrow shift being NUW.
1896           if (bool IsNUW = (Known.countMinLeadingZeros() >= HalfWidth)) {
1897             bool IsNSW = Known.countMinSignBits() > HalfWidth;
1898             SDNodeFlags Flags;
1899             Flags.setNoSignedWrap(IsNSW);
1900             Flags.setNoUnsignedWrap(IsNUW);
1901             SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0);
1902             SDValue NewShiftAmt =
1903                 TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl);
1904             SDValue NewShift = TLO.DAG.getNode(ISD::SHL, dl, HalfVT, NewOp,
1905                                                NewShiftAmt, Flags);
1906             SDValue NewExt =
1907                 TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift);
1908             return TLO.CombineTo(Op, NewExt);
1909           }
1910         }
1911       }
1912     } else {
1913       // This is a variable shift, so we can't shift the demand mask by a known
1914       // amount. But if we are not demanding high bits, then we are not
1915       // demanding those bits from the pre-shifted operand either.
1916       if (unsigned CTLZ = DemandedBits.countl_zero()) {
1917         APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ));
1918         if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO,
1919                                  Depth + 1)) {
1920           // Disable the nsw and nuw flags. We can no longer guarantee that we
1921           // won't wrap after simplification.
1922           Op->dropFlags(SDNodeFlags::NoWrap);
1923           return true;
1924         }
1925         Known.resetAll();
1926       }
1927     }
1928 
1929     // If we are only demanding sign bits then we can use the shift source
1930     // directly.
1931     if (std::optional<uint64_t> MaxSA =
1932             TLO.DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
1933       unsigned ShAmt = *MaxSA;
1934       unsigned NumSignBits =
1935           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1936       unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero();
1937       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1938         return TLO.CombineTo(Op, Op0);
1939     }
1940     break;
1941   }
1942   case ISD::SRL: {
1943     SDValue Op0 = Op.getOperand(0);
1944     SDValue Op1 = Op.getOperand(1);
1945     EVT ShiftVT = Op1.getValueType();
1946 
1947     if (std::optional<uint64_t> KnownSA =
1948             TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) {
1949       unsigned ShAmt = *KnownSA;
1950       if (ShAmt == 0)
1951         return TLO.CombineTo(Op, Op0);
1952 
1953       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1954       // single shift.  We can do this if the top bits (which are shifted out)
1955       // are never demanded.
1956       // TODO - support non-uniform vector amounts.
1957       if (Op0.getOpcode() == ISD::SHL) {
1958         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1959           if (std::optional<uint64_t> InnerSA =
1960                   TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
1961             unsigned C1 = *InnerSA;
1962             unsigned Opc = ISD::SRL;
1963             int Diff = ShAmt - C1;
1964             if (Diff < 0) {
1965               Diff = -Diff;
1966               Opc = ISD::SHL;
1967             }
1968             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1969             return TLO.CombineTo(
1970                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1971           }
1972         }
1973       }
1974 
1975       // If this is (srl (sra X, C1), ShAmt), see if we can combine this into a
1976       // single sra. We can do this if the top bits are never demanded.
1977       if (Op0.getOpcode() == ISD::SRA && Op0.hasOneUse()) {
1978         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1979           if (std::optional<uint64_t> InnerSA =
1980                   TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
1981             unsigned C1 = *InnerSA;
1982             // Clamp the combined shift amount if it exceeds the bit width.
1983             unsigned Combined = std::min(C1 + ShAmt, BitWidth - 1);
1984             SDValue NewSA = TLO.DAG.getConstant(Combined, dl, ShiftVT);
1985             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRA, dl, VT,
1986                                                      Op0.getOperand(0), NewSA));
1987           }
1988         }
1989       }
1990 
1991       APInt InDemandedMask = (DemandedBits << ShAmt);
1992 
1993       // If the shift is exact, then it does demand the low bits (and knows that
1994       // they are zero).
1995       if (Op->getFlags().hasExact())
1996         InDemandedMask.setLowBits(ShAmt);
1997 
1998       // Narrow shift to lower half - similar to ShrinkDemandedOp.
1999       // (srl i64:x, K) -> (i64 zero_extend (srl (i32 (trunc i64:x)), K))
2000       if ((BitWidth % 2) == 0 && !VT.isVector()) {
2001         APInt HiBits = APInt::getHighBitsSet(BitWidth, BitWidth / 2);
2002         EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), BitWidth / 2);
2003         if (isNarrowingProfitable(Op.getNode(), VT, HalfVT) &&
2004             isTypeDesirableForOp(ISD::SRL, HalfVT) &&
2005             isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) &&
2006             (!TLO.LegalOperations() || isOperationLegal(ISD::SRL, HalfVT)) &&
2007             ((InDemandedMask.countLeadingZeros() >= (BitWidth / 2)) ||
2008              TLO.DAG.MaskedValueIsZero(Op0, HiBits))) {
2009           SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0);
2010           SDValue NewShiftAmt =
2011               TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl);
2012           SDValue NewShift =
2013               TLO.DAG.getNode(ISD::SRL, dl, HalfVT, NewOp, NewShiftAmt);
2014           return TLO.CombineTo(
2015               Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift));
2016         }
2017       }
2018 
2019       // Compute the new bits that are at the top now.
2020       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
2021                                Depth + 1))
2022         return true;
2023       Known.Zero.lshrInPlace(ShAmt);
2024       Known.One.lshrInPlace(ShAmt);
2025       // High bits known zero.
2026       Known.Zero.setHighBits(ShAmt);
2027 
2028       // Attempt to avoid multi-use ops if we don't need anything from them.
2029       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2030         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2031             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
2032         if (DemandedOp0) {
2033           SDValue NewOp = TLO.DAG.getNode(ISD::SRL, dl, VT, DemandedOp0, Op1);
2034           return TLO.CombineTo(Op, NewOp);
2035         }
2036       }
2037     } else {
2038       // Use generic knownbits computation as it has support for non-uniform
2039       // shift amounts.
2040       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2041     }
2042 
2043     // If we are only demanding sign bits then we can use the shift source
2044     // directly.
2045     if (std::optional<uint64_t> MaxSA =
2046             TLO.DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
2047       unsigned ShAmt = *MaxSA;
2048       // Must already be signbits in DemandedBits bounds, and can't demand any
2049       // shifted in zeroes.
2050       if (DemandedBits.countl_zero() >= ShAmt) {
2051         unsigned NumSignBits =
2052             TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
2053         if (DemandedBits.countr_zero() >= (BitWidth - NumSignBits))
2054           return TLO.CombineTo(Op, Op0);
2055       }
2056     }
2057 
2058     // Try to match AVG patterns (after shift simplification).
2059     if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits,
2060                                         DemandedElts, Depth + 1))
2061       return TLO.CombineTo(Op, AVG);
2062 
2063     break;
2064   }
2065   case ISD::SRA: {
2066     SDValue Op0 = Op.getOperand(0);
2067     SDValue Op1 = Op.getOperand(1);
2068     EVT ShiftVT = Op1.getValueType();
2069 
2070     // If we only want bits that already match the signbit then we don't need
2071     // to shift.
2072     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countr_zero();
2073     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
2074         NumHiDemandedBits)
2075       return TLO.CombineTo(Op, Op0);
2076 
2077     // If this is an arithmetic shift right and only the low-bit is set, we can
2078     // always convert this into a logical shr, even if the shift amount is
2079     // variable.  The low bit of the shift cannot be an input sign bit unless
2080     // the shift amount is >= the size of the datatype, which is undefined.
2081     if (DemandedBits.isOne())
2082       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
2083 
2084     if (std::optional<uint64_t> KnownSA =
2085             TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) {
2086       unsigned ShAmt = *KnownSA;
2087       if (ShAmt == 0)
2088         return TLO.CombineTo(Op, Op0);
2089 
2090       // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target
2091       // supports sext_inreg.
2092       if (Op0.getOpcode() == ISD::SHL) {
2093         if (std::optional<uint64_t> InnerSA =
2094                 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
2095           unsigned LowBits = BitWidth - ShAmt;
2096           EVT ExtVT = EVT::getIntegerVT(*TLO.DAG.getContext(), LowBits);
2097           if (VT.isVector())
2098             ExtVT = EVT::getVectorVT(*TLO.DAG.getContext(), ExtVT,
2099                                      VT.getVectorElementCount());
2100 
2101           if (*InnerSA == ShAmt) {
2102             if (!TLO.LegalOperations() ||
2103                 getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) == Legal)
2104               return TLO.CombineTo(
2105                   Op, TLO.DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT,
2106                                       Op0.getOperand(0),
2107                                       TLO.DAG.getValueType(ExtVT)));
2108 
2109             // Even if we can't convert to sext_inreg, we might be able to
2110             // remove this shift pair if the input is already sign extended.
2111             unsigned NumSignBits =
2112                 TLO.DAG.ComputeNumSignBits(Op0.getOperand(0), DemandedElts);
2113             if (NumSignBits > ShAmt)
2114               return TLO.CombineTo(Op, Op0.getOperand(0));
2115           }
2116         }
2117       }
2118 
2119       APInt InDemandedMask = (DemandedBits << ShAmt);
2120 
2121       // If the shift is exact, then it does demand the low bits (and knows that
2122       // they are zero).
2123       if (Op->getFlags().hasExact())
2124         InDemandedMask.setLowBits(ShAmt);
2125 
2126       // If any of the demanded bits are produced by the sign extension, we also
2127       // demand the input sign bit.
2128       if (DemandedBits.countl_zero() < ShAmt)
2129         InDemandedMask.setSignBit();
2130 
2131       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
2132                                Depth + 1))
2133         return true;
2134       Known.Zero.lshrInPlace(ShAmt);
2135       Known.One.lshrInPlace(ShAmt);
2136 
2137       // If the input sign bit is known to be zero, or if none of the top bits
2138       // are demanded, turn this into an unsigned shift right.
2139       if (Known.Zero[BitWidth - ShAmt - 1] ||
2140           DemandedBits.countl_zero() >= ShAmt) {
2141         SDNodeFlags Flags;
2142         Flags.setExact(Op->getFlags().hasExact());
2143         return TLO.CombineTo(
2144             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
2145       }
2146 
2147       int Log2 = DemandedBits.exactLogBase2();
2148       if (Log2 >= 0) {
2149         // The bit must come from the sign.
2150         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
2151         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
2152       }
2153 
2154       if (Known.One[BitWidth - ShAmt - 1])
2155         // New bits are known one.
2156         Known.One.setHighBits(ShAmt);
2157 
2158       // Attempt to avoid multi-use ops if we don't need anything from them.
2159       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2160         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2161             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
2162         if (DemandedOp0) {
2163           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
2164           return TLO.CombineTo(Op, NewOp);
2165         }
2166       }
2167     }
2168 
2169     // Try to match AVG patterns (after shift simplification).
2170     if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits,
2171                                         DemandedElts, Depth + 1))
2172       return TLO.CombineTo(Op, AVG);
2173 
2174     break;
2175   }
2176   case ISD::FSHL:
2177   case ISD::FSHR: {
2178     SDValue Op0 = Op.getOperand(0);
2179     SDValue Op1 = Op.getOperand(1);
2180     SDValue Op2 = Op.getOperand(2);
2181     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
2182 
2183     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
2184       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
2185 
2186       // For fshl, 0-shift returns the 1st arg.
2187       // For fshr, 0-shift returns the 2nd arg.
2188       if (Amt == 0) {
2189         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
2190                                  Known, TLO, Depth + 1))
2191           return true;
2192         break;
2193       }
2194 
2195       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
2196       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
2197       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
2198       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
2199       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
2200                                Depth + 1))
2201         return true;
2202       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
2203                                Depth + 1))
2204         return true;
2205 
2206       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
2207       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
2208       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
2209       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
2210       Known = Known.unionWith(Known2);
2211 
2212       // Attempt to avoid multi-use ops if we don't need anything from them.
2213       if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() ||
2214           !DemandedElts.isAllOnes()) {
2215         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2216             Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1);
2217         SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2218             Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1);
2219         if (DemandedOp0 || DemandedOp1) {
2220           DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
2221           DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
2222           SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0,
2223                                           DemandedOp1, Op2);
2224           return TLO.CombineTo(Op, NewOp);
2225         }
2226       }
2227     }
2228 
2229     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2230     if (isPowerOf2_32(BitWidth)) {
2231       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
2232       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
2233                                Known2, TLO, Depth + 1))
2234         return true;
2235     }
2236     break;
2237   }
2238   case ISD::ROTL:
2239   case ISD::ROTR: {
2240     SDValue Op0 = Op.getOperand(0);
2241     SDValue Op1 = Op.getOperand(1);
2242     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
2243 
2244     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
2245     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
2246       return TLO.CombineTo(Op, Op0);
2247 
2248     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
2249       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
2250       unsigned RevAmt = BitWidth - Amt;
2251 
2252       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
2253       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
2254       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
2255       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
2256                                Depth + 1))
2257         return true;
2258 
2259       // rot*(x, 0) --> x
2260       if (Amt == 0)
2261         return TLO.CombineTo(Op, Op0);
2262 
2263       // See if we don't demand either half of the rotated bits.
2264       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
2265           DemandedBits.countr_zero() >= (IsROTL ? Amt : RevAmt)) {
2266         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
2267         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
2268       }
2269       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
2270           DemandedBits.countl_zero() >= (IsROTL ? RevAmt : Amt)) {
2271         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
2272         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
2273       }
2274     }
2275 
2276     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2277     if (isPowerOf2_32(BitWidth)) {
2278       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
2279       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
2280                                Depth + 1))
2281         return true;
2282     }
2283     break;
2284   }
2285   case ISD::SMIN:
2286   case ISD::SMAX:
2287   case ISD::UMIN:
2288   case ISD::UMAX: {
2289     unsigned Opc = Op.getOpcode();
2290     SDValue Op0 = Op.getOperand(0);
2291     SDValue Op1 = Op.getOperand(1);
2292 
2293     // If we're only demanding signbits, then we can simplify to OR/AND node.
2294     unsigned BitOp =
2295         (Opc == ISD::SMIN || Opc == ISD::UMAX) ? ISD::OR : ISD::AND;
2296     unsigned NumSignBits =
2297         std::min(TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1),
2298                  TLO.DAG.ComputeNumSignBits(Op1, DemandedElts, Depth + 1));
2299     unsigned NumDemandedUpperBits = BitWidth - DemandedBits.countr_zero();
2300     if (NumSignBits >= NumDemandedUpperBits)
2301       return TLO.CombineTo(Op, TLO.DAG.getNode(BitOp, SDLoc(Op), VT, Op0, Op1));
2302 
2303     // Check if one arg is always less/greater than (or equal) to the other arg.
2304     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
2305     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
2306     switch (Opc) {
2307     case ISD::SMIN:
2308       if (std::optional<bool> IsSLE = KnownBits::sle(Known0, Known1))
2309         return TLO.CombineTo(Op, *IsSLE ? Op0 : Op1);
2310       if (std::optional<bool> IsSLT = KnownBits::slt(Known0, Known1))
2311         return TLO.CombineTo(Op, *IsSLT ? Op0 : Op1);
2312       Known = KnownBits::smin(Known0, Known1);
2313       break;
2314     case ISD::SMAX:
2315       if (std::optional<bool> IsSGE = KnownBits::sge(Known0, Known1))
2316         return TLO.CombineTo(Op, *IsSGE ? Op0 : Op1);
2317       if (std::optional<bool> IsSGT = KnownBits::sgt(Known0, Known1))
2318         return TLO.CombineTo(Op, *IsSGT ? Op0 : Op1);
2319       Known = KnownBits::smax(Known0, Known1);
2320       break;
2321     case ISD::UMIN:
2322       if (std::optional<bool> IsULE = KnownBits::ule(Known0, Known1))
2323         return TLO.CombineTo(Op, *IsULE ? Op0 : Op1);
2324       if (std::optional<bool> IsULT = KnownBits::ult(Known0, Known1))
2325         return TLO.CombineTo(Op, *IsULT ? Op0 : Op1);
2326       Known = KnownBits::umin(Known0, Known1);
2327       break;
2328     case ISD::UMAX:
2329       if (std::optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
2330         return TLO.CombineTo(Op, *IsUGE ? Op0 : Op1);
2331       if (std::optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
2332         return TLO.CombineTo(Op, *IsUGT ? Op0 : Op1);
2333       Known = KnownBits::umax(Known0, Known1);
2334       break;
2335     }
2336     break;
2337   }
2338   case ISD::BITREVERSE: {
2339     SDValue Src = Op.getOperand(0);
2340     APInt DemandedSrcBits = DemandedBits.reverseBits();
2341     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2342                              Depth + 1))
2343       return true;
2344     Known.One = Known2.One.reverseBits();
2345     Known.Zero = Known2.Zero.reverseBits();
2346     break;
2347   }
2348   case ISD::BSWAP: {
2349     SDValue Src = Op.getOperand(0);
2350 
2351     // If the only bits demanded come from one byte of the bswap result,
2352     // just shift the input byte into position to eliminate the bswap.
2353     unsigned NLZ = DemandedBits.countl_zero();
2354     unsigned NTZ = DemandedBits.countr_zero();
2355 
2356     // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
2357     // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
2358     // have 14 leading zeros, round to 8.
2359     NLZ = alignDown(NLZ, 8);
2360     NTZ = alignDown(NTZ, 8);
2361     // If we need exactly one byte, we can do this transformation.
2362     if (BitWidth - NLZ - NTZ == 8) {
2363       // Replace this with either a left or right shift to get the byte into
2364       // the right place.
2365       unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
2366       if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
2367         unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
2368         SDValue ShAmt = TLO.DAG.getShiftAmountConstant(ShiftAmount, VT, dl);
2369         SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
2370         return TLO.CombineTo(Op, NewOp);
2371       }
2372     }
2373 
2374     APInt DemandedSrcBits = DemandedBits.byteSwap();
2375     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2376                              Depth + 1))
2377       return true;
2378     Known.One = Known2.One.byteSwap();
2379     Known.Zero = Known2.Zero.byteSwap();
2380     break;
2381   }
2382   case ISD::CTPOP: {
2383     // If only 1 bit is demanded, replace with PARITY as long as we're before
2384     // op legalization.
2385     // FIXME: Limit to scalars for now.
2386     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
2387       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
2388                                                Op.getOperand(0)));
2389 
2390     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2391     break;
2392   }
2393   case ISD::SIGN_EXTEND_INREG: {
2394     SDValue Op0 = Op.getOperand(0);
2395     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2396     unsigned ExVTBits = ExVT.getScalarSizeInBits();
2397 
2398     // If we only care about the highest bit, don't bother shifting right.
2399     if (DemandedBits.isSignMask()) {
2400       unsigned MinSignedBits =
2401           TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
2402       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2403       // However if the input is already sign extended we expect the sign
2404       // extension to be dropped altogether later and do not simplify.
2405       if (!AlreadySignExtended) {
2406         // Compute the correct shift amount type, which must be getShiftAmountTy
2407         // for scalar types after legalization.
2408         SDValue ShiftAmt =
2409             TLO.DAG.getShiftAmountConstant(BitWidth - ExVTBits, VT, dl);
2410         return TLO.CombineTo(Op,
2411                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
2412       }
2413     }
2414 
2415     // If none of the extended bits are demanded, eliminate the sextinreg.
2416     if (DemandedBits.getActiveBits() <= ExVTBits)
2417       return TLO.CombineTo(Op, Op0);
2418 
2419     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
2420 
2421     // Since the sign extended bits are demanded, we know that the sign
2422     // bit is demanded.
2423     InputDemandedBits.setBit(ExVTBits - 1);
2424 
2425     if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO,
2426                              Depth + 1))
2427       return true;
2428 
2429     // If the sign bit of the input is known set or clear, then we know the
2430     // top bits of the result.
2431 
2432     // If the input sign bit is known zero, convert this into a zero extension.
2433     if (Known.Zero[ExVTBits - 1])
2434       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
2435 
2436     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
2437     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
2438       Known.One.setBitsFrom(ExVTBits);
2439       Known.Zero &= Mask;
2440     } else { // Input sign bit unknown
2441       Known.Zero &= Mask;
2442       Known.One &= Mask;
2443     }
2444     break;
2445   }
2446   case ISD::BUILD_PAIR: {
2447     EVT HalfVT = Op.getOperand(0).getValueType();
2448     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
2449 
2450     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
2451     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
2452 
2453     KnownBits KnownLo, KnownHi;
2454 
2455     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
2456       return true;
2457 
2458     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
2459       return true;
2460 
2461     Known = KnownHi.concat(KnownLo);
2462     break;
2463   }
2464   case ISD::ZERO_EXTEND_VECTOR_INREG:
2465     if (VT.isScalableVector())
2466       return false;
2467     [[fallthrough]];
2468   case ISD::ZERO_EXTEND: {
2469     SDValue Src = Op.getOperand(0);
2470     EVT SrcVT = Src.getValueType();
2471     unsigned InBits = SrcVT.getScalarSizeInBits();
2472     unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2473     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
2474 
2475     // If none of the top bits are demanded, convert this into an any_extend.
2476     if (DemandedBits.getActiveBits() <= InBits) {
2477       // If we only need the non-extended bits of the bottom element
2478       // then we can just bitcast to the result.
2479       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2480           VT.getSizeInBits() == SrcVT.getSizeInBits())
2481         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2482 
2483       unsigned Opc =
2484           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2485       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2486         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2487     }
2488 
2489     APInt InDemandedBits = DemandedBits.trunc(InBits);
2490     APInt InDemandedElts = DemandedElts.zext(InElts);
2491     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2492                              Depth + 1)) {
2493       Op->dropFlags(SDNodeFlags::NonNeg);
2494       return true;
2495     }
2496     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2497     Known = Known.zext(BitWidth);
2498 
2499     // Attempt to avoid multi-use ops if we don't need anything from them.
2500     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2501             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2502       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2503     break;
2504   }
2505   case ISD::SIGN_EXTEND_VECTOR_INREG:
2506     if (VT.isScalableVector())
2507       return false;
2508     [[fallthrough]];
2509   case ISD::SIGN_EXTEND: {
2510     SDValue Src = Op.getOperand(0);
2511     EVT SrcVT = Src.getValueType();
2512     unsigned InBits = SrcVT.getScalarSizeInBits();
2513     unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2514     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
2515 
2516     APInt InDemandedElts = DemandedElts.zext(InElts);
2517     APInt InDemandedBits = DemandedBits.trunc(InBits);
2518 
2519     // Since some of the sign extended bits are demanded, we know that the sign
2520     // bit is demanded.
2521     InDemandedBits.setBit(InBits - 1);
2522 
2523     // If none of the top bits are demanded, convert this into an any_extend.
2524     if (DemandedBits.getActiveBits() <= InBits) {
2525       // If we only need the non-extended bits of the bottom element
2526       // then we can just bitcast to the result.
2527       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2528           VT.getSizeInBits() == SrcVT.getSizeInBits())
2529         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2530 
2531       // Don't lose an all signbits 0/-1 splat on targets with 0/-1 booleans.
2532       if (getBooleanContents(VT) != ZeroOrNegativeOneBooleanContent ||
2533           TLO.DAG.ComputeNumSignBits(Src, InDemandedElts, Depth + 1) !=
2534               InBits) {
2535         unsigned Opc =
2536             IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2537         if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2538           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2539       }
2540     }
2541 
2542     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2543                              Depth + 1))
2544       return true;
2545     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2546 
2547     // If the sign bit is known one, the top bits match.
2548     Known = Known.sext(BitWidth);
2549 
2550     // If the sign bit is known zero, convert this to a zero extend.
2551     if (Known.isNonNegative()) {
2552       unsigned Opc =
2553           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
2554       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) {
2555         SDNodeFlags Flags;
2556         if (!IsVecInReg)
2557           Flags |= SDNodeFlags::NonNeg;
2558         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src, Flags));
2559       }
2560     }
2561 
2562     // Attempt to avoid multi-use ops if we don't need anything from them.
2563     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2564             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2565       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2566     break;
2567   }
2568   case ISD::ANY_EXTEND_VECTOR_INREG:
2569     if (VT.isScalableVector())
2570       return false;
2571     [[fallthrough]];
2572   case ISD::ANY_EXTEND: {
2573     SDValue Src = Op.getOperand(0);
2574     EVT SrcVT = Src.getValueType();
2575     unsigned InBits = SrcVT.getScalarSizeInBits();
2576     unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2577     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2578 
2579     // If we only need the bottom element then we can just bitcast.
2580     // TODO: Handle ANY_EXTEND?
2581     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2582         VT.getSizeInBits() == SrcVT.getSizeInBits())
2583       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2584 
2585     APInt InDemandedBits = DemandedBits.trunc(InBits);
2586     APInt InDemandedElts = DemandedElts.zext(InElts);
2587     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2588                              Depth + 1))
2589       return true;
2590     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2591     Known = Known.anyext(BitWidth);
2592 
2593     // Attempt to avoid multi-use ops if we don't need anything from them.
2594     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2595             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2596       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2597     break;
2598   }
2599   case ISD::TRUNCATE: {
2600     SDValue Src = Op.getOperand(0);
2601 
2602     // Simplify the input, using demanded bit information, and compute the known
2603     // zero/one bits live out.
2604     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2605     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2606     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2607                              Depth + 1)) {
2608       // Disable the nsw and nuw flags. We can no longer guarantee that we
2609       // won't wrap after simplification.
2610       Op->dropFlags(SDNodeFlags::NoWrap);
2611       return true;
2612     }
2613     Known = Known.trunc(BitWidth);
2614 
2615     // Attempt to avoid multi-use ops if we don't need anything from them.
2616     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2617             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2618       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2619 
2620     // If the input is only used by this truncate, see if we can shrink it based
2621     // on the known demanded bits.
2622     switch (Src.getOpcode()) {
2623     default:
2624       break;
2625     case ISD::SRL:
2626       // Shrink SRL by a constant if none of the high bits shifted in are
2627       // demanded.
2628       if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2629         // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2630         // undesirable.
2631         break;
2632 
2633       if (Src.getNode()->hasOneUse()) {
2634         if (isTruncateFree(Src, VT) &&
2635             !isTruncateFree(Src.getValueType(), VT)) {
2636           // If truncate is only free at trunc(srl), do not turn it into
2637           // srl(trunc). The check is done by first check the truncate is free
2638           // at Src's opcode(srl), then check the truncate is not done by
2639           // referencing sub-register. In test, if both trunc(srl) and
2640           // srl(trunc)'s trunc are free, srl(trunc) performs better. If only
2641           // trunc(srl)'s trunc is free, trunc(srl) is better.
2642           break;
2643         }
2644 
2645         std::optional<uint64_t> ShAmtC =
2646             TLO.DAG.getValidShiftAmount(Src, DemandedElts, Depth + 2);
2647         if (!ShAmtC || *ShAmtC >= BitWidth)
2648           break;
2649         uint64_t ShVal = *ShAmtC;
2650 
2651         APInt HighBits =
2652             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2653         HighBits.lshrInPlace(ShVal);
2654         HighBits = HighBits.trunc(BitWidth);
2655         if (!(HighBits & DemandedBits)) {
2656           // None of the shifted in bits are needed.  Add a truncate of the
2657           // shift input, then shift it.
2658           SDValue NewShAmt = TLO.DAG.getShiftAmountConstant(ShVal, VT, dl);
2659           SDValue NewTrunc =
2660               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2661           return TLO.CombineTo(
2662               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2663         }
2664       }
2665       break;
2666     }
2667 
2668     break;
2669   }
2670   case ISD::AssertZext: {
2671     // AssertZext demands all of the high bits, plus any of the low bits
2672     // demanded by its users.
2673     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2674     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2675     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2676                              TLO, Depth + 1))
2677       return true;
2678 
2679     Known.Zero |= ~InMask;
2680     Known.One &= (~Known.Zero);
2681     break;
2682   }
2683   case ISD::EXTRACT_VECTOR_ELT: {
2684     SDValue Src = Op.getOperand(0);
2685     SDValue Idx = Op.getOperand(1);
2686     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2687     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2688 
2689     if (SrcEltCnt.isScalable())
2690       return false;
2691 
2692     // Demand the bits from every vector element without a constant index.
2693     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2694     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2695     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2696       if (CIdx->getAPIntValue().ult(NumSrcElts))
2697         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2698 
2699     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2700     // anything about the extended bits.
2701     APInt DemandedSrcBits = DemandedBits;
2702     if (BitWidth > EltBitWidth)
2703       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2704 
2705     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2706                              Depth + 1))
2707       return true;
2708 
2709     // Attempt to avoid multi-use ops if we don't need anything from them.
2710     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2711       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2712               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2713         SDValue NewOp =
2714             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2715         return TLO.CombineTo(Op, NewOp);
2716       }
2717     }
2718 
2719     Known = Known2;
2720     if (BitWidth > EltBitWidth)
2721       Known = Known.anyext(BitWidth);
2722     break;
2723   }
2724   case ISD::BITCAST: {
2725     if (VT.isScalableVector())
2726       return false;
2727     SDValue Src = Op.getOperand(0);
2728     EVT SrcVT = Src.getValueType();
2729     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2730 
2731     // If this is an FP->Int bitcast and if the sign bit is the only
2732     // thing demanded, turn this into a FGETSIGN.
2733     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2734         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2735         SrcVT.isFloatingPoint()) {
2736       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2737       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2738       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2739           SrcVT != MVT::f128) {
2740         // Cannot eliminate/lower SHL for f128 yet.
2741         EVT Ty = OpVTLegal ? VT : MVT::i32;
2742         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2743         // place.  We expect the SHL to be eliminated by other optimizations.
2744         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2745         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2746         if (!OpVTLegal && OpVTSizeInBits > 32)
2747           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2748         unsigned ShVal = Op.getValueSizeInBits() - 1;
2749         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2750         return TLO.CombineTo(Op,
2751                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2752       }
2753     }
2754 
2755     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2756     // Demand the elt/bit if any of the original elts/bits are demanded.
2757     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2758       unsigned Scale = BitWidth / NumSrcEltBits;
2759       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2760       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2761       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2762       for (unsigned i = 0; i != Scale; ++i) {
2763         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2764         unsigned BitOffset = EltOffset * NumSrcEltBits;
2765         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2766         if (!Sub.isZero()) {
2767           DemandedSrcBits |= Sub;
2768           for (unsigned j = 0; j != NumElts; ++j)
2769             if (DemandedElts[j])
2770               DemandedSrcElts.setBit((j * Scale) + i);
2771         }
2772       }
2773 
2774       APInt KnownSrcUndef, KnownSrcZero;
2775       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2776                                      KnownSrcZero, TLO, Depth + 1))
2777         return true;
2778 
2779       KnownBits KnownSrcBits;
2780       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2781                                KnownSrcBits, TLO, Depth + 1))
2782         return true;
2783     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2784       // TODO - bigendian once we have test coverage.
2785       unsigned Scale = NumSrcEltBits / BitWidth;
2786       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2787       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2788       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2789       for (unsigned i = 0; i != NumElts; ++i)
2790         if (DemandedElts[i]) {
2791           unsigned Offset = (i % Scale) * BitWidth;
2792           DemandedSrcBits.insertBits(DemandedBits, Offset);
2793           DemandedSrcElts.setBit(i / Scale);
2794         }
2795 
2796       if (SrcVT.isVector()) {
2797         APInt KnownSrcUndef, KnownSrcZero;
2798         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2799                                        KnownSrcZero, TLO, Depth + 1))
2800           return true;
2801       }
2802 
2803       KnownBits KnownSrcBits;
2804       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2805                                KnownSrcBits, TLO, Depth + 1))
2806         return true;
2807 
2808       // Attempt to avoid multi-use ops if we don't need anything from them.
2809       if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2810         if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2811                 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2812           SDValue NewOp = TLO.DAG.getBitcast(VT, DemandedSrc);
2813           return TLO.CombineTo(Op, NewOp);
2814         }
2815       }
2816     }
2817 
2818     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2819     // recursive call where Known may be useful to the caller.
2820     if (Depth > 0) {
2821       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2822       return false;
2823     }
2824     break;
2825   }
2826   case ISD::MUL:
2827     if (DemandedBits.isPowerOf2()) {
2828       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
2829       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
2830       // odd (has LSB set), then the left-shifted low bit of X is the answer.
2831       unsigned CTZ = DemandedBits.countr_zero();
2832       ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
2833       if (C && C->getAPIntValue().countr_zero() == CTZ) {
2834         SDValue AmtC = TLO.DAG.getShiftAmountConstant(CTZ, VT, dl);
2835         SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
2836         return TLO.CombineTo(Op, Shl);
2837       }
2838     }
2839     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
2840     // X * X is odd iff X is odd.
2841     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
2842     if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
2843       SDValue One = TLO.DAG.getConstant(1, dl, VT);
2844       SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
2845       return TLO.CombineTo(Op, And1);
2846     }
2847     [[fallthrough]];
2848   case ISD::ADD:
2849   case ISD::SUB: {
2850     // Add, Sub, and Mul don't demand any bits in positions beyond that
2851     // of the highest bit demanded of them.
2852     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2853     SDNodeFlags Flags = Op.getNode()->getFlags();
2854     unsigned DemandedBitsLZ = DemandedBits.countl_zero();
2855     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2856     KnownBits KnownOp0, KnownOp1;
2857     auto GetDemandedBitsLHSMask = [&](APInt Demanded,
2858                                       const KnownBits &KnownRHS) {
2859       if (Op.getOpcode() == ISD::MUL)
2860         Demanded.clearHighBits(KnownRHS.countMinTrailingZeros());
2861       return Demanded;
2862     };
2863     if (SimplifyDemandedBits(Op1, LoMask, DemandedElts, KnownOp1, TLO,
2864                              Depth + 1) ||
2865         SimplifyDemandedBits(Op0, GetDemandedBitsLHSMask(LoMask, KnownOp1),
2866                              DemandedElts, KnownOp0, TLO, Depth + 1) ||
2867         // See if the operation should be performed at a smaller bit width.
2868         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2869       // Disable the nsw and nuw flags. We can no longer guarantee that we
2870       // won't wrap after simplification.
2871       Op->dropFlags(SDNodeFlags::NoWrap);
2872       return true;
2873     }
2874 
2875     // neg x with only low bit demanded is simply x.
2876     if (Op.getOpcode() == ISD::SUB && DemandedBits.isOne() &&
2877         isNullConstant(Op0))
2878       return TLO.CombineTo(Op, Op1);
2879 
2880     // Attempt to avoid multi-use ops if we don't need anything from them.
2881     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2882       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2883           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2884       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2885           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2886       if (DemandedOp0 || DemandedOp1) {
2887         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2888         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2889         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1,
2890                                         Flags & ~SDNodeFlags::NoWrap);
2891         return TLO.CombineTo(Op, NewOp);
2892       }
2893     }
2894 
2895     // If we have a constant operand, we may be able to turn it into -1 if we
2896     // do not demand the high bits. This can make the constant smaller to
2897     // encode, allow more general folding, or match specialized instruction
2898     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2899     // is probably not useful (and could be detrimental).
2900     ConstantSDNode *C = isConstOrConstSplat(Op1);
2901     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2902     if (C && !C->isAllOnes() && !C->isOne() &&
2903         (C->getAPIntValue() | HighMask).isAllOnes()) {
2904       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2905       // Disable the nsw and nuw flags. We can no longer guarantee that we
2906       // won't wrap after simplification.
2907       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1,
2908                                       Flags & ~SDNodeFlags::NoWrap);
2909       return TLO.CombineTo(Op, NewOp);
2910     }
2911 
2912     // Match a multiply with a disguised negated-power-of-2 and convert to a
2913     // an equivalent shift-left amount.
2914     // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2915     auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
2916       if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
2917         return 0;
2918 
2919       // Don't touch opaque constants. Also, ignore zero and power-of-2
2920       // multiplies. Those will get folded later.
2921       ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
2922       if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
2923           !MulC->getAPIntValue().isPowerOf2()) {
2924         APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
2925         if (UnmaskedC.isNegatedPowerOf2())
2926           return (-UnmaskedC).logBase2();
2927       }
2928       return 0;
2929     };
2930 
2931     auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y,
2932                        unsigned ShlAmt) {
2933       SDValue ShlAmtC = TLO.DAG.getShiftAmountConstant(ShlAmt, VT, dl);
2934       SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
2935       SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl);
2936       return TLO.CombineTo(Op, Res);
2937     };
2938 
2939     if (isOperationLegalOrCustom(ISD::SHL, VT)) {
2940       if (Op.getOpcode() == ISD::ADD) {
2941         // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2942         if (unsigned ShAmt = getShiftLeftAmt(Op0))
2943           return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt);
2944         // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
2945         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2946           return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt);
2947       }
2948       if (Op.getOpcode() == ISD::SUB) {
2949         // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
2950         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2951           return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt);
2952       }
2953     }
2954 
2955     if (Op.getOpcode() == ISD::MUL) {
2956       Known = KnownBits::mul(KnownOp0, KnownOp1);
2957     } else { // Op.getOpcode() is either ISD::ADD or ISD::SUB.
2958       Known = KnownBits::computeForAddSub(
2959           Op.getOpcode() == ISD::ADD, Flags.hasNoSignedWrap(),
2960           Flags.hasNoUnsignedWrap(), KnownOp0, KnownOp1);
2961     }
2962     break;
2963   }
2964   default:
2965     // We also ask the target about intrinsics (which could be specific to it).
2966     if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2967         Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
2968       // TODO: Probably okay to remove after audit; here to reduce change size
2969       // in initial enablement patch for scalable vectors
2970       if (Op.getValueType().isScalableVector())
2971         break;
2972       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2973                                             Known, TLO, Depth))
2974         return true;
2975       break;
2976     }
2977 
2978     // Just use computeKnownBits to compute output bits.
2979     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2980     break;
2981   }
2982 
2983   // If we know the value of all of the demanded bits, return this as a
2984   // constant.
2985   if (!isTargetCanonicalConstantNode(Op) &&
2986       DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2987     // Avoid folding to a constant if any OpaqueConstant is involved.
2988     const SDNode *N = Op.getNode();
2989     for (SDNode *Op :
2990          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2991       if (auto *C = dyn_cast<ConstantSDNode>(Op))
2992         if (C->isOpaque())
2993           return false;
2994     }
2995     if (VT.isInteger())
2996       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2997     if (VT.isFloatingPoint())
2998       return TLO.CombineTo(
2999           Op, TLO.DAG.getConstantFP(APFloat(VT.getFltSemantics(), Known.One),
3000                                     dl, VT));
3001   }
3002 
3003   // A multi use 'all demanded elts' simplify failed to find any knownbits.
3004   // Try again just for the original demanded elts.
3005   // Ensure we do this AFTER constant folding above.
3006   if (HasMultiUse && Known.isUnknown() && !OriginalDemandedElts.isAllOnes())
3007     Known = TLO.DAG.computeKnownBits(Op, OriginalDemandedElts, Depth);
3008 
3009   return false;
3010 }
3011 
3012 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
3013                                                 const APInt &DemandedElts,
3014                                                 DAGCombinerInfo &DCI) const {
3015   SelectionDAG &DAG = DCI.DAG;
3016   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
3017                         !DCI.isBeforeLegalizeOps());
3018 
3019   APInt KnownUndef, KnownZero;
3020   bool Simplified =
3021       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
3022   if (Simplified) {
3023     DCI.AddToWorklist(Op.getNode());
3024     DCI.CommitTargetLoweringOpt(TLO);
3025   }
3026 
3027   return Simplified;
3028 }
3029 
3030 /// Given a vector binary operation and known undefined elements for each input
3031 /// operand, compute whether each element of the output is undefined.
3032 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
3033                                          const APInt &UndefOp0,
3034                                          const APInt &UndefOp1) {
3035   EVT VT = BO.getValueType();
3036   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
3037          "Vector binop only");
3038 
3039   EVT EltVT = VT.getVectorElementType();
3040   unsigned NumElts = VT.isFixedLengthVector() ? VT.getVectorNumElements() : 1;
3041   assert(UndefOp0.getBitWidth() == NumElts &&
3042          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
3043 
3044   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
3045                                    const APInt &UndefVals) {
3046     if (UndefVals[Index])
3047       return DAG.getUNDEF(EltVT);
3048 
3049     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
3050       // Try hard to make sure that the getNode() call is not creating temporary
3051       // nodes. Ignore opaque integers because they do not constant fold.
3052       SDValue Elt = BV->getOperand(Index);
3053       auto *C = dyn_cast<ConstantSDNode>(Elt);
3054       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
3055         return Elt;
3056     }
3057 
3058     return SDValue();
3059   };
3060 
3061   APInt KnownUndef = APInt::getZero(NumElts);
3062   for (unsigned i = 0; i != NumElts; ++i) {
3063     // If both inputs for this element are either constant or undef and match
3064     // the element type, compute the constant/undef result for this element of
3065     // the vector.
3066     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
3067     // not handle FP constants. The code within getNode() should be refactored
3068     // to avoid the danger of creating a bogus temporary node here.
3069     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
3070     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
3071     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
3072       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
3073         KnownUndef.setBit(i);
3074   }
3075   return KnownUndef;
3076 }
3077 
3078 bool TargetLowering::SimplifyDemandedVectorElts(
3079     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
3080     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
3081     bool AssumeSingleUse) const {
3082   EVT VT = Op.getValueType();
3083   unsigned Opcode = Op.getOpcode();
3084   APInt DemandedElts = OriginalDemandedElts;
3085   unsigned NumElts = DemandedElts.getBitWidth();
3086   assert(VT.isVector() && "Expected vector op");
3087 
3088   KnownUndef = KnownZero = APInt::getZero(NumElts);
3089 
3090   if (!shouldSimplifyDemandedVectorElts(Op, TLO))
3091     return false;
3092 
3093   // TODO: For now we assume we know nothing about scalable vectors.
3094   if (VT.isScalableVector())
3095     return false;
3096 
3097   assert(VT.getVectorNumElements() == NumElts &&
3098          "Mask size mismatches value type element count!");
3099 
3100   // Undef operand.
3101   if (Op.isUndef()) {
3102     KnownUndef.setAllBits();
3103     return false;
3104   }
3105 
3106   // If Op has other users, assume that all elements are needed.
3107   if (!AssumeSingleUse && !Op.getNode()->hasOneUse())
3108     DemandedElts.setAllBits();
3109 
3110   // Not demanding any elements from Op.
3111   if (DemandedElts == 0) {
3112     KnownUndef.setAllBits();
3113     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3114   }
3115 
3116   // Limit search depth.
3117   if (Depth >= SelectionDAG::MaxRecursionDepth)
3118     return false;
3119 
3120   SDLoc DL(Op);
3121   unsigned EltSizeInBits = VT.getScalarSizeInBits();
3122   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
3123 
3124   // Helper for demanding the specified elements and all the bits of both binary
3125   // operands.
3126   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
3127     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
3128                                                            TLO.DAG, Depth + 1);
3129     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
3130                                                            TLO.DAG, Depth + 1);
3131     if (NewOp0 || NewOp1) {
3132       SDValue NewOp =
3133           TLO.DAG.getNode(Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0,
3134                           NewOp1 ? NewOp1 : Op1, Op->getFlags());
3135       return TLO.CombineTo(Op, NewOp);
3136     }
3137     return false;
3138   };
3139 
3140   switch (Opcode) {
3141   case ISD::SCALAR_TO_VECTOR: {
3142     if (!DemandedElts[0]) {
3143       KnownUndef.setAllBits();
3144       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3145     }
3146     SDValue ScalarSrc = Op.getOperand(0);
3147     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
3148       SDValue Src = ScalarSrc.getOperand(0);
3149       SDValue Idx = ScalarSrc.getOperand(1);
3150       EVT SrcVT = Src.getValueType();
3151 
3152       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
3153 
3154       if (SrcEltCnt.isScalable())
3155         return false;
3156 
3157       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
3158       if (isNullConstant(Idx)) {
3159         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
3160         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
3161         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
3162         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3163                                        TLO, Depth + 1))
3164           return true;
3165       }
3166     }
3167     KnownUndef.setHighBits(NumElts - 1);
3168     break;
3169   }
3170   case ISD::BITCAST: {
3171     SDValue Src = Op.getOperand(0);
3172     EVT SrcVT = Src.getValueType();
3173 
3174     // We only handle vectors here.
3175     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
3176     if (!SrcVT.isVector())
3177       break;
3178 
3179     // Fast handling of 'identity' bitcasts.
3180     unsigned NumSrcElts = SrcVT.getVectorNumElements();
3181     if (NumSrcElts == NumElts)
3182       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
3183                                         KnownZero, TLO, Depth + 1);
3184 
3185     APInt SrcDemandedElts, SrcZero, SrcUndef;
3186 
3187     // Bitcast from 'large element' src vector to 'small element' vector, we
3188     // must demand a source element if any DemandedElt maps to it.
3189     if ((NumElts % NumSrcElts) == 0) {
3190       unsigned Scale = NumElts / NumSrcElts;
3191       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
3192       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3193                                      TLO, Depth + 1))
3194         return true;
3195 
3196       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
3197       // of the large element.
3198       // TODO - bigendian once we have test coverage.
3199       if (IsLE) {
3200         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
3201         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
3202         for (unsigned i = 0; i != NumElts; ++i)
3203           if (DemandedElts[i]) {
3204             unsigned Ofs = (i % Scale) * EltSizeInBits;
3205             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
3206           }
3207 
3208         KnownBits Known;
3209         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
3210                                  TLO, Depth + 1))
3211           return true;
3212 
3213         // The bitcast has split each wide element into a number of
3214         // narrow subelements. We have just computed the Known bits
3215         // for wide elements. See if element splitting results in
3216         // some subelements being zero. Only for demanded elements!
3217         for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
3218           if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits)
3219                    .isAllOnes())
3220             continue;
3221           for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
3222             unsigned Elt = Scale * SrcElt + SubElt;
3223             if (DemandedElts[Elt])
3224               KnownZero.setBit(Elt);
3225           }
3226         }
3227       }
3228 
3229       // If the src element is zero/undef then all the output elements will be -
3230       // only demanded elements are guaranteed to be correct.
3231       for (unsigned i = 0; i != NumSrcElts; ++i) {
3232         if (SrcDemandedElts[i]) {
3233           if (SrcZero[i])
3234             KnownZero.setBits(i * Scale, (i + 1) * Scale);
3235           if (SrcUndef[i])
3236             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
3237         }
3238       }
3239     }
3240 
3241     // Bitcast from 'small element' src vector to 'large element' vector, we
3242     // demand all smaller source elements covered by the larger demanded element
3243     // of this vector.
3244     if ((NumSrcElts % NumElts) == 0) {
3245       unsigned Scale = NumSrcElts / NumElts;
3246       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
3247       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3248                                      TLO, Depth + 1))
3249         return true;
3250 
3251       // If all the src elements covering an output element are zero/undef, then
3252       // the output element will be as well, assuming it was demanded.
3253       for (unsigned i = 0; i != NumElts; ++i) {
3254         if (DemandedElts[i]) {
3255           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
3256             KnownZero.setBit(i);
3257           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
3258             KnownUndef.setBit(i);
3259         }
3260       }
3261     }
3262     break;
3263   }
3264   case ISD::FREEZE: {
3265     SDValue N0 = Op.getOperand(0);
3266     if (TLO.DAG.isGuaranteedNotToBeUndefOrPoison(N0, DemandedElts,
3267                                                  /*PoisonOnly=*/false))
3268       return TLO.CombineTo(Op, N0);
3269 
3270     // TODO: Replace this with the general fold from DAGCombiner::visitFREEZE
3271     // freeze(op(x, ...)) -> op(freeze(x), ...).
3272     if (N0.getOpcode() == ISD::SCALAR_TO_VECTOR && DemandedElts == 1)
3273       return TLO.CombineTo(
3274           Op, TLO.DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT,
3275                               TLO.DAG.getFreeze(N0.getOperand(0))));
3276     break;
3277   }
3278   case ISD::BUILD_VECTOR: {
3279     // Check all elements and simplify any unused elements with UNDEF.
3280     if (!DemandedElts.isAllOnes()) {
3281       // Don't simplify BROADCASTS.
3282       if (llvm::any_of(Op->op_values(),
3283                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
3284         SmallVector<SDValue, 32> Ops(Op->ops());
3285         bool Updated = false;
3286         for (unsigned i = 0; i != NumElts; ++i) {
3287           if (!DemandedElts[i] && !Ops[i].isUndef()) {
3288             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
3289             KnownUndef.setBit(i);
3290             Updated = true;
3291           }
3292         }
3293         if (Updated)
3294           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
3295       }
3296     }
3297     for (unsigned i = 0; i != NumElts; ++i) {
3298       SDValue SrcOp = Op.getOperand(i);
3299       if (SrcOp.isUndef()) {
3300         KnownUndef.setBit(i);
3301       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
3302                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
3303         KnownZero.setBit(i);
3304       }
3305     }
3306     break;
3307   }
3308   case ISD::CONCAT_VECTORS: {
3309     EVT SubVT = Op.getOperand(0).getValueType();
3310     unsigned NumSubVecs = Op.getNumOperands();
3311     unsigned NumSubElts = SubVT.getVectorNumElements();
3312     for (unsigned i = 0; i != NumSubVecs; ++i) {
3313       SDValue SubOp = Op.getOperand(i);
3314       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
3315       APInt SubUndef, SubZero;
3316       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
3317                                      Depth + 1))
3318         return true;
3319       KnownUndef.insertBits(SubUndef, i * NumSubElts);
3320       KnownZero.insertBits(SubZero, i * NumSubElts);
3321     }
3322 
3323     // Attempt to avoid multi-use ops if we don't need anything from them.
3324     if (!DemandedElts.isAllOnes()) {
3325       bool FoundNewSub = false;
3326       SmallVector<SDValue, 2> DemandedSubOps;
3327       for (unsigned i = 0; i != NumSubVecs; ++i) {
3328         SDValue SubOp = Op.getOperand(i);
3329         APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
3330         SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts(
3331             SubOp, SubElts, TLO.DAG, Depth + 1);
3332         DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp);
3333         FoundNewSub = NewSubOp ? true : FoundNewSub;
3334       }
3335       if (FoundNewSub) {
3336         SDValue NewOp =
3337             TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps);
3338         return TLO.CombineTo(Op, NewOp);
3339       }
3340     }
3341     break;
3342   }
3343   case ISD::INSERT_SUBVECTOR: {
3344     // Demand any elements from the subvector and the remainder from the src its
3345     // inserted into.
3346     SDValue Src = Op.getOperand(0);
3347     SDValue Sub = Op.getOperand(1);
3348     uint64_t Idx = Op.getConstantOperandVal(2);
3349     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3350     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3351     APInt DemandedSrcElts = DemandedElts;
3352     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
3353 
3354     APInt SubUndef, SubZero;
3355     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
3356                                    Depth + 1))
3357       return true;
3358 
3359     // If none of the src operand elements are demanded, replace it with undef.
3360     if (!DemandedSrcElts && !Src.isUndef())
3361       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
3362                                                TLO.DAG.getUNDEF(VT), Sub,
3363                                                Op.getOperand(2)));
3364 
3365     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
3366                                    TLO, Depth + 1))
3367       return true;
3368     KnownUndef.insertBits(SubUndef, Idx);
3369     KnownZero.insertBits(SubZero, Idx);
3370 
3371     // Attempt to avoid multi-use ops if we don't need anything from them.
3372     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
3373       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3374           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3375       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
3376           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
3377       if (NewSrc || NewSub) {
3378         NewSrc = NewSrc ? NewSrc : Src;
3379         NewSub = NewSub ? NewSub : Sub;
3380         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3381                                         NewSub, Op.getOperand(2));
3382         return TLO.CombineTo(Op, NewOp);
3383       }
3384     }
3385     break;
3386   }
3387   case ISD::EXTRACT_SUBVECTOR: {
3388     // Offset the demanded elts by the subvector index.
3389     SDValue Src = Op.getOperand(0);
3390     if (Src.getValueType().isScalableVector())
3391       break;
3392     uint64_t Idx = Op.getConstantOperandVal(1);
3393     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3394     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3395 
3396     APInt SrcUndef, SrcZero;
3397     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3398                                    Depth + 1))
3399       return true;
3400     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
3401     KnownZero = SrcZero.extractBits(NumElts, Idx);
3402 
3403     // Attempt to avoid multi-use ops if we don't need anything from them.
3404     if (!DemandedElts.isAllOnes()) {
3405       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3406           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3407       if (NewSrc) {
3408         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3409                                         Op.getOperand(1));
3410         return TLO.CombineTo(Op, NewOp);
3411       }
3412     }
3413     break;
3414   }
3415   case ISD::INSERT_VECTOR_ELT: {
3416     SDValue Vec = Op.getOperand(0);
3417     SDValue Scl = Op.getOperand(1);
3418     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3419 
3420     // For a legal, constant insertion index, if we don't need this insertion
3421     // then strip it, else remove it from the demanded elts.
3422     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
3423       unsigned Idx = CIdx->getZExtValue();
3424       if (!DemandedElts[Idx])
3425         return TLO.CombineTo(Op, Vec);
3426 
3427       APInt DemandedVecElts(DemandedElts);
3428       DemandedVecElts.clearBit(Idx);
3429       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
3430                                      KnownZero, TLO, Depth + 1))
3431         return true;
3432 
3433       KnownUndef.setBitVal(Idx, Scl.isUndef());
3434 
3435       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
3436       break;
3437     }
3438 
3439     APInt VecUndef, VecZero;
3440     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
3441                                    Depth + 1))
3442       return true;
3443     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
3444     break;
3445   }
3446   case ISD::VSELECT: {
3447     SDValue Sel = Op.getOperand(0);
3448     SDValue LHS = Op.getOperand(1);
3449     SDValue RHS = Op.getOperand(2);
3450 
3451     // Try to transform the select condition based on the current demanded
3452     // elements.
3453     APInt UndefSel, ZeroSel;
3454     if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, ZeroSel, TLO,
3455                                    Depth + 1))
3456       return true;
3457 
3458     // See if we can simplify either vselect operand.
3459     APInt DemandedLHS(DemandedElts);
3460     APInt DemandedRHS(DemandedElts);
3461     APInt UndefLHS, ZeroLHS;
3462     APInt UndefRHS, ZeroRHS;
3463     if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3464                                    Depth + 1))
3465       return true;
3466     if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3467                                    Depth + 1))
3468       return true;
3469 
3470     KnownUndef = UndefLHS & UndefRHS;
3471     KnownZero = ZeroLHS & ZeroRHS;
3472 
3473     // If we know that the selected element is always zero, we don't need the
3474     // select value element.
3475     APInt DemandedSel = DemandedElts & ~KnownZero;
3476     if (DemandedSel != DemandedElts)
3477       if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, ZeroSel, TLO,
3478                                      Depth + 1))
3479         return true;
3480 
3481     break;
3482   }
3483   case ISD::VECTOR_SHUFFLE: {
3484     SDValue LHS = Op.getOperand(0);
3485     SDValue RHS = Op.getOperand(1);
3486     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
3487 
3488     // Collect demanded elements from shuffle operands..
3489     APInt DemandedLHS(NumElts, 0);
3490     APInt DemandedRHS(NumElts, 0);
3491     for (unsigned i = 0; i != NumElts; ++i) {
3492       int M = ShuffleMask[i];
3493       if (M < 0 || !DemandedElts[i])
3494         continue;
3495       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
3496       if (M < (int)NumElts)
3497         DemandedLHS.setBit(M);
3498       else
3499         DemandedRHS.setBit(M - NumElts);
3500     }
3501 
3502     // See if we can simplify either shuffle operand.
3503     APInt UndefLHS, ZeroLHS;
3504     APInt UndefRHS, ZeroRHS;
3505     if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3506                                    Depth + 1))
3507       return true;
3508     if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3509                                    Depth + 1))
3510       return true;
3511 
3512     // Simplify mask using undef elements from LHS/RHS.
3513     bool Updated = false;
3514     bool IdentityLHS = true, IdentityRHS = true;
3515     SmallVector<int, 32> NewMask(ShuffleMask);
3516     for (unsigned i = 0; i != NumElts; ++i) {
3517       int &M = NewMask[i];
3518       if (M < 0)
3519         continue;
3520       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
3521           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
3522         Updated = true;
3523         M = -1;
3524       }
3525       IdentityLHS &= (M < 0) || (M == (int)i);
3526       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3527     }
3528 
3529     // Update legal shuffle masks based on demanded elements if it won't reduce
3530     // to Identity which can cause premature removal of the shuffle mask.
3531     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
3532       SDValue LegalShuffle =
3533           buildLegalVectorShuffle(VT, DL, LHS, RHS, NewMask, TLO.DAG);
3534       if (LegalShuffle)
3535         return TLO.CombineTo(Op, LegalShuffle);
3536     }
3537 
3538     // Propagate undef/zero elements from LHS/RHS.
3539     for (unsigned i = 0; i != NumElts; ++i) {
3540       int M = ShuffleMask[i];
3541       if (M < 0) {
3542         KnownUndef.setBit(i);
3543       } else if (M < (int)NumElts) {
3544         if (UndefLHS[M])
3545           KnownUndef.setBit(i);
3546         if (ZeroLHS[M])
3547           KnownZero.setBit(i);
3548       } else {
3549         if (UndefRHS[M - NumElts])
3550           KnownUndef.setBit(i);
3551         if (ZeroRHS[M - NumElts])
3552           KnownZero.setBit(i);
3553       }
3554     }
3555     break;
3556   }
3557   case ISD::ANY_EXTEND_VECTOR_INREG:
3558   case ISD::SIGN_EXTEND_VECTOR_INREG:
3559   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3560     APInt SrcUndef, SrcZero;
3561     SDValue Src = Op.getOperand(0);
3562     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3563     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3564     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3565                                    Depth + 1))
3566       return true;
3567     KnownZero = SrcZero.zextOrTrunc(NumElts);
3568     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
3569 
3570     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
3571         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3572         DemandedSrcElts == 1) {
3573       // aext - if we just need the bottom element then we can bitcast.
3574       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
3575     }
3576 
3577     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
3578       // zext(undef) upper bits are guaranteed to be zero.
3579       if (DemandedElts.isSubsetOf(KnownUndef))
3580         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3581       KnownUndef.clearAllBits();
3582 
3583       // zext - if we just need the bottom element then we can mask:
3584       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
3585       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
3586           Op->isOnlyUserOf(Src.getNode()) &&
3587           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3588         SDLoc DL(Op);
3589         EVT SrcVT = Src.getValueType();
3590         EVT SrcSVT = SrcVT.getScalarType();
3591         SmallVector<SDValue> MaskElts;
3592         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
3593         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
3594         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
3595         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
3596                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
3597           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
3598           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
3599         }
3600       }
3601     }
3602     break;
3603   }
3604 
3605   // TODO: There are more binop opcodes that could be handled here - MIN,
3606   // MAX, saturated math, etc.
3607   case ISD::ADD: {
3608     SDValue Op0 = Op.getOperand(0);
3609     SDValue Op1 = Op.getOperand(1);
3610     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
3611       APInt UndefLHS, ZeroLHS;
3612       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3613                                      Depth + 1, /*AssumeSingleUse*/ true))
3614         return true;
3615     }
3616     [[fallthrough]];
3617   }
3618   case ISD::AVGCEILS:
3619   case ISD::AVGCEILU:
3620   case ISD::AVGFLOORS:
3621   case ISD::AVGFLOORU:
3622   case ISD::OR:
3623   case ISD::XOR:
3624   case ISD::SUB:
3625   case ISD::FADD:
3626   case ISD::FSUB:
3627   case ISD::FMUL:
3628   case ISD::FDIV:
3629   case ISD::FREM: {
3630     SDValue Op0 = Op.getOperand(0);
3631     SDValue Op1 = Op.getOperand(1);
3632 
3633     APInt UndefRHS, ZeroRHS;
3634     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3635                                    Depth + 1))
3636       return true;
3637     APInt UndefLHS, ZeroLHS;
3638     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3639                                    Depth + 1))
3640       return true;
3641 
3642     KnownZero = ZeroLHS & ZeroRHS;
3643     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
3644 
3645     // Attempt to avoid multi-use ops if we don't need anything from them.
3646     // TODO - use KnownUndef to relax the demandedelts?
3647     if (!DemandedElts.isAllOnes())
3648       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3649         return true;
3650     break;
3651   }
3652   case ISD::SHL:
3653   case ISD::SRL:
3654   case ISD::SRA:
3655   case ISD::ROTL:
3656   case ISD::ROTR: {
3657     SDValue Op0 = Op.getOperand(0);
3658     SDValue Op1 = Op.getOperand(1);
3659 
3660     APInt UndefRHS, ZeroRHS;
3661     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3662                                    Depth + 1))
3663       return true;
3664     APInt UndefLHS, ZeroLHS;
3665     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3666                                    Depth + 1))
3667       return true;
3668 
3669     KnownZero = ZeroLHS;
3670     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
3671 
3672     // Attempt to avoid multi-use ops if we don't need anything from them.
3673     // TODO - use KnownUndef to relax the demandedelts?
3674     if (!DemandedElts.isAllOnes())
3675       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3676         return true;
3677     break;
3678   }
3679   case ISD::MUL:
3680   case ISD::MULHU:
3681   case ISD::MULHS:
3682   case ISD::AND: {
3683     SDValue Op0 = Op.getOperand(0);
3684     SDValue Op1 = Op.getOperand(1);
3685 
3686     APInt SrcUndef, SrcZero;
3687     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3688                                    Depth + 1))
3689       return true;
3690     // If we know that a demanded element was zero in Op1 we don't need to
3691     // demand it in Op0 - its guaranteed to be zero.
3692     APInt DemandedElts0 = DemandedElts & ~SrcZero;
3693     if (SimplifyDemandedVectorElts(Op0, DemandedElts0, KnownUndef, KnownZero,
3694                                    TLO, Depth + 1))
3695       return true;
3696 
3697     KnownUndef &= DemandedElts0;
3698     KnownZero &= DemandedElts0;
3699 
3700     // If every element pair has a zero/undef then just fold to zero.
3701     // fold (and x, undef) -> 0  /  (and x, 0) -> 0
3702     // fold (mul x, undef) -> 0  /  (mul x, 0) -> 0
3703     if (DemandedElts.isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef))
3704       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3705 
3706     // If either side has a zero element, then the result element is zero, even
3707     // if the other is an UNDEF.
3708     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
3709     // and then handle 'and' nodes with the rest of the binop opcodes.
3710     KnownZero |= SrcZero;
3711     KnownUndef &= SrcUndef;
3712     KnownUndef &= ~KnownZero;
3713 
3714     // Attempt to avoid multi-use ops if we don't need anything from them.
3715     if (!DemandedElts.isAllOnes())
3716       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3717         return true;
3718     break;
3719   }
3720   case ISD::TRUNCATE:
3721   case ISD::SIGN_EXTEND:
3722   case ISD::ZERO_EXTEND:
3723     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3724                                    KnownZero, TLO, Depth + 1))
3725       return true;
3726 
3727     if (!DemandedElts.isAllOnes())
3728       if (SDValue NewOp = SimplifyMultipleUseDemandedVectorElts(
3729               Op.getOperand(0), DemandedElts, TLO.DAG, Depth + 1))
3730         return TLO.CombineTo(Op, TLO.DAG.getNode(Opcode, SDLoc(Op), VT, NewOp));
3731 
3732     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
3733       // zext(undef) upper bits are guaranteed to be zero.
3734       if (DemandedElts.isSubsetOf(KnownUndef))
3735         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3736       KnownUndef.clearAllBits();
3737     }
3738     break;
3739   default: {
3740     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3741       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3742                                                   KnownZero, TLO, Depth))
3743         return true;
3744     } else {
3745       KnownBits Known;
3746       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3747       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3748                                TLO, Depth, AssumeSingleUse))
3749         return true;
3750     }
3751     break;
3752   }
3753   }
3754   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3755 
3756   // Constant fold all undef cases.
3757   // TODO: Handle zero cases as well.
3758   if (DemandedElts.isSubsetOf(KnownUndef))
3759     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3760 
3761   return false;
3762 }
3763 
3764 /// Determine which of the bits specified in Mask are known to be either zero or
3765 /// one and return them in the Known.
3766 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3767                                                    KnownBits &Known,
3768                                                    const APInt &DemandedElts,
3769                                                    const SelectionDAG &DAG,
3770                                                    unsigned Depth) const {
3771   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3772           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3773           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3774           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3775          "Should use MaskedValueIsZero if you don't know whether Op"
3776          " is a target node!");
3777   Known.resetAll();
3778 }
3779 
3780 void TargetLowering::computeKnownBitsForTargetInstr(
3781     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3782     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3783     unsigned Depth) const {
3784   Known.resetAll();
3785 }
3786 
3787 void TargetLowering::computeKnownBitsForFrameIndex(
3788   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3789   // The low bits are known zero if the pointer is aligned.
3790   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3791 }
3792 
3793 Align TargetLowering::computeKnownAlignForTargetInstr(
3794   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3795   unsigned Depth) const {
3796   return Align(1);
3797 }
3798 
3799 /// This method can be implemented by targets that want to expose additional
3800 /// information about sign bits to the DAG Combiner.
3801 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3802                                                          const APInt &,
3803                                                          const SelectionDAG &,
3804                                                          unsigned Depth) const {
3805   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3806           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3807           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3808           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3809          "Should use ComputeNumSignBits if you don't know whether Op"
3810          " is a target node!");
3811   return 1;
3812 }
3813 
3814 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3815   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3816   const MachineRegisterInfo &MRI, unsigned Depth) const {
3817   return 1;
3818 }
3819 
3820 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3821     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3822     TargetLoweringOpt &TLO, unsigned Depth) const {
3823   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3824           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3825           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3826           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3827          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3828          " is a target node!");
3829   return false;
3830 }
3831 
3832 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3833     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3834     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3835   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3836           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3837           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3838           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3839          "Should use SimplifyDemandedBits if you don't know whether Op"
3840          " is a target node!");
3841   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3842   return false;
3843 }
3844 
3845 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3846     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3847     SelectionDAG &DAG, unsigned Depth) const {
3848   assert(
3849       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3850        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3851        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3852        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3853       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3854       " is a target node!");
3855   return SDValue();
3856 }
3857 
3858 SDValue
3859 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3860                                         SDValue N1, MutableArrayRef<int> Mask,
3861                                         SelectionDAG &DAG) const {
3862   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3863   if (!LegalMask) {
3864     std::swap(N0, N1);
3865     ShuffleVectorSDNode::commuteMask(Mask);
3866     LegalMask = isShuffleMaskLegal(Mask, VT);
3867   }
3868 
3869   if (!LegalMask)
3870     return SDValue();
3871 
3872   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3873 }
3874 
3875 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3876   return nullptr;
3877 }
3878 
3879 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3880     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3881     bool PoisonOnly, unsigned Depth) const {
3882   assert(
3883       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3884        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3885        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3886        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3887       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3888       " is a target node!");
3889 
3890   // If Op can't create undef/poison and none of its operands are undef/poison
3891   // then Op is never undef/poison.
3892   return !canCreateUndefOrPoisonForTargetNode(Op, DemandedElts, DAG, PoisonOnly,
3893                                               /*ConsiderFlags*/ true, Depth) &&
3894          all_of(Op->ops(), [&](SDValue V) {
3895            return DAG.isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly,
3896                                                        Depth + 1);
3897          });
3898 }
3899 
3900 bool TargetLowering::canCreateUndefOrPoisonForTargetNode(
3901     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3902     bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const {
3903   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3904           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3905           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3906           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3907          "Should use canCreateUndefOrPoison if you don't know whether Op"
3908          " is a target node!");
3909   // Be conservative and return true.
3910   return true;
3911 }
3912 
3913 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3914                                                   const SelectionDAG &DAG,
3915                                                   bool SNaN,
3916                                                   unsigned Depth) const {
3917   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3918           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3919           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3920           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3921          "Should use isKnownNeverNaN if you don't know whether Op"
3922          " is a target node!");
3923   return false;
3924 }
3925 
3926 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3927                                                const APInt &DemandedElts,
3928                                                APInt &UndefElts,
3929                                                const SelectionDAG &DAG,
3930                                                unsigned Depth) const {
3931   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3932           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3933           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3934           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3935          "Should use isSplatValue if you don't know whether Op"
3936          " is a target node!");
3937   return false;
3938 }
3939 
3940 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3941 // work with truncating build vectors and vectors with elements of less than
3942 // 8 bits.
3943 bool TargetLowering::isConstTrueVal(SDValue N) const {
3944   if (!N)
3945     return false;
3946 
3947   unsigned EltWidth;
3948   APInt CVal;
3949   if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
3950                                                /*AllowTruncation=*/true)) {
3951     CVal = CN->getAPIntValue();
3952     EltWidth = N.getValueType().getScalarSizeInBits();
3953   } else
3954     return false;
3955 
3956   // If this is a truncating splat, truncate the splat value.
3957   // Otherwise, we may fail to match the expected values below.
3958   if (EltWidth < CVal.getBitWidth())
3959     CVal = CVal.trunc(EltWidth);
3960 
3961   switch (getBooleanContents(N.getValueType())) {
3962   case UndefinedBooleanContent:
3963     return CVal[0];
3964   case ZeroOrOneBooleanContent:
3965     return CVal.isOne();
3966   case ZeroOrNegativeOneBooleanContent:
3967     return CVal.isAllOnes();
3968   }
3969 
3970   llvm_unreachable("Invalid boolean contents");
3971 }
3972 
3973 bool TargetLowering::isConstFalseVal(SDValue N) const {
3974   if (!N)
3975     return false;
3976 
3977   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3978   if (!CN) {
3979     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3980     if (!BV)
3981       return false;
3982 
3983     // Only interested in constant splats, we don't care about undef
3984     // elements in identifying boolean constants and getConstantSplatNode
3985     // returns NULL if all ops are undef;
3986     CN = BV->getConstantSplatNode();
3987     if (!CN)
3988       return false;
3989   }
3990 
3991   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3992     return !CN->getAPIntValue()[0];
3993 
3994   return CN->isZero();
3995 }
3996 
3997 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3998                                        bool SExt) const {
3999   if (VT == MVT::i1)
4000     return N->isOne();
4001 
4002   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
4003   switch (Cnt) {
4004   case TargetLowering::ZeroOrOneBooleanContent:
4005     // An extended value of 1 is always true, unless its original type is i1,
4006     // in which case it will be sign extended to -1.
4007     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
4008   case TargetLowering::UndefinedBooleanContent:
4009   case TargetLowering::ZeroOrNegativeOneBooleanContent:
4010     return N->isAllOnes() && SExt;
4011   }
4012   llvm_unreachable("Unexpected enumeration.");
4013 }
4014 
4015 /// This helper function of SimplifySetCC tries to optimize the comparison when
4016 /// either operand of the SetCC node is a bitwise-and instruction.
4017 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
4018                                          ISD::CondCode Cond, const SDLoc &DL,
4019                                          DAGCombinerInfo &DCI) const {
4020   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
4021     std::swap(N0, N1);
4022 
4023   SelectionDAG &DAG = DCI.DAG;
4024   EVT OpVT = N0.getValueType();
4025   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
4026       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
4027     return SDValue();
4028 
4029   // (X & Y) != 0 --> zextOrTrunc(X & Y)
4030   // iff everything but LSB is known zero:
4031   if (Cond == ISD::SETNE && isNullConstant(N1) &&
4032       (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
4033        getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
4034     unsigned NumEltBits = OpVT.getScalarSizeInBits();
4035     APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
4036     if (DAG.MaskedValueIsZero(N0, UpperBits))
4037       return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
4038   }
4039 
4040   // Try to eliminate a power-of-2 mask constant by converting to a signbit
4041   // test in a narrow type that we can truncate to with no cost. Examples:
4042   // (i32 X & 32768) == 0 --> (trunc X to i16) >= 0
4043   // (i32 X & 32768) != 0 --> (trunc X to i16) < 0
4044   // TODO: This conservatively checks for type legality on the source and
4045   //       destination types. That may inhibit optimizations, but it also
4046   //       allows setcc->shift transforms that may be more beneficial.
4047   auto *AndC = dyn_cast<ConstantSDNode>(N0.getOperand(1));
4048   if (AndC && isNullConstant(N1) && AndC->getAPIntValue().isPowerOf2() &&
4049       isTypeLegal(OpVT) && N0.hasOneUse()) {
4050     EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(),
4051                                      AndC->getAPIntValue().getActiveBits());
4052     if (isTruncateFree(OpVT, NarrowVT) && isTypeLegal(NarrowVT)) {
4053       SDValue Trunc = DAG.getZExtOrTrunc(N0.getOperand(0), DL, NarrowVT);
4054       SDValue Zero = DAG.getConstant(0, DL, NarrowVT);
4055       return DAG.getSetCC(DL, VT, Trunc, Zero,
4056                           Cond == ISD::SETEQ ? ISD::SETGE : ISD::SETLT);
4057     }
4058   }
4059 
4060   // Match these patterns in any of their permutations:
4061   // (X & Y) == Y
4062   // (X & Y) != Y
4063   SDValue X, Y;
4064   if (N0.getOperand(0) == N1) {
4065     X = N0.getOperand(1);
4066     Y = N0.getOperand(0);
4067   } else if (N0.getOperand(1) == N1) {
4068     X = N0.getOperand(0);
4069     Y = N0.getOperand(1);
4070   } else {
4071     return SDValue();
4072   }
4073 
4074   // TODO: We should invert (X & Y) eq/ne 0 -> (X & Y) ne/eq Y if
4075   // `isXAndYEqZeroPreferableToXAndYEqY` is false. This is a bit difficult as
4076   // its liable to create and infinite loop.
4077   SDValue Zero = DAG.getConstant(0, DL, OpVT);
4078   if (isXAndYEqZeroPreferableToXAndYEqY(Cond, OpVT) &&
4079       DAG.isKnownToBeAPowerOfTwo(Y)) {
4080     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
4081     // Note that where Y is variable and is known to have at most one bit set
4082     // (for example, if it is Z & 1) we cannot do this; the expressions are not
4083     // equivalent when Y == 0.
4084     assert(OpVT.isInteger());
4085     Cond = ISD::getSetCCInverse(Cond, OpVT);
4086     if (DCI.isBeforeLegalizeOps() ||
4087         isCondCodeLegal(Cond, N0.getSimpleValueType()))
4088       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
4089   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
4090     // If the target supports an 'and-not' or 'and-complement' logic operation,
4091     // try to use that to make a comparison operation more efficient.
4092     // But don't do this transform if the mask is a single bit because there are
4093     // more efficient ways to deal with that case (for example, 'bt' on x86 or
4094     // 'rlwinm' on PPC).
4095 
4096     // Bail out if the compare operand that we want to turn into a zero is
4097     // already a zero (otherwise, infinite loop).
4098     if (isNullConstant(Y))
4099       return SDValue();
4100 
4101     // Transform this into: ~X & Y == 0.
4102     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
4103     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
4104     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
4105   }
4106 
4107   return SDValue();
4108 }
4109 
4110 /// There are multiple IR patterns that could be checking whether certain
4111 /// truncation of a signed number would be lossy or not. The pattern which is
4112 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
4113 /// We are looking for the following pattern: (KeptBits is a constant)
4114 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
4115 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
4116 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
4117 /// We will unfold it into the natural trunc+sext pattern:
4118 ///   ((%x << C) a>> C) dstcond %x
4119 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
4120 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
4121     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
4122     const SDLoc &DL) const {
4123   // We must be comparing with a constant.
4124   ConstantSDNode *C1;
4125   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
4126     return SDValue();
4127 
4128   // N0 should be:  add %x, (1 << (KeptBits-1))
4129   if (N0->getOpcode() != ISD::ADD)
4130     return SDValue();
4131 
4132   // And we must be 'add'ing a constant.
4133   ConstantSDNode *C01;
4134   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
4135     return SDValue();
4136 
4137   SDValue X = N0->getOperand(0);
4138   EVT XVT = X.getValueType();
4139 
4140   // Validate constants ...
4141 
4142   APInt I1 = C1->getAPIntValue();
4143 
4144   ISD::CondCode NewCond;
4145   if (Cond == ISD::CondCode::SETULT) {
4146     NewCond = ISD::CondCode::SETEQ;
4147   } else if (Cond == ISD::CondCode::SETULE) {
4148     NewCond = ISD::CondCode::SETEQ;
4149     // But need to 'canonicalize' the constant.
4150     I1 += 1;
4151   } else if (Cond == ISD::CondCode::SETUGT) {
4152     NewCond = ISD::CondCode::SETNE;
4153     // But need to 'canonicalize' the constant.
4154     I1 += 1;
4155   } else if (Cond == ISD::CondCode::SETUGE) {
4156     NewCond = ISD::CondCode::SETNE;
4157   } else
4158     return SDValue();
4159 
4160   APInt I01 = C01->getAPIntValue();
4161 
4162   auto checkConstants = [&I1, &I01]() -> bool {
4163     // Both of them must be power-of-two, and the constant from setcc is bigger.
4164     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
4165   };
4166 
4167   if (checkConstants()) {
4168     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
4169   } else {
4170     // What if we invert constants? (and the target predicate)
4171     I1.negate();
4172     I01.negate();
4173     assert(XVT.isInteger());
4174     NewCond = getSetCCInverse(NewCond, XVT);
4175     if (!checkConstants())
4176       return SDValue();
4177     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
4178   }
4179 
4180   // They are power-of-two, so which bit is set?
4181   const unsigned KeptBits = I1.logBase2();
4182   const unsigned KeptBitsMinusOne = I01.logBase2();
4183 
4184   // Magic!
4185   if (KeptBits != (KeptBitsMinusOne + 1))
4186     return SDValue();
4187   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
4188 
4189   // We don't want to do this in every single case.
4190   SelectionDAG &DAG = DCI.DAG;
4191   if (!shouldTransformSignedTruncationCheck(XVT, KeptBits))
4192     return SDValue();
4193 
4194   // Unfold into:  sext_inreg(%x) cond %x
4195   // Where 'cond' will be either 'eq' or 'ne'.
4196   SDValue SExtInReg = DAG.getNode(
4197       ISD::SIGN_EXTEND_INREG, DL, XVT, X,
4198       DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), KeptBits)));
4199   return DAG.getSetCC(DL, SCCVT, SExtInReg, X, NewCond);
4200 }
4201 
4202 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4203 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
4204     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
4205     DAGCombinerInfo &DCI, const SDLoc &DL) const {
4206   assert(isConstOrConstSplat(N1C) && isConstOrConstSplat(N1C)->isZero() &&
4207          "Should be a comparison with 0.");
4208   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4209          "Valid only for [in]equality comparisons.");
4210 
4211   unsigned NewShiftOpcode;
4212   SDValue X, C, Y;
4213 
4214   SelectionDAG &DAG = DCI.DAG;
4215 
4216   // Look for '(C l>>/<< Y)'.
4217   auto Match = [&NewShiftOpcode, &X, &C, &Y, &DAG, this](SDValue V) {
4218     // The shift should be one-use.
4219     if (!V.hasOneUse())
4220       return false;
4221     unsigned OldShiftOpcode = V.getOpcode();
4222     switch (OldShiftOpcode) {
4223     case ISD::SHL:
4224       NewShiftOpcode = ISD::SRL;
4225       break;
4226     case ISD::SRL:
4227       NewShiftOpcode = ISD::SHL;
4228       break;
4229     default:
4230       return false; // must be a logical shift.
4231     }
4232     // We should be shifting a constant.
4233     // FIXME: best to use isConstantOrConstantVector().
4234     C = V.getOperand(0);
4235     ConstantSDNode *CC =
4236         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
4237     if (!CC)
4238       return false;
4239     Y = V.getOperand(1);
4240 
4241     ConstantSDNode *XC =
4242         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
4243     return shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
4244         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
4245   };
4246 
4247   // LHS of comparison should be an one-use 'and'.
4248   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
4249     return SDValue();
4250 
4251   X = N0.getOperand(0);
4252   SDValue Mask = N0.getOperand(1);
4253 
4254   // 'and' is commutative!
4255   if (!Match(Mask)) {
4256     std::swap(X, Mask);
4257     if (!Match(Mask))
4258       return SDValue();
4259   }
4260 
4261   EVT VT = X.getValueType();
4262 
4263   // Produce:
4264   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
4265   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
4266   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
4267   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
4268   return T2;
4269 }
4270 
4271 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
4272 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
4273 /// handle the commuted versions of these patterns.
4274 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
4275                                            ISD::CondCode Cond, const SDLoc &DL,
4276                                            DAGCombinerInfo &DCI) const {
4277   unsigned BOpcode = N0.getOpcode();
4278   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
4279          "Unexpected binop");
4280   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
4281 
4282   // (X + Y) == X --> Y == 0
4283   // (X - Y) == X --> Y == 0
4284   // (X ^ Y) == X --> Y == 0
4285   SelectionDAG &DAG = DCI.DAG;
4286   EVT OpVT = N0.getValueType();
4287   SDValue X = N0.getOperand(0);
4288   SDValue Y = N0.getOperand(1);
4289   if (X == N1)
4290     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
4291 
4292   if (Y != N1)
4293     return SDValue();
4294 
4295   // (X + Y) == Y --> X == 0
4296   // (X ^ Y) == Y --> X == 0
4297   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
4298     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
4299 
4300   // The shift would not be valid if the operands are boolean (i1).
4301   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
4302     return SDValue();
4303 
4304   // (X - Y) == Y --> X == Y << 1
4305   SDValue One = DAG.getShiftAmountConstant(1, OpVT, DL);
4306   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
4307   if (!DCI.isCalledByLegalizer())
4308     DCI.AddToWorklist(YShl1.getNode());
4309   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
4310 }
4311 
4312 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
4313                                       SDValue N0, const APInt &C1,
4314                                       ISD::CondCode Cond, const SDLoc &dl,
4315                                       SelectionDAG &DAG) {
4316   // Look through truncs that don't change the value of a ctpop.
4317   // FIXME: Add vector support? Need to be careful with setcc result type below.
4318   SDValue CTPOP = N0;
4319   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
4320       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
4321     CTPOP = N0.getOperand(0);
4322 
4323   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
4324     return SDValue();
4325 
4326   EVT CTVT = CTPOP.getValueType();
4327   SDValue CTOp = CTPOP.getOperand(0);
4328 
4329   // Expand a power-of-2-or-zero comparison based on ctpop:
4330   // (ctpop x) u< 2 -> (x & x-1) == 0
4331   // (ctpop x) u> 1 -> (x & x-1) != 0
4332   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
4333     // Keep the CTPOP if it is a cheap vector op.
4334     if (CTVT.isVector() && TLI.isCtpopFast(CTVT))
4335       return SDValue();
4336 
4337     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
4338     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
4339       return SDValue();
4340     if (C1 == 0 && (Cond == ISD::SETULT))
4341       return SDValue(); // This is handled elsewhere.
4342 
4343     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
4344 
4345     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
4346     SDValue Result = CTOp;
4347     for (unsigned i = 0; i < Passes; i++) {
4348       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
4349       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
4350     }
4351     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
4352     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
4353   }
4354 
4355   // Expand a power-of-2 comparison based on ctpop
4356   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
4357     // Keep the CTPOP if it is cheap.
4358     if (TLI.isCtpopFast(CTVT))
4359       return SDValue();
4360 
4361     SDValue Zero = DAG.getConstant(0, dl, CTVT);
4362     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
4363     assert(CTVT.isInteger());
4364     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
4365 
4366     // Its not uncommon for known-never-zero X to exist in (ctpop X) eq/ne 1, so
4367     // check before emitting a potentially unnecessary op.
4368     if (DAG.isKnownNeverZero(CTOp)) {
4369       // (ctpop x) == 1 --> (x & x-1) == 0
4370       // (ctpop x) != 1 --> (x & x-1) != 0
4371       SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
4372       SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
4373       return RHS;
4374     }
4375 
4376     // (ctpop x) == 1 --> (x ^ x-1) >  x-1
4377     // (ctpop x) != 1 --> (x ^ x-1) <= x-1
4378     SDValue Xor = DAG.getNode(ISD::XOR, dl, CTVT, CTOp, Add);
4379     ISD::CondCode CmpCond = Cond == ISD::SETEQ ? ISD::SETUGT : ISD::SETULE;
4380     return DAG.getSetCC(dl, VT, Xor, Add, CmpCond);
4381   }
4382 
4383   return SDValue();
4384 }
4385 
4386 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1,
4387                                    ISD::CondCode Cond, const SDLoc &dl,
4388                                    SelectionDAG &DAG) {
4389   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
4390     return SDValue();
4391 
4392   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4393   if (!C1 || !(C1->isZero() || C1->isAllOnes()))
4394     return SDValue();
4395 
4396   auto getRotateSource = [](SDValue X) {
4397     if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR)
4398       return X.getOperand(0);
4399     return SDValue();
4400   };
4401 
4402   // Peek through a rotated value compared against 0 or -1:
4403   // (rot X, Y) == 0/-1 --> X == 0/-1
4404   // (rot X, Y) != 0/-1 --> X != 0/-1
4405   if (SDValue R = getRotateSource(N0))
4406     return DAG.getSetCC(dl, VT, R, N1, Cond);
4407 
4408   // Peek through an 'or' of a rotated value compared against 0:
4409   // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0
4410   // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0
4411   //
4412   // TODO: Add the 'and' with -1 sibling.
4413   // TODO: Recurse through a series of 'or' ops to find the rotate.
4414   EVT OpVT = N0.getValueType();
4415   if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) {
4416     if (SDValue R = getRotateSource(N0.getOperand(0))) {
4417       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1));
4418       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4419     }
4420     if (SDValue R = getRotateSource(N0.getOperand(1))) {
4421       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0));
4422       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4423     }
4424   }
4425 
4426   return SDValue();
4427 }
4428 
4429 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1,
4430                                         ISD::CondCode Cond, const SDLoc &dl,
4431                                         SelectionDAG &DAG) {
4432   // If we are testing for all-bits-clear, we might be able to do that with
4433   // less shifting since bit-order does not matter.
4434   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
4435     return SDValue();
4436 
4437   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4438   if (!C1 || !C1->isZero())
4439     return SDValue();
4440 
4441   if (!N0.hasOneUse() ||
4442       (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR))
4443     return SDValue();
4444 
4445   unsigned BitWidth = N0.getScalarValueSizeInBits();
4446   auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2));
4447   if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
4448     return SDValue();
4449 
4450   // Canonicalize fshr as fshl to reduce pattern-matching.
4451   unsigned ShAmt = ShAmtC->getZExtValue();
4452   if (N0.getOpcode() == ISD::FSHR)
4453     ShAmt = BitWidth - ShAmt;
4454 
4455   // Match an 'or' with a specific operand 'Other' in either commuted variant.
4456   SDValue X, Y;
4457   auto matchOr = [&X, &Y](SDValue Or, SDValue Other) {
4458     if (Or.getOpcode() != ISD::OR || !Or.hasOneUse())
4459       return false;
4460     if (Or.getOperand(0) == Other) {
4461       X = Or.getOperand(0);
4462       Y = Or.getOperand(1);
4463       return true;
4464     }
4465     if (Or.getOperand(1) == Other) {
4466       X = Or.getOperand(1);
4467       Y = Or.getOperand(0);
4468       return true;
4469     }
4470     return false;
4471   };
4472 
4473   EVT OpVT = N0.getValueType();
4474   EVT ShAmtVT = N0.getOperand(2).getValueType();
4475   SDValue F0 = N0.getOperand(0);
4476   SDValue F1 = N0.getOperand(1);
4477   if (matchOr(F0, F1)) {
4478     // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0
4479     SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT);
4480     SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt);
4481     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4482     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4483   }
4484   if (matchOr(F1, F0)) {
4485     // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0
4486     SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT);
4487     SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt);
4488     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4489     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4490   }
4491 
4492   return SDValue();
4493 }
4494 
4495 /// Try to simplify a setcc built with the specified operands and cc. If it is
4496 /// unable to simplify it, return a null SDValue.
4497 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
4498                                       ISD::CondCode Cond, bool foldBooleans,
4499                                       DAGCombinerInfo &DCI,
4500                                       const SDLoc &dl) const {
4501   SelectionDAG &DAG = DCI.DAG;
4502   const DataLayout &Layout = DAG.getDataLayout();
4503   EVT OpVT = N0.getValueType();
4504   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4505 
4506   // Constant fold or commute setcc.
4507   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
4508     return Fold;
4509 
4510   bool N0ConstOrSplat =
4511       isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4512   bool N1ConstOrSplat =
4513       isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4514 
4515   // Canonicalize toward having the constant on the RHS.
4516   // TODO: Handle non-splat vector constants. All undef causes trouble.
4517   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
4518   // infinite loop here when we encounter one.
4519   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
4520   if (N0ConstOrSplat && !N1ConstOrSplat &&
4521       (DCI.isBeforeLegalizeOps() ||
4522        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
4523     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4524 
4525   // If we have a subtract with the same 2 non-constant operands as this setcc
4526   // -- but in reverse order -- then try to commute the operands of this setcc
4527   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
4528   // instruction on some targets.
4529   if (!N0ConstOrSplat && !N1ConstOrSplat &&
4530       (DCI.isBeforeLegalizeOps() ||
4531        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
4532       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
4533       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
4534     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4535 
4536   if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG))
4537     return V;
4538 
4539   if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG))
4540     return V;
4541 
4542   if (auto *N1C = isConstOrConstSplat(N1)) {
4543     const APInt &C1 = N1C->getAPIntValue();
4544 
4545     // Optimize some CTPOP cases.
4546     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
4547       return V;
4548 
4549     // For equality to 0 of a no-wrap multiply, decompose and test each op:
4550     // X * Y == 0 --> (X == 0) || (Y == 0)
4551     // X * Y != 0 --> (X != 0) && (Y != 0)
4552     // TODO: This bails out if minsize is set, but if the target doesn't have a
4553     //       single instruction multiply for this type, it would likely be
4554     //       smaller to decompose.
4555     if (C1.isZero() && (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4556         N0.getOpcode() == ISD::MUL && N0.hasOneUse() &&
4557         (N0->getFlags().hasNoUnsignedWrap() ||
4558          N0->getFlags().hasNoSignedWrap()) &&
4559         !Attr.hasFnAttr(Attribute::MinSize)) {
4560       SDValue IsXZero = DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4561       SDValue IsYZero = DAG.getSetCC(dl, VT, N0.getOperand(1), N1, Cond);
4562       unsigned LogicOp = Cond == ISD::SETEQ ? ISD::OR : ISD::AND;
4563       return DAG.getNode(LogicOp, dl, VT, IsXZero, IsYZero);
4564     }
4565 
4566     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
4567     // equality comparison, then we're just comparing whether X itself is
4568     // zero.
4569     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
4570         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
4571         llvm::has_single_bit<uint32_t>(N0.getScalarValueSizeInBits())) {
4572       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
4573         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4574             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
4575           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
4576             // (srl (ctlz x), 5) == 0  -> X != 0
4577             // (srl (ctlz x), 5) != 1  -> X != 0
4578             Cond = ISD::SETNE;
4579           } else {
4580             // (srl (ctlz x), 5) != 0  -> X == 0
4581             // (srl (ctlz x), 5) == 1  -> X == 0
4582             Cond = ISD::SETEQ;
4583           }
4584           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
4585           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
4586                               Cond);
4587         }
4588       }
4589     }
4590   }
4591 
4592   // FIXME: Support vectors.
4593   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4594     const APInt &C1 = N1C->getAPIntValue();
4595 
4596     // (zext x) == C --> x == (trunc C)
4597     // (sext x) == C --> x == (trunc C)
4598     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4599         DCI.isBeforeLegalize() && N0->hasOneUse()) {
4600       unsigned MinBits = N0.getValueSizeInBits();
4601       SDValue PreExt;
4602       bool Signed = false;
4603       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
4604         // ZExt
4605         MinBits = N0->getOperand(0).getValueSizeInBits();
4606         PreExt = N0->getOperand(0);
4607       } else if (N0->getOpcode() == ISD::AND) {
4608         // DAGCombine turns costly ZExts into ANDs
4609         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
4610           if ((C->getAPIntValue()+1).isPowerOf2()) {
4611             MinBits = C->getAPIntValue().countr_one();
4612             PreExt = N0->getOperand(0);
4613           }
4614       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
4615         // SExt
4616         MinBits = N0->getOperand(0).getValueSizeInBits();
4617         PreExt = N0->getOperand(0);
4618         Signed = true;
4619       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
4620         // ZEXTLOAD / SEXTLOAD
4621         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
4622           MinBits = LN0->getMemoryVT().getSizeInBits();
4623           PreExt = N0;
4624         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
4625           Signed = true;
4626           MinBits = LN0->getMemoryVT().getSizeInBits();
4627           PreExt = N0;
4628         }
4629       }
4630 
4631       // Figure out how many bits we need to preserve this constant.
4632       unsigned ReqdBits = Signed ? C1.getSignificantBits() : C1.getActiveBits();
4633 
4634       // Make sure we're not losing bits from the constant.
4635       if (MinBits > 0 &&
4636           MinBits < C1.getBitWidth() &&
4637           MinBits >= ReqdBits) {
4638         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
4639         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
4640           // Will get folded away.
4641           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
4642           if (MinBits == 1 && C1 == 1)
4643             // Invert the condition.
4644             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
4645                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4646           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
4647           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
4648         }
4649 
4650         // If truncating the setcc operands is not desirable, we can still
4651         // simplify the expression in some cases:
4652         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
4653         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
4654         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
4655         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
4656         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
4657         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
4658         SDValue TopSetCC = N0->getOperand(0);
4659         unsigned N0Opc = N0->getOpcode();
4660         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
4661         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
4662             TopSetCC.getOpcode() == ISD::SETCC &&
4663             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
4664             (isConstFalseVal(N1) ||
4665              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
4666 
4667           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
4668                          (!N1C->isZero() && Cond == ISD::SETNE);
4669 
4670           if (!Inverse)
4671             return TopSetCC;
4672 
4673           ISD::CondCode InvCond = ISD::getSetCCInverse(
4674               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
4675               TopSetCC.getOperand(0).getValueType());
4676           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
4677                                       TopSetCC.getOperand(1),
4678                                       InvCond);
4679         }
4680       }
4681     }
4682 
4683     // If the LHS is '(and load, const)', the RHS is 0, the test is for
4684     // equality or unsigned, and all 1 bits of the const are in the same
4685     // partial word, see if we can shorten the load.
4686     if (DCI.isBeforeLegalize() &&
4687         !ISD::isSignedIntSetCC(Cond) &&
4688         N0.getOpcode() == ISD::AND && C1 == 0 &&
4689         N0.getNode()->hasOneUse() &&
4690         isa<LoadSDNode>(N0.getOperand(0)) &&
4691         N0.getOperand(0).getNode()->hasOneUse() &&
4692         isa<ConstantSDNode>(N0.getOperand(1))) {
4693       auto *Lod = cast<LoadSDNode>(N0.getOperand(0));
4694       APInt bestMask;
4695       unsigned bestWidth = 0, bestOffset = 0;
4696       if (Lod->isSimple() && Lod->isUnindexed() &&
4697           (Lod->getMemoryVT().isByteSized() ||
4698            isPaddedAtMostSignificantBitsWhenStored(Lod->getMemoryVT()))) {
4699         unsigned memWidth = Lod->getMemoryVT().getStoreSizeInBits();
4700         unsigned origWidth = N0.getValueSizeInBits();
4701         unsigned maskWidth = origWidth;
4702         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
4703         // 8 bits, but have to be careful...
4704         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
4705           origWidth = Lod->getMemoryVT().getSizeInBits();
4706         const APInt &Mask = N0.getConstantOperandAPInt(1);
4707         // Only consider power-of-2 widths (and at least one byte) as candiates
4708         // for the narrowed load.
4709         for (unsigned width = 8; width < origWidth; width *= 2) {
4710           EVT newVT = EVT::getIntegerVT(*DAG.getContext(), width);
4711           if (!shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT))
4712             continue;
4713           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
4714           // Avoid accessing any padding here for now (we could use memWidth
4715           // instead of origWidth here otherwise).
4716           unsigned maxOffset = origWidth - width;
4717           for (unsigned offset = 0; offset <= maxOffset; offset += 8) {
4718             if (Mask.isSubsetOf(newMask)) {
4719               unsigned ptrOffset =
4720                   Layout.isLittleEndian() ? offset : memWidth - width - offset;
4721               unsigned IsFast = 0;
4722               Align NewAlign = commonAlignment(Lod->getAlign(), ptrOffset / 8);
4723               if (allowsMemoryAccess(
4724                       *DAG.getContext(), Layout, newVT, Lod->getAddressSpace(),
4725                       NewAlign, Lod->getMemOperand()->getFlags(), &IsFast) &&
4726                   IsFast) {
4727                 bestOffset = ptrOffset / 8;
4728                 bestMask = Mask.lshr(offset);
4729                 bestWidth = width;
4730                 break;
4731               }
4732             }
4733             newMask <<= 8;
4734           }
4735           if (bestWidth)
4736             break;
4737         }
4738       }
4739       if (bestWidth) {
4740         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
4741         SDValue Ptr = Lod->getBasePtr();
4742         if (bestOffset != 0)
4743           Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(bestOffset));
4744         SDValue NewLoad =
4745             DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
4746                         Lod->getPointerInfo().getWithOffset(bestOffset),
4747                         Lod->getOriginalAlign());
4748         SDValue And =
4749             DAG.getNode(ISD::AND, dl, newVT, NewLoad,
4750                         DAG.getConstant(bestMask.trunc(bestWidth), dl, newVT));
4751         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0LL, dl, newVT), Cond);
4752       }
4753     }
4754 
4755     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
4756     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
4757       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
4758 
4759       // If the comparison constant has bits in the upper part, the
4760       // zero-extended value could never match.
4761       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
4762                                               C1.getBitWidth() - InSize))) {
4763         switch (Cond) {
4764         case ISD::SETUGT:
4765         case ISD::SETUGE:
4766         case ISD::SETEQ:
4767           return DAG.getConstant(0, dl, VT);
4768         case ISD::SETULT:
4769         case ISD::SETULE:
4770         case ISD::SETNE:
4771           return DAG.getConstant(1, dl, VT);
4772         case ISD::SETGT:
4773         case ISD::SETGE:
4774           // True if the sign bit of C1 is set.
4775           return DAG.getConstant(C1.isNegative(), dl, VT);
4776         case ISD::SETLT:
4777         case ISD::SETLE:
4778           // True if the sign bit of C1 isn't set.
4779           return DAG.getConstant(C1.isNonNegative(), dl, VT);
4780         default:
4781           break;
4782         }
4783       }
4784 
4785       // Otherwise, we can perform the comparison with the low bits.
4786       switch (Cond) {
4787       case ISD::SETEQ:
4788       case ISD::SETNE:
4789       case ISD::SETUGT:
4790       case ISD::SETUGE:
4791       case ISD::SETULT:
4792       case ISD::SETULE: {
4793         EVT newVT = N0.getOperand(0).getValueType();
4794         // FIXME: Should use isNarrowingProfitable.
4795         if (DCI.isBeforeLegalizeOps() ||
4796             (isOperationLegal(ISD::SETCC, newVT) &&
4797              isCondCodeLegal(Cond, newVT.getSimpleVT()) &&
4798              isTypeDesirableForOp(ISD::SETCC, newVT))) {
4799           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
4800           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
4801 
4802           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
4803                                           NewConst, Cond);
4804           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
4805         }
4806         break;
4807       }
4808       default:
4809         break; // todo, be more careful with signed comparisons
4810       }
4811     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4812                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4813                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
4814                                       OpVT)) {
4815       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
4816       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
4817       EVT ExtDstTy = N0.getValueType();
4818       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
4819 
4820       // If the constant doesn't fit into the number of bits for the source of
4821       // the sign extension, it is impossible for both sides to be equal.
4822       if (C1.getSignificantBits() > ExtSrcTyBits)
4823         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
4824 
4825       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
4826              ExtDstTy != ExtSrcTy && "Unexpected types!");
4827       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
4828       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
4829                                    DAG.getConstant(Imm, dl, ExtDstTy));
4830       if (!DCI.isCalledByLegalizer())
4831         DCI.AddToWorklist(ZextOp.getNode());
4832       // Otherwise, make this a use of a zext.
4833       return DAG.getSetCC(dl, VT, ZextOp,
4834                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
4835     } else if ((N1C->isZero() || N1C->isOne()) &&
4836                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4837       // SETCC (X), [0|1], [EQ|NE]  -> X if X is known 0/1. i1 types are
4838       // excluded as they are handled below whilst checking for foldBooleans.
4839       if ((N0.getOpcode() == ISD::SETCC || VT.getScalarType() != MVT::i1) &&
4840           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
4841           (N0.getValueType() == MVT::i1 ||
4842            getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4843           DAG.MaskedValueIsZero(
4844               N0, APInt::getBitsSetFrom(N0.getValueSizeInBits(), 1))) {
4845         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
4846         if (TrueWhenTrue)
4847           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
4848         // Invert the condition.
4849         if (N0.getOpcode() == ISD::SETCC) {
4850           ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4851           CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
4852           if (DCI.isBeforeLegalizeOps() ||
4853               isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
4854             return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
4855         }
4856       }
4857 
4858       if ((N0.getOpcode() == ISD::XOR ||
4859            (N0.getOpcode() == ISD::AND &&
4860             N0.getOperand(0).getOpcode() == ISD::XOR &&
4861             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
4862           isOneConstant(N0.getOperand(1))) {
4863         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
4864         // can only do this if the top bits are known zero.
4865         unsigned BitWidth = N0.getValueSizeInBits();
4866         if (DAG.MaskedValueIsZero(N0,
4867                                   APInt::getHighBitsSet(BitWidth,
4868                                                         BitWidth-1))) {
4869           // Okay, get the un-inverted input value.
4870           SDValue Val;
4871           if (N0.getOpcode() == ISD::XOR) {
4872             Val = N0.getOperand(0);
4873           } else {
4874             assert(N0.getOpcode() == ISD::AND &&
4875                     N0.getOperand(0).getOpcode() == ISD::XOR);
4876             // ((X^1)&1)^1 -> X & 1
4877             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
4878                               N0.getOperand(0).getOperand(0),
4879                               N0.getOperand(1));
4880           }
4881 
4882           return DAG.getSetCC(dl, VT, Val, N1,
4883                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4884         }
4885       } else if (N1C->isOne()) {
4886         SDValue Op0 = N0;
4887         if (Op0.getOpcode() == ISD::TRUNCATE)
4888           Op0 = Op0.getOperand(0);
4889 
4890         if ((Op0.getOpcode() == ISD::XOR) &&
4891             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
4892             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
4893           SDValue XorLHS = Op0.getOperand(0);
4894           SDValue XorRHS = Op0.getOperand(1);
4895           // Ensure that the input setccs return an i1 type or 0/1 value.
4896           if (Op0.getValueType() == MVT::i1 ||
4897               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
4898                       ZeroOrOneBooleanContent &&
4899                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
4900                         ZeroOrOneBooleanContent)) {
4901             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
4902             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
4903             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
4904           }
4905         }
4906         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
4907           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
4908           if (Op0.getValueType().bitsGT(VT))
4909             Op0 = DAG.getNode(ISD::AND, dl, VT,
4910                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
4911                           DAG.getConstant(1, dl, VT));
4912           else if (Op0.getValueType().bitsLT(VT))
4913             Op0 = DAG.getNode(ISD::AND, dl, VT,
4914                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
4915                         DAG.getConstant(1, dl, VT));
4916 
4917           return DAG.getSetCC(dl, VT, Op0,
4918                               DAG.getConstant(0, dl, Op0.getValueType()),
4919                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4920         }
4921         if (Op0.getOpcode() == ISD::AssertZext &&
4922             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
4923           return DAG.getSetCC(dl, VT, Op0,
4924                               DAG.getConstant(0, dl, Op0.getValueType()),
4925                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4926       }
4927     }
4928 
4929     // Given:
4930     //   icmp eq/ne (urem %x, %y), 0
4931     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
4932     //   icmp eq/ne %x, 0
4933     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
4934         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4935       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
4936       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
4937       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
4938         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4939     }
4940 
4941     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
4942     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
4943     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4944         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
4945         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
4946         N1C->isAllOnes()) {
4947       return DAG.getSetCC(dl, VT, N0.getOperand(0),
4948                           DAG.getConstant(0, dl, OpVT),
4949                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
4950     }
4951 
4952     if (SDValue V =
4953             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
4954       return V;
4955   }
4956 
4957   // These simplifications apply to splat vectors as well.
4958   // TODO: Handle more splat vector cases.
4959   if (auto *N1C = isConstOrConstSplat(N1)) {
4960     const APInt &C1 = N1C->getAPIntValue();
4961 
4962     APInt MinVal, MaxVal;
4963     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
4964     if (ISD::isSignedIntSetCC(Cond)) {
4965       MinVal = APInt::getSignedMinValue(OperandBitSize);
4966       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
4967     } else {
4968       MinVal = APInt::getMinValue(OperandBitSize);
4969       MaxVal = APInt::getMaxValue(OperandBitSize);
4970     }
4971 
4972     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4973     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4974       // X >= MIN --> true
4975       if (C1 == MinVal)
4976         return DAG.getBoolConstant(true, dl, VT, OpVT);
4977 
4978       if (!VT.isVector()) { // TODO: Support this for vectors.
4979         // X >= C0 --> X > (C0 - 1)
4980         APInt C = C1 - 1;
4981         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4982         if ((DCI.isBeforeLegalizeOps() ||
4983              isCondCodeLegal(NewCC, OpVT.getSimpleVT())) &&
4984             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4985                                   isLegalICmpImmediate(C.getSExtValue())))) {
4986           return DAG.getSetCC(dl, VT, N0,
4987                               DAG.getConstant(C, dl, N1.getValueType()),
4988                               NewCC);
4989         }
4990       }
4991     }
4992 
4993     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4994       // X <= MAX --> true
4995       if (C1 == MaxVal)
4996         return DAG.getBoolConstant(true, dl, VT, OpVT);
4997 
4998       // X <= C0 --> X < (C0 + 1)
4999       if (!VT.isVector()) { // TODO: Support this for vectors.
5000         APInt C = C1 + 1;
5001         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
5002         if ((DCI.isBeforeLegalizeOps() ||
5003              isCondCodeLegal(NewCC, OpVT.getSimpleVT())) &&
5004             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
5005                                   isLegalICmpImmediate(C.getSExtValue())))) {
5006           return DAG.getSetCC(dl, VT, N0,
5007                               DAG.getConstant(C, dl, N1.getValueType()),
5008                               NewCC);
5009         }
5010       }
5011     }
5012 
5013     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
5014       if (C1 == MinVal)
5015         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
5016 
5017       // TODO: Support this for vectors after legalize ops.
5018       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
5019         // Canonicalize setlt X, Max --> setne X, Max
5020         if (C1 == MaxVal)
5021           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
5022 
5023         // If we have setult X, 1, turn it into seteq X, 0
5024         if (C1 == MinVal+1)
5025           return DAG.getSetCC(dl, VT, N0,
5026                               DAG.getConstant(MinVal, dl, N0.getValueType()),
5027                               ISD::SETEQ);
5028       }
5029     }
5030 
5031     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
5032       if (C1 == MaxVal)
5033         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
5034 
5035       // TODO: Support this for vectors after legalize ops.
5036       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
5037         // Canonicalize setgt X, Min --> setne X, Min
5038         if (C1 == MinVal)
5039           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
5040 
5041         // If we have setugt X, Max-1, turn it into seteq X, Max
5042         if (C1 == MaxVal-1)
5043           return DAG.getSetCC(dl, VT, N0,
5044                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
5045                               ISD::SETEQ);
5046       }
5047     }
5048 
5049     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
5050       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
5051       if (C1.isZero())
5052         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
5053                 VT, N0, N1, Cond, DCI, dl))
5054           return CC;
5055 
5056       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
5057       // For example, when high 32-bits of i64 X are known clear:
5058       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
5059       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
5060       bool CmpZero = N1C->isZero();
5061       bool CmpNegOne = N1C->isAllOnes();
5062       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
5063         // Match or(lo,shl(hi,bw/2)) pattern.
5064         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
5065           unsigned EltBits = V.getScalarValueSizeInBits();
5066           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
5067             return false;
5068           SDValue LHS = V.getOperand(0);
5069           SDValue RHS = V.getOperand(1);
5070           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
5071           // Unshifted element must have zero upperbits.
5072           if (RHS.getOpcode() == ISD::SHL &&
5073               isa<ConstantSDNode>(RHS.getOperand(1)) &&
5074               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
5075               DAG.MaskedValueIsZero(LHS, HiBits)) {
5076             Lo = LHS;
5077             Hi = RHS.getOperand(0);
5078             return true;
5079           }
5080           if (LHS.getOpcode() == ISD::SHL &&
5081               isa<ConstantSDNode>(LHS.getOperand(1)) &&
5082               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
5083               DAG.MaskedValueIsZero(RHS, HiBits)) {
5084             Lo = RHS;
5085             Hi = LHS.getOperand(0);
5086             return true;
5087           }
5088           return false;
5089         };
5090 
5091         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
5092           unsigned EltBits = N0.getScalarValueSizeInBits();
5093           unsigned HalfBits = EltBits / 2;
5094           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
5095           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
5096           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
5097           SDValue NewN0 =
5098               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
5099           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
5100           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
5101         };
5102 
5103         SDValue Lo, Hi;
5104         if (IsConcat(N0, Lo, Hi))
5105           return MergeConcat(Lo, Hi);
5106 
5107         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
5108           SDValue Lo0, Lo1, Hi0, Hi1;
5109           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
5110               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
5111             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
5112                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
5113           }
5114         }
5115       }
5116     }
5117 
5118     // If we have "setcc X, C0", check to see if we can shrink the immediate
5119     // by changing cc.
5120     // TODO: Support this for vectors after legalize ops.
5121     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
5122       // SETUGT X, SINTMAX  -> SETLT X, 0
5123       // SETUGE X, SINTMIN -> SETLT X, 0
5124       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
5125           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
5126         return DAG.getSetCC(dl, VT, N0,
5127                             DAG.getConstant(0, dl, N1.getValueType()),
5128                             ISD::SETLT);
5129 
5130       // SETULT X, SINTMIN  -> SETGT X, -1
5131       // SETULE X, SINTMAX  -> SETGT X, -1
5132       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
5133           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
5134         return DAG.getSetCC(dl, VT, N0,
5135                             DAG.getAllOnesConstant(dl, N1.getValueType()),
5136                             ISD::SETGT);
5137     }
5138   }
5139 
5140   // Back to non-vector simplifications.
5141   // TODO: Can we do these for vector splats?
5142   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
5143     const APInt &C1 = N1C->getAPIntValue();
5144     EVT ShValTy = N0.getValueType();
5145 
5146     // Fold bit comparisons when we can. This will result in an
5147     // incorrect value when boolean false is negative one, unless
5148     // the bitsize is 1 in which case the false value is the same
5149     // in practice regardless of the representation.
5150     if ((VT.getSizeInBits() == 1 ||
5151          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
5152         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5153         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
5154         N0.getOpcode() == ISD::AND) {
5155       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5156         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
5157           // Perform the xform if the AND RHS is a single bit.
5158           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
5159           if (AndRHS->getAPIntValue().isPowerOf2() &&
5160               !shouldAvoidTransformToShift(ShValTy, ShCt)) {
5161             return DAG.getNode(
5162                 ISD::TRUNCATE, dl, VT,
5163                 DAG.getNode(ISD::SRL, dl, ShValTy, N0,
5164                             DAG.getShiftAmountConstant(ShCt, ShValTy, dl)));
5165           }
5166         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
5167           // (X & 8) == 8  -->  (X & 8) >> 3
5168           // Perform the xform if C1 is a single bit.
5169           unsigned ShCt = C1.logBase2();
5170           if (C1.isPowerOf2() && !shouldAvoidTransformToShift(ShValTy, ShCt)) {
5171             return DAG.getNode(
5172                 ISD::TRUNCATE, dl, VT,
5173                 DAG.getNode(ISD::SRL, dl, ShValTy, N0,
5174                             DAG.getShiftAmountConstant(ShCt, ShValTy, dl)));
5175           }
5176         }
5177       }
5178     }
5179 
5180     if (C1.getSignificantBits() <= 64 &&
5181         !isLegalICmpImmediate(C1.getSExtValue())) {
5182       // (X & -256) == 256 -> (X >> 8) == 1
5183       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5184           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
5185         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5186           const APInt &AndRHSC = AndRHS->getAPIntValue();
5187           if (AndRHSC.isNegatedPowerOf2() && C1.isSubsetOf(AndRHSC)) {
5188             unsigned ShiftBits = AndRHSC.countr_zero();
5189             if (!shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
5190               SDValue Shift = DAG.getNode(
5191                   ISD::SRL, dl, ShValTy, N0.getOperand(0),
5192                   DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl));
5193               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
5194               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
5195             }
5196           }
5197         }
5198       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
5199                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
5200         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
5201         // X <  0x100000000 -> (X >> 32) <  1
5202         // X >= 0x100000000 -> (X >> 32) >= 1
5203         // X <= 0x0ffffffff -> (X >> 32) <  1
5204         // X >  0x0ffffffff -> (X >> 32) >= 1
5205         unsigned ShiftBits;
5206         APInt NewC = C1;
5207         ISD::CondCode NewCond = Cond;
5208         if (AdjOne) {
5209           ShiftBits = C1.countr_one();
5210           NewC = NewC + 1;
5211           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
5212         } else {
5213           ShiftBits = C1.countr_zero();
5214         }
5215         NewC.lshrInPlace(ShiftBits);
5216         if (ShiftBits && NewC.getSignificantBits() <= 64 &&
5217             isLegalICmpImmediate(NewC.getSExtValue()) &&
5218             !shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
5219           SDValue Shift =
5220               DAG.getNode(ISD::SRL, dl, ShValTy, N0,
5221                           DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl));
5222           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
5223           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
5224         }
5225       }
5226     }
5227   }
5228 
5229   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
5230     auto *CFP = cast<ConstantFPSDNode>(N1);
5231     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
5232 
5233     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
5234     // constant if knowing that the operand is non-nan is enough.  We prefer to
5235     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
5236     // materialize 0.0.
5237     if (Cond == ISD::SETO || Cond == ISD::SETUO)
5238       return DAG.getSetCC(dl, VT, N0, N0, Cond);
5239 
5240     // setcc (fneg x), C -> setcc swap(pred) x, -C
5241     if (N0.getOpcode() == ISD::FNEG) {
5242       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
5243       if (DCI.isBeforeLegalizeOps() ||
5244           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
5245         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
5246         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
5247       }
5248     }
5249 
5250     // setueq/setoeq X, (fabs Inf) -> is_fpclass X, fcInf
5251     if (isOperationLegalOrCustom(ISD::IS_FPCLASS, N0.getValueType()) &&
5252         !isFPImmLegal(CFP->getValueAPF(), CFP->getValueType(0))) {
5253       bool IsFabs = N0.getOpcode() == ISD::FABS;
5254       SDValue Op = IsFabs ? N0.getOperand(0) : N0;
5255       if ((Cond == ISD::SETOEQ || Cond == ISD::SETUEQ) && CFP->isInfinity()) {
5256         FPClassTest Flag = CFP->isNegative() ? (IsFabs ? fcNone : fcNegInf)
5257                                              : (IsFabs ? fcInf : fcPosInf);
5258         if (Cond == ISD::SETUEQ)
5259           Flag |= fcNan;
5260         return DAG.getNode(ISD::IS_FPCLASS, dl, VT, Op,
5261                            DAG.getTargetConstant(Flag, dl, MVT::i32));
5262       }
5263     }
5264 
5265     // If the condition is not legal, see if we can find an equivalent one
5266     // which is legal.
5267     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
5268       // If the comparison was an awkward floating-point == or != and one of
5269       // the comparison operands is infinity or negative infinity, convert the
5270       // condition to a less-awkward <= or >=.
5271       if (CFP->getValueAPF().isInfinity()) {
5272         bool IsNegInf = CFP->getValueAPF().isNegative();
5273         ISD::CondCode NewCond = ISD::SETCC_INVALID;
5274         switch (Cond) {
5275         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
5276         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
5277         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
5278         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
5279         default: break;
5280         }
5281         if (NewCond != ISD::SETCC_INVALID &&
5282             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
5283           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
5284       }
5285     }
5286   }
5287 
5288   if (N0 == N1) {
5289     // The sext(setcc()) => setcc() optimization relies on the appropriate
5290     // constant being emitted.
5291     assert(!N0.getValueType().isInteger() &&
5292            "Integer types should be handled by FoldSetCC");
5293 
5294     bool EqTrue = ISD::isTrueWhenEqual(Cond);
5295     unsigned UOF = ISD::getUnorderedFlavor(Cond);
5296     if (UOF == 2) // FP operators that are undefined on NaNs.
5297       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
5298     if (UOF == unsigned(EqTrue))
5299       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
5300     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
5301     // if it is not already.
5302     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
5303     if (NewCond != Cond &&
5304         (DCI.isBeforeLegalizeOps() ||
5305                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
5306       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
5307   }
5308 
5309   // ~X > ~Y --> Y > X
5310   // ~X < ~Y --> Y < X
5311   // ~X < C --> X > ~C
5312   // ~X > C --> X < ~C
5313   if ((isSignedIntSetCC(Cond) || isUnsignedIntSetCC(Cond)) &&
5314       N0.getValueType().isInteger()) {
5315     if (isBitwiseNot(N0)) {
5316       if (isBitwiseNot(N1))
5317         return DAG.getSetCC(dl, VT, N1.getOperand(0), N0.getOperand(0), Cond);
5318 
5319       if (DAG.isConstantIntBuildVectorOrConstantInt(N1) &&
5320           !DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(0))) {
5321         SDValue Not = DAG.getNOT(dl, N1, OpVT);
5322         return DAG.getSetCC(dl, VT, Not, N0.getOperand(0), Cond);
5323       }
5324     }
5325   }
5326 
5327   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5328       N0.getValueType().isInteger()) {
5329     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
5330         N0.getOpcode() == ISD::XOR) {
5331       // Simplify (X+Y) == (X+Z) -->  Y == Z
5332       if (N0.getOpcode() == N1.getOpcode()) {
5333         if (N0.getOperand(0) == N1.getOperand(0))
5334           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
5335         if (N0.getOperand(1) == N1.getOperand(1))
5336           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
5337         if (isCommutativeBinOp(N0.getOpcode())) {
5338           // If X op Y == Y op X, try other combinations.
5339           if (N0.getOperand(0) == N1.getOperand(1))
5340             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
5341                                 Cond);
5342           if (N0.getOperand(1) == N1.getOperand(0))
5343             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
5344                                 Cond);
5345         }
5346       }
5347 
5348       // If RHS is a legal immediate value for a compare instruction, we need
5349       // to be careful about increasing register pressure needlessly.
5350       bool LegalRHSImm = false;
5351 
5352       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
5353         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5354           // Turn (X+C1) == C2 --> X == C2-C1
5355           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse())
5356             return DAG.getSetCC(
5357                 dl, VT, N0.getOperand(0),
5358                 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
5359                                 dl, N0.getValueType()),
5360                 Cond);
5361 
5362           // Turn (X^C1) == C2 --> X == C1^C2
5363           if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse())
5364             return DAG.getSetCC(
5365                 dl, VT, N0.getOperand(0),
5366                 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
5367                                 dl, N0.getValueType()),
5368                 Cond);
5369         }
5370 
5371         // Turn (C1-X) == C2 --> X == C1-C2
5372         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
5373           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse())
5374             return DAG.getSetCC(
5375                 dl, VT, N0.getOperand(1),
5376                 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
5377                                 dl, N0.getValueType()),
5378                 Cond);
5379 
5380         // Could RHSC fold directly into a compare?
5381         if (RHSC->getValueType(0).getSizeInBits() <= 64)
5382           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
5383       }
5384 
5385       // (X+Y) == X --> Y == 0 and similar folds.
5386       // Don't do this if X is an immediate that can fold into a cmp
5387       // instruction and X+Y has other uses. It could be an induction variable
5388       // chain, and the transform would increase register pressure.
5389       if (!LegalRHSImm || N0.hasOneUse())
5390         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
5391           return V;
5392     }
5393 
5394     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
5395         N1.getOpcode() == ISD::XOR)
5396       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
5397         return V;
5398 
5399     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
5400       return V;
5401   }
5402 
5403   // Fold remainder of division by a constant.
5404   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
5405       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
5406     // When division is cheap or optimizing for minimum size,
5407     // fall through to DIVREM creation by skipping this fold.
5408     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
5409       if (N0.getOpcode() == ISD::UREM) {
5410         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
5411           return Folded;
5412       } else if (N0.getOpcode() == ISD::SREM) {
5413         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
5414           return Folded;
5415       }
5416     }
5417   }
5418 
5419   // Fold away ALL boolean setcc's.
5420   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
5421     SDValue Temp;
5422     switch (Cond) {
5423     default: llvm_unreachable("Unknown integer setcc!");
5424     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
5425       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
5426       N0 = DAG.getNOT(dl, Temp, OpVT);
5427       if (!DCI.isCalledByLegalizer())
5428         DCI.AddToWorklist(Temp.getNode());
5429       break;
5430     case ISD::SETNE:  // X != Y   -->  (X^Y)
5431       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
5432       break;
5433     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
5434     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
5435       Temp = DAG.getNOT(dl, N0, OpVT);
5436       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
5437       if (!DCI.isCalledByLegalizer())
5438         DCI.AddToWorklist(Temp.getNode());
5439       break;
5440     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
5441     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
5442       Temp = DAG.getNOT(dl, N1, OpVT);
5443       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
5444       if (!DCI.isCalledByLegalizer())
5445         DCI.AddToWorklist(Temp.getNode());
5446       break;
5447     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
5448     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
5449       Temp = DAG.getNOT(dl, N0, OpVT);
5450       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
5451       if (!DCI.isCalledByLegalizer())
5452         DCI.AddToWorklist(Temp.getNode());
5453       break;
5454     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
5455     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
5456       Temp = DAG.getNOT(dl, N1, OpVT);
5457       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
5458       break;
5459     }
5460     if (VT.getScalarType() != MVT::i1) {
5461       if (!DCI.isCalledByLegalizer())
5462         DCI.AddToWorklist(N0.getNode());
5463       // FIXME: If running after legalize, we probably can't do this.
5464       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
5465       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
5466     }
5467     return N0;
5468   }
5469 
5470   // Could not fold it.
5471   return SDValue();
5472 }
5473 
5474 /// Returns true (and the GlobalValue and the offset) if the node is a
5475 /// GlobalAddress + offset.
5476 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
5477                                     int64_t &Offset) const {
5478 
5479   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
5480 
5481   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
5482     GA = GASD->getGlobal();
5483     Offset += GASD->getOffset();
5484     return true;
5485   }
5486 
5487   if (N->getOpcode() == ISD::ADD) {
5488     SDValue N1 = N->getOperand(0);
5489     SDValue N2 = N->getOperand(1);
5490     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
5491       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
5492         Offset += V->getSExtValue();
5493         return true;
5494       }
5495     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
5496       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
5497         Offset += V->getSExtValue();
5498         return true;
5499       }
5500     }
5501   }
5502 
5503   return false;
5504 }
5505 
5506 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
5507                                           DAGCombinerInfo &DCI) const {
5508   // Default implementation: no optimization.
5509   return SDValue();
5510 }
5511 
5512 //===----------------------------------------------------------------------===//
5513 //  Inline Assembler Implementation Methods
5514 //===----------------------------------------------------------------------===//
5515 
5516 TargetLowering::ConstraintType
5517 TargetLowering::getConstraintType(StringRef Constraint) const {
5518   unsigned S = Constraint.size();
5519 
5520   if (S == 1) {
5521     switch (Constraint[0]) {
5522     default: break;
5523     case 'r':
5524       return C_RegisterClass;
5525     case 'm': // memory
5526     case 'o': // offsetable
5527     case 'V': // not offsetable
5528       return C_Memory;
5529     case 'p': // Address.
5530       return C_Address;
5531     case 'n': // Simple Integer
5532     case 'E': // Floating Point Constant
5533     case 'F': // Floating Point Constant
5534       return C_Immediate;
5535     case 'i': // Simple Integer or Relocatable Constant
5536     case 's': // Relocatable Constant
5537     case 'X': // Allow ANY value.
5538     case 'I': // Target registers.
5539     case 'J':
5540     case 'K':
5541     case 'L':
5542     case 'M':
5543     case 'N':
5544     case 'O':
5545     case 'P':
5546     case '<':
5547     case '>':
5548       return C_Other;
5549     }
5550   }
5551 
5552   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
5553     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
5554       return C_Memory;
5555     return C_Register;
5556   }
5557   return C_Unknown;
5558 }
5559 
5560 /// Try to replace an X constraint, which matches anything, with another that
5561 /// has more specific requirements based on the type of the corresponding
5562 /// operand.
5563 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
5564   if (ConstraintVT.isInteger())
5565     return "r";
5566   if (ConstraintVT.isFloatingPoint())
5567     return "f"; // works for many targets
5568   return nullptr;
5569 }
5570 
5571 SDValue TargetLowering::LowerAsmOutputForConstraint(
5572     SDValue &Chain, SDValue &Glue, const SDLoc &DL,
5573     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
5574   return SDValue();
5575 }
5576 
5577 /// Lower the specified operand into the Ops vector.
5578 /// If it is invalid, don't add anything to Ops.
5579 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5580                                                   StringRef Constraint,
5581                                                   std::vector<SDValue> &Ops,
5582                                                   SelectionDAG &DAG) const {
5583 
5584   if (Constraint.size() > 1)
5585     return;
5586 
5587   char ConstraintLetter = Constraint[0];
5588   switch (ConstraintLetter) {
5589   default: break;
5590   case 'X':    // Allows any operand
5591   case 'i':    // Simple Integer or Relocatable Constant
5592   case 'n':    // Simple Integer
5593   case 's': {  // Relocatable Constant
5594 
5595     ConstantSDNode *C;
5596     uint64_t Offset = 0;
5597 
5598     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
5599     // etc., since getelementpointer is variadic. We can't use
5600     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
5601     // while in this case the GA may be furthest from the root node which is
5602     // likely an ISD::ADD.
5603     while (true) {
5604       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
5605         // gcc prints these as sign extended.  Sign extend value to 64 bits
5606         // now; without this it would get ZExt'd later in
5607         // ScheduleDAGSDNodes::EmitNode, which is very generic.
5608         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
5609         BooleanContent BCont = getBooleanContents(MVT::i64);
5610         ISD::NodeType ExtOpc =
5611             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
5612         int64_t ExtVal =
5613             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
5614         Ops.push_back(
5615             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
5616         return;
5617       }
5618       if (ConstraintLetter != 'n') {
5619         if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5620           Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
5621                                                    GA->getValueType(0),
5622                                                    Offset + GA->getOffset()));
5623           return;
5624         }
5625         if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
5626           Ops.push_back(DAG.getTargetBlockAddress(
5627               BA->getBlockAddress(), BA->getValueType(0),
5628               Offset + BA->getOffset(), BA->getTargetFlags()));
5629           return;
5630         }
5631         if (isa<BasicBlockSDNode>(Op)) {
5632           Ops.push_back(Op);
5633           return;
5634         }
5635       }
5636       const unsigned OpCode = Op.getOpcode();
5637       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
5638         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
5639           Op = Op.getOperand(1);
5640         // Subtraction is not commutative.
5641         else if (OpCode == ISD::ADD &&
5642                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
5643           Op = Op.getOperand(0);
5644         else
5645           return;
5646         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
5647         continue;
5648       }
5649       return;
5650     }
5651     break;
5652   }
5653   }
5654 }
5655 
5656 void TargetLowering::CollectTargetIntrinsicOperands(
5657     const CallInst &I, SmallVectorImpl<SDValue> &Ops, SelectionDAG &DAG) const {
5658 }
5659 
5660 std::pair<unsigned, const TargetRegisterClass *>
5661 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
5662                                              StringRef Constraint,
5663                                              MVT VT) const {
5664   if (!Constraint.starts_with("{"))
5665     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
5666   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
5667 
5668   // Remove the braces from around the name.
5669   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
5670 
5671   std::pair<unsigned, const TargetRegisterClass *> R =
5672       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
5673 
5674   // Figure out which register class contains this reg.
5675   for (const TargetRegisterClass *RC : RI->regclasses()) {
5676     // If none of the value types for this register class are valid, we
5677     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5678     if (!isLegalRC(*RI, *RC))
5679       continue;
5680 
5681     for (const MCPhysReg &PR : *RC) {
5682       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
5683         std::pair<unsigned, const TargetRegisterClass *> S =
5684             std::make_pair(PR, RC);
5685 
5686         // If this register class has the requested value type, return it,
5687         // otherwise keep searching and return the first class found
5688         // if no other is found which explicitly has the requested type.
5689         if (RI->isTypeLegalForClass(*RC, VT))
5690           return S;
5691         if (!R.second)
5692           R = S;
5693       }
5694     }
5695   }
5696 
5697   return R;
5698 }
5699 
5700 //===----------------------------------------------------------------------===//
5701 // Constraint Selection.
5702 
5703 /// Return true of this is an input operand that is a matching constraint like
5704 /// "4".
5705 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
5706   assert(!ConstraintCode.empty() && "No known constraint!");
5707   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
5708 }
5709 
5710 /// If this is an input matching constraint, this method returns the output
5711 /// operand it matches.
5712 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
5713   assert(!ConstraintCode.empty() && "No known constraint!");
5714   return atoi(ConstraintCode.c_str());
5715 }
5716 
5717 /// Split up the constraint string from the inline assembly value into the
5718 /// specific constraints and their prefixes, and also tie in the associated
5719 /// operand values.
5720 /// If this returns an empty vector, and if the constraint string itself
5721 /// isn't empty, there was an error parsing.
5722 TargetLowering::AsmOperandInfoVector
5723 TargetLowering::ParseConstraints(const DataLayout &DL,
5724                                  const TargetRegisterInfo *TRI,
5725                                  const CallBase &Call) const {
5726   /// Information about all of the constraints.
5727   AsmOperandInfoVector ConstraintOperands;
5728   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
5729   unsigned maCount = 0; // Largest number of multiple alternative constraints.
5730 
5731   // Do a prepass over the constraints, canonicalizing them, and building up the
5732   // ConstraintOperands list.
5733   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5734   unsigned ResNo = 0; // ResNo - The result number of the next output.
5735   unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number.
5736 
5737   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
5738     ConstraintOperands.emplace_back(std::move(CI));
5739     AsmOperandInfo &OpInfo = ConstraintOperands.back();
5740 
5741     // Update multiple alternative constraint count.
5742     if (OpInfo.multipleAlternatives.size() > maCount)
5743       maCount = OpInfo.multipleAlternatives.size();
5744 
5745     OpInfo.ConstraintVT = MVT::Other;
5746 
5747     // Compute the value type for each operand.
5748     switch (OpInfo.Type) {
5749     case InlineAsm::isOutput:
5750       // Indirect outputs just consume an argument.
5751       if (OpInfo.isIndirect) {
5752         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5753         break;
5754       }
5755 
5756       // The return value of the call is this value.  As such, there is no
5757       // corresponding argument.
5758       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
5759       if (auto *STy = dyn_cast<StructType>(Call.getType())) {
5760         OpInfo.ConstraintVT =
5761             getAsmOperandValueType(DL, STy->getElementType(ResNo))
5762                 .getSimpleVT();
5763       } else {
5764         assert(ResNo == 0 && "Asm only has one result!");
5765         OpInfo.ConstraintVT =
5766             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
5767       }
5768       ++ResNo;
5769       break;
5770     case InlineAsm::isInput:
5771       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5772       break;
5773     case InlineAsm::isLabel:
5774       OpInfo.CallOperandVal = cast<CallBrInst>(&Call)->getIndirectDest(LabelNo);
5775       ++LabelNo;
5776       continue;
5777     case InlineAsm::isClobber:
5778       // Nothing to do.
5779       break;
5780     }
5781 
5782     if (OpInfo.CallOperandVal) {
5783       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5784       if (OpInfo.isIndirect) {
5785         OpTy = Call.getParamElementType(ArgNo);
5786         assert(OpTy && "Indirect operand must have elementtype attribute");
5787       }
5788 
5789       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5790       if (StructType *STy = dyn_cast<StructType>(OpTy))
5791         if (STy->getNumElements() == 1)
5792           OpTy = STy->getElementType(0);
5793 
5794       // If OpTy is not a single value, it may be a struct/union that we
5795       // can tile with integers.
5796       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5797         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5798         switch (BitSize) {
5799         default: break;
5800         case 1:
5801         case 8:
5802         case 16:
5803         case 32:
5804         case 64:
5805         case 128:
5806           OpTy = IntegerType::get(OpTy->getContext(), BitSize);
5807           break;
5808         }
5809       }
5810 
5811       EVT VT = getAsmOperandValueType(DL, OpTy, true);
5812       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
5813       ArgNo++;
5814     }
5815   }
5816 
5817   // If we have multiple alternative constraints, select the best alternative.
5818   if (!ConstraintOperands.empty()) {
5819     if (maCount) {
5820       unsigned bestMAIndex = 0;
5821       int bestWeight = -1;
5822       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
5823       int weight = -1;
5824       unsigned maIndex;
5825       // Compute the sums of the weights for each alternative, keeping track
5826       // of the best (highest weight) one so far.
5827       for (maIndex = 0; maIndex < maCount; ++maIndex) {
5828         int weightSum = 0;
5829         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5830              cIndex != eIndex; ++cIndex) {
5831           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5832           if (OpInfo.Type == InlineAsm::isClobber)
5833             continue;
5834 
5835           // If this is an output operand with a matching input operand,
5836           // look up the matching input. If their types mismatch, e.g. one
5837           // is an integer, the other is floating point, or their sizes are
5838           // different, flag it as an maCantMatch.
5839           if (OpInfo.hasMatchingInput()) {
5840             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5841             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5842               if ((OpInfo.ConstraintVT.isInteger() !=
5843                    Input.ConstraintVT.isInteger()) ||
5844                   (OpInfo.ConstraintVT.getSizeInBits() !=
5845                    Input.ConstraintVT.getSizeInBits())) {
5846                 weightSum = -1; // Can't match.
5847                 break;
5848               }
5849             }
5850           }
5851           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
5852           if (weight == -1) {
5853             weightSum = -1;
5854             break;
5855           }
5856           weightSum += weight;
5857         }
5858         // Update best.
5859         if (weightSum > bestWeight) {
5860           bestWeight = weightSum;
5861           bestMAIndex = maIndex;
5862         }
5863       }
5864 
5865       // Now select chosen alternative in each constraint.
5866       for (AsmOperandInfo &cInfo : ConstraintOperands)
5867         if (cInfo.Type != InlineAsm::isClobber)
5868           cInfo.selectAlternative(bestMAIndex);
5869     }
5870   }
5871 
5872   // Check and hook up tied operands, choose constraint code to use.
5873   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5874        cIndex != eIndex; ++cIndex) {
5875     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5876 
5877     // If this is an output operand with a matching input operand, look up the
5878     // matching input. If their types mismatch, e.g. one is an integer, the
5879     // other is floating point, or their sizes are different, flag it as an
5880     // error.
5881     if (OpInfo.hasMatchingInput()) {
5882       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5883 
5884       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5885         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
5886             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
5887                                          OpInfo.ConstraintVT);
5888         std::pair<unsigned, const TargetRegisterClass *> InputRC =
5889             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
5890                                          Input.ConstraintVT);
5891         const bool OutOpIsIntOrFP = OpInfo.ConstraintVT.isInteger() ||
5892                                     OpInfo.ConstraintVT.isFloatingPoint();
5893         const bool InOpIsIntOrFP = Input.ConstraintVT.isInteger() ||
5894                                    Input.ConstraintVT.isFloatingPoint();
5895         if ((OutOpIsIntOrFP != InOpIsIntOrFP) ||
5896             (MatchRC.second != InputRC.second)) {
5897           report_fatal_error("Unsupported asm: input constraint"
5898                              " with a matching output constraint of"
5899                              " incompatible type!");
5900         }
5901       }
5902     }
5903   }
5904 
5905   return ConstraintOperands;
5906 }
5907 
5908 /// Return a number indicating our preference for chosing a type of constraint
5909 /// over another, for the purpose of sorting them. Immediates are almost always
5910 /// preferrable (when they can be emitted). A higher return value means a
5911 /// stronger preference for one constraint type relative to another.
5912 /// FIXME: We should prefer registers over memory but doing so may lead to
5913 /// unrecoverable register exhaustion later.
5914 /// https://github.com/llvm/llvm-project/issues/20571
5915 static unsigned getConstraintPiority(TargetLowering::ConstraintType CT) {
5916   switch (CT) {
5917   case TargetLowering::C_Immediate:
5918   case TargetLowering::C_Other:
5919     return 4;
5920   case TargetLowering::C_Memory:
5921   case TargetLowering::C_Address:
5922     return 3;
5923   case TargetLowering::C_RegisterClass:
5924     return 2;
5925   case TargetLowering::C_Register:
5926     return 1;
5927   case TargetLowering::C_Unknown:
5928     return 0;
5929   }
5930   llvm_unreachable("Invalid constraint type");
5931 }
5932 
5933 /// Examine constraint type and operand type and determine a weight value.
5934 /// This object must already have been set up with the operand type
5935 /// and the current alternative constraint selected.
5936 TargetLowering::ConstraintWeight
5937   TargetLowering::getMultipleConstraintMatchWeight(
5938     AsmOperandInfo &info, int maIndex) const {
5939   InlineAsm::ConstraintCodeVector *rCodes;
5940   if (maIndex >= (int)info.multipleAlternatives.size())
5941     rCodes = &info.Codes;
5942   else
5943     rCodes = &info.multipleAlternatives[maIndex].Codes;
5944   ConstraintWeight BestWeight = CW_Invalid;
5945 
5946   // Loop over the options, keeping track of the most general one.
5947   for (const std::string &rCode : *rCodes) {
5948     ConstraintWeight weight =
5949         getSingleConstraintMatchWeight(info, rCode.c_str());
5950     if (weight > BestWeight)
5951       BestWeight = weight;
5952   }
5953 
5954   return BestWeight;
5955 }
5956 
5957 /// Examine constraint type and operand type and determine a weight value.
5958 /// This object must already have been set up with the operand type
5959 /// and the current alternative constraint selected.
5960 TargetLowering::ConstraintWeight
5961   TargetLowering::getSingleConstraintMatchWeight(
5962     AsmOperandInfo &info, const char *constraint) const {
5963   ConstraintWeight weight = CW_Invalid;
5964   Value *CallOperandVal = info.CallOperandVal;
5965     // If we don't have a value, we can't do a match,
5966     // but allow it at the lowest weight.
5967   if (!CallOperandVal)
5968     return CW_Default;
5969   // Look at the constraint type.
5970   switch (*constraint) {
5971     case 'i': // immediate integer.
5972     case 'n': // immediate integer with a known value.
5973       if (isa<ConstantInt>(CallOperandVal))
5974         weight = CW_Constant;
5975       break;
5976     case 's': // non-explicit intregal immediate.
5977       if (isa<GlobalValue>(CallOperandVal))
5978         weight = CW_Constant;
5979       break;
5980     case 'E': // immediate float if host format.
5981     case 'F': // immediate float.
5982       if (isa<ConstantFP>(CallOperandVal))
5983         weight = CW_Constant;
5984       break;
5985     case '<': // memory operand with autodecrement.
5986     case '>': // memory operand with autoincrement.
5987     case 'm': // memory operand.
5988     case 'o': // offsettable memory operand
5989     case 'V': // non-offsettable memory operand
5990       weight = CW_Memory;
5991       break;
5992     case 'r': // general register.
5993     case 'g': // general register, memory operand or immediate integer.
5994               // note: Clang converts "g" to "imr".
5995       if (CallOperandVal->getType()->isIntegerTy())
5996         weight = CW_Register;
5997       break;
5998     case 'X': // any operand.
5999   default:
6000     weight = CW_Default;
6001     break;
6002   }
6003   return weight;
6004 }
6005 
6006 /// If there are multiple different constraints that we could pick for this
6007 /// operand (e.g. "imr") try to pick the 'best' one.
6008 /// This is somewhat tricky: constraints (TargetLowering::ConstraintType) fall
6009 /// into seven classes:
6010 ///    Register      -> one specific register
6011 ///    RegisterClass -> a group of regs
6012 ///    Memory        -> memory
6013 ///    Address       -> a symbolic memory reference
6014 ///    Immediate     -> immediate values
6015 ///    Other         -> magic values (such as "Flag Output Operands")
6016 ///    Unknown       -> something we don't recognize yet and can't handle
6017 /// Ideally, we would pick the most specific constraint possible: if we have
6018 /// something that fits into a register, we would pick it.  The problem here
6019 /// is that if we have something that could either be in a register or in
6020 /// memory that use of the register could cause selection of *other*
6021 /// operands to fail: they might only succeed if we pick memory.  Because of
6022 /// this the heuristic we use is:
6023 ///
6024 ///  1) If there is an 'other' constraint, and if the operand is valid for
6025 ///     that constraint, use it.  This makes us take advantage of 'i'
6026 ///     constraints when available.
6027 ///  2) Otherwise, pick the most general constraint present.  This prefers
6028 ///     'm' over 'r', for example.
6029 ///
6030 TargetLowering::ConstraintGroup TargetLowering::getConstraintPreferences(
6031     TargetLowering::AsmOperandInfo &OpInfo) const {
6032   ConstraintGroup Ret;
6033 
6034   Ret.reserve(OpInfo.Codes.size());
6035   for (StringRef Code : OpInfo.Codes) {
6036     TargetLowering::ConstraintType CType = getConstraintType(Code);
6037 
6038     // Indirect 'other' or 'immediate' constraints are not allowed.
6039     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
6040                                CType == TargetLowering::C_Register ||
6041                                CType == TargetLowering::C_RegisterClass))
6042       continue;
6043 
6044     // Things with matching constraints can only be registers, per gcc
6045     // documentation.  This mainly affects "g" constraints.
6046     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
6047       continue;
6048 
6049     Ret.emplace_back(Code, CType);
6050   }
6051 
6052   std::stable_sort(
6053       Ret.begin(), Ret.end(), [](ConstraintPair a, ConstraintPair b) {
6054         return getConstraintPiority(a.second) > getConstraintPiority(b.second);
6055       });
6056 
6057   return Ret;
6058 }
6059 
6060 /// If we have an immediate, see if we can lower it. Return true if we can,
6061 /// false otherwise.
6062 static bool lowerImmediateIfPossible(TargetLowering::ConstraintPair &P,
6063                                      SDValue Op, SelectionDAG *DAG,
6064                                      const TargetLowering &TLI) {
6065 
6066   assert((P.second == TargetLowering::C_Other ||
6067           P.second == TargetLowering::C_Immediate) &&
6068          "need immediate or other");
6069 
6070   if (!Op.getNode())
6071     return false;
6072 
6073   std::vector<SDValue> ResultOps;
6074   TLI.LowerAsmOperandForConstraint(Op, P.first, ResultOps, *DAG);
6075   return !ResultOps.empty();
6076 }
6077 
6078 /// Determines the constraint code and constraint type to use for the specific
6079 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
6080 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
6081                                             SDValue Op,
6082                                             SelectionDAG *DAG) const {
6083   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
6084 
6085   // Single-letter constraints ('r') are very common.
6086   if (OpInfo.Codes.size() == 1) {
6087     OpInfo.ConstraintCode = OpInfo.Codes[0];
6088     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
6089   } else {
6090     ConstraintGroup G = getConstraintPreferences(OpInfo);
6091     if (G.empty())
6092       return;
6093 
6094     unsigned BestIdx = 0;
6095     for (const unsigned E = G.size();
6096          BestIdx < E && (G[BestIdx].second == TargetLowering::C_Other ||
6097                          G[BestIdx].second == TargetLowering::C_Immediate);
6098          ++BestIdx) {
6099       if (lowerImmediateIfPossible(G[BestIdx], Op, DAG, *this))
6100         break;
6101       // If we're out of constraints, just pick the first one.
6102       if (BestIdx + 1 == E) {
6103         BestIdx = 0;
6104         break;
6105       }
6106     }
6107 
6108     OpInfo.ConstraintCode = G[BestIdx].first;
6109     OpInfo.ConstraintType = G[BestIdx].second;
6110   }
6111 
6112   // 'X' matches anything.
6113   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
6114     // Constants are handled elsewhere.  For Functions, the type here is the
6115     // type of the result, which is not what we want to look at; leave them
6116     // alone.
6117     Value *v = OpInfo.CallOperandVal;
6118     if (isa<ConstantInt>(v) || isa<Function>(v)) {
6119       return;
6120     }
6121 
6122     if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
6123       OpInfo.ConstraintCode = "i";
6124       return;
6125     }
6126 
6127     // Otherwise, try to resolve it to something we know about by looking at
6128     // the actual operand type.
6129     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
6130       OpInfo.ConstraintCode = Repl;
6131       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
6132     }
6133   }
6134 }
6135 
6136 /// Given an exact SDIV by a constant, create a multiplication
6137 /// with the multiplicative inverse of the constant.
6138 /// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242
6139 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
6140                               const SDLoc &dl, SelectionDAG &DAG,
6141                               SmallVectorImpl<SDNode *> &Created) {
6142   SDValue Op0 = N->getOperand(0);
6143   SDValue Op1 = N->getOperand(1);
6144   EVT VT = N->getValueType(0);
6145   EVT SVT = VT.getScalarType();
6146   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
6147   EVT ShSVT = ShVT.getScalarType();
6148 
6149   bool UseSRA = false;
6150   SmallVector<SDValue, 16> Shifts, Factors;
6151 
6152   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
6153     if (C->isZero())
6154       return false;
6155     APInt Divisor = C->getAPIntValue();
6156     unsigned Shift = Divisor.countr_zero();
6157     if (Shift) {
6158       Divisor.ashrInPlace(Shift);
6159       UseSRA = true;
6160     }
6161     APInt Factor = Divisor.multiplicativeInverse();
6162     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
6163     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
6164     return true;
6165   };
6166 
6167   // Collect all magic values from the build vector.
6168   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
6169     return SDValue();
6170 
6171   SDValue Shift, Factor;
6172   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
6173     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
6174     Factor = DAG.getBuildVector(VT, dl, Factors);
6175   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
6176     assert(Shifts.size() == 1 && Factors.size() == 1 &&
6177            "Expected matchUnaryPredicate to return one element for scalable "
6178            "vectors");
6179     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
6180     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
6181   } else {
6182     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
6183     Shift = Shifts[0];
6184     Factor = Factors[0];
6185   }
6186 
6187   SDValue Res = Op0;
6188   if (UseSRA) {
6189     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, SDNodeFlags::Exact);
6190     Created.push_back(Res.getNode());
6191   }
6192 
6193   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
6194 }
6195 
6196 /// Given an exact UDIV by a constant, create a multiplication
6197 /// with the multiplicative inverse of the constant.
6198 /// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242
6199 static SDValue BuildExactUDIV(const TargetLowering &TLI, SDNode *N,
6200                               const SDLoc &dl, SelectionDAG &DAG,
6201                               SmallVectorImpl<SDNode *> &Created) {
6202   EVT VT = N->getValueType(0);
6203   EVT SVT = VT.getScalarType();
6204   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
6205   EVT ShSVT = ShVT.getScalarType();
6206 
6207   bool UseSRL = false;
6208   SmallVector<SDValue, 16> Shifts, Factors;
6209 
6210   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
6211     if (C->isZero())
6212       return false;
6213     APInt Divisor = C->getAPIntValue();
6214     unsigned Shift = Divisor.countr_zero();
6215     if (Shift) {
6216       Divisor.lshrInPlace(Shift);
6217       UseSRL = true;
6218     }
6219     // Calculate the multiplicative inverse modulo BW.
6220     APInt Factor = Divisor.multiplicativeInverse();
6221     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
6222     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
6223     return true;
6224   };
6225 
6226   SDValue Op1 = N->getOperand(1);
6227 
6228   // Collect all magic values from the build vector.
6229   if (!ISD::matchUnaryPredicate(Op1, BuildUDIVPattern))
6230     return SDValue();
6231 
6232   SDValue Shift, Factor;
6233   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
6234     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
6235     Factor = DAG.getBuildVector(VT, dl, Factors);
6236   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
6237     assert(Shifts.size() == 1 && Factors.size() == 1 &&
6238            "Expected matchUnaryPredicate to return one element for scalable "
6239            "vectors");
6240     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
6241     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
6242   } else {
6243     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
6244     Shift = Shifts[0];
6245     Factor = Factors[0];
6246   }
6247 
6248   SDValue Res = N->getOperand(0);
6249   if (UseSRL) {
6250     Res = DAG.getNode(ISD::SRL, dl, VT, Res, Shift, SDNodeFlags::Exact);
6251     Created.push_back(Res.getNode());
6252   }
6253 
6254   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
6255 }
6256 
6257 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
6258                               SelectionDAG &DAG,
6259                               SmallVectorImpl<SDNode *> &Created) const {
6260   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
6261   if (isIntDivCheap(N->getValueType(0), Attr))
6262     return SDValue(N, 0); // Lower SDIV as SDIV
6263   return SDValue();
6264 }
6265 
6266 SDValue
6267 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor,
6268                               SelectionDAG &DAG,
6269                               SmallVectorImpl<SDNode *> &Created) const {
6270   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
6271   if (isIntDivCheap(N->getValueType(0), Attr))
6272     return SDValue(N, 0); // Lower SREM as SREM
6273   return SDValue();
6274 }
6275 
6276 /// Build sdiv by power-of-2 with conditional move instructions
6277 /// Ref: "Hacker's Delight" by Henry Warren 10-1
6278 /// If conditional move/branch is preferred, we lower sdiv x, +/-2**k into:
6279 ///   bgez x, label
6280 ///   add x, x, 2**k-1
6281 /// label:
6282 ///   sra res, x, k
6283 ///   neg res, res (when the divisor is negative)
6284 SDValue TargetLowering::buildSDIVPow2WithCMov(
6285     SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
6286     SmallVectorImpl<SDNode *> &Created) const {
6287   unsigned Lg2 = Divisor.countr_zero();
6288   EVT VT = N->getValueType(0);
6289 
6290   SDLoc DL(N);
6291   SDValue N0 = N->getOperand(0);
6292   SDValue Zero = DAG.getConstant(0, DL, VT);
6293   APInt Lg2Mask = APInt::getLowBitsSet(VT.getSizeInBits(), Lg2);
6294   SDValue Pow2MinusOne = DAG.getConstant(Lg2Mask, DL, VT);
6295 
6296   // If N0 is negative, we need to add (Pow2 - 1) to it before shifting right.
6297   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6298   SDValue Cmp = DAG.getSetCC(DL, CCVT, N0, Zero, ISD::SETLT);
6299   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
6300   SDValue CMov = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
6301 
6302   Created.push_back(Cmp.getNode());
6303   Created.push_back(Add.getNode());
6304   Created.push_back(CMov.getNode());
6305 
6306   // Divide by pow2.
6307   SDValue SRA =
6308       DAG.getNode(ISD::SRA, DL, VT, CMov, DAG.getConstant(Lg2, DL, VT));
6309 
6310   // If we're dividing by a positive value, we're done.  Otherwise, we must
6311   // negate the result.
6312   if (Divisor.isNonNegative())
6313     return SRA;
6314 
6315   Created.push_back(SRA.getNode());
6316   return DAG.getNode(ISD::SUB, DL, VT, Zero, SRA);
6317 }
6318 
6319 /// Given an ISD::SDIV node expressing a divide by constant,
6320 /// return a DAG expression to select that will generate the same value by
6321 /// multiplying by a magic number.
6322 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
6323 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
6324                                   bool IsAfterLegalization,
6325                                   bool IsAfterLegalTypes,
6326                                   SmallVectorImpl<SDNode *> &Created) const {
6327   SDLoc dl(N);
6328   EVT VT = N->getValueType(0);
6329   EVT SVT = VT.getScalarType();
6330   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6331   EVT ShSVT = ShVT.getScalarType();
6332   unsigned EltBits = VT.getScalarSizeInBits();
6333   EVT MulVT;
6334 
6335   // Check to see if we can do this.
6336   // FIXME: We should be more aggressive here.
6337   if (!isTypeLegal(VT)) {
6338     // Limit this to simple scalars for now.
6339     if (VT.isVector() || !VT.isSimple())
6340       return SDValue();
6341 
6342     // If this type will be promoted to a large enough type with a legal
6343     // multiply operation, we can go ahead and do this transform.
6344     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
6345       return SDValue();
6346 
6347     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
6348     if (MulVT.getSizeInBits() < (2 * EltBits) ||
6349         !isOperationLegal(ISD::MUL, MulVT))
6350       return SDValue();
6351   }
6352 
6353   // If the sdiv has an 'exact' bit we can use a simpler lowering.
6354   if (N->getFlags().hasExact())
6355     return BuildExactSDIV(*this, N, dl, DAG, Created);
6356 
6357   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
6358 
6359   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
6360     if (C->isZero())
6361       return false;
6362 
6363     const APInt &Divisor = C->getAPIntValue();
6364     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
6365     int NumeratorFactor = 0;
6366     int ShiftMask = -1;
6367 
6368     if (Divisor.isOne() || Divisor.isAllOnes()) {
6369       // If d is +1/-1, we just multiply the numerator by +1/-1.
6370       NumeratorFactor = Divisor.getSExtValue();
6371       magics.Magic = 0;
6372       magics.ShiftAmount = 0;
6373       ShiftMask = 0;
6374     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
6375       // If d > 0 and m < 0, add the numerator.
6376       NumeratorFactor = 1;
6377     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
6378       // If d < 0 and m > 0, subtract the numerator.
6379       NumeratorFactor = -1;
6380     }
6381 
6382     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
6383     Factors.push_back(DAG.getSignedConstant(NumeratorFactor, dl, SVT));
6384     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
6385     ShiftMasks.push_back(DAG.getSignedConstant(ShiftMask, dl, SVT));
6386     return true;
6387   };
6388 
6389   SDValue N0 = N->getOperand(0);
6390   SDValue N1 = N->getOperand(1);
6391 
6392   // Collect the shifts / magic values from each element.
6393   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
6394     return SDValue();
6395 
6396   SDValue MagicFactor, Factor, Shift, ShiftMask;
6397   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
6398     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
6399     Factor = DAG.getBuildVector(VT, dl, Factors);
6400     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
6401     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
6402   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
6403     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
6404            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
6405            "Expected matchUnaryPredicate to return one element for scalable "
6406            "vectors");
6407     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
6408     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
6409     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
6410     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
6411   } else {
6412     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
6413     MagicFactor = MagicFactors[0];
6414     Factor = Factors[0];
6415     Shift = Shifts[0];
6416     ShiftMask = ShiftMasks[0];
6417   }
6418 
6419   // Multiply the numerator (operand 0) by the magic value.
6420   // FIXME: We should support doing a MUL in a wider type.
6421   auto GetMULHS = [&](SDValue X, SDValue Y) {
6422     // If the type isn't legal, use a wider mul of the type calculated
6423     // earlier.
6424     if (!isTypeLegal(VT)) {
6425       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
6426       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
6427       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
6428       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
6429                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
6430       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6431     }
6432 
6433     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
6434       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
6435     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
6436       SDValue LoHi =
6437           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
6438       return SDValue(LoHi.getNode(), 1);
6439     }
6440     // If type twice as wide legal, widen and use a mul plus a shift.
6441     unsigned Size = VT.getScalarSizeInBits();
6442     EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2);
6443     if (VT.isVector())
6444       WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
6445                                 VT.getVectorElementCount());
6446     // Some targets like AMDGPU try to go from SDIV to SDIVREM which is then
6447     // custom lowered. This is very expensive so avoid it at all costs for
6448     // constant divisors.
6449     if ((!IsAfterLegalTypes && isOperationExpand(ISD::SDIV, VT) &&
6450          isOperationCustom(ISD::SDIVREM, VT.getScalarType())) ||
6451         isOperationLegalOrCustom(ISD::MUL, WideVT)) {
6452       X = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, X);
6453       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, Y);
6454       Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y);
6455       Y = DAG.getNode(ISD::SRL, dl, WideVT, Y,
6456                       DAG.getShiftAmountConstant(EltBits, WideVT, dl));
6457       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6458     }
6459     return SDValue();
6460   };
6461 
6462   SDValue Q = GetMULHS(N0, MagicFactor);
6463   if (!Q)
6464     return SDValue();
6465 
6466   Created.push_back(Q.getNode());
6467 
6468   // (Optionally) Add/subtract the numerator using Factor.
6469   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
6470   Created.push_back(Factor.getNode());
6471   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
6472   Created.push_back(Q.getNode());
6473 
6474   // Shift right algebraic by shift value.
6475   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
6476   Created.push_back(Q.getNode());
6477 
6478   // Extract the sign bit, mask it and add it to the quotient.
6479   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
6480   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
6481   Created.push_back(T.getNode());
6482   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
6483   Created.push_back(T.getNode());
6484   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
6485 }
6486 
6487 /// Given an ISD::UDIV node expressing a divide by constant,
6488 /// return a DAG expression to select that will generate the same value by
6489 /// multiplying by a magic number.
6490 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
6491 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
6492                                   bool IsAfterLegalization,
6493                                   bool IsAfterLegalTypes,
6494                                   SmallVectorImpl<SDNode *> &Created) const {
6495   SDLoc dl(N);
6496   EVT VT = N->getValueType(0);
6497   EVT SVT = VT.getScalarType();
6498   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6499   EVT ShSVT = ShVT.getScalarType();
6500   unsigned EltBits = VT.getScalarSizeInBits();
6501   EVT MulVT;
6502 
6503   // Check to see if we can do this.
6504   // FIXME: We should be more aggressive here.
6505   if (!isTypeLegal(VT)) {
6506     // Limit this to simple scalars for now.
6507     if (VT.isVector() || !VT.isSimple())
6508       return SDValue();
6509 
6510     // If this type will be promoted to a large enough type with a legal
6511     // multiply operation, we can go ahead and do this transform.
6512     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
6513       return SDValue();
6514 
6515     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
6516     if (MulVT.getSizeInBits() < (2 * EltBits) ||
6517         !isOperationLegal(ISD::MUL, MulVT))
6518       return SDValue();
6519   }
6520 
6521   // If the udiv has an 'exact' bit we can use a simpler lowering.
6522   if (N->getFlags().hasExact())
6523     return BuildExactUDIV(*this, N, dl, DAG, Created);
6524 
6525   SDValue N0 = N->getOperand(0);
6526   SDValue N1 = N->getOperand(1);
6527 
6528   // Try to use leading zeros of the dividend to reduce the multiplier and
6529   // avoid expensive fixups.
6530   unsigned KnownLeadingZeros = DAG.computeKnownBits(N0).countMinLeadingZeros();
6531 
6532   bool UseNPQ = false, UsePreShift = false, UsePostShift = false;
6533   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
6534 
6535   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
6536     if (C->isZero())
6537       return false;
6538     const APInt& Divisor = C->getAPIntValue();
6539 
6540     SDValue PreShift, MagicFactor, NPQFactor, PostShift;
6541 
6542     // Magic algorithm doesn't work for division by 1. We need to emit a select
6543     // at the end.
6544     if (Divisor.isOne()) {
6545       PreShift = PostShift = DAG.getUNDEF(ShSVT);
6546       MagicFactor = NPQFactor = DAG.getUNDEF(SVT);
6547     } else {
6548       UnsignedDivisionByConstantInfo magics =
6549           UnsignedDivisionByConstantInfo::get(
6550               Divisor, std::min(KnownLeadingZeros, Divisor.countl_zero()));
6551 
6552       MagicFactor = DAG.getConstant(magics.Magic, dl, SVT);
6553 
6554       assert(magics.PreShift < Divisor.getBitWidth() &&
6555              "We shouldn't generate an undefined shift!");
6556       assert(magics.PostShift < Divisor.getBitWidth() &&
6557              "We shouldn't generate an undefined shift!");
6558       assert((!magics.IsAdd || magics.PreShift == 0) &&
6559              "Unexpected pre-shift");
6560       PreShift = DAG.getConstant(magics.PreShift, dl, ShSVT);
6561       PostShift = DAG.getConstant(magics.PostShift, dl, ShSVT);
6562       NPQFactor = DAG.getConstant(
6563           magics.IsAdd ? APInt::getOneBitSet(EltBits, EltBits - 1)
6564                        : APInt::getZero(EltBits),
6565           dl, SVT);
6566       UseNPQ |= magics.IsAdd;
6567       UsePreShift |= magics.PreShift != 0;
6568       UsePostShift |= magics.PostShift != 0;
6569     }
6570 
6571     PreShifts.push_back(PreShift);
6572     MagicFactors.push_back(MagicFactor);
6573     NPQFactors.push_back(NPQFactor);
6574     PostShifts.push_back(PostShift);
6575     return true;
6576   };
6577 
6578   // Collect the shifts/magic values from each element.
6579   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
6580     return SDValue();
6581 
6582   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
6583   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
6584     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
6585     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
6586     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
6587     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
6588   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
6589     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
6590            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
6591            "Expected matchUnaryPredicate to return one for scalable vectors");
6592     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
6593     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
6594     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
6595     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
6596   } else {
6597     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
6598     PreShift = PreShifts[0];
6599     MagicFactor = MagicFactors[0];
6600     PostShift = PostShifts[0];
6601   }
6602 
6603   SDValue Q = N0;
6604   if (UsePreShift) {
6605     Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
6606     Created.push_back(Q.getNode());
6607   }
6608 
6609   // FIXME: We should support doing a MUL in a wider type.
6610   auto GetMULHU = [&](SDValue X, SDValue Y) {
6611     // If the type isn't legal, use a wider mul of the type calculated
6612     // earlier.
6613     if (!isTypeLegal(VT)) {
6614       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
6615       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
6616       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
6617       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
6618                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
6619       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6620     }
6621 
6622     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
6623       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
6624     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
6625       SDValue LoHi =
6626           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
6627       return SDValue(LoHi.getNode(), 1);
6628     }
6629     // If type twice as wide legal, widen and use a mul plus a shift.
6630     unsigned Size = VT.getScalarSizeInBits();
6631     EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2);
6632     if (VT.isVector())
6633       WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
6634                                 VT.getVectorElementCount());
6635     // Some targets like AMDGPU try to go from UDIV to UDIVREM which is then
6636     // custom lowered. This is very expensive so avoid it at all costs for
6637     // constant divisors.
6638     if ((!IsAfterLegalTypes && isOperationExpand(ISD::UDIV, VT) &&
6639          isOperationCustom(ISD::UDIVREM, VT.getScalarType())) ||
6640         isOperationLegalOrCustom(ISD::MUL, WideVT)) {
6641       X = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, X);
6642       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, Y);
6643       Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y);
6644       Y = DAG.getNode(ISD::SRL, dl, WideVT, Y,
6645                       DAG.getShiftAmountConstant(EltBits, WideVT, dl));
6646       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6647     }
6648     return SDValue(); // No mulhu or equivalent
6649   };
6650 
6651   // Multiply the numerator (operand 0) by the magic value.
6652   Q = GetMULHU(Q, MagicFactor);
6653   if (!Q)
6654     return SDValue();
6655 
6656   Created.push_back(Q.getNode());
6657 
6658   if (UseNPQ) {
6659     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
6660     Created.push_back(NPQ.getNode());
6661 
6662     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
6663     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
6664     if (VT.isVector())
6665       NPQ = GetMULHU(NPQ, NPQFactor);
6666     else
6667       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
6668 
6669     Created.push_back(NPQ.getNode());
6670 
6671     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
6672     Created.push_back(Q.getNode());
6673   }
6674 
6675   if (UsePostShift) {
6676     Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
6677     Created.push_back(Q.getNode());
6678   }
6679 
6680   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6681 
6682   SDValue One = DAG.getConstant(1, dl, VT);
6683   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
6684   return DAG.getSelect(dl, VT, IsOne, N0, Q);
6685 }
6686 
6687 /// If all values in Values that *don't* match the predicate are same 'splat'
6688 /// value, then replace all values with that splat value.
6689 /// Else, if AlternativeReplacement was provided, then replace all values that
6690 /// do match predicate with AlternativeReplacement value.
6691 static void
6692 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
6693                           std::function<bool(SDValue)> Predicate,
6694                           SDValue AlternativeReplacement = SDValue()) {
6695   SDValue Replacement;
6696   // Is there a value for which the Predicate does *NOT* match? What is it?
6697   auto SplatValue = llvm::find_if_not(Values, Predicate);
6698   if (SplatValue != Values.end()) {
6699     // Does Values consist only of SplatValue's and values matching Predicate?
6700     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
6701           return Value == *SplatValue || Predicate(Value);
6702         })) // Then we shall replace values matching predicate with SplatValue.
6703       Replacement = *SplatValue;
6704   }
6705   if (!Replacement) {
6706     // Oops, we did not find the "baseline" splat value.
6707     if (!AlternativeReplacement)
6708       return; // Nothing to do.
6709     // Let's replace with provided value then.
6710     Replacement = AlternativeReplacement;
6711   }
6712   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
6713 }
6714 
6715 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
6716 /// where the divisor is constant and the comparison target is zero,
6717 /// return a DAG expression that will generate the same comparison result
6718 /// using only multiplications, additions and shifts/rotations.
6719 /// Ref: "Hacker's Delight" 10-17.
6720 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
6721                                         SDValue CompTargetNode,
6722                                         ISD::CondCode Cond,
6723                                         DAGCombinerInfo &DCI,
6724                                         const SDLoc &DL) const {
6725   SmallVector<SDNode *, 5> Built;
6726   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6727                                          DCI, DL, Built)) {
6728     for (SDNode *N : Built)
6729       DCI.AddToWorklist(N);
6730     return Folded;
6731   }
6732 
6733   return SDValue();
6734 }
6735 
6736 SDValue
6737 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
6738                                   SDValue CompTargetNode, ISD::CondCode Cond,
6739                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6740                                   SmallVectorImpl<SDNode *> &Created) const {
6741   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
6742   // - D must be constant, with D = D0 * 2^K where D0 is odd
6743   // - P is the multiplicative inverse of D0 modulo 2^W
6744   // - Q = floor(((2^W) - 1) / D)
6745   // where W is the width of the common type of N and D.
6746   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6747          "Only applicable for (in)equality comparisons.");
6748 
6749   SelectionDAG &DAG = DCI.DAG;
6750 
6751   EVT VT = REMNode.getValueType();
6752   EVT SVT = VT.getScalarType();
6753   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6754   EVT ShSVT = ShVT.getScalarType();
6755 
6756   // If MUL is unavailable, we cannot proceed in any case.
6757   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6758     return SDValue();
6759 
6760   bool ComparingWithAllZeros = true;
6761   bool AllComparisonsWithNonZerosAreTautological = true;
6762   bool HadTautologicalLanes = false;
6763   bool AllLanesAreTautological = true;
6764   bool HadEvenDivisor = false;
6765   bool AllDivisorsArePowerOfTwo = true;
6766   bool HadTautologicalInvertedLanes = false;
6767   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
6768 
6769   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
6770     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6771     if (CDiv->isZero())
6772       return false;
6773 
6774     const APInt &D = CDiv->getAPIntValue();
6775     const APInt &Cmp = CCmp->getAPIntValue();
6776 
6777     ComparingWithAllZeros &= Cmp.isZero();
6778 
6779     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6780     // if C2 is not less than C1, the comparison is always false.
6781     // But we will only be able to produce the comparison that will give the
6782     // opposive tautological answer. So this lane would need to be fixed up.
6783     bool TautologicalInvertedLane = D.ule(Cmp);
6784     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
6785 
6786     // If all lanes are tautological (either all divisors are ones, or divisor
6787     // is not greater than the constant we are comparing with),
6788     // we will prefer to avoid the fold.
6789     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
6790     HadTautologicalLanes |= TautologicalLane;
6791     AllLanesAreTautological &= TautologicalLane;
6792 
6793     // If we are comparing with non-zero, we need'll need  to subtract said
6794     // comparison value from the LHS. But there is no point in doing that if
6795     // every lane where we are comparing with non-zero is tautological..
6796     if (!Cmp.isZero())
6797       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
6798 
6799     // Decompose D into D0 * 2^K
6800     unsigned K = D.countr_zero();
6801     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6802     APInt D0 = D.lshr(K);
6803 
6804     // D is even if it has trailing zeros.
6805     HadEvenDivisor |= (K != 0);
6806     // D is a power-of-two if D0 is one.
6807     // If all divisors are power-of-two, we will prefer to avoid the fold.
6808     AllDivisorsArePowerOfTwo &= D0.isOne();
6809 
6810     // P = inv(D0, 2^W)
6811     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6812     unsigned W = D.getBitWidth();
6813     APInt P = D0.multiplicativeInverse();
6814     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6815 
6816     // Q = floor((2^W - 1) u/ D)
6817     // R = ((2^W - 1) u% D)
6818     APInt Q, R;
6819     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
6820 
6821     // If we are comparing with zero, then that comparison constant is okay,
6822     // else it may need to be one less than that.
6823     if (Cmp.ugt(R))
6824       Q -= 1;
6825 
6826     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6827            "We are expecting that K is always less than all-ones for ShSVT");
6828 
6829     // If the lane is tautological the result can be constant-folded.
6830     if (TautologicalLane) {
6831       // Set P and K amount to a bogus values so we can try to splat them.
6832       P = 0;
6833       K = -1;
6834       // And ensure that comparison constant is tautological,
6835       // it will always compare true/false.
6836       Q = -1;
6837     }
6838 
6839     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6840     KAmts.push_back(
6841         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K, /*isSigned=*/false,
6842                               /*implicitTrunc=*/true),
6843                         DL, ShSVT));
6844     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6845     return true;
6846   };
6847 
6848   SDValue N = REMNode.getOperand(0);
6849   SDValue D = REMNode.getOperand(1);
6850 
6851   // Collect the values from each element.
6852   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
6853     return SDValue();
6854 
6855   // If all lanes are tautological, the result can be constant-folded.
6856   if (AllLanesAreTautological)
6857     return SDValue();
6858 
6859   // If this is a urem by a powers-of-two, avoid the fold since it can be
6860   // best implemented as a bit test.
6861   if (AllDivisorsArePowerOfTwo)
6862     return SDValue();
6863 
6864   SDValue PVal, KVal, QVal;
6865   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6866     if (HadTautologicalLanes) {
6867       // Try to turn PAmts into a splat, since we don't care about the values
6868       // that are currently '0'. If we can't, just keep '0'`s.
6869       turnVectorIntoSplatVector(PAmts, isNullConstant);
6870       // Try to turn KAmts into a splat, since we don't care about the values
6871       // that are currently '-1'. If we can't, change them to '0'`s.
6872       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6873                                 DAG.getConstant(0, DL, ShSVT));
6874     }
6875 
6876     PVal = DAG.getBuildVector(VT, DL, PAmts);
6877     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6878     QVal = DAG.getBuildVector(VT, DL, QAmts);
6879   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6880     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
6881            "Expected matchBinaryPredicate to return one element for "
6882            "SPLAT_VECTORs");
6883     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6884     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6885     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6886   } else {
6887     PVal = PAmts[0];
6888     KVal = KAmts[0];
6889     QVal = QAmts[0];
6890   }
6891 
6892   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
6893     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
6894       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
6895     assert(CompTargetNode.getValueType() == N.getValueType() &&
6896            "Expecting that the types on LHS and RHS of comparisons match.");
6897     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
6898   }
6899 
6900   // (mul N, P)
6901   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6902   Created.push_back(Op0.getNode());
6903 
6904   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6905   // divisors as a performance improvement, since rotating by 0 is a no-op.
6906   if (HadEvenDivisor) {
6907     // We need ROTR to do this.
6908     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6909       return SDValue();
6910     // UREM: (rotr (mul N, P), K)
6911     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6912     Created.push_back(Op0.getNode());
6913   }
6914 
6915   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
6916   SDValue NewCC =
6917       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6918                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6919   if (!HadTautologicalInvertedLanes)
6920     return NewCC;
6921 
6922   // If any lanes previously compared always-false, the NewCC will give
6923   // always-true result for them, so we need to fixup those lanes.
6924   // Or the other way around for inequality predicate.
6925   assert(VT.isVector() && "Can/should only get here for vectors.");
6926   Created.push_back(NewCC.getNode());
6927 
6928   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6929   // if C2 is not less than C1, the comparison is always false.
6930   // But we have produced the comparison that will give the
6931   // opposive tautological answer. So these lanes would need to be fixed up.
6932   SDValue TautologicalInvertedChannels =
6933       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
6934   Created.push_back(TautologicalInvertedChannels.getNode());
6935 
6936   // NOTE: we avoid letting illegal types through even if we're before legalize
6937   // ops – legalization has a hard time producing good code for this.
6938   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
6939     // If we have a vector select, let's replace the comparison results in the
6940     // affected lanes with the correct tautological result.
6941     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
6942                                               DL, SETCCVT, SETCCVT);
6943     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
6944                        Replacement, NewCC);
6945   }
6946 
6947   // Else, we can just invert the comparison result in the appropriate lanes.
6948   //
6949   // NOTE: see the note above VSELECT above.
6950   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
6951     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
6952                        TautologicalInvertedChannels);
6953 
6954   return SDValue(); // Don't know how to lower.
6955 }
6956 
6957 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
6958 /// where the divisor is constant and the comparison target is zero,
6959 /// return a DAG expression that will generate the same comparison result
6960 /// using only multiplications, additions and shifts/rotations.
6961 /// Ref: "Hacker's Delight" 10-17.
6962 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
6963                                         SDValue CompTargetNode,
6964                                         ISD::CondCode Cond,
6965                                         DAGCombinerInfo &DCI,
6966                                         const SDLoc &DL) const {
6967   SmallVector<SDNode *, 7> Built;
6968   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6969                                          DCI, DL, Built)) {
6970     assert(Built.size() <= 7 && "Max size prediction failed.");
6971     for (SDNode *N : Built)
6972       DCI.AddToWorklist(N);
6973     return Folded;
6974   }
6975 
6976   return SDValue();
6977 }
6978 
6979 SDValue
6980 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
6981                                   SDValue CompTargetNode, ISD::CondCode Cond,
6982                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6983                                   SmallVectorImpl<SDNode *> &Created) const {
6984   // Derived from Hacker's Delight, 2nd Edition, by Hank Warren. Section 10-17.
6985   // Fold:
6986   //   (seteq/ne (srem N, D), 0)
6987   // To:
6988   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
6989   //
6990   // - D must be constant, with D = D0 * 2^K where D0 is odd
6991   // - P is the multiplicative inverse of D0 modulo 2^W
6992   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
6993   // - Q = floor((2 * A) / (2^K))
6994   // where W is the width of the common type of N and D.
6995   //
6996   // When D is a power of two (and thus D0 is 1), the normal
6997   // formula for A and Q don't apply, because the derivation
6998   // depends on D not dividing 2^(W-1), and thus theorem ZRS
6999   // does not apply. This specifically fails when N = INT_MIN.
7000   //
7001   // Instead, for power-of-two D, we use:
7002   // - A = 2^(W-1)
7003   // |-> Order-preserving map from [-2^(W-1), 2^(W-1) - 1] to [0,2^W - 1])
7004   // - Q = 2^(W-K) - 1
7005   // |-> Test that the top K bits are zero after rotation
7006   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
7007          "Only applicable for (in)equality comparisons.");
7008 
7009   SelectionDAG &DAG = DCI.DAG;
7010 
7011   EVT VT = REMNode.getValueType();
7012   EVT SVT = VT.getScalarType();
7013   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7014   EVT ShSVT = ShVT.getScalarType();
7015 
7016   // If we are after ops legalization, and MUL is unavailable, we can not
7017   // proceed.
7018   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
7019     return SDValue();
7020 
7021   // TODO: Could support comparing with non-zero too.
7022   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
7023   if (!CompTarget || !CompTarget->isZero())
7024     return SDValue();
7025 
7026   bool HadIntMinDivisor = false;
7027   bool HadOneDivisor = false;
7028   bool AllDivisorsAreOnes = true;
7029   bool HadEvenDivisor = false;
7030   bool NeedToApplyOffset = false;
7031   bool AllDivisorsArePowerOfTwo = true;
7032   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
7033 
7034   auto BuildSREMPattern = [&](ConstantSDNode *C) {
7035     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
7036     if (C->isZero())
7037       return false;
7038 
7039     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
7040 
7041     // WARNING: this fold is only valid for positive divisors!
7042     APInt D = C->getAPIntValue();
7043     if (D.isNegative())
7044       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
7045 
7046     HadIntMinDivisor |= D.isMinSignedValue();
7047 
7048     // If all divisors are ones, we will prefer to avoid the fold.
7049     HadOneDivisor |= D.isOne();
7050     AllDivisorsAreOnes &= D.isOne();
7051 
7052     // Decompose D into D0 * 2^K
7053     unsigned K = D.countr_zero();
7054     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
7055     APInt D0 = D.lshr(K);
7056 
7057     if (!D.isMinSignedValue()) {
7058       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
7059       // we don't care about this lane in this fold, we'll special-handle it.
7060       HadEvenDivisor |= (K != 0);
7061     }
7062 
7063     // D is a power-of-two if D0 is one. This includes INT_MIN.
7064     // If all divisors are power-of-two, we will prefer to avoid the fold.
7065     AllDivisorsArePowerOfTwo &= D0.isOne();
7066 
7067     // P = inv(D0, 2^W)
7068     // 2^W requires W + 1 bits, so we have to extend and then truncate.
7069     unsigned W = D.getBitWidth();
7070     APInt P = D0.multiplicativeInverse();
7071     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
7072 
7073     // A = floor((2^(W - 1) - 1) / D0) & -2^K
7074     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
7075     A.clearLowBits(K);
7076 
7077     if (!D.isMinSignedValue()) {
7078       // If divisor INT_MIN, then we don't care about this lane in this fold,
7079       // we'll special-handle it.
7080       NeedToApplyOffset |= A != 0;
7081     }
7082 
7083     // Q = floor((2 * A) / (2^K))
7084     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
7085 
7086     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
7087            "We are expecting that A is always less than all-ones for SVT");
7088     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
7089            "We are expecting that K is always less than all-ones for ShSVT");
7090 
7091     // If D was a power of two, apply the alternate constant derivation.
7092     if (D0.isOne()) {
7093       // A = 2^(W-1)
7094       A = APInt::getSignedMinValue(W);
7095       // - Q = 2^(W-K) - 1
7096       Q = APInt::getAllOnes(W - K).zext(W);
7097     }
7098 
7099     // If the divisor is 1 the result can be constant-folded. Likewise, we
7100     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
7101     if (D.isOne()) {
7102       // Set P, A and K to a bogus values so we can try to splat them.
7103       P = 0;
7104       A = -1;
7105       K = -1;
7106 
7107       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
7108       Q = -1;
7109     }
7110 
7111     PAmts.push_back(DAG.getConstant(P, DL, SVT));
7112     AAmts.push_back(DAG.getConstant(A, DL, SVT));
7113     KAmts.push_back(
7114         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K, /*isSigned=*/false,
7115                               /*implicitTrunc=*/true),
7116                         DL, ShSVT));
7117     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
7118     return true;
7119   };
7120 
7121   SDValue N = REMNode.getOperand(0);
7122   SDValue D = REMNode.getOperand(1);
7123 
7124   // Collect the values from each element.
7125   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
7126     return SDValue();
7127 
7128   // If this is a srem by a one, avoid the fold since it can be constant-folded.
7129   if (AllDivisorsAreOnes)
7130     return SDValue();
7131 
7132   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
7133   // since it can be best implemented as a bit test.
7134   if (AllDivisorsArePowerOfTwo)
7135     return SDValue();
7136 
7137   SDValue PVal, AVal, KVal, QVal;
7138   if (D.getOpcode() == ISD::BUILD_VECTOR) {
7139     if (HadOneDivisor) {
7140       // Try to turn PAmts into a splat, since we don't care about the values
7141       // that are currently '0'. If we can't, just keep '0'`s.
7142       turnVectorIntoSplatVector(PAmts, isNullConstant);
7143       // Try to turn AAmts into a splat, since we don't care about the
7144       // values that are currently '-1'. If we can't, change them to '0'`s.
7145       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
7146                                 DAG.getConstant(0, DL, SVT));
7147       // Try to turn KAmts into a splat, since we don't care about the values
7148       // that are currently '-1'. If we can't, change them to '0'`s.
7149       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
7150                                 DAG.getConstant(0, DL, ShSVT));
7151     }
7152 
7153     PVal = DAG.getBuildVector(VT, DL, PAmts);
7154     AVal = DAG.getBuildVector(VT, DL, AAmts);
7155     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
7156     QVal = DAG.getBuildVector(VT, DL, QAmts);
7157   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
7158     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
7159            QAmts.size() == 1 &&
7160            "Expected matchUnaryPredicate to return one element for scalable "
7161            "vectors");
7162     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
7163     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
7164     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
7165     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
7166   } else {
7167     assert(isa<ConstantSDNode>(D) && "Expected a constant");
7168     PVal = PAmts[0];
7169     AVal = AAmts[0];
7170     KVal = KAmts[0];
7171     QVal = QAmts[0];
7172   }
7173 
7174   // (mul N, P)
7175   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
7176   Created.push_back(Op0.getNode());
7177 
7178   if (NeedToApplyOffset) {
7179     // We need ADD to do this.
7180     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
7181       return SDValue();
7182 
7183     // (add (mul N, P), A)
7184     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
7185     Created.push_back(Op0.getNode());
7186   }
7187 
7188   // Rotate right only if any divisor was even. We avoid rotates for all-odd
7189   // divisors as a performance improvement, since rotating by 0 is a no-op.
7190   if (HadEvenDivisor) {
7191     // We need ROTR to do this.
7192     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
7193       return SDValue();
7194     // SREM: (rotr (add (mul N, P), A), K)
7195     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
7196     Created.push_back(Op0.getNode());
7197   }
7198 
7199   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
7200   SDValue Fold =
7201       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
7202                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
7203 
7204   // If we didn't have lanes with INT_MIN divisor, then we're done.
7205   if (!HadIntMinDivisor)
7206     return Fold;
7207 
7208   // That fold is only valid for positive divisors. Which effectively means,
7209   // it is invalid for INT_MIN divisors. So if we have such a lane,
7210   // we must fix-up results for said lanes.
7211   assert(VT.isVector() && "Can/should only get here for vectors.");
7212 
7213   // NOTE: we avoid letting illegal types through even if we're before legalize
7214   // ops – legalization has a hard time producing good code for the code that
7215   // follows.
7216   if (!isOperationLegalOrCustom(ISD::SETCC, SETCCVT) ||
7217       !isOperationLegalOrCustom(ISD::AND, VT) ||
7218       !isCondCodeLegalOrCustom(Cond, VT.getSimpleVT()) ||
7219       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
7220     return SDValue();
7221 
7222   Created.push_back(Fold.getNode());
7223 
7224   SDValue IntMin = DAG.getConstant(
7225       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
7226   SDValue IntMax = DAG.getConstant(
7227       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
7228   SDValue Zero =
7229       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
7230 
7231   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
7232   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
7233   Created.push_back(DivisorIsIntMin.getNode());
7234 
7235   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
7236   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
7237   Created.push_back(Masked.getNode());
7238   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
7239   Created.push_back(MaskedIsZero.getNode());
7240 
7241   // To produce final result we need to blend 2 vectors: 'SetCC' and
7242   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
7243   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
7244   // constant-folded, select can get lowered to a shuffle with constant mask.
7245   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
7246                                 MaskedIsZero, Fold);
7247 
7248   return Blended;
7249 }
7250 
7251 bool TargetLowering::
7252 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
7253   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
7254     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
7255                                 "be a constant integer");
7256     return true;
7257   }
7258 
7259   return false;
7260 }
7261 
7262 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
7263                                          const DenormalMode &Mode) const {
7264   SDLoc DL(Op);
7265   EVT VT = Op.getValueType();
7266   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7267   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
7268 
7269   // This is specifically a check for the handling of denormal inputs, not the
7270   // result.
7271   if (Mode.Input == DenormalMode::PreserveSign ||
7272       Mode.Input == DenormalMode::PositiveZero) {
7273     // Test = X == 0.0
7274     return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
7275   }
7276 
7277   // Testing it with denormal inputs to avoid wrong estimate.
7278   //
7279   // Test = fabs(X) < SmallestNormal
7280   const fltSemantics &FltSem = VT.getFltSemantics();
7281   APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
7282   SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
7283   SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
7284   return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
7285 }
7286 
7287 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
7288                                              bool LegalOps, bool OptForSize,
7289                                              NegatibleCost &Cost,
7290                                              unsigned Depth) const {
7291   // fneg is removable even if it has multiple uses.
7292   if (Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::VP_FNEG) {
7293     Cost = NegatibleCost::Cheaper;
7294     return Op.getOperand(0);
7295   }
7296 
7297   // Don't recurse exponentially.
7298   if (Depth > SelectionDAG::MaxRecursionDepth)
7299     return SDValue();
7300 
7301   // Pre-increment recursion depth for use in recursive calls.
7302   ++Depth;
7303   const SDNodeFlags Flags = Op->getFlags();
7304   const TargetOptions &Options = DAG.getTarget().Options;
7305   EVT VT = Op.getValueType();
7306   unsigned Opcode = Op.getOpcode();
7307 
7308   // Don't allow anything with multiple uses unless we know it is free.
7309   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
7310     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
7311                         isFPExtFree(VT, Op.getOperand(0).getValueType());
7312     if (!IsFreeExtend)
7313       return SDValue();
7314   }
7315 
7316   auto RemoveDeadNode = [&](SDValue N) {
7317     if (N && N.getNode()->use_empty())
7318       DAG.RemoveDeadNode(N.getNode());
7319   };
7320 
7321   SDLoc DL(Op);
7322 
7323   // Because getNegatedExpression can delete nodes we need a handle to keep
7324   // temporary nodes alive in case the recursion manages to create an identical
7325   // node.
7326   std::list<HandleSDNode> Handles;
7327 
7328   switch (Opcode) {
7329   case ISD::ConstantFP: {
7330     // Don't invert constant FP values after legalization unless the target says
7331     // the negated constant is legal.
7332     bool IsOpLegal =
7333         isOperationLegal(ISD::ConstantFP, VT) ||
7334         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
7335                      OptForSize);
7336 
7337     if (LegalOps && !IsOpLegal)
7338       break;
7339 
7340     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
7341     V.changeSign();
7342     SDValue CFP = DAG.getConstantFP(V, DL, VT);
7343 
7344     // If we already have the use of the negated floating constant, it is free
7345     // to negate it even it has multiple uses.
7346     if (!Op.hasOneUse() && CFP.use_empty())
7347       break;
7348     Cost = NegatibleCost::Neutral;
7349     return CFP;
7350   }
7351   case ISD::BUILD_VECTOR: {
7352     // Only permit BUILD_VECTOR of constants.
7353     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
7354           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
7355         }))
7356       break;
7357 
7358     bool IsOpLegal =
7359         (isOperationLegal(ISD::ConstantFP, VT) &&
7360          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
7361         llvm::all_of(Op->op_values(), [&](SDValue N) {
7362           return N.isUndef() ||
7363                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
7364                               OptForSize);
7365         });
7366 
7367     if (LegalOps && !IsOpLegal)
7368       break;
7369 
7370     SmallVector<SDValue, 4> Ops;
7371     for (SDValue C : Op->op_values()) {
7372       if (C.isUndef()) {
7373         Ops.push_back(C);
7374         continue;
7375       }
7376       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
7377       V.changeSign();
7378       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
7379     }
7380     Cost = NegatibleCost::Neutral;
7381     return DAG.getBuildVector(VT, DL, Ops);
7382   }
7383   case ISD::FADD: {
7384     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7385       break;
7386 
7387     // After operation legalization, it might not be legal to create new FSUBs.
7388     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
7389       break;
7390     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
7391 
7392     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
7393     NegatibleCost CostX = NegatibleCost::Expensive;
7394     SDValue NegX =
7395         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
7396     // Prevent this node from being deleted by the next call.
7397     if (NegX)
7398       Handles.emplace_back(NegX);
7399 
7400     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
7401     NegatibleCost CostY = NegatibleCost::Expensive;
7402     SDValue NegY =
7403         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
7404 
7405     // We're done with the handles.
7406     Handles.clear();
7407 
7408     // Negate the X if its cost is less or equal than Y.
7409     if (NegX && (CostX <= CostY)) {
7410       Cost = CostX;
7411       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
7412       if (NegY != N)
7413         RemoveDeadNode(NegY);
7414       return N;
7415     }
7416 
7417     // Negate the Y if it is not expensive.
7418     if (NegY) {
7419       Cost = CostY;
7420       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
7421       if (NegX != N)
7422         RemoveDeadNode(NegX);
7423       return N;
7424     }
7425     break;
7426   }
7427   case ISD::FSUB: {
7428     // We can't turn -(A-B) into B-A when we honor signed zeros.
7429     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7430       break;
7431 
7432     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
7433     // fold (fneg (fsub 0, Y)) -> Y
7434     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
7435       if (C->isZero()) {
7436         Cost = NegatibleCost::Cheaper;
7437         return Y;
7438       }
7439 
7440     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
7441     Cost = NegatibleCost::Neutral;
7442     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
7443   }
7444   case ISD::FMUL:
7445   case ISD::FDIV: {
7446     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
7447 
7448     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
7449     NegatibleCost CostX = NegatibleCost::Expensive;
7450     SDValue NegX =
7451         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
7452     // Prevent this node from being deleted by the next call.
7453     if (NegX)
7454       Handles.emplace_back(NegX);
7455 
7456     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
7457     NegatibleCost CostY = NegatibleCost::Expensive;
7458     SDValue NegY =
7459         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
7460 
7461     // We're done with the handles.
7462     Handles.clear();
7463 
7464     // Negate the X if its cost is less or equal than Y.
7465     if (NegX && (CostX <= CostY)) {
7466       Cost = CostX;
7467       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
7468       if (NegY != N)
7469         RemoveDeadNode(NegY);
7470       return N;
7471     }
7472 
7473     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
7474     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
7475       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
7476         break;
7477 
7478     // Negate the Y if it is not expensive.
7479     if (NegY) {
7480       Cost = CostY;
7481       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
7482       if (NegX != N)
7483         RemoveDeadNode(NegX);
7484       return N;
7485     }
7486     break;
7487   }
7488   case ISD::FMA:
7489   case ISD::FMAD: {
7490     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7491       break;
7492 
7493     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
7494     NegatibleCost CostZ = NegatibleCost::Expensive;
7495     SDValue NegZ =
7496         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
7497     // Give up if fail to negate the Z.
7498     if (!NegZ)
7499       break;
7500 
7501     // Prevent this node from being deleted by the next two calls.
7502     Handles.emplace_back(NegZ);
7503 
7504     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
7505     NegatibleCost CostX = NegatibleCost::Expensive;
7506     SDValue NegX =
7507         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
7508     // Prevent this node from being deleted by the next call.
7509     if (NegX)
7510       Handles.emplace_back(NegX);
7511 
7512     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
7513     NegatibleCost CostY = NegatibleCost::Expensive;
7514     SDValue NegY =
7515         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
7516 
7517     // We're done with the handles.
7518     Handles.clear();
7519 
7520     // Negate the X if its cost is less or equal than Y.
7521     if (NegX && (CostX <= CostY)) {
7522       Cost = std::min(CostX, CostZ);
7523       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
7524       if (NegY != N)
7525         RemoveDeadNode(NegY);
7526       return N;
7527     }
7528 
7529     // Negate the Y if it is not expensive.
7530     if (NegY) {
7531       Cost = std::min(CostY, CostZ);
7532       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
7533       if (NegX != N)
7534         RemoveDeadNode(NegX);
7535       return N;
7536     }
7537     break;
7538   }
7539 
7540   case ISD::FP_EXTEND:
7541   case ISD::FSIN:
7542     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
7543                                             OptForSize, Cost, Depth))
7544       return DAG.getNode(Opcode, DL, VT, NegV);
7545     break;
7546   case ISD::FP_ROUND:
7547     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
7548                                             OptForSize, Cost, Depth))
7549       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
7550     break;
7551   case ISD::SELECT:
7552   case ISD::VSELECT: {
7553     // fold (fneg (select C, LHS, RHS)) -> (select C, (fneg LHS), (fneg RHS))
7554     // iff at least one cost is cheaper and the other is neutral/cheaper
7555     SDValue LHS = Op.getOperand(1);
7556     NegatibleCost CostLHS = NegatibleCost::Expensive;
7557     SDValue NegLHS =
7558         getNegatedExpression(LHS, DAG, LegalOps, OptForSize, CostLHS, Depth);
7559     if (!NegLHS || CostLHS > NegatibleCost::Neutral) {
7560       RemoveDeadNode(NegLHS);
7561       break;
7562     }
7563 
7564     // Prevent this node from being deleted by the next call.
7565     Handles.emplace_back(NegLHS);
7566 
7567     SDValue RHS = Op.getOperand(2);
7568     NegatibleCost CostRHS = NegatibleCost::Expensive;
7569     SDValue NegRHS =
7570         getNegatedExpression(RHS, DAG, LegalOps, OptForSize, CostRHS, Depth);
7571 
7572     // We're done with the handles.
7573     Handles.clear();
7574 
7575     if (!NegRHS || CostRHS > NegatibleCost::Neutral ||
7576         (CostLHS != NegatibleCost::Cheaper &&
7577          CostRHS != NegatibleCost::Cheaper)) {
7578       RemoveDeadNode(NegLHS);
7579       RemoveDeadNode(NegRHS);
7580       break;
7581     }
7582 
7583     Cost = std::min(CostLHS, CostRHS);
7584     return DAG.getSelect(DL, VT, Op.getOperand(0), NegLHS, NegRHS);
7585   }
7586   }
7587 
7588   return SDValue();
7589 }
7590 
7591 //===----------------------------------------------------------------------===//
7592 // Legalization Utilities
7593 //===----------------------------------------------------------------------===//
7594 
7595 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
7596                                     SDValue LHS, SDValue RHS,
7597                                     SmallVectorImpl<SDValue> &Result,
7598                                     EVT HiLoVT, SelectionDAG &DAG,
7599                                     MulExpansionKind Kind, SDValue LL,
7600                                     SDValue LH, SDValue RL, SDValue RH) const {
7601   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
7602          Opcode == ISD::SMUL_LOHI);
7603 
7604   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
7605                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
7606   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
7607                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
7608   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
7609                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
7610   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
7611                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
7612 
7613   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
7614     return false;
7615 
7616   unsigned OuterBitSize = VT.getScalarSizeInBits();
7617   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
7618 
7619   // LL, LH, RL, and RH must be either all NULL or all set to a value.
7620   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
7621          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
7622 
7623   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
7624   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
7625                           bool Signed) -> bool {
7626     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
7627       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
7628       Hi = SDValue(Lo.getNode(), 1);
7629       return true;
7630     }
7631     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
7632       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
7633       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
7634       return true;
7635     }
7636     return false;
7637   };
7638 
7639   SDValue Lo, Hi;
7640 
7641   if (!LL.getNode() && !RL.getNode() &&
7642       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
7643     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
7644     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
7645   }
7646 
7647   if (!LL.getNode())
7648     return false;
7649 
7650   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
7651   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
7652       DAG.MaskedValueIsZero(RHS, HighMask)) {
7653     // The inputs are both zero-extended.
7654     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
7655       Result.push_back(Lo);
7656       Result.push_back(Hi);
7657       if (Opcode != ISD::MUL) {
7658         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
7659         Result.push_back(Zero);
7660         Result.push_back(Zero);
7661       }
7662       return true;
7663     }
7664   }
7665 
7666   if (!VT.isVector() && Opcode == ISD::MUL &&
7667       DAG.ComputeMaxSignificantBits(LHS) <= InnerBitSize &&
7668       DAG.ComputeMaxSignificantBits(RHS) <= InnerBitSize) {
7669     // The input values are both sign-extended.
7670     // TODO non-MUL case?
7671     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
7672       Result.push_back(Lo);
7673       Result.push_back(Hi);
7674       return true;
7675     }
7676   }
7677 
7678   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
7679   SDValue Shift = DAG.getShiftAmountConstant(ShiftAmount, VT, dl);
7680 
7681   if (!LH.getNode() && !RH.getNode() &&
7682       isOperationLegalOrCustom(ISD::SRL, VT) &&
7683       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
7684     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
7685     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
7686     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
7687     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
7688   }
7689 
7690   if (!LH.getNode())
7691     return false;
7692 
7693   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
7694     return false;
7695 
7696   Result.push_back(Lo);
7697 
7698   if (Opcode == ISD::MUL) {
7699     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
7700     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
7701     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
7702     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
7703     Result.push_back(Hi);
7704     return true;
7705   }
7706 
7707   // Compute the full width result.
7708   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
7709     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
7710     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7711     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
7712     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
7713   };
7714 
7715   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7716   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
7717     return false;
7718 
7719   // This is effectively the add part of a multiply-add of half-sized operands,
7720   // so it cannot overflow.
7721   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7722 
7723   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
7724     return false;
7725 
7726   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
7727   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7728 
7729   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
7730                   isOperationLegalOrCustom(ISD::ADDE, VT));
7731   if (UseGlue)
7732     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
7733                        Merge(Lo, Hi));
7734   else
7735     Next = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(VT, BoolType), Next,
7736                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
7737 
7738   SDValue Carry = Next.getValue(1);
7739   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7740   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7741 
7742   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
7743     return false;
7744 
7745   if (UseGlue)
7746     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
7747                      Carry);
7748   else
7749     Hi = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
7750                      Zero, Carry);
7751 
7752   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7753 
7754   if (Opcode == ISD::SMUL_LOHI) {
7755     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7756                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
7757     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
7758 
7759     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7760                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
7761     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
7762   }
7763 
7764   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7765   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7766   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7767   return true;
7768 }
7769 
7770 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
7771                                SelectionDAG &DAG, MulExpansionKind Kind,
7772                                SDValue LL, SDValue LH, SDValue RL,
7773                                SDValue RH) const {
7774   SmallVector<SDValue, 2> Result;
7775   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
7776                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
7777                            DAG, Kind, LL, LH, RL, RH);
7778   if (Ok) {
7779     assert(Result.size() == 2);
7780     Lo = Result[0];
7781     Hi = Result[1];
7782   }
7783   return Ok;
7784 }
7785 
7786 // Optimize unsigned division or remainder by constants for types twice as large
7787 // as a legal VT.
7788 //
7789 // If (1 << (BitWidth / 2)) % Constant == 1, then the remainder
7790 // can be computed
7791 // as:
7792 //   Sum += __builtin_uadd_overflow(Lo, High, &Sum);
7793 //   Remainder = Sum % Constant
7794 // This is based on "Remainder by Summing Digits" from Hacker's Delight.
7795 //
7796 // For division, we can compute the remainder using the algorithm described
7797 // above, subtract it from the dividend to get an exact multiple of Constant.
7798 // Then multiply that exact multiply by the multiplicative inverse modulo
7799 // (1 << (BitWidth / 2)) to get the quotient.
7800 
7801 // If Constant is even, we can shift right the dividend and the divisor by the
7802 // number of trailing zeros in Constant before applying the remainder algorithm.
7803 // If we're after the quotient, we can subtract this value from the shifted
7804 // dividend and multiply by the multiplicative inverse of the shifted divisor.
7805 // If we want the remainder, we shift the value left by the number of trailing
7806 // zeros and add the bits that were shifted out of the dividend.
7807 bool TargetLowering::expandDIVREMByConstant(SDNode *N,
7808                                             SmallVectorImpl<SDValue> &Result,
7809                                             EVT HiLoVT, SelectionDAG &DAG,
7810                                             SDValue LL, SDValue LH) const {
7811   unsigned Opcode = N->getOpcode();
7812   EVT VT = N->getValueType(0);
7813 
7814   // TODO: Support signed division/remainder.
7815   if (Opcode == ISD::SREM || Opcode == ISD::SDIV || Opcode == ISD::SDIVREM)
7816     return false;
7817   assert(
7818       (Opcode == ISD::UREM || Opcode == ISD::UDIV || Opcode == ISD::UDIVREM) &&
7819       "Unexpected opcode");
7820 
7821   auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(1));
7822   if (!CN)
7823     return false;
7824 
7825   APInt Divisor = CN->getAPIntValue();
7826   unsigned BitWidth = Divisor.getBitWidth();
7827   unsigned HBitWidth = BitWidth / 2;
7828   assert(VT.getScalarSizeInBits() == BitWidth &&
7829          HiLoVT.getScalarSizeInBits() == HBitWidth && "Unexpected VTs");
7830 
7831   // Divisor needs to less than (1 << HBitWidth).
7832   APInt HalfMaxPlus1 = APInt::getOneBitSet(BitWidth, HBitWidth);
7833   if (Divisor.uge(HalfMaxPlus1))
7834     return false;
7835 
7836   // We depend on the UREM by constant optimization in DAGCombiner that requires
7837   // high multiply.
7838   if (!isOperationLegalOrCustom(ISD::MULHU, HiLoVT) &&
7839       !isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT))
7840     return false;
7841 
7842   // Don't expand if optimizing for size.
7843   if (DAG.shouldOptForSize())
7844     return false;
7845 
7846   // Early out for 0 or 1 divisors.
7847   if (Divisor.ule(1))
7848     return false;
7849 
7850   // If the divisor is even, shift it until it becomes odd.
7851   unsigned TrailingZeros = 0;
7852   if (!Divisor[0]) {
7853     TrailingZeros = Divisor.countr_zero();
7854     Divisor.lshrInPlace(TrailingZeros);
7855   }
7856 
7857   SDLoc dl(N);
7858   SDValue Sum;
7859   SDValue PartialRem;
7860 
7861   // If (1 << HBitWidth) % divisor == 1, we can add the two halves together and
7862   // then add in the carry.
7863   // TODO: If we can't split it in half, we might be able to split into 3 or
7864   // more pieces using a smaller bit width.
7865   if (HalfMaxPlus1.urem(Divisor).isOne()) {
7866     assert(!LL == !LH && "Expected both input halves or no input halves!");
7867     if (!LL)
7868       std::tie(LL, LH) = DAG.SplitScalar(N->getOperand(0), dl, HiLoVT, HiLoVT);
7869 
7870     // Shift the input by the number of TrailingZeros in the divisor. The
7871     // shifted out bits will be added to the remainder later.
7872     if (TrailingZeros) {
7873       // Save the shifted off bits if we need the remainder.
7874       if (Opcode != ISD::UDIV) {
7875         APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros);
7876         PartialRem = DAG.getNode(ISD::AND, dl, HiLoVT, LL,
7877                                  DAG.getConstant(Mask, dl, HiLoVT));
7878       }
7879 
7880       LL = DAG.getNode(
7881           ISD::OR, dl, HiLoVT,
7882           DAG.getNode(ISD::SRL, dl, HiLoVT, LL,
7883                       DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)),
7884           DAG.getNode(ISD::SHL, dl, HiLoVT, LH,
7885                       DAG.getShiftAmountConstant(HBitWidth - TrailingZeros,
7886                                                  HiLoVT, dl)));
7887       LH = DAG.getNode(ISD::SRL, dl, HiLoVT, LH,
7888                        DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl));
7889     }
7890 
7891     // Use uaddo_carry if we can, otherwise use a compare to detect overflow.
7892     EVT SetCCType =
7893         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), HiLoVT);
7894     if (isOperationLegalOrCustom(ISD::UADDO_CARRY, HiLoVT)) {
7895       SDVTList VTList = DAG.getVTList(HiLoVT, SetCCType);
7896       Sum = DAG.getNode(ISD::UADDO, dl, VTList, LL, LH);
7897       Sum = DAG.getNode(ISD::UADDO_CARRY, dl, VTList, Sum,
7898                         DAG.getConstant(0, dl, HiLoVT), Sum.getValue(1));
7899     } else {
7900       Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, LL, LH);
7901       SDValue Carry = DAG.getSetCC(dl, SetCCType, Sum, LL, ISD::SETULT);
7902       // If the boolean for the target is 0 or 1, we can add the setcc result
7903       // directly.
7904       if (getBooleanContents(HiLoVT) ==
7905           TargetLoweringBase::ZeroOrOneBooleanContent)
7906         Carry = DAG.getZExtOrTrunc(Carry, dl, HiLoVT);
7907       else
7908         Carry = DAG.getSelect(dl, HiLoVT, Carry, DAG.getConstant(1, dl, HiLoVT),
7909                               DAG.getConstant(0, dl, HiLoVT));
7910       Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, Sum, Carry);
7911     }
7912   }
7913 
7914   // If we didn't find a sum, we can't do the expansion.
7915   if (!Sum)
7916     return false;
7917 
7918   // Perform a HiLoVT urem on the Sum using truncated divisor.
7919   SDValue RemL =
7920       DAG.getNode(ISD::UREM, dl, HiLoVT, Sum,
7921                   DAG.getConstant(Divisor.trunc(HBitWidth), dl, HiLoVT));
7922   SDValue RemH = DAG.getConstant(0, dl, HiLoVT);
7923 
7924   if (Opcode != ISD::UREM) {
7925     // Subtract the remainder from the shifted dividend.
7926     SDValue Dividend = DAG.getNode(ISD::BUILD_PAIR, dl, VT, LL, LH);
7927     SDValue Rem = DAG.getNode(ISD::BUILD_PAIR, dl, VT, RemL, RemH);
7928 
7929     Dividend = DAG.getNode(ISD::SUB, dl, VT, Dividend, Rem);
7930 
7931     // Multiply by the multiplicative inverse of the divisor modulo
7932     // (1 << BitWidth).
7933     APInt MulFactor = Divisor.multiplicativeInverse();
7934 
7935     SDValue Quotient = DAG.getNode(ISD::MUL, dl, VT, Dividend,
7936                                    DAG.getConstant(MulFactor, dl, VT));
7937 
7938     // Split the quotient into low and high parts.
7939     SDValue QuotL, QuotH;
7940     std::tie(QuotL, QuotH) = DAG.SplitScalar(Quotient, dl, HiLoVT, HiLoVT);
7941     Result.push_back(QuotL);
7942     Result.push_back(QuotH);
7943   }
7944 
7945   if (Opcode != ISD::UDIV) {
7946     // If we shifted the input, shift the remainder left and add the bits we
7947     // shifted off the input.
7948     if (TrailingZeros) {
7949       APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros);
7950       RemL = DAG.getNode(ISD::SHL, dl, HiLoVT, RemL,
7951                          DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl));
7952       RemL = DAG.getNode(ISD::ADD, dl, HiLoVT, RemL, PartialRem);
7953     }
7954     Result.push_back(RemL);
7955     Result.push_back(DAG.getConstant(0, dl, HiLoVT));
7956   }
7957 
7958   return true;
7959 }
7960 
7961 // Check that (every element of) Z is undef or not an exact multiple of BW.
7962 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
7963   return ISD::matchUnaryPredicate(
7964       Z,
7965       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
7966       true);
7967 }
7968 
7969 static SDValue expandVPFunnelShift(SDNode *Node, SelectionDAG &DAG) {
7970   EVT VT = Node->getValueType(0);
7971   SDValue ShX, ShY;
7972   SDValue ShAmt, InvShAmt;
7973   SDValue X = Node->getOperand(0);
7974   SDValue Y = Node->getOperand(1);
7975   SDValue Z = Node->getOperand(2);
7976   SDValue Mask = Node->getOperand(3);
7977   SDValue VL = Node->getOperand(4);
7978 
7979   unsigned BW = VT.getScalarSizeInBits();
7980   bool IsFSHL = Node->getOpcode() == ISD::VP_FSHL;
7981   SDLoc DL(SDValue(Node, 0));
7982 
7983   EVT ShVT = Z.getValueType();
7984   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7985     // fshl: X << C | Y >> (BW - C)
7986     // fshr: X << (BW - C) | Y >> C
7987     // where C = Z % BW is not zero
7988     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7989     ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL);
7990     InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitWidthC, ShAmt, Mask, VL);
7991     ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt, Mask,
7992                       VL);
7993     ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt, Mask,
7994                       VL);
7995   } else {
7996     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
7997     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
7998     SDValue BitMask = DAG.getConstant(BW - 1, DL, ShVT);
7999     if (isPowerOf2_32(BW)) {
8000       // Z % BW -> Z & (BW - 1)
8001       ShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, Z, BitMask, Mask, VL);
8002       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
8003       SDValue NotZ = DAG.getNode(ISD::VP_XOR, DL, ShVT, Z,
8004                                  DAG.getAllOnesConstant(DL, ShVT), Mask, VL);
8005       InvShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, NotZ, BitMask, Mask, VL);
8006     } else {
8007       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
8008       ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL);
8009       InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitMask, ShAmt, Mask, VL);
8010     }
8011 
8012     SDValue One = DAG.getConstant(1, DL, ShVT);
8013     if (IsFSHL) {
8014       ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, ShAmt, Mask, VL);
8015       SDValue ShY1 = DAG.getNode(ISD::VP_SRL, DL, VT, Y, One, Mask, VL);
8016       ShY = DAG.getNode(ISD::VP_SRL, DL, VT, ShY1, InvShAmt, Mask, VL);
8017     } else {
8018       SDValue ShX1 = DAG.getNode(ISD::VP_SHL, DL, VT, X, One, Mask, VL);
8019       ShX = DAG.getNode(ISD::VP_SHL, DL, VT, ShX1, InvShAmt, Mask, VL);
8020       ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, ShAmt, Mask, VL);
8021     }
8022   }
8023   return DAG.getNode(ISD::VP_OR, DL, VT, ShX, ShY, Mask, VL);
8024 }
8025 
8026 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
8027                                           SelectionDAG &DAG) const {
8028   if (Node->isVPOpcode())
8029     return expandVPFunnelShift(Node, DAG);
8030 
8031   EVT VT = Node->getValueType(0);
8032 
8033   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
8034                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
8035                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
8036                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
8037     return SDValue();
8038 
8039   SDValue X = Node->getOperand(0);
8040   SDValue Y = Node->getOperand(1);
8041   SDValue Z = Node->getOperand(2);
8042 
8043   unsigned BW = VT.getScalarSizeInBits();
8044   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
8045   SDLoc DL(SDValue(Node, 0));
8046 
8047   EVT ShVT = Z.getValueType();
8048 
8049   // If a funnel shift in the other direction is more supported, use it.
8050   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
8051   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
8052       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
8053     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
8054       // fshl X, Y, Z -> fshr X, Y, -Z
8055       // fshr X, Y, Z -> fshl X, Y, -Z
8056       SDValue Zero = DAG.getConstant(0, DL, ShVT);
8057       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
8058     } else {
8059       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
8060       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
8061       SDValue One = DAG.getConstant(1, DL, ShVT);
8062       if (IsFSHL) {
8063         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
8064         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
8065       } else {
8066         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
8067         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
8068       }
8069       Z = DAG.getNOT(DL, Z, ShVT);
8070     }
8071     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
8072   }
8073 
8074   SDValue ShX, ShY;
8075   SDValue ShAmt, InvShAmt;
8076   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
8077     // fshl: X << C | Y >> (BW - C)
8078     // fshr: X << (BW - C) | Y >> C
8079     // where C = Z % BW is not zero
8080     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
8081     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
8082     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
8083     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
8084     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
8085   } else {
8086     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
8087     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
8088     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
8089     if (isPowerOf2_32(BW)) {
8090       // Z % BW -> Z & (BW - 1)
8091       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
8092       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
8093       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
8094     } else {
8095       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
8096       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
8097       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
8098     }
8099 
8100     SDValue One = DAG.getConstant(1, DL, ShVT);
8101     if (IsFSHL) {
8102       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
8103       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
8104       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
8105     } else {
8106       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
8107       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
8108       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
8109     }
8110   }
8111   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
8112 }
8113 
8114 // TODO: Merge with expandFunnelShift.
8115 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
8116                                   SelectionDAG &DAG) const {
8117   EVT VT = Node->getValueType(0);
8118   unsigned EltSizeInBits = VT.getScalarSizeInBits();
8119   bool IsLeft = Node->getOpcode() == ISD::ROTL;
8120   SDValue Op0 = Node->getOperand(0);
8121   SDValue Op1 = Node->getOperand(1);
8122   SDLoc DL(SDValue(Node, 0));
8123 
8124   EVT ShVT = Op1.getValueType();
8125   SDValue Zero = DAG.getConstant(0, DL, ShVT);
8126 
8127   // If a rotate in the other direction is more supported, use it.
8128   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
8129   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
8130       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
8131     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
8132     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
8133   }
8134 
8135   if (!AllowVectorOps && VT.isVector() &&
8136       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
8137        !isOperationLegalOrCustom(ISD::SRL, VT) ||
8138        !isOperationLegalOrCustom(ISD::SUB, VT) ||
8139        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
8140        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
8141     return SDValue();
8142 
8143   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
8144   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
8145   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
8146   SDValue ShVal;
8147   SDValue HsVal;
8148   if (isPowerOf2_32(EltSizeInBits)) {
8149     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
8150     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
8151     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
8152     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
8153     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
8154     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
8155     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
8156   } else {
8157     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
8158     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
8159     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
8160     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
8161     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
8162     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
8163     SDValue One = DAG.getConstant(1, DL, ShVT);
8164     HsVal =
8165         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
8166   }
8167   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
8168 }
8169 
8170 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
8171                                       SelectionDAG &DAG) const {
8172   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
8173   EVT VT = Node->getValueType(0);
8174   unsigned VTBits = VT.getScalarSizeInBits();
8175   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
8176 
8177   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
8178   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
8179   SDValue ShOpLo = Node->getOperand(0);
8180   SDValue ShOpHi = Node->getOperand(1);
8181   SDValue ShAmt = Node->getOperand(2);
8182   EVT ShAmtVT = ShAmt.getValueType();
8183   EVT ShAmtCCVT =
8184       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
8185   SDLoc dl(Node);
8186 
8187   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
8188   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
8189   // away during isel.
8190   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
8191                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
8192   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
8193                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
8194                        : DAG.getConstant(0, dl, VT);
8195 
8196   SDValue Tmp2, Tmp3;
8197   if (IsSHL) {
8198     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
8199     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
8200   } else {
8201     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
8202     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
8203   }
8204 
8205   // If the shift amount is larger or equal than the width of a part we don't
8206   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
8207   // values for large shift amounts.
8208   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
8209                                 DAG.getConstant(VTBits, dl, ShAmtVT));
8210   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
8211                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
8212 
8213   if (IsSHL) {
8214     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
8215     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
8216   } else {
8217     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
8218     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
8219   }
8220 }
8221 
8222 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
8223                                       SelectionDAG &DAG) const {
8224   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
8225   SDValue Src = Node->getOperand(OpNo);
8226   EVT SrcVT = Src.getValueType();
8227   EVT DstVT = Node->getValueType(0);
8228   SDLoc dl(SDValue(Node, 0));
8229 
8230   // FIXME: Only f32 to i64 conversions are supported.
8231   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
8232     return false;
8233 
8234   if (Node->isStrictFPOpcode())
8235     // When a NaN is converted to an integer a trap is allowed. We can't
8236     // use this expansion here because it would eliminate that trap. Other
8237     // traps are also allowed and cannot be eliminated. See
8238     // IEEE 754-2008 sec 5.8.
8239     return false;
8240 
8241   // Expand f32 -> i64 conversion
8242   // This algorithm comes from compiler-rt's implementation of fixsfdi:
8243   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
8244   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
8245   EVT IntVT = SrcVT.changeTypeToInteger();
8246   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
8247 
8248   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
8249   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
8250   SDValue Bias = DAG.getConstant(127, dl, IntVT);
8251   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
8252   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
8253   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
8254 
8255   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
8256 
8257   SDValue ExponentBits = DAG.getNode(
8258       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
8259       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
8260   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
8261 
8262   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
8263                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
8264                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
8265   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
8266 
8267   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
8268                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
8269                           DAG.getConstant(0x00800000, dl, IntVT));
8270 
8271   R = DAG.getZExtOrTrunc(R, dl, DstVT);
8272 
8273   R = DAG.getSelectCC(
8274       dl, Exponent, ExponentLoBit,
8275       DAG.getNode(ISD::SHL, dl, DstVT, R,
8276                   DAG.getZExtOrTrunc(
8277                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
8278                       dl, IntShVT)),
8279       DAG.getNode(ISD::SRL, dl, DstVT, R,
8280                   DAG.getZExtOrTrunc(
8281                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
8282                       dl, IntShVT)),
8283       ISD::SETGT);
8284 
8285   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
8286                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
8287 
8288   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
8289                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
8290   return true;
8291 }
8292 
8293 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
8294                                       SDValue &Chain,
8295                                       SelectionDAG &DAG) const {
8296   SDLoc dl(SDValue(Node, 0));
8297   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
8298   SDValue Src = Node->getOperand(OpNo);
8299 
8300   EVT SrcVT = Src.getValueType();
8301   EVT DstVT = Node->getValueType(0);
8302   EVT SetCCVT =
8303       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
8304   EVT DstSetCCVT =
8305       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
8306 
8307   // Only expand vector types if we have the appropriate vector bit operations.
8308   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
8309                                                    ISD::FP_TO_SINT;
8310   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
8311                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
8312     return false;
8313 
8314   // If the maximum float value is smaller then the signed integer range,
8315   // the destination signmask can't be represented by the float, so we can
8316   // just use FP_TO_SINT directly.
8317   const fltSemantics &APFSem = SrcVT.getFltSemantics();
8318   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
8319   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
8320   if (APFloat::opOverflow &
8321       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
8322     if (Node->isStrictFPOpcode()) {
8323       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
8324                            { Node->getOperand(0), Src });
8325       Chain = Result.getValue(1);
8326     } else
8327       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
8328     return true;
8329   }
8330 
8331   // Don't expand it if there isn't cheap fsub instruction.
8332   if (!isOperationLegalOrCustom(
8333           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
8334     return false;
8335 
8336   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
8337   SDValue Sel;
8338 
8339   if (Node->isStrictFPOpcode()) {
8340     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
8341                        Node->getOperand(0), /*IsSignaling*/ true);
8342     Chain = Sel.getValue(1);
8343   } else {
8344     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
8345   }
8346 
8347   bool Strict = Node->isStrictFPOpcode() ||
8348                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
8349 
8350   if (Strict) {
8351     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
8352     // signmask then offset (the result of which should be fully representable).
8353     // Sel = Src < 0x8000000000000000
8354     // FltOfs = select Sel, 0, 0x8000000000000000
8355     // IntOfs = select Sel, 0, 0x8000000000000000
8356     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
8357 
8358     // TODO: Should any fast-math-flags be set for the FSUB?
8359     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
8360                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
8361     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8362     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
8363                                    DAG.getConstant(0, dl, DstVT),
8364                                    DAG.getConstant(SignMask, dl, DstVT));
8365     SDValue SInt;
8366     if (Node->isStrictFPOpcode()) {
8367       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
8368                                 { Chain, Src, FltOfs });
8369       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
8370                          { Val.getValue(1), Val });
8371       Chain = SInt.getValue(1);
8372     } else {
8373       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
8374       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
8375     }
8376     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
8377   } else {
8378     // Expand based on maximum range of FP_TO_SINT:
8379     // True = fp_to_sint(Src)
8380     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
8381     // Result = select (Src < 0x8000000000000000), True, False
8382 
8383     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
8384     // TODO: Should any fast-math-flags be set for the FSUB?
8385     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
8386                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
8387     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
8388                         DAG.getConstant(SignMask, dl, DstVT));
8389     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8390     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
8391   }
8392   return true;
8393 }
8394 
8395 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
8396                                       SDValue &Chain, SelectionDAG &DAG) const {
8397   // This transform is not correct for converting 0 when rounding mode is set
8398   // to round toward negative infinity which will produce -0.0. So disable
8399   // under strictfp.
8400   if (Node->isStrictFPOpcode())
8401     return false;
8402 
8403   SDValue Src = Node->getOperand(0);
8404   EVT SrcVT = Src.getValueType();
8405   EVT DstVT = Node->getValueType(0);
8406 
8407   // If the input is known to be non-negative and SINT_TO_FP is legal then use
8408   // it.
8409   if (Node->getFlags().hasNonNeg() &&
8410       isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT)) {
8411     Result =
8412         DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), DstVT, Node->getOperand(0));
8413     return true;
8414   }
8415 
8416   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
8417     return false;
8418 
8419   // Only expand vector types if we have the appropriate vector bit
8420   // operations.
8421   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
8422                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
8423                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
8424                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
8425                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
8426     return false;
8427 
8428   SDLoc dl(SDValue(Node, 0));
8429   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
8430 
8431   // Implementation of unsigned i64 to f64 following the algorithm in
8432   // __floatundidf in compiler_rt.  This implementation performs rounding
8433   // correctly in all rounding modes with the exception of converting 0
8434   // when rounding toward negative infinity. In that case the fsub will
8435   // produce -0.0. This will be added to +0.0 and produce -0.0 which is
8436   // incorrect.
8437   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
8438   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
8439       llvm::bit_cast<double>(UINT64_C(0x4530000000100000)), dl, DstVT);
8440   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
8441   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
8442   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
8443 
8444   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
8445   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
8446   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
8447   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
8448   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
8449   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
8450   SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
8451   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
8452   return true;
8453 }
8454 
8455 SDValue
8456 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node,
8457                                                SelectionDAG &DAG) const {
8458   unsigned Opcode = Node->getOpcode();
8459   assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
8460           Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) &&
8461          "Wrong opcode");
8462 
8463   if (Node->getFlags().hasNoNaNs()) {
8464     ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
8465     EVT VT = Node->getValueType(0);
8466     if ((!isCondCodeLegal(Pred, VT.getSimpleVT()) ||
8467          !isOperationLegalOrCustom(ISD::VSELECT, VT)) &&
8468         VT.isVector())
8469       return SDValue();
8470     SDValue Op1 = Node->getOperand(0);
8471     SDValue Op2 = Node->getOperand(1);
8472     SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred);
8473     // Copy FMF flags, but always set the no-signed-zeros flag
8474     // as this is implied by the FMINNUM/FMAXNUM semantics.
8475     SelCC->setFlags(Node->getFlags() | SDNodeFlags::NoSignedZeros);
8476     return SelCC;
8477   }
8478 
8479   return SDValue();
8480 }
8481 
8482 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
8483                                               SelectionDAG &DAG) const {
8484   if (SDValue Expanded = expandVectorNaryOpBySplitting(Node, DAG))
8485     return Expanded;
8486 
8487   EVT VT = Node->getValueType(0);
8488   if (VT.isScalableVector())
8489     report_fatal_error(
8490         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
8491 
8492   SDLoc dl(Node);
8493   unsigned NewOp =
8494       Node->getOpcode() == ISD::FMINNUM ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
8495 
8496   if (isOperationLegalOrCustom(NewOp, VT)) {
8497     SDValue Quiet0 = Node->getOperand(0);
8498     SDValue Quiet1 = Node->getOperand(1);
8499 
8500     if (!Node->getFlags().hasNoNaNs()) {
8501       // Insert canonicalizes if it's possible we need to quiet to get correct
8502       // sNaN behavior.
8503       if (!DAG.isKnownNeverSNaN(Quiet0)) {
8504         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
8505                              Node->getFlags());
8506       }
8507       if (!DAG.isKnownNeverSNaN(Quiet1)) {
8508         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
8509                              Node->getFlags());
8510       }
8511     }
8512 
8513     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
8514   }
8515 
8516   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
8517   // instead if there are no NaNs and there can't be an incompatible zero
8518   // compare: at least one operand isn't +/-0, or there are no signed-zeros.
8519   if ((Node->getFlags().hasNoNaNs() ||
8520        (DAG.isKnownNeverNaN(Node->getOperand(0)) &&
8521         DAG.isKnownNeverNaN(Node->getOperand(1)))) &&
8522       (Node->getFlags().hasNoSignedZeros() ||
8523        DAG.isKnownNeverZeroFloat(Node->getOperand(0)) ||
8524        DAG.isKnownNeverZeroFloat(Node->getOperand(1)))) {
8525     unsigned IEEE2018Op =
8526         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
8527     if (isOperationLegalOrCustom(IEEE2018Op, VT))
8528       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
8529                          Node->getOperand(1), Node->getFlags());
8530   }
8531 
8532   if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG))
8533     return SelCC;
8534 
8535   return SDValue();
8536 }
8537 
8538 SDValue TargetLowering::expandFMINIMUM_FMAXIMUM(SDNode *N,
8539                                                 SelectionDAG &DAG) const {
8540   if (SDValue Expanded = expandVectorNaryOpBySplitting(N, DAG))
8541     return Expanded;
8542 
8543   SDLoc DL(N);
8544   SDValue LHS = N->getOperand(0);
8545   SDValue RHS = N->getOperand(1);
8546   unsigned Opc = N->getOpcode();
8547   EVT VT = N->getValueType(0);
8548   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8549   bool IsMax = Opc == ISD::FMAXIMUM;
8550   SDNodeFlags Flags = N->getFlags();
8551 
8552   // First, implement comparison not propagating NaN. If no native fmin or fmax
8553   // available, use plain select with setcc instead.
8554   SDValue MinMax;
8555   unsigned CompOpcIeee = IsMax ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE;
8556   unsigned CompOpc = IsMax ? ISD::FMAXNUM : ISD::FMINNUM;
8557 
8558   // FIXME: We should probably define fminnum/fmaxnum variants with correct
8559   // signed zero behavior.
8560   bool MinMaxMustRespectOrderedZero = false;
8561 
8562   if (isOperationLegalOrCustom(CompOpcIeee, VT)) {
8563     MinMax = DAG.getNode(CompOpcIeee, DL, VT, LHS, RHS, Flags);
8564     MinMaxMustRespectOrderedZero = true;
8565   } else if (isOperationLegalOrCustom(CompOpc, VT)) {
8566     MinMax = DAG.getNode(CompOpc, DL, VT, LHS, RHS, Flags);
8567   } else {
8568     if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8569       return DAG.UnrollVectorOp(N);
8570 
8571     // NaN (if exists) will be propagated later, so orderness doesn't matter.
8572     SDValue Compare =
8573         DAG.getSetCC(DL, CCVT, LHS, RHS, IsMax ? ISD::SETOGT : ISD::SETOLT);
8574     MinMax = DAG.getSelect(DL, VT, Compare, LHS, RHS, Flags);
8575   }
8576 
8577   // Propagate any NaN of both operands
8578   if (!N->getFlags().hasNoNaNs() &&
8579       (!DAG.isKnownNeverNaN(RHS) || !DAG.isKnownNeverNaN(LHS))) {
8580     ConstantFP *FPNaN = ConstantFP::get(*DAG.getContext(),
8581                                         APFloat::getNaN(VT.getFltSemantics()));
8582     MinMax = DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, LHS, RHS, ISD::SETUO),
8583                            DAG.getConstantFP(*FPNaN, DL, VT), MinMax, Flags);
8584   }
8585 
8586   // fminimum/fmaximum requires -0.0 less than +0.0
8587   if (!MinMaxMustRespectOrderedZero && !N->getFlags().hasNoSignedZeros() &&
8588       !DAG.isKnownNeverZeroFloat(RHS) && !DAG.isKnownNeverZeroFloat(LHS)) {
8589     SDValue IsZero = DAG.getSetCC(DL, CCVT, MinMax,
8590                                   DAG.getConstantFP(0.0, DL, VT), ISD::SETOEQ);
8591     SDValue TestZero =
8592         DAG.getTargetConstant(IsMax ? fcPosZero : fcNegZero, DL, MVT::i32);
8593     SDValue LCmp = DAG.getSelect(
8594         DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, LHS, TestZero), LHS,
8595         MinMax, Flags);
8596     SDValue RCmp = DAG.getSelect(
8597         DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, RHS, TestZero), RHS,
8598         LCmp, Flags);
8599     MinMax = DAG.getSelect(DL, VT, IsZero, RCmp, MinMax, Flags);
8600   }
8601 
8602   return MinMax;
8603 }
8604 
8605 SDValue TargetLowering::expandFMINIMUMNUM_FMAXIMUMNUM(SDNode *Node,
8606                                                       SelectionDAG &DAG) const {
8607   SDLoc DL(Node);
8608   SDValue LHS = Node->getOperand(0);
8609   SDValue RHS = Node->getOperand(1);
8610   unsigned Opc = Node->getOpcode();
8611   EVT VT = Node->getValueType(0);
8612   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8613   bool IsMax = Opc == ISD::FMAXIMUMNUM;
8614   const TargetOptions &Options = DAG.getTarget().Options;
8615   SDNodeFlags Flags = Node->getFlags();
8616 
8617   unsigned NewOp =
8618       Opc == ISD::FMINIMUMNUM ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
8619 
8620   if (isOperationLegalOrCustom(NewOp, VT)) {
8621     if (!Flags.hasNoNaNs()) {
8622       // Insert canonicalizes if it's possible we need to quiet to get correct
8623       // sNaN behavior.
8624       if (!DAG.isKnownNeverSNaN(LHS)) {
8625         LHS = DAG.getNode(ISD::FCANONICALIZE, DL, VT, LHS, Flags);
8626       }
8627       if (!DAG.isKnownNeverSNaN(RHS)) {
8628         RHS = DAG.getNode(ISD::FCANONICALIZE, DL, VT, RHS, Flags);
8629       }
8630     }
8631 
8632     return DAG.getNode(NewOp, DL, VT, LHS, RHS, Flags);
8633   }
8634 
8635   // We can use FMINIMUM/FMAXIMUM if there is no NaN, since it has
8636   // same behaviors for all of other cases: +0.0 vs -0.0 included.
8637   if (Flags.hasNoNaNs() ||
8638       (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS))) {
8639     unsigned IEEE2019Op =
8640         Opc == ISD::FMINIMUMNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
8641     if (isOperationLegalOrCustom(IEEE2019Op, VT))
8642       return DAG.getNode(IEEE2019Op, DL, VT, LHS, RHS, Flags);
8643   }
8644 
8645   // FMINNUM/FMAXMUM returns qNaN if either operand is sNaN, and it may return
8646   // either one for +0.0 vs -0.0.
8647   if ((Flags.hasNoNaNs() ||
8648        (DAG.isKnownNeverSNaN(LHS) && DAG.isKnownNeverSNaN(RHS))) &&
8649       (Flags.hasNoSignedZeros() || DAG.isKnownNeverZeroFloat(LHS) ||
8650        DAG.isKnownNeverZeroFloat(RHS))) {
8651     unsigned IEEE2008Op = Opc == ISD::FMINIMUMNUM ? ISD::FMINNUM : ISD::FMAXNUM;
8652     if (isOperationLegalOrCustom(IEEE2008Op, VT))
8653       return DAG.getNode(IEEE2008Op, DL, VT, LHS, RHS, Flags);
8654   }
8655 
8656   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8657     return DAG.UnrollVectorOp(Node);
8658 
8659   // If only one operand is NaN, override it with another operand.
8660   if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(LHS)) {
8661     LHS = DAG.getSelectCC(DL, LHS, LHS, RHS, LHS, ISD::SETUO);
8662   }
8663   if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(RHS)) {
8664     RHS = DAG.getSelectCC(DL, RHS, RHS, LHS, RHS, ISD::SETUO);
8665   }
8666 
8667   SDValue MinMax =
8668       DAG.getSelectCC(DL, LHS, RHS, LHS, RHS, IsMax ? ISD::SETGT : ISD::SETLT);
8669   // If MinMax is NaN, let's quiet it.
8670   if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(LHS) &&
8671       !DAG.isKnownNeverNaN(RHS)) {
8672     MinMax = DAG.getNode(ISD::FCANONICALIZE, DL, VT, MinMax, Flags);
8673   }
8674 
8675   // Fixup signed zero behavior.
8676   if (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros() ||
8677       DAG.isKnownNeverZeroFloat(LHS) || DAG.isKnownNeverZeroFloat(RHS)) {
8678     return MinMax;
8679   }
8680   SDValue TestZero =
8681       DAG.getTargetConstant(IsMax ? fcPosZero : fcNegZero, DL, MVT::i32);
8682   SDValue IsZero = DAG.getSetCC(DL, CCVT, MinMax,
8683                                 DAG.getConstantFP(0.0, DL, VT), ISD::SETEQ);
8684   SDValue LCmp = DAG.getSelect(
8685       DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, LHS, TestZero), LHS,
8686       MinMax, Flags);
8687   SDValue RCmp = DAG.getSelect(
8688       DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, RHS, TestZero), RHS, LCmp,
8689       Flags);
8690   return DAG.getSelect(DL, VT, IsZero, RCmp, MinMax, Flags);
8691 }
8692 
8693 /// Returns a true value if if this FPClassTest can be performed with an ordered
8694 /// fcmp to 0, and a false value if it's an unordered fcmp to 0. Returns
8695 /// std::nullopt if it cannot be performed as a compare with 0.
8696 static std::optional<bool> isFCmpEqualZero(FPClassTest Test,
8697                                            const fltSemantics &Semantics,
8698                                            const MachineFunction &MF) {
8699   FPClassTest OrderedMask = Test & ~fcNan;
8700   FPClassTest NanTest = Test & fcNan;
8701   bool IsOrdered = NanTest == fcNone;
8702   bool IsUnordered = NanTest == fcNan;
8703 
8704   // Skip cases that are testing for only a qnan or snan.
8705   if (!IsOrdered && !IsUnordered)
8706     return std::nullopt;
8707 
8708   if (OrderedMask == fcZero &&
8709       MF.getDenormalMode(Semantics).Input == DenormalMode::IEEE)
8710     return IsOrdered;
8711   if (OrderedMask == (fcZero | fcSubnormal) &&
8712       MF.getDenormalMode(Semantics).inputsAreZero())
8713     return IsOrdered;
8714   return std::nullopt;
8715 }
8716 
8717 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op,
8718                                          const FPClassTest OrigTestMask,
8719                                          SDNodeFlags Flags, const SDLoc &DL,
8720                                          SelectionDAG &DAG) const {
8721   EVT OperandVT = Op.getValueType();
8722   assert(OperandVT.isFloatingPoint());
8723   FPClassTest Test = OrigTestMask;
8724 
8725   // Degenerated cases.
8726   if (Test == fcNone)
8727     return DAG.getBoolConstant(false, DL, ResultVT, OperandVT);
8728   if (Test == fcAllFlags)
8729     return DAG.getBoolConstant(true, DL, ResultVT, OperandVT);
8730 
8731   // PPC double double is a pair of doubles, of which the higher part determines
8732   // the value class.
8733   if (OperandVT == MVT::ppcf128) {
8734     Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op,
8735                      DAG.getConstant(1, DL, MVT::i32));
8736     OperandVT = MVT::f64;
8737   }
8738 
8739   // Floating-point type properties.
8740   EVT ScalarFloatVT = OperandVT.getScalarType();
8741   const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext());
8742   const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics();
8743   bool IsF80 = (ScalarFloatVT == MVT::f80);
8744 
8745   // Some checks can be implemented using float comparisons, if floating point
8746   // exceptions are ignored.
8747   if (Flags.hasNoFPExcept() &&
8748       isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) {
8749     FPClassTest FPTestMask = Test;
8750     bool IsInvertedFP = false;
8751 
8752     if (FPClassTest InvertedFPCheck =
8753             invertFPClassTestIfSimpler(FPTestMask, true)) {
8754       FPTestMask = InvertedFPCheck;
8755       IsInvertedFP = true;
8756     }
8757 
8758     ISD::CondCode OrderedCmpOpcode = IsInvertedFP ? ISD::SETUNE : ISD::SETOEQ;
8759     ISD::CondCode UnorderedCmpOpcode = IsInvertedFP ? ISD::SETONE : ISD::SETUEQ;
8760 
8761     // See if we can fold an | fcNan into an unordered compare.
8762     FPClassTest OrderedFPTestMask = FPTestMask & ~fcNan;
8763 
8764     // Can't fold the ordered check if we're only testing for snan or qnan
8765     // individually.
8766     if ((FPTestMask & fcNan) != fcNan)
8767       OrderedFPTestMask = FPTestMask;
8768 
8769     const bool IsOrdered = FPTestMask == OrderedFPTestMask;
8770 
8771     if (std::optional<bool> IsCmp0 =
8772             isFCmpEqualZero(FPTestMask, Semantics, DAG.getMachineFunction());
8773         IsCmp0 && (isCondCodeLegalOrCustom(
8774                       *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode,
8775                       OperandVT.getScalarType().getSimpleVT()))) {
8776 
8777       // If denormals could be implicitly treated as 0, this is not equivalent
8778       // to a compare with 0 since it will also be true for denormals.
8779       return DAG.getSetCC(DL, ResultVT, Op,
8780                           DAG.getConstantFP(0.0, DL, OperandVT),
8781                           *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode);
8782     }
8783 
8784     if (FPTestMask == fcNan &&
8785         isCondCodeLegalOrCustom(IsInvertedFP ? ISD::SETO : ISD::SETUO,
8786                                 OperandVT.getScalarType().getSimpleVT()))
8787       return DAG.getSetCC(DL, ResultVT, Op, Op,
8788                           IsInvertedFP ? ISD::SETO : ISD::SETUO);
8789 
8790     bool IsOrderedInf = FPTestMask == fcInf;
8791     if ((FPTestMask == fcInf || FPTestMask == (fcInf | fcNan)) &&
8792         isCondCodeLegalOrCustom(IsOrderedInf ? OrderedCmpOpcode
8793                                              : UnorderedCmpOpcode,
8794                                 OperandVT.getScalarType().getSimpleVT()) &&
8795         isOperationLegalOrCustom(ISD::FABS, OperandVT.getScalarType()) &&
8796         (isOperationLegal(ISD::ConstantFP, OperandVT.getScalarType()) ||
8797          (OperandVT.isVector() &&
8798           isOperationLegalOrCustom(ISD::BUILD_VECTOR, OperandVT)))) {
8799       // isinf(x) --> fabs(x) == inf
8800       SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op);
8801       SDValue Inf =
8802           DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT);
8803       return DAG.getSetCC(DL, ResultVT, Abs, Inf,
8804                           IsOrderedInf ? OrderedCmpOpcode : UnorderedCmpOpcode);
8805     }
8806 
8807     if ((OrderedFPTestMask == fcPosInf || OrderedFPTestMask == fcNegInf) &&
8808         isCondCodeLegalOrCustom(IsOrdered ? OrderedCmpOpcode
8809                                           : UnorderedCmpOpcode,
8810                                 OperandVT.getSimpleVT())) {
8811       // isposinf(x) --> x == inf
8812       // isneginf(x) --> x == -inf
8813       // isposinf(x) || nan --> x u== inf
8814       // isneginf(x) || nan --> x u== -inf
8815 
8816       SDValue Inf = DAG.getConstantFP(
8817           APFloat::getInf(Semantics, OrderedFPTestMask == fcNegInf), DL,
8818           OperandVT);
8819       return DAG.getSetCC(DL, ResultVT, Op, Inf,
8820                           IsOrdered ? OrderedCmpOpcode : UnorderedCmpOpcode);
8821     }
8822 
8823     if (OrderedFPTestMask == (fcSubnormal | fcZero) && !IsOrdered) {
8824       // TODO: Could handle ordered case, but it produces worse code for
8825       // x86. Maybe handle ordered if fabs is free?
8826 
8827       ISD::CondCode OrderedOp = IsInvertedFP ? ISD::SETUGE : ISD::SETOLT;
8828       ISD::CondCode UnorderedOp = IsInvertedFP ? ISD::SETOGE : ISD::SETULT;
8829 
8830       if (isCondCodeLegalOrCustom(IsOrdered ? OrderedOp : UnorderedOp,
8831                                   OperandVT.getScalarType().getSimpleVT())) {
8832         // (issubnormal(x) || iszero(x)) --> fabs(x) < smallest_normal
8833 
8834         // TODO: Maybe only makes sense if fabs is free. Integer test of
8835         // exponent bits seems better for x86.
8836         SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op);
8837         SDValue SmallestNormal = DAG.getConstantFP(
8838             APFloat::getSmallestNormalized(Semantics), DL, OperandVT);
8839         return DAG.getSetCC(DL, ResultVT, Abs, SmallestNormal,
8840                             IsOrdered ? OrderedOp : UnorderedOp);
8841       }
8842     }
8843 
8844     if (FPTestMask == fcNormal) {
8845       // TODO: Handle unordered
8846       ISD::CondCode IsFiniteOp = IsInvertedFP ? ISD::SETUGE : ISD::SETOLT;
8847       ISD::CondCode IsNormalOp = IsInvertedFP ? ISD::SETOLT : ISD::SETUGE;
8848 
8849       if (isCondCodeLegalOrCustom(IsFiniteOp,
8850                                   OperandVT.getScalarType().getSimpleVT()) &&
8851           isCondCodeLegalOrCustom(IsNormalOp,
8852                                   OperandVT.getScalarType().getSimpleVT()) &&
8853           isFAbsFree(OperandVT)) {
8854         // isnormal(x) --> fabs(x) < infinity && !(fabs(x) < smallest_normal)
8855         SDValue Inf =
8856             DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT);
8857         SDValue SmallestNormal = DAG.getConstantFP(
8858             APFloat::getSmallestNormalized(Semantics), DL, OperandVT);
8859 
8860         SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op);
8861         SDValue IsFinite = DAG.getSetCC(DL, ResultVT, Abs, Inf, IsFiniteOp);
8862         SDValue IsNormal =
8863             DAG.getSetCC(DL, ResultVT, Abs, SmallestNormal, IsNormalOp);
8864         unsigned LogicOp = IsInvertedFP ? ISD::OR : ISD::AND;
8865         return DAG.getNode(LogicOp, DL, ResultVT, IsFinite, IsNormal);
8866       }
8867     }
8868   }
8869 
8870   // Some checks may be represented as inversion of simpler check, for example
8871   // "inf|normal|subnormal|zero" => !"nan".
8872   bool IsInverted = false;
8873 
8874   if (FPClassTest InvertedCheck = invertFPClassTestIfSimpler(Test, false)) {
8875     Test = InvertedCheck;
8876     IsInverted = true;
8877   }
8878 
8879   // In the general case use integer operations.
8880   unsigned BitSize = OperandVT.getScalarSizeInBits();
8881   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize);
8882   if (OperandVT.isVector())
8883     IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT,
8884                              OperandVT.getVectorElementCount());
8885   SDValue OpAsInt = DAG.getBitcast(IntVT, Op);
8886 
8887   // Various masks.
8888   APInt SignBit = APInt::getSignMask(BitSize);
8889   APInt ValueMask = APInt::getSignedMaxValue(BitSize);     // All bits but sign.
8890   APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit.
8891   const unsigned ExplicitIntBitInF80 = 63;
8892   APInt ExpMask = Inf;
8893   if (IsF80)
8894     ExpMask.clearBit(ExplicitIntBitInF80);
8895   APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf;
8896   APInt QNaNBitMask =
8897       APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1);
8898   APInt InvertionMask = APInt::getAllOnes(ResultVT.getScalarSizeInBits());
8899 
8900   SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT);
8901   SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT);
8902   SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT);
8903   SDValue ZeroV = DAG.getConstant(0, DL, IntVT);
8904   SDValue InfV = DAG.getConstant(Inf, DL, IntVT);
8905   SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT);
8906 
8907   SDValue Res;
8908   const auto appendResult = [&](SDValue PartialRes) {
8909     if (PartialRes) {
8910       if (Res)
8911         Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes);
8912       else
8913         Res = PartialRes;
8914     }
8915   };
8916 
8917   SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set.
8918   const auto getIntBitIsSet = [&]() -> SDValue {
8919     if (!IntBitIsSetV) {
8920       APInt IntBitMask(BitSize, 0);
8921       IntBitMask.setBit(ExplicitIntBitInF80);
8922       SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT);
8923       SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV);
8924       IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE);
8925     }
8926     return IntBitIsSetV;
8927   };
8928 
8929   // Split the value into sign bit and absolute value.
8930   SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV);
8931   SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt,
8932                                DAG.getConstant(0, DL, IntVT), ISD::SETLT);
8933 
8934   // Tests that involve more than one class should be processed first.
8935   SDValue PartialRes;
8936 
8937   if (IsF80)
8938     ; // Detect finite numbers of f80 by checking individual classes because
8939       // they have different settings of the explicit integer bit.
8940   else if ((Test & fcFinite) == fcFinite) {
8941     // finite(V) ==> abs(V) < exp_mask
8942     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
8943     Test &= ~fcFinite;
8944   } else if ((Test & fcFinite) == fcPosFinite) {
8945     // finite(V) && V > 0 ==> V < exp_mask
8946     PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT);
8947     Test &= ~fcPosFinite;
8948   } else if ((Test & fcFinite) == fcNegFinite) {
8949     // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1
8950     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
8951     PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
8952     Test &= ~fcNegFinite;
8953   }
8954   appendResult(PartialRes);
8955 
8956   if (FPClassTest PartialCheck = Test & (fcZero | fcSubnormal)) {
8957     // fcZero | fcSubnormal => test all exponent bits are 0
8958     // TODO: Handle sign bit specific cases
8959     if (PartialCheck == (fcZero | fcSubnormal)) {
8960       SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ExpMaskV);
8961       SDValue ExpIsZero =
8962           DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
8963       appendResult(ExpIsZero);
8964       Test &= ~PartialCheck & fcAllFlags;
8965     }
8966   }
8967 
8968   // Check for individual classes.
8969 
8970   if (unsigned PartialCheck = Test & fcZero) {
8971     if (PartialCheck == fcPosZero)
8972       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ);
8973     else if (PartialCheck == fcZero)
8974       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ);
8975     else // ISD::fcNegZero
8976       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ);
8977     appendResult(PartialRes);
8978   }
8979 
8980   if (unsigned PartialCheck = Test & fcSubnormal) {
8981     // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set)
8982     // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set)
8983     SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV;
8984     SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT);
8985     SDValue VMinusOneV =
8986         DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT));
8987     PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT);
8988     if (PartialCheck == fcNegSubnormal)
8989       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
8990     appendResult(PartialRes);
8991   }
8992 
8993   if (unsigned PartialCheck = Test & fcInf) {
8994     if (PartialCheck == fcPosInf)
8995       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ);
8996     else if (PartialCheck == fcInf)
8997       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ);
8998     else { // ISD::fcNegInf
8999       APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt();
9000       SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT);
9001       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ);
9002     }
9003     appendResult(PartialRes);
9004   }
9005 
9006   if (unsigned PartialCheck = Test & fcNan) {
9007     APInt InfWithQnanBit = Inf | QNaNBitMask;
9008     SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT);
9009     if (PartialCheck == fcNan) {
9010       // isnan(V) ==> abs(V) > int(inf)
9011       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
9012       if (IsF80) {
9013         // Recognize unsupported values as NaNs for compatibility with glibc.
9014         // In them (exp(V)==0) == int_bit.
9015         SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV);
9016         SDValue ExpIsZero =
9017             DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
9018         SDValue IsPseudo =
9019             DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ);
9020         PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo);
9021       }
9022     } else if (PartialCheck == fcQNan) {
9023       // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit)
9024       PartialRes =
9025           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE);
9026     } else { // ISD::fcSNan
9027       // issignaling(V) ==> abs(V) > unsigned(Inf) &&
9028       //                    abs(V) < (unsigned(Inf) | quiet_bit)
9029       SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
9030       SDValue IsNotQnan =
9031           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT);
9032       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan);
9033     }
9034     appendResult(PartialRes);
9035   }
9036 
9037   if (unsigned PartialCheck = Test & fcNormal) {
9038     // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1))
9039     APInt ExpLSB = ExpMask & ~(ExpMask.shl(1));
9040     SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT);
9041     SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV);
9042     APInt ExpLimit = ExpMask - ExpLSB;
9043     SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT);
9044     PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT);
9045     if (PartialCheck == fcNegNormal)
9046       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
9047     else if (PartialCheck == fcPosNormal) {
9048       SDValue PosSignV =
9049           DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask);
9050       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV);
9051     }
9052     if (IsF80)
9053       PartialRes =
9054           DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet());
9055     appendResult(PartialRes);
9056   }
9057 
9058   if (!Res)
9059     return DAG.getConstant(IsInverted, DL, ResultVT);
9060   if (IsInverted)
9061     Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask);
9062   return Res;
9063 }
9064 
9065 // Only expand vector types if we have the appropriate vector bit operations.
9066 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
9067   assert(VT.isVector() && "Expected vector type");
9068   unsigned Len = VT.getScalarSizeInBits();
9069   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
9070          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
9071          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
9072          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
9073          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
9074 }
9075 
9076 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
9077   SDLoc dl(Node);
9078   EVT VT = Node->getValueType(0);
9079   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9080   SDValue Op = Node->getOperand(0);
9081   unsigned Len = VT.getScalarSizeInBits();
9082   assert(VT.isInteger() && "CTPOP not implemented for this type.");
9083 
9084   // TODO: Add support for irregular type lengths.
9085   if (!(Len <= 128 && Len % 8 == 0))
9086     return SDValue();
9087 
9088   // Only expand vector types if we have the appropriate vector bit operations.
9089   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
9090     return SDValue();
9091 
9092   // This is the "best" algorithm from
9093   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
9094   SDValue Mask55 =
9095       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
9096   SDValue Mask33 =
9097       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
9098   SDValue Mask0F =
9099       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
9100 
9101   // v = v - ((v >> 1) & 0x55555555...)
9102   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
9103                    DAG.getNode(ISD::AND, dl, VT,
9104                                DAG.getNode(ISD::SRL, dl, VT, Op,
9105                                            DAG.getConstant(1, dl, ShVT)),
9106                                Mask55));
9107   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
9108   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
9109                    DAG.getNode(ISD::AND, dl, VT,
9110                                DAG.getNode(ISD::SRL, dl, VT, Op,
9111                                            DAG.getConstant(2, dl, ShVT)),
9112                                Mask33));
9113   // v = (v + (v >> 4)) & 0x0F0F0F0F...
9114   Op = DAG.getNode(ISD::AND, dl, VT,
9115                    DAG.getNode(ISD::ADD, dl, VT, Op,
9116                                DAG.getNode(ISD::SRL, dl, VT, Op,
9117                                            DAG.getConstant(4, dl, ShVT))),
9118                    Mask0F);
9119 
9120   if (Len <= 8)
9121     return Op;
9122 
9123   // Avoid the multiply if we only have 2 bytes to add.
9124   // TODO: Only doing this for scalars because vectors weren't as obviously
9125   // improved.
9126   if (Len == 16 && !VT.isVector()) {
9127     // v = (v + (v >> 8)) & 0x00FF;
9128     return DAG.getNode(ISD::AND, dl, VT,
9129                      DAG.getNode(ISD::ADD, dl, VT, Op,
9130                                  DAG.getNode(ISD::SRL, dl, VT, Op,
9131                                              DAG.getConstant(8, dl, ShVT))),
9132                      DAG.getConstant(0xFF, dl, VT));
9133   }
9134 
9135   // v = (v * 0x01010101...) >> (Len - 8)
9136   SDValue V;
9137   if (isOperationLegalOrCustomOrPromote(
9138           ISD::MUL, getTypeToTransformTo(*DAG.getContext(), VT))) {
9139     SDValue Mask01 =
9140         DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
9141     V = DAG.getNode(ISD::MUL, dl, VT, Op, Mask01);
9142   } else {
9143     V = Op;
9144     for (unsigned Shift = 8; Shift < Len; Shift *= 2) {
9145       SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl);
9146       V = DAG.getNode(ISD::ADD, dl, VT, V,
9147                       DAG.getNode(ISD::SHL, dl, VT, V, ShiftC));
9148     }
9149   }
9150   return DAG.getNode(ISD::SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT));
9151 }
9152 
9153 SDValue TargetLowering::expandVPCTPOP(SDNode *Node, SelectionDAG &DAG) const {
9154   SDLoc dl(Node);
9155   EVT VT = Node->getValueType(0);
9156   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9157   SDValue Op = Node->getOperand(0);
9158   SDValue Mask = Node->getOperand(1);
9159   SDValue VL = Node->getOperand(2);
9160   unsigned Len = VT.getScalarSizeInBits();
9161   assert(VT.isInteger() && "VP_CTPOP not implemented for this type.");
9162 
9163   // TODO: Add support for irregular type lengths.
9164   if (!(Len <= 128 && Len % 8 == 0))
9165     return SDValue();
9166 
9167   // This is same algorithm of expandCTPOP from
9168   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
9169   SDValue Mask55 =
9170       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
9171   SDValue Mask33 =
9172       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
9173   SDValue Mask0F =
9174       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
9175 
9176   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5;
9177 
9178   // v = v - ((v >> 1) & 0x55555555...)
9179   Tmp1 = DAG.getNode(ISD::VP_AND, dl, VT,
9180                      DAG.getNode(ISD::VP_SRL, dl, VT, Op,
9181                                  DAG.getConstant(1, dl, ShVT), Mask, VL),
9182                      Mask55, Mask, VL);
9183   Op = DAG.getNode(ISD::VP_SUB, dl, VT, Op, Tmp1, Mask, VL);
9184 
9185   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
9186   Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Op, Mask33, Mask, VL);
9187   Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT,
9188                      DAG.getNode(ISD::VP_SRL, dl, VT, Op,
9189                                  DAG.getConstant(2, dl, ShVT), Mask, VL),
9190                      Mask33, Mask, VL);
9191   Op = DAG.getNode(ISD::VP_ADD, dl, VT, Tmp2, Tmp3, Mask, VL);
9192 
9193   // v = (v + (v >> 4)) & 0x0F0F0F0F...
9194   Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(4, dl, ShVT),
9195                      Mask, VL),
9196   Tmp5 = DAG.getNode(ISD::VP_ADD, dl, VT, Op, Tmp4, Mask, VL);
9197   Op = DAG.getNode(ISD::VP_AND, dl, VT, Tmp5, Mask0F, Mask, VL);
9198 
9199   if (Len <= 8)
9200     return Op;
9201 
9202   // v = (v * 0x01010101...) >> (Len - 8)
9203   SDValue V;
9204   if (isOperationLegalOrCustomOrPromote(
9205           ISD::VP_MUL, getTypeToTransformTo(*DAG.getContext(), VT))) {
9206     SDValue Mask01 =
9207         DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
9208     V = DAG.getNode(ISD::VP_MUL, dl, VT, Op, Mask01, Mask, VL);
9209   } else {
9210     V = Op;
9211     for (unsigned Shift = 8; Shift < Len; Shift *= 2) {
9212       SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl);
9213       V = DAG.getNode(ISD::VP_ADD, dl, VT, V,
9214                       DAG.getNode(ISD::VP_SHL, dl, VT, V, ShiftC, Mask, VL),
9215                       Mask, VL);
9216     }
9217   }
9218   return DAG.getNode(ISD::VP_SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT),
9219                      Mask, VL);
9220 }
9221 
9222 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
9223   SDLoc dl(Node);
9224   EVT VT = Node->getValueType(0);
9225   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9226   SDValue Op = Node->getOperand(0);
9227   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
9228 
9229   // If the non-ZERO_UNDEF version is supported we can use that instead.
9230   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
9231       isOperationLegalOrCustom(ISD::CTLZ, VT))
9232     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
9233 
9234   // If the ZERO_UNDEF version is supported use that and handle the zero case.
9235   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
9236     EVT SetCCVT =
9237         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9238     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
9239     SDValue Zero = DAG.getConstant(0, dl, VT);
9240     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
9241     return DAG.getSelect(dl, VT, SrcIsZero,
9242                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
9243   }
9244 
9245   // Only expand vector types if we have the appropriate vector bit operations.
9246   // This includes the operations needed to expand CTPOP if it isn't supported.
9247   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
9248                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
9249                          !canExpandVectorCTPOP(*this, VT)) ||
9250                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
9251                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
9252     return SDValue();
9253 
9254   // for now, we do this:
9255   // x = x | (x >> 1);
9256   // x = x | (x >> 2);
9257   // ...
9258   // x = x | (x >>16);
9259   // x = x | (x >>32); // for 64-bit input
9260   // return popcount(~x);
9261   //
9262   // Ref: "Hacker's Delight" by Henry Warren
9263   for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
9264     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
9265     Op = DAG.getNode(ISD::OR, dl, VT, Op,
9266                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
9267   }
9268   Op = DAG.getNOT(dl, Op, VT);
9269   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
9270 }
9271 
9272 SDValue TargetLowering::expandVPCTLZ(SDNode *Node, SelectionDAG &DAG) const {
9273   SDLoc dl(Node);
9274   EVT VT = Node->getValueType(0);
9275   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9276   SDValue Op = Node->getOperand(0);
9277   SDValue Mask = Node->getOperand(1);
9278   SDValue VL = Node->getOperand(2);
9279   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
9280 
9281   // do this:
9282   // x = x | (x >> 1);
9283   // x = x | (x >> 2);
9284   // ...
9285   // x = x | (x >>16);
9286   // x = x | (x >>32); // for 64-bit input
9287   // return popcount(~x);
9288   for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
9289     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
9290     Op = DAG.getNode(ISD::VP_OR, dl, VT, Op,
9291                      DAG.getNode(ISD::VP_SRL, dl, VT, Op, Tmp, Mask, VL), Mask,
9292                      VL);
9293   }
9294   Op = DAG.getNode(ISD::VP_XOR, dl, VT, Op, DAG.getAllOnesConstant(dl, VT),
9295                    Mask, VL);
9296   return DAG.getNode(ISD::VP_CTPOP, dl, VT, Op, Mask, VL);
9297 }
9298 
9299 SDValue TargetLowering::CTTZTableLookup(SDNode *Node, SelectionDAG &DAG,
9300                                         const SDLoc &DL, EVT VT, SDValue Op,
9301                                         unsigned BitWidth) const {
9302   if (BitWidth != 32 && BitWidth != 64)
9303     return SDValue();
9304   APInt DeBruijn = BitWidth == 32 ? APInt(32, 0x077CB531U)
9305                                   : APInt(64, 0x0218A392CD3D5DBFULL);
9306   const DataLayout &TD = DAG.getDataLayout();
9307   MachinePointerInfo PtrInfo =
9308       MachinePointerInfo::getConstantPool(DAG.getMachineFunction());
9309   unsigned ShiftAmt = BitWidth - Log2_32(BitWidth);
9310   SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
9311   SDValue Lookup = DAG.getNode(
9312       ISD::SRL, DL, VT,
9313       DAG.getNode(ISD::MUL, DL, VT, DAG.getNode(ISD::AND, DL, VT, Op, Neg),
9314                   DAG.getConstant(DeBruijn, DL, VT)),
9315       DAG.getConstant(ShiftAmt, DL, VT));
9316   Lookup = DAG.getSExtOrTrunc(Lookup, DL, getPointerTy(TD));
9317 
9318   SmallVector<uint8_t> Table(BitWidth, 0);
9319   for (unsigned i = 0; i < BitWidth; i++) {
9320     APInt Shl = DeBruijn.shl(i);
9321     APInt Lshr = Shl.lshr(ShiftAmt);
9322     Table[Lshr.getZExtValue()] = i;
9323   }
9324 
9325   // Create a ConstantArray in Constant Pool
9326   auto *CA = ConstantDataArray::get(*DAG.getContext(), Table);
9327   SDValue CPIdx = DAG.getConstantPool(CA, getPointerTy(TD),
9328                                       TD.getPrefTypeAlign(CA->getType()));
9329   SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, VT, DAG.getEntryNode(),
9330                                    DAG.getMemBasePlusOffset(CPIdx, Lookup, DL),
9331                                    PtrInfo, MVT::i8);
9332   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF)
9333     return ExtLoad;
9334 
9335   EVT SetCCVT =
9336       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9337   SDValue Zero = DAG.getConstant(0, DL, VT);
9338   SDValue SrcIsZero = DAG.getSetCC(DL, SetCCVT, Op, Zero, ISD::SETEQ);
9339   return DAG.getSelect(DL, VT, SrcIsZero,
9340                        DAG.getConstant(BitWidth, DL, VT), ExtLoad);
9341 }
9342 
9343 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
9344   SDLoc dl(Node);
9345   EVT VT = Node->getValueType(0);
9346   SDValue Op = Node->getOperand(0);
9347   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
9348 
9349   // If the non-ZERO_UNDEF version is supported we can use that instead.
9350   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
9351       isOperationLegalOrCustom(ISD::CTTZ, VT))
9352     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
9353 
9354   // If the ZERO_UNDEF version is supported use that and handle the zero case.
9355   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
9356     EVT SetCCVT =
9357         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9358     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
9359     SDValue Zero = DAG.getConstant(0, dl, VT);
9360     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
9361     return DAG.getSelect(dl, VT, SrcIsZero,
9362                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
9363   }
9364 
9365   // Only expand vector types if we have the appropriate vector bit operations.
9366   // This includes the operations needed to expand CTPOP if it isn't supported.
9367   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
9368                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
9369                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
9370                          !canExpandVectorCTPOP(*this, VT)) ||
9371                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
9372                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
9373                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
9374     return SDValue();
9375 
9376   // Emit Table Lookup if ISD::CTLZ and ISD::CTPOP are not legal.
9377   if (!VT.isVector() && isOperationExpand(ISD::CTPOP, VT) &&
9378       !isOperationLegal(ISD::CTLZ, VT))
9379     if (SDValue V = CTTZTableLookup(Node, DAG, dl, VT, Op, NumBitsPerElt))
9380       return V;
9381 
9382   // for now, we use: { return popcount(~x & (x - 1)); }
9383   // unless the target has ctlz but not ctpop, in which case we use:
9384   // { return 32 - nlz(~x & (x-1)); }
9385   // Ref: "Hacker's Delight" by Henry Warren
9386   SDValue Tmp = DAG.getNode(
9387       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
9388       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
9389 
9390   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
9391   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
9392     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
9393                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
9394   }
9395 
9396   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
9397 }
9398 
9399 SDValue TargetLowering::expandVPCTTZ(SDNode *Node, SelectionDAG &DAG) const {
9400   SDValue Op = Node->getOperand(0);
9401   SDValue Mask = Node->getOperand(1);
9402   SDValue VL = Node->getOperand(2);
9403   SDLoc dl(Node);
9404   EVT VT = Node->getValueType(0);
9405 
9406   // Same as the vector part of expandCTTZ, use: popcount(~x & (x - 1))
9407   SDValue Not = DAG.getNode(ISD::VP_XOR, dl, VT, Op,
9408                             DAG.getAllOnesConstant(dl, VT), Mask, VL);
9409   SDValue MinusOne = DAG.getNode(ISD::VP_SUB, dl, VT, Op,
9410                                  DAG.getConstant(1, dl, VT), Mask, VL);
9411   SDValue Tmp = DAG.getNode(ISD::VP_AND, dl, VT, Not, MinusOne, Mask, VL);
9412   return DAG.getNode(ISD::VP_CTPOP, dl, VT, Tmp, Mask, VL);
9413 }
9414 
9415 SDValue TargetLowering::expandVPCTTZElements(SDNode *N,
9416                                              SelectionDAG &DAG) const {
9417   // %cond = to_bool_vec %source
9418   // %splat = splat /*val=*/VL
9419   // %tz = step_vector
9420   // %v = vp.select %cond, /*true=*/tz, /*false=*/%splat
9421   // %r = vp.reduce.umin %v
9422   SDLoc DL(N);
9423   SDValue Source = N->getOperand(0);
9424   SDValue Mask = N->getOperand(1);
9425   SDValue EVL = N->getOperand(2);
9426   EVT SrcVT = Source.getValueType();
9427   EVT ResVT = N->getValueType(0);
9428   EVT ResVecVT =
9429       EVT::getVectorVT(*DAG.getContext(), ResVT, SrcVT.getVectorElementCount());
9430 
9431   // Convert to boolean vector.
9432   if (SrcVT.getScalarType() != MVT::i1) {
9433     SDValue AllZero = DAG.getConstant(0, DL, SrcVT);
9434     SrcVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
9435                              SrcVT.getVectorElementCount());
9436     Source = DAG.getNode(ISD::VP_SETCC, DL, SrcVT, Source, AllZero,
9437                          DAG.getCondCode(ISD::SETNE), Mask, EVL);
9438   }
9439 
9440   SDValue ExtEVL = DAG.getZExtOrTrunc(EVL, DL, ResVT);
9441   SDValue Splat = DAG.getSplat(ResVecVT, DL, ExtEVL);
9442   SDValue StepVec = DAG.getStepVector(DL, ResVecVT);
9443   SDValue Select =
9444       DAG.getNode(ISD::VP_SELECT, DL, ResVecVT, Source, StepVec, Splat, EVL);
9445   return DAG.getNode(ISD::VP_REDUCE_UMIN, DL, ResVT, ExtEVL, Select, Mask, EVL);
9446 }
9447 
9448 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
9449                                   bool IsNegative) const {
9450   SDLoc dl(N);
9451   EVT VT = N->getValueType(0);
9452   SDValue Op = N->getOperand(0);
9453 
9454   // abs(x) -> smax(x,sub(0,x))
9455   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
9456       isOperationLegal(ISD::SMAX, VT)) {
9457     SDValue Zero = DAG.getConstant(0, dl, VT);
9458     Op = DAG.getFreeze(Op);
9459     return DAG.getNode(ISD::SMAX, dl, VT, Op,
9460                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
9461   }
9462 
9463   // abs(x) -> umin(x,sub(0,x))
9464   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
9465       isOperationLegal(ISD::UMIN, VT)) {
9466     SDValue Zero = DAG.getConstant(0, dl, VT);
9467     Op = DAG.getFreeze(Op);
9468     return DAG.getNode(ISD::UMIN, dl, VT, Op,
9469                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
9470   }
9471 
9472   // 0 - abs(x) -> smin(x, sub(0,x))
9473   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
9474       isOperationLegal(ISD::SMIN, VT)) {
9475     SDValue Zero = DAG.getConstant(0, dl, VT);
9476     Op = DAG.getFreeze(Op);
9477     return DAG.getNode(ISD::SMIN, dl, VT, Op,
9478                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
9479   }
9480 
9481   // Only expand vector types if we have the appropriate vector operations.
9482   if (VT.isVector() &&
9483       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
9484        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
9485        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
9486        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
9487     return SDValue();
9488 
9489   Op = DAG.getFreeze(Op);
9490   SDValue Shift = DAG.getNode(
9491       ISD::SRA, dl, VT, Op,
9492       DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, dl));
9493   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
9494 
9495   // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
9496   if (!IsNegative)
9497     return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
9498 
9499   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
9500   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
9501 }
9502 
9503 SDValue TargetLowering::expandABD(SDNode *N, SelectionDAG &DAG) const {
9504   SDLoc dl(N);
9505   EVT VT = N->getValueType(0);
9506   SDValue LHS = DAG.getFreeze(N->getOperand(0));
9507   SDValue RHS = DAG.getFreeze(N->getOperand(1));
9508   bool IsSigned = N->getOpcode() == ISD::ABDS;
9509 
9510   // abds(lhs, rhs) -> sub(smax(lhs,rhs), smin(lhs,rhs))
9511   // abdu(lhs, rhs) -> sub(umax(lhs,rhs), umin(lhs,rhs))
9512   unsigned MaxOpc = IsSigned ? ISD::SMAX : ISD::UMAX;
9513   unsigned MinOpc = IsSigned ? ISD::SMIN : ISD::UMIN;
9514   if (isOperationLegal(MaxOpc, VT) && isOperationLegal(MinOpc, VT)) {
9515     SDValue Max = DAG.getNode(MaxOpc, dl, VT, LHS, RHS);
9516     SDValue Min = DAG.getNode(MinOpc, dl, VT, LHS, RHS);
9517     return DAG.getNode(ISD::SUB, dl, VT, Max, Min);
9518   }
9519 
9520   // abdu(lhs, rhs) -> or(usubsat(lhs,rhs), usubsat(rhs,lhs))
9521   if (!IsSigned && isOperationLegal(ISD::USUBSAT, VT))
9522     return DAG.getNode(ISD::OR, dl, VT,
9523                        DAG.getNode(ISD::USUBSAT, dl, VT, LHS, RHS),
9524                        DAG.getNode(ISD::USUBSAT, dl, VT, RHS, LHS));
9525 
9526   // If the subtract doesn't overflow then just use abs(sub())
9527   // NOTE: don't use frozen operands for value tracking.
9528   bool IsNonNegative = DAG.SignBitIsZero(N->getOperand(1)) &&
9529                        DAG.SignBitIsZero(N->getOperand(0));
9530 
9531   if (DAG.willNotOverflowSub(IsSigned || IsNonNegative, N->getOperand(0),
9532                              N->getOperand(1)))
9533     return DAG.getNode(ISD::ABS, dl, VT,
9534                        DAG.getNode(ISD::SUB, dl, VT, LHS, RHS));
9535 
9536   if (DAG.willNotOverflowSub(IsSigned || IsNonNegative, N->getOperand(1),
9537                              N->getOperand(0)))
9538     return DAG.getNode(ISD::ABS, dl, VT,
9539                        DAG.getNode(ISD::SUB, dl, VT, RHS, LHS));
9540 
9541   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9542   ISD::CondCode CC = IsSigned ? ISD::CondCode::SETGT : ISD::CondCode::SETUGT;
9543   SDValue Cmp = DAG.getSetCC(dl, CCVT, LHS, RHS, CC);
9544 
9545   // Branchless expansion iff cmp result is allbits:
9546   // abds(lhs, rhs) -> sub(sgt(lhs, rhs), xor(sgt(lhs, rhs), sub(lhs, rhs)))
9547   // abdu(lhs, rhs) -> sub(ugt(lhs, rhs), xor(ugt(lhs, rhs), sub(lhs, rhs)))
9548   if (CCVT == VT && getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
9549     SDValue Diff = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
9550     SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Diff, Cmp);
9551     return DAG.getNode(ISD::SUB, dl, VT, Cmp, Xor);
9552   }
9553 
9554   // Similar to the branchless expansion, use the (sign-extended) usubo overflow
9555   // flag if the (scalar) type is illegal as this is more likely to legalize
9556   // cleanly:
9557   // abdu(lhs, rhs) -> sub(xor(sub(lhs, rhs), uof(lhs, rhs)), uof(lhs, rhs))
9558   if (!IsSigned && VT.isScalarInteger() && !isTypeLegal(VT)) {
9559     SDValue USubO =
9560         DAG.getNode(ISD::USUBO, dl, DAG.getVTList(VT, MVT::i1), {LHS, RHS});
9561     SDValue Cmp = DAG.getNode(ISD::SIGN_EXTEND, dl, VT, USubO.getValue(1));
9562     SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, USubO.getValue(0), Cmp);
9563     return DAG.getNode(ISD::SUB, dl, VT, Xor, Cmp);
9564   }
9565 
9566   // FIXME: Should really try to split the vector in case it's legal on a
9567   // subvector.
9568   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
9569     return DAG.UnrollVectorOp(N);
9570 
9571   // abds(lhs, rhs) -> select(sgt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs))
9572   // abdu(lhs, rhs) -> select(ugt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs))
9573   return DAG.getSelect(dl, VT, Cmp, DAG.getNode(ISD::SUB, dl, VT, LHS, RHS),
9574                        DAG.getNode(ISD::SUB, dl, VT, RHS, LHS));
9575 }
9576 
9577 SDValue TargetLowering::expandAVG(SDNode *N, SelectionDAG &DAG) const {
9578   SDLoc dl(N);
9579   EVT VT = N->getValueType(0);
9580   SDValue LHS = N->getOperand(0);
9581   SDValue RHS = N->getOperand(1);
9582 
9583   unsigned Opc = N->getOpcode();
9584   bool IsFloor = Opc == ISD::AVGFLOORS || Opc == ISD::AVGFLOORU;
9585   bool IsSigned = Opc == ISD::AVGCEILS || Opc == ISD::AVGFLOORS;
9586   unsigned SumOpc = IsFloor ? ISD::ADD : ISD::SUB;
9587   unsigned SignOpc = IsFloor ? ISD::AND : ISD::OR;
9588   unsigned ShiftOpc = IsSigned ? ISD::SRA : ISD::SRL;
9589   unsigned ExtOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
9590   assert((Opc == ISD::AVGFLOORS || Opc == ISD::AVGCEILS ||
9591           Opc == ISD::AVGFLOORU || Opc == ISD::AVGCEILU) &&
9592          "Unknown AVG node");
9593 
9594   // If the operands are already extended, we can add+shift.
9595   bool IsExt =
9596       (IsSigned && DAG.ComputeNumSignBits(LHS) >= 2 &&
9597        DAG.ComputeNumSignBits(RHS) >= 2) ||
9598       (!IsSigned && DAG.computeKnownBits(LHS).countMinLeadingZeros() >= 1 &&
9599        DAG.computeKnownBits(RHS).countMinLeadingZeros() >= 1);
9600   if (IsExt) {
9601     SDValue Sum = DAG.getNode(ISD::ADD, dl, VT, LHS, RHS);
9602     if (!IsFloor)
9603       Sum = DAG.getNode(ISD::ADD, dl, VT, Sum, DAG.getConstant(1, dl, VT));
9604     return DAG.getNode(ShiftOpc, dl, VT, Sum,
9605                        DAG.getShiftAmountConstant(1, VT, dl));
9606   }
9607 
9608   // For scalars, see if we can efficiently extend/truncate to use add+shift.
9609   if (VT.isScalarInteger()) {
9610     unsigned BW = VT.getScalarSizeInBits();
9611     EVT ExtVT = VT.getIntegerVT(*DAG.getContext(), 2 * BW);
9612     if (isTypeLegal(ExtVT) && isTruncateFree(ExtVT, VT)) {
9613       LHS = DAG.getNode(ExtOpc, dl, ExtVT, LHS);
9614       RHS = DAG.getNode(ExtOpc, dl, ExtVT, RHS);
9615       SDValue Avg = DAG.getNode(ISD::ADD, dl, ExtVT, LHS, RHS);
9616       if (!IsFloor)
9617         Avg = DAG.getNode(ISD::ADD, dl, ExtVT, Avg,
9618                           DAG.getConstant(1, dl, ExtVT));
9619       // Just use SRL as we will be truncating away the extended sign bits.
9620       Avg = DAG.getNode(ISD::SRL, dl, ExtVT, Avg,
9621                         DAG.getShiftAmountConstant(1, ExtVT, dl));
9622       return DAG.getNode(ISD::TRUNCATE, dl, VT, Avg);
9623     }
9624   }
9625 
9626   // avgflooru(lhs, rhs) -> or(lshr(add(lhs, rhs),1),shl(overflow, typesize-1))
9627   if (Opc == ISD::AVGFLOORU && VT.isScalarInteger() && !isTypeLegal(VT)) {
9628     SDValue UAddWithOverflow =
9629         DAG.getNode(ISD::UADDO, dl, DAG.getVTList(VT, MVT::i1), {RHS, LHS});
9630 
9631     SDValue Sum = UAddWithOverflow.getValue(0);
9632     SDValue Overflow = UAddWithOverflow.getValue(1);
9633 
9634     // Right shift the sum by 1
9635     SDValue LShrVal = DAG.getNode(ISD::SRL, dl, VT, Sum,
9636                                   DAG.getShiftAmountConstant(1, VT, dl));
9637 
9638     SDValue ZeroExtOverflow = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Overflow);
9639     SDValue OverflowShl = DAG.getNode(
9640         ISD::SHL, dl, VT, ZeroExtOverflow,
9641         DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, dl));
9642 
9643     return DAG.getNode(ISD::OR, dl, VT, LShrVal, OverflowShl);
9644   }
9645 
9646   // avgceils(lhs, rhs) -> sub(or(lhs,rhs),ashr(xor(lhs,rhs),1))
9647   // avgceilu(lhs, rhs) -> sub(or(lhs,rhs),lshr(xor(lhs,rhs),1))
9648   // avgfloors(lhs, rhs) -> add(and(lhs,rhs),ashr(xor(lhs,rhs),1))
9649   // avgflooru(lhs, rhs) -> add(and(lhs,rhs),lshr(xor(lhs,rhs),1))
9650   LHS = DAG.getFreeze(LHS);
9651   RHS = DAG.getFreeze(RHS);
9652   SDValue Sign = DAG.getNode(SignOpc, dl, VT, LHS, RHS);
9653   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
9654   SDValue Shift =
9655       DAG.getNode(ShiftOpc, dl, VT, Xor, DAG.getShiftAmountConstant(1, VT, dl));
9656   return DAG.getNode(SumOpc, dl, VT, Sign, Shift);
9657 }
9658 
9659 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
9660   SDLoc dl(N);
9661   EVT VT = N->getValueType(0);
9662   SDValue Op = N->getOperand(0);
9663 
9664   if (!VT.isSimple())
9665     return SDValue();
9666 
9667   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
9668   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
9669   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
9670   default:
9671     return SDValue();
9672   case MVT::i16:
9673     // Use a rotate by 8. This can be further expanded if necessary.
9674     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
9675   case MVT::i32:
9676     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
9677     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Op,
9678                        DAG.getConstant(0xFF00, dl, VT));
9679     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT));
9680     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
9681     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
9682     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
9683     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
9684     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
9685     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
9686   case MVT::i64:
9687     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
9688     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Op,
9689                        DAG.getConstant(255ULL<<8, dl, VT));
9690     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT));
9691     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Op,
9692                        DAG.getConstant(255ULL<<16, dl, VT));
9693     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT));
9694     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Op,
9695                        DAG.getConstant(255ULL<<24, dl, VT));
9696     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT));
9697     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
9698     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
9699                        DAG.getConstant(255ULL<<24, dl, VT));
9700     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
9701     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
9702                        DAG.getConstant(255ULL<<16, dl, VT));
9703     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
9704     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
9705                        DAG.getConstant(255ULL<<8, dl, VT));
9706     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
9707     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
9708     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
9709     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
9710     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
9711     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
9712     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
9713     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
9714   }
9715 }
9716 
9717 SDValue TargetLowering::expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const {
9718   SDLoc dl(N);
9719   EVT VT = N->getValueType(0);
9720   SDValue Op = N->getOperand(0);
9721   SDValue Mask = N->getOperand(1);
9722   SDValue EVL = N->getOperand(2);
9723 
9724   if (!VT.isSimple())
9725     return SDValue();
9726 
9727   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
9728   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
9729   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
9730   default:
9731     return SDValue();
9732   case MVT::i16:
9733     Tmp1 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
9734                        Mask, EVL);
9735     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
9736                        Mask, EVL);
9737     return DAG.getNode(ISD::VP_OR, dl, VT, Tmp1, Tmp2, Mask, EVL);
9738   case MVT::i32:
9739     Tmp4 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
9740                        Mask, EVL);
9741     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Op, DAG.getConstant(0xFF00, dl, VT),
9742                        Mask, EVL);
9743     Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT),
9744                        Mask, EVL);
9745     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
9746                        Mask, EVL);
9747     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9748                        DAG.getConstant(0xFF00, dl, VT), Mask, EVL);
9749     Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
9750                        Mask, EVL);
9751     Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
9752     Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
9753     return DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
9754   case MVT::i64:
9755     Tmp8 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT),
9756                        Mask, EVL);
9757     Tmp7 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
9758                        DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL);
9759     Tmp7 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT),
9760                        Mask, EVL);
9761     Tmp6 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
9762                        DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL);
9763     Tmp6 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT),
9764                        Mask, EVL);
9765     Tmp5 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
9766                        DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL);
9767     Tmp5 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT),
9768                        Mask, EVL);
9769     Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
9770                        Mask, EVL);
9771     Tmp4 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp4,
9772                        DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL);
9773     Tmp3 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
9774                        Mask, EVL);
9775     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp3,
9776                        DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL);
9777     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT),
9778                        Mask, EVL);
9779     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9780                        DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL);
9781     Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT),
9782                        Mask, EVL);
9783     Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp7, Mask, EVL);
9784     Tmp6 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp6, Tmp5, Mask, EVL);
9785     Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
9786     Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
9787     Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp6, Mask, EVL);
9788     Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
9789     return DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp4, Mask, EVL);
9790   }
9791 }
9792 
9793 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
9794   SDLoc dl(N);
9795   EVT VT = N->getValueType(0);
9796   SDValue Op = N->getOperand(0);
9797   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
9798   unsigned Sz = VT.getScalarSizeInBits();
9799 
9800   SDValue Tmp, Tmp2, Tmp3;
9801 
9802   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
9803   // and finally the i1 pairs.
9804   // TODO: We can easily support i4/i2 legal types if any target ever does.
9805   if (Sz >= 8 && isPowerOf2_32(Sz)) {
9806     // Create the masks - repeating the pattern every byte.
9807     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
9808     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
9809     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
9810 
9811     // BSWAP if the type is wider than a single byte.
9812     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
9813 
9814     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
9815     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
9816     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
9817     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
9818     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
9819     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
9820 
9821     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
9822     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
9823     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
9824     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
9825     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
9826     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
9827 
9828     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
9829     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
9830     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
9831     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
9832     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
9833     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
9834     return Tmp;
9835   }
9836 
9837   Tmp = DAG.getConstant(0, dl, VT);
9838   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
9839     if (I < J)
9840       Tmp2 =
9841           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
9842     else
9843       Tmp2 =
9844           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
9845 
9846     APInt Shift = APInt::getOneBitSet(Sz, J);
9847     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
9848     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
9849   }
9850 
9851   return Tmp;
9852 }
9853 
9854 SDValue TargetLowering::expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
9855   assert(N->getOpcode() == ISD::VP_BITREVERSE);
9856 
9857   SDLoc dl(N);
9858   EVT VT = N->getValueType(0);
9859   SDValue Op = N->getOperand(0);
9860   SDValue Mask = N->getOperand(1);
9861   SDValue EVL = N->getOperand(2);
9862   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
9863   unsigned Sz = VT.getScalarSizeInBits();
9864 
9865   SDValue Tmp, Tmp2, Tmp3;
9866 
9867   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
9868   // and finally the i1 pairs.
9869   // TODO: We can easily support i4/i2 legal types if any target ever does.
9870   if (Sz >= 8 && isPowerOf2_32(Sz)) {
9871     // Create the masks - repeating the pattern every byte.
9872     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
9873     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
9874     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
9875 
9876     // BSWAP if the type is wider than a single byte.
9877     Tmp = (Sz > 8 ? DAG.getNode(ISD::VP_BSWAP, dl, VT, Op, Mask, EVL) : Op);
9878 
9879     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
9880     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT),
9881                        Mask, EVL);
9882     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9883                        DAG.getConstant(Mask4, dl, VT), Mask, EVL);
9884     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT),
9885                        Mask, EVL);
9886     Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT),
9887                        Mask, EVL);
9888     Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
9889 
9890     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
9891     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT),
9892                        Mask, EVL);
9893     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9894                        DAG.getConstant(Mask2, dl, VT), Mask, EVL);
9895     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT),
9896                        Mask, EVL);
9897     Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT),
9898                        Mask, EVL);
9899     Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
9900 
9901     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
9902     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT),
9903                        Mask, EVL);
9904     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9905                        DAG.getConstant(Mask1, dl, VT), Mask, EVL);
9906     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT),
9907                        Mask, EVL);
9908     Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT),
9909                        Mask, EVL);
9910     Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
9911     return Tmp;
9912   }
9913   return SDValue();
9914 }
9915 
9916 std::pair<SDValue, SDValue>
9917 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
9918                                     SelectionDAG &DAG) const {
9919   SDLoc SL(LD);
9920   SDValue Chain = LD->getChain();
9921   SDValue BasePTR = LD->getBasePtr();
9922   EVT SrcVT = LD->getMemoryVT();
9923   EVT DstVT = LD->getValueType(0);
9924   ISD::LoadExtType ExtType = LD->getExtensionType();
9925 
9926   if (SrcVT.isScalableVector())
9927     report_fatal_error("Cannot scalarize scalable vector loads");
9928 
9929   unsigned NumElem = SrcVT.getVectorNumElements();
9930 
9931   EVT SrcEltVT = SrcVT.getScalarType();
9932   EVT DstEltVT = DstVT.getScalarType();
9933 
9934   // A vector must always be stored in memory as-is, i.e. without any padding
9935   // between the elements, since various code depend on it, e.g. in the
9936   // handling of a bitcast of a vector type to int, which may be done with a
9937   // vector store followed by an integer load. A vector that does not have
9938   // elements that are byte-sized must therefore be stored as an integer
9939   // built out of the extracted vector elements.
9940   if (!SrcEltVT.isByteSized()) {
9941     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
9942     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
9943 
9944     unsigned NumSrcBits = SrcVT.getSizeInBits();
9945     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
9946 
9947     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
9948     SDValue SrcEltBitMask = DAG.getConstant(
9949         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
9950 
9951     // Load the whole vector and avoid masking off the top bits as it makes
9952     // the codegen worse.
9953     SDValue Load =
9954         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
9955                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
9956                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
9957 
9958     SmallVector<SDValue, 8> Vals;
9959     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
9960       unsigned ShiftIntoIdx =
9961           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
9962       SDValue ShiftAmount = DAG.getShiftAmountConstant(
9963           ShiftIntoIdx * SrcEltVT.getSizeInBits(), LoadVT, SL);
9964       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
9965       SDValue Elt =
9966           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
9967       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
9968 
9969       if (ExtType != ISD::NON_EXTLOAD) {
9970         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
9971         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
9972       }
9973 
9974       Vals.push_back(Scalar);
9975     }
9976 
9977     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
9978     return std::make_pair(Value, Load.getValue(1));
9979   }
9980 
9981   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
9982   assert(SrcEltVT.isByteSized());
9983 
9984   SmallVector<SDValue, 8> Vals;
9985   SmallVector<SDValue, 8> LoadChains;
9986 
9987   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
9988     SDValue ScalarLoad =
9989         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
9990                        LD->getPointerInfo().getWithOffset(Idx * Stride),
9991                        SrcEltVT, LD->getOriginalAlign(),
9992                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
9993 
9994     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::getFixed(Stride));
9995 
9996     Vals.push_back(ScalarLoad.getValue(0));
9997     LoadChains.push_back(ScalarLoad.getValue(1));
9998   }
9999 
10000   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
10001   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
10002 
10003   return std::make_pair(Value, NewChain);
10004 }
10005 
10006 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
10007                                              SelectionDAG &DAG) const {
10008   SDLoc SL(ST);
10009 
10010   SDValue Chain = ST->getChain();
10011   SDValue BasePtr = ST->getBasePtr();
10012   SDValue Value = ST->getValue();
10013   EVT StVT = ST->getMemoryVT();
10014 
10015   if (StVT.isScalableVector())
10016     report_fatal_error("Cannot scalarize scalable vector stores");
10017 
10018   // The type of the data we want to save
10019   EVT RegVT = Value.getValueType();
10020   EVT RegSclVT = RegVT.getScalarType();
10021 
10022   // The type of data as saved in memory.
10023   EVT MemSclVT = StVT.getScalarType();
10024 
10025   unsigned NumElem = StVT.getVectorNumElements();
10026 
10027   // A vector must always be stored in memory as-is, i.e. without any padding
10028   // between the elements, since various code depend on it, e.g. in the
10029   // handling of a bitcast of a vector type to int, which may be done with a
10030   // vector store followed by an integer load. A vector that does not have
10031   // elements that are byte-sized must therefore be stored as an integer
10032   // built out of the extracted vector elements.
10033   if (!MemSclVT.isByteSized()) {
10034     unsigned NumBits = StVT.getSizeInBits();
10035     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
10036 
10037     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
10038 
10039     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
10040       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
10041                                 DAG.getVectorIdxConstant(Idx, SL));
10042       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
10043       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
10044       unsigned ShiftIntoIdx =
10045           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
10046       SDValue ShiftAmount =
10047           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
10048       SDValue ShiftedElt =
10049           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
10050       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
10051     }
10052 
10053     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
10054                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
10055                         ST->getAAInfo());
10056   }
10057 
10058   // Store Stride in bytes
10059   unsigned Stride = MemSclVT.getSizeInBits() / 8;
10060   assert(Stride && "Zero stride!");
10061   // Extract each of the elements from the original vector and save them into
10062   // memory individually.
10063   SmallVector<SDValue, 8> Stores;
10064   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
10065     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
10066                               DAG.getVectorIdxConstant(Idx, SL));
10067 
10068     SDValue Ptr =
10069         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::getFixed(Idx * Stride));
10070 
10071     // This scalar TruncStore may be illegal, but we legalize it later.
10072     SDValue Store = DAG.getTruncStore(
10073         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
10074         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
10075         ST->getAAInfo());
10076 
10077     Stores.push_back(Store);
10078   }
10079 
10080   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
10081 }
10082 
10083 std::pair<SDValue, SDValue>
10084 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
10085   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
10086          "unaligned indexed loads not implemented!");
10087   SDValue Chain = LD->getChain();
10088   SDValue Ptr = LD->getBasePtr();
10089   EVT VT = LD->getValueType(0);
10090   EVT LoadedVT = LD->getMemoryVT();
10091   SDLoc dl(LD);
10092   auto &MF = DAG.getMachineFunction();
10093 
10094   if (VT.isFloatingPoint() || VT.isVector()) {
10095     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
10096     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
10097       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
10098           LoadedVT.isVector()) {
10099         // Scalarize the load and let the individual components be handled.
10100         return scalarizeVectorLoad(LD, DAG);
10101       }
10102 
10103       // Expand to a (misaligned) integer load of the same size,
10104       // then bitconvert to floating point or vector.
10105       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
10106                                     LD->getMemOperand());
10107       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
10108       if (LoadedVT != VT)
10109         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
10110                              ISD::ANY_EXTEND, dl, VT, Result);
10111 
10112       return std::make_pair(Result, newLoad.getValue(1));
10113     }
10114 
10115     // Copy the value to a (aligned) stack slot using (unaligned) integer
10116     // loads and stores, then do a (aligned) load from the stack slot.
10117     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
10118     unsigned LoadedBytes = LoadedVT.getStoreSize();
10119     unsigned RegBytes = RegVT.getSizeInBits() / 8;
10120     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
10121 
10122     // Make sure the stack slot is also aligned for the register type.
10123     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
10124     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
10125     SmallVector<SDValue, 8> Stores;
10126     SDValue StackPtr = StackBase;
10127     unsigned Offset = 0;
10128 
10129     EVT PtrVT = Ptr.getValueType();
10130     EVT StackPtrVT = StackPtr.getValueType();
10131 
10132     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
10133     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
10134 
10135     // Do all but one copies using the full register width.
10136     for (unsigned i = 1; i < NumRegs; i++) {
10137       // Load one integer register's worth from the original location.
10138       SDValue Load = DAG.getLoad(
10139           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
10140           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
10141           LD->getAAInfo());
10142       // Follow the load with a store to the stack slot.  Remember the store.
10143       Stores.push_back(DAG.getStore(
10144           Load.getValue(1), dl, Load, StackPtr,
10145           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
10146       // Increment the pointers.
10147       Offset += RegBytes;
10148 
10149       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
10150       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
10151     }
10152 
10153     // The last copy may be partial.  Do an extending load.
10154     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
10155                                   8 * (LoadedBytes - Offset));
10156     SDValue Load =
10157         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
10158                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
10159                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
10160                        LD->getAAInfo());
10161     // Follow the load with a store to the stack slot.  Remember the store.
10162     // On big-endian machines this requires a truncating store to ensure
10163     // that the bits end up in the right place.
10164     Stores.push_back(DAG.getTruncStore(
10165         Load.getValue(1), dl, Load, StackPtr,
10166         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
10167 
10168     // The order of the stores doesn't matter - say it with a TokenFactor.
10169     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10170 
10171     // Finally, perform the original load only redirected to the stack slot.
10172     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
10173                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
10174                           LoadedVT);
10175 
10176     // Callers expect a MERGE_VALUES node.
10177     return std::make_pair(Load, TF);
10178   }
10179 
10180   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
10181          "Unaligned load of unsupported type.");
10182 
10183   // Compute the new VT that is half the size of the old one.  This is an
10184   // integer MVT.
10185   unsigned NumBits = LoadedVT.getSizeInBits();
10186   EVT NewLoadedVT;
10187   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
10188   NumBits >>= 1;
10189 
10190   Align Alignment = LD->getOriginalAlign();
10191   unsigned IncrementSize = NumBits / 8;
10192   ISD::LoadExtType HiExtType = LD->getExtensionType();
10193 
10194   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
10195   if (HiExtType == ISD::NON_EXTLOAD)
10196     HiExtType = ISD::ZEXTLOAD;
10197 
10198   // Load the value in two parts
10199   SDValue Lo, Hi;
10200   if (DAG.getDataLayout().isLittleEndian()) {
10201     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
10202                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10203                         LD->getAAInfo());
10204 
10205     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize));
10206     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
10207                         LD->getPointerInfo().getWithOffset(IncrementSize),
10208                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10209                         LD->getAAInfo());
10210   } else {
10211     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
10212                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10213                         LD->getAAInfo());
10214 
10215     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize));
10216     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
10217                         LD->getPointerInfo().getWithOffset(IncrementSize),
10218                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10219                         LD->getAAInfo());
10220   }
10221 
10222   // aggregate the two parts
10223   SDValue ShiftAmount = DAG.getShiftAmountConstant(NumBits, VT, dl);
10224   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
10225   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
10226 
10227   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
10228                              Hi.getValue(1));
10229 
10230   return std::make_pair(Result, TF);
10231 }
10232 
10233 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
10234                                              SelectionDAG &DAG) const {
10235   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
10236          "unaligned indexed stores not implemented!");
10237   SDValue Chain = ST->getChain();
10238   SDValue Ptr = ST->getBasePtr();
10239   SDValue Val = ST->getValue();
10240   EVT VT = Val.getValueType();
10241   Align Alignment = ST->getOriginalAlign();
10242   auto &MF = DAG.getMachineFunction();
10243   EVT StoreMemVT = ST->getMemoryVT();
10244 
10245   SDLoc dl(ST);
10246   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
10247     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
10248     if (isTypeLegal(intVT)) {
10249       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
10250           StoreMemVT.isVector()) {
10251         // Scalarize the store and let the individual components be handled.
10252         SDValue Result = scalarizeVectorStore(ST, DAG);
10253         return Result;
10254       }
10255       // Expand to a bitconvert of the value to the integer type of the
10256       // same size, then a (misaligned) int store.
10257       // FIXME: Does not handle truncating floating point stores!
10258       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
10259       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
10260                             Alignment, ST->getMemOperand()->getFlags());
10261       return Result;
10262     }
10263     // Do a (aligned) store to a stack slot, then copy from the stack slot
10264     // to the final destination using (unaligned) integer loads and stores.
10265     MVT RegVT = getRegisterType(
10266         *DAG.getContext(),
10267         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
10268     EVT PtrVT = Ptr.getValueType();
10269     unsigned StoredBytes = StoreMemVT.getStoreSize();
10270     unsigned RegBytes = RegVT.getSizeInBits() / 8;
10271     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
10272 
10273     // Make sure the stack slot is also aligned for the register type.
10274     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
10275     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
10276 
10277     // Perform the original store, only redirected to the stack slot.
10278     SDValue Store = DAG.getTruncStore(
10279         Chain, dl, Val, StackPtr,
10280         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
10281 
10282     EVT StackPtrVT = StackPtr.getValueType();
10283 
10284     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
10285     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
10286     SmallVector<SDValue, 8> Stores;
10287     unsigned Offset = 0;
10288 
10289     // Do all but one copies using the full register width.
10290     for (unsigned i = 1; i < NumRegs; i++) {
10291       // Load one integer register's worth from the stack slot.
10292       SDValue Load = DAG.getLoad(
10293           RegVT, dl, Store, StackPtr,
10294           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
10295       // Store it to the final location.  Remember the store.
10296       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
10297                                     ST->getPointerInfo().getWithOffset(Offset),
10298                                     ST->getOriginalAlign(),
10299                                     ST->getMemOperand()->getFlags()));
10300       // Increment the pointers.
10301       Offset += RegBytes;
10302       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
10303       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
10304     }
10305 
10306     // The last store may be partial.  Do a truncating store.  On big-endian
10307     // machines this requires an extending load from the stack slot to ensure
10308     // that the bits are in the right place.
10309     EVT LoadMemVT =
10310         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
10311 
10312     // Load from the stack slot.
10313     SDValue Load = DAG.getExtLoad(
10314         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
10315         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
10316 
10317     Stores.push_back(
10318         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
10319                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
10320                           ST->getOriginalAlign(),
10321                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
10322     // The order of the stores doesn't matter - say it with a TokenFactor.
10323     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10324     return Result;
10325   }
10326 
10327   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
10328          "Unaligned store of unknown type.");
10329   // Get the half-size VT
10330   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
10331   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
10332   unsigned IncrementSize = NumBits / 8;
10333 
10334   // Divide the stored value in two parts.
10335   SDValue ShiftAmount =
10336       DAG.getShiftAmountConstant(NumBits, Val.getValueType(), dl);
10337   SDValue Lo = Val;
10338   // If Val is a constant, replace the upper bits with 0. The SRL will constant
10339   // fold and not use the upper bits. A smaller constant may be easier to
10340   // materialize.
10341   if (auto *C = dyn_cast<ConstantSDNode>(Lo); C && !C->isOpaque())
10342     Lo = DAG.getNode(
10343         ISD::AND, dl, VT, Lo,
10344         DAG.getConstant(APInt::getLowBitsSet(VT.getSizeInBits(), NumBits), dl,
10345                         VT));
10346   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
10347 
10348   // Store the two parts
10349   SDValue Store1, Store2;
10350   Store1 = DAG.getTruncStore(Chain, dl,
10351                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
10352                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
10353                              ST->getMemOperand()->getFlags());
10354 
10355   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize));
10356   Store2 = DAG.getTruncStore(
10357       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
10358       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
10359       ST->getMemOperand()->getFlags(), ST->getAAInfo());
10360 
10361   SDValue Result =
10362       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
10363   return Result;
10364 }
10365 
10366 SDValue
10367 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
10368                                        const SDLoc &DL, EVT DataVT,
10369                                        SelectionDAG &DAG,
10370                                        bool IsCompressedMemory) const {
10371   SDValue Increment;
10372   EVT AddrVT = Addr.getValueType();
10373   EVT MaskVT = Mask.getValueType();
10374   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
10375          "Incompatible types of Data and Mask");
10376   if (IsCompressedMemory) {
10377     if (DataVT.isScalableVector())
10378       report_fatal_error(
10379           "Cannot currently handle compressed memory with scalable vectors");
10380     // Incrementing the pointer according to number of '1's in the mask.
10381     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
10382     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
10383     if (MaskIntVT.getSizeInBits() < 32) {
10384       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
10385       MaskIntVT = MVT::i32;
10386     }
10387 
10388     // Count '1's with POPCNT.
10389     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
10390     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
10391     // Scale is an element size in bytes.
10392     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
10393                                     AddrVT);
10394     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
10395   } else if (DataVT.isScalableVector()) {
10396     Increment = DAG.getVScale(DL, AddrVT,
10397                               APInt(AddrVT.getFixedSizeInBits(),
10398                                     DataVT.getStoreSize().getKnownMinValue()));
10399   } else
10400     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
10401 
10402   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
10403 }
10404 
10405 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
10406                                        EVT VecVT, const SDLoc &dl,
10407                                        ElementCount SubEC) {
10408   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
10409          "Cannot index a scalable vector within a fixed-width vector");
10410 
10411   unsigned NElts = VecVT.getVectorMinNumElements();
10412   unsigned NumSubElts = SubEC.getKnownMinValue();
10413   EVT IdxVT = Idx.getValueType();
10414 
10415   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
10416     // If this is a constant index and we know the value plus the number of the
10417     // elements in the subvector minus one is less than the minimum number of
10418     // elements then it's safe to return Idx.
10419     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
10420       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
10421         return Idx;
10422     SDValue VS =
10423         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
10424     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
10425     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
10426                               DAG.getConstant(NumSubElts, dl, IdxVT));
10427     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
10428   }
10429   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
10430     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
10431     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
10432                        DAG.getConstant(Imm, dl, IdxVT));
10433   }
10434   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
10435   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
10436                      DAG.getConstant(MaxIndex, dl, IdxVT));
10437 }
10438 
10439 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
10440                                                 SDValue VecPtr, EVT VecVT,
10441                                                 SDValue Index) const {
10442   return getVectorSubVecPointer(
10443       DAG, VecPtr, VecVT,
10444       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
10445       Index);
10446 }
10447 
10448 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
10449                                                SDValue VecPtr, EVT VecVT,
10450                                                EVT SubVecVT,
10451                                                SDValue Index) const {
10452   SDLoc dl(Index);
10453   // Make sure the index type is big enough to compute in.
10454   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
10455 
10456   EVT EltVT = VecVT.getVectorElementType();
10457 
10458   // Calculate the element offset and add it to the pointer.
10459   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
10460   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
10461          "Converting bits to bytes lost precision");
10462   assert(SubVecVT.getVectorElementType() == EltVT &&
10463          "Sub-vector must be a vector with matching element type");
10464   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
10465                                   SubVecVT.getVectorElementCount());
10466 
10467   EVT IdxVT = Index.getValueType();
10468   if (SubVecVT.isScalableVector())
10469     Index =
10470         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
10471                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
10472 
10473   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
10474                       DAG.getConstant(EltSize, dl, IdxVT));
10475   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
10476 }
10477 
10478 //===----------------------------------------------------------------------===//
10479 // Implementation of Emulated TLS Model
10480 //===----------------------------------------------------------------------===//
10481 
10482 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
10483                                                 SelectionDAG &DAG) const {
10484   // Access to address of TLS varialbe xyz is lowered to a function call:
10485   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
10486   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10487   PointerType *VoidPtrType = PointerType::get(*DAG.getContext(), 0);
10488   SDLoc dl(GA);
10489 
10490   ArgListTy Args;
10491   ArgListEntry Entry;
10492   const GlobalValue *GV =
10493       cast<GlobalValue>(GA->getGlobal()->stripPointerCastsAndAliases());
10494   SmallString<32> NameString("__emutls_v.");
10495   NameString += GV->getName();
10496   StringRef EmuTlsVarName(NameString);
10497   const GlobalVariable *EmuTlsVar =
10498       GV->getParent()->getNamedGlobal(EmuTlsVarName);
10499   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
10500   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
10501   Entry.Ty = VoidPtrType;
10502   Args.push_back(Entry);
10503 
10504   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
10505 
10506   TargetLowering::CallLoweringInfo CLI(DAG);
10507   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
10508   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
10509   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
10510 
10511   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
10512   // At last for X86 targets, maybe good for other targets too?
10513   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10514   MFI.setAdjustsStack(true); // Is this only for X86 target?
10515   MFI.setHasCalls(true);
10516 
10517   assert((GA->getOffset() == 0) &&
10518          "Emulated TLS must have zero offset in GlobalAddressSDNode");
10519   return CallResult.first;
10520 }
10521 
10522 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
10523                                                 SelectionDAG &DAG) const {
10524   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
10525   if (!isCtlzFast())
10526     return SDValue();
10527   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
10528   SDLoc dl(Op);
10529   if (isNullConstant(Op.getOperand(1)) && CC == ISD::SETEQ) {
10530     EVT VT = Op.getOperand(0).getValueType();
10531     SDValue Zext = Op.getOperand(0);
10532     if (VT.bitsLT(MVT::i32)) {
10533       VT = MVT::i32;
10534       Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
10535     }
10536     unsigned Log2b = Log2_32(VT.getSizeInBits());
10537     SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
10538     SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
10539                               DAG.getConstant(Log2b, dl, MVT::i32));
10540     return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
10541   }
10542   return SDValue();
10543 }
10544 
10545 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
10546   SDValue Op0 = Node->getOperand(0);
10547   SDValue Op1 = Node->getOperand(1);
10548   EVT VT = Op0.getValueType();
10549   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10550   unsigned Opcode = Node->getOpcode();
10551   SDLoc DL(Node);
10552 
10553   // umax(x,1) --> sub(x,cmpeq(x,0)) iff cmp result is allbits
10554   if (Opcode == ISD::UMAX && llvm::isOneOrOneSplat(Op1, true) && BoolVT == VT &&
10555       getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
10556     Op0 = DAG.getFreeze(Op0);
10557     SDValue Zero = DAG.getConstant(0, DL, VT);
10558     return DAG.getNode(ISD::SUB, DL, VT, Op0,
10559                        DAG.getSetCC(DL, VT, Op0, Zero, ISD::SETEQ));
10560   }
10561 
10562   // umin(x,y) -> sub(x,usubsat(x,y))
10563   // TODO: Missing freeze(Op0)?
10564   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
10565       isOperationLegal(ISD::USUBSAT, VT)) {
10566     return DAG.getNode(ISD::SUB, DL, VT, Op0,
10567                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
10568   }
10569 
10570   // umax(x,y) -> add(x,usubsat(y,x))
10571   // TODO: Missing freeze(Op0)?
10572   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
10573       isOperationLegal(ISD::USUBSAT, VT)) {
10574     return DAG.getNode(ISD::ADD, DL, VT, Op0,
10575                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
10576   }
10577 
10578   // FIXME: Should really try to split the vector in case it's legal on a
10579   // subvector.
10580   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
10581     return DAG.UnrollVectorOp(Node);
10582 
10583   // Attempt to find an existing SETCC node that we can reuse.
10584   // TODO: Do we need a generic doesSETCCNodeExist?
10585   // TODO: Missing freeze(Op0)/freeze(Op1)?
10586   auto buildMinMax = [&](ISD::CondCode PrefCC, ISD::CondCode AltCC,
10587                          ISD::CondCode PrefCommuteCC,
10588                          ISD::CondCode AltCommuteCC) {
10589     SDVTList BoolVTList = DAG.getVTList(BoolVT);
10590     for (ISD::CondCode CC : {PrefCC, AltCC}) {
10591       if (DAG.doesNodeExist(ISD::SETCC, BoolVTList,
10592                             {Op0, Op1, DAG.getCondCode(CC)})) {
10593         SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
10594         return DAG.getSelect(DL, VT, Cond, Op0, Op1);
10595       }
10596     }
10597     for (ISD::CondCode CC : {PrefCommuteCC, AltCommuteCC}) {
10598       if (DAG.doesNodeExist(ISD::SETCC, BoolVTList,
10599                             {Op0, Op1, DAG.getCondCode(CC)})) {
10600         SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
10601         return DAG.getSelect(DL, VT, Cond, Op1, Op0);
10602       }
10603     }
10604     SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, PrefCC);
10605     return DAG.getSelect(DL, VT, Cond, Op0, Op1);
10606   };
10607 
10608   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
10609   //                      -> Y = (A < B) ? B : A
10610   //                      -> Y = (A >= B) ? A : B
10611   //                      -> Y = (A <= B) ? B : A
10612   switch (Opcode) {
10613   case ISD::SMAX:
10614     return buildMinMax(ISD::SETGT, ISD::SETGE, ISD::SETLT, ISD::SETLE);
10615   case ISD::SMIN:
10616     return buildMinMax(ISD::SETLT, ISD::SETLE, ISD::SETGT, ISD::SETGE);
10617   case ISD::UMAX:
10618     return buildMinMax(ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE);
10619   case ISD::UMIN:
10620     return buildMinMax(ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE);
10621   }
10622 
10623   llvm_unreachable("How did we get here?");
10624 }
10625 
10626 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
10627   unsigned Opcode = Node->getOpcode();
10628   SDValue LHS = Node->getOperand(0);
10629   SDValue RHS = Node->getOperand(1);
10630   EVT VT = LHS.getValueType();
10631   SDLoc dl(Node);
10632 
10633   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
10634   assert(VT.isInteger() && "Expected operands to be integers");
10635 
10636   // usub.sat(a, b) -> umax(a, b) - b
10637   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
10638     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
10639     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
10640   }
10641 
10642   // uadd.sat(a, b) -> umin(a, ~b) + b
10643   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
10644     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
10645     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
10646     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
10647   }
10648 
10649   unsigned OverflowOp;
10650   switch (Opcode) {
10651   case ISD::SADDSAT:
10652     OverflowOp = ISD::SADDO;
10653     break;
10654   case ISD::UADDSAT:
10655     OverflowOp = ISD::UADDO;
10656     break;
10657   case ISD::SSUBSAT:
10658     OverflowOp = ISD::SSUBO;
10659     break;
10660   case ISD::USUBSAT:
10661     OverflowOp = ISD::USUBO;
10662     break;
10663   default:
10664     llvm_unreachable("Expected method to receive signed or unsigned saturation "
10665                      "addition or subtraction node.");
10666   }
10667 
10668   // FIXME: Should really try to split the vector in case it's legal on a
10669   // subvector.
10670   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
10671     return DAG.UnrollVectorOp(Node);
10672 
10673   unsigned BitWidth = LHS.getScalarValueSizeInBits();
10674   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10675   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
10676   SDValue SumDiff = Result.getValue(0);
10677   SDValue Overflow = Result.getValue(1);
10678   SDValue Zero = DAG.getConstant(0, dl, VT);
10679   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
10680 
10681   if (Opcode == ISD::UADDSAT) {
10682     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
10683       // (LHS + RHS) | OverflowMask
10684       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
10685       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
10686     }
10687     // Overflow ? 0xffff.... : (LHS + RHS)
10688     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
10689   }
10690 
10691   if (Opcode == ISD::USUBSAT) {
10692     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
10693       // (LHS - RHS) & ~OverflowMask
10694       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
10695       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
10696       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
10697     }
10698     // Overflow ? 0 : (LHS - RHS)
10699     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
10700   }
10701 
10702   if (Opcode == ISD::SADDSAT || Opcode == ISD::SSUBSAT) {
10703     APInt MinVal = APInt::getSignedMinValue(BitWidth);
10704     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
10705 
10706     KnownBits KnownLHS = DAG.computeKnownBits(LHS);
10707     KnownBits KnownRHS = DAG.computeKnownBits(RHS);
10708 
10709     // If either of the operand signs are known, then they are guaranteed to
10710     // only saturate in one direction. If non-negative they will saturate
10711     // towards SIGNED_MAX, if negative they will saturate towards SIGNED_MIN.
10712     //
10713     // In the case of ISD::SSUBSAT, 'x - y' is equivalent to 'x + (-y)', so the
10714     // sign of 'y' has to be flipped.
10715 
10716     bool LHSIsNonNegative = KnownLHS.isNonNegative();
10717     bool RHSIsNonNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNonNegative()
10718                                                    : KnownRHS.isNegative();
10719     if (LHSIsNonNegative || RHSIsNonNegative) {
10720       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
10721       return DAG.getSelect(dl, VT, Overflow, SatMax, SumDiff);
10722     }
10723 
10724     bool LHSIsNegative = KnownLHS.isNegative();
10725     bool RHSIsNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNegative()
10726                                                 : KnownRHS.isNonNegative();
10727     if (LHSIsNegative || RHSIsNegative) {
10728       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
10729       return DAG.getSelect(dl, VT, Overflow, SatMin, SumDiff);
10730     }
10731   }
10732 
10733   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
10734   APInt MinVal = APInt::getSignedMinValue(BitWidth);
10735   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
10736   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
10737                               DAG.getConstant(BitWidth - 1, dl, VT));
10738   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
10739   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
10740 }
10741 
10742 SDValue TargetLowering::expandCMP(SDNode *Node, SelectionDAG &DAG) const {
10743   unsigned Opcode = Node->getOpcode();
10744   SDValue LHS = Node->getOperand(0);
10745   SDValue RHS = Node->getOperand(1);
10746   EVT VT = LHS.getValueType();
10747   EVT ResVT = Node->getValueType(0);
10748   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10749   SDLoc dl(Node);
10750 
10751   auto LTPredicate = (Opcode == ISD::UCMP ? ISD::SETULT : ISD::SETLT);
10752   auto GTPredicate = (Opcode == ISD::UCMP ? ISD::SETUGT : ISD::SETGT);
10753   SDValue IsLT = DAG.getSetCC(dl, BoolVT, LHS, RHS, LTPredicate);
10754   SDValue IsGT = DAG.getSetCC(dl, BoolVT, LHS, RHS, GTPredicate);
10755 
10756   // We can't perform arithmetic on i1 values. Extending them would
10757   // probably result in worse codegen, so let's just use two selects instead.
10758   // Some targets are also just better off using selects rather than subtraction
10759   // because one of the conditions can be merged with one of the selects.
10760   // And finally, if we don't know the contents of high bits of a boolean value
10761   // we can't perform any arithmetic either.
10762   if (shouldExpandCmpUsingSelects(VT) || BoolVT.getScalarSizeInBits() == 1 ||
10763       getBooleanContents(BoolVT) == UndefinedBooleanContent) {
10764     SDValue SelectZeroOrOne =
10765         DAG.getSelect(dl, ResVT, IsGT, DAG.getConstant(1, dl, ResVT),
10766                       DAG.getConstant(0, dl, ResVT));
10767     return DAG.getSelect(dl, ResVT, IsLT, DAG.getAllOnesConstant(dl, ResVT),
10768                          SelectZeroOrOne);
10769   }
10770 
10771   if (getBooleanContents(BoolVT) == ZeroOrNegativeOneBooleanContent)
10772     std::swap(IsGT, IsLT);
10773   return DAG.getSExtOrTrunc(DAG.getNode(ISD::SUB, dl, BoolVT, IsGT, IsLT), dl,
10774                             ResVT);
10775 }
10776 
10777 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
10778   unsigned Opcode = Node->getOpcode();
10779   bool IsSigned = Opcode == ISD::SSHLSAT;
10780   SDValue LHS = Node->getOperand(0);
10781   SDValue RHS = Node->getOperand(1);
10782   EVT VT = LHS.getValueType();
10783   SDLoc dl(Node);
10784 
10785   assert((Node->getOpcode() == ISD::SSHLSAT ||
10786           Node->getOpcode() == ISD::USHLSAT) &&
10787           "Expected a SHLSAT opcode");
10788   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
10789   assert(VT.isInteger() && "Expected operands to be integers");
10790 
10791   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
10792     return DAG.UnrollVectorOp(Node);
10793 
10794   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
10795 
10796   unsigned BW = VT.getScalarSizeInBits();
10797   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10798   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
10799   SDValue Orig =
10800       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
10801 
10802   SDValue SatVal;
10803   if (IsSigned) {
10804     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
10805     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
10806     SDValue Cond =
10807         DAG.getSetCC(dl, BoolVT, LHS, DAG.getConstant(0, dl, VT), ISD::SETLT);
10808     SatVal = DAG.getSelect(dl, VT, Cond, SatMin, SatMax);
10809   } else {
10810     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
10811   }
10812   SDValue Cond = DAG.getSetCC(dl, BoolVT, LHS, Orig, ISD::SETNE);
10813   return DAG.getSelect(dl, VT, Cond, SatVal, Result);
10814 }
10815 
10816 void TargetLowering::forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl,
10817                                         bool Signed, EVT WideVT,
10818                                         const SDValue LL, const SDValue LH,
10819                                         const SDValue RL, const SDValue RH,
10820                                         SDValue &Lo, SDValue &Hi) const {
10821   // We can fall back to a libcall with an illegal type for the MUL if we
10822   // have a libcall big enough.
10823   // Also, we can fall back to a division in some cases, but that's a big
10824   // performance hit in the general case.
10825   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
10826   if (WideVT == MVT::i16)
10827     LC = RTLIB::MUL_I16;
10828   else if (WideVT == MVT::i32)
10829     LC = RTLIB::MUL_I32;
10830   else if (WideVT == MVT::i64)
10831     LC = RTLIB::MUL_I64;
10832   else if (WideVT == MVT::i128)
10833     LC = RTLIB::MUL_I128;
10834 
10835   if (LC == RTLIB::UNKNOWN_LIBCALL || !getLibcallName(LC)) {
10836     // We'll expand the multiplication by brute force because we have no other
10837     // options. This is a trivially-generalized version of the code from
10838     // Hacker's Delight (itself derived from Knuth's Algorithm M from section
10839     // 4.3.1).
10840     EVT VT = LL.getValueType();
10841     unsigned Bits = VT.getSizeInBits();
10842     unsigned HalfBits = Bits >> 1;
10843     SDValue Mask =
10844         DAG.getConstant(APInt::getLowBitsSet(Bits, HalfBits), dl, VT);
10845     SDValue LLL = DAG.getNode(ISD::AND, dl, VT, LL, Mask);
10846     SDValue RLL = DAG.getNode(ISD::AND, dl, VT, RL, Mask);
10847 
10848     SDValue T = DAG.getNode(ISD::MUL, dl, VT, LLL, RLL);
10849     SDValue TL = DAG.getNode(ISD::AND, dl, VT, T, Mask);
10850 
10851     SDValue Shift = DAG.getShiftAmountConstant(HalfBits, VT, dl);
10852     SDValue TH = DAG.getNode(ISD::SRL, dl, VT, T, Shift);
10853     SDValue LLH = DAG.getNode(ISD::SRL, dl, VT, LL, Shift);
10854     SDValue RLH = DAG.getNode(ISD::SRL, dl, VT, RL, Shift);
10855 
10856     SDValue U = DAG.getNode(ISD::ADD, dl, VT,
10857                             DAG.getNode(ISD::MUL, dl, VT, LLH, RLL), TH);
10858     SDValue UL = DAG.getNode(ISD::AND, dl, VT, U, Mask);
10859     SDValue UH = DAG.getNode(ISD::SRL, dl, VT, U, Shift);
10860 
10861     SDValue V = DAG.getNode(ISD::ADD, dl, VT,
10862                             DAG.getNode(ISD::MUL, dl, VT, LLL, RLH), UL);
10863     SDValue VH = DAG.getNode(ISD::SRL, dl, VT, V, Shift);
10864 
10865     SDValue W =
10866         DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::MUL, dl, VT, LLH, RLH),
10867                     DAG.getNode(ISD::ADD, dl, VT, UH, VH));
10868     Lo = DAG.getNode(ISD::ADD, dl, VT, TL,
10869                      DAG.getNode(ISD::SHL, dl, VT, V, Shift));
10870 
10871     Hi = DAG.getNode(ISD::ADD, dl, VT, W,
10872                      DAG.getNode(ISD::ADD, dl, VT,
10873                                  DAG.getNode(ISD::MUL, dl, VT, RH, LL),
10874                                  DAG.getNode(ISD::MUL, dl, VT, RL, LH)));
10875   } else {
10876     // Attempt a libcall.
10877     SDValue Ret;
10878     TargetLowering::MakeLibCallOptions CallOptions;
10879     CallOptions.setIsSigned(Signed);
10880     CallOptions.setIsPostTypeLegalization(true);
10881     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
10882       // Halves of WideVT are packed into registers in different order
10883       // depending on platform endianness. This is usually handled by
10884       // the C calling convention, but we can't defer to it in
10885       // the legalizer.
10886       SDValue Args[] = {LL, LH, RL, RH};
10887       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
10888     } else {
10889       SDValue Args[] = {LH, LL, RH, RL};
10890       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
10891     }
10892     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
10893            "Ret value is a collection of constituent nodes holding result.");
10894     if (DAG.getDataLayout().isLittleEndian()) {
10895       // Same as above.
10896       Lo = Ret.getOperand(0);
10897       Hi = Ret.getOperand(1);
10898     } else {
10899       Lo = Ret.getOperand(1);
10900       Hi = Ret.getOperand(0);
10901     }
10902   }
10903 }
10904 
10905 void TargetLowering::forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl,
10906                                         bool Signed, const SDValue LHS,
10907                                         const SDValue RHS, SDValue &Lo,
10908                                         SDValue &Hi) const {
10909   EVT VT = LHS.getValueType();
10910   assert(RHS.getValueType() == VT && "Mismatching operand types");
10911 
10912   SDValue HiLHS;
10913   SDValue HiRHS;
10914   if (Signed) {
10915     // The high part is obtained by SRA'ing all but one of the bits of low
10916     // part.
10917     unsigned LoSize = VT.getFixedSizeInBits();
10918     HiLHS = DAG.getNode(
10919         ISD::SRA, dl, VT, LHS,
10920         DAG.getConstant(LoSize - 1, dl, getPointerTy(DAG.getDataLayout())));
10921     HiRHS = DAG.getNode(
10922         ISD::SRA, dl, VT, RHS,
10923         DAG.getConstant(LoSize - 1, dl, getPointerTy(DAG.getDataLayout())));
10924   } else {
10925     HiLHS = DAG.getConstant(0, dl, VT);
10926     HiRHS = DAG.getConstant(0, dl, VT);
10927   }
10928   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
10929   forceExpandWideMUL(DAG, dl, Signed, WideVT, LHS, HiLHS, RHS, HiRHS, Lo, Hi);
10930 }
10931 
10932 SDValue
10933 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
10934   assert((Node->getOpcode() == ISD::SMULFIX ||
10935           Node->getOpcode() == ISD::UMULFIX ||
10936           Node->getOpcode() == ISD::SMULFIXSAT ||
10937           Node->getOpcode() == ISD::UMULFIXSAT) &&
10938          "Expected a fixed point multiplication opcode");
10939 
10940   SDLoc dl(Node);
10941   SDValue LHS = Node->getOperand(0);
10942   SDValue RHS = Node->getOperand(1);
10943   EVT VT = LHS.getValueType();
10944   unsigned Scale = Node->getConstantOperandVal(2);
10945   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
10946                      Node->getOpcode() == ISD::UMULFIXSAT);
10947   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
10948                  Node->getOpcode() == ISD::SMULFIXSAT);
10949   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10950   unsigned VTSize = VT.getScalarSizeInBits();
10951 
10952   if (!Scale) {
10953     // [us]mul.fix(a, b, 0) -> mul(a, b)
10954     if (!Saturating) {
10955       if (isOperationLegalOrCustom(ISD::MUL, VT))
10956         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
10957     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
10958       SDValue Result =
10959           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
10960       SDValue Product = Result.getValue(0);
10961       SDValue Overflow = Result.getValue(1);
10962       SDValue Zero = DAG.getConstant(0, dl, VT);
10963 
10964       APInt MinVal = APInt::getSignedMinValue(VTSize);
10965       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
10966       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
10967       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
10968       // Xor the inputs, if resulting sign bit is 0 the product will be
10969       // positive, else negative.
10970       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
10971       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
10972       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
10973       return DAG.getSelect(dl, VT, Overflow, Result, Product);
10974     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
10975       SDValue Result =
10976           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
10977       SDValue Product = Result.getValue(0);
10978       SDValue Overflow = Result.getValue(1);
10979 
10980       APInt MaxVal = APInt::getMaxValue(VTSize);
10981       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
10982       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
10983     }
10984   }
10985 
10986   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
10987          "Expected scale to be less than the number of bits if signed or at "
10988          "most the number of bits if unsigned.");
10989   assert(LHS.getValueType() == RHS.getValueType() &&
10990          "Expected both operands to be the same type");
10991 
10992   // Get the upper and lower bits of the result.
10993   SDValue Lo, Hi;
10994   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
10995   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
10996   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VTSize * 2);
10997   if (VT.isVector())
10998     WideVT =
10999         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
11000   if (isOperationLegalOrCustom(LoHiOp, VT)) {
11001     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
11002     Lo = Result.getValue(0);
11003     Hi = Result.getValue(1);
11004   } else if (isOperationLegalOrCustom(HiOp, VT)) {
11005     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
11006     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
11007   } else if (isOperationLegalOrCustom(ISD::MUL, WideVT)) {
11008     // Try for a multiplication using a wider type.
11009     unsigned Ext = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
11010     SDValue LHSExt = DAG.getNode(Ext, dl, WideVT, LHS);
11011     SDValue RHSExt = DAG.getNode(Ext, dl, WideVT, RHS);
11012     SDValue Res = DAG.getNode(ISD::MUL, dl, WideVT, LHSExt, RHSExt);
11013     Lo = DAG.getNode(ISD::TRUNCATE, dl, VT, Res);
11014     SDValue Shifted =
11015         DAG.getNode(ISD::SRA, dl, WideVT, Res,
11016                     DAG.getShiftAmountConstant(VTSize, WideVT, dl));
11017     Hi = DAG.getNode(ISD::TRUNCATE, dl, VT, Shifted);
11018   } else if (VT.isVector()) {
11019     return SDValue();
11020   } else {
11021     forceExpandWideMUL(DAG, dl, Signed, LHS, RHS, Lo, Hi);
11022   }
11023 
11024   if (Scale == VTSize)
11025     // Result is just the top half since we'd be shifting by the width of the
11026     // operand. Overflow impossible so this works for both UMULFIX and
11027     // UMULFIXSAT.
11028     return Hi;
11029 
11030   // The result will need to be shifted right by the scale since both operands
11031   // are scaled. The result is given to us in 2 halves, so we only want part of
11032   // both in the result.
11033   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
11034                                DAG.getShiftAmountConstant(Scale, VT, dl));
11035   if (!Saturating)
11036     return Result;
11037 
11038   if (!Signed) {
11039     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
11040     // widened multiplication) aren't all zeroes.
11041 
11042     // Saturate to max if ((Hi >> Scale) != 0),
11043     // which is the same as if (Hi > ((1 << Scale) - 1))
11044     APInt MaxVal = APInt::getMaxValue(VTSize);
11045     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
11046                                       dl, VT);
11047     Result = DAG.getSelectCC(dl, Hi, LowMask,
11048                              DAG.getConstant(MaxVal, dl, VT), Result,
11049                              ISD::SETUGT);
11050 
11051     return Result;
11052   }
11053 
11054   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
11055   // widened multiplication) aren't all ones or all zeroes.
11056 
11057   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
11058   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
11059 
11060   if (Scale == 0) {
11061     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
11062                                DAG.getShiftAmountConstant(VTSize - 1, VT, dl));
11063     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
11064     // Saturated to SatMin if wide product is negative, and SatMax if wide
11065     // product is positive ...
11066     SDValue Zero = DAG.getConstant(0, dl, VT);
11067     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
11068                                                ISD::SETLT);
11069     // ... but only if we overflowed.
11070     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
11071   }
11072 
11073   //  We handled Scale==0 above so all the bits to examine is in Hi.
11074 
11075   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
11076   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
11077   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
11078                                     dl, VT);
11079   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
11080   // Saturate to min if (Hi >> (Scale - 1)) < -1),
11081   // which is the same as if (HI < (-1 << (Scale - 1))
11082   SDValue HighMask =
11083       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
11084                       dl, VT);
11085   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
11086   return Result;
11087 }
11088 
11089 SDValue
11090 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
11091                                     SDValue LHS, SDValue RHS,
11092                                     unsigned Scale, SelectionDAG &DAG) const {
11093   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
11094           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
11095          "Expected a fixed point division opcode");
11096 
11097   EVT VT = LHS.getValueType();
11098   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
11099   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
11100   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
11101 
11102   // If there is enough room in the type to upscale the LHS or downscale the
11103   // RHS before the division, we can perform it in this type without having to
11104   // resize. For signed operations, the LHS headroom is the number of
11105   // redundant sign bits, and for unsigned ones it is the number of zeroes.
11106   // The headroom for the RHS is the number of trailing zeroes.
11107   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
11108                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
11109   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
11110 
11111   // For signed saturating operations, we need to be able to detect true integer
11112   // division overflow; that is, when you have MIN / -EPS. However, this
11113   // is undefined behavior and if we emit divisions that could take such
11114   // values it may cause undesired behavior (arithmetic exceptions on x86, for
11115   // example).
11116   // Avoid this by requiring an extra bit so that we never get this case.
11117   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
11118   // signed saturating division, we need to emit a whopping 32-bit division.
11119   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
11120     return SDValue();
11121 
11122   unsigned LHSShift = std::min(LHSLead, Scale);
11123   unsigned RHSShift = Scale - LHSShift;
11124 
11125   // At this point, we know that if we shift the LHS up by LHSShift and the
11126   // RHS down by RHSShift, we can emit a regular division with a final scaling
11127   // factor of Scale.
11128 
11129   if (LHSShift)
11130     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
11131                       DAG.getShiftAmountConstant(LHSShift, VT, dl));
11132   if (RHSShift)
11133     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
11134                       DAG.getShiftAmountConstant(RHSShift, VT, dl));
11135 
11136   SDValue Quot;
11137   if (Signed) {
11138     // For signed operations, if the resulting quotient is negative and the
11139     // remainder is nonzero, subtract 1 from the quotient to round towards
11140     // negative infinity.
11141     SDValue Rem;
11142     // FIXME: Ideally we would always produce an SDIVREM here, but if the
11143     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
11144     // we couldn't just form a libcall, but the type legalizer doesn't do it.
11145     if (isTypeLegal(VT) &&
11146         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
11147       Quot = DAG.getNode(ISD::SDIVREM, dl,
11148                          DAG.getVTList(VT, VT),
11149                          LHS, RHS);
11150       Rem = Quot.getValue(1);
11151       Quot = Quot.getValue(0);
11152     } else {
11153       Quot = DAG.getNode(ISD::SDIV, dl, VT,
11154                          LHS, RHS);
11155       Rem = DAG.getNode(ISD::SREM, dl, VT,
11156                         LHS, RHS);
11157     }
11158     SDValue Zero = DAG.getConstant(0, dl, VT);
11159     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
11160     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
11161     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
11162     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
11163     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
11164                                DAG.getConstant(1, dl, VT));
11165     Quot = DAG.getSelect(dl, VT,
11166                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
11167                          Sub1, Quot);
11168   } else
11169     Quot = DAG.getNode(ISD::UDIV, dl, VT,
11170                        LHS, RHS);
11171 
11172   return Quot;
11173 }
11174 
11175 void TargetLowering::expandUADDSUBO(
11176     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
11177   SDLoc dl(Node);
11178   SDValue LHS = Node->getOperand(0);
11179   SDValue RHS = Node->getOperand(1);
11180   bool IsAdd = Node->getOpcode() == ISD::UADDO;
11181 
11182   // If UADDO_CARRY/SUBO_CARRY is legal, use that instead.
11183   unsigned OpcCarry = IsAdd ? ISD::UADDO_CARRY : ISD::USUBO_CARRY;
11184   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
11185     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
11186     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
11187                                     { LHS, RHS, CarryIn });
11188     Result = SDValue(NodeCarry.getNode(), 0);
11189     Overflow = SDValue(NodeCarry.getNode(), 1);
11190     return;
11191   }
11192 
11193   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
11194                             LHS.getValueType(), LHS, RHS);
11195 
11196   EVT ResultType = Node->getValueType(1);
11197   EVT SetCCType = getSetCCResultType(
11198       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
11199   SDValue SetCC;
11200   if (IsAdd && isOneConstant(RHS)) {
11201     // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces
11202     // the live range of X. We assume comparing with 0 is cheap.
11203     // The general case (X + C) < C is not necessarily beneficial. Although we
11204     // reduce the live range of X, we may introduce the materialization of
11205     // constant C.
11206     SetCC =
11207         DAG.getSetCC(dl, SetCCType, Result,
11208                      DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ);
11209   } else if (IsAdd && isAllOnesConstant(RHS)) {
11210     // Special case: uaddo X, -1 overflows if X != 0.
11211     SetCC =
11212         DAG.getSetCC(dl, SetCCType, LHS,
11213                      DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETNE);
11214   } else {
11215     ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
11216     SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
11217   }
11218   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
11219 }
11220 
11221 void TargetLowering::expandSADDSUBO(
11222     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
11223   SDLoc dl(Node);
11224   SDValue LHS = Node->getOperand(0);
11225   SDValue RHS = Node->getOperand(1);
11226   bool IsAdd = Node->getOpcode() == ISD::SADDO;
11227 
11228   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
11229                             LHS.getValueType(), LHS, RHS);
11230 
11231   EVT ResultType = Node->getValueType(1);
11232   EVT OType = getSetCCResultType(
11233       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
11234 
11235   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
11236   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
11237   if (isOperationLegal(OpcSat, LHS.getValueType())) {
11238     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
11239     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
11240     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
11241     return;
11242   }
11243 
11244   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
11245 
11246   // For an addition, the result should be less than one of the operands (LHS)
11247   // if and only if the other operand (RHS) is negative, otherwise there will
11248   // be overflow.
11249   // For a subtraction, the result should be less than one of the operands
11250   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
11251   // otherwise there will be overflow.
11252   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
11253   SDValue ConditionRHS =
11254       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
11255 
11256   Overflow = DAG.getBoolExtOrTrunc(
11257       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
11258       ResultType, ResultType);
11259 }
11260 
11261 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
11262                                 SDValue &Overflow, SelectionDAG &DAG) const {
11263   SDLoc dl(Node);
11264   EVT VT = Node->getValueType(0);
11265   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
11266   SDValue LHS = Node->getOperand(0);
11267   SDValue RHS = Node->getOperand(1);
11268   bool isSigned = Node->getOpcode() == ISD::SMULO;
11269 
11270   // For power-of-two multiplications we can use a simpler shift expansion.
11271   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
11272     const APInt &C = RHSC->getAPIntValue();
11273     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
11274     if (C.isPowerOf2()) {
11275       // smulo(x, signed_min) is same as umulo(x, signed_min).
11276       bool UseArithShift = isSigned && !C.isMinSignedValue();
11277       SDValue ShiftAmt = DAG.getShiftAmountConstant(C.logBase2(), VT, dl);
11278       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
11279       Overflow = DAG.getSetCC(dl, SetCCVT,
11280           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
11281                       dl, VT, Result, ShiftAmt),
11282           LHS, ISD::SETNE);
11283       return true;
11284     }
11285   }
11286 
11287   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
11288   if (VT.isVector())
11289     WideVT =
11290         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
11291 
11292   SDValue BottomHalf;
11293   SDValue TopHalf;
11294   static const unsigned Ops[2][3] =
11295       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
11296         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
11297   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
11298     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
11299     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
11300   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
11301     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
11302                              RHS);
11303     TopHalf = BottomHalf.getValue(1);
11304   } else if (isTypeLegal(WideVT)) {
11305     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
11306     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
11307     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
11308     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
11309     SDValue ShiftAmt =
11310         DAG.getShiftAmountConstant(VT.getScalarSizeInBits(), WideVT, dl);
11311     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
11312                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
11313   } else {
11314     if (VT.isVector())
11315       return false;
11316 
11317     forceExpandWideMUL(DAG, dl, isSigned, LHS, RHS, BottomHalf, TopHalf);
11318   }
11319 
11320   Result = BottomHalf;
11321   if (isSigned) {
11322     SDValue ShiftAmt = DAG.getShiftAmountConstant(
11323         VT.getScalarSizeInBits() - 1, BottomHalf.getValueType(), dl);
11324     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
11325     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
11326   } else {
11327     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
11328                             DAG.getConstant(0, dl, VT), ISD::SETNE);
11329   }
11330 
11331   // Truncate the result if SetCC returns a larger type than needed.
11332   EVT RType = Node->getValueType(1);
11333   if (RType.bitsLT(Overflow.getValueType()))
11334     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
11335 
11336   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
11337          "Unexpected result type for S/UMULO legalization");
11338   return true;
11339 }
11340 
11341 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
11342   SDLoc dl(Node);
11343   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
11344   SDValue Op = Node->getOperand(0);
11345   EVT VT = Op.getValueType();
11346 
11347   if (VT.isScalableVector())
11348     report_fatal_error(
11349         "Expanding reductions for scalable vectors is undefined.");
11350 
11351   // Try to use a shuffle reduction for power of two vectors.
11352   if (VT.isPow2VectorType()) {
11353     while (VT.getVectorNumElements() > 1) {
11354       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
11355       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
11356         break;
11357 
11358       SDValue Lo, Hi;
11359       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
11360       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi, Node->getFlags());
11361       VT = HalfVT;
11362     }
11363   }
11364 
11365   EVT EltVT = VT.getVectorElementType();
11366   unsigned NumElts = VT.getVectorNumElements();
11367 
11368   SmallVector<SDValue, 8> Ops;
11369   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
11370 
11371   SDValue Res = Ops[0];
11372   for (unsigned i = 1; i < NumElts; i++)
11373     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
11374 
11375   // Result type may be wider than element type.
11376   if (EltVT != Node->getValueType(0))
11377     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
11378   return Res;
11379 }
11380 
11381 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
11382   SDLoc dl(Node);
11383   SDValue AccOp = Node->getOperand(0);
11384   SDValue VecOp = Node->getOperand(1);
11385   SDNodeFlags Flags = Node->getFlags();
11386 
11387   EVT VT = VecOp.getValueType();
11388   EVT EltVT = VT.getVectorElementType();
11389 
11390   if (VT.isScalableVector())
11391     report_fatal_error(
11392         "Expanding reductions for scalable vectors is undefined.");
11393 
11394   unsigned NumElts = VT.getVectorNumElements();
11395 
11396   SmallVector<SDValue, 8> Ops;
11397   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
11398 
11399   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
11400 
11401   SDValue Res = AccOp;
11402   for (unsigned i = 0; i < NumElts; i++)
11403     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
11404 
11405   return Res;
11406 }
11407 
11408 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
11409                                SelectionDAG &DAG) const {
11410   EVT VT = Node->getValueType(0);
11411   SDLoc dl(Node);
11412   bool isSigned = Node->getOpcode() == ISD::SREM;
11413   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
11414   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
11415   SDValue Dividend = Node->getOperand(0);
11416   SDValue Divisor = Node->getOperand(1);
11417   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
11418     SDVTList VTs = DAG.getVTList(VT, VT);
11419     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
11420     return true;
11421   }
11422   if (isOperationLegalOrCustom(DivOpc, VT)) {
11423     // X % Y -> X-X/Y*Y
11424     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
11425     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
11426     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
11427     return true;
11428   }
11429   return false;
11430 }
11431 
11432 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
11433                                             SelectionDAG &DAG) const {
11434   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
11435   SDLoc dl(SDValue(Node, 0));
11436   SDValue Src = Node->getOperand(0);
11437 
11438   // DstVT is the result type, while SatVT is the size to which we saturate
11439   EVT SrcVT = Src.getValueType();
11440   EVT DstVT = Node->getValueType(0);
11441 
11442   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
11443   unsigned SatWidth = SatVT.getScalarSizeInBits();
11444   unsigned DstWidth = DstVT.getScalarSizeInBits();
11445   assert(SatWidth <= DstWidth &&
11446          "Expected saturation width smaller than result width");
11447 
11448   // Determine minimum and maximum integer values and their corresponding
11449   // floating-point values.
11450   APInt MinInt, MaxInt;
11451   if (IsSigned) {
11452     MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth);
11453     MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth);
11454   } else {
11455     MinInt = APInt::getMinValue(SatWidth).zext(DstWidth);
11456     MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth);
11457   }
11458 
11459   // We cannot risk emitting FP_TO_XINT nodes with a source VT of [b]f16, as
11460   // libcall emission cannot handle this. Large result types will fail.
11461   if (SrcVT == MVT::f16 || SrcVT == MVT::bf16) {
11462     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
11463     SrcVT = Src.getValueType();
11464   }
11465 
11466   const fltSemantics &Sem = SrcVT.getFltSemantics();
11467   APFloat MinFloat(Sem);
11468   APFloat MaxFloat(Sem);
11469 
11470   APFloat::opStatus MinStatus =
11471       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
11472   APFloat::opStatus MaxStatus =
11473       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
11474   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
11475                              !(MaxStatus & APFloat::opStatus::opInexact);
11476 
11477   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
11478   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
11479 
11480   // If the integer bounds are exactly representable as floats and min/max are
11481   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
11482   // of comparisons and selects.
11483   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
11484                      isOperationLegal(ISD::FMAXNUM, SrcVT);
11485   if (AreExactFloatBounds && MinMaxLegal) {
11486     SDValue Clamped = Src;
11487 
11488     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
11489     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
11490     // Clamp by MaxFloat from above. NaN cannot occur.
11491     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
11492     // Convert clamped value to integer.
11493     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
11494                                   dl, DstVT, Clamped);
11495 
11496     // In the unsigned case we're done, because we mapped NaN to MinFloat,
11497     // which will cast to zero.
11498     if (!IsSigned)
11499       return FpToInt;
11500 
11501     // Otherwise, select 0 if Src is NaN.
11502     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
11503     EVT SetCCVT =
11504         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
11505     SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO);
11506     return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, FpToInt);
11507   }
11508 
11509   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
11510   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
11511 
11512   // Result of direct conversion. The assumption here is that the operation is
11513   // non-trapping and it's fine to apply it to an out-of-range value if we
11514   // select it away later.
11515   SDValue FpToInt =
11516       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
11517 
11518   SDValue Select = FpToInt;
11519 
11520   EVT SetCCVT =
11521       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
11522 
11523   // If Src ULT MinFloat, select MinInt. In particular, this also selects
11524   // MinInt if Src is NaN.
11525   SDValue ULT = DAG.getSetCC(dl, SetCCVT, Src, MinFloatNode, ISD::SETULT);
11526   Select = DAG.getSelect(dl, DstVT, ULT, MinIntNode, Select);
11527   // If Src OGT MaxFloat, select MaxInt.
11528   SDValue OGT = DAG.getSetCC(dl, SetCCVT, Src, MaxFloatNode, ISD::SETOGT);
11529   Select = DAG.getSelect(dl, DstVT, OGT, MaxIntNode, Select);
11530 
11531   // In the unsigned case we are done, because we mapped NaN to MinInt, which
11532   // is already zero.
11533   if (!IsSigned)
11534     return Select;
11535 
11536   // Otherwise, select 0 if Src is NaN.
11537   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
11538   SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO);
11539   return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, Select);
11540 }
11541 
11542 SDValue TargetLowering::expandRoundInexactToOdd(EVT ResultVT, SDValue Op,
11543                                                 const SDLoc &dl,
11544                                                 SelectionDAG &DAG) const {
11545   EVT OperandVT = Op.getValueType();
11546   if (OperandVT.getScalarType() == ResultVT.getScalarType())
11547     return Op;
11548   EVT ResultIntVT = ResultVT.changeTypeToInteger();
11549   // We are rounding binary64/binary128 -> binary32 -> bfloat16. This
11550   // can induce double-rounding which may alter the results. We can
11551   // correct for this using a trick explained in: Boldo, Sylvie, and
11552   // Guillaume Melquiond. "When double rounding is odd." 17th IMACS
11553   // World Congress. 2005.
11554   unsigned BitSize = OperandVT.getScalarSizeInBits();
11555   EVT WideIntVT = OperandVT.changeTypeToInteger();
11556   SDValue OpAsInt = DAG.getBitcast(WideIntVT, Op);
11557   SDValue SignBit =
11558       DAG.getNode(ISD::AND, dl, WideIntVT, OpAsInt,
11559                   DAG.getConstant(APInt::getSignMask(BitSize), dl, WideIntVT));
11560   SDValue AbsWide;
11561   if (isOperationLegalOrCustom(ISD::FABS, OperandVT)) {
11562     AbsWide = DAG.getNode(ISD::FABS, dl, OperandVT, Op);
11563   } else {
11564     SDValue ClearedSign = DAG.getNode(
11565         ISD::AND, dl, WideIntVT, OpAsInt,
11566         DAG.getConstant(APInt::getSignedMaxValue(BitSize), dl, WideIntVT));
11567     AbsWide = DAG.getBitcast(OperandVT, ClearedSign);
11568   }
11569   SDValue AbsNarrow = DAG.getFPExtendOrRound(AbsWide, dl, ResultVT);
11570   SDValue AbsNarrowAsWide = DAG.getFPExtendOrRound(AbsNarrow, dl, OperandVT);
11571 
11572   // We can keep the narrow value as-is if narrowing was exact (no
11573   // rounding error), the wide value was NaN (the narrow value is also
11574   // NaN and should be preserved) or if we rounded to the odd value.
11575   SDValue NarrowBits = DAG.getNode(ISD::BITCAST, dl, ResultIntVT, AbsNarrow);
11576   SDValue One = DAG.getConstant(1, dl, ResultIntVT);
11577   SDValue NegativeOne = DAG.getAllOnesConstant(dl, ResultIntVT);
11578   SDValue And = DAG.getNode(ISD::AND, dl, ResultIntVT, NarrowBits, One);
11579   EVT ResultIntVTCCVT = getSetCCResultType(
11580       DAG.getDataLayout(), *DAG.getContext(), And.getValueType());
11581   SDValue Zero = DAG.getConstant(0, dl, ResultIntVT);
11582   // The result is already odd so we don't need to do anything.
11583   SDValue AlreadyOdd = DAG.getSetCC(dl, ResultIntVTCCVT, And, Zero, ISD::SETNE);
11584 
11585   EVT WideSetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
11586                                        AbsWide.getValueType());
11587   // We keep results which are exact, odd or NaN.
11588   SDValue KeepNarrow =
11589       DAG.getSetCC(dl, WideSetCCVT, AbsWide, AbsNarrowAsWide, ISD::SETUEQ);
11590   KeepNarrow = DAG.getNode(ISD::OR, dl, WideSetCCVT, KeepNarrow, AlreadyOdd);
11591   // We morally performed a round-down if AbsNarrow is smaller than
11592   // AbsWide.
11593   SDValue NarrowIsRd =
11594       DAG.getSetCC(dl, WideSetCCVT, AbsWide, AbsNarrowAsWide, ISD::SETOGT);
11595   // If the narrow value is odd or exact, pick it.
11596   // Otherwise, narrow is even and corresponds to either the rounded-up
11597   // or rounded-down value. If narrow is the rounded-down value, we want
11598   // the rounded-up value as it will be odd.
11599   SDValue Adjust = DAG.getSelect(dl, ResultIntVT, NarrowIsRd, One, NegativeOne);
11600   SDValue Adjusted = DAG.getNode(ISD::ADD, dl, ResultIntVT, NarrowBits, Adjust);
11601   Op = DAG.getSelect(dl, ResultIntVT, KeepNarrow, NarrowBits, Adjusted);
11602   int ShiftAmount = BitSize - ResultVT.getScalarSizeInBits();
11603   SDValue ShiftCnst = DAG.getShiftAmountConstant(ShiftAmount, WideIntVT, dl);
11604   SignBit = DAG.getNode(ISD::SRL, dl, WideIntVT, SignBit, ShiftCnst);
11605   SignBit = DAG.getNode(ISD::TRUNCATE, dl, ResultIntVT, SignBit);
11606   Op = DAG.getNode(ISD::OR, dl, ResultIntVT, Op, SignBit);
11607   return DAG.getNode(ISD::BITCAST, dl, ResultVT, Op);
11608 }
11609 
11610 SDValue TargetLowering::expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const {
11611   assert(Node->getOpcode() == ISD::FP_ROUND && "Unexpected opcode!");
11612   SDValue Op = Node->getOperand(0);
11613   EVT VT = Node->getValueType(0);
11614   SDLoc dl(Node);
11615   if (VT.getScalarType() == MVT::bf16) {
11616     if (Node->getConstantOperandVal(1) == 1) {
11617       return DAG.getNode(ISD::FP_TO_BF16, dl, VT, Node->getOperand(0));
11618     }
11619     EVT OperandVT = Op.getValueType();
11620     SDValue IsNaN = DAG.getSetCC(
11621         dl,
11622         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), OperandVT),
11623         Op, Op, ISD::SETUO);
11624 
11625     // We are rounding binary64/binary128 -> binary32 -> bfloat16. This
11626     // can induce double-rounding which may alter the results. We can
11627     // correct for this using a trick explained in: Boldo, Sylvie, and
11628     // Guillaume Melquiond. "When double rounding is odd." 17th IMACS
11629     // World Congress. 2005.
11630     EVT F32 = VT.isVector() ? VT.changeVectorElementType(MVT::f32) : MVT::f32;
11631     EVT I32 = F32.changeTypeToInteger();
11632     Op = expandRoundInexactToOdd(F32, Op, dl, DAG);
11633     Op = DAG.getNode(ISD::BITCAST, dl, I32, Op);
11634 
11635     // Conversions should set NaN's quiet bit. This also prevents NaNs from
11636     // turning into infinities.
11637     SDValue NaN =
11638         DAG.getNode(ISD::OR, dl, I32, Op, DAG.getConstant(0x400000, dl, I32));
11639 
11640     // Factor in the contribution of the low 16 bits.
11641     SDValue One = DAG.getConstant(1, dl, I32);
11642     SDValue Lsb = DAG.getNode(ISD::SRL, dl, I32, Op,
11643                               DAG.getShiftAmountConstant(16, I32, dl));
11644     Lsb = DAG.getNode(ISD::AND, dl, I32, Lsb, One);
11645     SDValue RoundingBias =
11646         DAG.getNode(ISD::ADD, dl, I32, DAG.getConstant(0x7fff, dl, I32), Lsb);
11647     SDValue Add = DAG.getNode(ISD::ADD, dl, I32, Op, RoundingBias);
11648 
11649     // Don't round if we had a NaN, we don't want to turn 0x7fffffff into
11650     // 0x80000000.
11651     Op = DAG.getSelect(dl, I32, IsNaN, NaN, Add);
11652 
11653     // Now that we have rounded, shift the bits into position.
11654     Op = DAG.getNode(ISD::SRL, dl, I32, Op,
11655                      DAG.getShiftAmountConstant(16, I32, dl));
11656     Op = DAG.getNode(ISD::BITCAST, dl, I32, Op);
11657     EVT I16 = I32.isVector() ? I32.changeVectorElementType(MVT::i16) : MVT::i16;
11658     Op = DAG.getNode(ISD::TRUNCATE, dl, I16, Op);
11659     return DAG.getNode(ISD::BITCAST, dl, VT, Op);
11660   }
11661   return SDValue();
11662 }
11663 
11664 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
11665                                            SelectionDAG &DAG) const {
11666   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
11667   assert(Node->getValueType(0).isScalableVector() &&
11668          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
11669 
11670   EVT VT = Node->getValueType(0);
11671   SDValue V1 = Node->getOperand(0);
11672   SDValue V2 = Node->getOperand(1);
11673   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
11674   SDLoc DL(Node);
11675 
11676   // Expand through memory thusly:
11677   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
11678   //  Store V1, Ptr
11679   //  Store V2, Ptr + sizeof(V1)
11680   //  If (Imm < 0)
11681   //    TrailingElts = -Imm
11682   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
11683   //  else
11684   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
11685   //  Res = Load Ptr
11686 
11687   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
11688 
11689   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
11690                                VT.getVectorElementCount() * 2);
11691   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
11692   EVT PtrVT = StackPtr.getValueType();
11693   auto &MF = DAG.getMachineFunction();
11694   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
11695   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
11696 
11697   // Store the lo part of CONCAT_VECTORS(V1, V2)
11698   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
11699   // Store the hi part of CONCAT_VECTORS(V1, V2)
11700   SDValue OffsetToV2 = DAG.getVScale(
11701       DL, PtrVT,
11702       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinValue()));
11703   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
11704   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
11705 
11706   if (Imm >= 0) {
11707     // Load back the required element. getVectorElementPointer takes care of
11708     // clamping the index if it's out-of-bounds.
11709     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
11710     // Load the spliced result
11711     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
11712                        MachinePointerInfo::getUnknownStack(MF));
11713   }
11714 
11715   uint64_t TrailingElts = -Imm;
11716 
11717   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
11718   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
11719   SDValue TrailingBytes =
11720       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
11721 
11722   if (TrailingElts > VT.getVectorMinNumElements()) {
11723     SDValue VLBytes =
11724         DAG.getVScale(DL, PtrVT,
11725                       APInt(PtrVT.getFixedSizeInBits(),
11726                             VT.getStoreSize().getKnownMinValue()));
11727     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
11728   }
11729 
11730   // Calculate the start address of the spliced result.
11731   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
11732 
11733   // Load the spliced result
11734   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
11735                      MachinePointerInfo::getUnknownStack(MF));
11736 }
11737 
11738 SDValue TargetLowering::expandVECTOR_COMPRESS(SDNode *Node,
11739                                               SelectionDAG &DAG) const {
11740   SDLoc DL(Node);
11741   SDValue Vec = Node->getOperand(0);
11742   SDValue Mask = Node->getOperand(1);
11743   SDValue Passthru = Node->getOperand(2);
11744 
11745   EVT VecVT = Vec.getValueType();
11746   EVT ScalarVT = VecVT.getScalarType();
11747   EVT MaskVT = Mask.getValueType();
11748   EVT MaskScalarVT = MaskVT.getScalarType();
11749 
11750   // Needs to be handled by targets that have scalable vector types.
11751   if (VecVT.isScalableVector())
11752     report_fatal_error("Cannot expand masked_compress for scalable vectors.");
11753 
11754   SDValue StackPtr = DAG.CreateStackTemporary(
11755       VecVT.getStoreSize(), DAG.getReducedAlign(VecVT, /*UseABI=*/false));
11756   int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
11757   MachinePointerInfo PtrInfo =
11758       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
11759 
11760   MVT PositionVT = getVectorIdxTy(DAG.getDataLayout());
11761   SDValue Chain = DAG.getEntryNode();
11762   SDValue OutPos = DAG.getConstant(0, DL, PositionVT);
11763 
11764   bool HasPassthru = !Passthru.isUndef();
11765 
11766   // If we have a passthru vector, store it on the stack, overwrite the matching
11767   // positions and then re-write the last element that was potentially
11768   // overwritten even though mask[i] = false.
11769   if (HasPassthru)
11770     Chain = DAG.getStore(Chain, DL, Passthru, StackPtr, PtrInfo);
11771 
11772   SDValue LastWriteVal;
11773   APInt PassthruSplatVal;
11774   bool IsSplatPassthru =
11775       ISD::isConstantSplatVector(Passthru.getNode(), PassthruSplatVal);
11776 
11777   if (IsSplatPassthru) {
11778     // As we do not know which position we wrote to last, we cannot simply
11779     // access that index from the passthru vector. So we first check if passthru
11780     // is a splat vector, to use any element ...
11781     LastWriteVal = DAG.getConstant(PassthruSplatVal, DL, ScalarVT);
11782   } else if (HasPassthru) {
11783     // ... if it is not a splat vector, we need to get the passthru value at
11784     // position = popcount(mask) and re-load it from the stack before it is
11785     // overwritten in the loop below.
11786     EVT PopcountVT = ScalarVT.changeTypeToInteger();
11787     SDValue Popcount = DAG.getNode(
11788         ISD::TRUNCATE, DL, MaskVT.changeVectorElementType(MVT::i1), Mask);
11789     Popcount =
11790         DAG.getNode(ISD::ZERO_EXTEND, DL,
11791                     MaskVT.changeVectorElementType(PopcountVT), Popcount);
11792     Popcount = DAG.getNode(ISD::VECREDUCE_ADD, DL, PopcountVT, Popcount);
11793     SDValue LastElmtPtr =
11794         getVectorElementPointer(DAG, StackPtr, VecVT, Popcount);
11795     LastWriteVal = DAG.getLoad(
11796         ScalarVT, DL, Chain, LastElmtPtr,
11797         MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
11798     Chain = LastWriteVal.getValue(1);
11799   }
11800 
11801   unsigned NumElms = VecVT.getVectorNumElements();
11802   for (unsigned I = 0; I < NumElms; I++) {
11803     SDValue Idx = DAG.getVectorIdxConstant(I, DL);
11804 
11805     SDValue ValI = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, Vec, Idx);
11806     SDValue OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos);
11807     Chain = DAG.getStore(
11808         Chain, DL, ValI, OutPtr,
11809         MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
11810 
11811     // Get the mask value and add it to the current output position. This
11812     // either increments by 1 if MaskI is true or adds 0 otherwise.
11813     // Freeze in case we have poison/undef mask entries.
11814     SDValue MaskI = DAG.getFreeze(
11815         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskScalarVT, Mask, Idx));
11816     MaskI = DAG.getFreeze(MaskI);
11817     MaskI = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, MaskI);
11818     MaskI = DAG.getNode(ISD::ZERO_EXTEND, DL, PositionVT, MaskI);
11819     OutPos = DAG.getNode(ISD::ADD, DL, PositionVT, OutPos, MaskI);
11820 
11821     if (HasPassthru && I == NumElms - 1) {
11822       SDValue EndOfVector =
11823           DAG.getConstant(VecVT.getVectorNumElements() - 1, DL, PositionVT);
11824       SDValue AllLanesSelected =
11825           DAG.getSetCC(DL, MVT::i1, OutPos, EndOfVector, ISD::CondCode::SETUGT);
11826       OutPos = DAG.getNode(ISD::UMIN, DL, PositionVT, OutPos, EndOfVector);
11827       OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos);
11828 
11829       // Re-write the last ValI if all lanes were selected. Otherwise,
11830       // overwrite the last write it with the passthru value.
11831       LastWriteVal = DAG.getSelect(DL, ScalarVT, AllLanesSelected, ValI,
11832                                    LastWriteVal, SDNodeFlags::Unpredictable);
11833       Chain = DAG.getStore(
11834           Chain, DL, LastWriteVal, OutPtr,
11835           MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
11836     }
11837   }
11838 
11839   return DAG.getLoad(VecVT, DL, Chain, StackPtr, PtrInfo);
11840 }
11841 
11842 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
11843                                            SDValue &LHS, SDValue &RHS,
11844                                            SDValue &CC, SDValue Mask,
11845                                            SDValue EVL, bool &NeedInvert,
11846                                            const SDLoc &dl, SDValue &Chain,
11847                                            bool IsSignaling) const {
11848   MVT OpVT = LHS.getSimpleValueType();
11849   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
11850   NeedInvert = false;
11851   assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset");
11852   bool IsNonVP = !EVL;
11853   switch (getCondCodeAction(CCCode, OpVT)) {
11854   default:
11855     llvm_unreachable("Unknown condition code action!");
11856   case TargetLowering::Legal:
11857     // Nothing to do.
11858     break;
11859   case TargetLowering::Expand: {
11860     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
11861     if (isCondCodeLegalOrCustom(InvCC, OpVT)) {
11862       std::swap(LHS, RHS);
11863       CC = DAG.getCondCode(InvCC);
11864       return true;
11865     }
11866     // Swapping operands didn't work. Try inverting the condition.
11867     bool NeedSwap = false;
11868     InvCC = getSetCCInverse(CCCode, OpVT);
11869     if (!isCondCodeLegalOrCustom(InvCC, OpVT)) {
11870       // If inverting the condition is not enough, try swapping operands
11871       // on top of it.
11872       InvCC = ISD::getSetCCSwappedOperands(InvCC);
11873       NeedSwap = true;
11874     }
11875     if (isCondCodeLegalOrCustom(InvCC, OpVT)) {
11876       CC = DAG.getCondCode(InvCC);
11877       NeedInvert = true;
11878       if (NeedSwap)
11879         std::swap(LHS, RHS);
11880       return true;
11881     }
11882 
11883     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
11884     unsigned Opc = 0;
11885     switch (CCCode) {
11886     default:
11887       llvm_unreachable("Don't know how to expand this condition!");
11888     case ISD::SETUO:
11889       if (isCondCodeLegal(ISD::SETUNE, OpVT)) {
11890         CC1 = ISD::SETUNE;
11891         CC2 = ISD::SETUNE;
11892         Opc = ISD::OR;
11893         break;
11894       }
11895       assert(isCondCodeLegal(ISD::SETOEQ, OpVT) &&
11896              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
11897       NeedInvert = true;
11898       [[fallthrough]];
11899     case ISD::SETO:
11900       assert(isCondCodeLegal(ISD::SETOEQ, OpVT) &&
11901              "If SETO is expanded, SETOEQ must be legal!");
11902       CC1 = ISD::SETOEQ;
11903       CC2 = ISD::SETOEQ;
11904       Opc = ISD::AND;
11905       break;
11906     case ISD::SETONE:
11907     case ISD::SETUEQ:
11908       // If the SETUO or SETO CC isn't legal, we might be able to use
11909       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
11910       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
11911       // the operands.
11912       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
11913       if (!isCondCodeLegal(CC2, OpVT) && (isCondCodeLegal(ISD::SETOGT, OpVT) ||
11914                                           isCondCodeLegal(ISD::SETOLT, OpVT))) {
11915         CC1 = ISD::SETOGT;
11916         CC2 = ISD::SETOLT;
11917         Opc = ISD::OR;
11918         NeedInvert = ((unsigned)CCCode & 0x8U);
11919         break;
11920       }
11921       [[fallthrough]];
11922     case ISD::SETOEQ:
11923     case ISD::SETOGT:
11924     case ISD::SETOGE:
11925     case ISD::SETOLT:
11926     case ISD::SETOLE:
11927     case ISD::SETUNE:
11928     case ISD::SETUGT:
11929     case ISD::SETUGE:
11930     case ISD::SETULT:
11931     case ISD::SETULE:
11932       // If we are floating point, assign and break, otherwise fall through.
11933       if (!OpVT.isInteger()) {
11934         // We can use the 4th bit to tell if we are the unordered
11935         // or ordered version of the opcode.
11936         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
11937         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
11938         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
11939         break;
11940       }
11941       // Fallthrough if we are unsigned integer.
11942       [[fallthrough]];
11943     case ISD::SETLE:
11944     case ISD::SETGT:
11945     case ISD::SETGE:
11946     case ISD::SETLT:
11947     case ISD::SETNE:
11948     case ISD::SETEQ:
11949       // If all combinations of inverting the condition and swapping operands
11950       // didn't work then we have no means to expand the condition.
11951       llvm_unreachable("Don't know how to expand this condition!");
11952     }
11953 
11954     SDValue SetCC1, SetCC2;
11955     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
11956       // If we aren't the ordered or unorder operation,
11957       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
11958       if (IsNonVP) {
11959         SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
11960         SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
11961       } else {
11962         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
11963         SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
11964       }
11965     } else {
11966       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
11967       if (IsNonVP) {
11968         SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
11969         SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
11970       } else {
11971         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
11972         SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
11973       }
11974     }
11975     if (Chain)
11976       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
11977                           SetCC2.getValue(1));
11978     if (IsNonVP)
11979       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
11980     else {
11981       // Transform the binary opcode to the VP equivalent.
11982       assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode");
11983       Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND;
11984       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
11985     }
11986     RHS = SDValue();
11987     CC = SDValue();
11988     return true;
11989   }
11990   }
11991   return false;
11992 }
11993 
11994 SDValue TargetLowering::expandVectorNaryOpBySplitting(SDNode *Node,
11995                                                       SelectionDAG &DAG) const {
11996   EVT VT = Node->getValueType(0);
11997   // Despite its documentation, GetSplitDestVTs will assert if VT cannot be
11998   // split into two equal parts.
11999   if (!VT.isVector() || !VT.getVectorElementCount().isKnownMultipleOf(2))
12000     return SDValue();
12001 
12002   // Restrict expansion to cases where both parts can be concatenated.
12003   auto [LoVT, HiVT] = DAG.GetSplitDestVTs(VT);
12004   if (LoVT != HiVT || !isTypeLegal(LoVT))
12005     return SDValue();
12006 
12007   SDLoc DL(Node);
12008   unsigned Opcode = Node->getOpcode();
12009 
12010   // Don't expand if the result is likely to be unrolled anyway.
12011   if (!isOperationLegalOrCustomOrPromote(Opcode, LoVT))
12012     return SDValue();
12013 
12014   SmallVector<SDValue, 4> LoOps, HiOps;
12015   for (const SDValue &V : Node->op_values()) {
12016     auto [Lo, Hi] = DAG.SplitVector(V, DL, LoVT, HiVT);
12017     LoOps.push_back(Lo);
12018     HiOps.push_back(Hi);
12019   }
12020 
12021   SDValue SplitOpLo = DAG.getNode(Opcode, DL, LoVT, LoOps);
12022   SDValue SplitOpHi = DAG.getNode(Opcode, DL, HiVT, HiOps);
12023   return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, SplitOpLo, SplitOpHi);
12024 }
12025