1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/Analysis/VectorUtils.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/CodeGenCommonISel.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/CodeGen/TargetRegisterInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCExpr.h" 30 #include "llvm/Support/DivisionByConstantInfo.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/KnownBits.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function &F = DAG.getMachineFunction().getFunction(); 55 56 // First, check if tail calls have been disabled in this function. 57 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 58 return false; 59 60 // Conservatively require the attributes of the call to match those of 61 // the return. Ignore following attributes because they don't affect the 62 // call sequence. 63 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs()); 64 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 65 Attribute::DereferenceableOrNull, Attribute::NoAlias, 66 Attribute::NonNull, Attribute::NoUndef, 67 Attribute::Range, Attribute::NoFPClass}) 68 CallerAttrs.removeAttribute(Attr); 69 70 if (CallerAttrs.hasAttributes()) 71 return false; 72 73 // It's not safe to eliminate the sign / zero extension of the return value. 74 if (CallerAttrs.contains(Attribute::ZExt) || 75 CallerAttrs.contains(Attribute::SExt)) 76 return false; 77 78 // Check if the only use is a function return node. 79 return isUsedByReturnOnly(Node, Chain); 80 } 81 82 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 83 const uint32_t *CallerPreservedMask, 84 const SmallVectorImpl<CCValAssign> &ArgLocs, 85 const SmallVectorImpl<SDValue> &OutVals) const { 86 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 87 const CCValAssign &ArgLoc = ArgLocs[I]; 88 if (!ArgLoc.isRegLoc()) 89 continue; 90 MCRegister Reg = ArgLoc.getLocReg(); 91 // Only look at callee saved registers. 92 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 93 continue; 94 // Check that we pass the value used for the caller. 95 // (We look for a CopyFromReg reading a virtual register that is used 96 // for the function live-in value of register Reg) 97 SDValue Value = OutVals[I]; 98 if (Value->getOpcode() == ISD::AssertZext) 99 Value = Value.getOperand(0); 100 if (Value->getOpcode() != ISD::CopyFromReg) 101 return false; 102 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 103 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 104 return false; 105 } 106 return true; 107 } 108 109 /// Set CallLoweringInfo attribute flags based on a call instruction 110 /// and called function attributes. 111 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 112 unsigned ArgIdx) { 113 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 114 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 115 IsNoExt = Call->paramHasAttr(ArgIdx, Attribute::NoExt); 116 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 117 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 118 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 119 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 120 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 121 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 122 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 123 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 124 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 125 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 126 Alignment = Call->getParamStackAlign(ArgIdx); 127 IndirectType = nullptr; 128 assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 && 129 "multiple ABI attributes?"); 130 if (IsByVal) { 131 IndirectType = Call->getParamByValType(ArgIdx); 132 if (!Alignment) 133 Alignment = Call->getParamAlign(ArgIdx); 134 } 135 if (IsPreallocated) 136 IndirectType = Call->getParamPreallocatedType(ArgIdx); 137 if (IsInAlloca) 138 IndirectType = Call->getParamInAllocaType(ArgIdx); 139 if (IsSRet) 140 IndirectType = Call->getParamStructRetType(ArgIdx); 141 } 142 143 /// Generate a libcall taking the given operands as arguments and returning a 144 /// result of type RetVT. 145 std::pair<SDValue, SDValue> 146 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 147 ArrayRef<SDValue> Ops, 148 MakeLibCallOptions CallOptions, 149 const SDLoc &dl, 150 SDValue InChain) const { 151 if (!InChain) 152 InChain = DAG.getEntryNode(); 153 154 TargetLowering::ArgListTy Args; 155 Args.reserve(Ops.size()); 156 157 TargetLowering::ArgListEntry Entry; 158 for (unsigned i = 0; i < Ops.size(); ++i) { 159 SDValue NewOp = Ops[i]; 160 Entry.Node = NewOp; 161 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 162 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 163 CallOptions.IsSigned); 164 Entry.IsZExt = !Entry.IsSExt; 165 166 if (CallOptions.IsSoften && 167 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 168 Entry.IsSExt = Entry.IsZExt = false; 169 } 170 Args.push_back(Entry); 171 } 172 173 if (LC == RTLIB::UNKNOWN_LIBCALL) 174 report_fatal_error("Unsupported library call operation!"); 175 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 176 getPointerTy(DAG.getDataLayout())); 177 178 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 179 TargetLowering::CallLoweringInfo CLI(DAG); 180 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSigned); 181 bool zeroExtend = !signExtend; 182 183 if (CallOptions.IsSoften && 184 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 185 signExtend = zeroExtend = false; 186 } 187 188 CLI.setDebugLoc(dl) 189 .setChain(InChain) 190 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 191 .setNoReturn(CallOptions.DoesNotReturn) 192 .setDiscardResult(!CallOptions.IsReturnValueUsed) 193 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 194 .setSExtResult(signExtend) 195 .setZExtResult(zeroExtend); 196 return LowerCallTo(CLI); 197 } 198 199 bool TargetLowering::findOptimalMemOpLowering( 200 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 201 unsigned SrcAS, const AttributeList &FuncAttributes) const { 202 if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() && 203 Op.getSrcAlign() < Op.getDstAlign()) 204 return false; 205 206 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 207 208 if (VT == MVT::Other) { 209 // Use the largest integer type whose alignment constraints are satisfied. 210 // We only need to check DstAlign here as SrcAlign is always greater or 211 // equal to DstAlign (or zero). 212 VT = MVT::LAST_INTEGER_VALUETYPE; 213 if (Op.isFixedDstAlign()) 214 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 215 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 216 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 217 assert(VT.isInteger()); 218 219 // Find the largest legal integer type. 220 MVT LVT = MVT::LAST_INTEGER_VALUETYPE; 221 while (!isTypeLegal(LVT)) 222 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 223 assert(LVT.isInteger()); 224 225 // If the type we've chosen is larger than the largest legal integer type 226 // then use that instead. 227 if (VT.bitsGT(LVT)) 228 VT = LVT; 229 } 230 231 unsigned NumMemOps = 0; 232 uint64_t Size = Op.size(); 233 while (Size) { 234 unsigned VTSize = VT.getSizeInBits() / 8; 235 while (VTSize > Size) { 236 // For now, only use non-vector load / store's for the left-over pieces. 237 EVT NewVT = VT; 238 unsigned NewVTSize; 239 240 bool Found = false; 241 if (VT.isVector() || VT.isFloatingPoint()) { 242 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 243 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 244 isSafeMemOpType(NewVT.getSimpleVT())) 245 Found = true; 246 else if (NewVT == MVT::i64 && 247 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 248 isSafeMemOpType(MVT::f64)) { 249 // i64 is usually not legal on 32-bit targets, but f64 may be. 250 NewVT = MVT::f64; 251 Found = true; 252 } 253 } 254 255 if (!Found) { 256 do { 257 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 258 if (NewVT == MVT::i8) 259 break; 260 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 261 } 262 NewVTSize = NewVT.getSizeInBits() / 8; 263 264 // If the new VT cannot cover all of the remaining bits, then consider 265 // issuing a (or a pair of) unaligned and overlapping load / store. 266 unsigned Fast; 267 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 268 allowsMisalignedMemoryAccesses( 269 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 270 MachineMemOperand::MONone, &Fast) && 271 Fast) 272 VTSize = Size; 273 else { 274 VT = NewVT; 275 VTSize = NewVTSize; 276 } 277 } 278 279 if (++NumMemOps > Limit) 280 return false; 281 282 MemOps.push_back(VT); 283 Size -= VTSize; 284 } 285 286 return true; 287 } 288 289 /// Soften the operands of a comparison. This code is shared among BR_CC, 290 /// SELECT_CC, and SETCC handlers. 291 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 292 SDValue &NewLHS, SDValue &NewRHS, 293 ISD::CondCode &CCCode, 294 const SDLoc &dl, const SDValue OldLHS, 295 const SDValue OldRHS) const { 296 SDValue Chain; 297 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 298 OldRHS, Chain); 299 } 300 301 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 302 SDValue &NewLHS, SDValue &NewRHS, 303 ISD::CondCode &CCCode, 304 const SDLoc &dl, const SDValue OldLHS, 305 const SDValue OldRHS, 306 SDValue &Chain, 307 bool IsSignaling) const { 308 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 309 // not supporting it. We can update this code when libgcc provides such 310 // functions. 311 312 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 313 && "Unsupported setcc type!"); 314 315 // Expand into one or more soft-fp libcall(s). 316 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 317 bool ShouldInvertCC = false; 318 switch (CCCode) { 319 case ISD::SETEQ: 320 case ISD::SETOEQ: 321 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 322 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 323 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 324 break; 325 case ISD::SETNE: 326 case ISD::SETUNE: 327 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 328 (VT == MVT::f64) ? RTLIB::UNE_F64 : 329 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 330 break; 331 case ISD::SETGE: 332 case ISD::SETOGE: 333 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 334 (VT == MVT::f64) ? RTLIB::OGE_F64 : 335 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 336 break; 337 case ISD::SETLT: 338 case ISD::SETOLT: 339 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 340 (VT == MVT::f64) ? RTLIB::OLT_F64 : 341 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 342 break; 343 case ISD::SETLE: 344 case ISD::SETOLE: 345 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 346 (VT == MVT::f64) ? RTLIB::OLE_F64 : 347 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 348 break; 349 case ISD::SETGT: 350 case ISD::SETOGT: 351 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 352 (VT == MVT::f64) ? RTLIB::OGT_F64 : 353 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 354 break; 355 case ISD::SETO: 356 ShouldInvertCC = true; 357 [[fallthrough]]; 358 case ISD::SETUO: 359 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 360 (VT == MVT::f64) ? RTLIB::UO_F64 : 361 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 362 break; 363 case ISD::SETONE: 364 // SETONE = O && UNE 365 ShouldInvertCC = true; 366 [[fallthrough]]; 367 case ISD::SETUEQ: 368 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 369 (VT == MVT::f64) ? RTLIB::UO_F64 : 370 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 371 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 372 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 373 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 374 break; 375 default: 376 // Invert CC for unordered comparisons 377 ShouldInvertCC = true; 378 switch (CCCode) { 379 case ISD::SETULT: 380 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 381 (VT == MVT::f64) ? RTLIB::OGE_F64 : 382 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 383 break; 384 case ISD::SETULE: 385 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 386 (VT == MVT::f64) ? RTLIB::OGT_F64 : 387 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 388 break; 389 case ISD::SETUGT: 390 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 391 (VT == MVT::f64) ? RTLIB::OLE_F64 : 392 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 393 break; 394 case ISD::SETUGE: 395 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 396 (VT == MVT::f64) ? RTLIB::OLT_F64 : 397 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 398 break; 399 default: llvm_unreachable("Do not know how to soften this setcc!"); 400 } 401 } 402 403 // Use the target specific return value for comparison lib calls. 404 EVT RetVT = getCmpLibcallReturnType(); 405 SDValue Ops[2] = {NewLHS, NewRHS}; 406 TargetLowering::MakeLibCallOptions CallOptions; 407 EVT OpsVT[2] = { OldLHS.getValueType(), 408 OldRHS.getValueType() }; 409 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 410 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 411 NewLHS = Call.first; 412 NewRHS = DAG.getConstant(0, dl, RetVT); 413 414 CCCode = getCmpLibcallCC(LC1); 415 if (ShouldInvertCC) { 416 assert(RetVT.isInteger()); 417 CCCode = getSetCCInverse(CCCode, RetVT); 418 } 419 420 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 421 // Update Chain. 422 Chain = Call.second; 423 } else { 424 EVT SetCCVT = 425 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 426 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 427 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 428 CCCode = getCmpLibcallCC(LC2); 429 if (ShouldInvertCC) 430 CCCode = getSetCCInverse(CCCode, RetVT); 431 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 432 if (Chain) 433 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 434 Call2.second); 435 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 436 Tmp.getValueType(), Tmp, NewLHS); 437 NewRHS = SDValue(); 438 } 439 } 440 441 /// Return the entry encoding for a jump table in the current function. The 442 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 443 unsigned TargetLowering::getJumpTableEncoding() const { 444 // In non-pic modes, just use the address of a block. 445 if (!isPositionIndependent()) 446 return MachineJumpTableInfo::EK_BlockAddress; 447 448 // In PIC mode, if the target supports a GPRel32 directive, use it. 449 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 450 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 451 452 // Otherwise, use a label difference. 453 return MachineJumpTableInfo::EK_LabelDifference32; 454 } 455 456 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 457 SelectionDAG &DAG) const { 458 // If our PIC model is GP relative, use the global offset table as the base. 459 unsigned JTEncoding = getJumpTableEncoding(); 460 461 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 462 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 463 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 464 465 return Table; 466 } 467 468 /// This returns the relocation base for the given PIC jumptable, the same as 469 /// getPICJumpTableRelocBase, but as an MCExpr. 470 const MCExpr * 471 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 472 unsigned JTI,MCContext &Ctx) const{ 473 // The normal PIC reloc base is the label at the start of the jump table. 474 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 475 } 476 477 SDValue TargetLowering::expandIndirectJTBranch(const SDLoc &dl, SDValue Value, 478 SDValue Addr, int JTI, 479 SelectionDAG &DAG) const { 480 SDValue Chain = Value; 481 // Jump table debug info is only needed if CodeView is enabled. 482 if (DAG.getTarget().getTargetTriple().isOSBinFormatCOFF()) { 483 Chain = DAG.getJumpTableDebugInfo(JTI, Chain, dl); 484 } 485 return DAG.getNode(ISD::BRIND, dl, MVT::Other, Chain, Addr); 486 } 487 488 bool 489 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 490 const TargetMachine &TM = getTargetMachine(); 491 const GlobalValue *GV = GA->getGlobal(); 492 493 // If the address is not even local to this DSO we will have to load it from 494 // a got and then add the offset. 495 if (!TM.shouldAssumeDSOLocal(GV)) 496 return false; 497 498 // If the code is position independent we will have to add a base register. 499 if (isPositionIndependent()) 500 return false; 501 502 // Otherwise we can do it. 503 return true; 504 } 505 506 //===----------------------------------------------------------------------===// 507 // Optimization Methods 508 //===----------------------------------------------------------------------===// 509 510 /// If the specified instruction has a constant integer operand and there are 511 /// bits set in that constant that are not demanded, then clear those bits and 512 /// return true. 513 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 514 const APInt &DemandedBits, 515 const APInt &DemandedElts, 516 TargetLoweringOpt &TLO) const { 517 SDLoc DL(Op); 518 unsigned Opcode = Op.getOpcode(); 519 520 // Early-out if we've ended up calling an undemanded node, leave this to 521 // constant folding. 522 if (DemandedBits.isZero() || DemandedElts.isZero()) 523 return false; 524 525 // Do target-specific constant optimization. 526 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 527 return TLO.New.getNode(); 528 529 // FIXME: ISD::SELECT, ISD::SELECT_CC 530 switch (Opcode) { 531 default: 532 break; 533 case ISD::XOR: 534 case ISD::AND: 535 case ISD::OR: { 536 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 537 if (!Op1C || Op1C->isOpaque()) 538 return false; 539 540 // If this is a 'not' op, don't touch it because that's a canonical form. 541 const APInt &C = Op1C->getAPIntValue(); 542 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 543 return false; 544 545 if (!C.isSubsetOf(DemandedBits)) { 546 EVT VT = Op.getValueType(); 547 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 548 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC, 549 Op->getFlags()); 550 return TLO.CombineTo(Op, NewOp); 551 } 552 553 break; 554 } 555 } 556 557 return false; 558 } 559 560 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 561 const APInt &DemandedBits, 562 TargetLoweringOpt &TLO) const { 563 EVT VT = Op.getValueType(); 564 APInt DemandedElts = VT.isVector() 565 ? APInt::getAllOnes(VT.getVectorNumElements()) 566 : APInt(1, 1); 567 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 568 } 569 570 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 571 /// This uses isTruncateFree/isZExtFree and ANY_EXTEND for the widening cast, 572 /// but it could be generalized for targets with other types of implicit 573 /// widening casts. 574 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 575 const APInt &DemandedBits, 576 TargetLoweringOpt &TLO) const { 577 assert(Op.getNumOperands() == 2 && 578 "ShrinkDemandedOp only supports binary operators!"); 579 assert(Op.getNode()->getNumValues() == 1 && 580 "ShrinkDemandedOp only supports nodes with one result!"); 581 582 EVT VT = Op.getValueType(); 583 SelectionDAG &DAG = TLO.DAG; 584 SDLoc dl(Op); 585 586 // Early return, as this function cannot handle vector types. 587 if (VT.isVector()) 588 return false; 589 590 assert(Op.getOperand(0).getValueType().getScalarSizeInBits() == BitWidth && 591 Op.getOperand(1).getValueType().getScalarSizeInBits() == BitWidth && 592 "ShrinkDemandedOp only supports operands that have the same size!"); 593 594 // Don't do this if the node has another user, which may require the 595 // full value. 596 if (!Op.getNode()->hasOneUse()) 597 return false; 598 599 // Search for the smallest integer type with free casts to and from 600 // Op's type. For expedience, just check power-of-2 integer types. 601 unsigned DemandedSize = DemandedBits.getActiveBits(); 602 for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize); 603 SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 604 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 605 if (isTruncateFree(VT, SmallVT) && isZExtFree(SmallVT, VT)) { 606 // We found a type with free casts. 607 608 // If the operation has the 'disjoint' flag, then the 609 // operands on the new node are also disjoint. 610 SDNodeFlags Flags(Op->getFlags().hasDisjoint() ? SDNodeFlags::Disjoint 611 : SDNodeFlags::None); 612 SDValue X = DAG.getNode( 613 Op.getOpcode(), dl, SmallVT, 614 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 615 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)), Flags); 616 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 617 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, VT, X); 618 return TLO.CombineTo(Op, Z); 619 } 620 } 621 return false; 622 } 623 624 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 625 DAGCombinerInfo &DCI) const { 626 SelectionDAG &DAG = DCI.DAG; 627 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 628 !DCI.isBeforeLegalizeOps()); 629 KnownBits Known; 630 631 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 632 if (Simplified) { 633 DCI.AddToWorklist(Op.getNode()); 634 DCI.CommitTargetLoweringOpt(TLO); 635 } 636 return Simplified; 637 } 638 639 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 640 const APInt &DemandedElts, 641 DAGCombinerInfo &DCI) const { 642 SelectionDAG &DAG = DCI.DAG; 643 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 644 !DCI.isBeforeLegalizeOps()); 645 KnownBits Known; 646 647 bool Simplified = 648 SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO); 649 if (Simplified) { 650 DCI.AddToWorklist(Op.getNode()); 651 DCI.CommitTargetLoweringOpt(TLO); 652 } 653 return Simplified; 654 } 655 656 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 657 KnownBits &Known, 658 TargetLoweringOpt &TLO, 659 unsigned Depth, 660 bool AssumeSingleUse) const { 661 EVT VT = Op.getValueType(); 662 663 // Since the number of lanes in a scalable vector is unknown at compile time, 664 // we track one bit which is implicitly broadcast to all lanes. This means 665 // that all lanes in a scalable vector are considered demanded. 666 APInt DemandedElts = VT.isFixedLengthVector() 667 ? APInt::getAllOnes(VT.getVectorNumElements()) 668 : APInt(1, 1); 669 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 670 AssumeSingleUse); 671 } 672 673 // TODO: Under what circumstances can we create nodes? Constant folding? 674 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 675 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 676 SelectionDAG &DAG, unsigned Depth) const { 677 EVT VT = Op.getValueType(); 678 679 // Limit search depth. 680 if (Depth >= SelectionDAG::MaxRecursionDepth) 681 return SDValue(); 682 683 // Ignore UNDEFs. 684 if (Op.isUndef()) 685 return SDValue(); 686 687 // Not demanding any bits/elts from Op. 688 if (DemandedBits == 0 || DemandedElts == 0) 689 return DAG.getUNDEF(VT); 690 691 bool IsLE = DAG.getDataLayout().isLittleEndian(); 692 unsigned NumElts = DemandedElts.getBitWidth(); 693 unsigned BitWidth = DemandedBits.getBitWidth(); 694 KnownBits LHSKnown, RHSKnown; 695 switch (Op.getOpcode()) { 696 case ISD::BITCAST: { 697 if (VT.isScalableVector()) 698 return SDValue(); 699 700 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 701 EVT SrcVT = Src.getValueType(); 702 EVT DstVT = Op.getValueType(); 703 if (SrcVT == DstVT) 704 return Src; 705 706 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 707 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 708 if (NumSrcEltBits == NumDstEltBits) 709 if (SDValue V = SimplifyMultipleUseDemandedBits( 710 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 711 return DAG.getBitcast(DstVT, V); 712 713 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { 714 unsigned Scale = NumDstEltBits / NumSrcEltBits; 715 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 716 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 717 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 718 for (unsigned i = 0; i != Scale; ++i) { 719 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 720 unsigned BitOffset = EltOffset * NumSrcEltBits; 721 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 722 if (!Sub.isZero()) { 723 DemandedSrcBits |= Sub; 724 for (unsigned j = 0; j != NumElts; ++j) 725 if (DemandedElts[j]) 726 DemandedSrcElts.setBit((j * Scale) + i); 727 } 728 } 729 730 if (SDValue V = SimplifyMultipleUseDemandedBits( 731 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 732 return DAG.getBitcast(DstVT, V); 733 } 734 735 // TODO - bigendian once we have test coverage. 736 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { 737 unsigned Scale = NumSrcEltBits / NumDstEltBits; 738 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 739 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 740 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 741 for (unsigned i = 0; i != NumElts; ++i) 742 if (DemandedElts[i]) { 743 unsigned Offset = (i % Scale) * NumDstEltBits; 744 DemandedSrcBits.insertBits(DemandedBits, Offset); 745 DemandedSrcElts.setBit(i / Scale); 746 } 747 748 if (SDValue V = SimplifyMultipleUseDemandedBits( 749 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 750 return DAG.getBitcast(DstVT, V); 751 } 752 753 break; 754 } 755 case ISD::FREEZE: { 756 SDValue N0 = Op.getOperand(0); 757 if (DAG.isGuaranteedNotToBeUndefOrPoison(N0, DemandedElts, 758 /*PoisonOnly=*/false)) 759 return N0; 760 break; 761 } 762 case ISD::AND: { 763 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 764 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 765 766 // If all of the demanded bits are known 1 on one side, return the other. 767 // These bits cannot contribute to the result of the 'and' in this 768 // context. 769 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 770 return Op.getOperand(0); 771 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 772 return Op.getOperand(1); 773 break; 774 } 775 case ISD::OR: { 776 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 777 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 778 779 // If all of the demanded bits are known zero on one side, return the 780 // other. These bits cannot contribute to the result of the 'or' in this 781 // context. 782 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 783 return Op.getOperand(0); 784 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 785 return Op.getOperand(1); 786 break; 787 } 788 case ISD::XOR: { 789 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 790 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 791 792 // If all of the demanded bits are known zero on one side, return the 793 // other. 794 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 795 return Op.getOperand(0); 796 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 797 return Op.getOperand(1); 798 break; 799 } 800 case ISD::ADD: { 801 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 802 if (RHSKnown.isZero()) 803 return Op.getOperand(0); 804 805 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 806 if (LHSKnown.isZero()) 807 return Op.getOperand(1); 808 break; 809 } 810 case ISD::SHL: { 811 // If we are only demanding sign bits then we can use the shift source 812 // directly. 813 if (std::optional<uint64_t> MaxSA = 814 DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) { 815 SDValue Op0 = Op.getOperand(0); 816 unsigned ShAmt = *MaxSA; 817 unsigned NumSignBits = 818 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 819 unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero(); 820 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 821 return Op0; 822 } 823 break; 824 } 825 case ISD::SRL: { 826 // If we are only demanding sign bits then we can use the shift source 827 // directly. 828 if (std::optional<uint64_t> MaxSA = 829 DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) { 830 SDValue Op0 = Op.getOperand(0); 831 unsigned ShAmt = *MaxSA; 832 // Must already be signbits in DemandedBits bounds, and can't demand any 833 // shifted in zeroes. 834 if (DemandedBits.countl_zero() >= ShAmt) { 835 unsigned NumSignBits = 836 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 837 if (DemandedBits.countr_zero() >= (BitWidth - NumSignBits)) 838 return Op0; 839 } 840 } 841 break; 842 } 843 case ISD::SETCC: { 844 SDValue Op0 = Op.getOperand(0); 845 SDValue Op1 = Op.getOperand(1); 846 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 847 // If (1) we only need the sign-bit, (2) the setcc operands are the same 848 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 849 // -1, we may be able to bypass the setcc. 850 if (DemandedBits.isSignMask() && 851 Op0.getScalarValueSizeInBits() == BitWidth && 852 getBooleanContents(Op0.getValueType()) == 853 BooleanContent::ZeroOrNegativeOneBooleanContent) { 854 // If we're testing X < 0, then this compare isn't needed - just use X! 855 // FIXME: We're limiting to integer types here, but this should also work 856 // if we don't care about FP signed-zero. The use of SETLT with FP means 857 // that we don't care about NaNs. 858 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 859 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 860 return Op0; 861 } 862 break; 863 } 864 case ISD::SIGN_EXTEND_INREG: { 865 // If none of the extended bits are demanded, eliminate the sextinreg. 866 SDValue Op0 = Op.getOperand(0); 867 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 868 unsigned ExBits = ExVT.getScalarSizeInBits(); 869 if (DemandedBits.getActiveBits() <= ExBits && 870 shouldRemoveRedundantExtend(Op)) 871 return Op0; 872 // If the input is already sign extended, just drop the extension. 873 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 874 if (NumSignBits >= (BitWidth - ExBits + 1)) 875 return Op0; 876 break; 877 } 878 case ISD::ANY_EXTEND_VECTOR_INREG: 879 case ISD::SIGN_EXTEND_VECTOR_INREG: 880 case ISD::ZERO_EXTEND_VECTOR_INREG: { 881 if (VT.isScalableVector()) 882 return SDValue(); 883 884 // If we only want the lowest element and none of extended bits, then we can 885 // return the bitcasted source vector. 886 SDValue Src = Op.getOperand(0); 887 EVT SrcVT = Src.getValueType(); 888 EVT DstVT = Op.getValueType(); 889 if (IsLE && DemandedElts == 1 && 890 DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 891 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 892 return DAG.getBitcast(DstVT, Src); 893 } 894 break; 895 } 896 case ISD::INSERT_VECTOR_ELT: { 897 if (VT.isScalableVector()) 898 return SDValue(); 899 900 // If we don't demand the inserted element, return the base vector. 901 SDValue Vec = Op.getOperand(0); 902 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 903 EVT VecVT = Vec.getValueType(); 904 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 905 !DemandedElts[CIdx->getZExtValue()]) 906 return Vec; 907 break; 908 } 909 case ISD::INSERT_SUBVECTOR: { 910 if (VT.isScalableVector()) 911 return SDValue(); 912 913 SDValue Vec = Op.getOperand(0); 914 SDValue Sub = Op.getOperand(1); 915 uint64_t Idx = Op.getConstantOperandVal(2); 916 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 917 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 918 // If we don't demand the inserted subvector, return the base vector. 919 if (DemandedSubElts == 0) 920 return Vec; 921 break; 922 } 923 case ISD::VECTOR_SHUFFLE: { 924 assert(!VT.isScalableVector()); 925 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 926 927 // If all the demanded elts are from one operand and are inline, 928 // then we can use the operand directly. 929 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 930 for (unsigned i = 0; i != NumElts; ++i) { 931 int M = ShuffleMask[i]; 932 if (M < 0 || !DemandedElts[i]) 933 continue; 934 AllUndef = false; 935 IdentityLHS &= (M == (int)i); 936 IdentityRHS &= ((M - NumElts) == i); 937 } 938 939 if (AllUndef) 940 return DAG.getUNDEF(Op.getValueType()); 941 if (IdentityLHS) 942 return Op.getOperand(0); 943 if (IdentityRHS) 944 return Op.getOperand(1); 945 break; 946 } 947 default: 948 // TODO: Probably okay to remove after audit; here to reduce change size 949 // in initial enablement patch for scalable vectors 950 if (VT.isScalableVector()) 951 return SDValue(); 952 953 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 954 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 955 Op, DemandedBits, DemandedElts, DAG, Depth)) 956 return V; 957 break; 958 } 959 return SDValue(); 960 } 961 962 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 963 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 964 unsigned Depth) const { 965 EVT VT = Op.getValueType(); 966 // Since the number of lanes in a scalable vector is unknown at compile time, 967 // we track one bit which is implicitly broadcast to all lanes. This means 968 // that all lanes in a scalable vector are considered demanded. 969 APInt DemandedElts = VT.isFixedLengthVector() 970 ? APInt::getAllOnes(VT.getVectorNumElements()) 971 : APInt(1, 1); 972 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 973 Depth); 974 } 975 976 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 977 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 978 unsigned Depth) const { 979 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 980 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 981 Depth); 982 } 983 984 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1). 985 // or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1). 986 static SDValue combineShiftToAVG(SDValue Op, 987 TargetLowering::TargetLoweringOpt &TLO, 988 const TargetLowering &TLI, 989 const APInt &DemandedBits, 990 const APInt &DemandedElts, unsigned Depth) { 991 assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) && 992 "SRL or SRA node is required here!"); 993 // Is the right shift using an immediate value of 1? 994 ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 995 if (!N1C || !N1C->isOne()) 996 return SDValue(); 997 998 // We are looking for an avgfloor 999 // add(ext, ext) 1000 // or one of these as a avgceil 1001 // add(add(ext, ext), 1) 1002 // add(add(ext, 1), ext) 1003 // add(ext, add(ext, 1)) 1004 SDValue Add = Op.getOperand(0); 1005 if (Add.getOpcode() != ISD::ADD) 1006 return SDValue(); 1007 1008 SDValue ExtOpA = Add.getOperand(0); 1009 SDValue ExtOpB = Add.getOperand(1); 1010 SDValue Add2; 1011 auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3, SDValue A) { 1012 ConstantSDNode *ConstOp; 1013 if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) && 1014 ConstOp->isOne()) { 1015 ExtOpA = Op1; 1016 ExtOpB = Op3; 1017 Add2 = A; 1018 return true; 1019 } 1020 if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) && 1021 ConstOp->isOne()) { 1022 ExtOpA = Op1; 1023 ExtOpB = Op2; 1024 Add2 = A; 1025 return true; 1026 } 1027 return false; 1028 }; 1029 bool IsCeil = 1030 (ExtOpA.getOpcode() == ISD::ADD && 1031 MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB, ExtOpA)) || 1032 (ExtOpB.getOpcode() == ISD::ADD && 1033 MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA, ExtOpB)); 1034 1035 // If the shift is signed (sra): 1036 // - Needs >= 2 sign bit for both operands. 1037 // - Needs >= 2 zero bits. 1038 // If the shift is unsigned (srl): 1039 // - Needs >= 1 zero bit for both operands. 1040 // - Needs 1 demanded bit zero and >= 2 sign bits. 1041 SelectionDAG &DAG = TLO.DAG; 1042 unsigned ShiftOpc = Op.getOpcode(); 1043 bool IsSigned = false; 1044 unsigned KnownBits; 1045 unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth); 1046 unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth); 1047 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1; 1048 unsigned NumZeroA = 1049 DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros(); 1050 unsigned NumZeroB = 1051 DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros(); 1052 unsigned NumZero = std::min(NumZeroA, NumZeroB); 1053 1054 switch (ShiftOpc) { 1055 default: 1056 llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG"); 1057 case ISD::SRA: { 1058 if (NumZero >= 2 && NumSigned < NumZero) { 1059 IsSigned = false; 1060 KnownBits = NumZero; 1061 break; 1062 } 1063 if (NumSigned >= 1) { 1064 IsSigned = true; 1065 KnownBits = NumSigned; 1066 break; 1067 } 1068 return SDValue(); 1069 } 1070 case ISD::SRL: { 1071 if (NumZero >= 1 && NumSigned < NumZero) { 1072 IsSigned = false; 1073 KnownBits = NumZero; 1074 break; 1075 } 1076 if (NumSigned >= 1 && DemandedBits.isSignBitClear()) { 1077 IsSigned = true; 1078 KnownBits = NumSigned; 1079 break; 1080 } 1081 return SDValue(); 1082 } 1083 } 1084 1085 unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU) 1086 : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU); 1087 1088 // Find the smallest power-2 type that is legal for this vector size and 1089 // operation, given the original type size and the number of known sign/zero 1090 // bits. 1091 EVT VT = Op.getValueType(); 1092 unsigned MinWidth = 1093 std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8); 1094 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_ceil(MinWidth)); 1095 if (NVT.getScalarSizeInBits() > VT.getScalarSizeInBits()) 1096 return SDValue(); 1097 if (VT.isVector()) 1098 NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount()); 1099 if (TLO.LegalTypes() && !TLI.isOperationLegal(AVGOpc, NVT)) { 1100 // If we could not transform, and (both) adds are nuw/nsw, we can use the 1101 // larger type size to do the transform. 1102 if (TLO.LegalOperations() && !TLI.isOperationLegal(AVGOpc, VT)) 1103 return SDValue(); 1104 if (DAG.willNotOverflowAdd(IsSigned, Add.getOperand(0), 1105 Add.getOperand(1)) && 1106 (!Add2 || DAG.willNotOverflowAdd(IsSigned, Add2.getOperand(0), 1107 Add2.getOperand(1)))) 1108 NVT = VT; 1109 else 1110 return SDValue(); 1111 } 1112 1113 // Don't create a AVGFLOOR node with a scalar constant unless its legal as 1114 // this is likely to stop other folds (reassociation, value tracking etc.) 1115 if (!IsCeil && !TLI.isOperationLegal(AVGOpc, NVT) && 1116 (isa<ConstantSDNode>(ExtOpA) || isa<ConstantSDNode>(ExtOpB))) 1117 return SDValue(); 1118 1119 SDLoc DL(Op); 1120 SDValue ResultAVG = 1121 DAG.getNode(AVGOpc, DL, NVT, DAG.getExtOrTrunc(IsSigned, ExtOpA, DL, NVT), 1122 DAG.getExtOrTrunc(IsSigned, ExtOpB, DL, NVT)); 1123 return DAG.getExtOrTrunc(IsSigned, ResultAVG, DL, VT); 1124 } 1125 1126 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 1127 /// result of Op are ever used downstream. If we can use this information to 1128 /// simplify Op, create a new simplified DAG node and return true, returning the 1129 /// original and new nodes in Old and New. Otherwise, analyze the expression and 1130 /// return a mask of Known bits for the expression (used to simplify the 1131 /// caller). The Known bits may only be accurate for those bits in the 1132 /// OriginalDemandedBits and OriginalDemandedElts. 1133 bool TargetLowering::SimplifyDemandedBits( 1134 SDValue Op, const APInt &OriginalDemandedBits, 1135 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 1136 unsigned Depth, bool AssumeSingleUse) const { 1137 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 1138 assert(Op.getScalarValueSizeInBits() == BitWidth && 1139 "Mask size mismatches value type size!"); 1140 1141 // Don't know anything. 1142 Known = KnownBits(BitWidth); 1143 1144 EVT VT = Op.getValueType(); 1145 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 1146 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 1147 assert((!VT.isFixedLengthVector() || NumElts == VT.getVectorNumElements()) && 1148 "Unexpected vector size"); 1149 1150 APInt DemandedBits = OriginalDemandedBits; 1151 APInt DemandedElts = OriginalDemandedElts; 1152 SDLoc dl(Op); 1153 1154 // Undef operand. 1155 if (Op.isUndef()) 1156 return false; 1157 1158 // We can't simplify target constants. 1159 if (Op.getOpcode() == ISD::TargetConstant) 1160 return false; 1161 1162 if (Op.getOpcode() == ISD::Constant) { 1163 // We know all of the bits for a constant! 1164 Known = KnownBits::makeConstant(Op->getAsAPIntVal()); 1165 return false; 1166 } 1167 1168 if (Op.getOpcode() == ISD::ConstantFP) { 1169 // We know all of the bits for a floating point constant! 1170 Known = KnownBits::makeConstant( 1171 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 1172 return false; 1173 } 1174 1175 // Other users may use these bits. 1176 bool HasMultiUse = false; 1177 if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) { 1178 if (Depth >= SelectionDAG::MaxRecursionDepth) { 1179 // Limit search depth. 1180 return false; 1181 } 1182 // Allow multiple uses, just set the DemandedBits/Elts to all bits. 1183 DemandedBits = APInt::getAllOnes(BitWidth); 1184 DemandedElts = APInt::getAllOnes(NumElts); 1185 HasMultiUse = true; 1186 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 1187 // Not demanding any bits/elts from Op. 1188 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1189 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 1190 // Limit search depth. 1191 return false; 1192 } 1193 1194 KnownBits Known2; 1195 switch (Op.getOpcode()) { 1196 case ISD::SCALAR_TO_VECTOR: { 1197 if (VT.isScalableVector()) 1198 return false; 1199 if (!DemandedElts[0]) 1200 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1201 1202 KnownBits SrcKnown; 1203 SDValue Src = Op.getOperand(0); 1204 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 1205 APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth); 1206 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 1207 return true; 1208 1209 // Upper elements are undef, so only get the knownbits if we just demand 1210 // the bottom element. 1211 if (DemandedElts == 1) 1212 Known = SrcKnown.anyextOrTrunc(BitWidth); 1213 break; 1214 } 1215 case ISD::BUILD_VECTOR: 1216 // Collect the known bits that are shared by every demanded element. 1217 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 1218 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1219 return false; // Don't fall through, will infinitely loop. 1220 case ISD::SPLAT_VECTOR: { 1221 SDValue Scl = Op.getOperand(0); 1222 APInt DemandedSclBits = DemandedBits.zextOrTrunc(Scl.getValueSizeInBits()); 1223 KnownBits KnownScl; 1224 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1225 return true; 1226 1227 // Implicitly truncate the bits to match the official semantics of 1228 // SPLAT_VECTOR. 1229 Known = KnownScl.trunc(BitWidth); 1230 break; 1231 } 1232 case ISD::LOAD: { 1233 auto *LD = cast<LoadSDNode>(Op); 1234 if (getTargetConstantFromLoad(LD)) { 1235 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1236 return false; // Don't fall through, will infinitely loop. 1237 } 1238 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 1239 // If this is a ZEXTLoad and we are looking at the loaded value. 1240 EVT MemVT = LD->getMemoryVT(); 1241 unsigned MemBits = MemVT.getScalarSizeInBits(); 1242 Known.Zero.setBitsFrom(MemBits); 1243 return false; // Don't fall through, will infinitely loop. 1244 } 1245 break; 1246 } 1247 case ISD::INSERT_VECTOR_ELT: { 1248 if (VT.isScalableVector()) 1249 return false; 1250 SDValue Vec = Op.getOperand(0); 1251 SDValue Scl = Op.getOperand(1); 1252 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1253 EVT VecVT = Vec.getValueType(); 1254 1255 // If index isn't constant, assume we need all vector elements AND the 1256 // inserted element. 1257 APInt DemandedVecElts(DemandedElts); 1258 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1259 unsigned Idx = CIdx->getZExtValue(); 1260 DemandedVecElts.clearBit(Idx); 1261 1262 // Inserted element is not required. 1263 if (!DemandedElts[Idx]) 1264 return TLO.CombineTo(Op, Vec); 1265 } 1266 1267 KnownBits KnownScl; 1268 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1269 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1270 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1271 return true; 1272 1273 Known = KnownScl.anyextOrTrunc(BitWidth); 1274 1275 KnownBits KnownVec; 1276 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1277 Depth + 1)) 1278 return true; 1279 1280 if (!!DemandedVecElts) 1281 Known = Known.intersectWith(KnownVec); 1282 1283 return false; 1284 } 1285 case ISD::INSERT_SUBVECTOR: { 1286 if (VT.isScalableVector()) 1287 return false; 1288 // Demand any elements from the subvector and the remainder from the src its 1289 // inserted into. 1290 SDValue Src = Op.getOperand(0); 1291 SDValue Sub = Op.getOperand(1); 1292 uint64_t Idx = Op.getConstantOperandVal(2); 1293 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1294 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1295 APInt DemandedSrcElts = DemandedElts; 1296 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1297 1298 KnownBits KnownSub, KnownSrc; 1299 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1300 Depth + 1)) 1301 return true; 1302 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1303 Depth + 1)) 1304 return true; 1305 1306 Known.Zero.setAllBits(); 1307 Known.One.setAllBits(); 1308 if (!!DemandedSubElts) 1309 Known = Known.intersectWith(KnownSub); 1310 if (!!DemandedSrcElts) 1311 Known = Known.intersectWith(KnownSrc); 1312 1313 // Attempt to avoid multi-use src if we don't need anything from it. 1314 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1315 !DemandedSrcElts.isAllOnes()) { 1316 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1317 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1318 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1319 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1320 if (NewSub || NewSrc) { 1321 NewSub = NewSub ? NewSub : Sub; 1322 NewSrc = NewSrc ? NewSrc : Src; 1323 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1324 Op.getOperand(2)); 1325 return TLO.CombineTo(Op, NewOp); 1326 } 1327 } 1328 break; 1329 } 1330 case ISD::EXTRACT_SUBVECTOR: { 1331 if (VT.isScalableVector()) 1332 return false; 1333 // Offset the demanded elts by the subvector index. 1334 SDValue Src = Op.getOperand(0); 1335 if (Src.getValueType().isScalableVector()) 1336 break; 1337 uint64_t Idx = Op.getConstantOperandVal(1); 1338 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1339 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 1340 1341 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1342 Depth + 1)) 1343 return true; 1344 1345 // Attempt to avoid multi-use src if we don't need anything from it. 1346 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1347 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1348 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1349 if (DemandedSrc) { 1350 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1351 Op.getOperand(1)); 1352 return TLO.CombineTo(Op, NewOp); 1353 } 1354 } 1355 break; 1356 } 1357 case ISD::CONCAT_VECTORS: { 1358 if (VT.isScalableVector()) 1359 return false; 1360 Known.Zero.setAllBits(); 1361 Known.One.setAllBits(); 1362 EVT SubVT = Op.getOperand(0).getValueType(); 1363 unsigned NumSubVecs = Op.getNumOperands(); 1364 unsigned NumSubElts = SubVT.getVectorNumElements(); 1365 for (unsigned i = 0; i != NumSubVecs; ++i) { 1366 APInt DemandedSubElts = 1367 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1368 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1369 Known2, TLO, Depth + 1)) 1370 return true; 1371 // Known bits are shared by every demanded subvector element. 1372 if (!!DemandedSubElts) 1373 Known = Known.intersectWith(Known2); 1374 } 1375 break; 1376 } 1377 case ISD::VECTOR_SHUFFLE: { 1378 assert(!VT.isScalableVector()); 1379 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1380 1381 // Collect demanded elements from shuffle operands.. 1382 APInt DemandedLHS, DemandedRHS; 1383 if (!getShuffleDemandedElts(NumElts, ShuffleMask, DemandedElts, DemandedLHS, 1384 DemandedRHS)) 1385 break; 1386 1387 if (!!DemandedLHS || !!DemandedRHS) { 1388 SDValue Op0 = Op.getOperand(0); 1389 SDValue Op1 = Op.getOperand(1); 1390 1391 Known.Zero.setAllBits(); 1392 Known.One.setAllBits(); 1393 if (!!DemandedLHS) { 1394 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1395 Depth + 1)) 1396 return true; 1397 Known = Known.intersectWith(Known2); 1398 } 1399 if (!!DemandedRHS) { 1400 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1401 Depth + 1)) 1402 return true; 1403 Known = Known.intersectWith(Known2); 1404 } 1405 1406 // Attempt to avoid multi-use ops if we don't need anything from them. 1407 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1408 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1409 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1410 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1411 if (DemandedOp0 || DemandedOp1) { 1412 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1413 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1414 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1415 return TLO.CombineTo(Op, NewOp); 1416 } 1417 } 1418 break; 1419 } 1420 case ISD::AND: { 1421 SDValue Op0 = Op.getOperand(0); 1422 SDValue Op1 = Op.getOperand(1); 1423 1424 // If the RHS is a constant, check to see if the LHS would be zero without 1425 // using the bits from the RHS. Below, we use knowledge about the RHS to 1426 // simplify the LHS, here we're using information from the LHS to simplify 1427 // the RHS. 1428 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1, DemandedElts)) { 1429 // Do not increment Depth here; that can cause an infinite loop. 1430 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1431 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1432 if ((LHSKnown.Zero & DemandedBits) == 1433 (~RHSC->getAPIntValue() & DemandedBits)) 1434 return TLO.CombineTo(Op, Op0); 1435 1436 // If any of the set bits in the RHS are known zero on the LHS, shrink 1437 // the constant. 1438 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1439 DemandedElts, TLO)) 1440 return true; 1441 1442 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1443 // constant, but if this 'and' is only clearing bits that were just set by 1444 // the xor, then this 'and' can be eliminated by shrinking the mask of 1445 // the xor. For example, for a 32-bit X: 1446 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1447 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1448 LHSKnown.One == ~RHSC->getAPIntValue()) { 1449 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1450 return TLO.CombineTo(Op, Xor); 1451 } 1452 } 1453 1454 // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I) 1455 // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits). 1456 if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR && !VT.isScalableVector() && 1457 (Op0.getOperand(0).isUndef() || 1458 ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) && 1459 Op0->hasOneUse()) { 1460 unsigned NumSubElts = 1461 Op0.getOperand(1).getValueType().getVectorNumElements(); 1462 unsigned SubIdx = Op0.getConstantOperandVal(2); 1463 APInt DemandedSub = 1464 APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts); 1465 KnownBits KnownSubMask = 1466 TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1); 1467 if (DemandedBits.isSubsetOf(KnownSubMask.One)) { 1468 SDValue NewAnd = 1469 TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1); 1470 SDValue NewInsert = 1471 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd, 1472 Op0.getOperand(1), Op0.getOperand(2)); 1473 return TLO.CombineTo(Op, NewInsert); 1474 } 1475 } 1476 1477 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1478 Depth + 1)) 1479 return true; 1480 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1481 Known2, TLO, Depth + 1)) 1482 return true; 1483 1484 // If all of the demanded bits are known one on one side, return the other. 1485 // These bits cannot contribute to the result of the 'and'. 1486 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1487 return TLO.CombineTo(Op, Op0); 1488 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1489 return TLO.CombineTo(Op, Op1); 1490 // If all of the demanded bits in the inputs are known zeros, return zero. 1491 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1492 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1493 // If the RHS is a constant, see if we can simplify it. 1494 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1495 TLO)) 1496 return true; 1497 // If the operation can be done in a smaller type, do so. 1498 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1499 return true; 1500 1501 // Attempt to avoid multi-use ops if we don't need anything from them. 1502 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1503 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1504 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1505 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1506 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1507 if (DemandedOp0 || DemandedOp1) { 1508 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1509 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1510 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1511 return TLO.CombineTo(Op, NewOp); 1512 } 1513 } 1514 1515 Known &= Known2; 1516 break; 1517 } 1518 case ISD::OR: { 1519 SDValue Op0 = Op.getOperand(0); 1520 SDValue Op1 = Op.getOperand(1); 1521 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1522 Depth + 1)) { 1523 Op->dropFlags(SDNodeFlags::Disjoint); 1524 return true; 1525 } 1526 1527 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1528 Known2, TLO, Depth + 1)) { 1529 Op->dropFlags(SDNodeFlags::Disjoint); 1530 return true; 1531 } 1532 1533 // If all of the demanded bits are known zero on one side, return the other. 1534 // These bits cannot contribute to the result of the 'or'. 1535 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1536 return TLO.CombineTo(Op, Op0); 1537 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1538 return TLO.CombineTo(Op, Op1); 1539 // If the RHS is a constant, see if we can simplify it. 1540 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1541 return true; 1542 // If the operation can be done in a smaller type, do so. 1543 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1544 return true; 1545 1546 // Attempt to avoid multi-use ops if we don't need anything from them. 1547 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1548 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1549 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1550 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1551 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1552 if (DemandedOp0 || DemandedOp1) { 1553 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1554 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1555 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1556 return TLO.CombineTo(Op, NewOp); 1557 } 1558 } 1559 1560 // (or (and X, C1), (and (or X, Y), C2)) -> (or (and X, C1|C2), (and Y, C2)) 1561 // TODO: Use SimplifyMultipleUseDemandedBits to peek through masks. 1562 if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::AND && 1563 Op0->hasOneUse() && Op1->hasOneUse()) { 1564 // Attempt to match all commutations - m_c_Or would've been useful! 1565 for (int I = 0; I != 2; ++I) { 1566 SDValue X = Op.getOperand(I).getOperand(0); 1567 SDValue C1 = Op.getOperand(I).getOperand(1); 1568 SDValue Alt = Op.getOperand(1 - I).getOperand(0); 1569 SDValue C2 = Op.getOperand(1 - I).getOperand(1); 1570 if (Alt.getOpcode() == ISD::OR) { 1571 for (int J = 0; J != 2; ++J) { 1572 if (X == Alt.getOperand(J)) { 1573 SDValue Y = Alt.getOperand(1 - J); 1574 if (SDValue C12 = TLO.DAG.FoldConstantArithmetic(ISD::OR, dl, VT, 1575 {C1, C2})) { 1576 SDValue MaskX = TLO.DAG.getNode(ISD::AND, dl, VT, X, C12); 1577 SDValue MaskY = TLO.DAG.getNode(ISD::AND, dl, VT, Y, C2); 1578 return TLO.CombineTo( 1579 Op, TLO.DAG.getNode(ISD::OR, dl, VT, MaskX, MaskY)); 1580 } 1581 } 1582 } 1583 } 1584 } 1585 } 1586 1587 Known |= Known2; 1588 break; 1589 } 1590 case ISD::XOR: { 1591 SDValue Op0 = Op.getOperand(0); 1592 SDValue Op1 = Op.getOperand(1); 1593 1594 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1595 Depth + 1)) 1596 return true; 1597 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1598 Depth + 1)) 1599 return true; 1600 1601 // If all of the demanded bits are known zero on one side, return the other. 1602 // These bits cannot contribute to the result of the 'xor'. 1603 if (DemandedBits.isSubsetOf(Known.Zero)) 1604 return TLO.CombineTo(Op, Op0); 1605 if (DemandedBits.isSubsetOf(Known2.Zero)) 1606 return TLO.CombineTo(Op, Op1); 1607 // If the operation can be done in a smaller type, do so. 1608 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1609 return true; 1610 1611 // If all of the unknown bits are known to be zero on one side or the other 1612 // turn this into an *inclusive* or. 1613 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1614 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1615 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1616 1617 ConstantSDNode *C = isConstOrConstSplat(Op1, DemandedElts); 1618 if (C) { 1619 // If one side is a constant, and all of the set bits in the constant are 1620 // also known set on the other side, turn this into an AND, as we know 1621 // the bits will be cleared. 1622 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1623 // NB: it is okay if more bits are known than are requested 1624 if (C->getAPIntValue() == Known2.One) { 1625 SDValue ANDC = 1626 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1627 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1628 } 1629 1630 // If the RHS is a constant, see if we can change it. Don't alter a -1 1631 // constant because that's a 'not' op, and that is better for combining 1632 // and codegen. 1633 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1634 // We're flipping all demanded bits. Flip the undemanded bits too. 1635 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1636 return TLO.CombineTo(Op, New); 1637 } 1638 1639 unsigned Op0Opcode = Op0.getOpcode(); 1640 if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) { 1641 if (ConstantSDNode *ShiftC = 1642 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1643 // Don't crash on an oversized shift. We can not guarantee that a 1644 // bogus shift has been simplified to undef. 1645 if (ShiftC->getAPIntValue().ult(BitWidth)) { 1646 uint64_t ShiftAmt = ShiftC->getZExtValue(); 1647 APInt Ones = APInt::getAllOnes(BitWidth); 1648 Ones = Op0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) 1649 : Ones.lshr(ShiftAmt); 1650 if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) && 1651 isDesirableToCommuteXorWithShift(Op.getNode())) { 1652 // If the xor constant is a demanded mask, do a 'not' before the 1653 // shift: 1654 // xor (X << ShiftC), XorC --> (not X) << ShiftC 1655 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC 1656 SDValue Not = TLO.DAG.getNOT(dl, Op0.getOperand(0), VT); 1657 return TLO.CombineTo(Op, TLO.DAG.getNode(Op0Opcode, dl, VT, Not, 1658 Op0.getOperand(1))); 1659 } 1660 } 1661 } 1662 } 1663 } 1664 1665 // If we can't turn this into a 'not', try to shrink the constant. 1666 if (!C || !C->isAllOnes()) 1667 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1668 return true; 1669 1670 // Attempt to avoid multi-use ops if we don't need anything from them. 1671 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1672 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1673 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1674 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1675 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1676 if (DemandedOp0 || DemandedOp1) { 1677 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1678 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1679 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1680 return TLO.CombineTo(Op, NewOp); 1681 } 1682 } 1683 1684 Known ^= Known2; 1685 break; 1686 } 1687 case ISD::SELECT: 1688 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, 1689 Known, TLO, Depth + 1)) 1690 return true; 1691 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts, 1692 Known2, TLO, Depth + 1)) 1693 return true; 1694 1695 // If the operands are constants, see if we can simplify them. 1696 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1697 return true; 1698 1699 // Only known if known in both the LHS and RHS. 1700 Known = Known.intersectWith(Known2); 1701 break; 1702 case ISD::VSELECT: 1703 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, 1704 Known, TLO, Depth + 1)) 1705 return true; 1706 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts, 1707 Known2, TLO, Depth + 1)) 1708 return true; 1709 1710 // Only known if known in both the LHS and RHS. 1711 Known = Known.intersectWith(Known2); 1712 break; 1713 case ISD::SELECT_CC: 1714 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, DemandedElts, 1715 Known, TLO, Depth + 1)) 1716 return true; 1717 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, 1718 Known2, TLO, Depth + 1)) 1719 return true; 1720 1721 // If the operands are constants, see if we can simplify them. 1722 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1723 return true; 1724 1725 // Only known if known in both the LHS and RHS. 1726 Known = Known.intersectWith(Known2); 1727 break; 1728 case ISD::SETCC: { 1729 SDValue Op0 = Op.getOperand(0); 1730 SDValue Op1 = Op.getOperand(1); 1731 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1732 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1733 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1734 // -1, we may be able to bypass the setcc. 1735 if (DemandedBits.isSignMask() && 1736 Op0.getScalarValueSizeInBits() == BitWidth && 1737 getBooleanContents(Op0.getValueType()) == 1738 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1739 // If we're testing X < 0, then this compare isn't needed - just use X! 1740 // FIXME: We're limiting to integer types here, but this should also work 1741 // if we don't care about FP signed-zero. The use of SETLT with FP means 1742 // that we don't care about NaNs. 1743 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1744 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1745 return TLO.CombineTo(Op, Op0); 1746 1747 // TODO: Should we check for other forms of sign-bit comparisons? 1748 // Examples: X <= -1, X >= 0 1749 } 1750 if (getBooleanContents(Op0.getValueType()) == 1751 TargetLowering::ZeroOrOneBooleanContent && 1752 BitWidth > 1) 1753 Known.Zero.setBitsFrom(1); 1754 break; 1755 } 1756 case ISD::SHL: { 1757 SDValue Op0 = Op.getOperand(0); 1758 SDValue Op1 = Op.getOperand(1); 1759 EVT ShiftVT = Op1.getValueType(); 1760 1761 if (std::optional<uint64_t> KnownSA = 1762 TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) { 1763 unsigned ShAmt = *KnownSA; 1764 if (ShAmt == 0) 1765 return TLO.CombineTo(Op, Op0); 1766 1767 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1768 // single shift. We can do this if the bottom bits (which are shifted 1769 // out) are never demanded. 1770 // TODO - support non-uniform vector amounts. 1771 if (Op0.getOpcode() == ISD::SRL) { 1772 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1773 if (std::optional<uint64_t> InnerSA = 1774 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) { 1775 unsigned C1 = *InnerSA; 1776 unsigned Opc = ISD::SHL; 1777 int Diff = ShAmt - C1; 1778 if (Diff < 0) { 1779 Diff = -Diff; 1780 Opc = ISD::SRL; 1781 } 1782 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1783 return TLO.CombineTo( 1784 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1785 } 1786 } 1787 } 1788 1789 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1790 // are not demanded. This will likely allow the anyext to be folded away. 1791 // TODO - support non-uniform vector amounts. 1792 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1793 SDValue InnerOp = Op0.getOperand(0); 1794 EVT InnerVT = InnerOp.getValueType(); 1795 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1796 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1797 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1798 SDValue NarrowShl = TLO.DAG.getNode( 1799 ISD::SHL, dl, InnerVT, InnerOp, 1800 TLO.DAG.getShiftAmountConstant(ShAmt, InnerVT, dl)); 1801 return TLO.CombineTo( 1802 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1803 } 1804 1805 // Repeat the SHL optimization above in cases where an extension 1806 // intervenes: (shl (anyext (shr x, c1)), c2) to 1807 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1808 // aren't demanded (as above) and that the shifted upper c1 bits of 1809 // x aren't demanded. 1810 // TODO - support non-uniform vector amounts. 1811 if (InnerOp.getOpcode() == ISD::SRL && Op0.hasOneUse() && 1812 InnerOp.hasOneUse()) { 1813 if (std::optional<uint64_t> SA2 = TLO.DAG.getValidShiftAmount( 1814 InnerOp, DemandedElts, Depth + 2)) { 1815 unsigned InnerShAmt = *SA2; 1816 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1817 DemandedBits.getActiveBits() <= 1818 (InnerBits - InnerShAmt + ShAmt) && 1819 DemandedBits.countr_zero() >= ShAmt) { 1820 SDValue NewSA = 1821 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1822 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1823 InnerOp.getOperand(0)); 1824 return TLO.CombineTo( 1825 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1826 } 1827 } 1828 } 1829 } 1830 1831 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1832 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1833 Depth + 1)) { 1834 // Disable the nsw and nuw flags. We can no longer guarantee that we 1835 // won't wrap after simplification. 1836 Op->dropFlags(SDNodeFlags::NoWrap); 1837 return true; 1838 } 1839 Known.Zero <<= ShAmt; 1840 Known.One <<= ShAmt; 1841 // low bits known zero. 1842 Known.Zero.setLowBits(ShAmt); 1843 1844 // Attempt to avoid multi-use ops if we don't need anything from them. 1845 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1846 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1847 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1848 if (DemandedOp0) { 1849 SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1); 1850 return TLO.CombineTo(Op, NewOp); 1851 } 1852 } 1853 1854 // TODO: Can we merge this fold with the one below? 1855 // Try shrinking the operation as long as the shift amount will still be 1856 // in range. 1857 if (ShAmt < DemandedBits.getActiveBits() && !VT.isVector() && 1858 Op.getNode()->hasOneUse()) { 1859 // Search for the smallest integer type with free casts to and from 1860 // Op's type. For expedience, just check power-of-2 integer types. 1861 unsigned DemandedSize = DemandedBits.getActiveBits(); 1862 for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize); 1863 SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 1864 EVT SmallVT = EVT::getIntegerVT(*TLO.DAG.getContext(), SmallVTBits); 1865 if (isNarrowingProfitable(Op.getNode(), VT, SmallVT) && 1866 isTypeDesirableForOp(ISD::SHL, SmallVT) && 1867 isTruncateFree(VT, SmallVT) && isZExtFree(SmallVT, VT) && 1868 (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, SmallVT))) { 1869 assert(DemandedSize <= SmallVTBits && 1870 "Narrowed below demanded bits?"); 1871 // We found a type with free casts. 1872 SDValue NarrowShl = TLO.DAG.getNode( 1873 ISD::SHL, dl, SmallVT, 1874 TLO.DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 1875 TLO.DAG.getShiftAmountConstant(ShAmt, SmallVT, dl)); 1876 return TLO.CombineTo( 1877 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1878 } 1879 } 1880 } 1881 1882 // Narrow shift to lower half - similar to ShrinkDemandedOp. 1883 // (shl i64:x, K) -> (i64 zero_extend (shl (i32 (trunc i64:x)), K)) 1884 // Only do this if we demand the upper half so the knownbits are correct. 1885 unsigned HalfWidth = BitWidth / 2; 1886 if ((BitWidth % 2) == 0 && !VT.isVector() && ShAmt < HalfWidth && 1887 DemandedBits.countLeadingOnes() >= HalfWidth) { 1888 EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), HalfWidth); 1889 if (isNarrowingProfitable(Op.getNode(), VT, HalfVT) && 1890 isTypeDesirableForOp(ISD::SHL, HalfVT) && 1891 isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) && 1892 (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, HalfVT))) { 1893 // If we're demanding the upper bits at all, we must ensure 1894 // that the upper bits of the shift result are known to be zero, 1895 // which is equivalent to the narrow shift being NUW. 1896 if (bool IsNUW = (Known.countMinLeadingZeros() >= HalfWidth)) { 1897 bool IsNSW = Known.countMinSignBits() > HalfWidth; 1898 SDNodeFlags Flags; 1899 Flags.setNoSignedWrap(IsNSW); 1900 Flags.setNoUnsignedWrap(IsNUW); 1901 SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0); 1902 SDValue NewShiftAmt = 1903 TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl); 1904 SDValue NewShift = TLO.DAG.getNode(ISD::SHL, dl, HalfVT, NewOp, 1905 NewShiftAmt, Flags); 1906 SDValue NewExt = 1907 TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift); 1908 return TLO.CombineTo(Op, NewExt); 1909 } 1910 } 1911 } 1912 } else { 1913 // This is a variable shift, so we can't shift the demand mask by a known 1914 // amount. But if we are not demanding high bits, then we are not 1915 // demanding those bits from the pre-shifted operand either. 1916 if (unsigned CTLZ = DemandedBits.countl_zero()) { 1917 APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ)); 1918 if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO, 1919 Depth + 1)) { 1920 // Disable the nsw and nuw flags. We can no longer guarantee that we 1921 // won't wrap after simplification. 1922 Op->dropFlags(SDNodeFlags::NoWrap); 1923 return true; 1924 } 1925 Known.resetAll(); 1926 } 1927 } 1928 1929 // If we are only demanding sign bits then we can use the shift source 1930 // directly. 1931 if (std::optional<uint64_t> MaxSA = 1932 TLO.DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) { 1933 unsigned ShAmt = *MaxSA; 1934 unsigned NumSignBits = 1935 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1936 unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero(); 1937 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1938 return TLO.CombineTo(Op, Op0); 1939 } 1940 break; 1941 } 1942 case ISD::SRL: { 1943 SDValue Op0 = Op.getOperand(0); 1944 SDValue Op1 = Op.getOperand(1); 1945 EVT ShiftVT = Op1.getValueType(); 1946 1947 if (std::optional<uint64_t> KnownSA = 1948 TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) { 1949 unsigned ShAmt = *KnownSA; 1950 if (ShAmt == 0) 1951 return TLO.CombineTo(Op, Op0); 1952 1953 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1954 // single shift. We can do this if the top bits (which are shifted out) 1955 // are never demanded. 1956 // TODO - support non-uniform vector amounts. 1957 if (Op0.getOpcode() == ISD::SHL) { 1958 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1959 if (std::optional<uint64_t> InnerSA = 1960 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) { 1961 unsigned C1 = *InnerSA; 1962 unsigned Opc = ISD::SRL; 1963 int Diff = ShAmt - C1; 1964 if (Diff < 0) { 1965 Diff = -Diff; 1966 Opc = ISD::SHL; 1967 } 1968 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1969 return TLO.CombineTo( 1970 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1971 } 1972 } 1973 } 1974 1975 // If this is (srl (sra X, C1), ShAmt), see if we can combine this into a 1976 // single sra. We can do this if the top bits are never demanded. 1977 if (Op0.getOpcode() == ISD::SRA && Op0.hasOneUse()) { 1978 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1979 if (std::optional<uint64_t> InnerSA = 1980 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) { 1981 unsigned C1 = *InnerSA; 1982 // Clamp the combined shift amount if it exceeds the bit width. 1983 unsigned Combined = std::min(C1 + ShAmt, BitWidth - 1); 1984 SDValue NewSA = TLO.DAG.getConstant(Combined, dl, ShiftVT); 1985 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRA, dl, VT, 1986 Op0.getOperand(0), NewSA)); 1987 } 1988 } 1989 } 1990 1991 APInt InDemandedMask = (DemandedBits << ShAmt); 1992 1993 // If the shift is exact, then it does demand the low bits (and knows that 1994 // they are zero). 1995 if (Op->getFlags().hasExact()) 1996 InDemandedMask.setLowBits(ShAmt); 1997 1998 // Narrow shift to lower half - similar to ShrinkDemandedOp. 1999 // (srl i64:x, K) -> (i64 zero_extend (srl (i32 (trunc i64:x)), K)) 2000 if ((BitWidth % 2) == 0 && !VT.isVector()) { 2001 APInt HiBits = APInt::getHighBitsSet(BitWidth, BitWidth / 2); 2002 EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), BitWidth / 2); 2003 if (isNarrowingProfitable(Op.getNode(), VT, HalfVT) && 2004 isTypeDesirableForOp(ISD::SRL, HalfVT) && 2005 isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) && 2006 (!TLO.LegalOperations() || isOperationLegal(ISD::SRL, HalfVT)) && 2007 ((InDemandedMask.countLeadingZeros() >= (BitWidth / 2)) || 2008 TLO.DAG.MaskedValueIsZero(Op0, HiBits))) { 2009 SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0); 2010 SDValue NewShiftAmt = 2011 TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl); 2012 SDValue NewShift = 2013 TLO.DAG.getNode(ISD::SRL, dl, HalfVT, NewOp, NewShiftAmt); 2014 return TLO.CombineTo( 2015 Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift)); 2016 } 2017 } 2018 2019 // Compute the new bits that are at the top now. 2020 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 2021 Depth + 1)) 2022 return true; 2023 Known.Zero.lshrInPlace(ShAmt); 2024 Known.One.lshrInPlace(ShAmt); 2025 // High bits known zero. 2026 Known.Zero.setHighBits(ShAmt); 2027 2028 // Attempt to avoid multi-use ops if we don't need anything from them. 2029 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2030 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2031 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 2032 if (DemandedOp0) { 2033 SDValue NewOp = TLO.DAG.getNode(ISD::SRL, dl, VT, DemandedOp0, Op1); 2034 return TLO.CombineTo(Op, NewOp); 2035 } 2036 } 2037 } else { 2038 // Use generic knownbits computation as it has support for non-uniform 2039 // shift amounts. 2040 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2041 } 2042 2043 // If we are only demanding sign bits then we can use the shift source 2044 // directly. 2045 if (std::optional<uint64_t> MaxSA = 2046 TLO.DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) { 2047 unsigned ShAmt = *MaxSA; 2048 // Must already be signbits in DemandedBits bounds, and can't demand any 2049 // shifted in zeroes. 2050 if (DemandedBits.countl_zero() >= ShAmt) { 2051 unsigned NumSignBits = 2052 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 2053 if (DemandedBits.countr_zero() >= (BitWidth - NumSignBits)) 2054 return TLO.CombineTo(Op, Op0); 2055 } 2056 } 2057 2058 // Try to match AVG patterns (after shift simplification). 2059 if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits, 2060 DemandedElts, Depth + 1)) 2061 return TLO.CombineTo(Op, AVG); 2062 2063 break; 2064 } 2065 case ISD::SRA: { 2066 SDValue Op0 = Op.getOperand(0); 2067 SDValue Op1 = Op.getOperand(1); 2068 EVT ShiftVT = Op1.getValueType(); 2069 2070 // If we only want bits that already match the signbit then we don't need 2071 // to shift. 2072 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countr_zero(); 2073 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 2074 NumHiDemandedBits) 2075 return TLO.CombineTo(Op, Op0); 2076 2077 // If this is an arithmetic shift right and only the low-bit is set, we can 2078 // always convert this into a logical shr, even if the shift amount is 2079 // variable. The low bit of the shift cannot be an input sign bit unless 2080 // the shift amount is >= the size of the datatype, which is undefined. 2081 if (DemandedBits.isOne()) 2082 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 2083 2084 if (std::optional<uint64_t> KnownSA = 2085 TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) { 2086 unsigned ShAmt = *KnownSA; 2087 if (ShAmt == 0) 2088 return TLO.CombineTo(Op, Op0); 2089 2090 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target 2091 // supports sext_inreg. 2092 if (Op0.getOpcode() == ISD::SHL) { 2093 if (std::optional<uint64_t> InnerSA = 2094 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) { 2095 unsigned LowBits = BitWidth - ShAmt; 2096 EVT ExtVT = EVT::getIntegerVT(*TLO.DAG.getContext(), LowBits); 2097 if (VT.isVector()) 2098 ExtVT = EVT::getVectorVT(*TLO.DAG.getContext(), ExtVT, 2099 VT.getVectorElementCount()); 2100 2101 if (*InnerSA == ShAmt) { 2102 if (!TLO.LegalOperations() || 2103 getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) == Legal) 2104 return TLO.CombineTo( 2105 Op, TLO.DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, 2106 Op0.getOperand(0), 2107 TLO.DAG.getValueType(ExtVT))); 2108 2109 // Even if we can't convert to sext_inreg, we might be able to 2110 // remove this shift pair if the input is already sign extended. 2111 unsigned NumSignBits = 2112 TLO.DAG.ComputeNumSignBits(Op0.getOperand(0), DemandedElts); 2113 if (NumSignBits > ShAmt) 2114 return TLO.CombineTo(Op, Op0.getOperand(0)); 2115 } 2116 } 2117 } 2118 2119 APInt InDemandedMask = (DemandedBits << ShAmt); 2120 2121 // If the shift is exact, then it does demand the low bits (and knows that 2122 // they are zero). 2123 if (Op->getFlags().hasExact()) 2124 InDemandedMask.setLowBits(ShAmt); 2125 2126 // If any of the demanded bits are produced by the sign extension, we also 2127 // demand the input sign bit. 2128 if (DemandedBits.countl_zero() < ShAmt) 2129 InDemandedMask.setSignBit(); 2130 2131 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 2132 Depth + 1)) 2133 return true; 2134 Known.Zero.lshrInPlace(ShAmt); 2135 Known.One.lshrInPlace(ShAmt); 2136 2137 // If the input sign bit is known to be zero, or if none of the top bits 2138 // are demanded, turn this into an unsigned shift right. 2139 if (Known.Zero[BitWidth - ShAmt - 1] || 2140 DemandedBits.countl_zero() >= ShAmt) { 2141 SDNodeFlags Flags; 2142 Flags.setExact(Op->getFlags().hasExact()); 2143 return TLO.CombineTo( 2144 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 2145 } 2146 2147 int Log2 = DemandedBits.exactLogBase2(); 2148 if (Log2 >= 0) { 2149 // The bit must come from the sign. 2150 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 2151 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 2152 } 2153 2154 if (Known.One[BitWidth - ShAmt - 1]) 2155 // New bits are known one. 2156 Known.One.setHighBits(ShAmt); 2157 2158 // Attempt to avoid multi-use ops if we don't need anything from them. 2159 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2160 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2161 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 2162 if (DemandedOp0) { 2163 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 2164 return TLO.CombineTo(Op, NewOp); 2165 } 2166 } 2167 } 2168 2169 // Try to match AVG patterns (after shift simplification). 2170 if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits, 2171 DemandedElts, Depth + 1)) 2172 return TLO.CombineTo(Op, AVG); 2173 2174 break; 2175 } 2176 case ISD::FSHL: 2177 case ISD::FSHR: { 2178 SDValue Op0 = Op.getOperand(0); 2179 SDValue Op1 = Op.getOperand(1); 2180 SDValue Op2 = Op.getOperand(2); 2181 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 2182 2183 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 2184 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 2185 2186 // For fshl, 0-shift returns the 1st arg. 2187 // For fshr, 0-shift returns the 2nd arg. 2188 if (Amt == 0) { 2189 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 2190 Known, TLO, Depth + 1)) 2191 return true; 2192 break; 2193 } 2194 2195 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 2196 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 2197 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 2198 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 2199 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 2200 Depth + 1)) 2201 return true; 2202 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 2203 Depth + 1)) 2204 return true; 2205 2206 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 2207 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 2208 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 2209 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 2210 Known = Known.unionWith(Known2); 2211 2212 // Attempt to avoid multi-use ops if we don't need anything from them. 2213 if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() || 2214 !DemandedElts.isAllOnes()) { 2215 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2216 Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1); 2217 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2218 Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1); 2219 if (DemandedOp0 || DemandedOp1) { 2220 DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0; 2221 DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1; 2222 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0, 2223 DemandedOp1, Op2); 2224 return TLO.CombineTo(Op, NewOp); 2225 } 2226 } 2227 } 2228 2229 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 2230 if (isPowerOf2_32(BitWidth)) { 2231 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 2232 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 2233 Known2, TLO, Depth + 1)) 2234 return true; 2235 } 2236 break; 2237 } 2238 case ISD::ROTL: 2239 case ISD::ROTR: { 2240 SDValue Op0 = Op.getOperand(0); 2241 SDValue Op1 = Op.getOperand(1); 2242 bool IsROTL = (Op.getOpcode() == ISD::ROTL); 2243 2244 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 2245 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 2246 return TLO.CombineTo(Op, Op0); 2247 2248 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 2249 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 2250 unsigned RevAmt = BitWidth - Amt; 2251 2252 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) 2253 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) 2254 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); 2255 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 2256 Depth + 1)) 2257 return true; 2258 2259 // rot*(x, 0) --> x 2260 if (Amt == 0) 2261 return TLO.CombineTo(Op, Op0); 2262 2263 // See if we don't demand either half of the rotated bits. 2264 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && 2265 DemandedBits.countr_zero() >= (IsROTL ? Amt : RevAmt)) { 2266 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); 2267 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); 2268 } 2269 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && 2270 DemandedBits.countl_zero() >= (IsROTL ? RevAmt : Amt)) { 2271 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); 2272 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 2273 } 2274 } 2275 2276 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 2277 if (isPowerOf2_32(BitWidth)) { 2278 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 2279 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 2280 Depth + 1)) 2281 return true; 2282 } 2283 break; 2284 } 2285 case ISD::SMIN: 2286 case ISD::SMAX: 2287 case ISD::UMIN: 2288 case ISD::UMAX: { 2289 unsigned Opc = Op.getOpcode(); 2290 SDValue Op0 = Op.getOperand(0); 2291 SDValue Op1 = Op.getOperand(1); 2292 2293 // If we're only demanding signbits, then we can simplify to OR/AND node. 2294 unsigned BitOp = 2295 (Opc == ISD::SMIN || Opc == ISD::UMAX) ? ISD::OR : ISD::AND; 2296 unsigned NumSignBits = 2297 std::min(TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1), 2298 TLO.DAG.ComputeNumSignBits(Op1, DemandedElts, Depth + 1)); 2299 unsigned NumDemandedUpperBits = BitWidth - DemandedBits.countr_zero(); 2300 if (NumSignBits >= NumDemandedUpperBits) 2301 return TLO.CombineTo(Op, TLO.DAG.getNode(BitOp, SDLoc(Op), VT, Op0, Op1)); 2302 2303 // Check if one arg is always less/greater than (or equal) to the other arg. 2304 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 2305 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 2306 switch (Opc) { 2307 case ISD::SMIN: 2308 if (std::optional<bool> IsSLE = KnownBits::sle(Known0, Known1)) 2309 return TLO.CombineTo(Op, *IsSLE ? Op0 : Op1); 2310 if (std::optional<bool> IsSLT = KnownBits::slt(Known0, Known1)) 2311 return TLO.CombineTo(Op, *IsSLT ? Op0 : Op1); 2312 Known = KnownBits::smin(Known0, Known1); 2313 break; 2314 case ISD::SMAX: 2315 if (std::optional<bool> IsSGE = KnownBits::sge(Known0, Known1)) 2316 return TLO.CombineTo(Op, *IsSGE ? Op0 : Op1); 2317 if (std::optional<bool> IsSGT = KnownBits::sgt(Known0, Known1)) 2318 return TLO.CombineTo(Op, *IsSGT ? Op0 : Op1); 2319 Known = KnownBits::smax(Known0, Known1); 2320 break; 2321 case ISD::UMIN: 2322 if (std::optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 2323 return TLO.CombineTo(Op, *IsULE ? Op0 : Op1); 2324 if (std::optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 2325 return TLO.CombineTo(Op, *IsULT ? Op0 : Op1); 2326 Known = KnownBits::umin(Known0, Known1); 2327 break; 2328 case ISD::UMAX: 2329 if (std::optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 2330 return TLO.CombineTo(Op, *IsUGE ? Op0 : Op1); 2331 if (std::optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 2332 return TLO.CombineTo(Op, *IsUGT ? Op0 : Op1); 2333 Known = KnownBits::umax(Known0, Known1); 2334 break; 2335 } 2336 break; 2337 } 2338 case ISD::BITREVERSE: { 2339 SDValue Src = Op.getOperand(0); 2340 APInt DemandedSrcBits = DemandedBits.reverseBits(); 2341 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 2342 Depth + 1)) 2343 return true; 2344 Known.One = Known2.One.reverseBits(); 2345 Known.Zero = Known2.Zero.reverseBits(); 2346 break; 2347 } 2348 case ISD::BSWAP: { 2349 SDValue Src = Op.getOperand(0); 2350 2351 // If the only bits demanded come from one byte of the bswap result, 2352 // just shift the input byte into position to eliminate the bswap. 2353 unsigned NLZ = DemandedBits.countl_zero(); 2354 unsigned NTZ = DemandedBits.countr_zero(); 2355 2356 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 2357 // we need all the bits down to bit 8. Likewise, round NLZ. If we 2358 // have 14 leading zeros, round to 8. 2359 NLZ = alignDown(NLZ, 8); 2360 NTZ = alignDown(NTZ, 8); 2361 // If we need exactly one byte, we can do this transformation. 2362 if (BitWidth - NLZ - NTZ == 8) { 2363 // Replace this with either a left or right shift to get the byte into 2364 // the right place. 2365 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL; 2366 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) { 2367 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ; 2368 SDValue ShAmt = TLO.DAG.getShiftAmountConstant(ShiftAmount, VT, dl); 2369 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt); 2370 return TLO.CombineTo(Op, NewOp); 2371 } 2372 } 2373 2374 APInt DemandedSrcBits = DemandedBits.byteSwap(); 2375 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 2376 Depth + 1)) 2377 return true; 2378 Known.One = Known2.One.byteSwap(); 2379 Known.Zero = Known2.Zero.byteSwap(); 2380 break; 2381 } 2382 case ISD::CTPOP: { 2383 // If only 1 bit is demanded, replace with PARITY as long as we're before 2384 // op legalization. 2385 // FIXME: Limit to scalars for now. 2386 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 2387 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 2388 Op.getOperand(0))); 2389 2390 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2391 break; 2392 } 2393 case ISD::SIGN_EXTEND_INREG: { 2394 SDValue Op0 = Op.getOperand(0); 2395 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2396 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 2397 2398 // If we only care about the highest bit, don't bother shifting right. 2399 if (DemandedBits.isSignMask()) { 2400 unsigned MinSignedBits = 2401 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1); 2402 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 2403 // However if the input is already sign extended we expect the sign 2404 // extension to be dropped altogether later and do not simplify. 2405 if (!AlreadySignExtended) { 2406 // Compute the correct shift amount type, which must be getShiftAmountTy 2407 // for scalar types after legalization. 2408 SDValue ShiftAmt = 2409 TLO.DAG.getShiftAmountConstant(BitWidth - ExVTBits, VT, dl); 2410 return TLO.CombineTo(Op, 2411 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 2412 } 2413 } 2414 2415 // If none of the extended bits are demanded, eliminate the sextinreg. 2416 if (DemandedBits.getActiveBits() <= ExVTBits) 2417 return TLO.CombineTo(Op, Op0); 2418 2419 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 2420 2421 // Since the sign extended bits are demanded, we know that the sign 2422 // bit is demanded. 2423 InputDemandedBits.setBit(ExVTBits - 1); 2424 2425 if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO, 2426 Depth + 1)) 2427 return true; 2428 2429 // If the sign bit of the input is known set or clear, then we know the 2430 // top bits of the result. 2431 2432 // If the input sign bit is known zero, convert this into a zero extension. 2433 if (Known.Zero[ExVTBits - 1]) 2434 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 2435 2436 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 2437 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 2438 Known.One.setBitsFrom(ExVTBits); 2439 Known.Zero &= Mask; 2440 } else { // Input sign bit unknown 2441 Known.Zero &= Mask; 2442 Known.One &= Mask; 2443 } 2444 break; 2445 } 2446 case ISD::BUILD_PAIR: { 2447 EVT HalfVT = Op.getOperand(0).getValueType(); 2448 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 2449 2450 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 2451 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 2452 2453 KnownBits KnownLo, KnownHi; 2454 2455 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 2456 return true; 2457 2458 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 2459 return true; 2460 2461 Known = KnownHi.concat(KnownLo); 2462 break; 2463 } 2464 case ISD::ZERO_EXTEND_VECTOR_INREG: 2465 if (VT.isScalableVector()) 2466 return false; 2467 [[fallthrough]]; 2468 case ISD::ZERO_EXTEND: { 2469 SDValue Src = Op.getOperand(0); 2470 EVT SrcVT = Src.getValueType(); 2471 unsigned InBits = SrcVT.getScalarSizeInBits(); 2472 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; 2473 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 2474 2475 // If none of the top bits are demanded, convert this into an any_extend. 2476 if (DemandedBits.getActiveBits() <= InBits) { 2477 // If we only need the non-extended bits of the bottom element 2478 // then we can just bitcast to the result. 2479 if (IsLE && IsVecInReg && DemandedElts == 1 && 2480 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2481 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2482 2483 unsigned Opc = 2484 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2485 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2486 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2487 } 2488 2489 APInt InDemandedBits = DemandedBits.trunc(InBits); 2490 APInt InDemandedElts = DemandedElts.zext(InElts); 2491 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2492 Depth + 1)) { 2493 Op->dropFlags(SDNodeFlags::NonNeg); 2494 return true; 2495 } 2496 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2497 Known = Known.zext(BitWidth); 2498 2499 // Attempt to avoid multi-use ops if we don't need anything from them. 2500 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2501 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2502 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2503 break; 2504 } 2505 case ISD::SIGN_EXTEND_VECTOR_INREG: 2506 if (VT.isScalableVector()) 2507 return false; 2508 [[fallthrough]]; 2509 case ISD::SIGN_EXTEND: { 2510 SDValue Src = Op.getOperand(0); 2511 EVT SrcVT = Src.getValueType(); 2512 unsigned InBits = SrcVT.getScalarSizeInBits(); 2513 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; 2514 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 2515 2516 APInt InDemandedElts = DemandedElts.zext(InElts); 2517 APInt InDemandedBits = DemandedBits.trunc(InBits); 2518 2519 // Since some of the sign extended bits are demanded, we know that the sign 2520 // bit is demanded. 2521 InDemandedBits.setBit(InBits - 1); 2522 2523 // If none of the top bits are demanded, convert this into an any_extend. 2524 if (DemandedBits.getActiveBits() <= InBits) { 2525 // If we only need the non-extended bits of the bottom element 2526 // then we can just bitcast to the result. 2527 if (IsLE && IsVecInReg && DemandedElts == 1 && 2528 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2529 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2530 2531 // Don't lose an all signbits 0/-1 splat on targets with 0/-1 booleans. 2532 if (getBooleanContents(VT) != ZeroOrNegativeOneBooleanContent || 2533 TLO.DAG.ComputeNumSignBits(Src, InDemandedElts, Depth + 1) != 2534 InBits) { 2535 unsigned Opc = 2536 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2537 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2538 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2539 } 2540 } 2541 2542 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2543 Depth + 1)) 2544 return true; 2545 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2546 2547 // If the sign bit is known one, the top bits match. 2548 Known = Known.sext(BitWidth); 2549 2550 // If the sign bit is known zero, convert this to a zero extend. 2551 if (Known.isNonNegative()) { 2552 unsigned Opc = 2553 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 2554 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) { 2555 SDNodeFlags Flags; 2556 if (!IsVecInReg) 2557 Flags |= SDNodeFlags::NonNeg; 2558 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src, Flags)); 2559 } 2560 } 2561 2562 // Attempt to avoid multi-use ops if we don't need anything from them. 2563 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2564 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2565 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2566 break; 2567 } 2568 case ISD::ANY_EXTEND_VECTOR_INREG: 2569 if (VT.isScalableVector()) 2570 return false; 2571 [[fallthrough]]; 2572 case ISD::ANY_EXTEND: { 2573 SDValue Src = Op.getOperand(0); 2574 EVT SrcVT = Src.getValueType(); 2575 unsigned InBits = SrcVT.getScalarSizeInBits(); 2576 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; 2577 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 2578 2579 // If we only need the bottom element then we can just bitcast. 2580 // TODO: Handle ANY_EXTEND? 2581 if (IsLE && IsVecInReg && DemandedElts == 1 && 2582 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2583 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2584 2585 APInt InDemandedBits = DemandedBits.trunc(InBits); 2586 APInt InDemandedElts = DemandedElts.zext(InElts); 2587 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2588 Depth + 1)) 2589 return true; 2590 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2591 Known = Known.anyext(BitWidth); 2592 2593 // Attempt to avoid multi-use ops if we don't need anything from them. 2594 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2595 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2596 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2597 break; 2598 } 2599 case ISD::TRUNCATE: { 2600 SDValue Src = Op.getOperand(0); 2601 2602 // Simplify the input, using demanded bit information, and compute the known 2603 // zero/one bits live out. 2604 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2605 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2606 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2607 Depth + 1)) { 2608 // Disable the nsw and nuw flags. We can no longer guarantee that we 2609 // won't wrap after simplification. 2610 Op->dropFlags(SDNodeFlags::NoWrap); 2611 return true; 2612 } 2613 Known = Known.trunc(BitWidth); 2614 2615 // Attempt to avoid multi-use ops if we don't need anything from them. 2616 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2617 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2618 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2619 2620 // If the input is only used by this truncate, see if we can shrink it based 2621 // on the known demanded bits. 2622 switch (Src.getOpcode()) { 2623 default: 2624 break; 2625 case ISD::SRL: 2626 // Shrink SRL by a constant if none of the high bits shifted in are 2627 // demanded. 2628 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2629 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2630 // undesirable. 2631 break; 2632 2633 if (Src.getNode()->hasOneUse()) { 2634 if (isTruncateFree(Src, VT) && 2635 !isTruncateFree(Src.getValueType(), VT)) { 2636 // If truncate is only free at trunc(srl), do not turn it into 2637 // srl(trunc). The check is done by first check the truncate is free 2638 // at Src's opcode(srl), then check the truncate is not done by 2639 // referencing sub-register. In test, if both trunc(srl) and 2640 // srl(trunc)'s trunc are free, srl(trunc) performs better. If only 2641 // trunc(srl)'s trunc is free, trunc(srl) is better. 2642 break; 2643 } 2644 2645 std::optional<uint64_t> ShAmtC = 2646 TLO.DAG.getValidShiftAmount(Src, DemandedElts, Depth + 2); 2647 if (!ShAmtC || *ShAmtC >= BitWidth) 2648 break; 2649 uint64_t ShVal = *ShAmtC; 2650 2651 APInt HighBits = 2652 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2653 HighBits.lshrInPlace(ShVal); 2654 HighBits = HighBits.trunc(BitWidth); 2655 if (!(HighBits & DemandedBits)) { 2656 // None of the shifted in bits are needed. Add a truncate of the 2657 // shift input, then shift it. 2658 SDValue NewShAmt = TLO.DAG.getShiftAmountConstant(ShVal, VT, dl); 2659 SDValue NewTrunc = 2660 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2661 return TLO.CombineTo( 2662 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2663 } 2664 } 2665 break; 2666 } 2667 2668 break; 2669 } 2670 case ISD::AssertZext: { 2671 // AssertZext demands all of the high bits, plus any of the low bits 2672 // demanded by its users. 2673 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2674 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2675 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2676 TLO, Depth + 1)) 2677 return true; 2678 2679 Known.Zero |= ~InMask; 2680 Known.One &= (~Known.Zero); 2681 break; 2682 } 2683 case ISD::EXTRACT_VECTOR_ELT: { 2684 SDValue Src = Op.getOperand(0); 2685 SDValue Idx = Op.getOperand(1); 2686 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2687 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2688 2689 if (SrcEltCnt.isScalable()) 2690 return false; 2691 2692 // Demand the bits from every vector element without a constant index. 2693 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2694 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2695 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2696 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2697 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2698 2699 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2700 // anything about the extended bits. 2701 APInt DemandedSrcBits = DemandedBits; 2702 if (BitWidth > EltBitWidth) 2703 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2704 2705 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2706 Depth + 1)) 2707 return true; 2708 2709 // Attempt to avoid multi-use ops if we don't need anything from them. 2710 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2711 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2712 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2713 SDValue NewOp = 2714 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2715 return TLO.CombineTo(Op, NewOp); 2716 } 2717 } 2718 2719 Known = Known2; 2720 if (BitWidth > EltBitWidth) 2721 Known = Known.anyext(BitWidth); 2722 break; 2723 } 2724 case ISD::BITCAST: { 2725 if (VT.isScalableVector()) 2726 return false; 2727 SDValue Src = Op.getOperand(0); 2728 EVT SrcVT = Src.getValueType(); 2729 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2730 2731 // If this is an FP->Int bitcast and if the sign bit is the only 2732 // thing demanded, turn this into a FGETSIGN. 2733 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2734 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2735 SrcVT.isFloatingPoint()) { 2736 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2737 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2738 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2739 SrcVT != MVT::f128) { 2740 // Cannot eliminate/lower SHL for f128 yet. 2741 EVT Ty = OpVTLegal ? VT : MVT::i32; 2742 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2743 // place. We expect the SHL to be eliminated by other optimizations. 2744 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2745 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2746 if (!OpVTLegal && OpVTSizeInBits > 32) 2747 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2748 unsigned ShVal = Op.getValueSizeInBits() - 1; 2749 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2750 return TLO.CombineTo(Op, 2751 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2752 } 2753 } 2754 2755 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2756 // Demand the elt/bit if any of the original elts/bits are demanded. 2757 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { 2758 unsigned Scale = BitWidth / NumSrcEltBits; 2759 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2760 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2761 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2762 for (unsigned i = 0; i != Scale; ++i) { 2763 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 2764 unsigned BitOffset = EltOffset * NumSrcEltBits; 2765 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 2766 if (!Sub.isZero()) { 2767 DemandedSrcBits |= Sub; 2768 for (unsigned j = 0; j != NumElts; ++j) 2769 if (DemandedElts[j]) 2770 DemandedSrcElts.setBit((j * Scale) + i); 2771 } 2772 } 2773 2774 APInt KnownSrcUndef, KnownSrcZero; 2775 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2776 KnownSrcZero, TLO, Depth + 1)) 2777 return true; 2778 2779 KnownBits KnownSrcBits; 2780 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2781 KnownSrcBits, TLO, Depth + 1)) 2782 return true; 2783 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { 2784 // TODO - bigendian once we have test coverage. 2785 unsigned Scale = NumSrcEltBits / BitWidth; 2786 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2787 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2788 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2789 for (unsigned i = 0; i != NumElts; ++i) 2790 if (DemandedElts[i]) { 2791 unsigned Offset = (i % Scale) * BitWidth; 2792 DemandedSrcBits.insertBits(DemandedBits, Offset); 2793 DemandedSrcElts.setBit(i / Scale); 2794 } 2795 2796 if (SrcVT.isVector()) { 2797 APInt KnownSrcUndef, KnownSrcZero; 2798 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2799 KnownSrcZero, TLO, Depth + 1)) 2800 return true; 2801 } 2802 2803 KnownBits KnownSrcBits; 2804 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2805 KnownSrcBits, TLO, Depth + 1)) 2806 return true; 2807 2808 // Attempt to avoid multi-use ops if we don't need anything from them. 2809 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2810 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2811 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2812 SDValue NewOp = TLO.DAG.getBitcast(VT, DemandedSrc); 2813 return TLO.CombineTo(Op, NewOp); 2814 } 2815 } 2816 } 2817 2818 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2819 // recursive call where Known may be useful to the caller. 2820 if (Depth > 0) { 2821 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2822 return false; 2823 } 2824 break; 2825 } 2826 case ISD::MUL: 2827 if (DemandedBits.isPowerOf2()) { 2828 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 2829 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 2830 // odd (has LSB set), then the left-shifted low bit of X is the answer. 2831 unsigned CTZ = DemandedBits.countr_zero(); 2832 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 2833 if (C && C->getAPIntValue().countr_zero() == CTZ) { 2834 SDValue AmtC = TLO.DAG.getShiftAmountConstant(CTZ, VT, dl); 2835 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC); 2836 return TLO.CombineTo(Op, Shl); 2837 } 2838 } 2839 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: 2840 // X * X is odd iff X is odd. 2841 // 'Quadratic Reciprocity': X * X -> 0 for bit[1] 2842 if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) { 2843 SDValue One = TLO.DAG.getConstant(1, dl, VT); 2844 SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One); 2845 return TLO.CombineTo(Op, And1); 2846 } 2847 [[fallthrough]]; 2848 case ISD::ADD: 2849 case ISD::SUB: { 2850 // Add, Sub, and Mul don't demand any bits in positions beyond that 2851 // of the highest bit demanded of them. 2852 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2853 SDNodeFlags Flags = Op.getNode()->getFlags(); 2854 unsigned DemandedBitsLZ = DemandedBits.countl_zero(); 2855 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2856 KnownBits KnownOp0, KnownOp1; 2857 auto GetDemandedBitsLHSMask = [&](APInt Demanded, 2858 const KnownBits &KnownRHS) { 2859 if (Op.getOpcode() == ISD::MUL) 2860 Demanded.clearHighBits(KnownRHS.countMinTrailingZeros()); 2861 return Demanded; 2862 }; 2863 if (SimplifyDemandedBits(Op1, LoMask, DemandedElts, KnownOp1, TLO, 2864 Depth + 1) || 2865 SimplifyDemandedBits(Op0, GetDemandedBitsLHSMask(LoMask, KnownOp1), 2866 DemandedElts, KnownOp0, TLO, Depth + 1) || 2867 // See if the operation should be performed at a smaller bit width. 2868 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2869 // Disable the nsw and nuw flags. We can no longer guarantee that we 2870 // won't wrap after simplification. 2871 Op->dropFlags(SDNodeFlags::NoWrap); 2872 return true; 2873 } 2874 2875 // neg x with only low bit demanded is simply x. 2876 if (Op.getOpcode() == ISD::SUB && DemandedBits.isOne() && 2877 isNullConstant(Op0)) 2878 return TLO.CombineTo(Op, Op1); 2879 2880 // Attempt to avoid multi-use ops if we don't need anything from them. 2881 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2882 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2883 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2884 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2885 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2886 if (DemandedOp0 || DemandedOp1) { 2887 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2888 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2889 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, 2890 Flags & ~SDNodeFlags::NoWrap); 2891 return TLO.CombineTo(Op, NewOp); 2892 } 2893 } 2894 2895 // If we have a constant operand, we may be able to turn it into -1 if we 2896 // do not demand the high bits. This can make the constant smaller to 2897 // encode, allow more general folding, or match specialized instruction 2898 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2899 // is probably not useful (and could be detrimental). 2900 ConstantSDNode *C = isConstOrConstSplat(Op1); 2901 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2902 if (C && !C->isAllOnes() && !C->isOne() && 2903 (C->getAPIntValue() | HighMask).isAllOnes()) { 2904 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2905 // Disable the nsw and nuw flags. We can no longer guarantee that we 2906 // won't wrap after simplification. 2907 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, 2908 Flags & ~SDNodeFlags::NoWrap); 2909 return TLO.CombineTo(Op, NewOp); 2910 } 2911 2912 // Match a multiply with a disguised negated-power-of-2 and convert to a 2913 // an equivalent shift-left amount. 2914 // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2915 auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned { 2916 if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse()) 2917 return 0; 2918 2919 // Don't touch opaque constants. Also, ignore zero and power-of-2 2920 // multiplies. Those will get folded later. 2921 ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1)); 2922 if (MulC && !MulC->isOpaque() && !MulC->isZero() && 2923 !MulC->getAPIntValue().isPowerOf2()) { 2924 APInt UnmaskedC = MulC->getAPIntValue() | HighMask; 2925 if (UnmaskedC.isNegatedPowerOf2()) 2926 return (-UnmaskedC).logBase2(); 2927 } 2928 return 0; 2929 }; 2930 2931 auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, 2932 unsigned ShlAmt) { 2933 SDValue ShlAmtC = TLO.DAG.getShiftAmountConstant(ShlAmt, VT, dl); 2934 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC); 2935 SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl); 2936 return TLO.CombineTo(Op, Res); 2937 }; 2938 2939 if (isOperationLegalOrCustom(ISD::SHL, VT)) { 2940 if (Op.getOpcode() == ISD::ADD) { 2941 // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2942 if (unsigned ShAmt = getShiftLeftAmt(Op0)) 2943 return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt); 2944 // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC)) 2945 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2946 return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt); 2947 } 2948 if (Op.getOpcode() == ISD::SUB) { 2949 // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC)) 2950 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2951 return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt); 2952 } 2953 } 2954 2955 if (Op.getOpcode() == ISD::MUL) { 2956 Known = KnownBits::mul(KnownOp0, KnownOp1); 2957 } else { // Op.getOpcode() is either ISD::ADD or ISD::SUB. 2958 Known = KnownBits::computeForAddSub( 2959 Op.getOpcode() == ISD::ADD, Flags.hasNoSignedWrap(), 2960 Flags.hasNoUnsignedWrap(), KnownOp0, KnownOp1); 2961 } 2962 break; 2963 } 2964 default: 2965 // We also ask the target about intrinsics (which could be specific to it). 2966 if (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2967 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN) { 2968 // TODO: Probably okay to remove after audit; here to reduce change size 2969 // in initial enablement patch for scalable vectors 2970 if (Op.getValueType().isScalableVector()) 2971 break; 2972 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2973 Known, TLO, Depth)) 2974 return true; 2975 break; 2976 } 2977 2978 // Just use computeKnownBits to compute output bits. 2979 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2980 break; 2981 } 2982 2983 // If we know the value of all of the demanded bits, return this as a 2984 // constant. 2985 if (!isTargetCanonicalConstantNode(Op) && 2986 DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2987 // Avoid folding to a constant if any OpaqueConstant is involved. 2988 const SDNode *N = Op.getNode(); 2989 for (SDNode *Op : 2990 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2991 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 2992 if (C->isOpaque()) 2993 return false; 2994 } 2995 if (VT.isInteger()) 2996 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2997 if (VT.isFloatingPoint()) 2998 return TLO.CombineTo( 2999 Op, TLO.DAG.getConstantFP(APFloat(VT.getFltSemantics(), Known.One), 3000 dl, VT)); 3001 } 3002 3003 // A multi use 'all demanded elts' simplify failed to find any knownbits. 3004 // Try again just for the original demanded elts. 3005 // Ensure we do this AFTER constant folding above. 3006 if (HasMultiUse && Known.isUnknown() && !OriginalDemandedElts.isAllOnes()) 3007 Known = TLO.DAG.computeKnownBits(Op, OriginalDemandedElts, Depth); 3008 3009 return false; 3010 } 3011 3012 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 3013 const APInt &DemandedElts, 3014 DAGCombinerInfo &DCI) const { 3015 SelectionDAG &DAG = DCI.DAG; 3016 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 3017 !DCI.isBeforeLegalizeOps()); 3018 3019 APInt KnownUndef, KnownZero; 3020 bool Simplified = 3021 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 3022 if (Simplified) { 3023 DCI.AddToWorklist(Op.getNode()); 3024 DCI.CommitTargetLoweringOpt(TLO); 3025 } 3026 3027 return Simplified; 3028 } 3029 3030 /// Given a vector binary operation and known undefined elements for each input 3031 /// operand, compute whether each element of the output is undefined. 3032 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 3033 const APInt &UndefOp0, 3034 const APInt &UndefOp1) { 3035 EVT VT = BO.getValueType(); 3036 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 3037 "Vector binop only"); 3038 3039 EVT EltVT = VT.getVectorElementType(); 3040 unsigned NumElts = VT.isFixedLengthVector() ? VT.getVectorNumElements() : 1; 3041 assert(UndefOp0.getBitWidth() == NumElts && 3042 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 3043 3044 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 3045 const APInt &UndefVals) { 3046 if (UndefVals[Index]) 3047 return DAG.getUNDEF(EltVT); 3048 3049 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 3050 // Try hard to make sure that the getNode() call is not creating temporary 3051 // nodes. Ignore opaque integers because they do not constant fold. 3052 SDValue Elt = BV->getOperand(Index); 3053 auto *C = dyn_cast<ConstantSDNode>(Elt); 3054 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 3055 return Elt; 3056 } 3057 3058 return SDValue(); 3059 }; 3060 3061 APInt KnownUndef = APInt::getZero(NumElts); 3062 for (unsigned i = 0; i != NumElts; ++i) { 3063 // If both inputs for this element are either constant or undef and match 3064 // the element type, compute the constant/undef result for this element of 3065 // the vector. 3066 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 3067 // not handle FP constants. The code within getNode() should be refactored 3068 // to avoid the danger of creating a bogus temporary node here. 3069 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 3070 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 3071 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 3072 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 3073 KnownUndef.setBit(i); 3074 } 3075 return KnownUndef; 3076 } 3077 3078 bool TargetLowering::SimplifyDemandedVectorElts( 3079 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 3080 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 3081 bool AssumeSingleUse) const { 3082 EVT VT = Op.getValueType(); 3083 unsigned Opcode = Op.getOpcode(); 3084 APInt DemandedElts = OriginalDemandedElts; 3085 unsigned NumElts = DemandedElts.getBitWidth(); 3086 assert(VT.isVector() && "Expected vector op"); 3087 3088 KnownUndef = KnownZero = APInt::getZero(NumElts); 3089 3090 if (!shouldSimplifyDemandedVectorElts(Op, TLO)) 3091 return false; 3092 3093 // TODO: For now we assume we know nothing about scalable vectors. 3094 if (VT.isScalableVector()) 3095 return false; 3096 3097 assert(VT.getVectorNumElements() == NumElts && 3098 "Mask size mismatches value type element count!"); 3099 3100 // Undef operand. 3101 if (Op.isUndef()) { 3102 KnownUndef.setAllBits(); 3103 return false; 3104 } 3105 3106 // If Op has other users, assume that all elements are needed. 3107 if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) 3108 DemandedElts.setAllBits(); 3109 3110 // Not demanding any elements from Op. 3111 if (DemandedElts == 0) { 3112 KnownUndef.setAllBits(); 3113 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3114 } 3115 3116 // Limit search depth. 3117 if (Depth >= SelectionDAG::MaxRecursionDepth) 3118 return false; 3119 3120 SDLoc DL(Op); 3121 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 3122 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 3123 3124 // Helper for demanding the specified elements and all the bits of both binary 3125 // operands. 3126 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 3127 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 3128 TLO.DAG, Depth + 1); 3129 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 3130 TLO.DAG, Depth + 1); 3131 if (NewOp0 || NewOp1) { 3132 SDValue NewOp = 3133 TLO.DAG.getNode(Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, 3134 NewOp1 ? NewOp1 : Op1, Op->getFlags()); 3135 return TLO.CombineTo(Op, NewOp); 3136 } 3137 return false; 3138 }; 3139 3140 switch (Opcode) { 3141 case ISD::SCALAR_TO_VECTOR: { 3142 if (!DemandedElts[0]) { 3143 KnownUndef.setAllBits(); 3144 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3145 } 3146 SDValue ScalarSrc = Op.getOperand(0); 3147 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 3148 SDValue Src = ScalarSrc.getOperand(0); 3149 SDValue Idx = ScalarSrc.getOperand(1); 3150 EVT SrcVT = Src.getValueType(); 3151 3152 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 3153 3154 if (SrcEltCnt.isScalable()) 3155 return false; 3156 3157 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 3158 if (isNullConstant(Idx)) { 3159 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 3160 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 3161 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 3162 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 3163 TLO, Depth + 1)) 3164 return true; 3165 } 3166 } 3167 KnownUndef.setHighBits(NumElts - 1); 3168 break; 3169 } 3170 case ISD::BITCAST: { 3171 SDValue Src = Op.getOperand(0); 3172 EVT SrcVT = Src.getValueType(); 3173 3174 // We only handle vectors here. 3175 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 3176 if (!SrcVT.isVector()) 3177 break; 3178 3179 // Fast handling of 'identity' bitcasts. 3180 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 3181 if (NumSrcElts == NumElts) 3182 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 3183 KnownZero, TLO, Depth + 1); 3184 3185 APInt SrcDemandedElts, SrcZero, SrcUndef; 3186 3187 // Bitcast from 'large element' src vector to 'small element' vector, we 3188 // must demand a source element if any DemandedElt maps to it. 3189 if ((NumElts % NumSrcElts) == 0) { 3190 unsigned Scale = NumElts / NumSrcElts; 3191 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 3192 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 3193 TLO, Depth + 1)) 3194 return true; 3195 3196 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 3197 // of the large element. 3198 // TODO - bigendian once we have test coverage. 3199 if (IsLE) { 3200 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 3201 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 3202 for (unsigned i = 0; i != NumElts; ++i) 3203 if (DemandedElts[i]) { 3204 unsigned Ofs = (i % Scale) * EltSizeInBits; 3205 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 3206 } 3207 3208 KnownBits Known; 3209 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 3210 TLO, Depth + 1)) 3211 return true; 3212 3213 // The bitcast has split each wide element into a number of 3214 // narrow subelements. We have just computed the Known bits 3215 // for wide elements. See if element splitting results in 3216 // some subelements being zero. Only for demanded elements! 3217 for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) { 3218 if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits) 3219 .isAllOnes()) 3220 continue; 3221 for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) { 3222 unsigned Elt = Scale * SrcElt + SubElt; 3223 if (DemandedElts[Elt]) 3224 KnownZero.setBit(Elt); 3225 } 3226 } 3227 } 3228 3229 // If the src element is zero/undef then all the output elements will be - 3230 // only demanded elements are guaranteed to be correct. 3231 for (unsigned i = 0; i != NumSrcElts; ++i) { 3232 if (SrcDemandedElts[i]) { 3233 if (SrcZero[i]) 3234 KnownZero.setBits(i * Scale, (i + 1) * Scale); 3235 if (SrcUndef[i]) 3236 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 3237 } 3238 } 3239 } 3240 3241 // Bitcast from 'small element' src vector to 'large element' vector, we 3242 // demand all smaller source elements covered by the larger demanded element 3243 // of this vector. 3244 if ((NumSrcElts % NumElts) == 0) { 3245 unsigned Scale = NumSrcElts / NumElts; 3246 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 3247 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 3248 TLO, Depth + 1)) 3249 return true; 3250 3251 // If all the src elements covering an output element are zero/undef, then 3252 // the output element will be as well, assuming it was demanded. 3253 for (unsigned i = 0; i != NumElts; ++i) { 3254 if (DemandedElts[i]) { 3255 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 3256 KnownZero.setBit(i); 3257 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 3258 KnownUndef.setBit(i); 3259 } 3260 } 3261 } 3262 break; 3263 } 3264 case ISD::FREEZE: { 3265 SDValue N0 = Op.getOperand(0); 3266 if (TLO.DAG.isGuaranteedNotToBeUndefOrPoison(N0, DemandedElts, 3267 /*PoisonOnly=*/false)) 3268 return TLO.CombineTo(Op, N0); 3269 3270 // TODO: Replace this with the general fold from DAGCombiner::visitFREEZE 3271 // freeze(op(x, ...)) -> op(freeze(x), ...). 3272 if (N0.getOpcode() == ISD::SCALAR_TO_VECTOR && DemandedElts == 1) 3273 return TLO.CombineTo( 3274 Op, TLO.DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, 3275 TLO.DAG.getFreeze(N0.getOperand(0)))); 3276 break; 3277 } 3278 case ISD::BUILD_VECTOR: { 3279 // Check all elements and simplify any unused elements with UNDEF. 3280 if (!DemandedElts.isAllOnes()) { 3281 // Don't simplify BROADCASTS. 3282 if (llvm::any_of(Op->op_values(), 3283 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 3284 SmallVector<SDValue, 32> Ops(Op->ops()); 3285 bool Updated = false; 3286 for (unsigned i = 0; i != NumElts; ++i) { 3287 if (!DemandedElts[i] && !Ops[i].isUndef()) { 3288 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 3289 KnownUndef.setBit(i); 3290 Updated = true; 3291 } 3292 } 3293 if (Updated) 3294 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 3295 } 3296 } 3297 for (unsigned i = 0; i != NumElts; ++i) { 3298 SDValue SrcOp = Op.getOperand(i); 3299 if (SrcOp.isUndef()) { 3300 KnownUndef.setBit(i); 3301 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 3302 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 3303 KnownZero.setBit(i); 3304 } 3305 } 3306 break; 3307 } 3308 case ISD::CONCAT_VECTORS: { 3309 EVT SubVT = Op.getOperand(0).getValueType(); 3310 unsigned NumSubVecs = Op.getNumOperands(); 3311 unsigned NumSubElts = SubVT.getVectorNumElements(); 3312 for (unsigned i = 0; i != NumSubVecs; ++i) { 3313 SDValue SubOp = Op.getOperand(i); 3314 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 3315 APInt SubUndef, SubZero; 3316 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 3317 Depth + 1)) 3318 return true; 3319 KnownUndef.insertBits(SubUndef, i * NumSubElts); 3320 KnownZero.insertBits(SubZero, i * NumSubElts); 3321 } 3322 3323 // Attempt to avoid multi-use ops if we don't need anything from them. 3324 if (!DemandedElts.isAllOnes()) { 3325 bool FoundNewSub = false; 3326 SmallVector<SDValue, 2> DemandedSubOps; 3327 for (unsigned i = 0; i != NumSubVecs; ++i) { 3328 SDValue SubOp = Op.getOperand(i); 3329 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 3330 SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts( 3331 SubOp, SubElts, TLO.DAG, Depth + 1); 3332 DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp); 3333 FoundNewSub = NewSubOp ? true : FoundNewSub; 3334 } 3335 if (FoundNewSub) { 3336 SDValue NewOp = 3337 TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps); 3338 return TLO.CombineTo(Op, NewOp); 3339 } 3340 } 3341 break; 3342 } 3343 case ISD::INSERT_SUBVECTOR: { 3344 // Demand any elements from the subvector and the remainder from the src its 3345 // inserted into. 3346 SDValue Src = Op.getOperand(0); 3347 SDValue Sub = Op.getOperand(1); 3348 uint64_t Idx = Op.getConstantOperandVal(2); 3349 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3350 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3351 APInt DemandedSrcElts = DemandedElts; 3352 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 3353 3354 APInt SubUndef, SubZero; 3355 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 3356 Depth + 1)) 3357 return true; 3358 3359 // If none of the src operand elements are demanded, replace it with undef. 3360 if (!DemandedSrcElts && !Src.isUndef()) 3361 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 3362 TLO.DAG.getUNDEF(VT), Sub, 3363 Op.getOperand(2))); 3364 3365 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 3366 TLO, Depth + 1)) 3367 return true; 3368 KnownUndef.insertBits(SubUndef, Idx); 3369 KnownZero.insertBits(SubZero, Idx); 3370 3371 // Attempt to avoid multi-use ops if we don't need anything from them. 3372 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 3373 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 3374 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 3375 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 3376 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 3377 if (NewSrc || NewSub) { 3378 NewSrc = NewSrc ? NewSrc : Src; 3379 NewSub = NewSub ? NewSub : Sub; 3380 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 3381 NewSub, Op.getOperand(2)); 3382 return TLO.CombineTo(Op, NewOp); 3383 } 3384 } 3385 break; 3386 } 3387 case ISD::EXTRACT_SUBVECTOR: { 3388 // Offset the demanded elts by the subvector index. 3389 SDValue Src = Op.getOperand(0); 3390 if (Src.getValueType().isScalableVector()) 3391 break; 3392 uint64_t Idx = Op.getConstantOperandVal(1); 3393 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3394 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 3395 3396 APInt SrcUndef, SrcZero; 3397 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3398 Depth + 1)) 3399 return true; 3400 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 3401 KnownZero = SrcZero.extractBits(NumElts, Idx); 3402 3403 // Attempt to avoid multi-use ops if we don't need anything from them. 3404 if (!DemandedElts.isAllOnes()) { 3405 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 3406 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 3407 if (NewSrc) { 3408 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 3409 Op.getOperand(1)); 3410 return TLO.CombineTo(Op, NewOp); 3411 } 3412 } 3413 break; 3414 } 3415 case ISD::INSERT_VECTOR_ELT: { 3416 SDValue Vec = Op.getOperand(0); 3417 SDValue Scl = Op.getOperand(1); 3418 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3419 3420 // For a legal, constant insertion index, if we don't need this insertion 3421 // then strip it, else remove it from the demanded elts. 3422 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 3423 unsigned Idx = CIdx->getZExtValue(); 3424 if (!DemandedElts[Idx]) 3425 return TLO.CombineTo(Op, Vec); 3426 3427 APInt DemandedVecElts(DemandedElts); 3428 DemandedVecElts.clearBit(Idx); 3429 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 3430 KnownZero, TLO, Depth + 1)) 3431 return true; 3432 3433 KnownUndef.setBitVal(Idx, Scl.isUndef()); 3434 3435 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 3436 break; 3437 } 3438 3439 APInt VecUndef, VecZero; 3440 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 3441 Depth + 1)) 3442 return true; 3443 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 3444 break; 3445 } 3446 case ISD::VSELECT: { 3447 SDValue Sel = Op.getOperand(0); 3448 SDValue LHS = Op.getOperand(1); 3449 SDValue RHS = Op.getOperand(2); 3450 3451 // Try to transform the select condition based on the current demanded 3452 // elements. 3453 APInt UndefSel, ZeroSel; 3454 if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, ZeroSel, TLO, 3455 Depth + 1)) 3456 return true; 3457 3458 // See if we can simplify either vselect operand. 3459 APInt DemandedLHS(DemandedElts); 3460 APInt DemandedRHS(DemandedElts); 3461 APInt UndefLHS, ZeroLHS; 3462 APInt UndefRHS, ZeroRHS; 3463 if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO, 3464 Depth + 1)) 3465 return true; 3466 if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO, 3467 Depth + 1)) 3468 return true; 3469 3470 KnownUndef = UndefLHS & UndefRHS; 3471 KnownZero = ZeroLHS & ZeroRHS; 3472 3473 // If we know that the selected element is always zero, we don't need the 3474 // select value element. 3475 APInt DemandedSel = DemandedElts & ~KnownZero; 3476 if (DemandedSel != DemandedElts) 3477 if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, ZeroSel, TLO, 3478 Depth + 1)) 3479 return true; 3480 3481 break; 3482 } 3483 case ISD::VECTOR_SHUFFLE: { 3484 SDValue LHS = Op.getOperand(0); 3485 SDValue RHS = Op.getOperand(1); 3486 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 3487 3488 // Collect demanded elements from shuffle operands.. 3489 APInt DemandedLHS(NumElts, 0); 3490 APInt DemandedRHS(NumElts, 0); 3491 for (unsigned i = 0; i != NumElts; ++i) { 3492 int M = ShuffleMask[i]; 3493 if (M < 0 || !DemandedElts[i]) 3494 continue; 3495 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 3496 if (M < (int)NumElts) 3497 DemandedLHS.setBit(M); 3498 else 3499 DemandedRHS.setBit(M - NumElts); 3500 } 3501 3502 // See if we can simplify either shuffle operand. 3503 APInt UndefLHS, ZeroLHS; 3504 APInt UndefRHS, ZeroRHS; 3505 if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO, 3506 Depth + 1)) 3507 return true; 3508 if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO, 3509 Depth + 1)) 3510 return true; 3511 3512 // Simplify mask using undef elements from LHS/RHS. 3513 bool Updated = false; 3514 bool IdentityLHS = true, IdentityRHS = true; 3515 SmallVector<int, 32> NewMask(ShuffleMask); 3516 for (unsigned i = 0; i != NumElts; ++i) { 3517 int &M = NewMask[i]; 3518 if (M < 0) 3519 continue; 3520 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 3521 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 3522 Updated = true; 3523 M = -1; 3524 } 3525 IdentityLHS &= (M < 0) || (M == (int)i); 3526 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 3527 } 3528 3529 // Update legal shuffle masks based on demanded elements if it won't reduce 3530 // to Identity which can cause premature removal of the shuffle mask. 3531 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 3532 SDValue LegalShuffle = 3533 buildLegalVectorShuffle(VT, DL, LHS, RHS, NewMask, TLO.DAG); 3534 if (LegalShuffle) 3535 return TLO.CombineTo(Op, LegalShuffle); 3536 } 3537 3538 // Propagate undef/zero elements from LHS/RHS. 3539 for (unsigned i = 0; i != NumElts; ++i) { 3540 int M = ShuffleMask[i]; 3541 if (M < 0) { 3542 KnownUndef.setBit(i); 3543 } else if (M < (int)NumElts) { 3544 if (UndefLHS[M]) 3545 KnownUndef.setBit(i); 3546 if (ZeroLHS[M]) 3547 KnownZero.setBit(i); 3548 } else { 3549 if (UndefRHS[M - NumElts]) 3550 KnownUndef.setBit(i); 3551 if (ZeroRHS[M - NumElts]) 3552 KnownZero.setBit(i); 3553 } 3554 } 3555 break; 3556 } 3557 case ISD::ANY_EXTEND_VECTOR_INREG: 3558 case ISD::SIGN_EXTEND_VECTOR_INREG: 3559 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3560 APInt SrcUndef, SrcZero; 3561 SDValue Src = Op.getOperand(0); 3562 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3563 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts); 3564 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3565 Depth + 1)) 3566 return true; 3567 KnownZero = SrcZero.zextOrTrunc(NumElts); 3568 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 3569 3570 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 3571 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 3572 DemandedSrcElts == 1) { 3573 // aext - if we just need the bottom element then we can bitcast. 3574 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 3575 } 3576 3577 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 3578 // zext(undef) upper bits are guaranteed to be zero. 3579 if (DemandedElts.isSubsetOf(KnownUndef)) 3580 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3581 KnownUndef.clearAllBits(); 3582 3583 // zext - if we just need the bottom element then we can mask: 3584 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 3585 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && 3586 Op->isOnlyUserOf(Src.getNode()) && 3587 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 3588 SDLoc DL(Op); 3589 EVT SrcVT = Src.getValueType(); 3590 EVT SrcSVT = SrcVT.getScalarType(); 3591 SmallVector<SDValue> MaskElts; 3592 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 3593 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 3594 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 3595 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 3596 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 3597 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 3598 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 3599 } 3600 } 3601 } 3602 break; 3603 } 3604 3605 // TODO: There are more binop opcodes that could be handled here - MIN, 3606 // MAX, saturated math, etc. 3607 case ISD::ADD: { 3608 SDValue Op0 = Op.getOperand(0); 3609 SDValue Op1 = Op.getOperand(1); 3610 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) { 3611 APInt UndefLHS, ZeroLHS; 3612 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3613 Depth + 1, /*AssumeSingleUse*/ true)) 3614 return true; 3615 } 3616 [[fallthrough]]; 3617 } 3618 case ISD::AVGCEILS: 3619 case ISD::AVGCEILU: 3620 case ISD::AVGFLOORS: 3621 case ISD::AVGFLOORU: 3622 case ISD::OR: 3623 case ISD::XOR: 3624 case ISD::SUB: 3625 case ISD::FADD: 3626 case ISD::FSUB: 3627 case ISD::FMUL: 3628 case ISD::FDIV: 3629 case ISD::FREM: { 3630 SDValue Op0 = Op.getOperand(0); 3631 SDValue Op1 = Op.getOperand(1); 3632 3633 APInt UndefRHS, ZeroRHS; 3634 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3635 Depth + 1)) 3636 return true; 3637 APInt UndefLHS, ZeroLHS; 3638 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3639 Depth + 1)) 3640 return true; 3641 3642 KnownZero = ZeroLHS & ZeroRHS; 3643 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 3644 3645 // Attempt to avoid multi-use ops if we don't need anything from them. 3646 // TODO - use KnownUndef to relax the demandedelts? 3647 if (!DemandedElts.isAllOnes()) 3648 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3649 return true; 3650 break; 3651 } 3652 case ISD::SHL: 3653 case ISD::SRL: 3654 case ISD::SRA: 3655 case ISD::ROTL: 3656 case ISD::ROTR: { 3657 SDValue Op0 = Op.getOperand(0); 3658 SDValue Op1 = Op.getOperand(1); 3659 3660 APInt UndefRHS, ZeroRHS; 3661 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3662 Depth + 1)) 3663 return true; 3664 APInt UndefLHS, ZeroLHS; 3665 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3666 Depth + 1)) 3667 return true; 3668 3669 KnownZero = ZeroLHS; 3670 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 3671 3672 // Attempt to avoid multi-use ops if we don't need anything from them. 3673 // TODO - use KnownUndef to relax the demandedelts? 3674 if (!DemandedElts.isAllOnes()) 3675 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3676 return true; 3677 break; 3678 } 3679 case ISD::MUL: 3680 case ISD::MULHU: 3681 case ISD::MULHS: 3682 case ISD::AND: { 3683 SDValue Op0 = Op.getOperand(0); 3684 SDValue Op1 = Op.getOperand(1); 3685 3686 APInt SrcUndef, SrcZero; 3687 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 3688 Depth + 1)) 3689 return true; 3690 // If we know that a demanded element was zero in Op1 we don't need to 3691 // demand it in Op0 - its guaranteed to be zero. 3692 APInt DemandedElts0 = DemandedElts & ~SrcZero; 3693 if (SimplifyDemandedVectorElts(Op0, DemandedElts0, KnownUndef, KnownZero, 3694 TLO, Depth + 1)) 3695 return true; 3696 3697 KnownUndef &= DemandedElts0; 3698 KnownZero &= DemandedElts0; 3699 3700 // If every element pair has a zero/undef then just fold to zero. 3701 // fold (and x, undef) -> 0 / (and x, 0) -> 0 3702 // fold (mul x, undef) -> 0 / (mul x, 0) -> 0 3703 if (DemandedElts.isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef)) 3704 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3705 3706 // If either side has a zero element, then the result element is zero, even 3707 // if the other is an UNDEF. 3708 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 3709 // and then handle 'and' nodes with the rest of the binop opcodes. 3710 KnownZero |= SrcZero; 3711 KnownUndef &= SrcUndef; 3712 KnownUndef &= ~KnownZero; 3713 3714 // Attempt to avoid multi-use ops if we don't need anything from them. 3715 if (!DemandedElts.isAllOnes()) 3716 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3717 return true; 3718 break; 3719 } 3720 case ISD::TRUNCATE: 3721 case ISD::SIGN_EXTEND: 3722 case ISD::ZERO_EXTEND: 3723 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 3724 KnownZero, TLO, Depth + 1)) 3725 return true; 3726 3727 if (!DemandedElts.isAllOnes()) 3728 if (SDValue NewOp = SimplifyMultipleUseDemandedVectorElts( 3729 Op.getOperand(0), DemandedElts, TLO.DAG, Depth + 1)) 3730 return TLO.CombineTo(Op, TLO.DAG.getNode(Opcode, SDLoc(Op), VT, NewOp)); 3731 3732 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 3733 // zext(undef) upper bits are guaranteed to be zero. 3734 if (DemandedElts.isSubsetOf(KnownUndef)) 3735 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3736 KnownUndef.clearAllBits(); 3737 } 3738 break; 3739 default: { 3740 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 3741 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 3742 KnownZero, TLO, Depth)) 3743 return true; 3744 } else { 3745 KnownBits Known; 3746 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 3747 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 3748 TLO, Depth, AssumeSingleUse)) 3749 return true; 3750 } 3751 break; 3752 } 3753 } 3754 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 3755 3756 // Constant fold all undef cases. 3757 // TODO: Handle zero cases as well. 3758 if (DemandedElts.isSubsetOf(KnownUndef)) 3759 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3760 3761 return false; 3762 } 3763 3764 /// Determine which of the bits specified in Mask are known to be either zero or 3765 /// one and return them in the Known. 3766 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3767 KnownBits &Known, 3768 const APInt &DemandedElts, 3769 const SelectionDAG &DAG, 3770 unsigned Depth) const { 3771 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3772 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3773 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3774 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3775 "Should use MaskedValueIsZero if you don't know whether Op" 3776 " is a target node!"); 3777 Known.resetAll(); 3778 } 3779 3780 void TargetLowering::computeKnownBitsForTargetInstr( 3781 GISelKnownBits &Analysis, Register R, KnownBits &Known, 3782 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 3783 unsigned Depth) const { 3784 Known.resetAll(); 3785 } 3786 3787 void TargetLowering::computeKnownBitsForFrameIndex( 3788 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 3789 // The low bits are known zero if the pointer is aligned. 3790 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 3791 } 3792 3793 Align TargetLowering::computeKnownAlignForTargetInstr( 3794 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 3795 unsigned Depth) const { 3796 return Align(1); 3797 } 3798 3799 /// This method can be implemented by targets that want to expose additional 3800 /// information about sign bits to the DAG Combiner. 3801 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3802 const APInt &, 3803 const SelectionDAG &, 3804 unsigned Depth) const { 3805 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3806 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3807 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3808 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3809 "Should use ComputeNumSignBits if you don't know whether Op" 3810 " is a target node!"); 3811 return 1; 3812 } 3813 3814 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3815 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3816 const MachineRegisterInfo &MRI, unsigned Depth) const { 3817 return 1; 3818 } 3819 3820 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3821 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3822 TargetLoweringOpt &TLO, unsigned Depth) const { 3823 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3824 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3825 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3826 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3827 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3828 " is a target node!"); 3829 return false; 3830 } 3831 3832 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3833 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3834 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3835 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3836 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3837 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3838 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3839 "Should use SimplifyDemandedBits if you don't know whether Op" 3840 " is a target node!"); 3841 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3842 return false; 3843 } 3844 3845 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3846 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3847 SelectionDAG &DAG, unsigned Depth) const { 3848 assert( 3849 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3850 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3851 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3852 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3853 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3854 " is a target node!"); 3855 return SDValue(); 3856 } 3857 3858 SDValue 3859 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3860 SDValue N1, MutableArrayRef<int> Mask, 3861 SelectionDAG &DAG) const { 3862 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3863 if (!LegalMask) { 3864 std::swap(N0, N1); 3865 ShuffleVectorSDNode::commuteMask(Mask); 3866 LegalMask = isShuffleMaskLegal(Mask, VT); 3867 } 3868 3869 if (!LegalMask) 3870 return SDValue(); 3871 3872 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3873 } 3874 3875 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3876 return nullptr; 3877 } 3878 3879 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3880 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3881 bool PoisonOnly, unsigned Depth) const { 3882 assert( 3883 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3884 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3885 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3886 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3887 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3888 " is a target node!"); 3889 3890 // If Op can't create undef/poison and none of its operands are undef/poison 3891 // then Op is never undef/poison. 3892 return !canCreateUndefOrPoisonForTargetNode(Op, DemandedElts, DAG, PoisonOnly, 3893 /*ConsiderFlags*/ true, Depth) && 3894 all_of(Op->ops(), [&](SDValue V) { 3895 return DAG.isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly, 3896 Depth + 1); 3897 }); 3898 } 3899 3900 bool TargetLowering::canCreateUndefOrPoisonForTargetNode( 3901 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3902 bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const { 3903 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3904 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3905 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3906 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3907 "Should use canCreateUndefOrPoison if you don't know whether Op" 3908 " is a target node!"); 3909 // Be conservative and return true. 3910 return true; 3911 } 3912 3913 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3914 const SelectionDAG &DAG, 3915 bool SNaN, 3916 unsigned Depth) const { 3917 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3918 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3919 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3920 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3921 "Should use isKnownNeverNaN if you don't know whether Op" 3922 " is a target node!"); 3923 return false; 3924 } 3925 3926 bool TargetLowering::isSplatValueForTargetNode(SDValue Op, 3927 const APInt &DemandedElts, 3928 APInt &UndefElts, 3929 const SelectionDAG &DAG, 3930 unsigned Depth) const { 3931 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3932 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3933 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3934 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3935 "Should use isSplatValue if you don't know whether Op" 3936 " is a target node!"); 3937 return false; 3938 } 3939 3940 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3941 // work with truncating build vectors and vectors with elements of less than 3942 // 8 bits. 3943 bool TargetLowering::isConstTrueVal(SDValue N) const { 3944 if (!N) 3945 return false; 3946 3947 unsigned EltWidth; 3948 APInt CVal; 3949 if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false, 3950 /*AllowTruncation=*/true)) { 3951 CVal = CN->getAPIntValue(); 3952 EltWidth = N.getValueType().getScalarSizeInBits(); 3953 } else 3954 return false; 3955 3956 // If this is a truncating splat, truncate the splat value. 3957 // Otherwise, we may fail to match the expected values below. 3958 if (EltWidth < CVal.getBitWidth()) 3959 CVal = CVal.trunc(EltWidth); 3960 3961 switch (getBooleanContents(N.getValueType())) { 3962 case UndefinedBooleanContent: 3963 return CVal[0]; 3964 case ZeroOrOneBooleanContent: 3965 return CVal.isOne(); 3966 case ZeroOrNegativeOneBooleanContent: 3967 return CVal.isAllOnes(); 3968 } 3969 3970 llvm_unreachable("Invalid boolean contents"); 3971 } 3972 3973 bool TargetLowering::isConstFalseVal(SDValue N) const { 3974 if (!N) 3975 return false; 3976 3977 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3978 if (!CN) { 3979 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3980 if (!BV) 3981 return false; 3982 3983 // Only interested in constant splats, we don't care about undef 3984 // elements in identifying boolean constants and getConstantSplatNode 3985 // returns NULL if all ops are undef; 3986 CN = BV->getConstantSplatNode(); 3987 if (!CN) 3988 return false; 3989 } 3990 3991 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3992 return !CN->getAPIntValue()[0]; 3993 3994 return CN->isZero(); 3995 } 3996 3997 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3998 bool SExt) const { 3999 if (VT == MVT::i1) 4000 return N->isOne(); 4001 4002 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 4003 switch (Cnt) { 4004 case TargetLowering::ZeroOrOneBooleanContent: 4005 // An extended value of 1 is always true, unless its original type is i1, 4006 // in which case it will be sign extended to -1. 4007 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 4008 case TargetLowering::UndefinedBooleanContent: 4009 case TargetLowering::ZeroOrNegativeOneBooleanContent: 4010 return N->isAllOnes() && SExt; 4011 } 4012 llvm_unreachable("Unexpected enumeration."); 4013 } 4014 4015 /// This helper function of SimplifySetCC tries to optimize the comparison when 4016 /// either operand of the SetCC node is a bitwise-and instruction. 4017 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 4018 ISD::CondCode Cond, const SDLoc &DL, 4019 DAGCombinerInfo &DCI) const { 4020 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 4021 std::swap(N0, N1); 4022 4023 SelectionDAG &DAG = DCI.DAG; 4024 EVT OpVT = N0.getValueType(); 4025 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 4026 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 4027 return SDValue(); 4028 4029 // (X & Y) != 0 --> zextOrTrunc(X & Y) 4030 // iff everything but LSB is known zero: 4031 if (Cond == ISD::SETNE && isNullConstant(N1) && 4032 (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent || 4033 getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) { 4034 unsigned NumEltBits = OpVT.getScalarSizeInBits(); 4035 APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1); 4036 if (DAG.MaskedValueIsZero(N0, UpperBits)) 4037 return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT); 4038 } 4039 4040 // Try to eliminate a power-of-2 mask constant by converting to a signbit 4041 // test in a narrow type that we can truncate to with no cost. Examples: 4042 // (i32 X & 32768) == 0 --> (trunc X to i16) >= 0 4043 // (i32 X & 32768) != 0 --> (trunc X to i16) < 0 4044 // TODO: This conservatively checks for type legality on the source and 4045 // destination types. That may inhibit optimizations, but it also 4046 // allows setcc->shift transforms that may be more beneficial. 4047 auto *AndC = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 4048 if (AndC && isNullConstant(N1) && AndC->getAPIntValue().isPowerOf2() && 4049 isTypeLegal(OpVT) && N0.hasOneUse()) { 4050 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), 4051 AndC->getAPIntValue().getActiveBits()); 4052 if (isTruncateFree(OpVT, NarrowVT) && isTypeLegal(NarrowVT)) { 4053 SDValue Trunc = DAG.getZExtOrTrunc(N0.getOperand(0), DL, NarrowVT); 4054 SDValue Zero = DAG.getConstant(0, DL, NarrowVT); 4055 return DAG.getSetCC(DL, VT, Trunc, Zero, 4056 Cond == ISD::SETEQ ? ISD::SETGE : ISD::SETLT); 4057 } 4058 } 4059 4060 // Match these patterns in any of their permutations: 4061 // (X & Y) == Y 4062 // (X & Y) != Y 4063 SDValue X, Y; 4064 if (N0.getOperand(0) == N1) { 4065 X = N0.getOperand(1); 4066 Y = N0.getOperand(0); 4067 } else if (N0.getOperand(1) == N1) { 4068 X = N0.getOperand(0); 4069 Y = N0.getOperand(1); 4070 } else { 4071 return SDValue(); 4072 } 4073 4074 // TODO: We should invert (X & Y) eq/ne 0 -> (X & Y) ne/eq Y if 4075 // `isXAndYEqZeroPreferableToXAndYEqY` is false. This is a bit difficult as 4076 // its liable to create and infinite loop. 4077 SDValue Zero = DAG.getConstant(0, DL, OpVT); 4078 if (isXAndYEqZeroPreferableToXAndYEqY(Cond, OpVT) && 4079 DAG.isKnownToBeAPowerOfTwo(Y)) { 4080 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 4081 // Note that where Y is variable and is known to have at most one bit set 4082 // (for example, if it is Z & 1) we cannot do this; the expressions are not 4083 // equivalent when Y == 0. 4084 assert(OpVT.isInteger()); 4085 Cond = ISD::getSetCCInverse(Cond, OpVT); 4086 if (DCI.isBeforeLegalizeOps() || 4087 isCondCodeLegal(Cond, N0.getSimpleValueType())) 4088 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 4089 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 4090 // If the target supports an 'and-not' or 'and-complement' logic operation, 4091 // try to use that to make a comparison operation more efficient. 4092 // But don't do this transform if the mask is a single bit because there are 4093 // more efficient ways to deal with that case (for example, 'bt' on x86 or 4094 // 'rlwinm' on PPC). 4095 4096 // Bail out if the compare operand that we want to turn into a zero is 4097 // already a zero (otherwise, infinite loop). 4098 if (isNullConstant(Y)) 4099 return SDValue(); 4100 4101 // Transform this into: ~X & Y == 0. 4102 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 4103 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 4104 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 4105 } 4106 4107 return SDValue(); 4108 } 4109 4110 /// There are multiple IR patterns that could be checking whether certain 4111 /// truncation of a signed number would be lossy or not. The pattern which is 4112 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 4113 /// We are looking for the following pattern: (KeptBits is a constant) 4114 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 4115 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 4116 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 4117 /// We will unfold it into the natural trunc+sext pattern: 4118 /// ((%x << C) a>> C) dstcond %x 4119 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 4120 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 4121 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 4122 const SDLoc &DL) const { 4123 // We must be comparing with a constant. 4124 ConstantSDNode *C1; 4125 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 4126 return SDValue(); 4127 4128 // N0 should be: add %x, (1 << (KeptBits-1)) 4129 if (N0->getOpcode() != ISD::ADD) 4130 return SDValue(); 4131 4132 // And we must be 'add'ing a constant. 4133 ConstantSDNode *C01; 4134 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 4135 return SDValue(); 4136 4137 SDValue X = N0->getOperand(0); 4138 EVT XVT = X.getValueType(); 4139 4140 // Validate constants ... 4141 4142 APInt I1 = C1->getAPIntValue(); 4143 4144 ISD::CondCode NewCond; 4145 if (Cond == ISD::CondCode::SETULT) { 4146 NewCond = ISD::CondCode::SETEQ; 4147 } else if (Cond == ISD::CondCode::SETULE) { 4148 NewCond = ISD::CondCode::SETEQ; 4149 // But need to 'canonicalize' the constant. 4150 I1 += 1; 4151 } else if (Cond == ISD::CondCode::SETUGT) { 4152 NewCond = ISD::CondCode::SETNE; 4153 // But need to 'canonicalize' the constant. 4154 I1 += 1; 4155 } else if (Cond == ISD::CondCode::SETUGE) { 4156 NewCond = ISD::CondCode::SETNE; 4157 } else 4158 return SDValue(); 4159 4160 APInt I01 = C01->getAPIntValue(); 4161 4162 auto checkConstants = [&I1, &I01]() -> bool { 4163 // Both of them must be power-of-two, and the constant from setcc is bigger. 4164 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 4165 }; 4166 4167 if (checkConstants()) { 4168 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 4169 } else { 4170 // What if we invert constants? (and the target predicate) 4171 I1.negate(); 4172 I01.negate(); 4173 assert(XVT.isInteger()); 4174 NewCond = getSetCCInverse(NewCond, XVT); 4175 if (!checkConstants()) 4176 return SDValue(); 4177 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 4178 } 4179 4180 // They are power-of-two, so which bit is set? 4181 const unsigned KeptBits = I1.logBase2(); 4182 const unsigned KeptBitsMinusOne = I01.logBase2(); 4183 4184 // Magic! 4185 if (KeptBits != (KeptBitsMinusOne + 1)) 4186 return SDValue(); 4187 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 4188 4189 // We don't want to do this in every single case. 4190 SelectionDAG &DAG = DCI.DAG; 4191 if (!shouldTransformSignedTruncationCheck(XVT, KeptBits)) 4192 return SDValue(); 4193 4194 // Unfold into: sext_inreg(%x) cond %x 4195 // Where 'cond' will be either 'eq' or 'ne'. 4196 SDValue SExtInReg = DAG.getNode( 4197 ISD::SIGN_EXTEND_INREG, DL, XVT, X, 4198 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), KeptBits))); 4199 return DAG.getSetCC(DL, SCCVT, SExtInReg, X, NewCond); 4200 } 4201 4202 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4203 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 4204 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 4205 DAGCombinerInfo &DCI, const SDLoc &DL) const { 4206 assert(isConstOrConstSplat(N1C) && isConstOrConstSplat(N1C)->isZero() && 4207 "Should be a comparison with 0."); 4208 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4209 "Valid only for [in]equality comparisons."); 4210 4211 unsigned NewShiftOpcode; 4212 SDValue X, C, Y; 4213 4214 SelectionDAG &DAG = DCI.DAG; 4215 4216 // Look for '(C l>>/<< Y)'. 4217 auto Match = [&NewShiftOpcode, &X, &C, &Y, &DAG, this](SDValue V) { 4218 // The shift should be one-use. 4219 if (!V.hasOneUse()) 4220 return false; 4221 unsigned OldShiftOpcode = V.getOpcode(); 4222 switch (OldShiftOpcode) { 4223 case ISD::SHL: 4224 NewShiftOpcode = ISD::SRL; 4225 break; 4226 case ISD::SRL: 4227 NewShiftOpcode = ISD::SHL; 4228 break; 4229 default: 4230 return false; // must be a logical shift. 4231 } 4232 // We should be shifting a constant. 4233 // FIXME: best to use isConstantOrConstantVector(). 4234 C = V.getOperand(0); 4235 ConstantSDNode *CC = 4236 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 4237 if (!CC) 4238 return false; 4239 Y = V.getOperand(1); 4240 4241 ConstantSDNode *XC = 4242 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 4243 return shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 4244 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 4245 }; 4246 4247 // LHS of comparison should be an one-use 'and'. 4248 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 4249 return SDValue(); 4250 4251 X = N0.getOperand(0); 4252 SDValue Mask = N0.getOperand(1); 4253 4254 // 'and' is commutative! 4255 if (!Match(Mask)) { 4256 std::swap(X, Mask); 4257 if (!Match(Mask)) 4258 return SDValue(); 4259 } 4260 4261 EVT VT = X.getValueType(); 4262 4263 // Produce: 4264 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 4265 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 4266 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 4267 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 4268 return T2; 4269 } 4270 4271 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 4272 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 4273 /// handle the commuted versions of these patterns. 4274 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 4275 ISD::CondCode Cond, const SDLoc &DL, 4276 DAGCombinerInfo &DCI) const { 4277 unsigned BOpcode = N0.getOpcode(); 4278 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 4279 "Unexpected binop"); 4280 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 4281 4282 // (X + Y) == X --> Y == 0 4283 // (X - Y) == X --> Y == 0 4284 // (X ^ Y) == X --> Y == 0 4285 SelectionDAG &DAG = DCI.DAG; 4286 EVT OpVT = N0.getValueType(); 4287 SDValue X = N0.getOperand(0); 4288 SDValue Y = N0.getOperand(1); 4289 if (X == N1) 4290 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 4291 4292 if (Y != N1) 4293 return SDValue(); 4294 4295 // (X + Y) == Y --> X == 0 4296 // (X ^ Y) == Y --> X == 0 4297 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 4298 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 4299 4300 // The shift would not be valid if the operands are boolean (i1). 4301 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 4302 return SDValue(); 4303 4304 // (X - Y) == Y --> X == Y << 1 4305 SDValue One = DAG.getShiftAmountConstant(1, OpVT, DL); 4306 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 4307 if (!DCI.isCalledByLegalizer()) 4308 DCI.AddToWorklist(YShl1.getNode()); 4309 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 4310 } 4311 4312 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 4313 SDValue N0, const APInt &C1, 4314 ISD::CondCode Cond, const SDLoc &dl, 4315 SelectionDAG &DAG) { 4316 // Look through truncs that don't change the value of a ctpop. 4317 // FIXME: Add vector support? Need to be careful with setcc result type below. 4318 SDValue CTPOP = N0; 4319 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 4320 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 4321 CTPOP = N0.getOperand(0); 4322 4323 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 4324 return SDValue(); 4325 4326 EVT CTVT = CTPOP.getValueType(); 4327 SDValue CTOp = CTPOP.getOperand(0); 4328 4329 // Expand a power-of-2-or-zero comparison based on ctpop: 4330 // (ctpop x) u< 2 -> (x & x-1) == 0 4331 // (ctpop x) u> 1 -> (x & x-1) != 0 4332 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 4333 // Keep the CTPOP if it is a cheap vector op. 4334 if (CTVT.isVector() && TLI.isCtpopFast(CTVT)) 4335 return SDValue(); 4336 4337 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 4338 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 4339 return SDValue(); 4340 if (C1 == 0 && (Cond == ISD::SETULT)) 4341 return SDValue(); // This is handled elsewhere. 4342 4343 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 4344 4345 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 4346 SDValue Result = CTOp; 4347 for (unsigned i = 0; i < Passes; i++) { 4348 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 4349 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 4350 } 4351 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 4352 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 4353 } 4354 4355 // Expand a power-of-2 comparison based on ctpop 4356 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 4357 // Keep the CTPOP if it is cheap. 4358 if (TLI.isCtpopFast(CTVT)) 4359 return SDValue(); 4360 4361 SDValue Zero = DAG.getConstant(0, dl, CTVT); 4362 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 4363 assert(CTVT.isInteger()); 4364 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 4365 4366 // Its not uncommon for known-never-zero X to exist in (ctpop X) eq/ne 1, so 4367 // check before emitting a potentially unnecessary op. 4368 if (DAG.isKnownNeverZero(CTOp)) { 4369 // (ctpop x) == 1 --> (x & x-1) == 0 4370 // (ctpop x) != 1 --> (x & x-1) != 0 4371 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 4372 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 4373 return RHS; 4374 } 4375 4376 // (ctpop x) == 1 --> (x ^ x-1) > x-1 4377 // (ctpop x) != 1 --> (x ^ x-1) <= x-1 4378 SDValue Xor = DAG.getNode(ISD::XOR, dl, CTVT, CTOp, Add); 4379 ISD::CondCode CmpCond = Cond == ISD::SETEQ ? ISD::SETUGT : ISD::SETULE; 4380 return DAG.getSetCC(dl, VT, Xor, Add, CmpCond); 4381 } 4382 4383 return SDValue(); 4384 } 4385 4386 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, 4387 ISD::CondCode Cond, const SDLoc &dl, 4388 SelectionDAG &DAG) { 4389 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 4390 return SDValue(); 4391 4392 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 4393 if (!C1 || !(C1->isZero() || C1->isAllOnes())) 4394 return SDValue(); 4395 4396 auto getRotateSource = [](SDValue X) { 4397 if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR) 4398 return X.getOperand(0); 4399 return SDValue(); 4400 }; 4401 4402 // Peek through a rotated value compared against 0 or -1: 4403 // (rot X, Y) == 0/-1 --> X == 0/-1 4404 // (rot X, Y) != 0/-1 --> X != 0/-1 4405 if (SDValue R = getRotateSource(N0)) 4406 return DAG.getSetCC(dl, VT, R, N1, Cond); 4407 4408 // Peek through an 'or' of a rotated value compared against 0: 4409 // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0 4410 // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0 4411 // 4412 // TODO: Add the 'and' with -1 sibling. 4413 // TODO: Recurse through a series of 'or' ops to find the rotate. 4414 EVT OpVT = N0.getValueType(); 4415 if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) { 4416 if (SDValue R = getRotateSource(N0.getOperand(0))) { 4417 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1)); 4418 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4419 } 4420 if (SDValue R = getRotateSource(N0.getOperand(1))) { 4421 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0)); 4422 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4423 } 4424 } 4425 4426 return SDValue(); 4427 } 4428 4429 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1, 4430 ISD::CondCode Cond, const SDLoc &dl, 4431 SelectionDAG &DAG) { 4432 // If we are testing for all-bits-clear, we might be able to do that with 4433 // less shifting since bit-order does not matter. 4434 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 4435 return SDValue(); 4436 4437 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 4438 if (!C1 || !C1->isZero()) 4439 return SDValue(); 4440 4441 if (!N0.hasOneUse() || 4442 (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR)) 4443 return SDValue(); 4444 4445 unsigned BitWidth = N0.getScalarValueSizeInBits(); 4446 auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2)); 4447 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 4448 return SDValue(); 4449 4450 // Canonicalize fshr as fshl to reduce pattern-matching. 4451 unsigned ShAmt = ShAmtC->getZExtValue(); 4452 if (N0.getOpcode() == ISD::FSHR) 4453 ShAmt = BitWidth - ShAmt; 4454 4455 // Match an 'or' with a specific operand 'Other' in either commuted variant. 4456 SDValue X, Y; 4457 auto matchOr = [&X, &Y](SDValue Or, SDValue Other) { 4458 if (Or.getOpcode() != ISD::OR || !Or.hasOneUse()) 4459 return false; 4460 if (Or.getOperand(0) == Other) { 4461 X = Or.getOperand(0); 4462 Y = Or.getOperand(1); 4463 return true; 4464 } 4465 if (Or.getOperand(1) == Other) { 4466 X = Or.getOperand(1); 4467 Y = Or.getOperand(0); 4468 return true; 4469 } 4470 return false; 4471 }; 4472 4473 EVT OpVT = N0.getValueType(); 4474 EVT ShAmtVT = N0.getOperand(2).getValueType(); 4475 SDValue F0 = N0.getOperand(0); 4476 SDValue F1 = N0.getOperand(1); 4477 if (matchOr(F0, F1)) { 4478 // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0 4479 SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT); 4480 SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt); 4481 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 4482 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4483 } 4484 if (matchOr(F1, F0)) { 4485 // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0 4486 SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT); 4487 SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt); 4488 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 4489 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4490 } 4491 4492 return SDValue(); 4493 } 4494 4495 /// Try to simplify a setcc built with the specified operands and cc. If it is 4496 /// unable to simplify it, return a null SDValue. 4497 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 4498 ISD::CondCode Cond, bool foldBooleans, 4499 DAGCombinerInfo &DCI, 4500 const SDLoc &dl) const { 4501 SelectionDAG &DAG = DCI.DAG; 4502 const DataLayout &Layout = DAG.getDataLayout(); 4503 EVT OpVT = N0.getValueType(); 4504 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4505 4506 // Constant fold or commute setcc. 4507 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 4508 return Fold; 4509 4510 bool N0ConstOrSplat = 4511 isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4512 bool N1ConstOrSplat = 4513 isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4514 4515 // Canonicalize toward having the constant on the RHS. 4516 // TODO: Handle non-splat vector constants. All undef causes trouble. 4517 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 4518 // infinite loop here when we encounter one. 4519 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 4520 if (N0ConstOrSplat && !N1ConstOrSplat && 4521 (DCI.isBeforeLegalizeOps() || 4522 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 4523 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4524 4525 // If we have a subtract with the same 2 non-constant operands as this setcc 4526 // -- but in reverse order -- then try to commute the operands of this setcc 4527 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 4528 // instruction on some targets. 4529 if (!N0ConstOrSplat && !N1ConstOrSplat && 4530 (DCI.isBeforeLegalizeOps() || 4531 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 4532 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 4533 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 4534 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4535 4536 if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG)) 4537 return V; 4538 4539 if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG)) 4540 return V; 4541 4542 if (auto *N1C = isConstOrConstSplat(N1)) { 4543 const APInt &C1 = N1C->getAPIntValue(); 4544 4545 // Optimize some CTPOP cases. 4546 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 4547 return V; 4548 4549 // For equality to 0 of a no-wrap multiply, decompose and test each op: 4550 // X * Y == 0 --> (X == 0) || (Y == 0) 4551 // X * Y != 0 --> (X != 0) && (Y != 0) 4552 // TODO: This bails out if minsize is set, but if the target doesn't have a 4553 // single instruction multiply for this type, it would likely be 4554 // smaller to decompose. 4555 if (C1.isZero() && (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4556 N0.getOpcode() == ISD::MUL && N0.hasOneUse() && 4557 (N0->getFlags().hasNoUnsignedWrap() || 4558 N0->getFlags().hasNoSignedWrap()) && 4559 !Attr.hasFnAttr(Attribute::MinSize)) { 4560 SDValue IsXZero = DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4561 SDValue IsYZero = DAG.getSetCC(dl, VT, N0.getOperand(1), N1, Cond); 4562 unsigned LogicOp = Cond == ISD::SETEQ ? ISD::OR : ISD::AND; 4563 return DAG.getNode(LogicOp, dl, VT, IsXZero, IsYZero); 4564 } 4565 4566 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 4567 // equality comparison, then we're just comparing whether X itself is 4568 // zero. 4569 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 4570 N0.getOperand(0).getOpcode() == ISD::CTLZ && 4571 llvm::has_single_bit<uint32_t>(N0.getScalarValueSizeInBits())) { 4572 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 4573 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4574 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 4575 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 4576 // (srl (ctlz x), 5) == 0 -> X != 0 4577 // (srl (ctlz x), 5) != 1 -> X != 0 4578 Cond = ISD::SETNE; 4579 } else { 4580 // (srl (ctlz x), 5) != 0 -> X == 0 4581 // (srl (ctlz x), 5) == 1 -> X == 0 4582 Cond = ISD::SETEQ; 4583 } 4584 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 4585 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 4586 Cond); 4587 } 4588 } 4589 } 4590 } 4591 4592 // FIXME: Support vectors. 4593 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4594 const APInt &C1 = N1C->getAPIntValue(); 4595 4596 // (zext x) == C --> x == (trunc C) 4597 // (sext x) == C --> x == (trunc C) 4598 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4599 DCI.isBeforeLegalize() && N0->hasOneUse()) { 4600 unsigned MinBits = N0.getValueSizeInBits(); 4601 SDValue PreExt; 4602 bool Signed = false; 4603 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 4604 // ZExt 4605 MinBits = N0->getOperand(0).getValueSizeInBits(); 4606 PreExt = N0->getOperand(0); 4607 } else if (N0->getOpcode() == ISD::AND) { 4608 // DAGCombine turns costly ZExts into ANDs 4609 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 4610 if ((C->getAPIntValue()+1).isPowerOf2()) { 4611 MinBits = C->getAPIntValue().countr_one(); 4612 PreExt = N0->getOperand(0); 4613 } 4614 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 4615 // SExt 4616 MinBits = N0->getOperand(0).getValueSizeInBits(); 4617 PreExt = N0->getOperand(0); 4618 Signed = true; 4619 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 4620 // ZEXTLOAD / SEXTLOAD 4621 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 4622 MinBits = LN0->getMemoryVT().getSizeInBits(); 4623 PreExt = N0; 4624 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 4625 Signed = true; 4626 MinBits = LN0->getMemoryVT().getSizeInBits(); 4627 PreExt = N0; 4628 } 4629 } 4630 4631 // Figure out how many bits we need to preserve this constant. 4632 unsigned ReqdBits = Signed ? C1.getSignificantBits() : C1.getActiveBits(); 4633 4634 // Make sure we're not losing bits from the constant. 4635 if (MinBits > 0 && 4636 MinBits < C1.getBitWidth() && 4637 MinBits >= ReqdBits) { 4638 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 4639 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 4640 // Will get folded away. 4641 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 4642 if (MinBits == 1 && C1 == 1) 4643 // Invert the condition. 4644 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 4645 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4646 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 4647 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 4648 } 4649 4650 // If truncating the setcc operands is not desirable, we can still 4651 // simplify the expression in some cases: 4652 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 4653 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 4654 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 4655 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 4656 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 4657 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 4658 SDValue TopSetCC = N0->getOperand(0); 4659 unsigned N0Opc = N0->getOpcode(); 4660 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 4661 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 4662 TopSetCC.getOpcode() == ISD::SETCC && 4663 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 4664 (isConstFalseVal(N1) || 4665 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 4666 4667 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 4668 (!N1C->isZero() && Cond == ISD::SETNE); 4669 4670 if (!Inverse) 4671 return TopSetCC; 4672 4673 ISD::CondCode InvCond = ISD::getSetCCInverse( 4674 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 4675 TopSetCC.getOperand(0).getValueType()); 4676 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 4677 TopSetCC.getOperand(1), 4678 InvCond); 4679 } 4680 } 4681 } 4682 4683 // If the LHS is '(and load, const)', the RHS is 0, the test is for 4684 // equality or unsigned, and all 1 bits of the const are in the same 4685 // partial word, see if we can shorten the load. 4686 if (DCI.isBeforeLegalize() && 4687 !ISD::isSignedIntSetCC(Cond) && 4688 N0.getOpcode() == ISD::AND && C1 == 0 && 4689 N0.getNode()->hasOneUse() && 4690 isa<LoadSDNode>(N0.getOperand(0)) && 4691 N0.getOperand(0).getNode()->hasOneUse() && 4692 isa<ConstantSDNode>(N0.getOperand(1))) { 4693 auto *Lod = cast<LoadSDNode>(N0.getOperand(0)); 4694 APInt bestMask; 4695 unsigned bestWidth = 0, bestOffset = 0; 4696 if (Lod->isSimple() && Lod->isUnindexed() && 4697 (Lod->getMemoryVT().isByteSized() || 4698 isPaddedAtMostSignificantBitsWhenStored(Lod->getMemoryVT()))) { 4699 unsigned memWidth = Lod->getMemoryVT().getStoreSizeInBits(); 4700 unsigned origWidth = N0.getValueSizeInBits(); 4701 unsigned maskWidth = origWidth; 4702 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 4703 // 8 bits, but have to be careful... 4704 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 4705 origWidth = Lod->getMemoryVT().getSizeInBits(); 4706 const APInt &Mask = N0.getConstantOperandAPInt(1); 4707 // Only consider power-of-2 widths (and at least one byte) as candiates 4708 // for the narrowed load. 4709 for (unsigned width = 8; width < origWidth; width *= 2) { 4710 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), width); 4711 if (!shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) 4712 continue; 4713 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 4714 // Avoid accessing any padding here for now (we could use memWidth 4715 // instead of origWidth here otherwise). 4716 unsigned maxOffset = origWidth - width; 4717 for (unsigned offset = 0; offset <= maxOffset; offset += 8) { 4718 if (Mask.isSubsetOf(newMask)) { 4719 unsigned ptrOffset = 4720 Layout.isLittleEndian() ? offset : memWidth - width - offset; 4721 unsigned IsFast = 0; 4722 Align NewAlign = commonAlignment(Lod->getAlign(), ptrOffset / 8); 4723 if (allowsMemoryAccess( 4724 *DAG.getContext(), Layout, newVT, Lod->getAddressSpace(), 4725 NewAlign, Lod->getMemOperand()->getFlags(), &IsFast) && 4726 IsFast) { 4727 bestOffset = ptrOffset / 8; 4728 bestMask = Mask.lshr(offset); 4729 bestWidth = width; 4730 break; 4731 } 4732 } 4733 newMask <<= 8; 4734 } 4735 if (bestWidth) 4736 break; 4737 } 4738 } 4739 if (bestWidth) { 4740 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 4741 SDValue Ptr = Lod->getBasePtr(); 4742 if (bestOffset != 0) 4743 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(bestOffset)); 4744 SDValue NewLoad = 4745 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 4746 Lod->getPointerInfo().getWithOffset(bestOffset), 4747 Lod->getOriginalAlign()); 4748 SDValue And = 4749 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 4750 DAG.getConstant(bestMask.trunc(bestWidth), dl, newVT)); 4751 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0LL, dl, newVT), Cond); 4752 } 4753 } 4754 4755 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 4756 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 4757 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 4758 4759 // If the comparison constant has bits in the upper part, the 4760 // zero-extended value could never match. 4761 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 4762 C1.getBitWidth() - InSize))) { 4763 switch (Cond) { 4764 case ISD::SETUGT: 4765 case ISD::SETUGE: 4766 case ISD::SETEQ: 4767 return DAG.getConstant(0, dl, VT); 4768 case ISD::SETULT: 4769 case ISD::SETULE: 4770 case ISD::SETNE: 4771 return DAG.getConstant(1, dl, VT); 4772 case ISD::SETGT: 4773 case ISD::SETGE: 4774 // True if the sign bit of C1 is set. 4775 return DAG.getConstant(C1.isNegative(), dl, VT); 4776 case ISD::SETLT: 4777 case ISD::SETLE: 4778 // True if the sign bit of C1 isn't set. 4779 return DAG.getConstant(C1.isNonNegative(), dl, VT); 4780 default: 4781 break; 4782 } 4783 } 4784 4785 // Otherwise, we can perform the comparison with the low bits. 4786 switch (Cond) { 4787 case ISD::SETEQ: 4788 case ISD::SETNE: 4789 case ISD::SETUGT: 4790 case ISD::SETUGE: 4791 case ISD::SETULT: 4792 case ISD::SETULE: { 4793 EVT newVT = N0.getOperand(0).getValueType(); 4794 // FIXME: Should use isNarrowingProfitable. 4795 if (DCI.isBeforeLegalizeOps() || 4796 (isOperationLegal(ISD::SETCC, newVT) && 4797 isCondCodeLegal(Cond, newVT.getSimpleVT()) && 4798 isTypeDesirableForOp(ISD::SETCC, newVT))) { 4799 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 4800 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 4801 4802 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 4803 NewConst, Cond); 4804 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 4805 } 4806 break; 4807 } 4808 default: 4809 break; // todo, be more careful with signed comparisons 4810 } 4811 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 4812 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4813 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 4814 OpVT)) { 4815 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 4816 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 4817 EVT ExtDstTy = N0.getValueType(); 4818 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 4819 4820 // If the constant doesn't fit into the number of bits for the source of 4821 // the sign extension, it is impossible for both sides to be equal. 4822 if (C1.getSignificantBits() > ExtSrcTyBits) 4823 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 4824 4825 assert(ExtDstTy == N0.getOperand(0).getValueType() && 4826 ExtDstTy != ExtSrcTy && "Unexpected types!"); 4827 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 4828 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 4829 DAG.getConstant(Imm, dl, ExtDstTy)); 4830 if (!DCI.isCalledByLegalizer()) 4831 DCI.AddToWorklist(ZextOp.getNode()); 4832 // Otherwise, make this a use of a zext. 4833 return DAG.getSetCC(dl, VT, ZextOp, 4834 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 4835 } else if ((N1C->isZero() || N1C->isOne()) && 4836 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4837 // SETCC (X), [0|1], [EQ|NE] -> X if X is known 0/1. i1 types are 4838 // excluded as they are handled below whilst checking for foldBooleans. 4839 if ((N0.getOpcode() == ISD::SETCC || VT.getScalarType() != MVT::i1) && 4840 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 4841 (N0.getValueType() == MVT::i1 || 4842 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4843 DAG.MaskedValueIsZero( 4844 N0, APInt::getBitsSetFrom(N0.getValueSizeInBits(), 1))) { 4845 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 4846 if (TrueWhenTrue) 4847 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 4848 // Invert the condition. 4849 if (N0.getOpcode() == ISD::SETCC) { 4850 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 4851 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 4852 if (DCI.isBeforeLegalizeOps() || 4853 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 4854 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 4855 } 4856 } 4857 4858 if ((N0.getOpcode() == ISD::XOR || 4859 (N0.getOpcode() == ISD::AND && 4860 N0.getOperand(0).getOpcode() == ISD::XOR && 4861 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 4862 isOneConstant(N0.getOperand(1))) { 4863 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 4864 // can only do this if the top bits are known zero. 4865 unsigned BitWidth = N0.getValueSizeInBits(); 4866 if (DAG.MaskedValueIsZero(N0, 4867 APInt::getHighBitsSet(BitWidth, 4868 BitWidth-1))) { 4869 // Okay, get the un-inverted input value. 4870 SDValue Val; 4871 if (N0.getOpcode() == ISD::XOR) { 4872 Val = N0.getOperand(0); 4873 } else { 4874 assert(N0.getOpcode() == ISD::AND && 4875 N0.getOperand(0).getOpcode() == ISD::XOR); 4876 // ((X^1)&1)^1 -> X & 1 4877 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 4878 N0.getOperand(0).getOperand(0), 4879 N0.getOperand(1)); 4880 } 4881 4882 return DAG.getSetCC(dl, VT, Val, N1, 4883 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4884 } 4885 } else if (N1C->isOne()) { 4886 SDValue Op0 = N0; 4887 if (Op0.getOpcode() == ISD::TRUNCATE) 4888 Op0 = Op0.getOperand(0); 4889 4890 if ((Op0.getOpcode() == ISD::XOR) && 4891 Op0.getOperand(0).getOpcode() == ISD::SETCC && 4892 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 4893 SDValue XorLHS = Op0.getOperand(0); 4894 SDValue XorRHS = Op0.getOperand(1); 4895 // Ensure that the input setccs return an i1 type or 0/1 value. 4896 if (Op0.getValueType() == MVT::i1 || 4897 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 4898 ZeroOrOneBooleanContent && 4899 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 4900 ZeroOrOneBooleanContent)) { 4901 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 4902 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 4903 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 4904 } 4905 } 4906 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 4907 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 4908 if (Op0.getValueType().bitsGT(VT)) 4909 Op0 = DAG.getNode(ISD::AND, dl, VT, 4910 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 4911 DAG.getConstant(1, dl, VT)); 4912 else if (Op0.getValueType().bitsLT(VT)) 4913 Op0 = DAG.getNode(ISD::AND, dl, VT, 4914 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 4915 DAG.getConstant(1, dl, VT)); 4916 4917 return DAG.getSetCC(dl, VT, Op0, 4918 DAG.getConstant(0, dl, Op0.getValueType()), 4919 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4920 } 4921 if (Op0.getOpcode() == ISD::AssertZext && 4922 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 4923 return DAG.getSetCC(dl, VT, Op0, 4924 DAG.getConstant(0, dl, Op0.getValueType()), 4925 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4926 } 4927 } 4928 4929 // Given: 4930 // icmp eq/ne (urem %x, %y), 0 4931 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 4932 // icmp eq/ne %x, 0 4933 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 4934 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4935 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 4936 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 4937 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 4938 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4939 } 4940 4941 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 4942 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 4943 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4944 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 4945 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 4946 N1C->isAllOnes()) { 4947 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4948 DAG.getConstant(0, dl, OpVT), 4949 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 4950 } 4951 4952 if (SDValue V = 4953 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 4954 return V; 4955 } 4956 4957 // These simplifications apply to splat vectors as well. 4958 // TODO: Handle more splat vector cases. 4959 if (auto *N1C = isConstOrConstSplat(N1)) { 4960 const APInt &C1 = N1C->getAPIntValue(); 4961 4962 APInt MinVal, MaxVal; 4963 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 4964 if (ISD::isSignedIntSetCC(Cond)) { 4965 MinVal = APInt::getSignedMinValue(OperandBitSize); 4966 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 4967 } else { 4968 MinVal = APInt::getMinValue(OperandBitSize); 4969 MaxVal = APInt::getMaxValue(OperandBitSize); 4970 } 4971 4972 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 4973 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 4974 // X >= MIN --> true 4975 if (C1 == MinVal) 4976 return DAG.getBoolConstant(true, dl, VT, OpVT); 4977 4978 if (!VT.isVector()) { // TODO: Support this for vectors. 4979 // X >= C0 --> X > (C0 - 1) 4980 APInt C = C1 - 1; 4981 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 4982 if ((DCI.isBeforeLegalizeOps() || 4983 isCondCodeLegal(NewCC, OpVT.getSimpleVT())) && 4984 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4985 isLegalICmpImmediate(C.getSExtValue())))) { 4986 return DAG.getSetCC(dl, VT, N0, 4987 DAG.getConstant(C, dl, N1.getValueType()), 4988 NewCC); 4989 } 4990 } 4991 } 4992 4993 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 4994 // X <= MAX --> true 4995 if (C1 == MaxVal) 4996 return DAG.getBoolConstant(true, dl, VT, OpVT); 4997 4998 // X <= C0 --> X < (C0 + 1) 4999 if (!VT.isVector()) { // TODO: Support this for vectors. 5000 APInt C = C1 + 1; 5001 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 5002 if ((DCI.isBeforeLegalizeOps() || 5003 isCondCodeLegal(NewCC, OpVT.getSimpleVT())) && 5004 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 5005 isLegalICmpImmediate(C.getSExtValue())))) { 5006 return DAG.getSetCC(dl, VT, N0, 5007 DAG.getConstant(C, dl, N1.getValueType()), 5008 NewCC); 5009 } 5010 } 5011 } 5012 5013 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 5014 if (C1 == MinVal) 5015 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 5016 5017 // TODO: Support this for vectors after legalize ops. 5018 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 5019 // Canonicalize setlt X, Max --> setne X, Max 5020 if (C1 == MaxVal) 5021 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 5022 5023 // If we have setult X, 1, turn it into seteq X, 0 5024 if (C1 == MinVal+1) 5025 return DAG.getSetCC(dl, VT, N0, 5026 DAG.getConstant(MinVal, dl, N0.getValueType()), 5027 ISD::SETEQ); 5028 } 5029 } 5030 5031 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 5032 if (C1 == MaxVal) 5033 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 5034 5035 // TODO: Support this for vectors after legalize ops. 5036 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 5037 // Canonicalize setgt X, Min --> setne X, Min 5038 if (C1 == MinVal) 5039 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 5040 5041 // If we have setugt X, Max-1, turn it into seteq X, Max 5042 if (C1 == MaxVal-1) 5043 return DAG.getSetCC(dl, VT, N0, 5044 DAG.getConstant(MaxVal, dl, N0.getValueType()), 5045 ISD::SETEQ); 5046 } 5047 } 5048 5049 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 5050 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 5051 if (C1.isZero()) 5052 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 5053 VT, N0, N1, Cond, DCI, dl)) 5054 return CC; 5055 5056 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 5057 // For example, when high 32-bits of i64 X are known clear: 5058 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 5059 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 5060 bool CmpZero = N1C->isZero(); 5061 bool CmpNegOne = N1C->isAllOnes(); 5062 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 5063 // Match or(lo,shl(hi,bw/2)) pattern. 5064 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 5065 unsigned EltBits = V.getScalarValueSizeInBits(); 5066 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 5067 return false; 5068 SDValue LHS = V.getOperand(0); 5069 SDValue RHS = V.getOperand(1); 5070 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 5071 // Unshifted element must have zero upperbits. 5072 if (RHS.getOpcode() == ISD::SHL && 5073 isa<ConstantSDNode>(RHS.getOperand(1)) && 5074 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 5075 DAG.MaskedValueIsZero(LHS, HiBits)) { 5076 Lo = LHS; 5077 Hi = RHS.getOperand(0); 5078 return true; 5079 } 5080 if (LHS.getOpcode() == ISD::SHL && 5081 isa<ConstantSDNode>(LHS.getOperand(1)) && 5082 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 5083 DAG.MaskedValueIsZero(RHS, HiBits)) { 5084 Lo = RHS; 5085 Hi = LHS.getOperand(0); 5086 return true; 5087 } 5088 return false; 5089 }; 5090 5091 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 5092 unsigned EltBits = N0.getScalarValueSizeInBits(); 5093 unsigned HalfBits = EltBits / 2; 5094 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 5095 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 5096 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 5097 SDValue NewN0 = 5098 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 5099 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 5100 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 5101 }; 5102 5103 SDValue Lo, Hi; 5104 if (IsConcat(N0, Lo, Hi)) 5105 return MergeConcat(Lo, Hi); 5106 5107 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 5108 SDValue Lo0, Lo1, Hi0, Hi1; 5109 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 5110 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 5111 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 5112 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 5113 } 5114 } 5115 } 5116 } 5117 5118 // If we have "setcc X, C0", check to see if we can shrink the immediate 5119 // by changing cc. 5120 // TODO: Support this for vectors after legalize ops. 5121 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 5122 // SETUGT X, SINTMAX -> SETLT X, 0 5123 // SETUGE X, SINTMIN -> SETLT X, 0 5124 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 5125 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 5126 return DAG.getSetCC(dl, VT, N0, 5127 DAG.getConstant(0, dl, N1.getValueType()), 5128 ISD::SETLT); 5129 5130 // SETULT X, SINTMIN -> SETGT X, -1 5131 // SETULE X, SINTMAX -> SETGT X, -1 5132 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 5133 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 5134 return DAG.getSetCC(dl, VT, N0, 5135 DAG.getAllOnesConstant(dl, N1.getValueType()), 5136 ISD::SETGT); 5137 } 5138 } 5139 5140 // Back to non-vector simplifications. 5141 // TODO: Can we do these for vector splats? 5142 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 5143 const APInt &C1 = N1C->getAPIntValue(); 5144 EVT ShValTy = N0.getValueType(); 5145 5146 // Fold bit comparisons when we can. This will result in an 5147 // incorrect value when boolean false is negative one, unless 5148 // the bitsize is 1 in which case the false value is the same 5149 // in practice regardless of the representation. 5150 if ((VT.getSizeInBits() == 1 || 5151 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 5152 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5153 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 5154 N0.getOpcode() == ISD::AND) { 5155 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5156 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 5157 // Perform the xform if the AND RHS is a single bit. 5158 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 5159 if (AndRHS->getAPIntValue().isPowerOf2() && 5160 !shouldAvoidTransformToShift(ShValTy, ShCt)) { 5161 return DAG.getNode( 5162 ISD::TRUNCATE, dl, VT, 5163 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 5164 DAG.getShiftAmountConstant(ShCt, ShValTy, dl))); 5165 } 5166 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 5167 // (X & 8) == 8 --> (X & 8) >> 3 5168 // Perform the xform if C1 is a single bit. 5169 unsigned ShCt = C1.logBase2(); 5170 if (C1.isPowerOf2() && !shouldAvoidTransformToShift(ShValTy, ShCt)) { 5171 return DAG.getNode( 5172 ISD::TRUNCATE, dl, VT, 5173 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 5174 DAG.getShiftAmountConstant(ShCt, ShValTy, dl))); 5175 } 5176 } 5177 } 5178 } 5179 5180 if (C1.getSignificantBits() <= 64 && 5181 !isLegalICmpImmediate(C1.getSExtValue())) { 5182 // (X & -256) == 256 -> (X >> 8) == 1 5183 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5184 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 5185 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5186 const APInt &AndRHSC = AndRHS->getAPIntValue(); 5187 if (AndRHSC.isNegatedPowerOf2() && C1.isSubsetOf(AndRHSC)) { 5188 unsigned ShiftBits = AndRHSC.countr_zero(); 5189 if (!shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 5190 SDValue Shift = DAG.getNode( 5191 ISD::SRL, dl, ShValTy, N0.getOperand(0), 5192 DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl)); 5193 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 5194 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 5195 } 5196 } 5197 } 5198 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 5199 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 5200 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 5201 // X < 0x100000000 -> (X >> 32) < 1 5202 // X >= 0x100000000 -> (X >> 32) >= 1 5203 // X <= 0x0ffffffff -> (X >> 32) < 1 5204 // X > 0x0ffffffff -> (X >> 32) >= 1 5205 unsigned ShiftBits; 5206 APInt NewC = C1; 5207 ISD::CondCode NewCond = Cond; 5208 if (AdjOne) { 5209 ShiftBits = C1.countr_one(); 5210 NewC = NewC + 1; 5211 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 5212 } else { 5213 ShiftBits = C1.countr_zero(); 5214 } 5215 NewC.lshrInPlace(ShiftBits); 5216 if (ShiftBits && NewC.getSignificantBits() <= 64 && 5217 isLegalICmpImmediate(NewC.getSExtValue()) && 5218 !shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 5219 SDValue Shift = 5220 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 5221 DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl)); 5222 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 5223 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 5224 } 5225 } 5226 } 5227 } 5228 5229 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 5230 auto *CFP = cast<ConstantFPSDNode>(N1); 5231 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 5232 5233 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 5234 // constant if knowing that the operand is non-nan is enough. We prefer to 5235 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 5236 // materialize 0.0. 5237 if (Cond == ISD::SETO || Cond == ISD::SETUO) 5238 return DAG.getSetCC(dl, VT, N0, N0, Cond); 5239 5240 // setcc (fneg x), C -> setcc swap(pred) x, -C 5241 if (N0.getOpcode() == ISD::FNEG) { 5242 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 5243 if (DCI.isBeforeLegalizeOps() || 5244 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 5245 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 5246 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 5247 } 5248 } 5249 5250 // setueq/setoeq X, (fabs Inf) -> is_fpclass X, fcInf 5251 if (isOperationLegalOrCustom(ISD::IS_FPCLASS, N0.getValueType()) && 5252 !isFPImmLegal(CFP->getValueAPF(), CFP->getValueType(0))) { 5253 bool IsFabs = N0.getOpcode() == ISD::FABS; 5254 SDValue Op = IsFabs ? N0.getOperand(0) : N0; 5255 if ((Cond == ISD::SETOEQ || Cond == ISD::SETUEQ) && CFP->isInfinity()) { 5256 FPClassTest Flag = CFP->isNegative() ? (IsFabs ? fcNone : fcNegInf) 5257 : (IsFabs ? fcInf : fcPosInf); 5258 if (Cond == ISD::SETUEQ) 5259 Flag |= fcNan; 5260 return DAG.getNode(ISD::IS_FPCLASS, dl, VT, Op, 5261 DAG.getTargetConstant(Flag, dl, MVT::i32)); 5262 } 5263 } 5264 5265 // If the condition is not legal, see if we can find an equivalent one 5266 // which is legal. 5267 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 5268 // If the comparison was an awkward floating-point == or != and one of 5269 // the comparison operands is infinity or negative infinity, convert the 5270 // condition to a less-awkward <= or >=. 5271 if (CFP->getValueAPF().isInfinity()) { 5272 bool IsNegInf = CFP->getValueAPF().isNegative(); 5273 ISD::CondCode NewCond = ISD::SETCC_INVALID; 5274 switch (Cond) { 5275 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 5276 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 5277 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 5278 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 5279 default: break; 5280 } 5281 if (NewCond != ISD::SETCC_INVALID && 5282 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 5283 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 5284 } 5285 } 5286 } 5287 5288 if (N0 == N1) { 5289 // The sext(setcc()) => setcc() optimization relies on the appropriate 5290 // constant being emitted. 5291 assert(!N0.getValueType().isInteger() && 5292 "Integer types should be handled by FoldSetCC"); 5293 5294 bool EqTrue = ISD::isTrueWhenEqual(Cond); 5295 unsigned UOF = ISD::getUnorderedFlavor(Cond); 5296 if (UOF == 2) // FP operators that are undefined on NaNs. 5297 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 5298 if (UOF == unsigned(EqTrue)) 5299 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 5300 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 5301 // if it is not already. 5302 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 5303 if (NewCond != Cond && 5304 (DCI.isBeforeLegalizeOps() || 5305 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 5306 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 5307 } 5308 5309 // ~X > ~Y --> Y > X 5310 // ~X < ~Y --> Y < X 5311 // ~X < C --> X > ~C 5312 // ~X > C --> X < ~C 5313 if ((isSignedIntSetCC(Cond) || isUnsignedIntSetCC(Cond)) && 5314 N0.getValueType().isInteger()) { 5315 if (isBitwiseNot(N0)) { 5316 if (isBitwiseNot(N1)) 5317 return DAG.getSetCC(dl, VT, N1.getOperand(0), N0.getOperand(0), Cond); 5318 5319 if (DAG.isConstantIntBuildVectorOrConstantInt(N1) && 5320 !DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(0))) { 5321 SDValue Not = DAG.getNOT(dl, N1, OpVT); 5322 return DAG.getSetCC(dl, VT, Not, N0.getOperand(0), Cond); 5323 } 5324 } 5325 } 5326 5327 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5328 N0.getValueType().isInteger()) { 5329 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 5330 N0.getOpcode() == ISD::XOR) { 5331 // Simplify (X+Y) == (X+Z) --> Y == Z 5332 if (N0.getOpcode() == N1.getOpcode()) { 5333 if (N0.getOperand(0) == N1.getOperand(0)) 5334 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 5335 if (N0.getOperand(1) == N1.getOperand(1)) 5336 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 5337 if (isCommutativeBinOp(N0.getOpcode())) { 5338 // If X op Y == Y op X, try other combinations. 5339 if (N0.getOperand(0) == N1.getOperand(1)) 5340 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 5341 Cond); 5342 if (N0.getOperand(1) == N1.getOperand(0)) 5343 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 5344 Cond); 5345 } 5346 } 5347 5348 // If RHS is a legal immediate value for a compare instruction, we need 5349 // to be careful about increasing register pressure needlessly. 5350 bool LegalRHSImm = false; 5351 5352 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 5353 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5354 // Turn (X+C1) == C2 --> X == C2-C1 5355 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) 5356 return DAG.getSetCC( 5357 dl, VT, N0.getOperand(0), 5358 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(), 5359 dl, N0.getValueType()), 5360 Cond); 5361 5362 // Turn (X^C1) == C2 --> X == C1^C2 5363 if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse()) 5364 return DAG.getSetCC( 5365 dl, VT, N0.getOperand(0), 5366 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(), 5367 dl, N0.getValueType()), 5368 Cond); 5369 } 5370 5371 // Turn (C1-X) == C2 --> X == C1-C2 5372 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) 5373 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) 5374 return DAG.getSetCC( 5375 dl, VT, N0.getOperand(1), 5376 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(), 5377 dl, N0.getValueType()), 5378 Cond); 5379 5380 // Could RHSC fold directly into a compare? 5381 if (RHSC->getValueType(0).getSizeInBits() <= 64) 5382 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 5383 } 5384 5385 // (X+Y) == X --> Y == 0 and similar folds. 5386 // Don't do this if X is an immediate that can fold into a cmp 5387 // instruction and X+Y has other uses. It could be an induction variable 5388 // chain, and the transform would increase register pressure. 5389 if (!LegalRHSImm || N0.hasOneUse()) 5390 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 5391 return V; 5392 } 5393 5394 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 5395 N1.getOpcode() == ISD::XOR) 5396 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 5397 return V; 5398 5399 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 5400 return V; 5401 } 5402 5403 // Fold remainder of division by a constant. 5404 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 5405 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 5406 // When division is cheap or optimizing for minimum size, 5407 // fall through to DIVREM creation by skipping this fold. 5408 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 5409 if (N0.getOpcode() == ISD::UREM) { 5410 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 5411 return Folded; 5412 } else if (N0.getOpcode() == ISD::SREM) { 5413 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 5414 return Folded; 5415 } 5416 } 5417 } 5418 5419 // Fold away ALL boolean setcc's. 5420 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 5421 SDValue Temp; 5422 switch (Cond) { 5423 default: llvm_unreachable("Unknown integer setcc!"); 5424 case ISD::SETEQ: // X == Y -> ~(X^Y) 5425 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 5426 N0 = DAG.getNOT(dl, Temp, OpVT); 5427 if (!DCI.isCalledByLegalizer()) 5428 DCI.AddToWorklist(Temp.getNode()); 5429 break; 5430 case ISD::SETNE: // X != Y --> (X^Y) 5431 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 5432 break; 5433 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 5434 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 5435 Temp = DAG.getNOT(dl, N0, OpVT); 5436 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 5437 if (!DCI.isCalledByLegalizer()) 5438 DCI.AddToWorklist(Temp.getNode()); 5439 break; 5440 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 5441 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 5442 Temp = DAG.getNOT(dl, N1, OpVT); 5443 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 5444 if (!DCI.isCalledByLegalizer()) 5445 DCI.AddToWorklist(Temp.getNode()); 5446 break; 5447 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 5448 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 5449 Temp = DAG.getNOT(dl, N0, OpVT); 5450 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 5451 if (!DCI.isCalledByLegalizer()) 5452 DCI.AddToWorklist(Temp.getNode()); 5453 break; 5454 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 5455 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 5456 Temp = DAG.getNOT(dl, N1, OpVT); 5457 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 5458 break; 5459 } 5460 if (VT.getScalarType() != MVT::i1) { 5461 if (!DCI.isCalledByLegalizer()) 5462 DCI.AddToWorklist(N0.getNode()); 5463 // FIXME: If running after legalize, we probably can't do this. 5464 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 5465 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 5466 } 5467 return N0; 5468 } 5469 5470 // Could not fold it. 5471 return SDValue(); 5472 } 5473 5474 /// Returns true (and the GlobalValue and the offset) if the node is a 5475 /// GlobalAddress + offset. 5476 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 5477 int64_t &Offset) const { 5478 5479 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 5480 5481 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 5482 GA = GASD->getGlobal(); 5483 Offset += GASD->getOffset(); 5484 return true; 5485 } 5486 5487 if (N->getOpcode() == ISD::ADD) { 5488 SDValue N1 = N->getOperand(0); 5489 SDValue N2 = N->getOperand(1); 5490 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 5491 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 5492 Offset += V->getSExtValue(); 5493 return true; 5494 } 5495 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 5496 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 5497 Offset += V->getSExtValue(); 5498 return true; 5499 } 5500 } 5501 } 5502 5503 return false; 5504 } 5505 5506 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 5507 DAGCombinerInfo &DCI) const { 5508 // Default implementation: no optimization. 5509 return SDValue(); 5510 } 5511 5512 //===----------------------------------------------------------------------===// 5513 // Inline Assembler Implementation Methods 5514 //===----------------------------------------------------------------------===// 5515 5516 TargetLowering::ConstraintType 5517 TargetLowering::getConstraintType(StringRef Constraint) const { 5518 unsigned S = Constraint.size(); 5519 5520 if (S == 1) { 5521 switch (Constraint[0]) { 5522 default: break; 5523 case 'r': 5524 return C_RegisterClass; 5525 case 'm': // memory 5526 case 'o': // offsetable 5527 case 'V': // not offsetable 5528 return C_Memory; 5529 case 'p': // Address. 5530 return C_Address; 5531 case 'n': // Simple Integer 5532 case 'E': // Floating Point Constant 5533 case 'F': // Floating Point Constant 5534 return C_Immediate; 5535 case 'i': // Simple Integer or Relocatable Constant 5536 case 's': // Relocatable Constant 5537 case 'X': // Allow ANY value. 5538 case 'I': // Target registers. 5539 case 'J': 5540 case 'K': 5541 case 'L': 5542 case 'M': 5543 case 'N': 5544 case 'O': 5545 case 'P': 5546 case '<': 5547 case '>': 5548 return C_Other; 5549 } 5550 } 5551 5552 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 5553 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 5554 return C_Memory; 5555 return C_Register; 5556 } 5557 return C_Unknown; 5558 } 5559 5560 /// Try to replace an X constraint, which matches anything, with another that 5561 /// has more specific requirements based on the type of the corresponding 5562 /// operand. 5563 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 5564 if (ConstraintVT.isInteger()) 5565 return "r"; 5566 if (ConstraintVT.isFloatingPoint()) 5567 return "f"; // works for many targets 5568 return nullptr; 5569 } 5570 5571 SDValue TargetLowering::LowerAsmOutputForConstraint( 5572 SDValue &Chain, SDValue &Glue, const SDLoc &DL, 5573 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 5574 return SDValue(); 5575 } 5576 5577 /// Lower the specified operand into the Ops vector. 5578 /// If it is invalid, don't add anything to Ops. 5579 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 5580 StringRef Constraint, 5581 std::vector<SDValue> &Ops, 5582 SelectionDAG &DAG) const { 5583 5584 if (Constraint.size() > 1) 5585 return; 5586 5587 char ConstraintLetter = Constraint[0]; 5588 switch (ConstraintLetter) { 5589 default: break; 5590 case 'X': // Allows any operand 5591 case 'i': // Simple Integer or Relocatable Constant 5592 case 'n': // Simple Integer 5593 case 's': { // Relocatable Constant 5594 5595 ConstantSDNode *C; 5596 uint64_t Offset = 0; 5597 5598 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 5599 // etc., since getelementpointer is variadic. We can't use 5600 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 5601 // while in this case the GA may be furthest from the root node which is 5602 // likely an ISD::ADD. 5603 while (true) { 5604 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 5605 // gcc prints these as sign extended. Sign extend value to 64 bits 5606 // now; without this it would get ZExt'd later in 5607 // ScheduleDAGSDNodes::EmitNode, which is very generic. 5608 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 5609 BooleanContent BCont = getBooleanContents(MVT::i64); 5610 ISD::NodeType ExtOpc = 5611 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 5612 int64_t ExtVal = 5613 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 5614 Ops.push_back( 5615 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 5616 return; 5617 } 5618 if (ConstraintLetter != 'n') { 5619 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 5620 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 5621 GA->getValueType(0), 5622 Offset + GA->getOffset())); 5623 return; 5624 } 5625 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 5626 Ops.push_back(DAG.getTargetBlockAddress( 5627 BA->getBlockAddress(), BA->getValueType(0), 5628 Offset + BA->getOffset(), BA->getTargetFlags())); 5629 return; 5630 } 5631 if (isa<BasicBlockSDNode>(Op)) { 5632 Ops.push_back(Op); 5633 return; 5634 } 5635 } 5636 const unsigned OpCode = Op.getOpcode(); 5637 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 5638 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 5639 Op = Op.getOperand(1); 5640 // Subtraction is not commutative. 5641 else if (OpCode == ISD::ADD && 5642 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 5643 Op = Op.getOperand(0); 5644 else 5645 return; 5646 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 5647 continue; 5648 } 5649 return; 5650 } 5651 break; 5652 } 5653 } 5654 } 5655 5656 void TargetLowering::CollectTargetIntrinsicOperands( 5657 const CallInst &I, SmallVectorImpl<SDValue> &Ops, SelectionDAG &DAG) const { 5658 } 5659 5660 std::pair<unsigned, const TargetRegisterClass *> 5661 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 5662 StringRef Constraint, 5663 MVT VT) const { 5664 if (!Constraint.starts_with("{")) 5665 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 5666 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 5667 5668 // Remove the braces from around the name. 5669 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 5670 5671 std::pair<unsigned, const TargetRegisterClass *> R = 5672 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 5673 5674 // Figure out which register class contains this reg. 5675 for (const TargetRegisterClass *RC : RI->regclasses()) { 5676 // If none of the value types for this register class are valid, we 5677 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5678 if (!isLegalRC(*RI, *RC)) 5679 continue; 5680 5681 for (const MCPhysReg &PR : *RC) { 5682 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 5683 std::pair<unsigned, const TargetRegisterClass *> S = 5684 std::make_pair(PR, RC); 5685 5686 // If this register class has the requested value type, return it, 5687 // otherwise keep searching and return the first class found 5688 // if no other is found which explicitly has the requested type. 5689 if (RI->isTypeLegalForClass(*RC, VT)) 5690 return S; 5691 if (!R.second) 5692 R = S; 5693 } 5694 } 5695 } 5696 5697 return R; 5698 } 5699 5700 //===----------------------------------------------------------------------===// 5701 // Constraint Selection. 5702 5703 /// Return true of this is an input operand that is a matching constraint like 5704 /// "4". 5705 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 5706 assert(!ConstraintCode.empty() && "No known constraint!"); 5707 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 5708 } 5709 5710 /// If this is an input matching constraint, this method returns the output 5711 /// operand it matches. 5712 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 5713 assert(!ConstraintCode.empty() && "No known constraint!"); 5714 return atoi(ConstraintCode.c_str()); 5715 } 5716 5717 /// Split up the constraint string from the inline assembly value into the 5718 /// specific constraints and their prefixes, and also tie in the associated 5719 /// operand values. 5720 /// If this returns an empty vector, and if the constraint string itself 5721 /// isn't empty, there was an error parsing. 5722 TargetLowering::AsmOperandInfoVector 5723 TargetLowering::ParseConstraints(const DataLayout &DL, 5724 const TargetRegisterInfo *TRI, 5725 const CallBase &Call) const { 5726 /// Information about all of the constraints. 5727 AsmOperandInfoVector ConstraintOperands; 5728 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 5729 unsigned maCount = 0; // Largest number of multiple alternative constraints. 5730 5731 // Do a prepass over the constraints, canonicalizing them, and building up the 5732 // ConstraintOperands list. 5733 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5734 unsigned ResNo = 0; // ResNo - The result number of the next output. 5735 unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number. 5736 5737 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 5738 ConstraintOperands.emplace_back(std::move(CI)); 5739 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 5740 5741 // Update multiple alternative constraint count. 5742 if (OpInfo.multipleAlternatives.size() > maCount) 5743 maCount = OpInfo.multipleAlternatives.size(); 5744 5745 OpInfo.ConstraintVT = MVT::Other; 5746 5747 // Compute the value type for each operand. 5748 switch (OpInfo.Type) { 5749 case InlineAsm::isOutput: 5750 // Indirect outputs just consume an argument. 5751 if (OpInfo.isIndirect) { 5752 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5753 break; 5754 } 5755 5756 // The return value of the call is this value. As such, there is no 5757 // corresponding argument. 5758 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 5759 if (auto *STy = dyn_cast<StructType>(Call.getType())) { 5760 OpInfo.ConstraintVT = 5761 getAsmOperandValueType(DL, STy->getElementType(ResNo)) 5762 .getSimpleVT(); 5763 } else { 5764 assert(ResNo == 0 && "Asm only has one result!"); 5765 OpInfo.ConstraintVT = 5766 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 5767 } 5768 ++ResNo; 5769 break; 5770 case InlineAsm::isInput: 5771 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5772 break; 5773 case InlineAsm::isLabel: 5774 OpInfo.CallOperandVal = cast<CallBrInst>(&Call)->getIndirectDest(LabelNo); 5775 ++LabelNo; 5776 continue; 5777 case InlineAsm::isClobber: 5778 // Nothing to do. 5779 break; 5780 } 5781 5782 if (OpInfo.CallOperandVal) { 5783 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 5784 if (OpInfo.isIndirect) { 5785 OpTy = Call.getParamElementType(ArgNo); 5786 assert(OpTy && "Indirect operand must have elementtype attribute"); 5787 } 5788 5789 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5790 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5791 if (STy->getNumElements() == 1) 5792 OpTy = STy->getElementType(0); 5793 5794 // If OpTy is not a single value, it may be a struct/union that we 5795 // can tile with integers. 5796 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5797 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5798 switch (BitSize) { 5799 default: break; 5800 case 1: 5801 case 8: 5802 case 16: 5803 case 32: 5804 case 64: 5805 case 128: 5806 OpTy = IntegerType::get(OpTy->getContext(), BitSize); 5807 break; 5808 } 5809 } 5810 5811 EVT VT = getAsmOperandValueType(DL, OpTy, true); 5812 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; 5813 ArgNo++; 5814 } 5815 } 5816 5817 // If we have multiple alternative constraints, select the best alternative. 5818 if (!ConstraintOperands.empty()) { 5819 if (maCount) { 5820 unsigned bestMAIndex = 0; 5821 int bestWeight = -1; 5822 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 5823 int weight = -1; 5824 unsigned maIndex; 5825 // Compute the sums of the weights for each alternative, keeping track 5826 // of the best (highest weight) one so far. 5827 for (maIndex = 0; maIndex < maCount; ++maIndex) { 5828 int weightSum = 0; 5829 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5830 cIndex != eIndex; ++cIndex) { 5831 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5832 if (OpInfo.Type == InlineAsm::isClobber) 5833 continue; 5834 5835 // If this is an output operand with a matching input operand, 5836 // look up the matching input. If their types mismatch, e.g. one 5837 // is an integer, the other is floating point, or their sizes are 5838 // different, flag it as an maCantMatch. 5839 if (OpInfo.hasMatchingInput()) { 5840 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5841 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5842 if ((OpInfo.ConstraintVT.isInteger() != 5843 Input.ConstraintVT.isInteger()) || 5844 (OpInfo.ConstraintVT.getSizeInBits() != 5845 Input.ConstraintVT.getSizeInBits())) { 5846 weightSum = -1; // Can't match. 5847 break; 5848 } 5849 } 5850 } 5851 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 5852 if (weight == -1) { 5853 weightSum = -1; 5854 break; 5855 } 5856 weightSum += weight; 5857 } 5858 // Update best. 5859 if (weightSum > bestWeight) { 5860 bestWeight = weightSum; 5861 bestMAIndex = maIndex; 5862 } 5863 } 5864 5865 // Now select chosen alternative in each constraint. 5866 for (AsmOperandInfo &cInfo : ConstraintOperands) 5867 if (cInfo.Type != InlineAsm::isClobber) 5868 cInfo.selectAlternative(bestMAIndex); 5869 } 5870 } 5871 5872 // Check and hook up tied operands, choose constraint code to use. 5873 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5874 cIndex != eIndex; ++cIndex) { 5875 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5876 5877 // If this is an output operand with a matching input operand, look up the 5878 // matching input. If their types mismatch, e.g. one is an integer, the 5879 // other is floating point, or their sizes are different, flag it as an 5880 // error. 5881 if (OpInfo.hasMatchingInput()) { 5882 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5883 5884 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5885 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5886 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5887 OpInfo.ConstraintVT); 5888 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5889 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5890 Input.ConstraintVT); 5891 const bool OutOpIsIntOrFP = OpInfo.ConstraintVT.isInteger() || 5892 OpInfo.ConstraintVT.isFloatingPoint(); 5893 const bool InOpIsIntOrFP = Input.ConstraintVT.isInteger() || 5894 Input.ConstraintVT.isFloatingPoint(); 5895 if ((OutOpIsIntOrFP != InOpIsIntOrFP) || 5896 (MatchRC.second != InputRC.second)) { 5897 report_fatal_error("Unsupported asm: input constraint" 5898 " with a matching output constraint of" 5899 " incompatible type!"); 5900 } 5901 } 5902 } 5903 } 5904 5905 return ConstraintOperands; 5906 } 5907 5908 /// Return a number indicating our preference for chosing a type of constraint 5909 /// over another, for the purpose of sorting them. Immediates are almost always 5910 /// preferrable (when they can be emitted). A higher return value means a 5911 /// stronger preference for one constraint type relative to another. 5912 /// FIXME: We should prefer registers over memory but doing so may lead to 5913 /// unrecoverable register exhaustion later. 5914 /// https://github.com/llvm/llvm-project/issues/20571 5915 static unsigned getConstraintPiority(TargetLowering::ConstraintType CT) { 5916 switch (CT) { 5917 case TargetLowering::C_Immediate: 5918 case TargetLowering::C_Other: 5919 return 4; 5920 case TargetLowering::C_Memory: 5921 case TargetLowering::C_Address: 5922 return 3; 5923 case TargetLowering::C_RegisterClass: 5924 return 2; 5925 case TargetLowering::C_Register: 5926 return 1; 5927 case TargetLowering::C_Unknown: 5928 return 0; 5929 } 5930 llvm_unreachable("Invalid constraint type"); 5931 } 5932 5933 /// Examine constraint type and operand type and determine a weight value. 5934 /// This object must already have been set up with the operand type 5935 /// and the current alternative constraint selected. 5936 TargetLowering::ConstraintWeight 5937 TargetLowering::getMultipleConstraintMatchWeight( 5938 AsmOperandInfo &info, int maIndex) const { 5939 InlineAsm::ConstraintCodeVector *rCodes; 5940 if (maIndex >= (int)info.multipleAlternatives.size()) 5941 rCodes = &info.Codes; 5942 else 5943 rCodes = &info.multipleAlternatives[maIndex].Codes; 5944 ConstraintWeight BestWeight = CW_Invalid; 5945 5946 // Loop over the options, keeping track of the most general one. 5947 for (const std::string &rCode : *rCodes) { 5948 ConstraintWeight weight = 5949 getSingleConstraintMatchWeight(info, rCode.c_str()); 5950 if (weight > BestWeight) 5951 BestWeight = weight; 5952 } 5953 5954 return BestWeight; 5955 } 5956 5957 /// Examine constraint type and operand type and determine a weight value. 5958 /// This object must already have been set up with the operand type 5959 /// and the current alternative constraint selected. 5960 TargetLowering::ConstraintWeight 5961 TargetLowering::getSingleConstraintMatchWeight( 5962 AsmOperandInfo &info, const char *constraint) const { 5963 ConstraintWeight weight = CW_Invalid; 5964 Value *CallOperandVal = info.CallOperandVal; 5965 // If we don't have a value, we can't do a match, 5966 // but allow it at the lowest weight. 5967 if (!CallOperandVal) 5968 return CW_Default; 5969 // Look at the constraint type. 5970 switch (*constraint) { 5971 case 'i': // immediate integer. 5972 case 'n': // immediate integer with a known value. 5973 if (isa<ConstantInt>(CallOperandVal)) 5974 weight = CW_Constant; 5975 break; 5976 case 's': // non-explicit intregal immediate. 5977 if (isa<GlobalValue>(CallOperandVal)) 5978 weight = CW_Constant; 5979 break; 5980 case 'E': // immediate float if host format. 5981 case 'F': // immediate float. 5982 if (isa<ConstantFP>(CallOperandVal)) 5983 weight = CW_Constant; 5984 break; 5985 case '<': // memory operand with autodecrement. 5986 case '>': // memory operand with autoincrement. 5987 case 'm': // memory operand. 5988 case 'o': // offsettable memory operand 5989 case 'V': // non-offsettable memory operand 5990 weight = CW_Memory; 5991 break; 5992 case 'r': // general register. 5993 case 'g': // general register, memory operand or immediate integer. 5994 // note: Clang converts "g" to "imr". 5995 if (CallOperandVal->getType()->isIntegerTy()) 5996 weight = CW_Register; 5997 break; 5998 case 'X': // any operand. 5999 default: 6000 weight = CW_Default; 6001 break; 6002 } 6003 return weight; 6004 } 6005 6006 /// If there are multiple different constraints that we could pick for this 6007 /// operand (e.g. "imr") try to pick the 'best' one. 6008 /// This is somewhat tricky: constraints (TargetLowering::ConstraintType) fall 6009 /// into seven classes: 6010 /// Register -> one specific register 6011 /// RegisterClass -> a group of regs 6012 /// Memory -> memory 6013 /// Address -> a symbolic memory reference 6014 /// Immediate -> immediate values 6015 /// Other -> magic values (such as "Flag Output Operands") 6016 /// Unknown -> something we don't recognize yet and can't handle 6017 /// Ideally, we would pick the most specific constraint possible: if we have 6018 /// something that fits into a register, we would pick it. The problem here 6019 /// is that if we have something that could either be in a register or in 6020 /// memory that use of the register could cause selection of *other* 6021 /// operands to fail: they might only succeed if we pick memory. Because of 6022 /// this the heuristic we use is: 6023 /// 6024 /// 1) If there is an 'other' constraint, and if the operand is valid for 6025 /// that constraint, use it. This makes us take advantage of 'i' 6026 /// constraints when available. 6027 /// 2) Otherwise, pick the most general constraint present. This prefers 6028 /// 'm' over 'r', for example. 6029 /// 6030 TargetLowering::ConstraintGroup TargetLowering::getConstraintPreferences( 6031 TargetLowering::AsmOperandInfo &OpInfo) const { 6032 ConstraintGroup Ret; 6033 6034 Ret.reserve(OpInfo.Codes.size()); 6035 for (StringRef Code : OpInfo.Codes) { 6036 TargetLowering::ConstraintType CType = getConstraintType(Code); 6037 6038 // Indirect 'other' or 'immediate' constraints are not allowed. 6039 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 6040 CType == TargetLowering::C_Register || 6041 CType == TargetLowering::C_RegisterClass)) 6042 continue; 6043 6044 // Things with matching constraints can only be registers, per gcc 6045 // documentation. This mainly affects "g" constraints. 6046 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 6047 continue; 6048 6049 Ret.emplace_back(Code, CType); 6050 } 6051 6052 std::stable_sort( 6053 Ret.begin(), Ret.end(), [](ConstraintPair a, ConstraintPair b) { 6054 return getConstraintPiority(a.second) > getConstraintPiority(b.second); 6055 }); 6056 6057 return Ret; 6058 } 6059 6060 /// If we have an immediate, see if we can lower it. Return true if we can, 6061 /// false otherwise. 6062 static bool lowerImmediateIfPossible(TargetLowering::ConstraintPair &P, 6063 SDValue Op, SelectionDAG *DAG, 6064 const TargetLowering &TLI) { 6065 6066 assert((P.second == TargetLowering::C_Other || 6067 P.second == TargetLowering::C_Immediate) && 6068 "need immediate or other"); 6069 6070 if (!Op.getNode()) 6071 return false; 6072 6073 std::vector<SDValue> ResultOps; 6074 TLI.LowerAsmOperandForConstraint(Op, P.first, ResultOps, *DAG); 6075 return !ResultOps.empty(); 6076 } 6077 6078 /// Determines the constraint code and constraint type to use for the specific 6079 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 6080 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 6081 SDValue Op, 6082 SelectionDAG *DAG) const { 6083 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 6084 6085 // Single-letter constraints ('r') are very common. 6086 if (OpInfo.Codes.size() == 1) { 6087 OpInfo.ConstraintCode = OpInfo.Codes[0]; 6088 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 6089 } else { 6090 ConstraintGroup G = getConstraintPreferences(OpInfo); 6091 if (G.empty()) 6092 return; 6093 6094 unsigned BestIdx = 0; 6095 for (const unsigned E = G.size(); 6096 BestIdx < E && (G[BestIdx].second == TargetLowering::C_Other || 6097 G[BestIdx].second == TargetLowering::C_Immediate); 6098 ++BestIdx) { 6099 if (lowerImmediateIfPossible(G[BestIdx], Op, DAG, *this)) 6100 break; 6101 // If we're out of constraints, just pick the first one. 6102 if (BestIdx + 1 == E) { 6103 BestIdx = 0; 6104 break; 6105 } 6106 } 6107 6108 OpInfo.ConstraintCode = G[BestIdx].first; 6109 OpInfo.ConstraintType = G[BestIdx].second; 6110 } 6111 6112 // 'X' matches anything. 6113 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 6114 // Constants are handled elsewhere. For Functions, the type here is the 6115 // type of the result, which is not what we want to look at; leave them 6116 // alone. 6117 Value *v = OpInfo.CallOperandVal; 6118 if (isa<ConstantInt>(v) || isa<Function>(v)) { 6119 return; 6120 } 6121 6122 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) { 6123 OpInfo.ConstraintCode = "i"; 6124 return; 6125 } 6126 6127 // Otherwise, try to resolve it to something we know about by looking at 6128 // the actual operand type. 6129 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 6130 OpInfo.ConstraintCode = Repl; 6131 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 6132 } 6133 } 6134 } 6135 6136 /// Given an exact SDIV by a constant, create a multiplication 6137 /// with the multiplicative inverse of the constant. 6138 /// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242 6139 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 6140 const SDLoc &dl, SelectionDAG &DAG, 6141 SmallVectorImpl<SDNode *> &Created) { 6142 SDValue Op0 = N->getOperand(0); 6143 SDValue Op1 = N->getOperand(1); 6144 EVT VT = N->getValueType(0); 6145 EVT SVT = VT.getScalarType(); 6146 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 6147 EVT ShSVT = ShVT.getScalarType(); 6148 6149 bool UseSRA = false; 6150 SmallVector<SDValue, 16> Shifts, Factors; 6151 6152 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 6153 if (C->isZero()) 6154 return false; 6155 APInt Divisor = C->getAPIntValue(); 6156 unsigned Shift = Divisor.countr_zero(); 6157 if (Shift) { 6158 Divisor.ashrInPlace(Shift); 6159 UseSRA = true; 6160 } 6161 APInt Factor = Divisor.multiplicativeInverse(); 6162 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 6163 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 6164 return true; 6165 }; 6166 6167 // Collect all magic values from the build vector. 6168 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 6169 return SDValue(); 6170 6171 SDValue Shift, Factor; 6172 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 6173 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 6174 Factor = DAG.getBuildVector(VT, dl, Factors); 6175 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 6176 assert(Shifts.size() == 1 && Factors.size() == 1 && 6177 "Expected matchUnaryPredicate to return one element for scalable " 6178 "vectors"); 6179 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 6180 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 6181 } else { 6182 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 6183 Shift = Shifts[0]; 6184 Factor = Factors[0]; 6185 } 6186 6187 SDValue Res = Op0; 6188 if (UseSRA) { 6189 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, SDNodeFlags::Exact); 6190 Created.push_back(Res.getNode()); 6191 } 6192 6193 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 6194 } 6195 6196 /// Given an exact UDIV by a constant, create a multiplication 6197 /// with the multiplicative inverse of the constant. 6198 /// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242 6199 static SDValue BuildExactUDIV(const TargetLowering &TLI, SDNode *N, 6200 const SDLoc &dl, SelectionDAG &DAG, 6201 SmallVectorImpl<SDNode *> &Created) { 6202 EVT VT = N->getValueType(0); 6203 EVT SVT = VT.getScalarType(); 6204 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 6205 EVT ShSVT = ShVT.getScalarType(); 6206 6207 bool UseSRL = false; 6208 SmallVector<SDValue, 16> Shifts, Factors; 6209 6210 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 6211 if (C->isZero()) 6212 return false; 6213 APInt Divisor = C->getAPIntValue(); 6214 unsigned Shift = Divisor.countr_zero(); 6215 if (Shift) { 6216 Divisor.lshrInPlace(Shift); 6217 UseSRL = true; 6218 } 6219 // Calculate the multiplicative inverse modulo BW. 6220 APInt Factor = Divisor.multiplicativeInverse(); 6221 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 6222 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 6223 return true; 6224 }; 6225 6226 SDValue Op1 = N->getOperand(1); 6227 6228 // Collect all magic values from the build vector. 6229 if (!ISD::matchUnaryPredicate(Op1, BuildUDIVPattern)) 6230 return SDValue(); 6231 6232 SDValue Shift, Factor; 6233 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 6234 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 6235 Factor = DAG.getBuildVector(VT, dl, Factors); 6236 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 6237 assert(Shifts.size() == 1 && Factors.size() == 1 && 6238 "Expected matchUnaryPredicate to return one element for scalable " 6239 "vectors"); 6240 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 6241 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 6242 } else { 6243 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 6244 Shift = Shifts[0]; 6245 Factor = Factors[0]; 6246 } 6247 6248 SDValue Res = N->getOperand(0); 6249 if (UseSRL) { 6250 Res = DAG.getNode(ISD::SRL, dl, VT, Res, Shift, SDNodeFlags::Exact); 6251 Created.push_back(Res.getNode()); 6252 } 6253 6254 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 6255 } 6256 6257 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 6258 SelectionDAG &DAG, 6259 SmallVectorImpl<SDNode *> &Created) const { 6260 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 6261 if (isIntDivCheap(N->getValueType(0), Attr)) 6262 return SDValue(N, 0); // Lower SDIV as SDIV 6263 return SDValue(); 6264 } 6265 6266 SDValue 6267 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor, 6268 SelectionDAG &DAG, 6269 SmallVectorImpl<SDNode *> &Created) const { 6270 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 6271 if (isIntDivCheap(N->getValueType(0), Attr)) 6272 return SDValue(N, 0); // Lower SREM as SREM 6273 return SDValue(); 6274 } 6275 6276 /// Build sdiv by power-of-2 with conditional move instructions 6277 /// Ref: "Hacker's Delight" by Henry Warren 10-1 6278 /// If conditional move/branch is preferred, we lower sdiv x, +/-2**k into: 6279 /// bgez x, label 6280 /// add x, x, 2**k-1 6281 /// label: 6282 /// sra res, x, k 6283 /// neg res, res (when the divisor is negative) 6284 SDValue TargetLowering::buildSDIVPow2WithCMov( 6285 SDNode *N, const APInt &Divisor, SelectionDAG &DAG, 6286 SmallVectorImpl<SDNode *> &Created) const { 6287 unsigned Lg2 = Divisor.countr_zero(); 6288 EVT VT = N->getValueType(0); 6289 6290 SDLoc DL(N); 6291 SDValue N0 = N->getOperand(0); 6292 SDValue Zero = DAG.getConstant(0, DL, VT); 6293 APInt Lg2Mask = APInt::getLowBitsSet(VT.getSizeInBits(), Lg2); 6294 SDValue Pow2MinusOne = DAG.getConstant(Lg2Mask, DL, VT); 6295 6296 // If N0 is negative, we need to add (Pow2 - 1) to it before shifting right. 6297 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6298 SDValue Cmp = DAG.getSetCC(DL, CCVT, N0, Zero, ISD::SETLT); 6299 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 6300 SDValue CMov = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 6301 6302 Created.push_back(Cmp.getNode()); 6303 Created.push_back(Add.getNode()); 6304 Created.push_back(CMov.getNode()); 6305 6306 // Divide by pow2. 6307 SDValue SRA = 6308 DAG.getNode(ISD::SRA, DL, VT, CMov, DAG.getConstant(Lg2, DL, VT)); 6309 6310 // If we're dividing by a positive value, we're done. Otherwise, we must 6311 // negate the result. 6312 if (Divisor.isNonNegative()) 6313 return SRA; 6314 6315 Created.push_back(SRA.getNode()); 6316 return DAG.getNode(ISD::SUB, DL, VT, Zero, SRA); 6317 } 6318 6319 /// Given an ISD::SDIV node expressing a divide by constant, 6320 /// return a DAG expression to select that will generate the same value by 6321 /// multiplying by a magic number. 6322 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 6323 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 6324 bool IsAfterLegalization, 6325 bool IsAfterLegalTypes, 6326 SmallVectorImpl<SDNode *> &Created) const { 6327 SDLoc dl(N); 6328 EVT VT = N->getValueType(0); 6329 EVT SVT = VT.getScalarType(); 6330 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6331 EVT ShSVT = ShVT.getScalarType(); 6332 unsigned EltBits = VT.getScalarSizeInBits(); 6333 EVT MulVT; 6334 6335 // Check to see if we can do this. 6336 // FIXME: We should be more aggressive here. 6337 if (!isTypeLegal(VT)) { 6338 // Limit this to simple scalars for now. 6339 if (VT.isVector() || !VT.isSimple()) 6340 return SDValue(); 6341 6342 // If this type will be promoted to a large enough type with a legal 6343 // multiply operation, we can go ahead and do this transform. 6344 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 6345 return SDValue(); 6346 6347 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 6348 if (MulVT.getSizeInBits() < (2 * EltBits) || 6349 !isOperationLegal(ISD::MUL, MulVT)) 6350 return SDValue(); 6351 } 6352 6353 // If the sdiv has an 'exact' bit we can use a simpler lowering. 6354 if (N->getFlags().hasExact()) 6355 return BuildExactSDIV(*this, N, dl, DAG, Created); 6356 6357 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 6358 6359 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 6360 if (C->isZero()) 6361 return false; 6362 6363 const APInt &Divisor = C->getAPIntValue(); 6364 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 6365 int NumeratorFactor = 0; 6366 int ShiftMask = -1; 6367 6368 if (Divisor.isOne() || Divisor.isAllOnes()) { 6369 // If d is +1/-1, we just multiply the numerator by +1/-1. 6370 NumeratorFactor = Divisor.getSExtValue(); 6371 magics.Magic = 0; 6372 magics.ShiftAmount = 0; 6373 ShiftMask = 0; 6374 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 6375 // If d > 0 and m < 0, add the numerator. 6376 NumeratorFactor = 1; 6377 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 6378 // If d < 0 and m > 0, subtract the numerator. 6379 NumeratorFactor = -1; 6380 } 6381 6382 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 6383 Factors.push_back(DAG.getSignedConstant(NumeratorFactor, dl, SVT)); 6384 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 6385 ShiftMasks.push_back(DAG.getSignedConstant(ShiftMask, dl, SVT)); 6386 return true; 6387 }; 6388 6389 SDValue N0 = N->getOperand(0); 6390 SDValue N1 = N->getOperand(1); 6391 6392 // Collect the shifts / magic values from each element. 6393 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 6394 return SDValue(); 6395 6396 SDValue MagicFactor, Factor, Shift, ShiftMask; 6397 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 6398 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 6399 Factor = DAG.getBuildVector(VT, dl, Factors); 6400 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 6401 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 6402 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 6403 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 6404 Shifts.size() == 1 && ShiftMasks.size() == 1 && 6405 "Expected matchUnaryPredicate to return one element for scalable " 6406 "vectors"); 6407 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 6408 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 6409 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 6410 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 6411 } else { 6412 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 6413 MagicFactor = MagicFactors[0]; 6414 Factor = Factors[0]; 6415 Shift = Shifts[0]; 6416 ShiftMask = ShiftMasks[0]; 6417 } 6418 6419 // Multiply the numerator (operand 0) by the magic value. 6420 // FIXME: We should support doing a MUL in a wider type. 6421 auto GetMULHS = [&](SDValue X, SDValue Y) { 6422 // If the type isn't legal, use a wider mul of the type calculated 6423 // earlier. 6424 if (!isTypeLegal(VT)) { 6425 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 6426 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 6427 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 6428 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 6429 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 6430 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6431 } 6432 6433 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 6434 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 6435 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 6436 SDValue LoHi = 6437 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 6438 return SDValue(LoHi.getNode(), 1); 6439 } 6440 // If type twice as wide legal, widen and use a mul plus a shift. 6441 unsigned Size = VT.getScalarSizeInBits(); 6442 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2); 6443 if (VT.isVector()) 6444 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 6445 VT.getVectorElementCount()); 6446 // Some targets like AMDGPU try to go from SDIV to SDIVREM which is then 6447 // custom lowered. This is very expensive so avoid it at all costs for 6448 // constant divisors. 6449 if ((!IsAfterLegalTypes && isOperationExpand(ISD::SDIV, VT) && 6450 isOperationCustom(ISD::SDIVREM, VT.getScalarType())) || 6451 isOperationLegalOrCustom(ISD::MUL, WideVT)) { 6452 X = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, X); 6453 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, Y); 6454 Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y); 6455 Y = DAG.getNode(ISD::SRL, dl, WideVT, Y, 6456 DAG.getShiftAmountConstant(EltBits, WideVT, dl)); 6457 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6458 } 6459 return SDValue(); 6460 }; 6461 6462 SDValue Q = GetMULHS(N0, MagicFactor); 6463 if (!Q) 6464 return SDValue(); 6465 6466 Created.push_back(Q.getNode()); 6467 6468 // (Optionally) Add/subtract the numerator using Factor. 6469 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 6470 Created.push_back(Factor.getNode()); 6471 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 6472 Created.push_back(Q.getNode()); 6473 6474 // Shift right algebraic by shift value. 6475 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 6476 Created.push_back(Q.getNode()); 6477 6478 // Extract the sign bit, mask it and add it to the quotient. 6479 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 6480 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 6481 Created.push_back(T.getNode()); 6482 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 6483 Created.push_back(T.getNode()); 6484 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 6485 } 6486 6487 /// Given an ISD::UDIV node expressing a divide by constant, 6488 /// return a DAG expression to select that will generate the same value by 6489 /// multiplying by a magic number. 6490 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 6491 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 6492 bool IsAfterLegalization, 6493 bool IsAfterLegalTypes, 6494 SmallVectorImpl<SDNode *> &Created) const { 6495 SDLoc dl(N); 6496 EVT VT = N->getValueType(0); 6497 EVT SVT = VT.getScalarType(); 6498 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6499 EVT ShSVT = ShVT.getScalarType(); 6500 unsigned EltBits = VT.getScalarSizeInBits(); 6501 EVT MulVT; 6502 6503 // Check to see if we can do this. 6504 // FIXME: We should be more aggressive here. 6505 if (!isTypeLegal(VT)) { 6506 // Limit this to simple scalars for now. 6507 if (VT.isVector() || !VT.isSimple()) 6508 return SDValue(); 6509 6510 // If this type will be promoted to a large enough type with a legal 6511 // multiply operation, we can go ahead and do this transform. 6512 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 6513 return SDValue(); 6514 6515 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 6516 if (MulVT.getSizeInBits() < (2 * EltBits) || 6517 !isOperationLegal(ISD::MUL, MulVT)) 6518 return SDValue(); 6519 } 6520 6521 // If the udiv has an 'exact' bit we can use a simpler lowering. 6522 if (N->getFlags().hasExact()) 6523 return BuildExactUDIV(*this, N, dl, DAG, Created); 6524 6525 SDValue N0 = N->getOperand(0); 6526 SDValue N1 = N->getOperand(1); 6527 6528 // Try to use leading zeros of the dividend to reduce the multiplier and 6529 // avoid expensive fixups. 6530 unsigned KnownLeadingZeros = DAG.computeKnownBits(N0).countMinLeadingZeros(); 6531 6532 bool UseNPQ = false, UsePreShift = false, UsePostShift = false; 6533 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 6534 6535 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 6536 if (C->isZero()) 6537 return false; 6538 const APInt& Divisor = C->getAPIntValue(); 6539 6540 SDValue PreShift, MagicFactor, NPQFactor, PostShift; 6541 6542 // Magic algorithm doesn't work for division by 1. We need to emit a select 6543 // at the end. 6544 if (Divisor.isOne()) { 6545 PreShift = PostShift = DAG.getUNDEF(ShSVT); 6546 MagicFactor = NPQFactor = DAG.getUNDEF(SVT); 6547 } else { 6548 UnsignedDivisionByConstantInfo magics = 6549 UnsignedDivisionByConstantInfo::get( 6550 Divisor, std::min(KnownLeadingZeros, Divisor.countl_zero())); 6551 6552 MagicFactor = DAG.getConstant(magics.Magic, dl, SVT); 6553 6554 assert(magics.PreShift < Divisor.getBitWidth() && 6555 "We shouldn't generate an undefined shift!"); 6556 assert(magics.PostShift < Divisor.getBitWidth() && 6557 "We shouldn't generate an undefined shift!"); 6558 assert((!magics.IsAdd || magics.PreShift == 0) && 6559 "Unexpected pre-shift"); 6560 PreShift = DAG.getConstant(magics.PreShift, dl, ShSVT); 6561 PostShift = DAG.getConstant(magics.PostShift, dl, ShSVT); 6562 NPQFactor = DAG.getConstant( 6563 magics.IsAdd ? APInt::getOneBitSet(EltBits, EltBits - 1) 6564 : APInt::getZero(EltBits), 6565 dl, SVT); 6566 UseNPQ |= magics.IsAdd; 6567 UsePreShift |= magics.PreShift != 0; 6568 UsePostShift |= magics.PostShift != 0; 6569 } 6570 6571 PreShifts.push_back(PreShift); 6572 MagicFactors.push_back(MagicFactor); 6573 NPQFactors.push_back(NPQFactor); 6574 PostShifts.push_back(PostShift); 6575 return true; 6576 }; 6577 6578 // Collect the shifts/magic values from each element. 6579 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 6580 return SDValue(); 6581 6582 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 6583 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 6584 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 6585 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 6586 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 6587 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 6588 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 6589 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 6590 NPQFactors.size() == 1 && PostShifts.size() == 1 && 6591 "Expected matchUnaryPredicate to return one for scalable vectors"); 6592 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 6593 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 6594 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 6595 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 6596 } else { 6597 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 6598 PreShift = PreShifts[0]; 6599 MagicFactor = MagicFactors[0]; 6600 PostShift = PostShifts[0]; 6601 } 6602 6603 SDValue Q = N0; 6604 if (UsePreShift) { 6605 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 6606 Created.push_back(Q.getNode()); 6607 } 6608 6609 // FIXME: We should support doing a MUL in a wider type. 6610 auto GetMULHU = [&](SDValue X, SDValue Y) { 6611 // If the type isn't legal, use a wider mul of the type calculated 6612 // earlier. 6613 if (!isTypeLegal(VT)) { 6614 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 6615 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 6616 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 6617 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 6618 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 6619 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6620 } 6621 6622 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 6623 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 6624 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 6625 SDValue LoHi = 6626 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 6627 return SDValue(LoHi.getNode(), 1); 6628 } 6629 // If type twice as wide legal, widen and use a mul plus a shift. 6630 unsigned Size = VT.getScalarSizeInBits(); 6631 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2); 6632 if (VT.isVector()) 6633 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 6634 VT.getVectorElementCount()); 6635 // Some targets like AMDGPU try to go from UDIV to UDIVREM which is then 6636 // custom lowered. This is very expensive so avoid it at all costs for 6637 // constant divisors. 6638 if ((!IsAfterLegalTypes && isOperationExpand(ISD::UDIV, VT) && 6639 isOperationCustom(ISD::UDIVREM, VT.getScalarType())) || 6640 isOperationLegalOrCustom(ISD::MUL, WideVT)) { 6641 X = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, X); 6642 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, Y); 6643 Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y); 6644 Y = DAG.getNode(ISD::SRL, dl, WideVT, Y, 6645 DAG.getShiftAmountConstant(EltBits, WideVT, dl)); 6646 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6647 } 6648 return SDValue(); // No mulhu or equivalent 6649 }; 6650 6651 // Multiply the numerator (operand 0) by the magic value. 6652 Q = GetMULHU(Q, MagicFactor); 6653 if (!Q) 6654 return SDValue(); 6655 6656 Created.push_back(Q.getNode()); 6657 6658 if (UseNPQ) { 6659 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 6660 Created.push_back(NPQ.getNode()); 6661 6662 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 6663 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 6664 if (VT.isVector()) 6665 NPQ = GetMULHU(NPQ, NPQFactor); 6666 else 6667 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 6668 6669 Created.push_back(NPQ.getNode()); 6670 6671 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 6672 Created.push_back(Q.getNode()); 6673 } 6674 6675 if (UsePostShift) { 6676 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 6677 Created.push_back(Q.getNode()); 6678 } 6679 6680 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6681 6682 SDValue One = DAG.getConstant(1, dl, VT); 6683 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 6684 return DAG.getSelect(dl, VT, IsOne, N0, Q); 6685 } 6686 6687 /// If all values in Values that *don't* match the predicate are same 'splat' 6688 /// value, then replace all values with that splat value. 6689 /// Else, if AlternativeReplacement was provided, then replace all values that 6690 /// do match predicate with AlternativeReplacement value. 6691 static void 6692 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 6693 std::function<bool(SDValue)> Predicate, 6694 SDValue AlternativeReplacement = SDValue()) { 6695 SDValue Replacement; 6696 // Is there a value for which the Predicate does *NOT* match? What is it? 6697 auto SplatValue = llvm::find_if_not(Values, Predicate); 6698 if (SplatValue != Values.end()) { 6699 // Does Values consist only of SplatValue's and values matching Predicate? 6700 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 6701 return Value == *SplatValue || Predicate(Value); 6702 })) // Then we shall replace values matching predicate with SplatValue. 6703 Replacement = *SplatValue; 6704 } 6705 if (!Replacement) { 6706 // Oops, we did not find the "baseline" splat value. 6707 if (!AlternativeReplacement) 6708 return; // Nothing to do. 6709 // Let's replace with provided value then. 6710 Replacement = AlternativeReplacement; 6711 } 6712 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 6713 } 6714 6715 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 6716 /// where the divisor is constant and the comparison target is zero, 6717 /// return a DAG expression that will generate the same comparison result 6718 /// using only multiplications, additions and shifts/rotations. 6719 /// Ref: "Hacker's Delight" 10-17. 6720 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 6721 SDValue CompTargetNode, 6722 ISD::CondCode Cond, 6723 DAGCombinerInfo &DCI, 6724 const SDLoc &DL) const { 6725 SmallVector<SDNode *, 5> Built; 6726 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6727 DCI, DL, Built)) { 6728 for (SDNode *N : Built) 6729 DCI.AddToWorklist(N); 6730 return Folded; 6731 } 6732 6733 return SDValue(); 6734 } 6735 6736 SDValue 6737 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 6738 SDValue CompTargetNode, ISD::CondCode Cond, 6739 DAGCombinerInfo &DCI, const SDLoc &DL, 6740 SmallVectorImpl<SDNode *> &Created) const { 6741 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 6742 // - D must be constant, with D = D0 * 2^K where D0 is odd 6743 // - P is the multiplicative inverse of D0 modulo 2^W 6744 // - Q = floor(((2^W) - 1) / D) 6745 // where W is the width of the common type of N and D. 6746 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6747 "Only applicable for (in)equality comparisons."); 6748 6749 SelectionDAG &DAG = DCI.DAG; 6750 6751 EVT VT = REMNode.getValueType(); 6752 EVT SVT = VT.getScalarType(); 6753 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6754 EVT ShSVT = ShVT.getScalarType(); 6755 6756 // If MUL is unavailable, we cannot proceed in any case. 6757 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6758 return SDValue(); 6759 6760 bool ComparingWithAllZeros = true; 6761 bool AllComparisonsWithNonZerosAreTautological = true; 6762 bool HadTautologicalLanes = false; 6763 bool AllLanesAreTautological = true; 6764 bool HadEvenDivisor = false; 6765 bool AllDivisorsArePowerOfTwo = true; 6766 bool HadTautologicalInvertedLanes = false; 6767 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 6768 6769 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 6770 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6771 if (CDiv->isZero()) 6772 return false; 6773 6774 const APInt &D = CDiv->getAPIntValue(); 6775 const APInt &Cmp = CCmp->getAPIntValue(); 6776 6777 ComparingWithAllZeros &= Cmp.isZero(); 6778 6779 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6780 // if C2 is not less than C1, the comparison is always false. 6781 // But we will only be able to produce the comparison that will give the 6782 // opposive tautological answer. So this lane would need to be fixed up. 6783 bool TautologicalInvertedLane = D.ule(Cmp); 6784 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 6785 6786 // If all lanes are tautological (either all divisors are ones, or divisor 6787 // is not greater than the constant we are comparing with), 6788 // we will prefer to avoid the fold. 6789 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 6790 HadTautologicalLanes |= TautologicalLane; 6791 AllLanesAreTautological &= TautologicalLane; 6792 6793 // If we are comparing with non-zero, we need'll need to subtract said 6794 // comparison value from the LHS. But there is no point in doing that if 6795 // every lane where we are comparing with non-zero is tautological.. 6796 if (!Cmp.isZero()) 6797 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 6798 6799 // Decompose D into D0 * 2^K 6800 unsigned K = D.countr_zero(); 6801 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6802 APInt D0 = D.lshr(K); 6803 6804 // D is even if it has trailing zeros. 6805 HadEvenDivisor |= (K != 0); 6806 // D is a power-of-two if D0 is one. 6807 // If all divisors are power-of-two, we will prefer to avoid the fold. 6808 AllDivisorsArePowerOfTwo &= D0.isOne(); 6809 6810 // P = inv(D0, 2^W) 6811 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6812 unsigned W = D.getBitWidth(); 6813 APInt P = D0.multiplicativeInverse(); 6814 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6815 6816 // Q = floor((2^W - 1) u/ D) 6817 // R = ((2^W - 1) u% D) 6818 APInt Q, R; 6819 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 6820 6821 // If we are comparing with zero, then that comparison constant is okay, 6822 // else it may need to be one less than that. 6823 if (Cmp.ugt(R)) 6824 Q -= 1; 6825 6826 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6827 "We are expecting that K is always less than all-ones for ShSVT"); 6828 6829 // If the lane is tautological the result can be constant-folded. 6830 if (TautologicalLane) { 6831 // Set P and K amount to a bogus values so we can try to splat them. 6832 P = 0; 6833 K = -1; 6834 // And ensure that comparison constant is tautological, 6835 // it will always compare true/false. 6836 Q = -1; 6837 } 6838 6839 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6840 KAmts.push_back( 6841 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K, /*isSigned=*/false, 6842 /*implicitTrunc=*/true), 6843 DL, ShSVT)); 6844 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6845 return true; 6846 }; 6847 6848 SDValue N = REMNode.getOperand(0); 6849 SDValue D = REMNode.getOperand(1); 6850 6851 // Collect the values from each element. 6852 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 6853 return SDValue(); 6854 6855 // If all lanes are tautological, the result can be constant-folded. 6856 if (AllLanesAreTautological) 6857 return SDValue(); 6858 6859 // If this is a urem by a powers-of-two, avoid the fold since it can be 6860 // best implemented as a bit test. 6861 if (AllDivisorsArePowerOfTwo) 6862 return SDValue(); 6863 6864 SDValue PVal, KVal, QVal; 6865 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6866 if (HadTautologicalLanes) { 6867 // Try to turn PAmts into a splat, since we don't care about the values 6868 // that are currently '0'. If we can't, just keep '0'`s. 6869 turnVectorIntoSplatVector(PAmts, isNullConstant); 6870 // Try to turn KAmts into a splat, since we don't care about the values 6871 // that are currently '-1'. If we can't, change them to '0'`s. 6872 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6873 DAG.getConstant(0, DL, ShSVT)); 6874 } 6875 6876 PVal = DAG.getBuildVector(VT, DL, PAmts); 6877 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6878 QVal = DAG.getBuildVector(VT, DL, QAmts); 6879 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6880 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 6881 "Expected matchBinaryPredicate to return one element for " 6882 "SPLAT_VECTORs"); 6883 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6884 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6885 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6886 } else { 6887 PVal = PAmts[0]; 6888 KVal = KAmts[0]; 6889 QVal = QAmts[0]; 6890 } 6891 6892 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 6893 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 6894 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 6895 assert(CompTargetNode.getValueType() == N.getValueType() && 6896 "Expecting that the types on LHS and RHS of comparisons match."); 6897 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 6898 } 6899 6900 // (mul N, P) 6901 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6902 Created.push_back(Op0.getNode()); 6903 6904 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6905 // divisors as a performance improvement, since rotating by 0 is a no-op. 6906 if (HadEvenDivisor) { 6907 // We need ROTR to do this. 6908 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6909 return SDValue(); 6910 // UREM: (rotr (mul N, P), K) 6911 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6912 Created.push_back(Op0.getNode()); 6913 } 6914 6915 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 6916 SDValue NewCC = 6917 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6918 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6919 if (!HadTautologicalInvertedLanes) 6920 return NewCC; 6921 6922 // If any lanes previously compared always-false, the NewCC will give 6923 // always-true result for them, so we need to fixup those lanes. 6924 // Or the other way around for inequality predicate. 6925 assert(VT.isVector() && "Can/should only get here for vectors."); 6926 Created.push_back(NewCC.getNode()); 6927 6928 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6929 // if C2 is not less than C1, the comparison is always false. 6930 // But we have produced the comparison that will give the 6931 // opposive tautological answer. So these lanes would need to be fixed up. 6932 SDValue TautologicalInvertedChannels = 6933 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 6934 Created.push_back(TautologicalInvertedChannels.getNode()); 6935 6936 // NOTE: we avoid letting illegal types through even if we're before legalize 6937 // ops – legalization has a hard time producing good code for this. 6938 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 6939 // If we have a vector select, let's replace the comparison results in the 6940 // affected lanes with the correct tautological result. 6941 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 6942 DL, SETCCVT, SETCCVT); 6943 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 6944 Replacement, NewCC); 6945 } 6946 6947 // Else, we can just invert the comparison result in the appropriate lanes. 6948 // 6949 // NOTE: see the note above VSELECT above. 6950 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 6951 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 6952 TautologicalInvertedChannels); 6953 6954 return SDValue(); // Don't know how to lower. 6955 } 6956 6957 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 6958 /// where the divisor is constant and the comparison target is zero, 6959 /// return a DAG expression that will generate the same comparison result 6960 /// using only multiplications, additions and shifts/rotations. 6961 /// Ref: "Hacker's Delight" 10-17. 6962 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 6963 SDValue CompTargetNode, 6964 ISD::CondCode Cond, 6965 DAGCombinerInfo &DCI, 6966 const SDLoc &DL) const { 6967 SmallVector<SDNode *, 7> Built; 6968 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6969 DCI, DL, Built)) { 6970 assert(Built.size() <= 7 && "Max size prediction failed."); 6971 for (SDNode *N : Built) 6972 DCI.AddToWorklist(N); 6973 return Folded; 6974 } 6975 6976 return SDValue(); 6977 } 6978 6979 SDValue 6980 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 6981 SDValue CompTargetNode, ISD::CondCode Cond, 6982 DAGCombinerInfo &DCI, const SDLoc &DL, 6983 SmallVectorImpl<SDNode *> &Created) const { 6984 // Derived from Hacker's Delight, 2nd Edition, by Hank Warren. Section 10-17. 6985 // Fold: 6986 // (seteq/ne (srem N, D), 0) 6987 // To: 6988 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 6989 // 6990 // - D must be constant, with D = D0 * 2^K where D0 is odd 6991 // - P is the multiplicative inverse of D0 modulo 2^W 6992 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 6993 // - Q = floor((2 * A) / (2^K)) 6994 // where W is the width of the common type of N and D. 6995 // 6996 // When D is a power of two (and thus D0 is 1), the normal 6997 // formula for A and Q don't apply, because the derivation 6998 // depends on D not dividing 2^(W-1), and thus theorem ZRS 6999 // does not apply. This specifically fails when N = INT_MIN. 7000 // 7001 // Instead, for power-of-two D, we use: 7002 // - A = 2^(W-1) 7003 // |-> Order-preserving map from [-2^(W-1), 2^(W-1) - 1] to [0,2^W - 1]) 7004 // - Q = 2^(W-K) - 1 7005 // |-> Test that the top K bits are zero after rotation 7006 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 7007 "Only applicable for (in)equality comparisons."); 7008 7009 SelectionDAG &DAG = DCI.DAG; 7010 7011 EVT VT = REMNode.getValueType(); 7012 EVT SVT = VT.getScalarType(); 7013 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7014 EVT ShSVT = ShVT.getScalarType(); 7015 7016 // If we are after ops legalization, and MUL is unavailable, we can not 7017 // proceed. 7018 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 7019 return SDValue(); 7020 7021 // TODO: Could support comparing with non-zero too. 7022 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 7023 if (!CompTarget || !CompTarget->isZero()) 7024 return SDValue(); 7025 7026 bool HadIntMinDivisor = false; 7027 bool HadOneDivisor = false; 7028 bool AllDivisorsAreOnes = true; 7029 bool HadEvenDivisor = false; 7030 bool NeedToApplyOffset = false; 7031 bool AllDivisorsArePowerOfTwo = true; 7032 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 7033 7034 auto BuildSREMPattern = [&](ConstantSDNode *C) { 7035 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 7036 if (C->isZero()) 7037 return false; 7038 7039 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 7040 7041 // WARNING: this fold is only valid for positive divisors! 7042 APInt D = C->getAPIntValue(); 7043 if (D.isNegative()) 7044 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 7045 7046 HadIntMinDivisor |= D.isMinSignedValue(); 7047 7048 // If all divisors are ones, we will prefer to avoid the fold. 7049 HadOneDivisor |= D.isOne(); 7050 AllDivisorsAreOnes &= D.isOne(); 7051 7052 // Decompose D into D0 * 2^K 7053 unsigned K = D.countr_zero(); 7054 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 7055 APInt D0 = D.lshr(K); 7056 7057 if (!D.isMinSignedValue()) { 7058 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 7059 // we don't care about this lane in this fold, we'll special-handle it. 7060 HadEvenDivisor |= (K != 0); 7061 } 7062 7063 // D is a power-of-two if D0 is one. This includes INT_MIN. 7064 // If all divisors are power-of-two, we will prefer to avoid the fold. 7065 AllDivisorsArePowerOfTwo &= D0.isOne(); 7066 7067 // P = inv(D0, 2^W) 7068 // 2^W requires W + 1 bits, so we have to extend and then truncate. 7069 unsigned W = D.getBitWidth(); 7070 APInt P = D0.multiplicativeInverse(); 7071 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 7072 7073 // A = floor((2^(W - 1) - 1) / D0) & -2^K 7074 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 7075 A.clearLowBits(K); 7076 7077 if (!D.isMinSignedValue()) { 7078 // If divisor INT_MIN, then we don't care about this lane in this fold, 7079 // we'll special-handle it. 7080 NeedToApplyOffset |= A != 0; 7081 } 7082 7083 // Q = floor((2 * A) / (2^K)) 7084 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 7085 7086 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 7087 "We are expecting that A is always less than all-ones for SVT"); 7088 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 7089 "We are expecting that K is always less than all-ones for ShSVT"); 7090 7091 // If D was a power of two, apply the alternate constant derivation. 7092 if (D0.isOne()) { 7093 // A = 2^(W-1) 7094 A = APInt::getSignedMinValue(W); 7095 // - Q = 2^(W-K) - 1 7096 Q = APInt::getAllOnes(W - K).zext(W); 7097 } 7098 7099 // If the divisor is 1 the result can be constant-folded. Likewise, we 7100 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 7101 if (D.isOne()) { 7102 // Set P, A and K to a bogus values so we can try to splat them. 7103 P = 0; 7104 A = -1; 7105 K = -1; 7106 7107 // x ?% 1 == 0 <--> true <--> x u<= -1 7108 Q = -1; 7109 } 7110 7111 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 7112 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 7113 KAmts.push_back( 7114 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K, /*isSigned=*/false, 7115 /*implicitTrunc=*/true), 7116 DL, ShSVT)); 7117 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 7118 return true; 7119 }; 7120 7121 SDValue N = REMNode.getOperand(0); 7122 SDValue D = REMNode.getOperand(1); 7123 7124 // Collect the values from each element. 7125 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 7126 return SDValue(); 7127 7128 // If this is a srem by a one, avoid the fold since it can be constant-folded. 7129 if (AllDivisorsAreOnes) 7130 return SDValue(); 7131 7132 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 7133 // since it can be best implemented as a bit test. 7134 if (AllDivisorsArePowerOfTwo) 7135 return SDValue(); 7136 7137 SDValue PVal, AVal, KVal, QVal; 7138 if (D.getOpcode() == ISD::BUILD_VECTOR) { 7139 if (HadOneDivisor) { 7140 // Try to turn PAmts into a splat, since we don't care about the values 7141 // that are currently '0'. If we can't, just keep '0'`s. 7142 turnVectorIntoSplatVector(PAmts, isNullConstant); 7143 // Try to turn AAmts into a splat, since we don't care about the 7144 // values that are currently '-1'. If we can't, change them to '0'`s. 7145 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 7146 DAG.getConstant(0, DL, SVT)); 7147 // Try to turn KAmts into a splat, since we don't care about the values 7148 // that are currently '-1'. If we can't, change them to '0'`s. 7149 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 7150 DAG.getConstant(0, DL, ShSVT)); 7151 } 7152 7153 PVal = DAG.getBuildVector(VT, DL, PAmts); 7154 AVal = DAG.getBuildVector(VT, DL, AAmts); 7155 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 7156 QVal = DAG.getBuildVector(VT, DL, QAmts); 7157 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 7158 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 7159 QAmts.size() == 1 && 7160 "Expected matchUnaryPredicate to return one element for scalable " 7161 "vectors"); 7162 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 7163 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 7164 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 7165 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 7166 } else { 7167 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 7168 PVal = PAmts[0]; 7169 AVal = AAmts[0]; 7170 KVal = KAmts[0]; 7171 QVal = QAmts[0]; 7172 } 7173 7174 // (mul N, P) 7175 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 7176 Created.push_back(Op0.getNode()); 7177 7178 if (NeedToApplyOffset) { 7179 // We need ADD to do this. 7180 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 7181 return SDValue(); 7182 7183 // (add (mul N, P), A) 7184 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 7185 Created.push_back(Op0.getNode()); 7186 } 7187 7188 // Rotate right only if any divisor was even. We avoid rotates for all-odd 7189 // divisors as a performance improvement, since rotating by 0 is a no-op. 7190 if (HadEvenDivisor) { 7191 // We need ROTR to do this. 7192 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 7193 return SDValue(); 7194 // SREM: (rotr (add (mul N, P), A), K) 7195 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 7196 Created.push_back(Op0.getNode()); 7197 } 7198 7199 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 7200 SDValue Fold = 7201 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 7202 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 7203 7204 // If we didn't have lanes with INT_MIN divisor, then we're done. 7205 if (!HadIntMinDivisor) 7206 return Fold; 7207 7208 // That fold is only valid for positive divisors. Which effectively means, 7209 // it is invalid for INT_MIN divisors. So if we have such a lane, 7210 // we must fix-up results for said lanes. 7211 assert(VT.isVector() && "Can/should only get here for vectors."); 7212 7213 // NOTE: we avoid letting illegal types through even if we're before legalize 7214 // ops – legalization has a hard time producing good code for the code that 7215 // follows. 7216 if (!isOperationLegalOrCustom(ISD::SETCC, SETCCVT) || 7217 !isOperationLegalOrCustom(ISD::AND, VT) || 7218 !isCondCodeLegalOrCustom(Cond, VT.getSimpleVT()) || 7219 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 7220 return SDValue(); 7221 7222 Created.push_back(Fold.getNode()); 7223 7224 SDValue IntMin = DAG.getConstant( 7225 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 7226 SDValue IntMax = DAG.getConstant( 7227 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 7228 SDValue Zero = 7229 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 7230 7231 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 7232 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 7233 Created.push_back(DivisorIsIntMin.getNode()); 7234 7235 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 7236 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 7237 Created.push_back(Masked.getNode()); 7238 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 7239 Created.push_back(MaskedIsZero.getNode()); 7240 7241 // To produce final result we need to blend 2 vectors: 'SetCC' and 7242 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 7243 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 7244 // constant-folded, select can get lowered to a shuffle with constant mask. 7245 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 7246 MaskedIsZero, Fold); 7247 7248 return Blended; 7249 } 7250 7251 bool TargetLowering:: 7252 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 7253 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 7254 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 7255 "be a constant integer"); 7256 return true; 7257 } 7258 7259 return false; 7260 } 7261 7262 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 7263 const DenormalMode &Mode) const { 7264 SDLoc DL(Op); 7265 EVT VT = Op.getValueType(); 7266 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7267 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 7268 7269 // This is specifically a check for the handling of denormal inputs, not the 7270 // result. 7271 if (Mode.Input == DenormalMode::PreserveSign || 7272 Mode.Input == DenormalMode::PositiveZero) { 7273 // Test = X == 0.0 7274 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 7275 } 7276 7277 // Testing it with denormal inputs to avoid wrong estimate. 7278 // 7279 // Test = fabs(X) < SmallestNormal 7280 const fltSemantics &FltSem = VT.getFltSemantics(); 7281 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 7282 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 7283 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 7284 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 7285 } 7286 7287 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 7288 bool LegalOps, bool OptForSize, 7289 NegatibleCost &Cost, 7290 unsigned Depth) const { 7291 // fneg is removable even if it has multiple uses. 7292 if (Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::VP_FNEG) { 7293 Cost = NegatibleCost::Cheaper; 7294 return Op.getOperand(0); 7295 } 7296 7297 // Don't recurse exponentially. 7298 if (Depth > SelectionDAG::MaxRecursionDepth) 7299 return SDValue(); 7300 7301 // Pre-increment recursion depth for use in recursive calls. 7302 ++Depth; 7303 const SDNodeFlags Flags = Op->getFlags(); 7304 const TargetOptions &Options = DAG.getTarget().Options; 7305 EVT VT = Op.getValueType(); 7306 unsigned Opcode = Op.getOpcode(); 7307 7308 // Don't allow anything with multiple uses unless we know it is free. 7309 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 7310 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 7311 isFPExtFree(VT, Op.getOperand(0).getValueType()); 7312 if (!IsFreeExtend) 7313 return SDValue(); 7314 } 7315 7316 auto RemoveDeadNode = [&](SDValue N) { 7317 if (N && N.getNode()->use_empty()) 7318 DAG.RemoveDeadNode(N.getNode()); 7319 }; 7320 7321 SDLoc DL(Op); 7322 7323 // Because getNegatedExpression can delete nodes we need a handle to keep 7324 // temporary nodes alive in case the recursion manages to create an identical 7325 // node. 7326 std::list<HandleSDNode> Handles; 7327 7328 switch (Opcode) { 7329 case ISD::ConstantFP: { 7330 // Don't invert constant FP values after legalization unless the target says 7331 // the negated constant is legal. 7332 bool IsOpLegal = 7333 isOperationLegal(ISD::ConstantFP, VT) || 7334 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 7335 OptForSize); 7336 7337 if (LegalOps && !IsOpLegal) 7338 break; 7339 7340 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 7341 V.changeSign(); 7342 SDValue CFP = DAG.getConstantFP(V, DL, VT); 7343 7344 // If we already have the use of the negated floating constant, it is free 7345 // to negate it even it has multiple uses. 7346 if (!Op.hasOneUse() && CFP.use_empty()) 7347 break; 7348 Cost = NegatibleCost::Neutral; 7349 return CFP; 7350 } 7351 case ISD::BUILD_VECTOR: { 7352 // Only permit BUILD_VECTOR of constants. 7353 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 7354 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 7355 })) 7356 break; 7357 7358 bool IsOpLegal = 7359 (isOperationLegal(ISD::ConstantFP, VT) && 7360 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 7361 llvm::all_of(Op->op_values(), [&](SDValue N) { 7362 return N.isUndef() || 7363 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 7364 OptForSize); 7365 }); 7366 7367 if (LegalOps && !IsOpLegal) 7368 break; 7369 7370 SmallVector<SDValue, 4> Ops; 7371 for (SDValue C : Op->op_values()) { 7372 if (C.isUndef()) { 7373 Ops.push_back(C); 7374 continue; 7375 } 7376 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 7377 V.changeSign(); 7378 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 7379 } 7380 Cost = NegatibleCost::Neutral; 7381 return DAG.getBuildVector(VT, DL, Ops); 7382 } 7383 case ISD::FADD: { 7384 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 7385 break; 7386 7387 // After operation legalization, it might not be legal to create new FSUBs. 7388 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 7389 break; 7390 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 7391 7392 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 7393 NegatibleCost CostX = NegatibleCost::Expensive; 7394 SDValue NegX = 7395 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 7396 // Prevent this node from being deleted by the next call. 7397 if (NegX) 7398 Handles.emplace_back(NegX); 7399 7400 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 7401 NegatibleCost CostY = NegatibleCost::Expensive; 7402 SDValue NegY = 7403 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 7404 7405 // We're done with the handles. 7406 Handles.clear(); 7407 7408 // Negate the X if its cost is less or equal than Y. 7409 if (NegX && (CostX <= CostY)) { 7410 Cost = CostX; 7411 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 7412 if (NegY != N) 7413 RemoveDeadNode(NegY); 7414 return N; 7415 } 7416 7417 // Negate the Y if it is not expensive. 7418 if (NegY) { 7419 Cost = CostY; 7420 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 7421 if (NegX != N) 7422 RemoveDeadNode(NegX); 7423 return N; 7424 } 7425 break; 7426 } 7427 case ISD::FSUB: { 7428 // We can't turn -(A-B) into B-A when we honor signed zeros. 7429 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 7430 break; 7431 7432 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 7433 // fold (fneg (fsub 0, Y)) -> Y 7434 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 7435 if (C->isZero()) { 7436 Cost = NegatibleCost::Cheaper; 7437 return Y; 7438 } 7439 7440 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 7441 Cost = NegatibleCost::Neutral; 7442 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 7443 } 7444 case ISD::FMUL: 7445 case ISD::FDIV: { 7446 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 7447 7448 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 7449 NegatibleCost CostX = NegatibleCost::Expensive; 7450 SDValue NegX = 7451 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 7452 // Prevent this node from being deleted by the next call. 7453 if (NegX) 7454 Handles.emplace_back(NegX); 7455 7456 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 7457 NegatibleCost CostY = NegatibleCost::Expensive; 7458 SDValue NegY = 7459 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 7460 7461 // We're done with the handles. 7462 Handles.clear(); 7463 7464 // Negate the X if its cost is less or equal than Y. 7465 if (NegX && (CostX <= CostY)) { 7466 Cost = CostX; 7467 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 7468 if (NegY != N) 7469 RemoveDeadNode(NegY); 7470 return N; 7471 } 7472 7473 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 7474 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 7475 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 7476 break; 7477 7478 // Negate the Y if it is not expensive. 7479 if (NegY) { 7480 Cost = CostY; 7481 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 7482 if (NegX != N) 7483 RemoveDeadNode(NegX); 7484 return N; 7485 } 7486 break; 7487 } 7488 case ISD::FMA: 7489 case ISD::FMAD: { 7490 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 7491 break; 7492 7493 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 7494 NegatibleCost CostZ = NegatibleCost::Expensive; 7495 SDValue NegZ = 7496 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 7497 // Give up if fail to negate the Z. 7498 if (!NegZ) 7499 break; 7500 7501 // Prevent this node from being deleted by the next two calls. 7502 Handles.emplace_back(NegZ); 7503 7504 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 7505 NegatibleCost CostX = NegatibleCost::Expensive; 7506 SDValue NegX = 7507 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 7508 // Prevent this node from being deleted by the next call. 7509 if (NegX) 7510 Handles.emplace_back(NegX); 7511 7512 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 7513 NegatibleCost CostY = NegatibleCost::Expensive; 7514 SDValue NegY = 7515 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 7516 7517 // We're done with the handles. 7518 Handles.clear(); 7519 7520 // Negate the X if its cost is less or equal than Y. 7521 if (NegX && (CostX <= CostY)) { 7522 Cost = std::min(CostX, CostZ); 7523 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 7524 if (NegY != N) 7525 RemoveDeadNode(NegY); 7526 return N; 7527 } 7528 7529 // Negate the Y if it is not expensive. 7530 if (NegY) { 7531 Cost = std::min(CostY, CostZ); 7532 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 7533 if (NegX != N) 7534 RemoveDeadNode(NegX); 7535 return N; 7536 } 7537 break; 7538 } 7539 7540 case ISD::FP_EXTEND: 7541 case ISD::FSIN: 7542 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 7543 OptForSize, Cost, Depth)) 7544 return DAG.getNode(Opcode, DL, VT, NegV); 7545 break; 7546 case ISD::FP_ROUND: 7547 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 7548 OptForSize, Cost, Depth)) 7549 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 7550 break; 7551 case ISD::SELECT: 7552 case ISD::VSELECT: { 7553 // fold (fneg (select C, LHS, RHS)) -> (select C, (fneg LHS), (fneg RHS)) 7554 // iff at least one cost is cheaper and the other is neutral/cheaper 7555 SDValue LHS = Op.getOperand(1); 7556 NegatibleCost CostLHS = NegatibleCost::Expensive; 7557 SDValue NegLHS = 7558 getNegatedExpression(LHS, DAG, LegalOps, OptForSize, CostLHS, Depth); 7559 if (!NegLHS || CostLHS > NegatibleCost::Neutral) { 7560 RemoveDeadNode(NegLHS); 7561 break; 7562 } 7563 7564 // Prevent this node from being deleted by the next call. 7565 Handles.emplace_back(NegLHS); 7566 7567 SDValue RHS = Op.getOperand(2); 7568 NegatibleCost CostRHS = NegatibleCost::Expensive; 7569 SDValue NegRHS = 7570 getNegatedExpression(RHS, DAG, LegalOps, OptForSize, CostRHS, Depth); 7571 7572 // We're done with the handles. 7573 Handles.clear(); 7574 7575 if (!NegRHS || CostRHS > NegatibleCost::Neutral || 7576 (CostLHS != NegatibleCost::Cheaper && 7577 CostRHS != NegatibleCost::Cheaper)) { 7578 RemoveDeadNode(NegLHS); 7579 RemoveDeadNode(NegRHS); 7580 break; 7581 } 7582 7583 Cost = std::min(CostLHS, CostRHS); 7584 return DAG.getSelect(DL, VT, Op.getOperand(0), NegLHS, NegRHS); 7585 } 7586 } 7587 7588 return SDValue(); 7589 } 7590 7591 //===----------------------------------------------------------------------===// 7592 // Legalization Utilities 7593 //===----------------------------------------------------------------------===// 7594 7595 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 7596 SDValue LHS, SDValue RHS, 7597 SmallVectorImpl<SDValue> &Result, 7598 EVT HiLoVT, SelectionDAG &DAG, 7599 MulExpansionKind Kind, SDValue LL, 7600 SDValue LH, SDValue RL, SDValue RH) const { 7601 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 7602 Opcode == ISD::SMUL_LOHI); 7603 7604 bool HasMULHS = (Kind == MulExpansionKind::Always) || 7605 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 7606 bool HasMULHU = (Kind == MulExpansionKind::Always) || 7607 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 7608 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 7609 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 7610 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 7611 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 7612 7613 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 7614 return false; 7615 7616 unsigned OuterBitSize = VT.getScalarSizeInBits(); 7617 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 7618 7619 // LL, LH, RL, and RH must be either all NULL or all set to a value. 7620 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 7621 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 7622 7623 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 7624 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 7625 bool Signed) -> bool { 7626 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 7627 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 7628 Hi = SDValue(Lo.getNode(), 1); 7629 return true; 7630 } 7631 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 7632 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 7633 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 7634 return true; 7635 } 7636 return false; 7637 }; 7638 7639 SDValue Lo, Hi; 7640 7641 if (!LL.getNode() && !RL.getNode() && 7642 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 7643 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 7644 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 7645 } 7646 7647 if (!LL.getNode()) 7648 return false; 7649 7650 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 7651 if (DAG.MaskedValueIsZero(LHS, HighMask) && 7652 DAG.MaskedValueIsZero(RHS, HighMask)) { 7653 // The inputs are both zero-extended. 7654 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 7655 Result.push_back(Lo); 7656 Result.push_back(Hi); 7657 if (Opcode != ISD::MUL) { 7658 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 7659 Result.push_back(Zero); 7660 Result.push_back(Zero); 7661 } 7662 return true; 7663 } 7664 } 7665 7666 if (!VT.isVector() && Opcode == ISD::MUL && 7667 DAG.ComputeMaxSignificantBits(LHS) <= InnerBitSize && 7668 DAG.ComputeMaxSignificantBits(RHS) <= InnerBitSize) { 7669 // The input values are both sign-extended. 7670 // TODO non-MUL case? 7671 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 7672 Result.push_back(Lo); 7673 Result.push_back(Hi); 7674 return true; 7675 } 7676 } 7677 7678 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 7679 SDValue Shift = DAG.getShiftAmountConstant(ShiftAmount, VT, dl); 7680 7681 if (!LH.getNode() && !RH.getNode() && 7682 isOperationLegalOrCustom(ISD::SRL, VT) && 7683 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 7684 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 7685 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 7686 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 7687 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 7688 } 7689 7690 if (!LH.getNode()) 7691 return false; 7692 7693 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 7694 return false; 7695 7696 Result.push_back(Lo); 7697 7698 if (Opcode == ISD::MUL) { 7699 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 7700 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 7701 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 7702 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 7703 Result.push_back(Hi); 7704 return true; 7705 } 7706 7707 // Compute the full width result. 7708 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 7709 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 7710 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 7711 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 7712 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 7713 }; 7714 7715 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 7716 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 7717 return false; 7718 7719 // This is effectively the add part of a multiply-add of half-sized operands, 7720 // so it cannot overflow. 7721 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 7722 7723 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 7724 return false; 7725 7726 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 7727 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7728 7729 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 7730 isOperationLegalOrCustom(ISD::ADDE, VT)); 7731 if (UseGlue) 7732 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 7733 Merge(Lo, Hi)); 7734 else 7735 Next = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(VT, BoolType), Next, 7736 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 7737 7738 SDValue Carry = Next.getValue(1); 7739 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7740 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 7741 7742 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 7743 return false; 7744 7745 if (UseGlue) 7746 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 7747 Carry); 7748 else 7749 Hi = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 7750 Zero, Carry); 7751 7752 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 7753 7754 if (Opcode == ISD::SMUL_LOHI) { 7755 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 7756 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 7757 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 7758 7759 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 7760 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 7761 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 7762 } 7763 7764 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7765 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 7766 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7767 return true; 7768 } 7769 7770 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 7771 SelectionDAG &DAG, MulExpansionKind Kind, 7772 SDValue LL, SDValue LH, SDValue RL, 7773 SDValue RH) const { 7774 SmallVector<SDValue, 2> Result; 7775 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 7776 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 7777 DAG, Kind, LL, LH, RL, RH); 7778 if (Ok) { 7779 assert(Result.size() == 2); 7780 Lo = Result[0]; 7781 Hi = Result[1]; 7782 } 7783 return Ok; 7784 } 7785 7786 // Optimize unsigned division or remainder by constants for types twice as large 7787 // as a legal VT. 7788 // 7789 // If (1 << (BitWidth / 2)) % Constant == 1, then the remainder 7790 // can be computed 7791 // as: 7792 // Sum += __builtin_uadd_overflow(Lo, High, &Sum); 7793 // Remainder = Sum % Constant 7794 // This is based on "Remainder by Summing Digits" from Hacker's Delight. 7795 // 7796 // For division, we can compute the remainder using the algorithm described 7797 // above, subtract it from the dividend to get an exact multiple of Constant. 7798 // Then multiply that exact multiply by the multiplicative inverse modulo 7799 // (1 << (BitWidth / 2)) to get the quotient. 7800 7801 // If Constant is even, we can shift right the dividend and the divisor by the 7802 // number of trailing zeros in Constant before applying the remainder algorithm. 7803 // If we're after the quotient, we can subtract this value from the shifted 7804 // dividend and multiply by the multiplicative inverse of the shifted divisor. 7805 // If we want the remainder, we shift the value left by the number of trailing 7806 // zeros and add the bits that were shifted out of the dividend. 7807 bool TargetLowering::expandDIVREMByConstant(SDNode *N, 7808 SmallVectorImpl<SDValue> &Result, 7809 EVT HiLoVT, SelectionDAG &DAG, 7810 SDValue LL, SDValue LH) const { 7811 unsigned Opcode = N->getOpcode(); 7812 EVT VT = N->getValueType(0); 7813 7814 // TODO: Support signed division/remainder. 7815 if (Opcode == ISD::SREM || Opcode == ISD::SDIV || Opcode == ISD::SDIVREM) 7816 return false; 7817 assert( 7818 (Opcode == ISD::UREM || Opcode == ISD::UDIV || Opcode == ISD::UDIVREM) && 7819 "Unexpected opcode"); 7820 7821 auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7822 if (!CN) 7823 return false; 7824 7825 APInt Divisor = CN->getAPIntValue(); 7826 unsigned BitWidth = Divisor.getBitWidth(); 7827 unsigned HBitWidth = BitWidth / 2; 7828 assert(VT.getScalarSizeInBits() == BitWidth && 7829 HiLoVT.getScalarSizeInBits() == HBitWidth && "Unexpected VTs"); 7830 7831 // Divisor needs to less than (1 << HBitWidth). 7832 APInt HalfMaxPlus1 = APInt::getOneBitSet(BitWidth, HBitWidth); 7833 if (Divisor.uge(HalfMaxPlus1)) 7834 return false; 7835 7836 // We depend on the UREM by constant optimization in DAGCombiner that requires 7837 // high multiply. 7838 if (!isOperationLegalOrCustom(ISD::MULHU, HiLoVT) && 7839 !isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT)) 7840 return false; 7841 7842 // Don't expand if optimizing for size. 7843 if (DAG.shouldOptForSize()) 7844 return false; 7845 7846 // Early out for 0 or 1 divisors. 7847 if (Divisor.ule(1)) 7848 return false; 7849 7850 // If the divisor is even, shift it until it becomes odd. 7851 unsigned TrailingZeros = 0; 7852 if (!Divisor[0]) { 7853 TrailingZeros = Divisor.countr_zero(); 7854 Divisor.lshrInPlace(TrailingZeros); 7855 } 7856 7857 SDLoc dl(N); 7858 SDValue Sum; 7859 SDValue PartialRem; 7860 7861 // If (1 << HBitWidth) % divisor == 1, we can add the two halves together and 7862 // then add in the carry. 7863 // TODO: If we can't split it in half, we might be able to split into 3 or 7864 // more pieces using a smaller bit width. 7865 if (HalfMaxPlus1.urem(Divisor).isOne()) { 7866 assert(!LL == !LH && "Expected both input halves or no input halves!"); 7867 if (!LL) 7868 std::tie(LL, LH) = DAG.SplitScalar(N->getOperand(0), dl, HiLoVT, HiLoVT); 7869 7870 // Shift the input by the number of TrailingZeros in the divisor. The 7871 // shifted out bits will be added to the remainder later. 7872 if (TrailingZeros) { 7873 // Save the shifted off bits if we need the remainder. 7874 if (Opcode != ISD::UDIV) { 7875 APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros); 7876 PartialRem = DAG.getNode(ISD::AND, dl, HiLoVT, LL, 7877 DAG.getConstant(Mask, dl, HiLoVT)); 7878 } 7879 7880 LL = DAG.getNode( 7881 ISD::OR, dl, HiLoVT, 7882 DAG.getNode(ISD::SRL, dl, HiLoVT, LL, 7883 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)), 7884 DAG.getNode(ISD::SHL, dl, HiLoVT, LH, 7885 DAG.getShiftAmountConstant(HBitWidth - TrailingZeros, 7886 HiLoVT, dl))); 7887 LH = DAG.getNode(ISD::SRL, dl, HiLoVT, LH, 7888 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)); 7889 } 7890 7891 // Use uaddo_carry if we can, otherwise use a compare to detect overflow. 7892 EVT SetCCType = 7893 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), HiLoVT); 7894 if (isOperationLegalOrCustom(ISD::UADDO_CARRY, HiLoVT)) { 7895 SDVTList VTList = DAG.getVTList(HiLoVT, SetCCType); 7896 Sum = DAG.getNode(ISD::UADDO, dl, VTList, LL, LH); 7897 Sum = DAG.getNode(ISD::UADDO_CARRY, dl, VTList, Sum, 7898 DAG.getConstant(0, dl, HiLoVT), Sum.getValue(1)); 7899 } else { 7900 Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, LL, LH); 7901 SDValue Carry = DAG.getSetCC(dl, SetCCType, Sum, LL, ISD::SETULT); 7902 // If the boolean for the target is 0 or 1, we can add the setcc result 7903 // directly. 7904 if (getBooleanContents(HiLoVT) == 7905 TargetLoweringBase::ZeroOrOneBooleanContent) 7906 Carry = DAG.getZExtOrTrunc(Carry, dl, HiLoVT); 7907 else 7908 Carry = DAG.getSelect(dl, HiLoVT, Carry, DAG.getConstant(1, dl, HiLoVT), 7909 DAG.getConstant(0, dl, HiLoVT)); 7910 Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, Sum, Carry); 7911 } 7912 } 7913 7914 // If we didn't find a sum, we can't do the expansion. 7915 if (!Sum) 7916 return false; 7917 7918 // Perform a HiLoVT urem on the Sum using truncated divisor. 7919 SDValue RemL = 7920 DAG.getNode(ISD::UREM, dl, HiLoVT, Sum, 7921 DAG.getConstant(Divisor.trunc(HBitWidth), dl, HiLoVT)); 7922 SDValue RemH = DAG.getConstant(0, dl, HiLoVT); 7923 7924 if (Opcode != ISD::UREM) { 7925 // Subtract the remainder from the shifted dividend. 7926 SDValue Dividend = DAG.getNode(ISD::BUILD_PAIR, dl, VT, LL, LH); 7927 SDValue Rem = DAG.getNode(ISD::BUILD_PAIR, dl, VT, RemL, RemH); 7928 7929 Dividend = DAG.getNode(ISD::SUB, dl, VT, Dividend, Rem); 7930 7931 // Multiply by the multiplicative inverse of the divisor modulo 7932 // (1 << BitWidth). 7933 APInt MulFactor = Divisor.multiplicativeInverse(); 7934 7935 SDValue Quotient = DAG.getNode(ISD::MUL, dl, VT, Dividend, 7936 DAG.getConstant(MulFactor, dl, VT)); 7937 7938 // Split the quotient into low and high parts. 7939 SDValue QuotL, QuotH; 7940 std::tie(QuotL, QuotH) = DAG.SplitScalar(Quotient, dl, HiLoVT, HiLoVT); 7941 Result.push_back(QuotL); 7942 Result.push_back(QuotH); 7943 } 7944 7945 if (Opcode != ISD::UDIV) { 7946 // If we shifted the input, shift the remainder left and add the bits we 7947 // shifted off the input. 7948 if (TrailingZeros) { 7949 APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros); 7950 RemL = DAG.getNode(ISD::SHL, dl, HiLoVT, RemL, 7951 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)); 7952 RemL = DAG.getNode(ISD::ADD, dl, HiLoVT, RemL, PartialRem); 7953 } 7954 Result.push_back(RemL); 7955 Result.push_back(DAG.getConstant(0, dl, HiLoVT)); 7956 } 7957 7958 return true; 7959 } 7960 7961 // Check that (every element of) Z is undef or not an exact multiple of BW. 7962 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 7963 return ISD::matchUnaryPredicate( 7964 Z, 7965 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 7966 true); 7967 } 7968 7969 static SDValue expandVPFunnelShift(SDNode *Node, SelectionDAG &DAG) { 7970 EVT VT = Node->getValueType(0); 7971 SDValue ShX, ShY; 7972 SDValue ShAmt, InvShAmt; 7973 SDValue X = Node->getOperand(0); 7974 SDValue Y = Node->getOperand(1); 7975 SDValue Z = Node->getOperand(2); 7976 SDValue Mask = Node->getOperand(3); 7977 SDValue VL = Node->getOperand(4); 7978 7979 unsigned BW = VT.getScalarSizeInBits(); 7980 bool IsFSHL = Node->getOpcode() == ISD::VP_FSHL; 7981 SDLoc DL(SDValue(Node, 0)); 7982 7983 EVT ShVT = Z.getValueType(); 7984 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7985 // fshl: X << C | Y >> (BW - C) 7986 // fshr: X << (BW - C) | Y >> C 7987 // where C = Z % BW is not zero 7988 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7989 ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL); 7990 InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitWidthC, ShAmt, Mask, VL); 7991 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt, Mask, 7992 VL); 7993 ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt, Mask, 7994 VL); 7995 } else { 7996 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 7997 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 7998 SDValue BitMask = DAG.getConstant(BW - 1, DL, ShVT); 7999 if (isPowerOf2_32(BW)) { 8000 // Z % BW -> Z & (BW - 1) 8001 ShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, Z, BitMask, Mask, VL); 8002 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 8003 SDValue NotZ = DAG.getNode(ISD::VP_XOR, DL, ShVT, Z, 8004 DAG.getAllOnesConstant(DL, ShVT), Mask, VL); 8005 InvShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, NotZ, BitMask, Mask, VL); 8006 } else { 8007 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 8008 ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL); 8009 InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitMask, ShAmt, Mask, VL); 8010 } 8011 8012 SDValue One = DAG.getConstant(1, DL, ShVT); 8013 if (IsFSHL) { 8014 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, ShAmt, Mask, VL); 8015 SDValue ShY1 = DAG.getNode(ISD::VP_SRL, DL, VT, Y, One, Mask, VL); 8016 ShY = DAG.getNode(ISD::VP_SRL, DL, VT, ShY1, InvShAmt, Mask, VL); 8017 } else { 8018 SDValue ShX1 = DAG.getNode(ISD::VP_SHL, DL, VT, X, One, Mask, VL); 8019 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, ShX1, InvShAmt, Mask, VL); 8020 ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, ShAmt, Mask, VL); 8021 } 8022 } 8023 return DAG.getNode(ISD::VP_OR, DL, VT, ShX, ShY, Mask, VL); 8024 } 8025 8026 SDValue TargetLowering::expandFunnelShift(SDNode *Node, 8027 SelectionDAG &DAG) const { 8028 if (Node->isVPOpcode()) 8029 return expandVPFunnelShift(Node, DAG); 8030 8031 EVT VT = Node->getValueType(0); 8032 8033 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 8034 !isOperationLegalOrCustom(ISD::SRL, VT) || 8035 !isOperationLegalOrCustom(ISD::SUB, VT) || 8036 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 8037 return SDValue(); 8038 8039 SDValue X = Node->getOperand(0); 8040 SDValue Y = Node->getOperand(1); 8041 SDValue Z = Node->getOperand(2); 8042 8043 unsigned BW = VT.getScalarSizeInBits(); 8044 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 8045 SDLoc DL(SDValue(Node, 0)); 8046 8047 EVT ShVT = Z.getValueType(); 8048 8049 // If a funnel shift in the other direction is more supported, use it. 8050 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 8051 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 8052 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 8053 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 8054 // fshl X, Y, Z -> fshr X, Y, -Z 8055 // fshr X, Y, Z -> fshl X, Y, -Z 8056 SDValue Zero = DAG.getConstant(0, DL, ShVT); 8057 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 8058 } else { 8059 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 8060 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 8061 SDValue One = DAG.getConstant(1, DL, ShVT); 8062 if (IsFSHL) { 8063 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 8064 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 8065 } else { 8066 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 8067 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 8068 } 8069 Z = DAG.getNOT(DL, Z, ShVT); 8070 } 8071 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 8072 } 8073 8074 SDValue ShX, ShY; 8075 SDValue ShAmt, InvShAmt; 8076 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 8077 // fshl: X << C | Y >> (BW - C) 8078 // fshr: X << (BW - C) | Y >> C 8079 // where C = Z % BW is not zero 8080 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 8081 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 8082 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 8083 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 8084 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 8085 } else { 8086 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 8087 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 8088 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 8089 if (isPowerOf2_32(BW)) { 8090 // Z % BW -> Z & (BW - 1) 8091 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 8092 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 8093 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 8094 } else { 8095 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 8096 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 8097 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 8098 } 8099 8100 SDValue One = DAG.getConstant(1, DL, ShVT); 8101 if (IsFSHL) { 8102 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 8103 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 8104 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 8105 } else { 8106 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 8107 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 8108 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 8109 } 8110 } 8111 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 8112 } 8113 8114 // TODO: Merge with expandFunnelShift. 8115 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 8116 SelectionDAG &DAG) const { 8117 EVT VT = Node->getValueType(0); 8118 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 8119 bool IsLeft = Node->getOpcode() == ISD::ROTL; 8120 SDValue Op0 = Node->getOperand(0); 8121 SDValue Op1 = Node->getOperand(1); 8122 SDLoc DL(SDValue(Node, 0)); 8123 8124 EVT ShVT = Op1.getValueType(); 8125 SDValue Zero = DAG.getConstant(0, DL, ShVT); 8126 8127 // If a rotate in the other direction is more supported, use it. 8128 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 8129 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 8130 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 8131 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 8132 return DAG.getNode(RevRot, DL, VT, Op0, Sub); 8133 } 8134 8135 if (!AllowVectorOps && VT.isVector() && 8136 (!isOperationLegalOrCustom(ISD::SHL, VT) || 8137 !isOperationLegalOrCustom(ISD::SRL, VT) || 8138 !isOperationLegalOrCustom(ISD::SUB, VT) || 8139 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 8140 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 8141 return SDValue(); 8142 8143 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 8144 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 8145 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 8146 SDValue ShVal; 8147 SDValue HsVal; 8148 if (isPowerOf2_32(EltSizeInBits)) { 8149 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 8150 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 8151 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 8152 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 8153 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 8154 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 8155 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 8156 } else { 8157 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 8158 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 8159 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 8160 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 8161 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 8162 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 8163 SDValue One = DAG.getConstant(1, DL, ShVT); 8164 HsVal = 8165 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 8166 } 8167 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 8168 } 8169 8170 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 8171 SelectionDAG &DAG) const { 8172 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 8173 EVT VT = Node->getValueType(0); 8174 unsigned VTBits = VT.getScalarSizeInBits(); 8175 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 8176 8177 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 8178 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 8179 SDValue ShOpLo = Node->getOperand(0); 8180 SDValue ShOpHi = Node->getOperand(1); 8181 SDValue ShAmt = Node->getOperand(2); 8182 EVT ShAmtVT = ShAmt.getValueType(); 8183 EVT ShAmtCCVT = 8184 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 8185 SDLoc dl(Node); 8186 8187 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 8188 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 8189 // away during isel. 8190 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 8191 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 8192 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 8193 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 8194 : DAG.getConstant(0, dl, VT); 8195 8196 SDValue Tmp2, Tmp3; 8197 if (IsSHL) { 8198 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 8199 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 8200 } else { 8201 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 8202 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 8203 } 8204 8205 // If the shift amount is larger or equal than the width of a part we don't 8206 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 8207 // values for large shift amounts. 8208 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 8209 DAG.getConstant(VTBits, dl, ShAmtVT)); 8210 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 8211 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 8212 8213 if (IsSHL) { 8214 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 8215 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 8216 } else { 8217 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 8218 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 8219 } 8220 } 8221 8222 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 8223 SelectionDAG &DAG) const { 8224 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 8225 SDValue Src = Node->getOperand(OpNo); 8226 EVT SrcVT = Src.getValueType(); 8227 EVT DstVT = Node->getValueType(0); 8228 SDLoc dl(SDValue(Node, 0)); 8229 8230 // FIXME: Only f32 to i64 conversions are supported. 8231 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 8232 return false; 8233 8234 if (Node->isStrictFPOpcode()) 8235 // When a NaN is converted to an integer a trap is allowed. We can't 8236 // use this expansion here because it would eliminate that trap. Other 8237 // traps are also allowed and cannot be eliminated. See 8238 // IEEE 754-2008 sec 5.8. 8239 return false; 8240 8241 // Expand f32 -> i64 conversion 8242 // This algorithm comes from compiler-rt's implementation of fixsfdi: 8243 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 8244 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 8245 EVT IntVT = SrcVT.changeTypeToInteger(); 8246 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 8247 8248 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 8249 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 8250 SDValue Bias = DAG.getConstant(127, dl, IntVT); 8251 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 8252 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 8253 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 8254 8255 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 8256 8257 SDValue ExponentBits = DAG.getNode( 8258 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 8259 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 8260 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 8261 8262 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 8263 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 8264 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 8265 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 8266 8267 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 8268 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 8269 DAG.getConstant(0x00800000, dl, IntVT)); 8270 8271 R = DAG.getZExtOrTrunc(R, dl, DstVT); 8272 8273 R = DAG.getSelectCC( 8274 dl, Exponent, ExponentLoBit, 8275 DAG.getNode(ISD::SHL, dl, DstVT, R, 8276 DAG.getZExtOrTrunc( 8277 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 8278 dl, IntShVT)), 8279 DAG.getNode(ISD::SRL, dl, DstVT, R, 8280 DAG.getZExtOrTrunc( 8281 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 8282 dl, IntShVT)), 8283 ISD::SETGT); 8284 8285 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 8286 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 8287 8288 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 8289 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 8290 return true; 8291 } 8292 8293 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 8294 SDValue &Chain, 8295 SelectionDAG &DAG) const { 8296 SDLoc dl(SDValue(Node, 0)); 8297 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 8298 SDValue Src = Node->getOperand(OpNo); 8299 8300 EVT SrcVT = Src.getValueType(); 8301 EVT DstVT = Node->getValueType(0); 8302 EVT SetCCVT = 8303 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 8304 EVT DstSetCCVT = 8305 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 8306 8307 // Only expand vector types if we have the appropriate vector bit operations. 8308 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 8309 ISD::FP_TO_SINT; 8310 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 8311 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 8312 return false; 8313 8314 // If the maximum float value is smaller then the signed integer range, 8315 // the destination signmask can't be represented by the float, so we can 8316 // just use FP_TO_SINT directly. 8317 const fltSemantics &APFSem = SrcVT.getFltSemantics(); 8318 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 8319 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 8320 if (APFloat::opOverflow & 8321 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 8322 if (Node->isStrictFPOpcode()) { 8323 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 8324 { Node->getOperand(0), Src }); 8325 Chain = Result.getValue(1); 8326 } else 8327 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 8328 return true; 8329 } 8330 8331 // Don't expand it if there isn't cheap fsub instruction. 8332 if (!isOperationLegalOrCustom( 8333 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 8334 return false; 8335 8336 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 8337 SDValue Sel; 8338 8339 if (Node->isStrictFPOpcode()) { 8340 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 8341 Node->getOperand(0), /*IsSignaling*/ true); 8342 Chain = Sel.getValue(1); 8343 } else { 8344 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 8345 } 8346 8347 bool Strict = Node->isStrictFPOpcode() || 8348 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 8349 8350 if (Strict) { 8351 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 8352 // signmask then offset (the result of which should be fully representable). 8353 // Sel = Src < 0x8000000000000000 8354 // FltOfs = select Sel, 0, 0x8000000000000000 8355 // IntOfs = select Sel, 0, 0x8000000000000000 8356 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 8357 8358 // TODO: Should any fast-math-flags be set for the FSUB? 8359 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 8360 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 8361 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8362 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 8363 DAG.getConstant(0, dl, DstVT), 8364 DAG.getConstant(SignMask, dl, DstVT)); 8365 SDValue SInt; 8366 if (Node->isStrictFPOpcode()) { 8367 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 8368 { Chain, Src, FltOfs }); 8369 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 8370 { Val.getValue(1), Val }); 8371 Chain = SInt.getValue(1); 8372 } else { 8373 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 8374 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 8375 } 8376 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 8377 } else { 8378 // Expand based on maximum range of FP_TO_SINT: 8379 // True = fp_to_sint(Src) 8380 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 8381 // Result = select (Src < 0x8000000000000000), True, False 8382 8383 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 8384 // TODO: Should any fast-math-flags be set for the FSUB? 8385 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 8386 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 8387 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 8388 DAG.getConstant(SignMask, dl, DstVT)); 8389 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8390 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 8391 } 8392 return true; 8393 } 8394 8395 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 8396 SDValue &Chain, SelectionDAG &DAG) const { 8397 // This transform is not correct for converting 0 when rounding mode is set 8398 // to round toward negative infinity which will produce -0.0. So disable 8399 // under strictfp. 8400 if (Node->isStrictFPOpcode()) 8401 return false; 8402 8403 SDValue Src = Node->getOperand(0); 8404 EVT SrcVT = Src.getValueType(); 8405 EVT DstVT = Node->getValueType(0); 8406 8407 // If the input is known to be non-negative and SINT_TO_FP is legal then use 8408 // it. 8409 if (Node->getFlags().hasNonNeg() && 8410 isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT)) { 8411 Result = 8412 DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), DstVT, Node->getOperand(0)); 8413 return true; 8414 } 8415 8416 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 8417 return false; 8418 8419 // Only expand vector types if we have the appropriate vector bit 8420 // operations. 8421 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 8422 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 8423 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 8424 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 8425 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 8426 return false; 8427 8428 SDLoc dl(SDValue(Node, 0)); 8429 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 8430 8431 // Implementation of unsigned i64 to f64 following the algorithm in 8432 // __floatundidf in compiler_rt. This implementation performs rounding 8433 // correctly in all rounding modes with the exception of converting 0 8434 // when rounding toward negative infinity. In that case the fsub will 8435 // produce -0.0. This will be added to +0.0 and produce -0.0 which is 8436 // incorrect. 8437 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 8438 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 8439 llvm::bit_cast<double>(UINT64_C(0x4530000000100000)), dl, DstVT); 8440 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 8441 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 8442 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 8443 8444 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 8445 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 8446 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 8447 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 8448 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 8449 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 8450 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 8451 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 8452 return true; 8453 } 8454 8455 SDValue 8456 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node, 8457 SelectionDAG &DAG) const { 8458 unsigned Opcode = Node->getOpcode(); 8459 assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM || 8460 Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) && 8461 "Wrong opcode"); 8462 8463 if (Node->getFlags().hasNoNaNs()) { 8464 ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 8465 EVT VT = Node->getValueType(0); 8466 if ((!isCondCodeLegal(Pred, VT.getSimpleVT()) || 8467 !isOperationLegalOrCustom(ISD::VSELECT, VT)) && 8468 VT.isVector()) 8469 return SDValue(); 8470 SDValue Op1 = Node->getOperand(0); 8471 SDValue Op2 = Node->getOperand(1); 8472 SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred); 8473 // Copy FMF flags, but always set the no-signed-zeros flag 8474 // as this is implied by the FMINNUM/FMAXNUM semantics. 8475 SelCC->setFlags(Node->getFlags() | SDNodeFlags::NoSignedZeros); 8476 return SelCC; 8477 } 8478 8479 return SDValue(); 8480 } 8481 8482 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 8483 SelectionDAG &DAG) const { 8484 if (SDValue Expanded = expandVectorNaryOpBySplitting(Node, DAG)) 8485 return Expanded; 8486 8487 EVT VT = Node->getValueType(0); 8488 if (VT.isScalableVector()) 8489 report_fatal_error( 8490 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 8491 8492 SDLoc dl(Node); 8493 unsigned NewOp = 8494 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 8495 8496 if (isOperationLegalOrCustom(NewOp, VT)) { 8497 SDValue Quiet0 = Node->getOperand(0); 8498 SDValue Quiet1 = Node->getOperand(1); 8499 8500 if (!Node->getFlags().hasNoNaNs()) { 8501 // Insert canonicalizes if it's possible we need to quiet to get correct 8502 // sNaN behavior. 8503 if (!DAG.isKnownNeverSNaN(Quiet0)) { 8504 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 8505 Node->getFlags()); 8506 } 8507 if (!DAG.isKnownNeverSNaN(Quiet1)) { 8508 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 8509 Node->getFlags()); 8510 } 8511 } 8512 8513 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 8514 } 8515 8516 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 8517 // instead if there are no NaNs and there can't be an incompatible zero 8518 // compare: at least one operand isn't +/-0, or there are no signed-zeros. 8519 if ((Node->getFlags().hasNoNaNs() || 8520 (DAG.isKnownNeverNaN(Node->getOperand(0)) && 8521 DAG.isKnownNeverNaN(Node->getOperand(1)))) && 8522 (Node->getFlags().hasNoSignedZeros() || 8523 DAG.isKnownNeverZeroFloat(Node->getOperand(0)) || 8524 DAG.isKnownNeverZeroFloat(Node->getOperand(1)))) { 8525 unsigned IEEE2018Op = 8526 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 8527 if (isOperationLegalOrCustom(IEEE2018Op, VT)) 8528 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 8529 Node->getOperand(1), Node->getFlags()); 8530 } 8531 8532 if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG)) 8533 return SelCC; 8534 8535 return SDValue(); 8536 } 8537 8538 SDValue TargetLowering::expandFMINIMUM_FMAXIMUM(SDNode *N, 8539 SelectionDAG &DAG) const { 8540 if (SDValue Expanded = expandVectorNaryOpBySplitting(N, DAG)) 8541 return Expanded; 8542 8543 SDLoc DL(N); 8544 SDValue LHS = N->getOperand(0); 8545 SDValue RHS = N->getOperand(1); 8546 unsigned Opc = N->getOpcode(); 8547 EVT VT = N->getValueType(0); 8548 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8549 bool IsMax = Opc == ISD::FMAXIMUM; 8550 SDNodeFlags Flags = N->getFlags(); 8551 8552 // First, implement comparison not propagating NaN. If no native fmin or fmax 8553 // available, use plain select with setcc instead. 8554 SDValue MinMax; 8555 unsigned CompOpcIeee = IsMax ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE; 8556 unsigned CompOpc = IsMax ? ISD::FMAXNUM : ISD::FMINNUM; 8557 8558 // FIXME: We should probably define fminnum/fmaxnum variants with correct 8559 // signed zero behavior. 8560 bool MinMaxMustRespectOrderedZero = false; 8561 8562 if (isOperationLegalOrCustom(CompOpcIeee, VT)) { 8563 MinMax = DAG.getNode(CompOpcIeee, DL, VT, LHS, RHS, Flags); 8564 MinMaxMustRespectOrderedZero = true; 8565 } else if (isOperationLegalOrCustom(CompOpc, VT)) { 8566 MinMax = DAG.getNode(CompOpc, DL, VT, LHS, RHS, Flags); 8567 } else { 8568 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8569 return DAG.UnrollVectorOp(N); 8570 8571 // NaN (if exists) will be propagated later, so orderness doesn't matter. 8572 SDValue Compare = 8573 DAG.getSetCC(DL, CCVT, LHS, RHS, IsMax ? ISD::SETOGT : ISD::SETOLT); 8574 MinMax = DAG.getSelect(DL, VT, Compare, LHS, RHS, Flags); 8575 } 8576 8577 // Propagate any NaN of both operands 8578 if (!N->getFlags().hasNoNaNs() && 8579 (!DAG.isKnownNeverNaN(RHS) || !DAG.isKnownNeverNaN(LHS))) { 8580 ConstantFP *FPNaN = ConstantFP::get(*DAG.getContext(), 8581 APFloat::getNaN(VT.getFltSemantics())); 8582 MinMax = DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, LHS, RHS, ISD::SETUO), 8583 DAG.getConstantFP(*FPNaN, DL, VT), MinMax, Flags); 8584 } 8585 8586 // fminimum/fmaximum requires -0.0 less than +0.0 8587 if (!MinMaxMustRespectOrderedZero && !N->getFlags().hasNoSignedZeros() && 8588 !DAG.isKnownNeverZeroFloat(RHS) && !DAG.isKnownNeverZeroFloat(LHS)) { 8589 SDValue IsZero = DAG.getSetCC(DL, CCVT, MinMax, 8590 DAG.getConstantFP(0.0, DL, VT), ISD::SETOEQ); 8591 SDValue TestZero = 8592 DAG.getTargetConstant(IsMax ? fcPosZero : fcNegZero, DL, MVT::i32); 8593 SDValue LCmp = DAG.getSelect( 8594 DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, LHS, TestZero), LHS, 8595 MinMax, Flags); 8596 SDValue RCmp = DAG.getSelect( 8597 DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, RHS, TestZero), RHS, 8598 LCmp, Flags); 8599 MinMax = DAG.getSelect(DL, VT, IsZero, RCmp, MinMax, Flags); 8600 } 8601 8602 return MinMax; 8603 } 8604 8605 SDValue TargetLowering::expandFMINIMUMNUM_FMAXIMUMNUM(SDNode *Node, 8606 SelectionDAG &DAG) const { 8607 SDLoc DL(Node); 8608 SDValue LHS = Node->getOperand(0); 8609 SDValue RHS = Node->getOperand(1); 8610 unsigned Opc = Node->getOpcode(); 8611 EVT VT = Node->getValueType(0); 8612 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8613 bool IsMax = Opc == ISD::FMAXIMUMNUM; 8614 const TargetOptions &Options = DAG.getTarget().Options; 8615 SDNodeFlags Flags = Node->getFlags(); 8616 8617 unsigned NewOp = 8618 Opc == ISD::FMINIMUMNUM ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 8619 8620 if (isOperationLegalOrCustom(NewOp, VT)) { 8621 if (!Flags.hasNoNaNs()) { 8622 // Insert canonicalizes if it's possible we need to quiet to get correct 8623 // sNaN behavior. 8624 if (!DAG.isKnownNeverSNaN(LHS)) { 8625 LHS = DAG.getNode(ISD::FCANONICALIZE, DL, VT, LHS, Flags); 8626 } 8627 if (!DAG.isKnownNeverSNaN(RHS)) { 8628 RHS = DAG.getNode(ISD::FCANONICALIZE, DL, VT, RHS, Flags); 8629 } 8630 } 8631 8632 return DAG.getNode(NewOp, DL, VT, LHS, RHS, Flags); 8633 } 8634 8635 // We can use FMINIMUM/FMAXIMUM if there is no NaN, since it has 8636 // same behaviors for all of other cases: +0.0 vs -0.0 included. 8637 if (Flags.hasNoNaNs() || 8638 (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS))) { 8639 unsigned IEEE2019Op = 8640 Opc == ISD::FMINIMUMNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 8641 if (isOperationLegalOrCustom(IEEE2019Op, VT)) 8642 return DAG.getNode(IEEE2019Op, DL, VT, LHS, RHS, Flags); 8643 } 8644 8645 // FMINNUM/FMAXMUM returns qNaN if either operand is sNaN, and it may return 8646 // either one for +0.0 vs -0.0. 8647 if ((Flags.hasNoNaNs() || 8648 (DAG.isKnownNeverSNaN(LHS) && DAG.isKnownNeverSNaN(RHS))) && 8649 (Flags.hasNoSignedZeros() || DAG.isKnownNeverZeroFloat(LHS) || 8650 DAG.isKnownNeverZeroFloat(RHS))) { 8651 unsigned IEEE2008Op = Opc == ISD::FMINIMUMNUM ? ISD::FMINNUM : ISD::FMAXNUM; 8652 if (isOperationLegalOrCustom(IEEE2008Op, VT)) 8653 return DAG.getNode(IEEE2008Op, DL, VT, LHS, RHS, Flags); 8654 } 8655 8656 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8657 return DAG.UnrollVectorOp(Node); 8658 8659 // If only one operand is NaN, override it with another operand. 8660 if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(LHS)) { 8661 LHS = DAG.getSelectCC(DL, LHS, LHS, RHS, LHS, ISD::SETUO); 8662 } 8663 if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(RHS)) { 8664 RHS = DAG.getSelectCC(DL, RHS, RHS, LHS, RHS, ISD::SETUO); 8665 } 8666 8667 SDValue MinMax = 8668 DAG.getSelectCC(DL, LHS, RHS, LHS, RHS, IsMax ? ISD::SETGT : ISD::SETLT); 8669 // If MinMax is NaN, let's quiet it. 8670 if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(LHS) && 8671 !DAG.isKnownNeverNaN(RHS)) { 8672 MinMax = DAG.getNode(ISD::FCANONICALIZE, DL, VT, MinMax, Flags); 8673 } 8674 8675 // Fixup signed zero behavior. 8676 if (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros() || 8677 DAG.isKnownNeverZeroFloat(LHS) || DAG.isKnownNeverZeroFloat(RHS)) { 8678 return MinMax; 8679 } 8680 SDValue TestZero = 8681 DAG.getTargetConstant(IsMax ? fcPosZero : fcNegZero, DL, MVT::i32); 8682 SDValue IsZero = DAG.getSetCC(DL, CCVT, MinMax, 8683 DAG.getConstantFP(0.0, DL, VT), ISD::SETEQ); 8684 SDValue LCmp = DAG.getSelect( 8685 DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, LHS, TestZero), LHS, 8686 MinMax, Flags); 8687 SDValue RCmp = DAG.getSelect( 8688 DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, RHS, TestZero), RHS, LCmp, 8689 Flags); 8690 return DAG.getSelect(DL, VT, IsZero, RCmp, MinMax, Flags); 8691 } 8692 8693 /// Returns a true value if if this FPClassTest can be performed with an ordered 8694 /// fcmp to 0, and a false value if it's an unordered fcmp to 0. Returns 8695 /// std::nullopt if it cannot be performed as a compare with 0. 8696 static std::optional<bool> isFCmpEqualZero(FPClassTest Test, 8697 const fltSemantics &Semantics, 8698 const MachineFunction &MF) { 8699 FPClassTest OrderedMask = Test & ~fcNan; 8700 FPClassTest NanTest = Test & fcNan; 8701 bool IsOrdered = NanTest == fcNone; 8702 bool IsUnordered = NanTest == fcNan; 8703 8704 // Skip cases that are testing for only a qnan or snan. 8705 if (!IsOrdered && !IsUnordered) 8706 return std::nullopt; 8707 8708 if (OrderedMask == fcZero && 8709 MF.getDenormalMode(Semantics).Input == DenormalMode::IEEE) 8710 return IsOrdered; 8711 if (OrderedMask == (fcZero | fcSubnormal) && 8712 MF.getDenormalMode(Semantics).inputsAreZero()) 8713 return IsOrdered; 8714 return std::nullopt; 8715 } 8716 8717 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op, 8718 const FPClassTest OrigTestMask, 8719 SDNodeFlags Flags, const SDLoc &DL, 8720 SelectionDAG &DAG) const { 8721 EVT OperandVT = Op.getValueType(); 8722 assert(OperandVT.isFloatingPoint()); 8723 FPClassTest Test = OrigTestMask; 8724 8725 // Degenerated cases. 8726 if (Test == fcNone) 8727 return DAG.getBoolConstant(false, DL, ResultVT, OperandVT); 8728 if (Test == fcAllFlags) 8729 return DAG.getBoolConstant(true, DL, ResultVT, OperandVT); 8730 8731 // PPC double double is a pair of doubles, of which the higher part determines 8732 // the value class. 8733 if (OperandVT == MVT::ppcf128) { 8734 Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op, 8735 DAG.getConstant(1, DL, MVT::i32)); 8736 OperandVT = MVT::f64; 8737 } 8738 8739 // Floating-point type properties. 8740 EVT ScalarFloatVT = OperandVT.getScalarType(); 8741 const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext()); 8742 const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics(); 8743 bool IsF80 = (ScalarFloatVT == MVT::f80); 8744 8745 // Some checks can be implemented using float comparisons, if floating point 8746 // exceptions are ignored. 8747 if (Flags.hasNoFPExcept() && 8748 isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) { 8749 FPClassTest FPTestMask = Test; 8750 bool IsInvertedFP = false; 8751 8752 if (FPClassTest InvertedFPCheck = 8753 invertFPClassTestIfSimpler(FPTestMask, true)) { 8754 FPTestMask = InvertedFPCheck; 8755 IsInvertedFP = true; 8756 } 8757 8758 ISD::CondCode OrderedCmpOpcode = IsInvertedFP ? ISD::SETUNE : ISD::SETOEQ; 8759 ISD::CondCode UnorderedCmpOpcode = IsInvertedFP ? ISD::SETONE : ISD::SETUEQ; 8760 8761 // See if we can fold an | fcNan into an unordered compare. 8762 FPClassTest OrderedFPTestMask = FPTestMask & ~fcNan; 8763 8764 // Can't fold the ordered check if we're only testing for snan or qnan 8765 // individually. 8766 if ((FPTestMask & fcNan) != fcNan) 8767 OrderedFPTestMask = FPTestMask; 8768 8769 const bool IsOrdered = FPTestMask == OrderedFPTestMask; 8770 8771 if (std::optional<bool> IsCmp0 = 8772 isFCmpEqualZero(FPTestMask, Semantics, DAG.getMachineFunction()); 8773 IsCmp0 && (isCondCodeLegalOrCustom( 8774 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode, 8775 OperandVT.getScalarType().getSimpleVT()))) { 8776 8777 // If denormals could be implicitly treated as 0, this is not equivalent 8778 // to a compare with 0 since it will also be true for denormals. 8779 return DAG.getSetCC(DL, ResultVT, Op, 8780 DAG.getConstantFP(0.0, DL, OperandVT), 8781 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode); 8782 } 8783 8784 if (FPTestMask == fcNan && 8785 isCondCodeLegalOrCustom(IsInvertedFP ? ISD::SETO : ISD::SETUO, 8786 OperandVT.getScalarType().getSimpleVT())) 8787 return DAG.getSetCC(DL, ResultVT, Op, Op, 8788 IsInvertedFP ? ISD::SETO : ISD::SETUO); 8789 8790 bool IsOrderedInf = FPTestMask == fcInf; 8791 if ((FPTestMask == fcInf || FPTestMask == (fcInf | fcNan)) && 8792 isCondCodeLegalOrCustom(IsOrderedInf ? OrderedCmpOpcode 8793 : UnorderedCmpOpcode, 8794 OperandVT.getScalarType().getSimpleVT()) && 8795 isOperationLegalOrCustom(ISD::FABS, OperandVT.getScalarType()) && 8796 (isOperationLegal(ISD::ConstantFP, OperandVT.getScalarType()) || 8797 (OperandVT.isVector() && 8798 isOperationLegalOrCustom(ISD::BUILD_VECTOR, OperandVT)))) { 8799 // isinf(x) --> fabs(x) == inf 8800 SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op); 8801 SDValue Inf = 8802 DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT); 8803 return DAG.getSetCC(DL, ResultVT, Abs, Inf, 8804 IsOrderedInf ? OrderedCmpOpcode : UnorderedCmpOpcode); 8805 } 8806 8807 if ((OrderedFPTestMask == fcPosInf || OrderedFPTestMask == fcNegInf) && 8808 isCondCodeLegalOrCustom(IsOrdered ? OrderedCmpOpcode 8809 : UnorderedCmpOpcode, 8810 OperandVT.getSimpleVT())) { 8811 // isposinf(x) --> x == inf 8812 // isneginf(x) --> x == -inf 8813 // isposinf(x) || nan --> x u== inf 8814 // isneginf(x) || nan --> x u== -inf 8815 8816 SDValue Inf = DAG.getConstantFP( 8817 APFloat::getInf(Semantics, OrderedFPTestMask == fcNegInf), DL, 8818 OperandVT); 8819 return DAG.getSetCC(DL, ResultVT, Op, Inf, 8820 IsOrdered ? OrderedCmpOpcode : UnorderedCmpOpcode); 8821 } 8822 8823 if (OrderedFPTestMask == (fcSubnormal | fcZero) && !IsOrdered) { 8824 // TODO: Could handle ordered case, but it produces worse code for 8825 // x86. Maybe handle ordered if fabs is free? 8826 8827 ISD::CondCode OrderedOp = IsInvertedFP ? ISD::SETUGE : ISD::SETOLT; 8828 ISD::CondCode UnorderedOp = IsInvertedFP ? ISD::SETOGE : ISD::SETULT; 8829 8830 if (isCondCodeLegalOrCustom(IsOrdered ? OrderedOp : UnorderedOp, 8831 OperandVT.getScalarType().getSimpleVT())) { 8832 // (issubnormal(x) || iszero(x)) --> fabs(x) < smallest_normal 8833 8834 // TODO: Maybe only makes sense if fabs is free. Integer test of 8835 // exponent bits seems better for x86. 8836 SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op); 8837 SDValue SmallestNormal = DAG.getConstantFP( 8838 APFloat::getSmallestNormalized(Semantics), DL, OperandVT); 8839 return DAG.getSetCC(DL, ResultVT, Abs, SmallestNormal, 8840 IsOrdered ? OrderedOp : UnorderedOp); 8841 } 8842 } 8843 8844 if (FPTestMask == fcNormal) { 8845 // TODO: Handle unordered 8846 ISD::CondCode IsFiniteOp = IsInvertedFP ? ISD::SETUGE : ISD::SETOLT; 8847 ISD::CondCode IsNormalOp = IsInvertedFP ? ISD::SETOLT : ISD::SETUGE; 8848 8849 if (isCondCodeLegalOrCustom(IsFiniteOp, 8850 OperandVT.getScalarType().getSimpleVT()) && 8851 isCondCodeLegalOrCustom(IsNormalOp, 8852 OperandVT.getScalarType().getSimpleVT()) && 8853 isFAbsFree(OperandVT)) { 8854 // isnormal(x) --> fabs(x) < infinity && !(fabs(x) < smallest_normal) 8855 SDValue Inf = 8856 DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT); 8857 SDValue SmallestNormal = DAG.getConstantFP( 8858 APFloat::getSmallestNormalized(Semantics), DL, OperandVT); 8859 8860 SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op); 8861 SDValue IsFinite = DAG.getSetCC(DL, ResultVT, Abs, Inf, IsFiniteOp); 8862 SDValue IsNormal = 8863 DAG.getSetCC(DL, ResultVT, Abs, SmallestNormal, IsNormalOp); 8864 unsigned LogicOp = IsInvertedFP ? ISD::OR : ISD::AND; 8865 return DAG.getNode(LogicOp, DL, ResultVT, IsFinite, IsNormal); 8866 } 8867 } 8868 } 8869 8870 // Some checks may be represented as inversion of simpler check, for example 8871 // "inf|normal|subnormal|zero" => !"nan". 8872 bool IsInverted = false; 8873 8874 if (FPClassTest InvertedCheck = invertFPClassTestIfSimpler(Test, false)) { 8875 Test = InvertedCheck; 8876 IsInverted = true; 8877 } 8878 8879 // In the general case use integer operations. 8880 unsigned BitSize = OperandVT.getScalarSizeInBits(); 8881 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize); 8882 if (OperandVT.isVector()) 8883 IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT, 8884 OperandVT.getVectorElementCount()); 8885 SDValue OpAsInt = DAG.getBitcast(IntVT, Op); 8886 8887 // Various masks. 8888 APInt SignBit = APInt::getSignMask(BitSize); 8889 APInt ValueMask = APInt::getSignedMaxValue(BitSize); // All bits but sign. 8890 APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit. 8891 const unsigned ExplicitIntBitInF80 = 63; 8892 APInt ExpMask = Inf; 8893 if (IsF80) 8894 ExpMask.clearBit(ExplicitIntBitInF80); 8895 APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf; 8896 APInt QNaNBitMask = 8897 APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1); 8898 APInt InvertionMask = APInt::getAllOnes(ResultVT.getScalarSizeInBits()); 8899 8900 SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT); 8901 SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT); 8902 SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT); 8903 SDValue ZeroV = DAG.getConstant(0, DL, IntVT); 8904 SDValue InfV = DAG.getConstant(Inf, DL, IntVT); 8905 SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT); 8906 8907 SDValue Res; 8908 const auto appendResult = [&](SDValue PartialRes) { 8909 if (PartialRes) { 8910 if (Res) 8911 Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes); 8912 else 8913 Res = PartialRes; 8914 } 8915 }; 8916 8917 SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set. 8918 const auto getIntBitIsSet = [&]() -> SDValue { 8919 if (!IntBitIsSetV) { 8920 APInt IntBitMask(BitSize, 0); 8921 IntBitMask.setBit(ExplicitIntBitInF80); 8922 SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT); 8923 SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV); 8924 IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE); 8925 } 8926 return IntBitIsSetV; 8927 }; 8928 8929 // Split the value into sign bit and absolute value. 8930 SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV); 8931 SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt, 8932 DAG.getConstant(0, DL, IntVT), ISD::SETLT); 8933 8934 // Tests that involve more than one class should be processed first. 8935 SDValue PartialRes; 8936 8937 if (IsF80) 8938 ; // Detect finite numbers of f80 by checking individual classes because 8939 // they have different settings of the explicit integer bit. 8940 else if ((Test & fcFinite) == fcFinite) { 8941 // finite(V) ==> abs(V) < exp_mask 8942 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 8943 Test &= ~fcFinite; 8944 } else if ((Test & fcFinite) == fcPosFinite) { 8945 // finite(V) && V > 0 ==> V < exp_mask 8946 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT); 8947 Test &= ~fcPosFinite; 8948 } else if ((Test & fcFinite) == fcNegFinite) { 8949 // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1 8950 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 8951 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 8952 Test &= ~fcNegFinite; 8953 } 8954 appendResult(PartialRes); 8955 8956 if (FPClassTest PartialCheck = Test & (fcZero | fcSubnormal)) { 8957 // fcZero | fcSubnormal => test all exponent bits are 0 8958 // TODO: Handle sign bit specific cases 8959 if (PartialCheck == (fcZero | fcSubnormal)) { 8960 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ExpMaskV); 8961 SDValue ExpIsZero = 8962 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ); 8963 appendResult(ExpIsZero); 8964 Test &= ~PartialCheck & fcAllFlags; 8965 } 8966 } 8967 8968 // Check for individual classes. 8969 8970 if (unsigned PartialCheck = Test & fcZero) { 8971 if (PartialCheck == fcPosZero) 8972 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ); 8973 else if (PartialCheck == fcZero) 8974 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ); 8975 else // ISD::fcNegZero 8976 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ); 8977 appendResult(PartialRes); 8978 } 8979 8980 if (unsigned PartialCheck = Test & fcSubnormal) { 8981 // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set) 8982 // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set) 8983 SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV; 8984 SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT); 8985 SDValue VMinusOneV = 8986 DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT)); 8987 PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT); 8988 if (PartialCheck == fcNegSubnormal) 8989 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 8990 appendResult(PartialRes); 8991 } 8992 8993 if (unsigned PartialCheck = Test & fcInf) { 8994 if (PartialCheck == fcPosInf) 8995 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ); 8996 else if (PartialCheck == fcInf) 8997 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ); 8998 else { // ISD::fcNegInf 8999 APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt(); 9000 SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT); 9001 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ); 9002 } 9003 appendResult(PartialRes); 9004 } 9005 9006 if (unsigned PartialCheck = Test & fcNan) { 9007 APInt InfWithQnanBit = Inf | QNaNBitMask; 9008 SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT); 9009 if (PartialCheck == fcNan) { 9010 // isnan(V) ==> abs(V) > int(inf) 9011 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 9012 if (IsF80) { 9013 // Recognize unsupported values as NaNs for compatibility with glibc. 9014 // In them (exp(V)==0) == int_bit. 9015 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV); 9016 SDValue ExpIsZero = 9017 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ); 9018 SDValue IsPseudo = 9019 DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ); 9020 PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo); 9021 } 9022 } else if (PartialCheck == fcQNan) { 9023 // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit) 9024 PartialRes = 9025 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE); 9026 } else { // ISD::fcSNan 9027 // issignaling(V) ==> abs(V) > unsigned(Inf) && 9028 // abs(V) < (unsigned(Inf) | quiet_bit) 9029 SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 9030 SDValue IsNotQnan = 9031 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT); 9032 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan); 9033 } 9034 appendResult(PartialRes); 9035 } 9036 9037 if (unsigned PartialCheck = Test & fcNormal) { 9038 // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1)) 9039 APInt ExpLSB = ExpMask & ~(ExpMask.shl(1)); 9040 SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT); 9041 SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV); 9042 APInt ExpLimit = ExpMask - ExpLSB; 9043 SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT); 9044 PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT); 9045 if (PartialCheck == fcNegNormal) 9046 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 9047 else if (PartialCheck == fcPosNormal) { 9048 SDValue PosSignV = 9049 DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask); 9050 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV); 9051 } 9052 if (IsF80) 9053 PartialRes = 9054 DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet()); 9055 appendResult(PartialRes); 9056 } 9057 9058 if (!Res) 9059 return DAG.getConstant(IsInverted, DL, ResultVT); 9060 if (IsInverted) 9061 Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask); 9062 return Res; 9063 } 9064 9065 // Only expand vector types if we have the appropriate vector bit operations. 9066 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 9067 assert(VT.isVector() && "Expected vector type"); 9068 unsigned Len = VT.getScalarSizeInBits(); 9069 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 9070 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 9071 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 9072 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 9073 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 9074 } 9075 9076 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 9077 SDLoc dl(Node); 9078 EVT VT = Node->getValueType(0); 9079 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9080 SDValue Op = Node->getOperand(0); 9081 unsigned Len = VT.getScalarSizeInBits(); 9082 assert(VT.isInteger() && "CTPOP not implemented for this type."); 9083 9084 // TODO: Add support for irregular type lengths. 9085 if (!(Len <= 128 && Len % 8 == 0)) 9086 return SDValue(); 9087 9088 // Only expand vector types if we have the appropriate vector bit operations. 9089 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 9090 return SDValue(); 9091 9092 // This is the "best" algorithm from 9093 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 9094 SDValue Mask55 = 9095 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 9096 SDValue Mask33 = 9097 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 9098 SDValue Mask0F = 9099 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 9100 9101 // v = v - ((v >> 1) & 0x55555555...) 9102 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 9103 DAG.getNode(ISD::AND, dl, VT, 9104 DAG.getNode(ISD::SRL, dl, VT, Op, 9105 DAG.getConstant(1, dl, ShVT)), 9106 Mask55)); 9107 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 9108 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 9109 DAG.getNode(ISD::AND, dl, VT, 9110 DAG.getNode(ISD::SRL, dl, VT, Op, 9111 DAG.getConstant(2, dl, ShVT)), 9112 Mask33)); 9113 // v = (v + (v >> 4)) & 0x0F0F0F0F... 9114 Op = DAG.getNode(ISD::AND, dl, VT, 9115 DAG.getNode(ISD::ADD, dl, VT, Op, 9116 DAG.getNode(ISD::SRL, dl, VT, Op, 9117 DAG.getConstant(4, dl, ShVT))), 9118 Mask0F); 9119 9120 if (Len <= 8) 9121 return Op; 9122 9123 // Avoid the multiply if we only have 2 bytes to add. 9124 // TODO: Only doing this for scalars because vectors weren't as obviously 9125 // improved. 9126 if (Len == 16 && !VT.isVector()) { 9127 // v = (v + (v >> 8)) & 0x00FF; 9128 return DAG.getNode(ISD::AND, dl, VT, 9129 DAG.getNode(ISD::ADD, dl, VT, Op, 9130 DAG.getNode(ISD::SRL, dl, VT, Op, 9131 DAG.getConstant(8, dl, ShVT))), 9132 DAG.getConstant(0xFF, dl, VT)); 9133 } 9134 9135 // v = (v * 0x01010101...) >> (Len - 8) 9136 SDValue V; 9137 if (isOperationLegalOrCustomOrPromote( 9138 ISD::MUL, getTypeToTransformTo(*DAG.getContext(), VT))) { 9139 SDValue Mask01 = 9140 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 9141 V = DAG.getNode(ISD::MUL, dl, VT, Op, Mask01); 9142 } else { 9143 V = Op; 9144 for (unsigned Shift = 8; Shift < Len; Shift *= 2) { 9145 SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl); 9146 V = DAG.getNode(ISD::ADD, dl, VT, V, 9147 DAG.getNode(ISD::SHL, dl, VT, V, ShiftC)); 9148 } 9149 } 9150 return DAG.getNode(ISD::SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT)); 9151 } 9152 9153 SDValue TargetLowering::expandVPCTPOP(SDNode *Node, SelectionDAG &DAG) const { 9154 SDLoc dl(Node); 9155 EVT VT = Node->getValueType(0); 9156 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9157 SDValue Op = Node->getOperand(0); 9158 SDValue Mask = Node->getOperand(1); 9159 SDValue VL = Node->getOperand(2); 9160 unsigned Len = VT.getScalarSizeInBits(); 9161 assert(VT.isInteger() && "VP_CTPOP not implemented for this type."); 9162 9163 // TODO: Add support for irregular type lengths. 9164 if (!(Len <= 128 && Len % 8 == 0)) 9165 return SDValue(); 9166 9167 // This is same algorithm of expandCTPOP from 9168 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 9169 SDValue Mask55 = 9170 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 9171 SDValue Mask33 = 9172 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 9173 SDValue Mask0F = 9174 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 9175 9176 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5; 9177 9178 // v = v - ((v >> 1) & 0x55555555...) 9179 Tmp1 = DAG.getNode(ISD::VP_AND, dl, VT, 9180 DAG.getNode(ISD::VP_SRL, dl, VT, Op, 9181 DAG.getConstant(1, dl, ShVT), Mask, VL), 9182 Mask55, Mask, VL); 9183 Op = DAG.getNode(ISD::VP_SUB, dl, VT, Op, Tmp1, Mask, VL); 9184 9185 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 9186 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Op, Mask33, Mask, VL); 9187 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, 9188 DAG.getNode(ISD::VP_SRL, dl, VT, Op, 9189 DAG.getConstant(2, dl, ShVT), Mask, VL), 9190 Mask33, Mask, VL); 9191 Op = DAG.getNode(ISD::VP_ADD, dl, VT, Tmp2, Tmp3, Mask, VL); 9192 9193 // v = (v + (v >> 4)) & 0x0F0F0F0F... 9194 Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(4, dl, ShVT), 9195 Mask, VL), 9196 Tmp5 = DAG.getNode(ISD::VP_ADD, dl, VT, Op, Tmp4, Mask, VL); 9197 Op = DAG.getNode(ISD::VP_AND, dl, VT, Tmp5, Mask0F, Mask, VL); 9198 9199 if (Len <= 8) 9200 return Op; 9201 9202 // v = (v * 0x01010101...) >> (Len - 8) 9203 SDValue V; 9204 if (isOperationLegalOrCustomOrPromote( 9205 ISD::VP_MUL, getTypeToTransformTo(*DAG.getContext(), VT))) { 9206 SDValue Mask01 = 9207 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 9208 V = DAG.getNode(ISD::VP_MUL, dl, VT, Op, Mask01, Mask, VL); 9209 } else { 9210 V = Op; 9211 for (unsigned Shift = 8; Shift < Len; Shift *= 2) { 9212 SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl); 9213 V = DAG.getNode(ISD::VP_ADD, dl, VT, V, 9214 DAG.getNode(ISD::VP_SHL, dl, VT, V, ShiftC, Mask, VL), 9215 Mask, VL); 9216 } 9217 } 9218 return DAG.getNode(ISD::VP_SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT), 9219 Mask, VL); 9220 } 9221 9222 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 9223 SDLoc dl(Node); 9224 EVT VT = Node->getValueType(0); 9225 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9226 SDValue Op = Node->getOperand(0); 9227 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 9228 9229 // If the non-ZERO_UNDEF version is supported we can use that instead. 9230 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 9231 isOperationLegalOrCustom(ISD::CTLZ, VT)) 9232 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 9233 9234 // If the ZERO_UNDEF version is supported use that and handle the zero case. 9235 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 9236 EVT SetCCVT = 9237 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9238 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 9239 SDValue Zero = DAG.getConstant(0, dl, VT); 9240 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 9241 return DAG.getSelect(dl, VT, SrcIsZero, 9242 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 9243 } 9244 9245 // Only expand vector types if we have the appropriate vector bit operations. 9246 // This includes the operations needed to expand CTPOP if it isn't supported. 9247 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 9248 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 9249 !canExpandVectorCTPOP(*this, VT)) || 9250 !isOperationLegalOrCustom(ISD::SRL, VT) || 9251 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 9252 return SDValue(); 9253 9254 // for now, we do this: 9255 // x = x | (x >> 1); 9256 // x = x | (x >> 2); 9257 // ... 9258 // x = x | (x >>16); 9259 // x = x | (x >>32); // for 64-bit input 9260 // return popcount(~x); 9261 // 9262 // Ref: "Hacker's Delight" by Henry Warren 9263 for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) { 9264 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 9265 Op = DAG.getNode(ISD::OR, dl, VT, Op, 9266 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 9267 } 9268 Op = DAG.getNOT(dl, Op, VT); 9269 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 9270 } 9271 9272 SDValue TargetLowering::expandVPCTLZ(SDNode *Node, SelectionDAG &DAG) const { 9273 SDLoc dl(Node); 9274 EVT VT = Node->getValueType(0); 9275 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9276 SDValue Op = Node->getOperand(0); 9277 SDValue Mask = Node->getOperand(1); 9278 SDValue VL = Node->getOperand(2); 9279 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 9280 9281 // do this: 9282 // x = x | (x >> 1); 9283 // x = x | (x >> 2); 9284 // ... 9285 // x = x | (x >>16); 9286 // x = x | (x >>32); // for 64-bit input 9287 // return popcount(~x); 9288 for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) { 9289 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 9290 Op = DAG.getNode(ISD::VP_OR, dl, VT, Op, 9291 DAG.getNode(ISD::VP_SRL, dl, VT, Op, Tmp, Mask, VL), Mask, 9292 VL); 9293 } 9294 Op = DAG.getNode(ISD::VP_XOR, dl, VT, Op, DAG.getAllOnesConstant(dl, VT), 9295 Mask, VL); 9296 return DAG.getNode(ISD::VP_CTPOP, dl, VT, Op, Mask, VL); 9297 } 9298 9299 SDValue TargetLowering::CTTZTableLookup(SDNode *Node, SelectionDAG &DAG, 9300 const SDLoc &DL, EVT VT, SDValue Op, 9301 unsigned BitWidth) const { 9302 if (BitWidth != 32 && BitWidth != 64) 9303 return SDValue(); 9304 APInt DeBruijn = BitWidth == 32 ? APInt(32, 0x077CB531U) 9305 : APInt(64, 0x0218A392CD3D5DBFULL); 9306 const DataLayout &TD = DAG.getDataLayout(); 9307 MachinePointerInfo PtrInfo = 9308 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()); 9309 unsigned ShiftAmt = BitWidth - Log2_32(BitWidth); 9310 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 9311 SDValue Lookup = DAG.getNode( 9312 ISD::SRL, DL, VT, 9313 DAG.getNode(ISD::MUL, DL, VT, DAG.getNode(ISD::AND, DL, VT, Op, Neg), 9314 DAG.getConstant(DeBruijn, DL, VT)), 9315 DAG.getConstant(ShiftAmt, DL, VT)); 9316 Lookup = DAG.getSExtOrTrunc(Lookup, DL, getPointerTy(TD)); 9317 9318 SmallVector<uint8_t> Table(BitWidth, 0); 9319 for (unsigned i = 0; i < BitWidth; i++) { 9320 APInt Shl = DeBruijn.shl(i); 9321 APInt Lshr = Shl.lshr(ShiftAmt); 9322 Table[Lshr.getZExtValue()] = i; 9323 } 9324 9325 // Create a ConstantArray in Constant Pool 9326 auto *CA = ConstantDataArray::get(*DAG.getContext(), Table); 9327 SDValue CPIdx = DAG.getConstantPool(CA, getPointerTy(TD), 9328 TD.getPrefTypeAlign(CA->getType())); 9329 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, VT, DAG.getEntryNode(), 9330 DAG.getMemBasePlusOffset(CPIdx, Lookup, DL), 9331 PtrInfo, MVT::i8); 9332 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) 9333 return ExtLoad; 9334 9335 EVT SetCCVT = 9336 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9337 SDValue Zero = DAG.getConstant(0, DL, VT); 9338 SDValue SrcIsZero = DAG.getSetCC(DL, SetCCVT, Op, Zero, ISD::SETEQ); 9339 return DAG.getSelect(DL, VT, SrcIsZero, 9340 DAG.getConstant(BitWidth, DL, VT), ExtLoad); 9341 } 9342 9343 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 9344 SDLoc dl(Node); 9345 EVT VT = Node->getValueType(0); 9346 SDValue Op = Node->getOperand(0); 9347 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 9348 9349 // If the non-ZERO_UNDEF version is supported we can use that instead. 9350 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 9351 isOperationLegalOrCustom(ISD::CTTZ, VT)) 9352 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 9353 9354 // If the ZERO_UNDEF version is supported use that and handle the zero case. 9355 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 9356 EVT SetCCVT = 9357 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9358 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 9359 SDValue Zero = DAG.getConstant(0, dl, VT); 9360 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 9361 return DAG.getSelect(dl, VT, SrcIsZero, 9362 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 9363 } 9364 9365 // Only expand vector types if we have the appropriate vector bit operations. 9366 // This includes the operations needed to expand CTPOP if it isn't supported. 9367 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 9368 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 9369 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 9370 !canExpandVectorCTPOP(*this, VT)) || 9371 !isOperationLegalOrCustom(ISD::SUB, VT) || 9372 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 9373 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 9374 return SDValue(); 9375 9376 // Emit Table Lookup if ISD::CTLZ and ISD::CTPOP are not legal. 9377 if (!VT.isVector() && isOperationExpand(ISD::CTPOP, VT) && 9378 !isOperationLegal(ISD::CTLZ, VT)) 9379 if (SDValue V = CTTZTableLookup(Node, DAG, dl, VT, Op, NumBitsPerElt)) 9380 return V; 9381 9382 // for now, we use: { return popcount(~x & (x - 1)); } 9383 // unless the target has ctlz but not ctpop, in which case we use: 9384 // { return 32 - nlz(~x & (x-1)); } 9385 // Ref: "Hacker's Delight" by Henry Warren 9386 SDValue Tmp = DAG.getNode( 9387 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 9388 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 9389 9390 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 9391 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 9392 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 9393 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 9394 } 9395 9396 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 9397 } 9398 9399 SDValue TargetLowering::expandVPCTTZ(SDNode *Node, SelectionDAG &DAG) const { 9400 SDValue Op = Node->getOperand(0); 9401 SDValue Mask = Node->getOperand(1); 9402 SDValue VL = Node->getOperand(2); 9403 SDLoc dl(Node); 9404 EVT VT = Node->getValueType(0); 9405 9406 // Same as the vector part of expandCTTZ, use: popcount(~x & (x - 1)) 9407 SDValue Not = DAG.getNode(ISD::VP_XOR, dl, VT, Op, 9408 DAG.getAllOnesConstant(dl, VT), Mask, VL); 9409 SDValue MinusOne = DAG.getNode(ISD::VP_SUB, dl, VT, Op, 9410 DAG.getConstant(1, dl, VT), Mask, VL); 9411 SDValue Tmp = DAG.getNode(ISD::VP_AND, dl, VT, Not, MinusOne, Mask, VL); 9412 return DAG.getNode(ISD::VP_CTPOP, dl, VT, Tmp, Mask, VL); 9413 } 9414 9415 SDValue TargetLowering::expandVPCTTZElements(SDNode *N, 9416 SelectionDAG &DAG) const { 9417 // %cond = to_bool_vec %source 9418 // %splat = splat /*val=*/VL 9419 // %tz = step_vector 9420 // %v = vp.select %cond, /*true=*/tz, /*false=*/%splat 9421 // %r = vp.reduce.umin %v 9422 SDLoc DL(N); 9423 SDValue Source = N->getOperand(0); 9424 SDValue Mask = N->getOperand(1); 9425 SDValue EVL = N->getOperand(2); 9426 EVT SrcVT = Source.getValueType(); 9427 EVT ResVT = N->getValueType(0); 9428 EVT ResVecVT = 9429 EVT::getVectorVT(*DAG.getContext(), ResVT, SrcVT.getVectorElementCount()); 9430 9431 // Convert to boolean vector. 9432 if (SrcVT.getScalarType() != MVT::i1) { 9433 SDValue AllZero = DAG.getConstant(0, DL, SrcVT); 9434 SrcVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 9435 SrcVT.getVectorElementCount()); 9436 Source = DAG.getNode(ISD::VP_SETCC, DL, SrcVT, Source, AllZero, 9437 DAG.getCondCode(ISD::SETNE), Mask, EVL); 9438 } 9439 9440 SDValue ExtEVL = DAG.getZExtOrTrunc(EVL, DL, ResVT); 9441 SDValue Splat = DAG.getSplat(ResVecVT, DL, ExtEVL); 9442 SDValue StepVec = DAG.getStepVector(DL, ResVecVT); 9443 SDValue Select = 9444 DAG.getNode(ISD::VP_SELECT, DL, ResVecVT, Source, StepVec, Splat, EVL); 9445 return DAG.getNode(ISD::VP_REDUCE_UMIN, DL, ResVT, ExtEVL, Select, Mask, EVL); 9446 } 9447 9448 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 9449 bool IsNegative) const { 9450 SDLoc dl(N); 9451 EVT VT = N->getValueType(0); 9452 SDValue Op = N->getOperand(0); 9453 9454 // abs(x) -> smax(x,sub(0,x)) 9455 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 9456 isOperationLegal(ISD::SMAX, VT)) { 9457 SDValue Zero = DAG.getConstant(0, dl, VT); 9458 Op = DAG.getFreeze(Op); 9459 return DAG.getNode(ISD::SMAX, dl, VT, Op, 9460 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 9461 } 9462 9463 // abs(x) -> umin(x,sub(0,x)) 9464 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 9465 isOperationLegal(ISD::UMIN, VT)) { 9466 SDValue Zero = DAG.getConstant(0, dl, VT); 9467 Op = DAG.getFreeze(Op); 9468 return DAG.getNode(ISD::UMIN, dl, VT, Op, 9469 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 9470 } 9471 9472 // 0 - abs(x) -> smin(x, sub(0,x)) 9473 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 9474 isOperationLegal(ISD::SMIN, VT)) { 9475 SDValue Zero = DAG.getConstant(0, dl, VT); 9476 Op = DAG.getFreeze(Op); 9477 return DAG.getNode(ISD::SMIN, dl, VT, Op, 9478 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 9479 } 9480 9481 // Only expand vector types if we have the appropriate vector operations. 9482 if (VT.isVector() && 9483 (!isOperationLegalOrCustom(ISD::SRA, VT) || 9484 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 9485 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 9486 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 9487 return SDValue(); 9488 9489 Op = DAG.getFreeze(Op); 9490 SDValue Shift = DAG.getNode( 9491 ISD::SRA, dl, VT, Op, 9492 DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, dl)); 9493 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 9494 9495 // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y) 9496 if (!IsNegative) 9497 return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift); 9498 9499 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 9500 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 9501 } 9502 9503 SDValue TargetLowering::expandABD(SDNode *N, SelectionDAG &DAG) const { 9504 SDLoc dl(N); 9505 EVT VT = N->getValueType(0); 9506 SDValue LHS = DAG.getFreeze(N->getOperand(0)); 9507 SDValue RHS = DAG.getFreeze(N->getOperand(1)); 9508 bool IsSigned = N->getOpcode() == ISD::ABDS; 9509 9510 // abds(lhs, rhs) -> sub(smax(lhs,rhs), smin(lhs,rhs)) 9511 // abdu(lhs, rhs) -> sub(umax(lhs,rhs), umin(lhs,rhs)) 9512 unsigned MaxOpc = IsSigned ? ISD::SMAX : ISD::UMAX; 9513 unsigned MinOpc = IsSigned ? ISD::SMIN : ISD::UMIN; 9514 if (isOperationLegal(MaxOpc, VT) && isOperationLegal(MinOpc, VT)) { 9515 SDValue Max = DAG.getNode(MaxOpc, dl, VT, LHS, RHS); 9516 SDValue Min = DAG.getNode(MinOpc, dl, VT, LHS, RHS); 9517 return DAG.getNode(ISD::SUB, dl, VT, Max, Min); 9518 } 9519 9520 // abdu(lhs, rhs) -> or(usubsat(lhs,rhs), usubsat(rhs,lhs)) 9521 if (!IsSigned && isOperationLegal(ISD::USUBSAT, VT)) 9522 return DAG.getNode(ISD::OR, dl, VT, 9523 DAG.getNode(ISD::USUBSAT, dl, VT, LHS, RHS), 9524 DAG.getNode(ISD::USUBSAT, dl, VT, RHS, LHS)); 9525 9526 // If the subtract doesn't overflow then just use abs(sub()) 9527 // NOTE: don't use frozen operands for value tracking. 9528 bool IsNonNegative = DAG.SignBitIsZero(N->getOperand(1)) && 9529 DAG.SignBitIsZero(N->getOperand(0)); 9530 9531 if (DAG.willNotOverflowSub(IsSigned || IsNonNegative, N->getOperand(0), 9532 N->getOperand(1))) 9533 return DAG.getNode(ISD::ABS, dl, VT, 9534 DAG.getNode(ISD::SUB, dl, VT, LHS, RHS)); 9535 9536 if (DAG.willNotOverflowSub(IsSigned || IsNonNegative, N->getOperand(1), 9537 N->getOperand(0))) 9538 return DAG.getNode(ISD::ABS, dl, VT, 9539 DAG.getNode(ISD::SUB, dl, VT, RHS, LHS)); 9540 9541 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9542 ISD::CondCode CC = IsSigned ? ISD::CondCode::SETGT : ISD::CondCode::SETUGT; 9543 SDValue Cmp = DAG.getSetCC(dl, CCVT, LHS, RHS, CC); 9544 9545 // Branchless expansion iff cmp result is allbits: 9546 // abds(lhs, rhs) -> sub(sgt(lhs, rhs), xor(sgt(lhs, rhs), sub(lhs, rhs))) 9547 // abdu(lhs, rhs) -> sub(ugt(lhs, rhs), xor(ugt(lhs, rhs), sub(lhs, rhs))) 9548 if (CCVT == VT && getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 9549 SDValue Diff = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS); 9550 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Diff, Cmp); 9551 return DAG.getNode(ISD::SUB, dl, VT, Cmp, Xor); 9552 } 9553 9554 // Similar to the branchless expansion, use the (sign-extended) usubo overflow 9555 // flag if the (scalar) type is illegal as this is more likely to legalize 9556 // cleanly: 9557 // abdu(lhs, rhs) -> sub(xor(sub(lhs, rhs), uof(lhs, rhs)), uof(lhs, rhs)) 9558 if (!IsSigned && VT.isScalarInteger() && !isTypeLegal(VT)) { 9559 SDValue USubO = 9560 DAG.getNode(ISD::USUBO, dl, DAG.getVTList(VT, MVT::i1), {LHS, RHS}); 9561 SDValue Cmp = DAG.getNode(ISD::SIGN_EXTEND, dl, VT, USubO.getValue(1)); 9562 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, USubO.getValue(0), Cmp); 9563 return DAG.getNode(ISD::SUB, dl, VT, Xor, Cmp); 9564 } 9565 9566 // FIXME: Should really try to split the vector in case it's legal on a 9567 // subvector. 9568 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 9569 return DAG.UnrollVectorOp(N); 9570 9571 // abds(lhs, rhs) -> select(sgt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs)) 9572 // abdu(lhs, rhs) -> select(ugt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs)) 9573 return DAG.getSelect(dl, VT, Cmp, DAG.getNode(ISD::SUB, dl, VT, LHS, RHS), 9574 DAG.getNode(ISD::SUB, dl, VT, RHS, LHS)); 9575 } 9576 9577 SDValue TargetLowering::expandAVG(SDNode *N, SelectionDAG &DAG) const { 9578 SDLoc dl(N); 9579 EVT VT = N->getValueType(0); 9580 SDValue LHS = N->getOperand(0); 9581 SDValue RHS = N->getOperand(1); 9582 9583 unsigned Opc = N->getOpcode(); 9584 bool IsFloor = Opc == ISD::AVGFLOORS || Opc == ISD::AVGFLOORU; 9585 bool IsSigned = Opc == ISD::AVGCEILS || Opc == ISD::AVGFLOORS; 9586 unsigned SumOpc = IsFloor ? ISD::ADD : ISD::SUB; 9587 unsigned SignOpc = IsFloor ? ISD::AND : ISD::OR; 9588 unsigned ShiftOpc = IsSigned ? ISD::SRA : ISD::SRL; 9589 unsigned ExtOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 9590 assert((Opc == ISD::AVGFLOORS || Opc == ISD::AVGCEILS || 9591 Opc == ISD::AVGFLOORU || Opc == ISD::AVGCEILU) && 9592 "Unknown AVG node"); 9593 9594 // If the operands are already extended, we can add+shift. 9595 bool IsExt = 9596 (IsSigned && DAG.ComputeNumSignBits(LHS) >= 2 && 9597 DAG.ComputeNumSignBits(RHS) >= 2) || 9598 (!IsSigned && DAG.computeKnownBits(LHS).countMinLeadingZeros() >= 1 && 9599 DAG.computeKnownBits(RHS).countMinLeadingZeros() >= 1); 9600 if (IsExt) { 9601 SDValue Sum = DAG.getNode(ISD::ADD, dl, VT, LHS, RHS); 9602 if (!IsFloor) 9603 Sum = DAG.getNode(ISD::ADD, dl, VT, Sum, DAG.getConstant(1, dl, VT)); 9604 return DAG.getNode(ShiftOpc, dl, VT, Sum, 9605 DAG.getShiftAmountConstant(1, VT, dl)); 9606 } 9607 9608 // For scalars, see if we can efficiently extend/truncate to use add+shift. 9609 if (VT.isScalarInteger()) { 9610 unsigned BW = VT.getScalarSizeInBits(); 9611 EVT ExtVT = VT.getIntegerVT(*DAG.getContext(), 2 * BW); 9612 if (isTypeLegal(ExtVT) && isTruncateFree(ExtVT, VT)) { 9613 LHS = DAG.getNode(ExtOpc, dl, ExtVT, LHS); 9614 RHS = DAG.getNode(ExtOpc, dl, ExtVT, RHS); 9615 SDValue Avg = DAG.getNode(ISD::ADD, dl, ExtVT, LHS, RHS); 9616 if (!IsFloor) 9617 Avg = DAG.getNode(ISD::ADD, dl, ExtVT, Avg, 9618 DAG.getConstant(1, dl, ExtVT)); 9619 // Just use SRL as we will be truncating away the extended sign bits. 9620 Avg = DAG.getNode(ISD::SRL, dl, ExtVT, Avg, 9621 DAG.getShiftAmountConstant(1, ExtVT, dl)); 9622 return DAG.getNode(ISD::TRUNCATE, dl, VT, Avg); 9623 } 9624 } 9625 9626 // avgflooru(lhs, rhs) -> or(lshr(add(lhs, rhs),1),shl(overflow, typesize-1)) 9627 if (Opc == ISD::AVGFLOORU && VT.isScalarInteger() && !isTypeLegal(VT)) { 9628 SDValue UAddWithOverflow = 9629 DAG.getNode(ISD::UADDO, dl, DAG.getVTList(VT, MVT::i1), {RHS, LHS}); 9630 9631 SDValue Sum = UAddWithOverflow.getValue(0); 9632 SDValue Overflow = UAddWithOverflow.getValue(1); 9633 9634 // Right shift the sum by 1 9635 SDValue LShrVal = DAG.getNode(ISD::SRL, dl, VT, Sum, 9636 DAG.getShiftAmountConstant(1, VT, dl)); 9637 9638 SDValue ZeroExtOverflow = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Overflow); 9639 SDValue OverflowShl = DAG.getNode( 9640 ISD::SHL, dl, VT, ZeroExtOverflow, 9641 DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, dl)); 9642 9643 return DAG.getNode(ISD::OR, dl, VT, LShrVal, OverflowShl); 9644 } 9645 9646 // avgceils(lhs, rhs) -> sub(or(lhs,rhs),ashr(xor(lhs,rhs),1)) 9647 // avgceilu(lhs, rhs) -> sub(or(lhs,rhs),lshr(xor(lhs,rhs),1)) 9648 // avgfloors(lhs, rhs) -> add(and(lhs,rhs),ashr(xor(lhs,rhs),1)) 9649 // avgflooru(lhs, rhs) -> add(and(lhs,rhs),lshr(xor(lhs,rhs),1)) 9650 LHS = DAG.getFreeze(LHS); 9651 RHS = DAG.getFreeze(RHS); 9652 SDValue Sign = DAG.getNode(SignOpc, dl, VT, LHS, RHS); 9653 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 9654 SDValue Shift = 9655 DAG.getNode(ShiftOpc, dl, VT, Xor, DAG.getShiftAmountConstant(1, VT, dl)); 9656 return DAG.getNode(SumOpc, dl, VT, Sign, Shift); 9657 } 9658 9659 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 9660 SDLoc dl(N); 9661 EVT VT = N->getValueType(0); 9662 SDValue Op = N->getOperand(0); 9663 9664 if (!VT.isSimple()) 9665 return SDValue(); 9666 9667 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9668 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 9669 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 9670 default: 9671 return SDValue(); 9672 case MVT::i16: 9673 // Use a rotate by 8. This can be further expanded if necessary. 9674 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 9675 case MVT::i32: 9676 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 9677 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Op, 9678 DAG.getConstant(0xFF00, dl, VT)); 9679 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT)); 9680 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 9681 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 9682 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 9683 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 9684 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 9685 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 9686 case MVT::i64: 9687 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 9688 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Op, 9689 DAG.getConstant(255ULL<<8, dl, VT)); 9690 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT)); 9691 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Op, 9692 DAG.getConstant(255ULL<<16, dl, VT)); 9693 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT)); 9694 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Op, 9695 DAG.getConstant(255ULL<<24, dl, VT)); 9696 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT)); 9697 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 9698 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 9699 DAG.getConstant(255ULL<<24, dl, VT)); 9700 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 9701 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 9702 DAG.getConstant(255ULL<<16, dl, VT)); 9703 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 9704 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 9705 DAG.getConstant(255ULL<<8, dl, VT)); 9706 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 9707 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 9708 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 9709 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 9710 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 9711 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 9712 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 9713 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 9714 } 9715 } 9716 9717 SDValue TargetLowering::expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const { 9718 SDLoc dl(N); 9719 EVT VT = N->getValueType(0); 9720 SDValue Op = N->getOperand(0); 9721 SDValue Mask = N->getOperand(1); 9722 SDValue EVL = N->getOperand(2); 9723 9724 if (!VT.isSimple()) 9725 return SDValue(); 9726 9727 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9728 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 9729 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 9730 default: 9731 return SDValue(); 9732 case MVT::i16: 9733 Tmp1 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 9734 Mask, EVL); 9735 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 9736 Mask, EVL); 9737 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp1, Tmp2, Mask, EVL); 9738 case MVT::i32: 9739 Tmp4 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT), 9740 Mask, EVL); 9741 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Op, DAG.getConstant(0xFF00, dl, VT), 9742 Mask, EVL); 9743 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT), 9744 Mask, EVL); 9745 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 9746 Mask, EVL); 9747 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9748 DAG.getConstant(0xFF00, dl, VT), Mask, EVL); 9749 Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT), 9750 Mask, EVL); 9751 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL); 9752 Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL); 9753 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL); 9754 case MVT::i64: 9755 Tmp8 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT), 9756 Mask, EVL); 9757 Tmp7 = DAG.getNode(ISD::VP_AND, dl, VT, Op, 9758 DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL); 9759 Tmp7 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT), 9760 Mask, EVL); 9761 Tmp6 = DAG.getNode(ISD::VP_AND, dl, VT, Op, 9762 DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL); 9763 Tmp6 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT), 9764 Mask, EVL); 9765 Tmp5 = DAG.getNode(ISD::VP_AND, dl, VT, Op, 9766 DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL); 9767 Tmp5 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT), 9768 Mask, EVL); 9769 Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 9770 Mask, EVL); 9771 Tmp4 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp4, 9772 DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL); 9773 Tmp3 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT), 9774 Mask, EVL); 9775 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp3, 9776 DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL); 9777 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT), 9778 Mask, EVL); 9779 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9780 DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL); 9781 Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT), 9782 Mask, EVL); 9783 Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp7, Mask, EVL); 9784 Tmp6 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp6, Tmp5, Mask, EVL); 9785 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL); 9786 Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL); 9787 Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp6, Mask, EVL); 9788 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL); 9789 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp4, Mask, EVL); 9790 } 9791 } 9792 9793 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 9794 SDLoc dl(N); 9795 EVT VT = N->getValueType(0); 9796 SDValue Op = N->getOperand(0); 9797 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9798 unsigned Sz = VT.getScalarSizeInBits(); 9799 9800 SDValue Tmp, Tmp2, Tmp3; 9801 9802 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 9803 // and finally the i1 pairs. 9804 // TODO: We can easily support i4/i2 legal types if any target ever does. 9805 if (Sz >= 8 && isPowerOf2_32(Sz)) { 9806 // Create the masks - repeating the pattern every byte. 9807 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 9808 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 9809 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 9810 9811 // BSWAP if the type is wider than a single byte. 9812 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 9813 9814 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 9815 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 9816 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 9817 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 9818 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 9819 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 9820 9821 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 9822 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 9823 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 9824 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 9825 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 9826 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 9827 9828 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 9829 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 9830 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 9831 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 9832 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 9833 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 9834 return Tmp; 9835 } 9836 9837 Tmp = DAG.getConstant(0, dl, VT); 9838 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 9839 if (I < J) 9840 Tmp2 = 9841 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 9842 else 9843 Tmp2 = 9844 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 9845 9846 APInt Shift = APInt::getOneBitSet(Sz, J); 9847 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 9848 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 9849 } 9850 9851 return Tmp; 9852 } 9853 9854 SDValue TargetLowering::expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 9855 assert(N->getOpcode() == ISD::VP_BITREVERSE); 9856 9857 SDLoc dl(N); 9858 EVT VT = N->getValueType(0); 9859 SDValue Op = N->getOperand(0); 9860 SDValue Mask = N->getOperand(1); 9861 SDValue EVL = N->getOperand(2); 9862 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9863 unsigned Sz = VT.getScalarSizeInBits(); 9864 9865 SDValue Tmp, Tmp2, Tmp3; 9866 9867 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 9868 // and finally the i1 pairs. 9869 // TODO: We can easily support i4/i2 legal types if any target ever does. 9870 if (Sz >= 8 && isPowerOf2_32(Sz)) { 9871 // Create the masks - repeating the pattern every byte. 9872 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 9873 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 9874 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 9875 9876 // BSWAP if the type is wider than a single byte. 9877 Tmp = (Sz > 8 ? DAG.getNode(ISD::VP_BSWAP, dl, VT, Op, Mask, EVL) : Op); 9878 9879 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 9880 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT), 9881 Mask, EVL); 9882 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9883 DAG.getConstant(Mask4, dl, VT), Mask, EVL); 9884 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT), 9885 Mask, EVL); 9886 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT), 9887 Mask, EVL); 9888 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL); 9889 9890 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 9891 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT), 9892 Mask, EVL); 9893 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9894 DAG.getConstant(Mask2, dl, VT), Mask, EVL); 9895 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT), 9896 Mask, EVL); 9897 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT), 9898 Mask, EVL); 9899 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL); 9900 9901 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 9902 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT), 9903 Mask, EVL); 9904 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9905 DAG.getConstant(Mask1, dl, VT), Mask, EVL); 9906 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT), 9907 Mask, EVL); 9908 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT), 9909 Mask, EVL); 9910 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL); 9911 return Tmp; 9912 } 9913 return SDValue(); 9914 } 9915 9916 std::pair<SDValue, SDValue> 9917 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 9918 SelectionDAG &DAG) const { 9919 SDLoc SL(LD); 9920 SDValue Chain = LD->getChain(); 9921 SDValue BasePTR = LD->getBasePtr(); 9922 EVT SrcVT = LD->getMemoryVT(); 9923 EVT DstVT = LD->getValueType(0); 9924 ISD::LoadExtType ExtType = LD->getExtensionType(); 9925 9926 if (SrcVT.isScalableVector()) 9927 report_fatal_error("Cannot scalarize scalable vector loads"); 9928 9929 unsigned NumElem = SrcVT.getVectorNumElements(); 9930 9931 EVT SrcEltVT = SrcVT.getScalarType(); 9932 EVT DstEltVT = DstVT.getScalarType(); 9933 9934 // A vector must always be stored in memory as-is, i.e. without any padding 9935 // between the elements, since various code depend on it, e.g. in the 9936 // handling of a bitcast of a vector type to int, which may be done with a 9937 // vector store followed by an integer load. A vector that does not have 9938 // elements that are byte-sized must therefore be stored as an integer 9939 // built out of the extracted vector elements. 9940 if (!SrcEltVT.isByteSized()) { 9941 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 9942 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 9943 9944 unsigned NumSrcBits = SrcVT.getSizeInBits(); 9945 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 9946 9947 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 9948 SDValue SrcEltBitMask = DAG.getConstant( 9949 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 9950 9951 // Load the whole vector and avoid masking off the top bits as it makes 9952 // the codegen worse. 9953 SDValue Load = 9954 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 9955 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 9956 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 9957 9958 SmallVector<SDValue, 8> Vals; 9959 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 9960 unsigned ShiftIntoIdx = 9961 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 9962 SDValue ShiftAmount = DAG.getShiftAmountConstant( 9963 ShiftIntoIdx * SrcEltVT.getSizeInBits(), LoadVT, SL); 9964 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 9965 SDValue Elt = 9966 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 9967 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 9968 9969 if (ExtType != ISD::NON_EXTLOAD) { 9970 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 9971 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 9972 } 9973 9974 Vals.push_back(Scalar); 9975 } 9976 9977 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 9978 return std::make_pair(Value, Load.getValue(1)); 9979 } 9980 9981 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 9982 assert(SrcEltVT.isByteSized()); 9983 9984 SmallVector<SDValue, 8> Vals; 9985 SmallVector<SDValue, 8> LoadChains; 9986 9987 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 9988 SDValue ScalarLoad = 9989 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 9990 LD->getPointerInfo().getWithOffset(Idx * Stride), 9991 SrcEltVT, LD->getOriginalAlign(), 9992 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 9993 9994 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::getFixed(Stride)); 9995 9996 Vals.push_back(ScalarLoad.getValue(0)); 9997 LoadChains.push_back(ScalarLoad.getValue(1)); 9998 } 9999 10000 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 10001 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 10002 10003 return std::make_pair(Value, NewChain); 10004 } 10005 10006 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 10007 SelectionDAG &DAG) const { 10008 SDLoc SL(ST); 10009 10010 SDValue Chain = ST->getChain(); 10011 SDValue BasePtr = ST->getBasePtr(); 10012 SDValue Value = ST->getValue(); 10013 EVT StVT = ST->getMemoryVT(); 10014 10015 if (StVT.isScalableVector()) 10016 report_fatal_error("Cannot scalarize scalable vector stores"); 10017 10018 // The type of the data we want to save 10019 EVT RegVT = Value.getValueType(); 10020 EVT RegSclVT = RegVT.getScalarType(); 10021 10022 // The type of data as saved in memory. 10023 EVT MemSclVT = StVT.getScalarType(); 10024 10025 unsigned NumElem = StVT.getVectorNumElements(); 10026 10027 // A vector must always be stored in memory as-is, i.e. without any padding 10028 // between the elements, since various code depend on it, e.g. in the 10029 // handling of a bitcast of a vector type to int, which may be done with a 10030 // vector store followed by an integer load. A vector that does not have 10031 // elements that are byte-sized must therefore be stored as an integer 10032 // built out of the extracted vector elements. 10033 if (!MemSclVT.isByteSized()) { 10034 unsigned NumBits = StVT.getSizeInBits(); 10035 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 10036 10037 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 10038 10039 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 10040 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 10041 DAG.getVectorIdxConstant(Idx, SL)); 10042 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 10043 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 10044 unsigned ShiftIntoIdx = 10045 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 10046 SDValue ShiftAmount = 10047 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 10048 SDValue ShiftedElt = 10049 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 10050 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 10051 } 10052 10053 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 10054 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 10055 ST->getAAInfo()); 10056 } 10057 10058 // Store Stride in bytes 10059 unsigned Stride = MemSclVT.getSizeInBits() / 8; 10060 assert(Stride && "Zero stride!"); 10061 // Extract each of the elements from the original vector and save them into 10062 // memory individually. 10063 SmallVector<SDValue, 8> Stores; 10064 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 10065 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 10066 DAG.getVectorIdxConstant(Idx, SL)); 10067 10068 SDValue Ptr = 10069 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::getFixed(Idx * Stride)); 10070 10071 // This scalar TruncStore may be illegal, but we legalize it later. 10072 SDValue Store = DAG.getTruncStore( 10073 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 10074 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 10075 ST->getAAInfo()); 10076 10077 Stores.push_back(Store); 10078 } 10079 10080 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 10081 } 10082 10083 std::pair<SDValue, SDValue> 10084 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 10085 assert(LD->getAddressingMode() == ISD::UNINDEXED && 10086 "unaligned indexed loads not implemented!"); 10087 SDValue Chain = LD->getChain(); 10088 SDValue Ptr = LD->getBasePtr(); 10089 EVT VT = LD->getValueType(0); 10090 EVT LoadedVT = LD->getMemoryVT(); 10091 SDLoc dl(LD); 10092 auto &MF = DAG.getMachineFunction(); 10093 10094 if (VT.isFloatingPoint() || VT.isVector()) { 10095 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 10096 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 10097 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 10098 LoadedVT.isVector()) { 10099 // Scalarize the load and let the individual components be handled. 10100 return scalarizeVectorLoad(LD, DAG); 10101 } 10102 10103 // Expand to a (misaligned) integer load of the same size, 10104 // then bitconvert to floating point or vector. 10105 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 10106 LD->getMemOperand()); 10107 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 10108 if (LoadedVT != VT) 10109 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 10110 ISD::ANY_EXTEND, dl, VT, Result); 10111 10112 return std::make_pair(Result, newLoad.getValue(1)); 10113 } 10114 10115 // Copy the value to a (aligned) stack slot using (unaligned) integer 10116 // loads and stores, then do a (aligned) load from the stack slot. 10117 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 10118 unsigned LoadedBytes = LoadedVT.getStoreSize(); 10119 unsigned RegBytes = RegVT.getSizeInBits() / 8; 10120 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 10121 10122 // Make sure the stack slot is also aligned for the register type. 10123 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 10124 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 10125 SmallVector<SDValue, 8> Stores; 10126 SDValue StackPtr = StackBase; 10127 unsigned Offset = 0; 10128 10129 EVT PtrVT = Ptr.getValueType(); 10130 EVT StackPtrVT = StackPtr.getValueType(); 10131 10132 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 10133 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 10134 10135 // Do all but one copies using the full register width. 10136 for (unsigned i = 1; i < NumRegs; i++) { 10137 // Load one integer register's worth from the original location. 10138 SDValue Load = DAG.getLoad( 10139 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 10140 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 10141 LD->getAAInfo()); 10142 // Follow the load with a store to the stack slot. Remember the store. 10143 Stores.push_back(DAG.getStore( 10144 Load.getValue(1), dl, Load, StackPtr, 10145 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 10146 // Increment the pointers. 10147 Offset += RegBytes; 10148 10149 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 10150 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 10151 } 10152 10153 // The last copy may be partial. Do an extending load. 10154 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 10155 8 * (LoadedBytes - Offset)); 10156 SDValue Load = 10157 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 10158 LD->getPointerInfo().getWithOffset(Offset), MemVT, 10159 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 10160 LD->getAAInfo()); 10161 // Follow the load with a store to the stack slot. Remember the store. 10162 // On big-endian machines this requires a truncating store to ensure 10163 // that the bits end up in the right place. 10164 Stores.push_back(DAG.getTruncStore( 10165 Load.getValue(1), dl, Load, StackPtr, 10166 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 10167 10168 // The order of the stores doesn't matter - say it with a TokenFactor. 10169 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10170 10171 // Finally, perform the original load only redirected to the stack slot. 10172 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 10173 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 10174 LoadedVT); 10175 10176 // Callers expect a MERGE_VALUES node. 10177 return std::make_pair(Load, TF); 10178 } 10179 10180 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 10181 "Unaligned load of unsupported type."); 10182 10183 // Compute the new VT that is half the size of the old one. This is an 10184 // integer MVT. 10185 unsigned NumBits = LoadedVT.getSizeInBits(); 10186 EVT NewLoadedVT; 10187 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 10188 NumBits >>= 1; 10189 10190 Align Alignment = LD->getOriginalAlign(); 10191 unsigned IncrementSize = NumBits / 8; 10192 ISD::LoadExtType HiExtType = LD->getExtensionType(); 10193 10194 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 10195 if (HiExtType == ISD::NON_EXTLOAD) 10196 HiExtType = ISD::ZEXTLOAD; 10197 10198 // Load the value in two parts 10199 SDValue Lo, Hi; 10200 if (DAG.getDataLayout().isLittleEndian()) { 10201 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 10202 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 10203 LD->getAAInfo()); 10204 10205 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize)); 10206 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 10207 LD->getPointerInfo().getWithOffset(IncrementSize), 10208 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 10209 LD->getAAInfo()); 10210 } else { 10211 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 10212 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 10213 LD->getAAInfo()); 10214 10215 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize)); 10216 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 10217 LD->getPointerInfo().getWithOffset(IncrementSize), 10218 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 10219 LD->getAAInfo()); 10220 } 10221 10222 // aggregate the two parts 10223 SDValue ShiftAmount = DAG.getShiftAmountConstant(NumBits, VT, dl); 10224 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 10225 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 10226 10227 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 10228 Hi.getValue(1)); 10229 10230 return std::make_pair(Result, TF); 10231 } 10232 10233 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 10234 SelectionDAG &DAG) const { 10235 assert(ST->getAddressingMode() == ISD::UNINDEXED && 10236 "unaligned indexed stores not implemented!"); 10237 SDValue Chain = ST->getChain(); 10238 SDValue Ptr = ST->getBasePtr(); 10239 SDValue Val = ST->getValue(); 10240 EVT VT = Val.getValueType(); 10241 Align Alignment = ST->getOriginalAlign(); 10242 auto &MF = DAG.getMachineFunction(); 10243 EVT StoreMemVT = ST->getMemoryVT(); 10244 10245 SDLoc dl(ST); 10246 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 10247 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 10248 if (isTypeLegal(intVT)) { 10249 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 10250 StoreMemVT.isVector()) { 10251 // Scalarize the store and let the individual components be handled. 10252 SDValue Result = scalarizeVectorStore(ST, DAG); 10253 return Result; 10254 } 10255 // Expand to a bitconvert of the value to the integer type of the 10256 // same size, then a (misaligned) int store. 10257 // FIXME: Does not handle truncating floating point stores! 10258 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 10259 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 10260 Alignment, ST->getMemOperand()->getFlags()); 10261 return Result; 10262 } 10263 // Do a (aligned) store to a stack slot, then copy from the stack slot 10264 // to the final destination using (unaligned) integer loads and stores. 10265 MVT RegVT = getRegisterType( 10266 *DAG.getContext(), 10267 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 10268 EVT PtrVT = Ptr.getValueType(); 10269 unsigned StoredBytes = StoreMemVT.getStoreSize(); 10270 unsigned RegBytes = RegVT.getSizeInBits() / 8; 10271 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 10272 10273 // Make sure the stack slot is also aligned for the register type. 10274 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 10275 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 10276 10277 // Perform the original store, only redirected to the stack slot. 10278 SDValue Store = DAG.getTruncStore( 10279 Chain, dl, Val, StackPtr, 10280 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 10281 10282 EVT StackPtrVT = StackPtr.getValueType(); 10283 10284 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 10285 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 10286 SmallVector<SDValue, 8> Stores; 10287 unsigned Offset = 0; 10288 10289 // Do all but one copies using the full register width. 10290 for (unsigned i = 1; i < NumRegs; i++) { 10291 // Load one integer register's worth from the stack slot. 10292 SDValue Load = DAG.getLoad( 10293 RegVT, dl, Store, StackPtr, 10294 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 10295 // Store it to the final location. Remember the store. 10296 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 10297 ST->getPointerInfo().getWithOffset(Offset), 10298 ST->getOriginalAlign(), 10299 ST->getMemOperand()->getFlags())); 10300 // Increment the pointers. 10301 Offset += RegBytes; 10302 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 10303 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 10304 } 10305 10306 // The last store may be partial. Do a truncating store. On big-endian 10307 // machines this requires an extending load from the stack slot to ensure 10308 // that the bits are in the right place. 10309 EVT LoadMemVT = 10310 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 10311 10312 // Load from the stack slot. 10313 SDValue Load = DAG.getExtLoad( 10314 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 10315 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 10316 10317 Stores.push_back( 10318 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 10319 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 10320 ST->getOriginalAlign(), 10321 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 10322 // The order of the stores doesn't matter - say it with a TokenFactor. 10323 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10324 return Result; 10325 } 10326 10327 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 10328 "Unaligned store of unknown type."); 10329 // Get the half-size VT 10330 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 10331 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 10332 unsigned IncrementSize = NumBits / 8; 10333 10334 // Divide the stored value in two parts. 10335 SDValue ShiftAmount = 10336 DAG.getShiftAmountConstant(NumBits, Val.getValueType(), dl); 10337 SDValue Lo = Val; 10338 // If Val is a constant, replace the upper bits with 0. The SRL will constant 10339 // fold and not use the upper bits. A smaller constant may be easier to 10340 // materialize. 10341 if (auto *C = dyn_cast<ConstantSDNode>(Lo); C && !C->isOpaque()) 10342 Lo = DAG.getNode( 10343 ISD::AND, dl, VT, Lo, 10344 DAG.getConstant(APInt::getLowBitsSet(VT.getSizeInBits(), NumBits), dl, 10345 VT)); 10346 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 10347 10348 // Store the two parts 10349 SDValue Store1, Store2; 10350 Store1 = DAG.getTruncStore(Chain, dl, 10351 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 10352 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 10353 ST->getMemOperand()->getFlags()); 10354 10355 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize)); 10356 Store2 = DAG.getTruncStore( 10357 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 10358 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 10359 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 10360 10361 SDValue Result = 10362 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 10363 return Result; 10364 } 10365 10366 SDValue 10367 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 10368 const SDLoc &DL, EVT DataVT, 10369 SelectionDAG &DAG, 10370 bool IsCompressedMemory) const { 10371 SDValue Increment; 10372 EVT AddrVT = Addr.getValueType(); 10373 EVT MaskVT = Mask.getValueType(); 10374 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 10375 "Incompatible types of Data and Mask"); 10376 if (IsCompressedMemory) { 10377 if (DataVT.isScalableVector()) 10378 report_fatal_error( 10379 "Cannot currently handle compressed memory with scalable vectors"); 10380 // Incrementing the pointer according to number of '1's in the mask. 10381 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 10382 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 10383 if (MaskIntVT.getSizeInBits() < 32) { 10384 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 10385 MaskIntVT = MVT::i32; 10386 } 10387 10388 // Count '1's with POPCNT. 10389 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 10390 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 10391 // Scale is an element size in bytes. 10392 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 10393 AddrVT); 10394 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 10395 } else if (DataVT.isScalableVector()) { 10396 Increment = DAG.getVScale(DL, AddrVT, 10397 APInt(AddrVT.getFixedSizeInBits(), 10398 DataVT.getStoreSize().getKnownMinValue())); 10399 } else 10400 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 10401 10402 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 10403 } 10404 10405 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 10406 EVT VecVT, const SDLoc &dl, 10407 ElementCount SubEC) { 10408 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 10409 "Cannot index a scalable vector within a fixed-width vector"); 10410 10411 unsigned NElts = VecVT.getVectorMinNumElements(); 10412 unsigned NumSubElts = SubEC.getKnownMinValue(); 10413 EVT IdxVT = Idx.getValueType(); 10414 10415 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 10416 // If this is a constant index and we know the value plus the number of the 10417 // elements in the subvector minus one is less than the minimum number of 10418 // elements then it's safe to return Idx. 10419 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 10420 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 10421 return Idx; 10422 SDValue VS = 10423 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 10424 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 10425 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 10426 DAG.getConstant(NumSubElts, dl, IdxVT)); 10427 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 10428 } 10429 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 10430 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 10431 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 10432 DAG.getConstant(Imm, dl, IdxVT)); 10433 } 10434 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 10435 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 10436 DAG.getConstant(MaxIndex, dl, IdxVT)); 10437 } 10438 10439 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 10440 SDValue VecPtr, EVT VecVT, 10441 SDValue Index) const { 10442 return getVectorSubVecPointer( 10443 DAG, VecPtr, VecVT, 10444 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 10445 Index); 10446 } 10447 10448 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 10449 SDValue VecPtr, EVT VecVT, 10450 EVT SubVecVT, 10451 SDValue Index) const { 10452 SDLoc dl(Index); 10453 // Make sure the index type is big enough to compute in. 10454 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 10455 10456 EVT EltVT = VecVT.getVectorElementType(); 10457 10458 // Calculate the element offset and add it to the pointer. 10459 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 10460 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 10461 "Converting bits to bytes lost precision"); 10462 assert(SubVecVT.getVectorElementType() == EltVT && 10463 "Sub-vector must be a vector with matching element type"); 10464 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 10465 SubVecVT.getVectorElementCount()); 10466 10467 EVT IdxVT = Index.getValueType(); 10468 if (SubVecVT.isScalableVector()) 10469 Index = 10470 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 10471 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 10472 10473 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 10474 DAG.getConstant(EltSize, dl, IdxVT)); 10475 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 10476 } 10477 10478 //===----------------------------------------------------------------------===// 10479 // Implementation of Emulated TLS Model 10480 //===----------------------------------------------------------------------===// 10481 10482 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 10483 SelectionDAG &DAG) const { 10484 // Access to address of TLS varialbe xyz is lowered to a function call: 10485 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 10486 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10487 PointerType *VoidPtrType = PointerType::get(*DAG.getContext(), 0); 10488 SDLoc dl(GA); 10489 10490 ArgListTy Args; 10491 ArgListEntry Entry; 10492 const GlobalValue *GV = 10493 cast<GlobalValue>(GA->getGlobal()->stripPointerCastsAndAliases()); 10494 SmallString<32> NameString("__emutls_v."); 10495 NameString += GV->getName(); 10496 StringRef EmuTlsVarName(NameString); 10497 const GlobalVariable *EmuTlsVar = 10498 GV->getParent()->getNamedGlobal(EmuTlsVarName); 10499 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 10500 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 10501 Entry.Ty = VoidPtrType; 10502 Args.push_back(Entry); 10503 10504 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 10505 10506 TargetLowering::CallLoweringInfo CLI(DAG); 10507 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 10508 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 10509 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 10510 10511 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 10512 // At last for X86 targets, maybe good for other targets too? 10513 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10514 MFI.setAdjustsStack(true); // Is this only for X86 target? 10515 MFI.setHasCalls(true); 10516 10517 assert((GA->getOffset() == 0) && 10518 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 10519 return CallResult.first; 10520 } 10521 10522 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 10523 SelectionDAG &DAG) const { 10524 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 10525 if (!isCtlzFast()) 10526 return SDValue(); 10527 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 10528 SDLoc dl(Op); 10529 if (isNullConstant(Op.getOperand(1)) && CC == ISD::SETEQ) { 10530 EVT VT = Op.getOperand(0).getValueType(); 10531 SDValue Zext = Op.getOperand(0); 10532 if (VT.bitsLT(MVT::i32)) { 10533 VT = MVT::i32; 10534 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 10535 } 10536 unsigned Log2b = Log2_32(VT.getSizeInBits()); 10537 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 10538 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 10539 DAG.getConstant(Log2b, dl, MVT::i32)); 10540 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 10541 } 10542 return SDValue(); 10543 } 10544 10545 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 10546 SDValue Op0 = Node->getOperand(0); 10547 SDValue Op1 = Node->getOperand(1); 10548 EVT VT = Op0.getValueType(); 10549 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10550 unsigned Opcode = Node->getOpcode(); 10551 SDLoc DL(Node); 10552 10553 // umax(x,1) --> sub(x,cmpeq(x,0)) iff cmp result is allbits 10554 if (Opcode == ISD::UMAX && llvm::isOneOrOneSplat(Op1, true) && BoolVT == VT && 10555 getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 10556 Op0 = DAG.getFreeze(Op0); 10557 SDValue Zero = DAG.getConstant(0, DL, VT); 10558 return DAG.getNode(ISD::SUB, DL, VT, Op0, 10559 DAG.getSetCC(DL, VT, Op0, Zero, ISD::SETEQ)); 10560 } 10561 10562 // umin(x,y) -> sub(x,usubsat(x,y)) 10563 // TODO: Missing freeze(Op0)? 10564 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 10565 isOperationLegal(ISD::USUBSAT, VT)) { 10566 return DAG.getNode(ISD::SUB, DL, VT, Op0, 10567 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 10568 } 10569 10570 // umax(x,y) -> add(x,usubsat(y,x)) 10571 // TODO: Missing freeze(Op0)? 10572 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 10573 isOperationLegal(ISD::USUBSAT, VT)) { 10574 return DAG.getNode(ISD::ADD, DL, VT, Op0, 10575 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 10576 } 10577 10578 // FIXME: Should really try to split the vector in case it's legal on a 10579 // subvector. 10580 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 10581 return DAG.UnrollVectorOp(Node); 10582 10583 // Attempt to find an existing SETCC node that we can reuse. 10584 // TODO: Do we need a generic doesSETCCNodeExist? 10585 // TODO: Missing freeze(Op0)/freeze(Op1)? 10586 auto buildMinMax = [&](ISD::CondCode PrefCC, ISD::CondCode AltCC, 10587 ISD::CondCode PrefCommuteCC, 10588 ISD::CondCode AltCommuteCC) { 10589 SDVTList BoolVTList = DAG.getVTList(BoolVT); 10590 for (ISD::CondCode CC : {PrefCC, AltCC}) { 10591 if (DAG.doesNodeExist(ISD::SETCC, BoolVTList, 10592 {Op0, Op1, DAG.getCondCode(CC)})) { 10593 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 10594 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 10595 } 10596 } 10597 for (ISD::CondCode CC : {PrefCommuteCC, AltCommuteCC}) { 10598 if (DAG.doesNodeExist(ISD::SETCC, BoolVTList, 10599 {Op0, Op1, DAG.getCondCode(CC)})) { 10600 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 10601 return DAG.getSelect(DL, VT, Cond, Op1, Op0); 10602 } 10603 } 10604 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, PrefCC); 10605 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 10606 }; 10607 10608 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 10609 // -> Y = (A < B) ? B : A 10610 // -> Y = (A >= B) ? A : B 10611 // -> Y = (A <= B) ? B : A 10612 switch (Opcode) { 10613 case ISD::SMAX: 10614 return buildMinMax(ISD::SETGT, ISD::SETGE, ISD::SETLT, ISD::SETLE); 10615 case ISD::SMIN: 10616 return buildMinMax(ISD::SETLT, ISD::SETLE, ISD::SETGT, ISD::SETGE); 10617 case ISD::UMAX: 10618 return buildMinMax(ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE); 10619 case ISD::UMIN: 10620 return buildMinMax(ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE); 10621 } 10622 10623 llvm_unreachable("How did we get here?"); 10624 } 10625 10626 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 10627 unsigned Opcode = Node->getOpcode(); 10628 SDValue LHS = Node->getOperand(0); 10629 SDValue RHS = Node->getOperand(1); 10630 EVT VT = LHS.getValueType(); 10631 SDLoc dl(Node); 10632 10633 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 10634 assert(VT.isInteger() && "Expected operands to be integers"); 10635 10636 // usub.sat(a, b) -> umax(a, b) - b 10637 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 10638 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 10639 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 10640 } 10641 10642 // uadd.sat(a, b) -> umin(a, ~b) + b 10643 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 10644 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 10645 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 10646 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 10647 } 10648 10649 unsigned OverflowOp; 10650 switch (Opcode) { 10651 case ISD::SADDSAT: 10652 OverflowOp = ISD::SADDO; 10653 break; 10654 case ISD::UADDSAT: 10655 OverflowOp = ISD::UADDO; 10656 break; 10657 case ISD::SSUBSAT: 10658 OverflowOp = ISD::SSUBO; 10659 break; 10660 case ISD::USUBSAT: 10661 OverflowOp = ISD::USUBO; 10662 break; 10663 default: 10664 llvm_unreachable("Expected method to receive signed or unsigned saturation " 10665 "addition or subtraction node."); 10666 } 10667 10668 // FIXME: Should really try to split the vector in case it's legal on a 10669 // subvector. 10670 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 10671 return DAG.UnrollVectorOp(Node); 10672 10673 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 10674 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10675 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 10676 SDValue SumDiff = Result.getValue(0); 10677 SDValue Overflow = Result.getValue(1); 10678 SDValue Zero = DAG.getConstant(0, dl, VT); 10679 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 10680 10681 if (Opcode == ISD::UADDSAT) { 10682 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 10683 // (LHS + RHS) | OverflowMask 10684 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 10685 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 10686 } 10687 // Overflow ? 0xffff.... : (LHS + RHS) 10688 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 10689 } 10690 10691 if (Opcode == ISD::USUBSAT) { 10692 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 10693 // (LHS - RHS) & ~OverflowMask 10694 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 10695 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 10696 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 10697 } 10698 // Overflow ? 0 : (LHS - RHS) 10699 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 10700 } 10701 10702 if (Opcode == ISD::SADDSAT || Opcode == ISD::SSUBSAT) { 10703 APInt MinVal = APInt::getSignedMinValue(BitWidth); 10704 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 10705 10706 KnownBits KnownLHS = DAG.computeKnownBits(LHS); 10707 KnownBits KnownRHS = DAG.computeKnownBits(RHS); 10708 10709 // If either of the operand signs are known, then they are guaranteed to 10710 // only saturate in one direction. If non-negative they will saturate 10711 // towards SIGNED_MAX, if negative they will saturate towards SIGNED_MIN. 10712 // 10713 // In the case of ISD::SSUBSAT, 'x - y' is equivalent to 'x + (-y)', so the 10714 // sign of 'y' has to be flipped. 10715 10716 bool LHSIsNonNegative = KnownLHS.isNonNegative(); 10717 bool RHSIsNonNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNonNegative() 10718 : KnownRHS.isNegative(); 10719 if (LHSIsNonNegative || RHSIsNonNegative) { 10720 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 10721 return DAG.getSelect(dl, VT, Overflow, SatMax, SumDiff); 10722 } 10723 10724 bool LHSIsNegative = KnownLHS.isNegative(); 10725 bool RHSIsNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNegative() 10726 : KnownRHS.isNonNegative(); 10727 if (LHSIsNegative || RHSIsNegative) { 10728 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 10729 return DAG.getSelect(dl, VT, Overflow, SatMin, SumDiff); 10730 } 10731 } 10732 10733 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 10734 APInt MinVal = APInt::getSignedMinValue(BitWidth); 10735 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 10736 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 10737 DAG.getConstant(BitWidth - 1, dl, VT)); 10738 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 10739 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 10740 } 10741 10742 SDValue TargetLowering::expandCMP(SDNode *Node, SelectionDAG &DAG) const { 10743 unsigned Opcode = Node->getOpcode(); 10744 SDValue LHS = Node->getOperand(0); 10745 SDValue RHS = Node->getOperand(1); 10746 EVT VT = LHS.getValueType(); 10747 EVT ResVT = Node->getValueType(0); 10748 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10749 SDLoc dl(Node); 10750 10751 auto LTPredicate = (Opcode == ISD::UCMP ? ISD::SETULT : ISD::SETLT); 10752 auto GTPredicate = (Opcode == ISD::UCMP ? ISD::SETUGT : ISD::SETGT); 10753 SDValue IsLT = DAG.getSetCC(dl, BoolVT, LHS, RHS, LTPredicate); 10754 SDValue IsGT = DAG.getSetCC(dl, BoolVT, LHS, RHS, GTPredicate); 10755 10756 // We can't perform arithmetic on i1 values. Extending them would 10757 // probably result in worse codegen, so let's just use two selects instead. 10758 // Some targets are also just better off using selects rather than subtraction 10759 // because one of the conditions can be merged with one of the selects. 10760 // And finally, if we don't know the contents of high bits of a boolean value 10761 // we can't perform any arithmetic either. 10762 if (shouldExpandCmpUsingSelects(VT) || BoolVT.getScalarSizeInBits() == 1 || 10763 getBooleanContents(BoolVT) == UndefinedBooleanContent) { 10764 SDValue SelectZeroOrOne = 10765 DAG.getSelect(dl, ResVT, IsGT, DAG.getConstant(1, dl, ResVT), 10766 DAG.getConstant(0, dl, ResVT)); 10767 return DAG.getSelect(dl, ResVT, IsLT, DAG.getAllOnesConstant(dl, ResVT), 10768 SelectZeroOrOne); 10769 } 10770 10771 if (getBooleanContents(BoolVT) == ZeroOrNegativeOneBooleanContent) 10772 std::swap(IsGT, IsLT); 10773 return DAG.getSExtOrTrunc(DAG.getNode(ISD::SUB, dl, BoolVT, IsGT, IsLT), dl, 10774 ResVT); 10775 } 10776 10777 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 10778 unsigned Opcode = Node->getOpcode(); 10779 bool IsSigned = Opcode == ISD::SSHLSAT; 10780 SDValue LHS = Node->getOperand(0); 10781 SDValue RHS = Node->getOperand(1); 10782 EVT VT = LHS.getValueType(); 10783 SDLoc dl(Node); 10784 10785 assert((Node->getOpcode() == ISD::SSHLSAT || 10786 Node->getOpcode() == ISD::USHLSAT) && 10787 "Expected a SHLSAT opcode"); 10788 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 10789 assert(VT.isInteger() && "Expected operands to be integers"); 10790 10791 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 10792 return DAG.UnrollVectorOp(Node); 10793 10794 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 10795 10796 unsigned BW = VT.getScalarSizeInBits(); 10797 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10798 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 10799 SDValue Orig = 10800 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 10801 10802 SDValue SatVal; 10803 if (IsSigned) { 10804 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 10805 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 10806 SDValue Cond = 10807 DAG.getSetCC(dl, BoolVT, LHS, DAG.getConstant(0, dl, VT), ISD::SETLT); 10808 SatVal = DAG.getSelect(dl, VT, Cond, SatMin, SatMax); 10809 } else { 10810 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 10811 } 10812 SDValue Cond = DAG.getSetCC(dl, BoolVT, LHS, Orig, ISD::SETNE); 10813 return DAG.getSelect(dl, VT, Cond, SatVal, Result); 10814 } 10815 10816 void TargetLowering::forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, 10817 bool Signed, EVT WideVT, 10818 const SDValue LL, const SDValue LH, 10819 const SDValue RL, const SDValue RH, 10820 SDValue &Lo, SDValue &Hi) const { 10821 // We can fall back to a libcall with an illegal type for the MUL if we 10822 // have a libcall big enough. 10823 // Also, we can fall back to a division in some cases, but that's a big 10824 // performance hit in the general case. 10825 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 10826 if (WideVT == MVT::i16) 10827 LC = RTLIB::MUL_I16; 10828 else if (WideVT == MVT::i32) 10829 LC = RTLIB::MUL_I32; 10830 else if (WideVT == MVT::i64) 10831 LC = RTLIB::MUL_I64; 10832 else if (WideVT == MVT::i128) 10833 LC = RTLIB::MUL_I128; 10834 10835 if (LC == RTLIB::UNKNOWN_LIBCALL || !getLibcallName(LC)) { 10836 // We'll expand the multiplication by brute force because we have no other 10837 // options. This is a trivially-generalized version of the code from 10838 // Hacker's Delight (itself derived from Knuth's Algorithm M from section 10839 // 4.3.1). 10840 EVT VT = LL.getValueType(); 10841 unsigned Bits = VT.getSizeInBits(); 10842 unsigned HalfBits = Bits >> 1; 10843 SDValue Mask = 10844 DAG.getConstant(APInt::getLowBitsSet(Bits, HalfBits), dl, VT); 10845 SDValue LLL = DAG.getNode(ISD::AND, dl, VT, LL, Mask); 10846 SDValue RLL = DAG.getNode(ISD::AND, dl, VT, RL, Mask); 10847 10848 SDValue T = DAG.getNode(ISD::MUL, dl, VT, LLL, RLL); 10849 SDValue TL = DAG.getNode(ISD::AND, dl, VT, T, Mask); 10850 10851 SDValue Shift = DAG.getShiftAmountConstant(HalfBits, VT, dl); 10852 SDValue TH = DAG.getNode(ISD::SRL, dl, VT, T, Shift); 10853 SDValue LLH = DAG.getNode(ISD::SRL, dl, VT, LL, Shift); 10854 SDValue RLH = DAG.getNode(ISD::SRL, dl, VT, RL, Shift); 10855 10856 SDValue U = DAG.getNode(ISD::ADD, dl, VT, 10857 DAG.getNode(ISD::MUL, dl, VT, LLH, RLL), TH); 10858 SDValue UL = DAG.getNode(ISD::AND, dl, VT, U, Mask); 10859 SDValue UH = DAG.getNode(ISD::SRL, dl, VT, U, Shift); 10860 10861 SDValue V = DAG.getNode(ISD::ADD, dl, VT, 10862 DAG.getNode(ISD::MUL, dl, VT, LLL, RLH), UL); 10863 SDValue VH = DAG.getNode(ISD::SRL, dl, VT, V, Shift); 10864 10865 SDValue W = 10866 DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::MUL, dl, VT, LLH, RLH), 10867 DAG.getNode(ISD::ADD, dl, VT, UH, VH)); 10868 Lo = DAG.getNode(ISD::ADD, dl, VT, TL, 10869 DAG.getNode(ISD::SHL, dl, VT, V, Shift)); 10870 10871 Hi = DAG.getNode(ISD::ADD, dl, VT, W, 10872 DAG.getNode(ISD::ADD, dl, VT, 10873 DAG.getNode(ISD::MUL, dl, VT, RH, LL), 10874 DAG.getNode(ISD::MUL, dl, VT, RL, LH))); 10875 } else { 10876 // Attempt a libcall. 10877 SDValue Ret; 10878 TargetLowering::MakeLibCallOptions CallOptions; 10879 CallOptions.setIsSigned(Signed); 10880 CallOptions.setIsPostTypeLegalization(true); 10881 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 10882 // Halves of WideVT are packed into registers in different order 10883 // depending on platform endianness. This is usually handled by 10884 // the C calling convention, but we can't defer to it in 10885 // the legalizer. 10886 SDValue Args[] = {LL, LH, RL, RH}; 10887 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 10888 } else { 10889 SDValue Args[] = {LH, LL, RH, RL}; 10890 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 10891 } 10892 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 10893 "Ret value is a collection of constituent nodes holding result."); 10894 if (DAG.getDataLayout().isLittleEndian()) { 10895 // Same as above. 10896 Lo = Ret.getOperand(0); 10897 Hi = Ret.getOperand(1); 10898 } else { 10899 Lo = Ret.getOperand(1); 10900 Hi = Ret.getOperand(0); 10901 } 10902 } 10903 } 10904 10905 void TargetLowering::forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, 10906 bool Signed, const SDValue LHS, 10907 const SDValue RHS, SDValue &Lo, 10908 SDValue &Hi) const { 10909 EVT VT = LHS.getValueType(); 10910 assert(RHS.getValueType() == VT && "Mismatching operand types"); 10911 10912 SDValue HiLHS; 10913 SDValue HiRHS; 10914 if (Signed) { 10915 // The high part is obtained by SRA'ing all but one of the bits of low 10916 // part. 10917 unsigned LoSize = VT.getFixedSizeInBits(); 10918 HiLHS = DAG.getNode( 10919 ISD::SRA, dl, VT, LHS, 10920 DAG.getConstant(LoSize - 1, dl, getPointerTy(DAG.getDataLayout()))); 10921 HiRHS = DAG.getNode( 10922 ISD::SRA, dl, VT, RHS, 10923 DAG.getConstant(LoSize - 1, dl, getPointerTy(DAG.getDataLayout()))); 10924 } else { 10925 HiLHS = DAG.getConstant(0, dl, VT); 10926 HiRHS = DAG.getConstant(0, dl, VT); 10927 } 10928 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); 10929 forceExpandWideMUL(DAG, dl, Signed, WideVT, LHS, HiLHS, RHS, HiRHS, Lo, Hi); 10930 } 10931 10932 SDValue 10933 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 10934 assert((Node->getOpcode() == ISD::SMULFIX || 10935 Node->getOpcode() == ISD::UMULFIX || 10936 Node->getOpcode() == ISD::SMULFIXSAT || 10937 Node->getOpcode() == ISD::UMULFIXSAT) && 10938 "Expected a fixed point multiplication opcode"); 10939 10940 SDLoc dl(Node); 10941 SDValue LHS = Node->getOperand(0); 10942 SDValue RHS = Node->getOperand(1); 10943 EVT VT = LHS.getValueType(); 10944 unsigned Scale = Node->getConstantOperandVal(2); 10945 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 10946 Node->getOpcode() == ISD::UMULFIXSAT); 10947 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 10948 Node->getOpcode() == ISD::SMULFIXSAT); 10949 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10950 unsigned VTSize = VT.getScalarSizeInBits(); 10951 10952 if (!Scale) { 10953 // [us]mul.fix(a, b, 0) -> mul(a, b) 10954 if (!Saturating) { 10955 if (isOperationLegalOrCustom(ISD::MUL, VT)) 10956 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 10957 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 10958 SDValue Result = 10959 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 10960 SDValue Product = Result.getValue(0); 10961 SDValue Overflow = Result.getValue(1); 10962 SDValue Zero = DAG.getConstant(0, dl, VT); 10963 10964 APInt MinVal = APInt::getSignedMinValue(VTSize); 10965 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 10966 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 10967 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 10968 // Xor the inputs, if resulting sign bit is 0 the product will be 10969 // positive, else negative. 10970 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 10971 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 10972 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 10973 return DAG.getSelect(dl, VT, Overflow, Result, Product); 10974 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 10975 SDValue Result = 10976 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 10977 SDValue Product = Result.getValue(0); 10978 SDValue Overflow = Result.getValue(1); 10979 10980 APInt MaxVal = APInt::getMaxValue(VTSize); 10981 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 10982 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 10983 } 10984 } 10985 10986 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 10987 "Expected scale to be less than the number of bits if signed or at " 10988 "most the number of bits if unsigned."); 10989 assert(LHS.getValueType() == RHS.getValueType() && 10990 "Expected both operands to be the same type"); 10991 10992 // Get the upper and lower bits of the result. 10993 SDValue Lo, Hi; 10994 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 10995 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 10996 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VTSize * 2); 10997 if (VT.isVector()) 10998 WideVT = 10999 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 11000 if (isOperationLegalOrCustom(LoHiOp, VT)) { 11001 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 11002 Lo = Result.getValue(0); 11003 Hi = Result.getValue(1); 11004 } else if (isOperationLegalOrCustom(HiOp, VT)) { 11005 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 11006 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 11007 } else if (isOperationLegalOrCustom(ISD::MUL, WideVT)) { 11008 // Try for a multiplication using a wider type. 11009 unsigned Ext = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 11010 SDValue LHSExt = DAG.getNode(Ext, dl, WideVT, LHS); 11011 SDValue RHSExt = DAG.getNode(Ext, dl, WideVT, RHS); 11012 SDValue Res = DAG.getNode(ISD::MUL, dl, WideVT, LHSExt, RHSExt); 11013 Lo = DAG.getNode(ISD::TRUNCATE, dl, VT, Res); 11014 SDValue Shifted = 11015 DAG.getNode(ISD::SRA, dl, WideVT, Res, 11016 DAG.getShiftAmountConstant(VTSize, WideVT, dl)); 11017 Hi = DAG.getNode(ISD::TRUNCATE, dl, VT, Shifted); 11018 } else if (VT.isVector()) { 11019 return SDValue(); 11020 } else { 11021 forceExpandWideMUL(DAG, dl, Signed, LHS, RHS, Lo, Hi); 11022 } 11023 11024 if (Scale == VTSize) 11025 // Result is just the top half since we'd be shifting by the width of the 11026 // operand. Overflow impossible so this works for both UMULFIX and 11027 // UMULFIXSAT. 11028 return Hi; 11029 11030 // The result will need to be shifted right by the scale since both operands 11031 // are scaled. The result is given to us in 2 halves, so we only want part of 11032 // both in the result. 11033 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 11034 DAG.getShiftAmountConstant(Scale, VT, dl)); 11035 if (!Saturating) 11036 return Result; 11037 11038 if (!Signed) { 11039 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 11040 // widened multiplication) aren't all zeroes. 11041 11042 // Saturate to max if ((Hi >> Scale) != 0), 11043 // which is the same as if (Hi > ((1 << Scale) - 1)) 11044 APInt MaxVal = APInt::getMaxValue(VTSize); 11045 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 11046 dl, VT); 11047 Result = DAG.getSelectCC(dl, Hi, LowMask, 11048 DAG.getConstant(MaxVal, dl, VT), Result, 11049 ISD::SETUGT); 11050 11051 return Result; 11052 } 11053 11054 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 11055 // widened multiplication) aren't all ones or all zeroes. 11056 11057 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 11058 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 11059 11060 if (Scale == 0) { 11061 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 11062 DAG.getShiftAmountConstant(VTSize - 1, VT, dl)); 11063 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 11064 // Saturated to SatMin if wide product is negative, and SatMax if wide 11065 // product is positive ... 11066 SDValue Zero = DAG.getConstant(0, dl, VT); 11067 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 11068 ISD::SETLT); 11069 // ... but only if we overflowed. 11070 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 11071 } 11072 11073 // We handled Scale==0 above so all the bits to examine is in Hi. 11074 11075 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 11076 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 11077 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 11078 dl, VT); 11079 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 11080 // Saturate to min if (Hi >> (Scale - 1)) < -1), 11081 // which is the same as if (HI < (-1 << (Scale - 1)) 11082 SDValue HighMask = 11083 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 11084 dl, VT); 11085 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 11086 return Result; 11087 } 11088 11089 SDValue 11090 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 11091 SDValue LHS, SDValue RHS, 11092 unsigned Scale, SelectionDAG &DAG) const { 11093 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 11094 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 11095 "Expected a fixed point division opcode"); 11096 11097 EVT VT = LHS.getValueType(); 11098 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 11099 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 11100 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 11101 11102 // If there is enough room in the type to upscale the LHS or downscale the 11103 // RHS before the division, we can perform it in this type without having to 11104 // resize. For signed operations, the LHS headroom is the number of 11105 // redundant sign bits, and for unsigned ones it is the number of zeroes. 11106 // The headroom for the RHS is the number of trailing zeroes. 11107 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 11108 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 11109 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 11110 11111 // For signed saturating operations, we need to be able to detect true integer 11112 // division overflow; that is, when you have MIN / -EPS. However, this 11113 // is undefined behavior and if we emit divisions that could take such 11114 // values it may cause undesired behavior (arithmetic exceptions on x86, for 11115 // example). 11116 // Avoid this by requiring an extra bit so that we never get this case. 11117 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 11118 // signed saturating division, we need to emit a whopping 32-bit division. 11119 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 11120 return SDValue(); 11121 11122 unsigned LHSShift = std::min(LHSLead, Scale); 11123 unsigned RHSShift = Scale - LHSShift; 11124 11125 // At this point, we know that if we shift the LHS up by LHSShift and the 11126 // RHS down by RHSShift, we can emit a regular division with a final scaling 11127 // factor of Scale. 11128 11129 if (LHSShift) 11130 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 11131 DAG.getShiftAmountConstant(LHSShift, VT, dl)); 11132 if (RHSShift) 11133 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 11134 DAG.getShiftAmountConstant(RHSShift, VT, dl)); 11135 11136 SDValue Quot; 11137 if (Signed) { 11138 // For signed operations, if the resulting quotient is negative and the 11139 // remainder is nonzero, subtract 1 from the quotient to round towards 11140 // negative infinity. 11141 SDValue Rem; 11142 // FIXME: Ideally we would always produce an SDIVREM here, but if the 11143 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 11144 // we couldn't just form a libcall, but the type legalizer doesn't do it. 11145 if (isTypeLegal(VT) && 11146 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 11147 Quot = DAG.getNode(ISD::SDIVREM, dl, 11148 DAG.getVTList(VT, VT), 11149 LHS, RHS); 11150 Rem = Quot.getValue(1); 11151 Quot = Quot.getValue(0); 11152 } else { 11153 Quot = DAG.getNode(ISD::SDIV, dl, VT, 11154 LHS, RHS); 11155 Rem = DAG.getNode(ISD::SREM, dl, VT, 11156 LHS, RHS); 11157 } 11158 SDValue Zero = DAG.getConstant(0, dl, VT); 11159 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 11160 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 11161 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 11162 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 11163 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 11164 DAG.getConstant(1, dl, VT)); 11165 Quot = DAG.getSelect(dl, VT, 11166 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 11167 Sub1, Quot); 11168 } else 11169 Quot = DAG.getNode(ISD::UDIV, dl, VT, 11170 LHS, RHS); 11171 11172 return Quot; 11173 } 11174 11175 void TargetLowering::expandUADDSUBO( 11176 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 11177 SDLoc dl(Node); 11178 SDValue LHS = Node->getOperand(0); 11179 SDValue RHS = Node->getOperand(1); 11180 bool IsAdd = Node->getOpcode() == ISD::UADDO; 11181 11182 // If UADDO_CARRY/SUBO_CARRY is legal, use that instead. 11183 unsigned OpcCarry = IsAdd ? ISD::UADDO_CARRY : ISD::USUBO_CARRY; 11184 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 11185 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 11186 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 11187 { LHS, RHS, CarryIn }); 11188 Result = SDValue(NodeCarry.getNode(), 0); 11189 Overflow = SDValue(NodeCarry.getNode(), 1); 11190 return; 11191 } 11192 11193 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 11194 LHS.getValueType(), LHS, RHS); 11195 11196 EVT ResultType = Node->getValueType(1); 11197 EVT SetCCType = getSetCCResultType( 11198 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 11199 SDValue SetCC; 11200 if (IsAdd && isOneConstant(RHS)) { 11201 // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces 11202 // the live range of X. We assume comparing with 0 is cheap. 11203 // The general case (X + C) < C is not necessarily beneficial. Although we 11204 // reduce the live range of X, we may introduce the materialization of 11205 // constant C. 11206 SetCC = 11207 DAG.getSetCC(dl, SetCCType, Result, 11208 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ); 11209 } else if (IsAdd && isAllOnesConstant(RHS)) { 11210 // Special case: uaddo X, -1 overflows if X != 0. 11211 SetCC = 11212 DAG.getSetCC(dl, SetCCType, LHS, 11213 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETNE); 11214 } else { 11215 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 11216 SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 11217 } 11218 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 11219 } 11220 11221 void TargetLowering::expandSADDSUBO( 11222 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 11223 SDLoc dl(Node); 11224 SDValue LHS = Node->getOperand(0); 11225 SDValue RHS = Node->getOperand(1); 11226 bool IsAdd = Node->getOpcode() == ISD::SADDO; 11227 11228 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 11229 LHS.getValueType(), LHS, RHS); 11230 11231 EVT ResultType = Node->getValueType(1); 11232 EVT OType = getSetCCResultType( 11233 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 11234 11235 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 11236 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 11237 if (isOperationLegal(OpcSat, LHS.getValueType())) { 11238 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 11239 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 11240 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 11241 return; 11242 } 11243 11244 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 11245 11246 // For an addition, the result should be less than one of the operands (LHS) 11247 // if and only if the other operand (RHS) is negative, otherwise there will 11248 // be overflow. 11249 // For a subtraction, the result should be less than one of the operands 11250 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 11251 // otherwise there will be overflow. 11252 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 11253 SDValue ConditionRHS = 11254 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 11255 11256 Overflow = DAG.getBoolExtOrTrunc( 11257 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 11258 ResultType, ResultType); 11259 } 11260 11261 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 11262 SDValue &Overflow, SelectionDAG &DAG) const { 11263 SDLoc dl(Node); 11264 EVT VT = Node->getValueType(0); 11265 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 11266 SDValue LHS = Node->getOperand(0); 11267 SDValue RHS = Node->getOperand(1); 11268 bool isSigned = Node->getOpcode() == ISD::SMULO; 11269 11270 // For power-of-two multiplications we can use a simpler shift expansion. 11271 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 11272 const APInt &C = RHSC->getAPIntValue(); 11273 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 11274 if (C.isPowerOf2()) { 11275 // smulo(x, signed_min) is same as umulo(x, signed_min). 11276 bool UseArithShift = isSigned && !C.isMinSignedValue(); 11277 SDValue ShiftAmt = DAG.getShiftAmountConstant(C.logBase2(), VT, dl); 11278 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 11279 Overflow = DAG.getSetCC(dl, SetCCVT, 11280 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 11281 dl, VT, Result, ShiftAmt), 11282 LHS, ISD::SETNE); 11283 return true; 11284 } 11285 } 11286 11287 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 11288 if (VT.isVector()) 11289 WideVT = 11290 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 11291 11292 SDValue BottomHalf; 11293 SDValue TopHalf; 11294 static const unsigned Ops[2][3] = 11295 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 11296 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 11297 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 11298 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 11299 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 11300 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 11301 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 11302 RHS); 11303 TopHalf = BottomHalf.getValue(1); 11304 } else if (isTypeLegal(WideVT)) { 11305 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 11306 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 11307 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 11308 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 11309 SDValue ShiftAmt = 11310 DAG.getShiftAmountConstant(VT.getScalarSizeInBits(), WideVT, dl); 11311 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 11312 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 11313 } else { 11314 if (VT.isVector()) 11315 return false; 11316 11317 forceExpandWideMUL(DAG, dl, isSigned, LHS, RHS, BottomHalf, TopHalf); 11318 } 11319 11320 Result = BottomHalf; 11321 if (isSigned) { 11322 SDValue ShiftAmt = DAG.getShiftAmountConstant( 11323 VT.getScalarSizeInBits() - 1, BottomHalf.getValueType(), dl); 11324 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 11325 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 11326 } else { 11327 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 11328 DAG.getConstant(0, dl, VT), ISD::SETNE); 11329 } 11330 11331 // Truncate the result if SetCC returns a larger type than needed. 11332 EVT RType = Node->getValueType(1); 11333 if (RType.bitsLT(Overflow.getValueType())) 11334 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 11335 11336 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 11337 "Unexpected result type for S/UMULO legalization"); 11338 return true; 11339 } 11340 11341 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 11342 SDLoc dl(Node); 11343 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 11344 SDValue Op = Node->getOperand(0); 11345 EVT VT = Op.getValueType(); 11346 11347 if (VT.isScalableVector()) 11348 report_fatal_error( 11349 "Expanding reductions for scalable vectors is undefined."); 11350 11351 // Try to use a shuffle reduction for power of two vectors. 11352 if (VT.isPow2VectorType()) { 11353 while (VT.getVectorNumElements() > 1) { 11354 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 11355 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 11356 break; 11357 11358 SDValue Lo, Hi; 11359 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 11360 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi, Node->getFlags()); 11361 VT = HalfVT; 11362 } 11363 } 11364 11365 EVT EltVT = VT.getVectorElementType(); 11366 unsigned NumElts = VT.getVectorNumElements(); 11367 11368 SmallVector<SDValue, 8> Ops; 11369 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 11370 11371 SDValue Res = Ops[0]; 11372 for (unsigned i = 1; i < NumElts; i++) 11373 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 11374 11375 // Result type may be wider than element type. 11376 if (EltVT != Node->getValueType(0)) 11377 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 11378 return Res; 11379 } 11380 11381 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 11382 SDLoc dl(Node); 11383 SDValue AccOp = Node->getOperand(0); 11384 SDValue VecOp = Node->getOperand(1); 11385 SDNodeFlags Flags = Node->getFlags(); 11386 11387 EVT VT = VecOp.getValueType(); 11388 EVT EltVT = VT.getVectorElementType(); 11389 11390 if (VT.isScalableVector()) 11391 report_fatal_error( 11392 "Expanding reductions for scalable vectors is undefined."); 11393 11394 unsigned NumElts = VT.getVectorNumElements(); 11395 11396 SmallVector<SDValue, 8> Ops; 11397 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 11398 11399 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 11400 11401 SDValue Res = AccOp; 11402 for (unsigned i = 0; i < NumElts; i++) 11403 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 11404 11405 return Res; 11406 } 11407 11408 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 11409 SelectionDAG &DAG) const { 11410 EVT VT = Node->getValueType(0); 11411 SDLoc dl(Node); 11412 bool isSigned = Node->getOpcode() == ISD::SREM; 11413 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 11414 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 11415 SDValue Dividend = Node->getOperand(0); 11416 SDValue Divisor = Node->getOperand(1); 11417 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 11418 SDVTList VTs = DAG.getVTList(VT, VT); 11419 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 11420 return true; 11421 } 11422 if (isOperationLegalOrCustom(DivOpc, VT)) { 11423 // X % Y -> X-X/Y*Y 11424 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 11425 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 11426 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 11427 return true; 11428 } 11429 return false; 11430 } 11431 11432 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 11433 SelectionDAG &DAG) const { 11434 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 11435 SDLoc dl(SDValue(Node, 0)); 11436 SDValue Src = Node->getOperand(0); 11437 11438 // DstVT is the result type, while SatVT is the size to which we saturate 11439 EVT SrcVT = Src.getValueType(); 11440 EVT DstVT = Node->getValueType(0); 11441 11442 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 11443 unsigned SatWidth = SatVT.getScalarSizeInBits(); 11444 unsigned DstWidth = DstVT.getScalarSizeInBits(); 11445 assert(SatWidth <= DstWidth && 11446 "Expected saturation width smaller than result width"); 11447 11448 // Determine minimum and maximum integer values and their corresponding 11449 // floating-point values. 11450 APInt MinInt, MaxInt; 11451 if (IsSigned) { 11452 MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth); 11453 MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth); 11454 } else { 11455 MinInt = APInt::getMinValue(SatWidth).zext(DstWidth); 11456 MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth); 11457 } 11458 11459 // We cannot risk emitting FP_TO_XINT nodes with a source VT of [b]f16, as 11460 // libcall emission cannot handle this. Large result types will fail. 11461 if (SrcVT == MVT::f16 || SrcVT == MVT::bf16) { 11462 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 11463 SrcVT = Src.getValueType(); 11464 } 11465 11466 const fltSemantics &Sem = SrcVT.getFltSemantics(); 11467 APFloat MinFloat(Sem); 11468 APFloat MaxFloat(Sem); 11469 11470 APFloat::opStatus MinStatus = 11471 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 11472 APFloat::opStatus MaxStatus = 11473 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 11474 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 11475 !(MaxStatus & APFloat::opStatus::opInexact); 11476 11477 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 11478 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 11479 11480 // If the integer bounds are exactly representable as floats and min/max are 11481 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 11482 // of comparisons and selects. 11483 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 11484 isOperationLegal(ISD::FMAXNUM, SrcVT); 11485 if (AreExactFloatBounds && MinMaxLegal) { 11486 SDValue Clamped = Src; 11487 11488 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 11489 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 11490 // Clamp by MaxFloat from above. NaN cannot occur. 11491 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 11492 // Convert clamped value to integer. 11493 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 11494 dl, DstVT, Clamped); 11495 11496 // In the unsigned case we're done, because we mapped NaN to MinFloat, 11497 // which will cast to zero. 11498 if (!IsSigned) 11499 return FpToInt; 11500 11501 // Otherwise, select 0 if Src is NaN. 11502 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 11503 EVT SetCCVT = 11504 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 11505 SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO); 11506 return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, FpToInt); 11507 } 11508 11509 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 11510 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 11511 11512 // Result of direct conversion. The assumption here is that the operation is 11513 // non-trapping and it's fine to apply it to an out-of-range value if we 11514 // select it away later. 11515 SDValue FpToInt = 11516 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 11517 11518 SDValue Select = FpToInt; 11519 11520 EVT SetCCVT = 11521 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 11522 11523 // If Src ULT MinFloat, select MinInt. In particular, this also selects 11524 // MinInt if Src is NaN. 11525 SDValue ULT = DAG.getSetCC(dl, SetCCVT, Src, MinFloatNode, ISD::SETULT); 11526 Select = DAG.getSelect(dl, DstVT, ULT, MinIntNode, Select); 11527 // If Src OGT MaxFloat, select MaxInt. 11528 SDValue OGT = DAG.getSetCC(dl, SetCCVT, Src, MaxFloatNode, ISD::SETOGT); 11529 Select = DAG.getSelect(dl, DstVT, OGT, MaxIntNode, Select); 11530 11531 // In the unsigned case we are done, because we mapped NaN to MinInt, which 11532 // is already zero. 11533 if (!IsSigned) 11534 return Select; 11535 11536 // Otherwise, select 0 if Src is NaN. 11537 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 11538 SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO); 11539 return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, Select); 11540 } 11541 11542 SDValue TargetLowering::expandRoundInexactToOdd(EVT ResultVT, SDValue Op, 11543 const SDLoc &dl, 11544 SelectionDAG &DAG) const { 11545 EVT OperandVT = Op.getValueType(); 11546 if (OperandVT.getScalarType() == ResultVT.getScalarType()) 11547 return Op; 11548 EVT ResultIntVT = ResultVT.changeTypeToInteger(); 11549 // We are rounding binary64/binary128 -> binary32 -> bfloat16. This 11550 // can induce double-rounding which may alter the results. We can 11551 // correct for this using a trick explained in: Boldo, Sylvie, and 11552 // Guillaume Melquiond. "When double rounding is odd." 17th IMACS 11553 // World Congress. 2005. 11554 unsigned BitSize = OperandVT.getScalarSizeInBits(); 11555 EVT WideIntVT = OperandVT.changeTypeToInteger(); 11556 SDValue OpAsInt = DAG.getBitcast(WideIntVT, Op); 11557 SDValue SignBit = 11558 DAG.getNode(ISD::AND, dl, WideIntVT, OpAsInt, 11559 DAG.getConstant(APInt::getSignMask(BitSize), dl, WideIntVT)); 11560 SDValue AbsWide; 11561 if (isOperationLegalOrCustom(ISD::FABS, OperandVT)) { 11562 AbsWide = DAG.getNode(ISD::FABS, dl, OperandVT, Op); 11563 } else { 11564 SDValue ClearedSign = DAG.getNode( 11565 ISD::AND, dl, WideIntVT, OpAsInt, 11566 DAG.getConstant(APInt::getSignedMaxValue(BitSize), dl, WideIntVT)); 11567 AbsWide = DAG.getBitcast(OperandVT, ClearedSign); 11568 } 11569 SDValue AbsNarrow = DAG.getFPExtendOrRound(AbsWide, dl, ResultVT); 11570 SDValue AbsNarrowAsWide = DAG.getFPExtendOrRound(AbsNarrow, dl, OperandVT); 11571 11572 // We can keep the narrow value as-is if narrowing was exact (no 11573 // rounding error), the wide value was NaN (the narrow value is also 11574 // NaN and should be preserved) or if we rounded to the odd value. 11575 SDValue NarrowBits = DAG.getNode(ISD::BITCAST, dl, ResultIntVT, AbsNarrow); 11576 SDValue One = DAG.getConstant(1, dl, ResultIntVT); 11577 SDValue NegativeOne = DAG.getAllOnesConstant(dl, ResultIntVT); 11578 SDValue And = DAG.getNode(ISD::AND, dl, ResultIntVT, NarrowBits, One); 11579 EVT ResultIntVTCCVT = getSetCCResultType( 11580 DAG.getDataLayout(), *DAG.getContext(), And.getValueType()); 11581 SDValue Zero = DAG.getConstant(0, dl, ResultIntVT); 11582 // The result is already odd so we don't need to do anything. 11583 SDValue AlreadyOdd = DAG.getSetCC(dl, ResultIntVTCCVT, And, Zero, ISD::SETNE); 11584 11585 EVT WideSetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 11586 AbsWide.getValueType()); 11587 // We keep results which are exact, odd or NaN. 11588 SDValue KeepNarrow = 11589 DAG.getSetCC(dl, WideSetCCVT, AbsWide, AbsNarrowAsWide, ISD::SETUEQ); 11590 KeepNarrow = DAG.getNode(ISD::OR, dl, WideSetCCVT, KeepNarrow, AlreadyOdd); 11591 // We morally performed a round-down if AbsNarrow is smaller than 11592 // AbsWide. 11593 SDValue NarrowIsRd = 11594 DAG.getSetCC(dl, WideSetCCVT, AbsWide, AbsNarrowAsWide, ISD::SETOGT); 11595 // If the narrow value is odd or exact, pick it. 11596 // Otherwise, narrow is even and corresponds to either the rounded-up 11597 // or rounded-down value. If narrow is the rounded-down value, we want 11598 // the rounded-up value as it will be odd. 11599 SDValue Adjust = DAG.getSelect(dl, ResultIntVT, NarrowIsRd, One, NegativeOne); 11600 SDValue Adjusted = DAG.getNode(ISD::ADD, dl, ResultIntVT, NarrowBits, Adjust); 11601 Op = DAG.getSelect(dl, ResultIntVT, KeepNarrow, NarrowBits, Adjusted); 11602 int ShiftAmount = BitSize - ResultVT.getScalarSizeInBits(); 11603 SDValue ShiftCnst = DAG.getShiftAmountConstant(ShiftAmount, WideIntVT, dl); 11604 SignBit = DAG.getNode(ISD::SRL, dl, WideIntVT, SignBit, ShiftCnst); 11605 SignBit = DAG.getNode(ISD::TRUNCATE, dl, ResultIntVT, SignBit); 11606 Op = DAG.getNode(ISD::OR, dl, ResultIntVT, Op, SignBit); 11607 return DAG.getNode(ISD::BITCAST, dl, ResultVT, Op); 11608 } 11609 11610 SDValue TargetLowering::expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const { 11611 assert(Node->getOpcode() == ISD::FP_ROUND && "Unexpected opcode!"); 11612 SDValue Op = Node->getOperand(0); 11613 EVT VT = Node->getValueType(0); 11614 SDLoc dl(Node); 11615 if (VT.getScalarType() == MVT::bf16) { 11616 if (Node->getConstantOperandVal(1) == 1) { 11617 return DAG.getNode(ISD::FP_TO_BF16, dl, VT, Node->getOperand(0)); 11618 } 11619 EVT OperandVT = Op.getValueType(); 11620 SDValue IsNaN = DAG.getSetCC( 11621 dl, 11622 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), OperandVT), 11623 Op, Op, ISD::SETUO); 11624 11625 // We are rounding binary64/binary128 -> binary32 -> bfloat16. This 11626 // can induce double-rounding which may alter the results. We can 11627 // correct for this using a trick explained in: Boldo, Sylvie, and 11628 // Guillaume Melquiond. "When double rounding is odd." 17th IMACS 11629 // World Congress. 2005. 11630 EVT F32 = VT.isVector() ? VT.changeVectorElementType(MVT::f32) : MVT::f32; 11631 EVT I32 = F32.changeTypeToInteger(); 11632 Op = expandRoundInexactToOdd(F32, Op, dl, DAG); 11633 Op = DAG.getNode(ISD::BITCAST, dl, I32, Op); 11634 11635 // Conversions should set NaN's quiet bit. This also prevents NaNs from 11636 // turning into infinities. 11637 SDValue NaN = 11638 DAG.getNode(ISD::OR, dl, I32, Op, DAG.getConstant(0x400000, dl, I32)); 11639 11640 // Factor in the contribution of the low 16 bits. 11641 SDValue One = DAG.getConstant(1, dl, I32); 11642 SDValue Lsb = DAG.getNode(ISD::SRL, dl, I32, Op, 11643 DAG.getShiftAmountConstant(16, I32, dl)); 11644 Lsb = DAG.getNode(ISD::AND, dl, I32, Lsb, One); 11645 SDValue RoundingBias = 11646 DAG.getNode(ISD::ADD, dl, I32, DAG.getConstant(0x7fff, dl, I32), Lsb); 11647 SDValue Add = DAG.getNode(ISD::ADD, dl, I32, Op, RoundingBias); 11648 11649 // Don't round if we had a NaN, we don't want to turn 0x7fffffff into 11650 // 0x80000000. 11651 Op = DAG.getSelect(dl, I32, IsNaN, NaN, Add); 11652 11653 // Now that we have rounded, shift the bits into position. 11654 Op = DAG.getNode(ISD::SRL, dl, I32, Op, 11655 DAG.getShiftAmountConstant(16, I32, dl)); 11656 Op = DAG.getNode(ISD::BITCAST, dl, I32, Op); 11657 EVT I16 = I32.isVector() ? I32.changeVectorElementType(MVT::i16) : MVT::i16; 11658 Op = DAG.getNode(ISD::TRUNCATE, dl, I16, Op); 11659 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 11660 } 11661 return SDValue(); 11662 } 11663 11664 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 11665 SelectionDAG &DAG) const { 11666 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 11667 assert(Node->getValueType(0).isScalableVector() && 11668 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 11669 11670 EVT VT = Node->getValueType(0); 11671 SDValue V1 = Node->getOperand(0); 11672 SDValue V2 = Node->getOperand(1); 11673 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 11674 SDLoc DL(Node); 11675 11676 // Expand through memory thusly: 11677 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 11678 // Store V1, Ptr 11679 // Store V2, Ptr + sizeof(V1) 11680 // If (Imm < 0) 11681 // TrailingElts = -Imm 11682 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 11683 // else 11684 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 11685 // Res = Load Ptr 11686 11687 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 11688 11689 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 11690 VT.getVectorElementCount() * 2); 11691 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 11692 EVT PtrVT = StackPtr.getValueType(); 11693 auto &MF = DAG.getMachineFunction(); 11694 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 11695 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 11696 11697 // Store the lo part of CONCAT_VECTORS(V1, V2) 11698 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 11699 // Store the hi part of CONCAT_VECTORS(V1, V2) 11700 SDValue OffsetToV2 = DAG.getVScale( 11701 DL, PtrVT, 11702 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinValue())); 11703 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 11704 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 11705 11706 if (Imm >= 0) { 11707 // Load back the required element. getVectorElementPointer takes care of 11708 // clamping the index if it's out-of-bounds. 11709 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 11710 // Load the spliced result 11711 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 11712 MachinePointerInfo::getUnknownStack(MF)); 11713 } 11714 11715 uint64_t TrailingElts = -Imm; 11716 11717 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 11718 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 11719 SDValue TrailingBytes = 11720 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 11721 11722 if (TrailingElts > VT.getVectorMinNumElements()) { 11723 SDValue VLBytes = 11724 DAG.getVScale(DL, PtrVT, 11725 APInt(PtrVT.getFixedSizeInBits(), 11726 VT.getStoreSize().getKnownMinValue())); 11727 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 11728 } 11729 11730 // Calculate the start address of the spliced result. 11731 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 11732 11733 // Load the spliced result 11734 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 11735 MachinePointerInfo::getUnknownStack(MF)); 11736 } 11737 11738 SDValue TargetLowering::expandVECTOR_COMPRESS(SDNode *Node, 11739 SelectionDAG &DAG) const { 11740 SDLoc DL(Node); 11741 SDValue Vec = Node->getOperand(0); 11742 SDValue Mask = Node->getOperand(1); 11743 SDValue Passthru = Node->getOperand(2); 11744 11745 EVT VecVT = Vec.getValueType(); 11746 EVT ScalarVT = VecVT.getScalarType(); 11747 EVT MaskVT = Mask.getValueType(); 11748 EVT MaskScalarVT = MaskVT.getScalarType(); 11749 11750 // Needs to be handled by targets that have scalable vector types. 11751 if (VecVT.isScalableVector()) 11752 report_fatal_error("Cannot expand masked_compress for scalable vectors."); 11753 11754 SDValue StackPtr = DAG.CreateStackTemporary( 11755 VecVT.getStoreSize(), DAG.getReducedAlign(VecVT, /*UseABI=*/false)); 11756 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 11757 MachinePointerInfo PtrInfo = 11758 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 11759 11760 MVT PositionVT = getVectorIdxTy(DAG.getDataLayout()); 11761 SDValue Chain = DAG.getEntryNode(); 11762 SDValue OutPos = DAG.getConstant(0, DL, PositionVT); 11763 11764 bool HasPassthru = !Passthru.isUndef(); 11765 11766 // If we have a passthru vector, store it on the stack, overwrite the matching 11767 // positions and then re-write the last element that was potentially 11768 // overwritten even though mask[i] = false. 11769 if (HasPassthru) 11770 Chain = DAG.getStore(Chain, DL, Passthru, StackPtr, PtrInfo); 11771 11772 SDValue LastWriteVal; 11773 APInt PassthruSplatVal; 11774 bool IsSplatPassthru = 11775 ISD::isConstantSplatVector(Passthru.getNode(), PassthruSplatVal); 11776 11777 if (IsSplatPassthru) { 11778 // As we do not know which position we wrote to last, we cannot simply 11779 // access that index from the passthru vector. So we first check if passthru 11780 // is a splat vector, to use any element ... 11781 LastWriteVal = DAG.getConstant(PassthruSplatVal, DL, ScalarVT); 11782 } else if (HasPassthru) { 11783 // ... if it is not a splat vector, we need to get the passthru value at 11784 // position = popcount(mask) and re-load it from the stack before it is 11785 // overwritten in the loop below. 11786 EVT PopcountVT = ScalarVT.changeTypeToInteger(); 11787 SDValue Popcount = DAG.getNode( 11788 ISD::TRUNCATE, DL, MaskVT.changeVectorElementType(MVT::i1), Mask); 11789 Popcount = 11790 DAG.getNode(ISD::ZERO_EXTEND, DL, 11791 MaskVT.changeVectorElementType(PopcountVT), Popcount); 11792 Popcount = DAG.getNode(ISD::VECREDUCE_ADD, DL, PopcountVT, Popcount); 11793 SDValue LastElmtPtr = 11794 getVectorElementPointer(DAG, StackPtr, VecVT, Popcount); 11795 LastWriteVal = DAG.getLoad( 11796 ScalarVT, DL, Chain, LastElmtPtr, 11797 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 11798 Chain = LastWriteVal.getValue(1); 11799 } 11800 11801 unsigned NumElms = VecVT.getVectorNumElements(); 11802 for (unsigned I = 0; I < NumElms; I++) { 11803 SDValue Idx = DAG.getVectorIdxConstant(I, DL); 11804 11805 SDValue ValI = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, Vec, Idx); 11806 SDValue OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos); 11807 Chain = DAG.getStore( 11808 Chain, DL, ValI, OutPtr, 11809 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 11810 11811 // Get the mask value and add it to the current output position. This 11812 // either increments by 1 if MaskI is true or adds 0 otherwise. 11813 // Freeze in case we have poison/undef mask entries. 11814 SDValue MaskI = DAG.getFreeze( 11815 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskScalarVT, Mask, Idx)); 11816 MaskI = DAG.getFreeze(MaskI); 11817 MaskI = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, MaskI); 11818 MaskI = DAG.getNode(ISD::ZERO_EXTEND, DL, PositionVT, MaskI); 11819 OutPos = DAG.getNode(ISD::ADD, DL, PositionVT, OutPos, MaskI); 11820 11821 if (HasPassthru && I == NumElms - 1) { 11822 SDValue EndOfVector = 11823 DAG.getConstant(VecVT.getVectorNumElements() - 1, DL, PositionVT); 11824 SDValue AllLanesSelected = 11825 DAG.getSetCC(DL, MVT::i1, OutPos, EndOfVector, ISD::CondCode::SETUGT); 11826 OutPos = DAG.getNode(ISD::UMIN, DL, PositionVT, OutPos, EndOfVector); 11827 OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos); 11828 11829 // Re-write the last ValI if all lanes were selected. Otherwise, 11830 // overwrite the last write it with the passthru value. 11831 LastWriteVal = DAG.getSelect(DL, ScalarVT, AllLanesSelected, ValI, 11832 LastWriteVal, SDNodeFlags::Unpredictable); 11833 Chain = DAG.getStore( 11834 Chain, DL, LastWriteVal, OutPtr, 11835 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 11836 } 11837 } 11838 11839 return DAG.getLoad(VecVT, DL, Chain, StackPtr, PtrInfo); 11840 } 11841 11842 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 11843 SDValue &LHS, SDValue &RHS, 11844 SDValue &CC, SDValue Mask, 11845 SDValue EVL, bool &NeedInvert, 11846 const SDLoc &dl, SDValue &Chain, 11847 bool IsSignaling) const { 11848 MVT OpVT = LHS.getSimpleValueType(); 11849 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 11850 NeedInvert = false; 11851 assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset"); 11852 bool IsNonVP = !EVL; 11853 switch (getCondCodeAction(CCCode, OpVT)) { 11854 default: 11855 llvm_unreachable("Unknown condition code action!"); 11856 case TargetLowering::Legal: 11857 // Nothing to do. 11858 break; 11859 case TargetLowering::Expand: { 11860 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 11861 if (isCondCodeLegalOrCustom(InvCC, OpVT)) { 11862 std::swap(LHS, RHS); 11863 CC = DAG.getCondCode(InvCC); 11864 return true; 11865 } 11866 // Swapping operands didn't work. Try inverting the condition. 11867 bool NeedSwap = false; 11868 InvCC = getSetCCInverse(CCCode, OpVT); 11869 if (!isCondCodeLegalOrCustom(InvCC, OpVT)) { 11870 // If inverting the condition is not enough, try swapping operands 11871 // on top of it. 11872 InvCC = ISD::getSetCCSwappedOperands(InvCC); 11873 NeedSwap = true; 11874 } 11875 if (isCondCodeLegalOrCustom(InvCC, OpVT)) { 11876 CC = DAG.getCondCode(InvCC); 11877 NeedInvert = true; 11878 if (NeedSwap) 11879 std::swap(LHS, RHS); 11880 return true; 11881 } 11882 11883 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 11884 unsigned Opc = 0; 11885 switch (CCCode) { 11886 default: 11887 llvm_unreachable("Don't know how to expand this condition!"); 11888 case ISD::SETUO: 11889 if (isCondCodeLegal(ISD::SETUNE, OpVT)) { 11890 CC1 = ISD::SETUNE; 11891 CC2 = ISD::SETUNE; 11892 Opc = ISD::OR; 11893 break; 11894 } 11895 assert(isCondCodeLegal(ISD::SETOEQ, OpVT) && 11896 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 11897 NeedInvert = true; 11898 [[fallthrough]]; 11899 case ISD::SETO: 11900 assert(isCondCodeLegal(ISD::SETOEQ, OpVT) && 11901 "If SETO is expanded, SETOEQ must be legal!"); 11902 CC1 = ISD::SETOEQ; 11903 CC2 = ISD::SETOEQ; 11904 Opc = ISD::AND; 11905 break; 11906 case ISD::SETONE: 11907 case ISD::SETUEQ: 11908 // If the SETUO or SETO CC isn't legal, we might be able to use 11909 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 11910 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 11911 // the operands. 11912 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 11913 if (!isCondCodeLegal(CC2, OpVT) && (isCondCodeLegal(ISD::SETOGT, OpVT) || 11914 isCondCodeLegal(ISD::SETOLT, OpVT))) { 11915 CC1 = ISD::SETOGT; 11916 CC2 = ISD::SETOLT; 11917 Opc = ISD::OR; 11918 NeedInvert = ((unsigned)CCCode & 0x8U); 11919 break; 11920 } 11921 [[fallthrough]]; 11922 case ISD::SETOEQ: 11923 case ISD::SETOGT: 11924 case ISD::SETOGE: 11925 case ISD::SETOLT: 11926 case ISD::SETOLE: 11927 case ISD::SETUNE: 11928 case ISD::SETUGT: 11929 case ISD::SETUGE: 11930 case ISD::SETULT: 11931 case ISD::SETULE: 11932 // If we are floating point, assign and break, otherwise fall through. 11933 if (!OpVT.isInteger()) { 11934 // We can use the 4th bit to tell if we are the unordered 11935 // or ordered version of the opcode. 11936 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 11937 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 11938 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 11939 break; 11940 } 11941 // Fallthrough if we are unsigned integer. 11942 [[fallthrough]]; 11943 case ISD::SETLE: 11944 case ISD::SETGT: 11945 case ISD::SETGE: 11946 case ISD::SETLT: 11947 case ISD::SETNE: 11948 case ISD::SETEQ: 11949 // If all combinations of inverting the condition and swapping operands 11950 // didn't work then we have no means to expand the condition. 11951 llvm_unreachable("Don't know how to expand this condition!"); 11952 } 11953 11954 SDValue SetCC1, SetCC2; 11955 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 11956 // If we aren't the ordered or unorder operation, 11957 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 11958 if (IsNonVP) { 11959 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 11960 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 11961 } else { 11962 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL); 11963 SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL); 11964 } 11965 } else { 11966 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 11967 if (IsNonVP) { 11968 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 11969 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 11970 } else { 11971 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL); 11972 SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL); 11973 } 11974 } 11975 if (Chain) 11976 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 11977 SetCC2.getValue(1)); 11978 if (IsNonVP) 11979 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 11980 else { 11981 // Transform the binary opcode to the VP equivalent. 11982 assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode"); 11983 Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND; 11984 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL); 11985 } 11986 RHS = SDValue(); 11987 CC = SDValue(); 11988 return true; 11989 } 11990 } 11991 return false; 11992 } 11993 11994 SDValue TargetLowering::expandVectorNaryOpBySplitting(SDNode *Node, 11995 SelectionDAG &DAG) const { 11996 EVT VT = Node->getValueType(0); 11997 // Despite its documentation, GetSplitDestVTs will assert if VT cannot be 11998 // split into two equal parts. 11999 if (!VT.isVector() || !VT.getVectorElementCount().isKnownMultipleOf(2)) 12000 return SDValue(); 12001 12002 // Restrict expansion to cases where both parts can be concatenated. 12003 auto [LoVT, HiVT] = DAG.GetSplitDestVTs(VT); 12004 if (LoVT != HiVT || !isTypeLegal(LoVT)) 12005 return SDValue(); 12006 12007 SDLoc DL(Node); 12008 unsigned Opcode = Node->getOpcode(); 12009 12010 // Don't expand if the result is likely to be unrolled anyway. 12011 if (!isOperationLegalOrCustomOrPromote(Opcode, LoVT)) 12012 return SDValue(); 12013 12014 SmallVector<SDValue, 4> LoOps, HiOps; 12015 for (const SDValue &V : Node->op_values()) { 12016 auto [Lo, Hi] = DAG.SplitVector(V, DL, LoVT, HiVT); 12017 LoOps.push_back(Lo); 12018 HiOps.push_back(Hi); 12019 } 12020 12021 SDValue SplitOpLo = DAG.getNode(Opcode, DL, LoVT, LoOps); 12022 SDValue SplitOpHi = DAG.getNode(Opcode, DL, HiVT, HiOps); 12023 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, SplitOpLo, SplitOpHi); 12024 } 12025