1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/Analysis/VectorUtils.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/CodeGenCommonISel.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SelectionDAG.h" 24 #include "llvm/CodeGen/TargetRegisterInfo.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/MC/MCAsmInfo.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/Support/DivisionByConstantInfo.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/KnownBits.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include <cctype> 37 using namespace llvm; 38 39 /// NOTE: The TargetMachine owns TLOF. 40 TargetLowering::TargetLowering(const TargetMachine &tm) 41 : TargetLoweringBase(tm) {} 42 43 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 44 return nullptr; 45 } 46 47 bool TargetLowering::isPositionIndependent() const { 48 return getTargetMachine().isPositionIndependent(); 49 } 50 51 /// Check whether a given call node is in tail position within its function. If 52 /// so, it sets Chain to the input chain of the tail call. 53 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 54 SDValue &Chain) const { 55 const Function &F = DAG.getMachineFunction().getFunction(); 56 57 // First, check if tail calls have been disabled in this function. 58 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 59 return false; 60 61 // Conservatively require the attributes of the call to match those of 62 // the return. Ignore following attributes because they don't affect the 63 // call sequence. 64 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs()); 65 for (const auto &Attr : 66 {Attribute::Alignment, Attribute::Dereferenceable, 67 Attribute::DereferenceableOrNull, Attribute::NoAlias, 68 Attribute::NonNull, Attribute::NoUndef, Attribute::Range}) 69 CallerAttrs.removeAttribute(Attr); 70 71 if (CallerAttrs.hasAttributes()) 72 return false; 73 74 // It's not safe to eliminate the sign / zero extension of the return value. 75 if (CallerAttrs.contains(Attribute::ZExt) || 76 CallerAttrs.contains(Attribute::SExt)) 77 return false; 78 79 // Check if the only use is a function return node. 80 return isUsedByReturnOnly(Node, Chain); 81 } 82 83 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 84 const uint32_t *CallerPreservedMask, 85 const SmallVectorImpl<CCValAssign> &ArgLocs, 86 const SmallVectorImpl<SDValue> &OutVals) const { 87 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 88 const CCValAssign &ArgLoc = ArgLocs[I]; 89 if (!ArgLoc.isRegLoc()) 90 continue; 91 MCRegister Reg = ArgLoc.getLocReg(); 92 // Only look at callee saved registers. 93 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 94 continue; 95 // Check that we pass the value used for the caller. 96 // (We look for a CopyFromReg reading a virtual register that is used 97 // for the function live-in value of register Reg) 98 SDValue Value = OutVals[I]; 99 if (Value->getOpcode() == ISD::AssertZext) 100 Value = Value.getOperand(0); 101 if (Value->getOpcode() != ISD::CopyFromReg) 102 return false; 103 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 104 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 105 return false; 106 } 107 return true; 108 } 109 110 /// Set CallLoweringInfo attribute flags based on a call instruction 111 /// and called function attributes. 112 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 113 unsigned ArgIdx) { 114 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 115 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 116 IsNoExt = Call->paramHasAttr(ArgIdx, Attribute::NoExt); 117 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 118 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 119 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 120 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 121 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 122 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 123 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 124 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 125 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 126 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 127 Alignment = Call->getParamStackAlign(ArgIdx); 128 IndirectType = nullptr; 129 assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 && 130 "multiple ABI attributes?"); 131 if (IsByVal) { 132 IndirectType = Call->getParamByValType(ArgIdx); 133 if (!Alignment) 134 Alignment = Call->getParamAlign(ArgIdx); 135 } 136 if (IsPreallocated) 137 IndirectType = Call->getParamPreallocatedType(ArgIdx); 138 if (IsInAlloca) 139 IndirectType = Call->getParamInAllocaType(ArgIdx); 140 if (IsSRet) 141 IndirectType = Call->getParamStructRetType(ArgIdx); 142 } 143 144 /// Generate a libcall taking the given operands as arguments and returning a 145 /// result of type RetVT. 146 std::pair<SDValue, SDValue> 147 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 148 ArrayRef<SDValue> Ops, 149 MakeLibCallOptions CallOptions, 150 const SDLoc &dl, 151 SDValue InChain) const { 152 if (!InChain) 153 InChain = DAG.getEntryNode(); 154 155 TargetLowering::ArgListTy Args; 156 Args.reserve(Ops.size()); 157 158 TargetLowering::ArgListEntry Entry; 159 for (unsigned i = 0; i < Ops.size(); ++i) { 160 SDValue NewOp = Ops[i]; 161 Entry.Node = NewOp; 162 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 163 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 164 CallOptions.IsSExt); 165 Entry.IsZExt = !Entry.IsSExt; 166 167 if (CallOptions.IsSoften && 168 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 169 Entry.IsSExt = Entry.IsZExt = false; 170 } 171 Args.push_back(Entry); 172 } 173 174 if (LC == RTLIB::UNKNOWN_LIBCALL) 175 report_fatal_error("Unsupported library call operation!"); 176 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 177 getPointerTy(DAG.getDataLayout())); 178 179 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 180 TargetLowering::CallLoweringInfo CLI(DAG); 181 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 182 bool zeroExtend = !signExtend; 183 184 if (CallOptions.IsSoften && 185 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 186 signExtend = zeroExtend = false; 187 } 188 189 CLI.setDebugLoc(dl) 190 .setChain(InChain) 191 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 192 .setNoReturn(CallOptions.DoesNotReturn) 193 .setDiscardResult(!CallOptions.IsReturnValueUsed) 194 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 195 .setSExtResult(signExtend) 196 .setZExtResult(zeroExtend); 197 return LowerCallTo(CLI); 198 } 199 200 bool TargetLowering::findOptimalMemOpLowering( 201 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 202 unsigned SrcAS, const AttributeList &FuncAttributes) const { 203 if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() && 204 Op.getSrcAlign() < Op.getDstAlign()) 205 return false; 206 207 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 208 209 if (VT == MVT::Other) { 210 // Use the largest integer type whose alignment constraints are satisfied. 211 // We only need to check DstAlign here as SrcAlign is always greater or 212 // equal to DstAlign (or zero). 213 VT = MVT::LAST_INTEGER_VALUETYPE; 214 if (Op.isFixedDstAlign()) 215 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 216 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 217 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 218 assert(VT.isInteger()); 219 220 // Find the largest legal integer type. 221 MVT LVT = MVT::LAST_INTEGER_VALUETYPE; 222 while (!isTypeLegal(LVT)) 223 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 224 assert(LVT.isInteger()); 225 226 // If the type we've chosen is larger than the largest legal integer type 227 // then use that instead. 228 if (VT.bitsGT(LVT)) 229 VT = LVT; 230 } 231 232 unsigned NumMemOps = 0; 233 uint64_t Size = Op.size(); 234 while (Size) { 235 unsigned VTSize = VT.getSizeInBits() / 8; 236 while (VTSize > Size) { 237 // For now, only use non-vector load / store's for the left-over pieces. 238 EVT NewVT = VT; 239 unsigned NewVTSize; 240 241 bool Found = false; 242 if (VT.isVector() || VT.isFloatingPoint()) { 243 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 244 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 245 isSafeMemOpType(NewVT.getSimpleVT())) 246 Found = true; 247 else if (NewVT == MVT::i64 && 248 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 249 isSafeMemOpType(MVT::f64)) { 250 // i64 is usually not legal on 32-bit targets, but f64 may be. 251 NewVT = MVT::f64; 252 Found = true; 253 } 254 } 255 256 if (!Found) { 257 do { 258 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 259 if (NewVT == MVT::i8) 260 break; 261 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 262 } 263 NewVTSize = NewVT.getSizeInBits() / 8; 264 265 // If the new VT cannot cover all of the remaining bits, then consider 266 // issuing a (or a pair of) unaligned and overlapping load / store. 267 unsigned Fast; 268 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 269 allowsMisalignedMemoryAccesses( 270 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 271 MachineMemOperand::MONone, &Fast) && 272 Fast) 273 VTSize = Size; 274 else { 275 VT = NewVT; 276 VTSize = NewVTSize; 277 } 278 } 279 280 if (++NumMemOps > Limit) 281 return false; 282 283 MemOps.push_back(VT); 284 Size -= VTSize; 285 } 286 287 return true; 288 } 289 290 /// Soften the operands of a comparison. This code is shared among BR_CC, 291 /// SELECT_CC, and SETCC handlers. 292 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 293 SDValue &NewLHS, SDValue &NewRHS, 294 ISD::CondCode &CCCode, 295 const SDLoc &dl, const SDValue OldLHS, 296 const SDValue OldRHS) const { 297 SDValue Chain; 298 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 299 OldRHS, Chain); 300 } 301 302 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 303 SDValue &NewLHS, SDValue &NewRHS, 304 ISD::CondCode &CCCode, 305 const SDLoc &dl, const SDValue OldLHS, 306 const SDValue OldRHS, 307 SDValue &Chain, 308 bool IsSignaling) const { 309 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 310 // not supporting it. We can update this code when libgcc provides such 311 // functions. 312 313 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 314 && "Unsupported setcc type!"); 315 316 // Expand into one or more soft-fp libcall(s). 317 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 318 bool ShouldInvertCC = false; 319 switch (CCCode) { 320 case ISD::SETEQ: 321 case ISD::SETOEQ: 322 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 323 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 324 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 325 break; 326 case ISD::SETNE: 327 case ISD::SETUNE: 328 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 329 (VT == MVT::f64) ? RTLIB::UNE_F64 : 330 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 331 break; 332 case ISD::SETGE: 333 case ISD::SETOGE: 334 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 335 (VT == MVT::f64) ? RTLIB::OGE_F64 : 336 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 337 break; 338 case ISD::SETLT: 339 case ISD::SETOLT: 340 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 341 (VT == MVT::f64) ? RTLIB::OLT_F64 : 342 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 343 break; 344 case ISD::SETLE: 345 case ISD::SETOLE: 346 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 347 (VT == MVT::f64) ? RTLIB::OLE_F64 : 348 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 349 break; 350 case ISD::SETGT: 351 case ISD::SETOGT: 352 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 353 (VT == MVT::f64) ? RTLIB::OGT_F64 : 354 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 355 break; 356 case ISD::SETO: 357 ShouldInvertCC = true; 358 [[fallthrough]]; 359 case ISD::SETUO: 360 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 361 (VT == MVT::f64) ? RTLIB::UO_F64 : 362 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 363 break; 364 case ISD::SETONE: 365 // SETONE = O && UNE 366 ShouldInvertCC = true; 367 [[fallthrough]]; 368 case ISD::SETUEQ: 369 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 370 (VT == MVT::f64) ? RTLIB::UO_F64 : 371 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 372 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 373 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 374 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 375 break; 376 default: 377 // Invert CC for unordered comparisons 378 ShouldInvertCC = true; 379 switch (CCCode) { 380 case ISD::SETULT: 381 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 382 (VT == MVT::f64) ? RTLIB::OGE_F64 : 383 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 384 break; 385 case ISD::SETULE: 386 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 387 (VT == MVT::f64) ? RTLIB::OGT_F64 : 388 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 389 break; 390 case ISD::SETUGT: 391 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 392 (VT == MVT::f64) ? RTLIB::OLE_F64 : 393 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 394 break; 395 case ISD::SETUGE: 396 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 397 (VT == MVT::f64) ? RTLIB::OLT_F64 : 398 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 399 break; 400 default: llvm_unreachable("Do not know how to soften this setcc!"); 401 } 402 } 403 404 // Use the target specific return value for comparison lib calls. 405 EVT RetVT = getCmpLibcallReturnType(); 406 SDValue Ops[2] = {NewLHS, NewRHS}; 407 TargetLowering::MakeLibCallOptions CallOptions; 408 EVT OpsVT[2] = { OldLHS.getValueType(), 409 OldRHS.getValueType() }; 410 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 411 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 412 NewLHS = Call.first; 413 NewRHS = DAG.getConstant(0, dl, RetVT); 414 415 CCCode = getCmpLibcallCC(LC1); 416 if (ShouldInvertCC) { 417 assert(RetVT.isInteger()); 418 CCCode = getSetCCInverse(CCCode, RetVT); 419 } 420 421 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 422 // Update Chain. 423 Chain = Call.second; 424 } else { 425 EVT SetCCVT = 426 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 427 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 428 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 429 CCCode = getCmpLibcallCC(LC2); 430 if (ShouldInvertCC) 431 CCCode = getSetCCInverse(CCCode, RetVT); 432 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 433 if (Chain) 434 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 435 Call2.second); 436 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 437 Tmp.getValueType(), Tmp, NewLHS); 438 NewRHS = SDValue(); 439 } 440 } 441 442 /// Return the entry encoding for a jump table in the current function. The 443 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 444 unsigned TargetLowering::getJumpTableEncoding() const { 445 // In non-pic modes, just use the address of a block. 446 if (!isPositionIndependent()) 447 return MachineJumpTableInfo::EK_BlockAddress; 448 449 // In PIC mode, if the target supports a GPRel32 directive, use it. 450 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 451 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 452 453 // Otherwise, use a label difference. 454 return MachineJumpTableInfo::EK_LabelDifference32; 455 } 456 457 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 458 SelectionDAG &DAG) const { 459 // If our PIC model is GP relative, use the global offset table as the base. 460 unsigned JTEncoding = getJumpTableEncoding(); 461 462 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 463 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 464 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 465 466 return Table; 467 } 468 469 /// This returns the relocation base for the given PIC jumptable, the same as 470 /// getPICJumpTableRelocBase, but as an MCExpr. 471 const MCExpr * 472 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 473 unsigned JTI,MCContext &Ctx) const{ 474 // The normal PIC reloc base is the label at the start of the jump table. 475 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 476 } 477 478 SDValue TargetLowering::expandIndirectJTBranch(const SDLoc &dl, SDValue Value, 479 SDValue Addr, int JTI, 480 SelectionDAG &DAG) const { 481 SDValue Chain = Value; 482 // Jump table debug info is only needed if CodeView is enabled. 483 if (DAG.getTarget().getTargetTriple().isOSBinFormatCOFF()) { 484 Chain = DAG.getJumpTableDebugInfo(JTI, Chain, dl); 485 } 486 return DAG.getNode(ISD::BRIND, dl, MVT::Other, Chain, Addr); 487 } 488 489 bool 490 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 491 const TargetMachine &TM = getTargetMachine(); 492 const GlobalValue *GV = GA->getGlobal(); 493 494 // If the address is not even local to this DSO we will have to load it from 495 // a got and then add the offset. 496 if (!TM.shouldAssumeDSOLocal(GV)) 497 return false; 498 499 // If the code is position independent we will have to add a base register. 500 if (isPositionIndependent()) 501 return false; 502 503 // Otherwise we can do it. 504 return true; 505 } 506 507 //===----------------------------------------------------------------------===// 508 // Optimization Methods 509 //===----------------------------------------------------------------------===// 510 511 /// If the specified instruction has a constant integer operand and there are 512 /// bits set in that constant that are not demanded, then clear those bits and 513 /// return true. 514 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 515 const APInt &DemandedBits, 516 const APInt &DemandedElts, 517 TargetLoweringOpt &TLO) const { 518 SDLoc DL(Op); 519 unsigned Opcode = Op.getOpcode(); 520 521 // Early-out if we've ended up calling an undemanded node, leave this to 522 // constant folding. 523 if (DemandedBits.isZero() || DemandedElts.isZero()) 524 return false; 525 526 // Do target-specific constant optimization. 527 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 528 return TLO.New.getNode(); 529 530 // FIXME: ISD::SELECT, ISD::SELECT_CC 531 switch (Opcode) { 532 default: 533 break; 534 case ISD::XOR: 535 case ISD::AND: 536 case ISD::OR: { 537 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 538 if (!Op1C || Op1C->isOpaque()) 539 return false; 540 541 // If this is a 'not' op, don't touch it because that's a canonical form. 542 const APInt &C = Op1C->getAPIntValue(); 543 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 544 return false; 545 546 if (!C.isSubsetOf(DemandedBits)) { 547 EVT VT = Op.getValueType(); 548 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 549 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC, 550 Op->getFlags()); 551 return TLO.CombineTo(Op, NewOp); 552 } 553 554 break; 555 } 556 } 557 558 return false; 559 } 560 561 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 562 const APInt &DemandedBits, 563 TargetLoweringOpt &TLO) const { 564 EVT VT = Op.getValueType(); 565 APInt DemandedElts = VT.isVector() 566 ? APInt::getAllOnes(VT.getVectorNumElements()) 567 : APInt(1, 1); 568 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 569 } 570 571 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 572 /// This uses isTruncateFree/isZExtFree and ANY_EXTEND for the widening cast, 573 /// but it could be generalized for targets with other types of implicit 574 /// widening casts. 575 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 576 const APInt &DemandedBits, 577 TargetLoweringOpt &TLO) const { 578 assert(Op.getNumOperands() == 2 && 579 "ShrinkDemandedOp only supports binary operators!"); 580 assert(Op.getNode()->getNumValues() == 1 && 581 "ShrinkDemandedOp only supports nodes with one result!"); 582 583 EVT VT = Op.getValueType(); 584 SelectionDAG &DAG = TLO.DAG; 585 SDLoc dl(Op); 586 587 // Early return, as this function cannot handle vector types. 588 if (VT.isVector()) 589 return false; 590 591 assert(Op.getOperand(0).getValueType().getScalarSizeInBits() == BitWidth && 592 Op.getOperand(1).getValueType().getScalarSizeInBits() == BitWidth && 593 "ShrinkDemandedOp only supports operands that have the same size!"); 594 595 // Don't do this if the node has another user, which may require the 596 // full value. 597 if (!Op.getNode()->hasOneUse()) 598 return false; 599 600 // Search for the smallest integer type with free casts to and from 601 // Op's type. For expedience, just check power-of-2 integer types. 602 unsigned DemandedSize = DemandedBits.getActiveBits(); 603 for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize); 604 SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 605 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 606 if (isTruncateFree(VT, SmallVT) && isZExtFree(SmallVT, VT)) { 607 // We found a type with free casts. 608 SDValue X = DAG.getNode( 609 Op.getOpcode(), dl, SmallVT, 610 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 611 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 612 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 613 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, VT, X); 614 return TLO.CombineTo(Op, Z); 615 } 616 } 617 return false; 618 } 619 620 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 621 DAGCombinerInfo &DCI) const { 622 SelectionDAG &DAG = DCI.DAG; 623 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 624 !DCI.isBeforeLegalizeOps()); 625 KnownBits Known; 626 627 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 628 if (Simplified) { 629 DCI.AddToWorklist(Op.getNode()); 630 DCI.CommitTargetLoweringOpt(TLO); 631 } 632 return Simplified; 633 } 634 635 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 636 const APInt &DemandedElts, 637 DAGCombinerInfo &DCI) const { 638 SelectionDAG &DAG = DCI.DAG; 639 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 640 !DCI.isBeforeLegalizeOps()); 641 KnownBits Known; 642 643 bool Simplified = 644 SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO); 645 if (Simplified) { 646 DCI.AddToWorklist(Op.getNode()); 647 DCI.CommitTargetLoweringOpt(TLO); 648 } 649 return Simplified; 650 } 651 652 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 653 KnownBits &Known, 654 TargetLoweringOpt &TLO, 655 unsigned Depth, 656 bool AssumeSingleUse) const { 657 EVT VT = Op.getValueType(); 658 659 // Since the number of lanes in a scalable vector is unknown at compile time, 660 // we track one bit which is implicitly broadcast to all lanes. This means 661 // that all lanes in a scalable vector are considered demanded. 662 APInt DemandedElts = VT.isFixedLengthVector() 663 ? APInt::getAllOnes(VT.getVectorNumElements()) 664 : APInt(1, 1); 665 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 666 AssumeSingleUse); 667 } 668 669 // TODO: Under what circumstances can we create nodes? Constant folding? 670 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 671 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 672 SelectionDAG &DAG, unsigned Depth) const { 673 EVT VT = Op.getValueType(); 674 675 // Limit search depth. 676 if (Depth >= SelectionDAG::MaxRecursionDepth) 677 return SDValue(); 678 679 // Ignore UNDEFs. 680 if (Op.isUndef()) 681 return SDValue(); 682 683 // Not demanding any bits/elts from Op. 684 if (DemandedBits == 0 || DemandedElts == 0) 685 return DAG.getUNDEF(VT); 686 687 bool IsLE = DAG.getDataLayout().isLittleEndian(); 688 unsigned NumElts = DemandedElts.getBitWidth(); 689 unsigned BitWidth = DemandedBits.getBitWidth(); 690 KnownBits LHSKnown, RHSKnown; 691 switch (Op.getOpcode()) { 692 case ISD::BITCAST: { 693 if (VT.isScalableVector()) 694 return SDValue(); 695 696 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 697 EVT SrcVT = Src.getValueType(); 698 EVT DstVT = Op.getValueType(); 699 if (SrcVT == DstVT) 700 return Src; 701 702 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 703 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 704 if (NumSrcEltBits == NumDstEltBits) 705 if (SDValue V = SimplifyMultipleUseDemandedBits( 706 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 707 return DAG.getBitcast(DstVT, V); 708 709 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { 710 unsigned Scale = NumDstEltBits / NumSrcEltBits; 711 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 712 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 713 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 714 for (unsigned i = 0; i != Scale; ++i) { 715 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 716 unsigned BitOffset = EltOffset * NumSrcEltBits; 717 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 718 if (!Sub.isZero()) { 719 DemandedSrcBits |= Sub; 720 for (unsigned j = 0; j != NumElts; ++j) 721 if (DemandedElts[j]) 722 DemandedSrcElts.setBit((j * Scale) + i); 723 } 724 } 725 726 if (SDValue V = SimplifyMultipleUseDemandedBits( 727 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 728 return DAG.getBitcast(DstVT, V); 729 } 730 731 // TODO - bigendian once we have test coverage. 732 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { 733 unsigned Scale = NumSrcEltBits / NumDstEltBits; 734 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 735 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 736 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 737 for (unsigned i = 0; i != NumElts; ++i) 738 if (DemandedElts[i]) { 739 unsigned Offset = (i % Scale) * NumDstEltBits; 740 DemandedSrcBits.insertBits(DemandedBits, Offset); 741 DemandedSrcElts.setBit(i / Scale); 742 } 743 744 if (SDValue V = SimplifyMultipleUseDemandedBits( 745 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 746 return DAG.getBitcast(DstVT, V); 747 } 748 749 break; 750 } 751 case ISD::FREEZE: { 752 SDValue N0 = Op.getOperand(0); 753 if (DAG.isGuaranteedNotToBeUndefOrPoison(N0, DemandedElts, 754 /*PoisonOnly=*/false)) 755 return N0; 756 break; 757 } 758 case ISD::AND: { 759 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 760 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 761 762 // If all of the demanded bits are known 1 on one side, return the other. 763 // These bits cannot contribute to the result of the 'and' in this 764 // context. 765 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 766 return Op.getOperand(0); 767 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 768 return Op.getOperand(1); 769 break; 770 } 771 case ISD::OR: { 772 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 773 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 774 775 // If all of the demanded bits are known zero on one side, return the 776 // other. These bits cannot contribute to the result of the 'or' in this 777 // context. 778 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 779 return Op.getOperand(0); 780 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 781 return Op.getOperand(1); 782 break; 783 } 784 case ISD::XOR: { 785 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 786 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 787 788 // If all of the demanded bits are known zero on one side, return the 789 // other. 790 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 791 return Op.getOperand(0); 792 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 793 return Op.getOperand(1); 794 break; 795 } 796 case ISD::SHL: { 797 // If we are only demanding sign bits then we can use the shift source 798 // directly. 799 if (std::optional<uint64_t> MaxSA = 800 DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) { 801 SDValue Op0 = Op.getOperand(0); 802 unsigned ShAmt = *MaxSA; 803 unsigned NumSignBits = 804 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 805 unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero(); 806 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 807 return Op0; 808 } 809 break; 810 } 811 case ISD::SRL: { 812 // If we are only demanding sign bits then we can use the shift source 813 // directly. 814 if (std::optional<uint64_t> MaxSA = 815 DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) { 816 SDValue Op0 = Op.getOperand(0); 817 unsigned ShAmt = *MaxSA; 818 // Must already be signbits in DemandedBits bounds, and can't demand any 819 // shifted in zeroes. 820 if (DemandedBits.countl_zero() >= ShAmt) { 821 unsigned NumSignBits = 822 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 823 if (DemandedBits.countr_zero() >= (BitWidth - NumSignBits)) 824 return Op0; 825 } 826 } 827 break; 828 } 829 case ISD::SETCC: { 830 SDValue Op0 = Op.getOperand(0); 831 SDValue Op1 = Op.getOperand(1); 832 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 833 // If (1) we only need the sign-bit, (2) the setcc operands are the same 834 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 835 // -1, we may be able to bypass the setcc. 836 if (DemandedBits.isSignMask() && 837 Op0.getScalarValueSizeInBits() == BitWidth && 838 getBooleanContents(Op0.getValueType()) == 839 BooleanContent::ZeroOrNegativeOneBooleanContent) { 840 // If we're testing X < 0, then this compare isn't needed - just use X! 841 // FIXME: We're limiting to integer types here, but this should also work 842 // if we don't care about FP signed-zero. The use of SETLT with FP means 843 // that we don't care about NaNs. 844 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 845 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 846 return Op0; 847 } 848 break; 849 } 850 case ISD::SIGN_EXTEND_INREG: { 851 // If none of the extended bits are demanded, eliminate the sextinreg. 852 SDValue Op0 = Op.getOperand(0); 853 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 854 unsigned ExBits = ExVT.getScalarSizeInBits(); 855 if (DemandedBits.getActiveBits() <= ExBits && 856 shouldRemoveRedundantExtend(Op)) 857 return Op0; 858 // If the input is already sign extended, just drop the extension. 859 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 860 if (NumSignBits >= (BitWidth - ExBits + 1)) 861 return Op0; 862 break; 863 } 864 case ISD::ANY_EXTEND_VECTOR_INREG: 865 case ISD::SIGN_EXTEND_VECTOR_INREG: 866 case ISD::ZERO_EXTEND_VECTOR_INREG: { 867 if (VT.isScalableVector()) 868 return SDValue(); 869 870 // If we only want the lowest element and none of extended bits, then we can 871 // return the bitcasted source vector. 872 SDValue Src = Op.getOperand(0); 873 EVT SrcVT = Src.getValueType(); 874 EVT DstVT = Op.getValueType(); 875 if (IsLE && DemandedElts == 1 && 876 DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 877 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 878 return DAG.getBitcast(DstVT, Src); 879 } 880 break; 881 } 882 case ISD::INSERT_VECTOR_ELT: { 883 if (VT.isScalableVector()) 884 return SDValue(); 885 886 // If we don't demand the inserted element, return the base vector. 887 SDValue Vec = Op.getOperand(0); 888 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 889 EVT VecVT = Vec.getValueType(); 890 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 891 !DemandedElts[CIdx->getZExtValue()]) 892 return Vec; 893 break; 894 } 895 case ISD::INSERT_SUBVECTOR: { 896 if (VT.isScalableVector()) 897 return SDValue(); 898 899 SDValue Vec = Op.getOperand(0); 900 SDValue Sub = Op.getOperand(1); 901 uint64_t Idx = Op.getConstantOperandVal(2); 902 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 903 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 904 // If we don't demand the inserted subvector, return the base vector. 905 if (DemandedSubElts == 0) 906 return Vec; 907 break; 908 } 909 case ISD::VECTOR_SHUFFLE: { 910 assert(!VT.isScalableVector()); 911 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 912 913 // If all the demanded elts are from one operand and are inline, 914 // then we can use the operand directly. 915 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 916 for (unsigned i = 0; i != NumElts; ++i) { 917 int M = ShuffleMask[i]; 918 if (M < 0 || !DemandedElts[i]) 919 continue; 920 AllUndef = false; 921 IdentityLHS &= (M == (int)i); 922 IdentityRHS &= ((M - NumElts) == i); 923 } 924 925 if (AllUndef) 926 return DAG.getUNDEF(Op.getValueType()); 927 if (IdentityLHS) 928 return Op.getOperand(0); 929 if (IdentityRHS) 930 return Op.getOperand(1); 931 break; 932 } 933 default: 934 // TODO: Probably okay to remove after audit; here to reduce change size 935 // in initial enablement patch for scalable vectors 936 if (VT.isScalableVector()) 937 return SDValue(); 938 939 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 940 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 941 Op, DemandedBits, DemandedElts, DAG, Depth)) 942 return V; 943 break; 944 } 945 return SDValue(); 946 } 947 948 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 949 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 950 unsigned Depth) const { 951 EVT VT = Op.getValueType(); 952 // Since the number of lanes in a scalable vector is unknown at compile time, 953 // we track one bit which is implicitly broadcast to all lanes. This means 954 // that all lanes in a scalable vector are considered demanded. 955 APInt DemandedElts = VT.isFixedLengthVector() 956 ? APInt::getAllOnes(VT.getVectorNumElements()) 957 : APInt(1, 1); 958 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 959 Depth); 960 } 961 962 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 963 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 964 unsigned Depth) const { 965 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 966 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 967 Depth); 968 } 969 970 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1). 971 // or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1). 972 static SDValue combineShiftToAVG(SDValue Op, 973 TargetLowering::TargetLoweringOpt &TLO, 974 const TargetLowering &TLI, 975 const APInt &DemandedBits, 976 const APInt &DemandedElts, unsigned Depth) { 977 assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) && 978 "SRL or SRA node is required here!"); 979 // Is the right shift using an immediate value of 1? 980 ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 981 if (!N1C || !N1C->isOne()) 982 return SDValue(); 983 984 // We are looking for an avgfloor 985 // add(ext, ext) 986 // or one of these as a avgceil 987 // add(add(ext, ext), 1) 988 // add(add(ext, 1), ext) 989 // add(ext, add(ext, 1)) 990 SDValue Add = Op.getOperand(0); 991 if (Add.getOpcode() != ISD::ADD) 992 return SDValue(); 993 994 SDValue ExtOpA = Add.getOperand(0); 995 SDValue ExtOpB = Add.getOperand(1); 996 SDValue Add2; 997 auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3, SDValue A) { 998 ConstantSDNode *ConstOp; 999 if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) && 1000 ConstOp->isOne()) { 1001 ExtOpA = Op1; 1002 ExtOpB = Op3; 1003 Add2 = A; 1004 return true; 1005 } 1006 if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) && 1007 ConstOp->isOne()) { 1008 ExtOpA = Op1; 1009 ExtOpB = Op2; 1010 Add2 = A; 1011 return true; 1012 } 1013 return false; 1014 }; 1015 bool IsCeil = 1016 (ExtOpA.getOpcode() == ISD::ADD && 1017 MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB, ExtOpA)) || 1018 (ExtOpB.getOpcode() == ISD::ADD && 1019 MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA, ExtOpB)); 1020 1021 // If the shift is signed (sra): 1022 // - Needs >= 2 sign bit for both operands. 1023 // - Needs >= 2 zero bits. 1024 // If the shift is unsigned (srl): 1025 // - Needs >= 1 zero bit for both operands. 1026 // - Needs 1 demanded bit zero and >= 2 sign bits. 1027 SelectionDAG &DAG = TLO.DAG; 1028 unsigned ShiftOpc = Op.getOpcode(); 1029 bool IsSigned = false; 1030 unsigned KnownBits; 1031 unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth); 1032 unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth); 1033 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1; 1034 unsigned NumZeroA = 1035 DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros(); 1036 unsigned NumZeroB = 1037 DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros(); 1038 unsigned NumZero = std::min(NumZeroA, NumZeroB); 1039 1040 switch (ShiftOpc) { 1041 default: 1042 llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG"); 1043 case ISD::SRA: { 1044 if (NumZero >= 2 && NumSigned < NumZero) { 1045 IsSigned = false; 1046 KnownBits = NumZero; 1047 break; 1048 } 1049 if (NumSigned >= 1) { 1050 IsSigned = true; 1051 KnownBits = NumSigned; 1052 break; 1053 } 1054 return SDValue(); 1055 } 1056 case ISD::SRL: { 1057 if (NumZero >= 1 && NumSigned < NumZero) { 1058 IsSigned = false; 1059 KnownBits = NumZero; 1060 break; 1061 } 1062 if (NumSigned >= 1 && DemandedBits.isSignBitClear()) { 1063 IsSigned = true; 1064 KnownBits = NumSigned; 1065 break; 1066 } 1067 return SDValue(); 1068 } 1069 } 1070 1071 unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU) 1072 : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU); 1073 1074 // Find the smallest power-2 type that is legal for this vector size and 1075 // operation, given the original type size and the number of known sign/zero 1076 // bits. 1077 EVT VT = Op.getValueType(); 1078 unsigned MinWidth = 1079 std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8); 1080 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_ceil(MinWidth)); 1081 if (NVT.getScalarSizeInBits() > VT.getScalarSizeInBits()) 1082 return SDValue(); 1083 if (VT.isVector()) 1084 NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount()); 1085 if (TLO.LegalTypes() && !TLI.isOperationLegal(AVGOpc, NVT)) { 1086 // If we could not transform, and (both) adds are nuw/nsw, we can use the 1087 // larger type size to do the transform. 1088 if (TLO.LegalOperations() && !TLI.isOperationLegal(AVGOpc, VT)) 1089 return SDValue(); 1090 if (DAG.willNotOverflowAdd(IsSigned, Add.getOperand(0), 1091 Add.getOperand(1)) && 1092 (!Add2 || DAG.willNotOverflowAdd(IsSigned, Add2.getOperand(0), 1093 Add2.getOperand(1)))) 1094 NVT = VT; 1095 else 1096 return SDValue(); 1097 } 1098 1099 // Don't create a AVGFLOOR node with a scalar constant unless its legal as 1100 // this is likely to stop other folds (reassociation, value tracking etc.) 1101 if (!IsCeil && !TLI.isOperationLegal(AVGOpc, NVT) && 1102 (isa<ConstantSDNode>(ExtOpA) || isa<ConstantSDNode>(ExtOpB))) 1103 return SDValue(); 1104 1105 SDLoc DL(Op); 1106 SDValue ResultAVG = 1107 DAG.getNode(AVGOpc, DL, NVT, DAG.getExtOrTrunc(IsSigned, ExtOpA, DL, NVT), 1108 DAG.getExtOrTrunc(IsSigned, ExtOpB, DL, NVT)); 1109 return DAG.getExtOrTrunc(IsSigned, ResultAVG, DL, VT); 1110 } 1111 1112 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 1113 /// result of Op are ever used downstream. If we can use this information to 1114 /// simplify Op, create a new simplified DAG node and return true, returning the 1115 /// original and new nodes in Old and New. Otherwise, analyze the expression and 1116 /// return a mask of Known bits for the expression (used to simplify the 1117 /// caller). The Known bits may only be accurate for those bits in the 1118 /// OriginalDemandedBits and OriginalDemandedElts. 1119 bool TargetLowering::SimplifyDemandedBits( 1120 SDValue Op, const APInt &OriginalDemandedBits, 1121 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 1122 unsigned Depth, bool AssumeSingleUse) const { 1123 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 1124 assert(Op.getScalarValueSizeInBits() == BitWidth && 1125 "Mask size mismatches value type size!"); 1126 1127 // Don't know anything. 1128 Known = KnownBits(BitWidth); 1129 1130 EVT VT = Op.getValueType(); 1131 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 1132 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 1133 assert((!VT.isFixedLengthVector() || NumElts == VT.getVectorNumElements()) && 1134 "Unexpected vector size"); 1135 1136 APInt DemandedBits = OriginalDemandedBits; 1137 APInt DemandedElts = OriginalDemandedElts; 1138 SDLoc dl(Op); 1139 1140 // Undef operand. 1141 if (Op.isUndef()) 1142 return false; 1143 1144 // We can't simplify target constants. 1145 if (Op.getOpcode() == ISD::TargetConstant) 1146 return false; 1147 1148 if (Op.getOpcode() == ISD::Constant) { 1149 // We know all of the bits for a constant! 1150 Known = KnownBits::makeConstant(Op->getAsAPIntVal()); 1151 return false; 1152 } 1153 1154 if (Op.getOpcode() == ISD::ConstantFP) { 1155 // We know all of the bits for a floating point constant! 1156 Known = KnownBits::makeConstant( 1157 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 1158 return false; 1159 } 1160 1161 // Other users may use these bits. 1162 bool HasMultiUse = false; 1163 if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) { 1164 if (Depth >= SelectionDAG::MaxRecursionDepth) { 1165 // Limit search depth. 1166 return false; 1167 } 1168 // Allow multiple uses, just set the DemandedBits/Elts to all bits. 1169 DemandedBits = APInt::getAllOnes(BitWidth); 1170 DemandedElts = APInt::getAllOnes(NumElts); 1171 HasMultiUse = true; 1172 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 1173 // Not demanding any bits/elts from Op. 1174 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1175 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 1176 // Limit search depth. 1177 return false; 1178 } 1179 1180 KnownBits Known2; 1181 switch (Op.getOpcode()) { 1182 case ISD::SCALAR_TO_VECTOR: { 1183 if (VT.isScalableVector()) 1184 return false; 1185 if (!DemandedElts[0]) 1186 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1187 1188 KnownBits SrcKnown; 1189 SDValue Src = Op.getOperand(0); 1190 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 1191 APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth); 1192 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 1193 return true; 1194 1195 // Upper elements are undef, so only get the knownbits if we just demand 1196 // the bottom element. 1197 if (DemandedElts == 1) 1198 Known = SrcKnown.anyextOrTrunc(BitWidth); 1199 break; 1200 } 1201 case ISD::BUILD_VECTOR: 1202 // Collect the known bits that are shared by every demanded element. 1203 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 1204 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1205 return false; // Don't fall through, will infinitely loop. 1206 case ISD::SPLAT_VECTOR: { 1207 SDValue Scl = Op.getOperand(0); 1208 APInt DemandedSclBits = DemandedBits.zextOrTrunc(Scl.getValueSizeInBits()); 1209 KnownBits KnownScl; 1210 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1211 return true; 1212 1213 // Implicitly truncate the bits to match the official semantics of 1214 // SPLAT_VECTOR. 1215 Known = KnownScl.trunc(BitWidth); 1216 break; 1217 } 1218 case ISD::LOAD: { 1219 auto *LD = cast<LoadSDNode>(Op); 1220 if (getTargetConstantFromLoad(LD)) { 1221 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1222 return false; // Don't fall through, will infinitely loop. 1223 } 1224 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 1225 // If this is a ZEXTLoad and we are looking at the loaded value. 1226 EVT MemVT = LD->getMemoryVT(); 1227 unsigned MemBits = MemVT.getScalarSizeInBits(); 1228 Known.Zero.setBitsFrom(MemBits); 1229 return false; // Don't fall through, will infinitely loop. 1230 } 1231 break; 1232 } 1233 case ISD::INSERT_VECTOR_ELT: { 1234 if (VT.isScalableVector()) 1235 return false; 1236 SDValue Vec = Op.getOperand(0); 1237 SDValue Scl = Op.getOperand(1); 1238 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1239 EVT VecVT = Vec.getValueType(); 1240 1241 // If index isn't constant, assume we need all vector elements AND the 1242 // inserted element. 1243 APInt DemandedVecElts(DemandedElts); 1244 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1245 unsigned Idx = CIdx->getZExtValue(); 1246 DemandedVecElts.clearBit(Idx); 1247 1248 // Inserted element is not required. 1249 if (!DemandedElts[Idx]) 1250 return TLO.CombineTo(Op, Vec); 1251 } 1252 1253 KnownBits KnownScl; 1254 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1255 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1256 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1257 return true; 1258 1259 Known = KnownScl.anyextOrTrunc(BitWidth); 1260 1261 KnownBits KnownVec; 1262 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1263 Depth + 1)) 1264 return true; 1265 1266 if (!!DemandedVecElts) 1267 Known = Known.intersectWith(KnownVec); 1268 1269 return false; 1270 } 1271 case ISD::INSERT_SUBVECTOR: { 1272 if (VT.isScalableVector()) 1273 return false; 1274 // Demand any elements from the subvector and the remainder from the src its 1275 // inserted into. 1276 SDValue Src = Op.getOperand(0); 1277 SDValue Sub = Op.getOperand(1); 1278 uint64_t Idx = Op.getConstantOperandVal(2); 1279 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1280 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1281 APInt DemandedSrcElts = DemandedElts; 1282 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1283 1284 KnownBits KnownSub, KnownSrc; 1285 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1286 Depth + 1)) 1287 return true; 1288 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1289 Depth + 1)) 1290 return true; 1291 1292 Known.Zero.setAllBits(); 1293 Known.One.setAllBits(); 1294 if (!!DemandedSubElts) 1295 Known = Known.intersectWith(KnownSub); 1296 if (!!DemandedSrcElts) 1297 Known = Known.intersectWith(KnownSrc); 1298 1299 // Attempt to avoid multi-use src if we don't need anything from it. 1300 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1301 !DemandedSrcElts.isAllOnes()) { 1302 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1303 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1304 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1305 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1306 if (NewSub || NewSrc) { 1307 NewSub = NewSub ? NewSub : Sub; 1308 NewSrc = NewSrc ? NewSrc : Src; 1309 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1310 Op.getOperand(2)); 1311 return TLO.CombineTo(Op, NewOp); 1312 } 1313 } 1314 break; 1315 } 1316 case ISD::EXTRACT_SUBVECTOR: { 1317 if (VT.isScalableVector()) 1318 return false; 1319 // Offset the demanded elts by the subvector index. 1320 SDValue Src = Op.getOperand(0); 1321 if (Src.getValueType().isScalableVector()) 1322 break; 1323 uint64_t Idx = Op.getConstantOperandVal(1); 1324 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1325 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 1326 1327 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1328 Depth + 1)) 1329 return true; 1330 1331 // Attempt to avoid multi-use src if we don't need anything from it. 1332 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1333 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1334 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1335 if (DemandedSrc) { 1336 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1337 Op.getOperand(1)); 1338 return TLO.CombineTo(Op, NewOp); 1339 } 1340 } 1341 break; 1342 } 1343 case ISD::CONCAT_VECTORS: { 1344 if (VT.isScalableVector()) 1345 return false; 1346 Known.Zero.setAllBits(); 1347 Known.One.setAllBits(); 1348 EVT SubVT = Op.getOperand(0).getValueType(); 1349 unsigned NumSubVecs = Op.getNumOperands(); 1350 unsigned NumSubElts = SubVT.getVectorNumElements(); 1351 for (unsigned i = 0; i != NumSubVecs; ++i) { 1352 APInt DemandedSubElts = 1353 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1354 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1355 Known2, TLO, Depth + 1)) 1356 return true; 1357 // Known bits are shared by every demanded subvector element. 1358 if (!!DemandedSubElts) 1359 Known = Known.intersectWith(Known2); 1360 } 1361 break; 1362 } 1363 case ISD::VECTOR_SHUFFLE: { 1364 assert(!VT.isScalableVector()); 1365 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1366 1367 // Collect demanded elements from shuffle operands.. 1368 APInt DemandedLHS, DemandedRHS; 1369 if (!getShuffleDemandedElts(NumElts, ShuffleMask, DemandedElts, DemandedLHS, 1370 DemandedRHS)) 1371 break; 1372 1373 if (!!DemandedLHS || !!DemandedRHS) { 1374 SDValue Op0 = Op.getOperand(0); 1375 SDValue Op1 = Op.getOperand(1); 1376 1377 Known.Zero.setAllBits(); 1378 Known.One.setAllBits(); 1379 if (!!DemandedLHS) { 1380 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1381 Depth + 1)) 1382 return true; 1383 Known = Known.intersectWith(Known2); 1384 } 1385 if (!!DemandedRHS) { 1386 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1387 Depth + 1)) 1388 return true; 1389 Known = Known.intersectWith(Known2); 1390 } 1391 1392 // Attempt to avoid multi-use ops if we don't need anything from them. 1393 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1394 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1395 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1396 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1397 if (DemandedOp0 || DemandedOp1) { 1398 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1399 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1400 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1401 return TLO.CombineTo(Op, NewOp); 1402 } 1403 } 1404 break; 1405 } 1406 case ISD::AND: { 1407 SDValue Op0 = Op.getOperand(0); 1408 SDValue Op1 = Op.getOperand(1); 1409 1410 // If the RHS is a constant, check to see if the LHS would be zero without 1411 // using the bits from the RHS. Below, we use knowledge about the RHS to 1412 // simplify the LHS, here we're using information from the LHS to simplify 1413 // the RHS. 1414 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1, DemandedElts)) { 1415 // Do not increment Depth here; that can cause an infinite loop. 1416 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1417 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1418 if ((LHSKnown.Zero & DemandedBits) == 1419 (~RHSC->getAPIntValue() & DemandedBits)) 1420 return TLO.CombineTo(Op, Op0); 1421 1422 // If any of the set bits in the RHS are known zero on the LHS, shrink 1423 // the constant. 1424 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1425 DemandedElts, TLO)) 1426 return true; 1427 1428 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1429 // constant, but if this 'and' is only clearing bits that were just set by 1430 // the xor, then this 'and' can be eliminated by shrinking the mask of 1431 // the xor. For example, for a 32-bit X: 1432 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1433 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1434 LHSKnown.One == ~RHSC->getAPIntValue()) { 1435 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1436 return TLO.CombineTo(Op, Xor); 1437 } 1438 } 1439 1440 // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I) 1441 // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits). 1442 if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR && !VT.isScalableVector() && 1443 (Op0.getOperand(0).isUndef() || 1444 ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) && 1445 Op0->hasOneUse()) { 1446 unsigned NumSubElts = 1447 Op0.getOperand(1).getValueType().getVectorNumElements(); 1448 unsigned SubIdx = Op0.getConstantOperandVal(2); 1449 APInt DemandedSub = 1450 APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts); 1451 KnownBits KnownSubMask = 1452 TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1); 1453 if (DemandedBits.isSubsetOf(KnownSubMask.One)) { 1454 SDValue NewAnd = 1455 TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1); 1456 SDValue NewInsert = 1457 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd, 1458 Op0.getOperand(1), Op0.getOperand(2)); 1459 return TLO.CombineTo(Op, NewInsert); 1460 } 1461 } 1462 1463 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1464 Depth + 1)) 1465 return true; 1466 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1467 Known2, TLO, Depth + 1)) 1468 return true; 1469 1470 // If all of the demanded bits are known one on one side, return the other. 1471 // These bits cannot contribute to the result of the 'and'. 1472 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1473 return TLO.CombineTo(Op, Op0); 1474 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1475 return TLO.CombineTo(Op, Op1); 1476 // If all of the demanded bits in the inputs are known zeros, return zero. 1477 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1478 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1479 // If the RHS is a constant, see if we can simplify it. 1480 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1481 TLO)) 1482 return true; 1483 // If the operation can be done in a smaller type, do so. 1484 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1485 return true; 1486 1487 // Attempt to avoid multi-use ops if we don't need anything from them. 1488 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1489 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1490 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1491 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1492 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1493 if (DemandedOp0 || DemandedOp1) { 1494 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1495 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1496 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1497 return TLO.CombineTo(Op, NewOp); 1498 } 1499 } 1500 1501 Known &= Known2; 1502 break; 1503 } 1504 case ISD::OR: { 1505 SDValue Op0 = Op.getOperand(0); 1506 SDValue Op1 = Op.getOperand(1); 1507 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1508 Depth + 1)) { 1509 Op->dropFlags(SDNodeFlags::Disjoint); 1510 return true; 1511 } 1512 1513 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1514 Known2, TLO, Depth + 1)) { 1515 Op->dropFlags(SDNodeFlags::Disjoint); 1516 return true; 1517 } 1518 1519 // If all of the demanded bits are known zero on one side, return the other. 1520 // These bits cannot contribute to the result of the 'or'. 1521 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1522 return TLO.CombineTo(Op, Op0); 1523 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1524 return TLO.CombineTo(Op, Op1); 1525 // If the RHS is a constant, see if we can simplify it. 1526 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1527 return true; 1528 // If the operation can be done in a smaller type, do so. 1529 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1530 return true; 1531 1532 // Attempt to avoid multi-use ops if we don't need anything from them. 1533 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1534 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1535 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1536 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1537 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1538 if (DemandedOp0 || DemandedOp1) { 1539 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1540 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1541 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1542 return TLO.CombineTo(Op, NewOp); 1543 } 1544 } 1545 1546 // (or (and X, C1), (and (or X, Y), C2)) -> (or (and X, C1|C2), (and Y, C2)) 1547 // TODO: Use SimplifyMultipleUseDemandedBits to peek through masks. 1548 if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::AND && 1549 Op0->hasOneUse() && Op1->hasOneUse()) { 1550 // Attempt to match all commutations - m_c_Or would've been useful! 1551 for (int I = 0; I != 2; ++I) { 1552 SDValue X = Op.getOperand(I).getOperand(0); 1553 SDValue C1 = Op.getOperand(I).getOperand(1); 1554 SDValue Alt = Op.getOperand(1 - I).getOperand(0); 1555 SDValue C2 = Op.getOperand(1 - I).getOperand(1); 1556 if (Alt.getOpcode() == ISD::OR) { 1557 for (int J = 0; J != 2; ++J) { 1558 if (X == Alt.getOperand(J)) { 1559 SDValue Y = Alt.getOperand(1 - J); 1560 if (SDValue C12 = TLO.DAG.FoldConstantArithmetic(ISD::OR, dl, VT, 1561 {C1, C2})) { 1562 SDValue MaskX = TLO.DAG.getNode(ISD::AND, dl, VT, X, C12); 1563 SDValue MaskY = TLO.DAG.getNode(ISD::AND, dl, VT, Y, C2); 1564 return TLO.CombineTo( 1565 Op, TLO.DAG.getNode(ISD::OR, dl, VT, MaskX, MaskY)); 1566 } 1567 } 1568 } 1569 } 1570 } 1571 } 1572 1573 Known |= Known2; 1574 break; 1575 } 1576 case ISD::XOR: { 1577 SDValue Op0 = Op.getOperand(0); 1578 SDValue Op1 = Op.getOperand(1); 1579 1580 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1581 Depth + 1)) 1582 return true; 1583 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1584 Depth + 1)) 1585 return true; 1586 1587 // If all of the demanded bits are known zero on one side, return the other. 1588 // These bits cannot contribute to the result of the 'xor'. 1589 if (DemandedBits.isSubsetOf(Known.Zero)) 1590 return TLO.CombineTo(Op, Op0); 1591 if (DemandedBits.isSubsetOf(Known2.Zero)) 1592 return TLO.CombineTo(Op, Op1); 1593 // If the operation can be done in a smaller type, do so. 1594 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1595 return true; 1596 1597 // If all of the unknown bits are known to be zero on one side or the other 1598 // turn this into an *inclusive* or. 1599 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1600 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1601 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1602 1603 ConstantSDNode *C = isConstOrConstSplat(Op1, DemandedElts); 1604 if (C) { 1605 // If one side is a constant, and all of the set bits in the constant are 1606 // also known set on the other side, turn this into an AND, as we know 1607 // the bits will be cleared. 1608 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1609 // NB: it is okay if more bits are known than are requested 1610 if (C->getAPIntValue() == Known2.One) { 1611 SDValue ANDC = 1612 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1613 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1614 } 1615 1616 // If the RHS is a constant, see if we can change it. Don't alter a -1 1617 // constant because that's a 'not' op, and that is better for combining 1618 // and codegen. 1619 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1620 // We're flipping all demanded bits. Flip the undemanded bits too. 1621 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1622 return TLO.CombineTo(Op, New); 1623 } 1624 1625 unsigned Op0Opcode = Op0.getOpcode(); 1626 if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) { 1627 if (ConstantSDNode *ShiftC = 1628 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1629 // Don't crash on an oversized shift. We can not guarantee that a 1630 // bogus shift has been simplified to undef. 1631 if (ShiftC->getAPIntValue().ult(BitWidth)) { 1632 uint64_t ShiftAmt = ShiftC->getZExtValue(); 1633 APInt Ones = APInt::getAllOnes(BitWidth); 1634 Ones = Op0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) 1635 : Ones.lshr(ShiftAmt); 1636 if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) && 1637 isDesirableToCommuteXorWithShift(Op.getNode())) { 1638 // If the xor constant is a demanded mask, do a 'not' before the 1639 // shift: 1640 // xor (X << ShiftC), XorC --> (not X) << ShiftC 1641 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC 1642 SDValue Not = TLO.DAG.getNOT(dl, Op0.getOperand(0), VT); 1643 return TLO.CombineTo(Op, TLO.DAG.getNode(Op0Opcode, dl, VT, Not, 1644 Op0.getOperand(1))); 1645 } 1646 } 1647 } 1648 } 1649 } 1650 1651 // If we can't turn this into a 'not', try to shrink the constant. 1652 if (!C || !C->isAllOnes()) 1653 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1654 return true; 1655 1656 // Attempt to avoid multi-use ops if we don't need anything from them. 1657 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1658 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1659 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1660 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1661 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1662 if (DemandedOp0 || DemandedOp1) { 1663 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1664 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1665 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1666 return TLO.CombineTo(Op, NewOp); 1667 } 1668 } 1669 1670 Known ^= Known2; 1671 break; 1672 } 1673 case ISD::SELECT: 1674 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, 1675 Known, TLO, Depth + 1)) 1676 return true; 1677 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts, 1678 Known2, TLO, Depth + 1)) 1679 return true; 1680 1681 // If the operands are constants, see if we can simplify them. 1682 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1683 return true; 1684 1685 // Only known if known in both the LHS and RHS. 1686 Known = Known.intersectWith(Known2); 1687 break; 1688 case ISD::VSELECT: 1689 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, 1690 Known, TLO, Depth + 1)) 1691 return true; 1692 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts, 1693 Known2, TLO, Depth + 1)) 1694 return true; 1695 1696 // Only known if known in both the LHS and RHS. 1697 Known = Known.intersectWith(Known2); 1698 break; 1699 case ISD::SELECT_CC: 1700 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, DemandedElts, 1701 Known, TLO, Depth + 1)) 1702 return true; 1703 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, 1704 Known2, TLO, Depth + 1)) 1705 return true; 1706 1707 // If the operands are constants, see if we can simplify them. 1708 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1709 return true; 1710 1711 // Only known if known in both the LHS and RHS. 1712 Known = Known.intersectWith(Known2); 1713 break; 1714 case ISD::SETCC: { 1715 SDValue Op0 = Op.getOperand(0); 1716 SDValue Op1 = Op.getOperand(1); 1717 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1718 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1719 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1720 // -1, we may be able to bypass the setcc. 1721 if (DemandedBits.isSignMask() && 1722 Op0.getScalarValueSizeInBits() == BitWidth && 1723 getBooleanContents(Op0.getValueType()) == 1724 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1725 // If we're testing X < 0, then this compare isn't needed - just use X! 1726 // FIXME: We're limiting to integer types here, but this should also work 1727 // if we don't care about FP signed-zero. The use of SETLT with FP means 1728 // that we don't care about NaNs. 1729 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1730 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1731 return TLO.CombineTo(Op, Op0); 1732 1733 // TODO: Should we check for other forms of sign-bit comparisons? 1734 // Examples: X <= -1, X >= 0 1735 } 1736 if (getBooleanContents(Op0.getValueType()) == 1737 TargetLowering::ZeroOrOneBooleanContent && 1738 BitWidth > 1) 1739 Known.Zero.setBitsFrom(1); 1740 break; 1741 } 1742 case ISD::SHL: { 1743 SDValue Op0 = Op.getOperand(0); 1744 SDValue Op1 = Op.getOperand(1); 1745 EVT ShiftVT = Op1.getValueType(); 1746 1747 if (std::optional<uint64_t> KnownSA = 1748 TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) { 1749 unsigned ShAmt = *KnownSA; 1750 if (ShAmt == 0) 1751 return TLO.CombineTo(Op, Op0); 1752 1753 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1754 // single shift. We can do this if the bottom bits (which are shifted 1755 // out) are never demanded. 1756 // TODO - support non-uniform vector amounts. 1757 if (Op0.getOpcode() == ISD::SRL) { 1758 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1759 if (std::optional<uint64_t> InnerSA = 1760 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) { 1761 unsigned C1 = *InnerSA; 1762 unsigned Opc = ISD::SHL; 1763 int Diff = ShAmt - C1; 1764 if (Diff < 0) { 1765 Diff = -Diff; 1766 Opc = ISD::SRL; 1767 } 1768 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1769 return TLO.CombineTo( 1770 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1771 } 1772 } 1773 } 1774 1775 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1776 // are not demanded. This will likely allow the anyext to be folded away. 1777 // TODO - support non-uniform vector amounts. 1778 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1779 SDValue InnerOp = Op0.getOperand(0); 1780 EVT InnerVT = InnerOp.getValueType(); 1781 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1782 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1783 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1784 SDValue NarrowShl = TLO.DAG.getNode( 1785 ISD::SHL, dl, InnerVT, InnerOp, 1786 TLO.DAG.getShiftAmountConstant(ShAmt, InnerVT, dl)); 1787 return TLO.CombineTo( 1788 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1789 } 1790 1791 // Repeat the SHL optimization above in cases where an extension 1792 // intervenes: (shl (anyext (shr x, c1)), c2) to 1793 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1794 // aren't demanded (as above) and that the shifted upper c1 bits of 1795 // x aren't demanded. 1796 // TODO - support non-uniform vector amounts. 1797 if (InnerOp.getOpcode() == ISD::SRL && Op0.hasOneUse() && 1798 InnerOp.hasOneUse()) { 1799 if (std::optional<uint64_t> SA2 = TLO.DAG.getValidShiftAmount( 1800 InnerOp, DemandedElts, Depth + 2)) { 1801 unsigned InnerShAmt = *SA2; 1802 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1803 DemandedBits.getActiveBits() <= 1804 (InnerBits - InnerShAmt + ShAmt) && 1805 DemandedBits.countr_zero() >= ShAmt) { 1806 SDValue NewSA = 1807 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1808 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1809 InnerOp.getOperand(0)); 1810 return TLO.CombineTo( 1811 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1812 } 1813 } 1814 } 1815 } 1816 1817 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1818 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1819 Depth + 1)) { 1820 // Disable the nsw and nuw flags. We can no longer guarantee that we 1821 // won't wrap after simplification. 1822 Op->dropFlags(SDNodeFlags::NoWrap); 1823 return true; 1824 } 1825 Known.Zero <<= ShAmt; 1826 Known.One <<= ShAmt; 1827 // low bits known zero. 1828 Known.Zero.setLowBits(ShAmt); 1829 1830 // Attempt to avoid multi-use ops if we don't need anything from them. 1831 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1832 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1833 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1834 if (DemandedOp0) { 1835 SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1); 1836 return TLO.CombineTo(Op, NewOp); 1837 } 1838 } 1839 1840 // TODO: Can we merge this fold with the one below? 1841 // Try shrinking the operation as long as the shift amount will still be 1842 // in range. 1843 if (ShAmt < DemandedBits.getActiveBits() && !VT.isVector() && 1844 Op.getNode()->hasOneUse()) { 1845 // Search for the smallest integer type with free casts to and from 1846 // Op's type. For expedience, just check power-of-2 integer types. 1847 unsigned DemandedSize = DemandedBits.getActiveBits(); 1848 for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize); 1849 SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 1850 EVT SmallVT = EVT::getIntegerVT(*TLO.DAG.getContext(), SmallVTBits); 1851 if (isNarrowingProfitable(Op.getNode(), VT, SmallVT) && 1852 isTypeDesirableForOp(ISD::SHL, SmallVT) && 1853 isTruncateFree(VT, SmallVT) && isZExtFree(SmallVT, VT) && 1854 (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, SmallVT))) { 1855 assert(DemandedSize <= SmallVTBits && 1856 "Narrowed below demanded bits?"); 1857 // We found a type with free casts. 1858 SDValue NarrowShl = TLO.DAG.getNode( 1859 ISD::SHL, dl, SmallVT, 1860 TLO.DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 1861 TLO.DAG.getShiftAmountConstant(ShAmt, SmallVT, dl)); 1862 return TLO.CombineTo( 1863 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1864 } 1865 } 1866 } 1867 1868 // Narrow shift to lower half - similar to ShrinkDemandedOp. 1869 // (shl i64:x, K) -> (i64 zero_extend (shl (i32 (trunc i64:x)), K)) 1870 // Only do this if we demand the upper half so the knownbits are correct. 1871 unsigned HalfWidth = BitWidth / 2; 1872 if ((BitWidth % 2) == 0 && !VT.isVector() && ShAmt < HalfWidth && 1873 DemandedBits.countLeadingOnes() >= HalfWidth) { 1874 EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), HalfWidth); 1875 if (isNarrowingProfitable(Op.getNode(), VT, HalfVT) && 1876 isTypeDesirableForOp(ISD::SHL, HalfVT) && 1877 isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) && 1878 (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, HalfVT))) { 1879 // If we're demanding the upper bits at all, we must ensure 1880 // that the upper bits of the shift result are known to be zero, 1881 // which is equivalent to the narrow shift being NUW. 1882 if (bool IsNUW = (Known.countMinLeadingZeros() >= HalfWidth)) { 1883 bool IsNSW = Known.countMinSignBits() > HalfWidth; 1884 SDNodeFlags Flags; 1885 Flags.setNoSignedWrap(IsNSW); 1886 Flags.setNoUnsignedWrap(IsNUW); 1887 SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0); 1888 SDValue NewShiftAmt = 1889 TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl); 1890 SDValue NewShift = TLO.DAG.getNode(ISD::SHL, dl, HalfVT, NewOp, 1891 NewShiftAmt, Flags); 1892 SDValue NewExt = 1893 TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift); 1894 return TLO.CombineTo(Op, NewExt); 1895 } 1896 } 1897 } 1898 } else { 1899 // This is a variable shift, so we can't shift the demand mask by a known 1900 // amount. But if we are not demanding high bits, then we are not 1901 // demanding those bits from the pre-shifted operand either. 1902 if (unsigned CTLZ = DemandedBits.countl_zero()) { 1903 APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ)); 1904 if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO, 1905 Depth + 1)) { 1906 // Disable the nsw and nuw flags. We can no longer guarantee that we 1907 // won't wrap after simplification. 1908 Op->dropFlags(SDNodeFlags::NoWrap); 1909 return true; 1910 } 1911 Known.resetAll(); 1912 } 1913 } 1914 1915 // If we are only demanding sign bits then we can use the shift source 1916 // directly. 1917 if (std::optional<uint64_t> MaxSA = 1918 TLO.DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) { 1919 unsigned ShAmt = *MaxSA; 1920 unsigned NumSignBits = 1921 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1922 unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero(); 1923 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1924 return TLO.CombineTo(Op, Op0); 1925 } 1926 break; 1927 } 1928 case ISD::SRL: { 1929 SDValue Op0 = Op.getOperand(0); 1930 SDValue Op1 = Op.getOperand(1); 1931 EVT ShiftVT = Op1.getValueType(); 1932 1933 if (std::optional<uint64_t> KnownSA = 1934 TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) { 1935 unsigned ShAmt = *KnownSA; 1936 if (ShAmt == 0) 1937 return TLO.CombineTo(Op, Op0); 1938 1939 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1940 // single shift. We can do this if the top bits (which are shifted out) 1941 // are never demanded. 1942 // TODO - support non-uniform vector amounts. 1943 if (Op0.getOpcode() == ISD::SHL) { 1944 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1945 if (std::optional<uint64_t> InnerSA = 1946 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) { 1947 unsigned C1 = *InnerSA; 1948 unsigned Opc = ISD::SRL; 1949 int Diff = ShAmt - C1; 1950 if (Diff < 0) { 1951 Diff = -Diff; 1952 Opc = ISD::SHL; 1953 } 1954 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1955 return TLO.CombineTo( 1956 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1957 } 1958 } 1959 } 1960 1961 // If this is (srl (sra X, C1), ShAmt), see if we can combine this into a 1962 // single sra. We can do this if the top bits are never demanded. 1963 if (Op0.getOpcode() == ISD::SRA && Op0.hasOneUse()) { 1964 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1965 if (std::optional<uint64_t> InnerSA = 1966 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) { 1967 unsigned C1 = *InnerSA; 1968 // Clamp the combined shift amount if it exceeds the bit width. 1969 unsigned Combined = std::min(C1 + ShAmt, BitWidth - 1); 1970 SDValue NewSA = TLO.DAG.getConstant(Combined, dl, ShiftVT); 1971 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRA, dl, VT, 1972 Op0.getOperand(0), NewSA)); 1973 } 1974 } 1975 } 1976 1977 APInt InDemandedMask = (DemandedBits << ShAmt); 1978 1979 // If the shift is exact, then it does demand the low bits (and knows that 1980 // they are zero). 1981 if (Op->getFlags().hasExact()) 1982 InDemandedMask.setLowBits(ShAmt); 1983 1984 // Narrow shift to lower half - similar to ShrinkDemandedOp. 1985 // (srl i64:x, K) -> (i64 zero_extend (srl (i32 (trunc i64:x)), K)) 1986 if ((BitWidth % 2) == 0 && !VT.isVector()) { 1987 APInt HiBits = APInt::getHighBitsSet(BitWidth, BitWidth / 2); 1988 EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), BitWidth / 2); 1989 if (isNarrowingProfitable(Op.getNode(), VT, HalfVT) && 1990 isTypeDesirableForOp(ISD::SRL, HalfVT) && 1991 isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) && 1992 (!TLO.LegalOperations() || isOperationLegal(ISD::SRL, HalfVT)) && 1993 ((InDemandedMask.countLeadingZeros() >= (BitWidth / 2)) || 1994 TLO.DAG.MaskedValueIsZero(Op0, HiBits))) { 1995 SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0); 1996 SDValue NewShiftAmt = 1997 TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl); 1998 SDValue NewShift = 1999 TLO.DAG.getNode(ISD::SRL, dl, HalfVT, NewOp, NewShiftAmt); 2000 return TLO.CombineTo( 2001 Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift)); 2002 } 2003 } 2004 2005 // Compute the new bits that are at the top now. 2006 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 2007 Depth + 1)) 2008 return true; 2009 Known.Zero.lshrInPlace(ShAmt); 2010 Known.One.lshrInPlace(ShAmt); 2011 // High bits known zero. 2012 Known.Zero.setHighBits(ShAmt); 2013 2014 // Attempt to avoid multi-use ops if we don't need anything from them. 2015 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2016 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2017 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 2018 if (DemandedOp0) { 2019 SDValue NewOp = TLO.DAG.getNode(ISD::SRL, dl, VT, DemandedOp0, Op1); 2020 return TLO.CombineTo(Op, NewOp); 2021 } 2022 } 2023 } else { 2024 // Use generic knownbits computation as it has support for non-uniform 2025 // shift amounts. 2026 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2027 } 2028 2029 // Try to match AVG patterns (after shift simplification). 2030 if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits, 2031 DemandedElts, Depth + 1)) 2032 return TLO.CombineTo(Op, AVG); 2033 2034 break; 2035 } 2036 case ISD::SRA: { 2037 SDValue Op0 = Op.getOperand(0); 2038 SDValue Op1 = Op.getOperand(1); 2039 EVT ShiftVT = Op1.getValueType(); 2040 2041 // If we only want bits that already match the signbit then we don't need 2042 // to shift. 2043 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countr_zero(); 2044 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 2045 NumHiDemandedBits) 2046 return TLO.CombineTo(Op, Op0); 2047 2048 // If this is an arithmetic shift right and only the low-bit is set, we can 2049 // always convert this into a logical shr, even if the shift amount is 2050 // variable. The low bit of the shift cannot be an input sign bit unless 2051 // the shift amount is >= the size of the datatype, which is undefined. 2052 if (DemandedBits.isOne()) 2053 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 2054 2055 if (std::optional<uint64_t> KnownSA = 2056 TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) { 2057 unsigned ShAmt = *KnownSA; 2058 if (ShAmt == 0) 2059 return TLO.CombineTo(Op, Op0); 2060 2061 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target 2062 // supports sext_inreg. 2063 if (Op0.getOpcode() == ISD::SHL) { 2064 if (std::optional<uint64_t> InnerSA = 2065 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) { 2066 unsigned LowBits = BitWidth - ShAmt; 2067 EVT ExtVT = EVT::getIntegerVT(*TLO.DAG.getContext(), LowBits); 2068 if (VT.isVector()) 2069 ExtVT = EVT::getVectorVT(*TLO.DAG.getContext(), ExtVT, 2070 VT.getVectorElementCount()); 2071 2072 if (*InnerSA == ShAmt) { 2073 if (!TLO.LegalOperations() || 2074 getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) == Legal) 2075 return TLO.CombineTo( 2076 Op, TLO.DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, 2077 Op0.getOperand(0), 2078 TLO.DAG.getValueType(ExtVT))); 2079 2080 // Even if we can't convert to sext_inreg, we might be able to 2081 // remove this shift pair if the input is already sign extended. 2082 unsigned NumSignBits = 2083 TLO.DAG.ComputeNumSignBits(Op0.getOperand(0), DemandedElts); 2084 if (NumSignBits > ShAmt) 2085 return TLO.CombineTo(Op, Op0.getOperand(0)); 2086 } 2087 } 2088 } 2089 2090 APInt InDemandedMask = (DemandedBits << ShAmt); 2091 2092 // If the shift is exact, then it does demand the low bits (and knows that 2093 // they are zero). 2094 if (Op->getFlags().hasExact()) 2095 InDemandedMask.setLowBits(ShAmt); 2096 2097 // If any of the demanded bits are produced by the sign extension, we also 2098 // demand the input sign bit. 2099 if (DemandedBits.countl_zero() < ShAmt) 2100 InDemandedMask.setSignBit(); 2101 2102 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 2103 Depth + 1)) 2104 return true; 2105 Known.Zero.lshrInPlace(ShAmt); 2106 Known.One.lshrInPlace(ShAmt); 2107 2108 // If the input sign bit is known to be zero, or if none of the top bits 2109 // are demanded, turn this into an unsigned shift right. 2110 if (Known.Zero[BitWidth - ShAmt - 1] || 2111 DemandedBits.countl_zero() >= ShAmt) { 2112 SDNodeFlags Flags; 2113 Flags.setExact(Op->getFlags().hasExact()); 2114 return TLO.CombineTo( 2115 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 2116 } 2117 2118 int Log2 = DemandedBits.exactLogBase2(); 2119 if (Log2 >= 0) { 2120 // The bit must come from the sign. 2121 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 2122 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 2123 } 2124 2125 if (Known.One[BitWidth - ShAmt - 1]) 2126 // New bits are known one. 2127 Known.One.setHighBits(ShAmt); 2128 2129 // Attempt to avoid multi-use ops if we don't need anything from them. 2130 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2131 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2132 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 2133 if (DemandedOp0) { 2134 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 2135 return TLO.CombineTo(Op, NewOp); 2136 } 2137 } 2138 } 2139 2140 // Try to match AVG patterns (after shift simplification). 2141 if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits, 2142 DemandedElts, Depth + 1)) 2143 return TLO.CombineTo(Op, AVG); 2144 2145 break; 2146 } 2147 case ISD::FSHL: 2148 case ISD::FSHR: { 2149 SDValue Op0 = Op.getOperand(0); 2150 SDValue Op1 = Op.getOperand(1); 2151 SDValue Op2 = Op.getOperand(2); 2152 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 2153 2154 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 2155 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 2156 2157 // For fshl, 0-shift returns the 1st arg. 2158 // For fshr, 0-shift returns the 2nd arg. 2159 if (Amt == 0) { 2160 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 2161 Known, TLO, Depth + 1)) 2162 return true; 2163 break; 2164 } 2165 2166 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 2167 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 2168 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 2169 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 2170 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 2171 Depth + 1)) 2172 return true; 2173 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 2174 Depth + 1)) 2175 return true; 2176 2177 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 2178 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 2179 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 2180 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 2181 Known = Known.unionWith(Known2); 2182 2183 // Attempt to avoid multi-use ops if we don't need anything from them. 2184 if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() || 2185 !DemandedElts.isAllOnes()) { 2186 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2187 Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1); 2188 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2189 Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1); 2190 if (DemandedOp0 || DemandedOp1) { 2191 DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0; 2192 DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1; 2193 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0, 2194 DemandedOp1, Op2); 2195 return TLO.CombineTo(Op, NewOp); 2196 } 2197 } 2198 } 2199 2200 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 2201 if (isPowerOf2_32(BitWidth)) { 2202 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 2203 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 2204 Known2, TLO, Depth + 1)) 2205 return true; 2206 } 2207 break; 2208 } 2209 case ISD::ROTL: 2210 case ISD::ROTR: { 2211 SDValue Op0 = Op.getOperand(0); 2212 SDValue Op1 = Op.getOperand(1); 2213 bool IsROTL = (Op.getOpcode() == ISD::ROTL); 2214 2215 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 2216 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 2217 return TLO.CombineTo(Op, Op0); 2218 2219 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 2220 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 2221 unsigned RevAmt = BitWidth - Amt; 2222 2223 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) 2224 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) 2225 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); 2226 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 2227 Depth + 1)) 2228 return true; 2229 2230 // rot*(x, 0) --> x 2231 if (Amt == 0) 2232 return TLO.CombineTo(Op, Op0); 2233 2234 // See if we don't demand either half of the rotated bits. 2235 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && 2236 DemandedBits.countr_zero() >= (IsROTL ? Amt : RevAmt)) { 2237 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); 2238 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); 2239 } 2240 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && 2241 DemandedBits.countl_zero() >= (IsROTL ? RevAmt : Amt)) { 2242 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); 2243 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 2244 } 2245 } 2246 2247 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 2248 if (isPowerOf2_32(BitWidth)) { 2249 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 2250 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 2251 Depth + 1)) 2252 return true; 2253 } 2254 break; 2255 } 2256 case ISD::SMIN: 2257 case ISD::SMAX: 2258 case ISD::UMIN: 2259 case ISD::UMAX: { 2260 unsigned Opc = Op.getOpcode(); 2261 SDValue Op0 = Op.getOperand(0); 2262 SDValue Op1 = Op.getOperand(1); 2263 2264 // If we're only demanding signbits, then we can simplify to OR/AND node. 2265 unsigned BitOp = 2266 (Opc == ISD::SMIN || Opc == ISD::UMAX) ? ISD::OR : ISD::AND; 2267 unsigned NumSignBits = 2268 std::min(TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1), 2269 TLO.DAG.ComputeNumSignBits(Op1, DemandedElts, Depth + 1)); 2270 unsigned NumDemandedUpperBits = BitWidth - DemandedBits.countr_zero(); 2271 if (NumSignBits >= NumDemandedUpperBits) 2272 return TLO.CombineTo(Op, TLO.DAG.getNode(BitOp, SDLoc(Op), VT, Op0, Op1)); 2273 2274 // Check if one arg is always less/greater than (or equal) to the other arg. 2275 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 2276 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 2277 switch (Opc) { 2278 case ISD::SMIN: 2279 if (std::optional<bool> IsSLE = KnownBits::sle(Known0, Known1)) 2280 return TLO.CombineTo(Op, *IsSLE ? Op0 : Op1); 2281 if (std::optional<bool> IsSLT = KnownBits::slt(Known0, Known1)) 2282 return TLO.CombineTo(Op, *IsSLT ? Op0 : Op1); 2283 Known = KnownBits::smin(Known0, Known1); 2284 break; 2285 case ISD::SMAX: 2286 if (std::optional<bool> IsSGE = KnownBits::sge(Known0, Known1)) 2287 return TLO.CombineTo(Op, *IsSGE ? Op0 : Op1); 2288 if (std::optional<bool> IsSGT = KnownBits::sgt(Known0, Known1)) 2289 return TLO.CombineTo(Op, *IsSGT ? Op0 : Op1); 2290 Known = KnownBits::smax(Known0, Known1); 2291 break; 2292 case ISD::UMIN: 2293 if (std::optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 2294 return TLO.CombineTo(Op, *IsULE ? Op0 : Op1); 2295 if (std::optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 2296 return TLO.CombineTo(Op, *IsULT ? Op0 : Op1); 2297 Known = KnownBits::umin(Known0, Known1); 2298 break; 2299 case ISD::UMAX: 2300 if (std::optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 2301 return TLO.CombineTo(Op, *IsUGE ? Op0 : Op1); 2302 if (std::optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 2303 return TLO.CombineTo(Op, *IsUGT ? Op0 : Op1); 2304 Known = KnownBits::umax(Known0, Known1); 2305 break; 2306 } 2307 break; 2308 } 2309 case ISD::BITREVERSE: { 2310 SDValue Src = Op.getOperand(0); 2311 APInt DemandedSrcBits = DemandedBits.reverseBits(); 2312 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 2313 Depth + 1)) 2314 return true; 2315 Known.One = Known2.One.reverseBits(); 2316 Known.Zero = Known2.Zero.reverseBits(); 2317 break; 2318 } 2319 case ISD::BSWAP: { 2320 SDValue Src = Op.getOperand(0); 2321 2322 // If the only bits demanded come from one byte of the bswap result, 2323 // just shift the input byte into position to eliminate the bswap. 2324 unsigned NLZ = DemandedBits.countl_zero(); 2325 unsigned NTZ = DemandedBits.countr_zero(); 2326 2327 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 2328 // we need all the bits down to bit 8. Likewise, round NLZ. If we 2329 // have 14 leading zeros, round to 8. 2330 NLZ = alignDown(NLZ, 8); 2331 NTZ = alignDown(NTZ, 8); 2332 // If we need exactly one byte, we can do this transformation. 2333 if (BitWidth - NLZ - NTZ == 8) { 2334 // Replace this with either a left or right shift to get the byte into 2335 // the right place. 2336 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL; 2337 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) { 2338 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ; 2339 SDValue ShAmt = TLO.DAG.getShiftAmountConstant(ShiftAmount, VT, dl); 2340 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt); 2341 return TLO.CombineTo(Op, NewOp); 2342 } 2343 } 2344 2345 APInt DemandedSrcBits = DemandedBits.byteSwap(); 2346 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 2347 Depth + 1)) 2348 return true; 2349 Known.One = Known2.One.byteSwap(); 2350 Known.Zero = Known2.Zero.byteSwap(); 2351 break; 2352 } 2353 case ISD::CTPOP: { 2354 // If only 1 bit is demanded, replace with PARITY as long as we're before 2355 // op legalization. 2356 // FIXME: Limit to scalars for now. 2357 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 2358 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 2359 Op.getOperand(0))); 2360 2361 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2362 break; 2363 } 2364 case ISD::SIGN_EXTEND_INREG: { 2365 SDValue Op0 = Op.getOperand(0); 2366 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2367 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 2368 2369 // If we only care about the highest bit, don't bother shifting right. 2370 if (DemandedBits.isSignMask()) { 2371 unsigned MinSignedBits = 2372 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1); 2373 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 2374 // However if the input is already sign extended we expect the sign 2375 // extension to be dropped altogether later and do not simplify. 2376 if (!AlreadySignExtended) { 2377 // Compute the correct shift amount type, which must be getShiftAmountTy 2378 // for scalar types after legalization. 2379 SDValue ShiftAmt = 2380 TLO.DAG.getShiftAmountConstant(BitWidth - ExVTBits, VT, dl); 2381 return TLO.CombineTo(Op, 2382 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 2383 } 2384 } 2385 2386 // If none of the extended bits are demanded, eliminate the sextinreg. 2387 if (DemandedBits.getActiveBits() <= ExVTBits) 2388 return TLO.CombineTo(Op, Op0); 2389 2390 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 2391 2392 // Since the sign extended bits are demanded, we know that the sign 2393 // bit is demanded. 2394 InputDemandedBits.setBit(ExVTBits - 1); 2395 2396 if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO, 2397 Depth + 1)) 2398 return true; 2399 2400 // If the sign bit of the input is known set or clear, then we know the 2401 // top bits of the result. 2402 2403 // If the input sign bit is known zero, convert this into a zero extension. 2404 if (Known.Zero[ExVTBits - 1]) 2405 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 2406 2407 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 2408 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 2409 Known.One.setBitsFrom(ExVTBits); 2410 Known.Zero &= Mask; 2411 } else { // Input sign bit unknown 2412 Known.Zero &= Mask; 2413 Known.One &= Mask; 2414 } 2415 break; 2416 } 2417 case ISD::BUILD_PAIR: { 2418 EVT HalfVT = Op.getOperand(0).getValueType(); 2419 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 2420 2421 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 2422 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 2423 2424 KnownBits KnownLo, KnownHi; 2425 2426 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 2427 return true; 2428 2429 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 2430 return true; 2431 2432 Known = KnownHi.concat(KnownLo); 2433 break; 2434 } 2435 case ISD::ZERO_EXTEND_VECTOR_INREG: 2436 if (VT.isScalableVector()) 2437 return false; 2438 [[fallthrough]]; 2439 case ISD::ZERO_EXTEND: { 2440 SDValue Src = Op.getOperand(0); 2441 EVT SrcVT = Src.getValueType(); 2442 unsigned InBits = SrcVT.getScalarSizeInBits(); 2443 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; 2444 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 2445 2446 // If none of the top bits are demanded, convert this into an any_extend. 2447 if (DemandedBits.getActiveBits() <= InBits) { 2448 // If we only need the non-extended bits of the bottom element 2449 // then we can just bitcast to the result. 2450 if (IsLE && IsVecInReg && DemandedElts == 1 && 2451 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2452 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2453 2454 unsigned Opc = 2455 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2456 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2457 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2458 } 2459 2460 APInt InDemandedBits = DemandedBits.trunc(InBits); 2461 APInt InDemandedElts = DemandedElts.zext(InElts); 2462 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2463 Depth + 1)) { 2464 Op->dropFlags(SDNodeFlags::NonNeg); 2465 return true; 2466 } 2467 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2468 Known = Known.zext(BitWidth); 2469 2470 // Attempt to avoid multi-use ops if we don't need anything from them. 2471 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2472 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2473 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2474 break; 2475 } 2476 case ISD::SIGN_EXTEND_VECTOR_INREG: 2477 if (VT.isScalableVector()) 2478 return false; 2479 [[fallthrough]]; 2480 case ISD::SIGN_EXTEND: { 2481 SDValue Src = Op.getOperand(0); 2482 EVT SrcVT = Src.getValueType(); 2483 unsigned InBits = SrcVT.getScalarSizeInBits(); 2484 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; 2485 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 2486 2487 APInt InDemandedElts = DemandedElts.zext(InElts); 2488 APInt InDemandedBits = DemandedBits.trunc(InBits); 2489 2490 // Since some of the sign extended bits are demanded, we know that the sign 2491 // bit is demanded. 2492 InDemandedBits.setBit(InBits - 1); 2493 2494 // If none of the top bits are demanded, convert this into an any_extend. 2495 if (DemandedBits.getActiveBits() <= InBits) { 2496 // If we only need the non-extended bits of the bottom element 2497 // then we can just bitcast to the result. 2498 if (IsLE && IsVecInReg && DemandedElts == 1 && 2499 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2500 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2501 2502 // Don't lose an all signbits 0/-1 splat on targets with 0/-1 booleans. 2503 if (getBooleanContents(VT) != ZeroOrNegativeOneBooleanContent || 2504 TLO.DAG.ComputeNumSignBits(Src, InDemandedElts, Depth + 1) != 2505 InBits) { 2506 unsigned Opc = 2507 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2508 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2509 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2510 } 2511 } 2512 2513 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2514 Depth + 1)) 2515 return true; 2516 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2517 2518 // If the sign bit is known one, the top bits match. 2519 Known = Known.sext(BitWidth); 2520 2521 // If the sign bit is known zero, convert this to a zero extend. 2522 if (Known.isNonNegative()) { 2523 unsigned Opc = 2524 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 2525 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) { 2526 SDNodeFlags Flags; 2527 if (!IsVecInReg) 2528 Flags |= SDNodeFlags::NonNeg; 2529 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src, Flags)); 2530 } 2531 } 2532 2533 // Attempt to avoid multi-use ops if we don't need anything from them. 2534 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2535 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2536 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2537 break; 2538 } 2539 case ISD::ANY_EXTEND_VECTOR_INREG: 2540 if (VT.isScalableVector()) 2541 return false; 2542 [[fallthrough]]; 2543 case ISD::ANY_EXTEND: { 2544 SDValue Src = Op.getOperand(0); 2545 EVT SrcVT = Src.getValueType(); 2546 unsigned InBits = SrcVT.getScalarSizeInBits(); 2547 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; 2548 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 2549 2550 // If we only need the bottom element then we can just bitcast. 2551 // TODO: Handle ANY_EXTEND? 2552 if (IsLE && IsVecInReg && DemandedElts == 1 && 2553 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2554 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2555 2556 APInt InDemandedBits = DemandedBits.trunc(InBits); 2557 APInt InDemandedElts = DemandedElts.zext(InElts); 2558 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2559 Depth + 1)) 2560 return true; 2561 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2562 Known = Known.anyext(BitWidth); 2563 2564 // Attempt to avoid multi-use ops if we don't need anything from them. 2565 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2566 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2567 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2568 break; 2569 } 2570 case ISD::TRUNCATE: { 2571 SDValue Src = Op.getOperand(0); 2572 2573 // Simplify the input, using demanded bit information, and compute the known 2574 // zero/one bits live out. 2575 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2576 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2577 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2578 Depth + 1)) 2579 return true; 2580 Known = Known.trunc(BitWidth); 2581 2582 // Attempt to avoid multi-use ops if we don't need anything from them. 2583 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2584 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2585 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2586 2587 // If the input is only used by this truncate, see if we can shrink it based 2588 // on the known demanded bits. 2589 switch (Src.getOpcode()) { 2590 default: 2591 break; 2592 case ISD::SRL: 2593 // Shrink SRL by a constant if none of the high bits shifted in are 2594 // demanded. 2595 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2596 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2597 // undesirable. 2598 break; 2599 2600 if (Src.getNode()->hasOneUse()) { 2601 if (isTruncateFree(Src, VT) && 2602 !isTruncateFree(Src.getValueType(), VT)) { 2603 // If truncate is only free at trunc(srl), do not turn it into 2604 // srl(trunc). The check is done by first check the truncate is free 2605 // at Src's opcode(srl), then check the truncate is not done by 2606 // referencing sub-register. In test, if both trunc(srl) and 2607 // srl(trunc)'s trunc are free, srl(trunc) performs better. If only 2608 // trunc(srl)'s trunc is free, trunc(srl) is better. 2609 break; 2610 } 2611 2612 std::optional<uint64_t> ShAmtC = 2613 TLO.DAG.getValidShiftAmount(Src, DemandedElts, Depth + 2); 2614 if (!ShAmtC || *ShAmtC >= BitWidth) 2615 break; 2616 uint64_t ShVal = *ShAmtC; 2617 2618 APInt HighBits = 2619 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2620 HighBits.lshrInPlace(ShVal); 2621 HighBits = HighBits.trunc(BitWidth); 2622 if (!(HighBits & DemandedBits)) { 2623 // None of the shifted in bits are needed. Add a truncate of the 2624 // shift input, then shift it. 2625 SDValue NewShAmt = TLO.DAG.getShiftAmountConstant(ShVal, VT, dl); 2626 SDValue NewTrunc = 2627 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2628 return TLO.CombineTo( 2629 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2630 } 2631 } 2632 break; 2633 } 2634 2635 break; 2636 } 2637 case ISD::AssertZext: { 2638 // AssertZext demands all of the high bits, plus any of the low bits 2639 // demanded by its users. 2640 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2641 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2642 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2643 TLO, Depth + 1)) 2644 return true; 2645 2646 Known.Zero |= ~InMask; 2647 Known.One &= (~Known.Zero); 2648 break; 2649 } 2650 case ISD::EXTRACT_VECTOR_ELT: { 2651 SDValue Src = Op.getOperand(0); 2652 SDValue Idx = Op.getOperand(1); 2653 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2654 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2655 2656 if (SrcEltCnt.isScalable()) 2657 return false; 2658 2659 // Demand the bits from every vector element without a constant index. 2660 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2661 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2662 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2663 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2664 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2665 2666 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2667 // anything about the extended bits. 2668 APInt DemandedSrcBits = DemandedBits; 2669 if (BitWidth > EltBitWidth) 2670 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2671 2672 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2673 Depth + 1)) 2674 return true; 2675 2676 // Attempt to avoid multi-use ops if we don't need anything from them. 2677 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2678 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2679 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2680 SDValue NewOp = 2681 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2682 return TLO.CombineTo(Op, NewOp); 2683 } 2684 } 2685 2686 Known = Known2; 2687 if (BitWidth > EltBitWidth) 2688 Known = Known.anyext(BitWidth); 2689 break; 2690 } 2691 case ISD::BITCAST: { 2692 if (VT.isScalableVector()) 2693 return false; 2694 SDValue Src = Op.getOperand(0); 2695 EVT SrcVT = Src.getValueType(); 2696 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2697 2698 // If this is an FP->Int bitcast and if the sign bit is the only 2699 // thing demanded, turn this into a FGETSIGN. 2700 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2701 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2702 SrcVT.isFloatingPoint()) { 2703 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2704 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2705 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2706 SrcVT != MVT::f128) { 2707 // Cannot eliminate/lower SHL for f128 yet. 2708 EVT Ty = OpVTLegal ? VT : MVT::i32; 2709 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2710 // place. We expect the SHL to be eliminated by other optimizations. 2711 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2712 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2713 if (!OpVTLegal && OpVTSizeInBits > 32) 2714 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2715 unsigned ShVal = Op.getValueSizeInBits() - 1; 2716 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2717 return TLO.CombineTo(Op, 2718 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2719 } 2720 } 2721 2722 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2723 // Demand the elt/bit if any of the original elts/bits are demanded. 2724 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { 2725 unsigned Scale = BitWidth / NumSrcEltBits; 2726 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2727 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2728 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2729 for (unsigned i = 0; i != Scale; ++i) { 2730 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 2731 unsigned BitOffset = EltOffset * NumSrcEltBits; 2732 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 2733 if (!Sub.isZero()) { 2734 DemandedSrcBits |= Sub; 2735 for (unsigned j = 0; j != NumElts; ++j) 2736 if (DemandedElts[j]) 2737 DemandedSrcElts.setBit((j * Scale) + i); 2738 } 2739 } 2740 2741 APInt KnownSrcUndef, KnownSrcZero; 2742 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2743 KnownSrcZero, TLO, Depth + 1)) 2744 return true; 2745 2746 KnownBits KnownSrcBits; 2747 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2748 KnownSrcBits, TLO, Depth + 1)) 2749 return true; 2750 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { 2751 // TODO - bigendian once we have test coverage. 2752 unsigned Scale = NumSrcEltBits / BitWidth; 2753 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2754 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2755 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2756 for (unsigned i = 0; i != NumElts; ++i) 2757 if (DemandedElts[i]) { 2758 unsigned Offset = (i % Scale) * BitWidth; 2759 DemandedSrcBits.insertBits(DemandedBits, Offset); 2760 DemandedSrcElts.setBit(i / Scale); 2761 } 2762 2763 if (SrcVT.isVector()) { 2764 APInt KnownSrcUndef, KnownSrcZero; 2765 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2766 KnownSrcZero, TLO, Depth + 1)) 2767 return true; 2768 } 2769 2770 KnownBits KnownSrcBits; 2771 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2772 KnownSrcBits, TLO, Depth + 1)) 2773 return true; 2774 2775 // Attempt to avoid multi-use ops if we don't need anything from them. 2776 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2777 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2778 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2779 SDValue NewOp = TLO.DAG.getBitcast(VT, DemandedSrc); 2780 return TLO.CombineTo(Op, NewOp); 2781 } 2782 } 2783 } 2784 2785 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2786 // recursive call where Known may be useful to the caller. 2787 if (Depth > 0) { 2788 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2789 return false; 2790 } 2791 break; 2792 } 2793 case ISD::MUL: 2794 if (DemandedBits.isPowerOf2()) { 2795 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 2796 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 2797 // odd (has LSB set), then the left-shifted low bit of X is the answer. 2798 unsigned CTZ = DemandedBits.countr_zero(); 2799 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 2800 if (C && C->getAPIntValue().countr_zero() == CTZ) { 2801 SDValue AmtC = TLO.DAG.getShiftAmountConstant(CTZ, VT, dl); 2802 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC); 2803 return TLO.CombineTo(Op, Shl); 2804 } 2805 } 2806 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: 2807 // X * X is odd iff X is odd. 2808 // 'Quadratic Reciprocity': X * X -> 0 for bit[1] 2809 if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) { 2810 SDValue One = TLO.DAG.getConstant(1, dl, VT); 2811 SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One); 2812 return TLO.CombineTo(Op, And1); 2813 } 2814 [[fallthrough]]; 2815 case ISD::ADD: 2816 case ISD::SUB: { 2817 // Add, Sub, and Mul don't demand any bits in positions beyond that 2818 // of the highest bit demanded of them. 2819 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2820 SDNodeFlags Flags = Op.getNode()->getFlags(); 2821 unsigned DemandedBitsLZ = DemandedBits.countl_zero(); 2822 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2823 KnownBits KnownOp0, KnownOp1; 2824 auto GetDemandedBitsLHSMask = [&](APInt Demanded, 2825 const KnownBits &KnownRHS) { 2826 if (Op.getOpcode() == ISD::MUL) 2827 Demanded.clearHighBits(KnownRHS.countMinTrailingZeros()); 2828 return Demanded; 2829 }; 2830 if (SimplifyDemandedBits(Op1, LoMask, DemandedElts, KnownOp1, TLO, 2831 Depth + 1) || 2832 SimplifyDemandedBits(Op0, GetDemandedBitsLHSMask(LoMask, KnownOp1), 2833 DemandedElts, KnownOp0, TLO, Depth + 1) || 2834 // See if the operation should be performed at a smaller bit width. 2835 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2836 // Disable the nsw and nuw flags. We can no longer guarantee that we 2837 // won't wrap after simplification. 2838 Op->dropFlags(SDNodeFlags::NoWrap); 2839 return true; 2840 } 2841 2842 // neg x with only low bit demanded is simply x. 2843 if (Op.getOpcode() == ISD::SUB && DemandedBits.isOne() && 2844 isNullConstant(Op0)) 2845 return TLO.CombineTo(Op, Op1); 2846 2847 // Attempt to avoid multi-use ops if we don't need anything from them. 2848 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2849 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2850 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2851 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2852 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2853 if (DemandedOp0 || DemandedOp1) { 2854 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2855 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2856 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, 2857 Flags & ~SDNodeFlags::NoWrap); 2858 return TLO.CombineTo(Op, NewOp); 2859 } 2860 } 2861 2862 // If we have a constant operand, we may be able to turn it into -1 if we 2863 // do not demand the high bits. This can make the constant smaller to 2864 // encode, allow more general folding, or match specialized instruction 2865 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2866 // is probably not useful (and could be detrimental). 2867 ConstantSDNode *C = isConstOrConstSplat(Op1); 2868 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2869 if (C && !C->isAllOnes() && !C->isOne() && 2870 (C->getAPIntValue() | HighMask).isAllOnes()) { 2871 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2872 // Disable the nsw and nuw flags. We can no longer guarantee that we 2873 // won't wrap after simplification. 2874 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, 2875 Flags & ~SDNodeFlags::NoWrap); 2876 return TLO.CombineTo(Op, NewOp); 2877 } 2878 2879 // Match a multiply with a disguised negated-power-of-2 and convert to a 2880 // an equivalent shift-left amount. 2881 // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2882 auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned { 2883 if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse()) 2884 return 0; 2885 2886 // Don't touch opaque constants. Also, ignore zero and power-of-2 2887 // multiplies. Those will get folded later. 2888 ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1)); 2889 if (MulC && !MulC->isOpaque() && !MulC->isZero() && 2890 !MulC->getAPIntValue().isPowerOf2()) { 2891 APInt UnmaskedC = MulC->getAPIntValue() | HighMask; 2892 if (UnmaskedC.isNegatedPowerOf2()) 2893 return (-UnmaskedC).logBase2(); 2894 } 2895 return 0; 2896 }; 2897 2898 auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, 2899 unsigned ShlAmt) { 2900 SDValue ShlAmtC = TLO.DAG.getShiftAmountConstant(ShlAmt, VT, dl); 2901 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC); 2902 SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl); 2903 return TLO.CombineTo(Op, Res); 2904 }; 2905 2906 if (isOperationLegalOrCustom(ISD::SHL, VT)) { 2907 if (Op.getOpcode() == ISD::ADD) { 2908 // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2909 if (unsigned ShAmt = getShiftLeftAmt(Op0)) 2910 return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt); 2911 // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC)) 2912 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2913 return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt); 2914 } 2915 if (Op.getOpcode() == ISD::SUB) { 2916 // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC)) 2917 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2918 return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt); 2919 } 2920 } 2921 2922 if (Op.getOpcode() == ISD::MUL) { 2923 Known = KnownBits::mul(KnownOp0, KnownOp1); 2924 } else { // Op.getOpcode() is either ISD::ADD or ISD::SUB. 2925 Known = KnownBits::computeForAddSub( 2926 Op.getOpcode() == ISD::ADD, Flags.hasNoSignedWrap(), 2927 Flags.hasNoUnsignedWrap(), KnownOp0, KnownOp1); 2928 } 2929 break; 2930 } 2931 default: 2932 // We also ask the target about intrinsics (which could be specific to it). 2933 if (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2934 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN) { 2935 // TODO: Probably okay to remove after audit; here to reduce change size 2936 // in initial enablement patch for scalable vectors 2937 if (Op.getValueType().isScalableVector()) 2938 break; 2939 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2940 Known, TLO, Depth)) 2941 return true; 2942 break; 2943 } 2944 2945 // Just use computeKnownBits to compute output bits. 2946 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2947 break; 2948 } 2949 2950 // If we know the value of all of the demanded bits, return this as a 2951 // constant. 2952 if (!isTargetCanonicalConstantNode(Op) && 2953 DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2954 // Avoid folding to a constant if any OpaqueConstant is involved. 2955 const SDNode *N = Op.getNode(); 2956 for (SDNode *Op : 2957 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2958 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 2959 if (C->isOpaque()) 2960 return false; 2961 } 2962 if (VT.isInteger()) 2963 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2964 if (VT.isFloatingPoint()) 2965 return TLO.CombineTo( 2966 Op, TLO.DAG.getConstantFP(APFloat(VT.getFltSemantics(), Known.One), 2967 dl, VT)); 2968 } 2969 2970 // A multi use 'all demanded elts' simplify failed to find any knownbits. 2971 // Try again just for the original demanded elts. 2972 // Ensure we do this AFTER constant folding above. 2973 if (HasMultiUse && Known.isUnknown() && !OriginalDemandedElts.isAllOnes()) 2974 Known = TLO.DAG.computeKnownBits(Op, OriginalDemandedElts, Depth); 2975 2976 return false; 2977 } 2978 2979 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2980 const APInt &DemandedElts, 2981 DAGCombinerInfo &DCI) const { 2982 SelectionDAG &DAG = DCI.DAG; 2983 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2984 !DCI.isBeforeLegalizeOps()); 2985 2986 APInt KnownUndef, KnownZero; 2987 bool Simplified = 2988 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2989 if (Simplified) { 2990 DCI.AddToWorklist(Op.getNode()); 2991 DCI.CommitTargetLoweringOpt(TLO); 2992 } 2993 2994 return Simplified; 2995 } 2996 2997 /// Given a vector binary operation and known undefined elements for each input 2998 /// operand, compute whether each element of the output is undefined. 2999 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 3000 const APInt &UndefOp0, 3001 const APInt &UndefOp1) { 3002 EVT VT = BO.getValueType(); 3003 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 3004 "Vector binop only"); 3005 3006 EVT EltVT = VT.getVectorElementType(); 3007 unsigned NumElts = VT.isFixedLengthVector() ? VT.getVectorNumElements() : 1; 3008 assert(UndefOp0.getBitWidth() == NumElts && 3009 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 3010 3011 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 3012 const APInt &UndefVals) { 3013 if (UndefVals[Index]) 3014 return DAG.getUNDEF(EltVT); 3015 3016 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 3017 // Try hard to make sure that the getNode() call is not creating temporary 3018 // nodes. Ignore opaque integers because they do not constant fold. 3019 SDValue Elt = BV->getOperand(Index); 3020 auto *C = dyn_cast<ConstantSDNode>(Elt); 3021 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 3022 return Elt; 3023 } 3024 3025 return SDValue(); 3026 }; 3027 3028 APInt KnownUndef = APInt::getZero(NumElts); 3029 for (unsigned i = 0; i != NumElts; ++i) { 3030 // If both inputs for this element are either constant or undef and match 3031 // the element type, compute the constant/undef result for this element of 3032 // the vector. 3033 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 3034 // not handle FP constants. The code within getNode() should be refactored 3035 // to avoid the danger of creating a bogus temporary node here. 3036 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 3037 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 3038 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 3039 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 3040 KnownUndef.setBit(i); 3041 } 3042 return KnownUndef; 3043 } 3044 3045 bool TargetLowering::SimplifyDemandedVectorElts( 3046 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 3047 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 3048 bool AssumeSingleUse) const { 3049 EVT VT = Op.getValueType(); 3050 unsigned Opcode = Op.getOpcode(); 3051 APInt DemandedElts = OriginalDemandedElts; 3052 unsigned NumElts = DemandedElts.getBitWidth(); 3053 assert(VT.isVector() && "Expected vector op"); 3054 3055 KnownUndef = KnownZero = APInt::getZero(NumElts); 3056 3057 if (!shouldSimplifyDemandedVectorElts(Op, TLO)) 3058 return false; 3059 3060 // TODO: For now we assume we know nothing about scalable vectors. 3061 if (VT.isScalableVector()) 3062 return false; 3063 3064 assert(VT.getVectorNumElements() == NumElts && 3065 "Mask size mismatches value type element count!"); 3066 3067 // Undef operand. 3068 if (Op.isUndef()) { 3069 KnownUndef.setAllBits(); 3070 return false; 3071 } 3072 3073 // If Op has other users, assume that all elements are needed. 3074 if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) 3075 DemandedElts.setAllBits(); 3076 3077 // Not demanding any elements from Op. 3078 if (DemandedElts == 0) { 3079 KnownUndef.setAllBits(); 3080 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3081 } 3082 3083 // Limit search depth. 3084 if (Depth >= SelectionDAG::MaxRecursionDepth) 3085 return false; 3086 3087 SDLoc DL(Op); 3088 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 3089 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 3090 3091 // Helper for demanding the specified elements and all the bits of both binary 3092 // operands. 3093 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 3094 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 3095 TLO.DAG, Depth + 1); 3096 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 3097 TLO.DAG, Depth + 1); 3098 if (NewOp0 || NewOp1) { 3099 SDValue NewOp = 3100 TLO.DAG.getNode(Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, 3101 NewOp1 ? NewOp1 : Op1, Op->getFlags()); 3102 return TLO.CombineTo(Op, NewOp); 3103 } 3104 return false; 3105 }; 3106 3107 switch (Opcode) { 3108 case ISD::SCALAR_TO_VECTOR: { 3109 if (!DemandedElts[0]) { 3110 KnownUndef.setAllBits(); 3111 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3112 } 3113 SDValue ScalarSrc = Op.getOperand(0); 3114 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 3115 SDValue Src = ScalarSrc.getOperand(0); 3116 SDValue Idx = ScalarSrc.getOperand(1); 3117 EVT SrcVT = Src.getValueType(); 3118 3119 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 3120 3121 if (SrcEltCnt.isScalable()) 3122 return false; 3123 3124 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 3125 if (isNullConstant(Idx)) { 3126 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 3127 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 3128 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 3129 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 3130 TLO, Depth + 1)) 3131 return true; 3132 } 3133 } 3134 KnownUndef.setHighBits(NumElts - 1); 3135 break; 3136 } 3137 case ISD::BITCAST: { 3138 SDValue Src = Op.getOperand(0); 3139 EVT SrcVT = Src.getValueType(); 3140 3141 // We only handle vectors here. 3142 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 3143 if (!SrcVT.isVector()) 3144 break; 3145 3146 // Fast handling of 'identity' bitcasts. 3147 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 3148 if (NumSrcElts == NumElts) 3149 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 3150 KnownZero, TLO, Depth + 1); 3151 3152 APInt SrcDemandedElts, SrcZero, SrcUndef; 3153 3154 // Bitcast from 'large element' src vector to 'small element' vector, we 3155 // must demand a source element if any DemandedElt maps to it. 3156 if ((NumElts % NumSrcElts) == 0) { 3157 unsigned Scale = NumElts / NumSrcElts; 3158 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 3159 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 3160 TLO, Depth + 1)) 3161 return true; 3162 3163 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 3164 // of the large element. 3165 // TODO - bigendian once we have test coverage. 3166 if (IsLE) { 3167 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 3168 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 3169 for (unsigned i = 0; i != NumElts; ++i) 3170 if (DemandedElts[i]) { 3171 unsigned Ofs = (i % Scale) * EltSizeInBits; 3172 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 3173 } 3174 3175 KnownBits Known; 3176 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 3177 TLO, Depth + 1)) 3178 return true; 3179 3180 // The bitcast has split each wide element into a number of 3181 // narrow subelements. We have just computed the Known bits 3182 // for wide elements. See if element splitting results in 3183 // some subelements being zero. Only for demanded elements! 3184 for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) { 3185 if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits) 3186 .isAllOnes()) 3187 continue; 3188 for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) { 3189 unsigned Elt = Scale * SrcElt + SubElt; 3190 if (DemandedElts[Elt]) 3191 KnownZero.setBit(Elt); 3192 } 3193 } 3194 } 3195 3196 // If the src element is zero/undef then all the output elements will be - 3197 // only demanded elements are guaranteed to be correct. 3198 for (unsigned i = 0; i != NumSrcElts; ++i) { 3199 if (SrcDemandedElts[i]) { 3200 if (SrcZero[i]) 3201 KnownZero.setBits(i * Scale, (i + 1) * Scale); 3202 if (SrcUndef[i]) 3203 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 3204 } 3205 } 3206 } 3207 3208 // Bitcast from 'small element' src vector to 'large element' vector, we 3209 // demand all smaller source elements covered by the larger demanded element 3210 // of this vector. 3211 if ((NumSrcElts % NumElts) == 0) { 3212 unsigned Scale = NumSrcElts / NumElts; 3213 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 3214 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 3215 TLO, Depth + 1)) 3216 return true; 3217 3218 // If all the src elements covering an output element are zero/undef, then 3219 // the output element will be as well, assuming it was demanded. 3220 for (unsigned i = 0; i != NumElts; ++i) { 3221 if (DemandedElts[i]) { 3222 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 3223 KnownZero.setBit(i); 3224 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 3225 KnownUndef.setBit(i); 3226 } 3227 } 3228 } 3229 break; 3230 } 3231 case ISD::FREEZE: { 3232 SDValue N0 = Op.getOperand(0); 3233 if (TLO.DAG.isGuaranteedNotToBeUndefOrPoison(N0, DemandedElts, 3234 /*PoisonOnly=*/false)) 3235 return TLO.CombineTo(Op, N0); 3236 3237 // TODO: Replace this with the general fold from DAGCombiner::visitFREEZE 3238 // freeze(op(x, ...)) -> op(freeze(x), ...). 3239 if (N0.getOpcode() == ISD::SCALAR_TO_VECTOR && DemandedElts == 1) 3240 return TLO.CombineTo( 3241 Op, TLO.DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, 3242 TLO.DAG.getFreeze(N0.getOperand(0)))); 3243 break; 3244 } 3245 case ISD::BUILD_VECTOR: { 3246 // Check all elements and simplify any unused elements with UNDEF. 3247 if (!DemandedElts.isAllOnes()) { 3248 // Don't simplify BROADCASTS. 3249 if (llvm::any_of(Op->op_values(), 3250 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 3251 SmallVector<SDValue, 32> Ops(Op->ops()); 3252 bool Updated = false; 3253 for (unsigned i = 0; i != NumElts; ++i) { 3254 if (!DemandedElts[i] && !Ops[i].isUndef()) { 3255 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 3256 KnownUndef.setBit(i); 3257 Updated = true; 3258 } 3259 } 3260 if (Updated) 3261 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 3262 } 3263 } 3264 for (unsigned i = 0; i != NumElts; ++i) { 3265 SDValue SrcOp = Op.getOperand(i); 3266 if (SrcOp.isUndef()) { 3267 KnownUndef.setBit(i); 3268 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 3269 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 3270 KnownZero.setBit(i); 3271 } 3272 } 3273 break; 3274 } 3275 case ISD::CONCAT_VECTORS: { 3276 EVT SubVT = Op.getOperand(0).getValueType(); 3277 unsigned NumSubVecs = Op.getNumOperands(); 3278 unsigned NumSubElts = SubVT.getVectorNumElements(); 3279 for (unsigned i = 0; i != NumSubVecs; ++i) { 3280 SDValue SubOp = Op.getOperand(i); 3281 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 3282 APInt SubUndef, SubZero; 3283 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 3284 Depth + 1)) 3285 return true; 3286 KnownUndef.insertBits(SubUndef, i * NumSubElts); 3287 KnownZero.insertBits(SubZero, i * NumSubElts); 3288 } 3289 3290 // Attempt to avoid multi-use ops if we don't need anything from them. 3291 if (!DemandedElts.isAllOnes()) { 3292 bool FoundNewSub = false; 3293 SmallVector<SDValue, 2> DemandedSubOps; 3294 for (unsigned i = 0; i != NumSubVecs; ++i) { 3295 SDValue SubOp = Op.getOperand(i); 3296 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 3297 SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts( 3298 SubOp, SubElts, TLO.DAG, Depth + 1); 3299 DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp); 3300 FoundNewSub = NewSubOp ? true : FoundNewSub; 3301 } 3302 if (FoundNewSub) { 3303 SDValue NewOp = 3304 TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps); 3305 return TLO.CombineTo(Op, NewOp); 3306 } 3307 } 3308 break; 3309 } 3310 case ISD::INSERT_SUBVECTOR: { 3311 // Demand any elements from the subvector and the remainder from the src its 3312 // inserted into. 3313 SDValue Src = Op.getOperand(0); 3314 SDValue Sub = Op.getOperand(1); 3315 uint64_t Idx = Op.getConstantOperandVal(2); 3316 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3317 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3318 APInt DemandedSrcElts = DemandedElts; 3319 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 3320 3321 APInt SubUndef, SubZero; 3322 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 3323 Depth + 1)) 3324 return true; 3325 3326 // If none of the src operand elements are demanded, replace it with undef. 3327 if (!DemandedSrcElts && !Src.isUndef()) 3328 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 3329 TLO.DAG.getUNDEF(VT), Sub, 3330 Op.getOperand(2))); 3331 3332 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 3333 TLO, Depth + 1)) 3334 return true; 3335 KnownUndef.insertBits(SubUndef, Idx); 3336 KnownZero.insertBits(SubZero, Idx); 3337 3338 // Attempt to avoid multi-use ops if we don't need anything from them. 3339 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 3340 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 3341 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 3342 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 3343 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 3344 if (NewSrc || NewSub) { 3345 NewSrc = NewSrc ? NewSrc : Src; 3346 NewSub = NewSub ? NewSub : Sub; 3347 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 3348 NewSub, Op.getOperand(2)); 3349 return TLO.CombineTo(Op, NewOp); 3350 } 3351 } 3352 break; 3353 } 3354 case ISD::EXTRACT_SUBVECTOR: { 3355 // Offset the demanded elts by the subvector index. 3356 SDValue Src = Op.getOperand(0); 3357 if (Src.getValueType().isScalableVector()) 3358 break; 3359 uint64_t Idx = Op.getConstantOperandVal(1); 3360 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3361 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 3362 3363 APInt SrcUndef, SrcZero; 3364 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3365 Depth + 1)) 3366 return true; 3367 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 3368 KnownZero = SrcZero.extractBits(NumElts, Idx); 3369 3370 // Attempt to avoid multi-use ops if we don't need anything from them. 3371 if (!DemandedElts.isAllOnes()) { 3372 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 3373 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 3374 if (NewSrc) { 3375 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 3376 Op.getOperand(1)); 3377 return TLO.CombineTo(Op, NewOp); 3378 } 3379 } 3380 break; 3381 } 3382 case ISD::INSERT_VECTOR_ELT: { 3383 SDValue Vec = Op.getOperand(0); 3384 SDValue Scl = Op.getOperand(1); 3385 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3386 3387 // For a legal, constant insertion index, if we don't need this insertion 3388 // then strip it, else remove it from the demanded elts. 3389 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 3390 unsigned Idx = CIdx->getZExtValue(); 3391 if (!DemandedElts[Idx]) 3392 return TLO.CombineTo(Op, Vec); 3393 3394 APInt DemandedVecElts(DemandedElts); 3395 DemandedVecElts.clearBit(Idx); 3396 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 3397 KnownZero, TLO, Depth + 1)) 3398 return true; 3399 3400 KnownUndef.setBitVal(Idx, Scl.isUndef()); 3401 3402 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 3403 break; 3404 } 3405 3406 APInt VecUndef, VecZero; 3407 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 3408 Depth + 1)) 3409 return true; 3410 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 3411 break; 3412 } 3413 case ISD::VSELECT: { 3414 SDValue Sel = Op.getOperand(0); 3415 SDValue LHS = Op.getOperand(1); 3416 SDValue RHS = Op.getOperand(2); 3417 3418 // Try to transform the select condition based on the current demanded 3419 // elements. 3420 APInt UndefSel, ZeroSel; 3421 if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, ZeroSel, TLO, 3422 Depth + 1)) 3423 return true; 3424 3425 // See if we can simplify either vselect operand. 3426 APInt DemandedLHS(DemandedElts); 3427 APInt DemandedRHS(DemandedElts); 3428 APInt UndefLHS, ZeroLHS; 3429 APInt UndefRHS, ZeroRHS; 3430 if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO, 3431 Depth + 1)) 3432 return true; 3433 if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO, 3434 Depth + 1)) 3435 return true; 3436 3437 KnownUndef = UndefLHS & UndefRHS; 3438 KnownZero = ZeroLHS & ZeroRHS; 3439 3440 // If we know that the selected element is always zero, we don't need the 3441 // select value element. 3442 APInt DemandedSel = DemandedElts & ~KnownZero; 3443 if (DemandedSel != DemandedElts) 3444 if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, ZeroSel, TLO, 3445 Depth + 1)) 3446 return true; 3447 3448 break; 3449 } 3450 case ISD::VECTOR_SHUFFLE: { 3451 SDValue LHS = Op.getOperand(0); 3452 SDValue RHS = Op.getOperand(1); 3453 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 3454 3455 // Collect demanded elements from shuffle operands.. 3456 APInt DemandedLHS(NumElts, 0); 3457 APInt DemandedRHS(NumElts, 0); 3458 for (unsigned i = 0; i != NumElts; ++i) { 3459 int M = ShuffleMask[i]; 3460 if (M < 0 || !DemandedElts[i]) 3461 continue; 3462 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 3463 if (M < (int)NumElts) 3464 DemandedLHS.setBit(M); 3465 else 3466 DemandedRHS.setBit(M - NumElts); 3467 } 3468 3469 // See if we can simplify either shuffle operand. 3470 APInt UndefLHS, ZeroLHS; 3471 APInt UndefRHS, ZeroRHS; 3472 if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO, 3473 Depth + 1)) 3474 return true; 3475 if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO, 3476 Depth + 1)) 3477 return true; 3478 3479 // Simplify mask using undef elements from LHS/RHS. 3480 bool Updated = false; 3481 bool IdentityLHS = true, IdentityRHS = true; 3482 SmallVector<int, 32> NewMask(ShuffleMask); 3483 for (unsigned i = 0; i != NumElts; ++i) { 3484 int &M = NewMask[i]; 3485 if (M < 0) 3486 continue; 3487 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 3488 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 3489 Updated = true; 3490 M = -1; 3491 } 3492 IdentityLHS &= (M < 0) || (M == (int)i); 3493 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 3494 } 3495 3496 // Update legal shuffle masks based on demanded elements if it won't reduce 3497 // to Identity which can cause premature removal of the shuffle mask. 3498 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 3499 SDValue LegalShuffle = 3500 buildLegalVectorShuffle(VT, DL, LHS, RHS, NewMask, TLO.DAG); 3501 if (LegalShuffle) 3502 return TLO.CombineTo(Op, LegalShuffle); 3503 } 3504 3505 // Propagate undef/zero elements from LHS/RHS. 3506 for (unsigned i = 0; i != NumElts; ++i) { 3507 int M = ShuffleMask[i]; 3508 if (M < 0) { 3509 KnownUndef.setBit(i); 3510 } else if (M < (int)NumElts) { 3511 if (UndefLHS[M]) 3512 KnownUndef.setBit(i); 3513 if (ZeroLHS[M]) 3514 KnownZero.setBit(i); 3515 } else { 3516 if (UndefRHS[M - NumElts]) 3517 KnownUndef.setBit(i); 3518 if (ZeroRHS[M - NumElts]) 3519 KnownZero.setBit(i); 3520 } 3521 } 3522 break; 3523 } 3524 case ISD::ANY_EXTEND_VECTOR_INREG: 3525 case ISD::SIGN_EXTEND_VECTOR_INREG: 3526 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3527 APInt SrcUndef, SrcZero; 3528 SDValue Src = Op.getOperand(0); 3529 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3530 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts); 3531 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3532 Depth + 1)) 3533 return true; 3534 KnownZero = SrcZero.zextOrTrunc(NumElts); 3535 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 3536 3537 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 3538 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 3539 DemandedSrcElts == 1) { 3540 // aext - if we just need the bottom element then we can bitcast. 3541 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 3542 } 3543 3544 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 3545 // zext(undef) upper bits are guaranteed to be zero. 3546 if (DemandedElts.isSubsetOf(KnownUndef)) 3547 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3548 KnownUndef.clearAllBits(); 3549 3550 // zext - if we just need the bottom element then we can mask: 3551 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 3552 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && 3553 Op->isOnlyUserOf(Src.getNode()) && 3554 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 3555 SDLoc DL(Op); 3556 EVT SrcVT = Src.getValueType(); 3557 EVT SrcSVT = SrcVT.getScalarType(); 3558 SmallVector<SDValue> MaskElts; 3559 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 3560 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 3561 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 3562 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 3563 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 3564 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 3565 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 3566 } 3567 } 3568 } 3569 break; 3570 } 3571 3572 // TODO: There are more binop opcodes that could be handled here - MIN, 3573 // MAX, saturated math, etc. 3574 case ISD::ADD: { 3575 SDValue Op0 = Op.getOperand(0); 3576 SDValue Op1 = Op.getOperand(1); 3577 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) { 3578 APInt UndefLHS, ZeroLHS; 3579 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3580 Depth + 1, /*AssumeSingleUse*/ true)) 3581 return true; 3582 } 3583 [[fallthrough]]; 3584 } 3585 case ISD::AVGCEILS: 3586 case ISD::AVGCEILU: 3587 case ISD::AVGFLOORS: 3588 case ISD::AVGFLOORU: 3589 case ISD::OR: 3590 case ISD::XOR: 3591 case ISD::SUB: 3592 case ISD::FADD: 3593 case ISD::FSUB: 3594 case ISD::FMUL: 3595 case ISD::FDIV: 3596 case ISD::FREM: { 3597 SDValue Op0 = Op.getOperand(0); 3598 SDValue Op1 = Op.getOperand(1); 3599 3600 APInt UndefRHS, ZeroRHS; 3601 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3602 Depth + 1)) 3603 return true; 3604 APInt UndefLHS, ZeroLHS; 3605 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3606 Depth + 1)) 3607 return true; 3608 3609 KnownZero = ZeroLHS & ZeroRHS; 3610 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 3611 3612 // Attempt to avoid multi-use ops if we don't need anything from them. 3613 // TODO - use KnownUndef to relax the demandedelts? 3614 if (!DemandedElts.isAllOnes()) 3615 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3616 return true; 3617 break; 3618 } 3619 case ISD::SHL: 3620 case ISD::SRL: 3621 case ISD::SRA: 3622 case ISD::ROTL: 3623 case ISD::ROTR: { 3624 SDValue Op0 = Op.getOperand(0); 3625 SDValue Op1 = Op.getOperand(1); 3626 3627 APInt UndefRHS, ZeroRHS; 3628 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3629 Depth + 1)) 3630 return true; 3631 APInt UndefLHS, ZeroLHS; 3632 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3633 Depth + 1)) 3634 return true; 3635 3636 KnownZero = ZeroLHS; 3637 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 3638 3639 // Attempt to avoid multi-use ops if we don't need anything from them. 3640 // TODO - use KnownUndef to relax the demandedelts? 3641 if (!DemandedElts.isAllOnes()) 3642 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3643 return true; 3644 break; 3645 } 3646 case ISD::MUL: 3647 case ISD::MULHU: 3648 case ISD::MULHS: 3649 case ISD::AND: { 3650 SDValue Op0 = Op.getOperand(0); 3651 SDValue Op1 = Op.getOperand(1); 3652 3653 APInt SrcUndef, SrcZero; 3654 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 3655 Depth + 1)) 3656 return true; 3657 // If we know that a demanded element was zero in Op1 we don't need to 3658 // demand it in Op0 - its guaranteed to be zero. 3659 APInt DemandedElts0 = DemandedElts & ~SrcZero; 3660 if (SimplifyDemandedVectorElts(Op0, DemandedElts0, KnownUndef, KnownZero, 3661 TLO, Depth + 1)) 3662 return true; 3663 3664 KnownUndef &= DemandedElts0; 3665 KnownZero &= DemandedElts0; 3666 3667 // If every element pair has a zero/undef then just fold to zero. 3668 // fold (and x, undef) -> 0 / (and x, 0) -> 0 3669 // fold (mul x, undef) -> 0 / (mul x, 0) -> 0 3670 if (DemandedElts.isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef)) 3671 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3672 3673 // If either side has a zero element, then the result element is zero, even 3674 // if the other is an UNDEF. 3675 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 3676 // and then handle 'and' nodes with the rest of the binop opcodes. 3677 KnownZero |= SrcZero; 3678 KnownUndef &= SrcUndef; 3679 KnownUndef &= ~KnownZero; 3680 3681 // Attempt to avoid multi-use ops if we don't need anything from them. 3682 if (!DemandedElts.isAllOnes()) 3683 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3684 return true; 3685 break; 3686 } 3687 case ISD::TRUNCATE: 3688 case ISD::SIGN_EXTEND: 3689 case ISD::ZERO_EXTEND: 3690 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 3691 KnownZero, TLO, Depth + 1)) 3692 return true; 3693 3694 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 3695 // zext(undef) upper bits are guaranteed to be zero. 3696 if (DemandedElts.isSubsetOf(KnownUndef)) 3697 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3698 KnownUndef.clearAllBits(); 3699 } 3700 break; 3701 default: { 3702 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 3703 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 3704 KnownZero, TLO, Depth)) 3705 return true; 3706 } else { 3707 KnownBits Known; 3708 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 3709 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 3710 TLO, Depth, AssumeSingleUse)) 3711 return true; 3712 } 3713 break; 3714 } 3715 } 3716 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 3717 3718 // Constant fold all undef cases. 3719 // TODO: Handle zero cases as well. 3720 if (DemandedElts.isSubsetOf(KnownUndef)) 3721 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3722 3723 return false; 3724 } 3725 3726 /// Determine which of the bits specified in Mask are known to be either zero or 3727 /// one and return them in the Known. 3728 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3729 KnownBits &Known, 3730 const APInt &DemandedElts, 3731 const SelectionDAG &DAG, 3732 unsigned Depth) const { 3733 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3734 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3735 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3736 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3737 "Should use MaskedValueIsZero if you don't know whether Op" 3738 " is a target node!"); 3739 Known.resetAll(); 3740 } 3741 3742 void TargetLowering::computeKnownBitsForTargetInstr( 3743 GISelKnownBits &Analysis, Register R, KnownBits &Known, 3744 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 3745 unsigned Depth) const { 3746 Known.resetAll(); 3747 } 3748 3749 void TargetLowering::computeKnownBitsForFrameIndex( 3750 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 3751 // The low bits are known zero if the pointer is aligned. 3752 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 3753 } 3754 3755 Align TargetLowering::computeKnownAlignForTargetInstr( 3756 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 3757 unsigned Depth) const { 3758 return Align(1); 3759 } 3760 3761 /// This method can be implemented by targets that want to expose additional 3762 /// information about sign bits to the DAG Combiner. 3763 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3764 const APInt &, 3765 const SelectionDAG &, 3766 unsigned Depth) const { 3767 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3768 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3769 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3770 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3771 "Should use ComputeNumSignBits if you don't know whether Op" 3772 " is a target node!"); 3773 return 1; 3774 } 3775 3776 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3777 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3778 const MachineRegisterInfo &MRI, unsigned Depth) const { 3779 return 1; 3780 } 3781 3782 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3783 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3784 TargetLoweringOpt &TLO, unsigned Depth) const { 3785 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3786 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3787 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3788 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3789 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3790 " is a target node!"); 3791 return false; 3792 } 3793 3794 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3795 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3796 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3797 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3798 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3799 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3800 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3801 "Should use SimplifyDemandedBits if you don't know whether Op" 3802 " is a target node!"); 3803 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3804 return false; 3805 } 3806 3807 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3808 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3809 SelectionDAG &DAG, unsigned Depth) const { 3810 assert( 3811 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3812 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3813 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3814 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3815 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3816 " is a target node!"); 3817 return SDValue(); 3818 } 3819 3820 SDValue 3821 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3822 SDValue N1, MutableArrayRef<int> Mask, 3823 SelectionDAG &DAG) const { 3824 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3825 if (!LegalMask) { 3826 std::swap(N0, N1); 3827 ShuffleVectorSDNode::commuteMask(Mask); 3828 LegalMask = isShuffleMaskLegal(Mask, VT); 3829 } 3830 3831 if (!LegalMask) 3832 return SDValue(); 3833 3834 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3835 } 3836 3837 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3838 return nullptr; 3839 } 3840 3841 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3842 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3843 bool PoisonOnly, unsigned Depth) const { 3844 assert( 3845 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3846 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3847 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3848 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3849 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3850 " is a target node!"); 3851 3852 // If Op can't create undef/poison and none of its operands are undef/poison 3853 // then Op is never undef/poison. 3854 return !canCreateUndefOrPoisonForTargetNode(Op, DemandedElts, DAG, PoisonOnly, 3855 /*ConsiderFlags*/ true, Depth) && 3856 all_of(Op->ops(), [&](SDValue V) { 3857 return DAG.isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly, 3858 Depth + 1); 3859 }); 3860 } 3861 3862 bool TargetLowering::canCreateUndefOrPoisonForTargetNode( 3863 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3864 bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const { 3865 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3866 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3867 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3868 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3869 "Should use canCreateUndefOrPoison if you don't know whether Op" 3870 " is a target node!"); 3871 // Be conservative and return true. 3872 return true; 3873 } 3874 3875 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3876 const SelectionDAG &DAG, 3877 bool SNaN, 3878 unsigned Depth) const { 3879 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3880 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3881 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3882 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3883 "Should use isKnownNeverNaN if you don't know whether Op" 3884 " is a target node!"); 3885 return false; 3886 } 3887 3888 bool TargetLowering::isSplatValueForTargetNode(SDValue Op, 3889 const APInt &DemandedElts, 3890 APInt &UndefElts, 3891 const SelectionDAG &DAG, 3892 unsigned Depth) const { 3893 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3894 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3895 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3896 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3897 "Should use isSplatValue if you don't know whether Op" 3898 " is a target node!"); 3899 return false; 3900 } 3901 3902 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3903 // work with truncating build vectors and vectors with elements of less than 3904 // 8 bits. 3905 bool TargetLowering::isConstTrueVal(SDValue N) const { 3906 if (!N) 3907 return false; 3908 3909 unsigned EltWidth; 3910 APInt CVal; 3911 if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false, 3912 /*AllowTruncation=*/true)) { 3913 CVal = CN->getAPIntValue(); 3914 EltWidth = N.getValueType().getScalarSizeInBits(); 3915 } else 3916 return false; 3917 3918 // If this is a truncating splat, truncate the splat value. 3919 // Otherwise, we may fail to match the expected values below. 3920 if (EltWidth < CVal.getBitWidth()) 3921 CVal = CVal.trunc(EltWidth); 3922 3923 switch (getBooleanContents(N.getValueType())) { 3924 case UndefinedBooleanContent: 3925 return CVal[0]; 3926 case ZeroOrOneBooleanContent: 3927 return CVal.isOne(); 3928 case ZeroOrNegativeOneBooleanContent: 3929 return CVal.isAllOnes(); 3930 } 3931 3932 llvm_unreachable("Invalid boolean contents"); 3933 } 3934 3935 bool TargetLowering::isConstFalseVal(SDValue N) const { 3936 if (!N) 3937 return false; 3938 3939 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3940 if (!CN) { 3941 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3942 if (!BV) 3943 return false; 3944 3945 // Only interested in constant splats, we don't care about undef 3946 // elements in identifying boolean constants and getConstantSplatNode 3947 // returns NULL if all ops are undef; 3948 CN = BV->getConstantSplatNode(); 3949 if (!CN) 3950 return false; 3951 } 3952 3953 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3954 return !CN->getAPIntValue()[0]; 3955 3956 return CN->isZero(); 3957 } 3958 3959 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3960 bool SExt) const { 3961 if (VT == MVT::i1) 3962 return N->isOne(); 3963 3964 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3965 switch (Cnt) { 3966 case TargetLowering::ZeroOrOneBooleanContent: 3967 // An extended value of 1 is always true, unless its original type is i1, 3968 // in which case it will be sign extended to -1. 3969 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3970 case TargetLowering::UndefinedBooleanContent: 3971 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3972 return N->isAllOnes() && SExt; 3973 } 3974 llvm_unreachable("Unexpected enumeration."); 3975 } 3976 3977 /// This helper function of SimplifySetCC tries to optimize the comparison when 3978 /// either operand of the SetCC node is a bitwise-and instruction. 3979 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3980 ISD::CondCode Cond, const SDLoc &DL, 3981 DAGCombinerInfo &DCI) const { 3982 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3983 std::swap(N0, N1); 3984 3985 SelectionDAG &DAG = DCI.DAG; 3986 EVT OpVT = N0.getValueType(); 3987 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3988 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3989 return SDValue(); 3990 3991 // (X & Y) != 0 --> zextOrTrunc(X & Y) 3992 // iff everything but LSB is known zero: 3993 if (Cond == ISD::SETNE && isNullConstant(N1) && 3994 (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent || 3995 getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) { 3996 unsigned NumEltBits = OpVT.getScalarSizeInBits(); 3997 APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1); 3998 if (DAG.MaskedValueIsZero(N0, UpperBits)) 3999 return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT); 4000 } 4001 4002 // Try to eliminate a power-of-2 mask constant by converting to a signbit 4003 // test in a narrow type that we can truncate to with no cost. Examples: 4004 // (i32 X & 32768) == 0 --> (trunc X to i16) >= 0 4005 // (i32 X & 32768) != 0 --> (trunc X to i16) < 0 4006 // TODO: This conservatively checks for type legality on the source and 4007 // destination types. That may inhibit optimizations, but it also 4008 // allows setcc->shift transforms that may be more beneficial. 4009 auto *AndC = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 4010 if (AndC && isNullConstant(N1) && AndC->getAPIntValue().isPowerOf2() && 4011 isTypeLegal(OpVT) && N0.hasOneUse()) { 4012 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), 4013 AndC->getAPIntValue().getActiveBits()); 4014 if (isTruncateFree(OpVT, NarrowVT) && isTypeLegal(NarrowVT)) { 4015 SDValue Trunc = DAG.getZExtOrTrunc(N0.getOperand(0), DL, NarrowVT); 4016 SDValue Zero = DAG.getConstant(0, DL, NarrowVT); 4017 return DAG.getSetCC(DL, VT, Trunc, Zero, 4018 Cond == ISD::SETEQ ? ISD::SETGE : ISD::SETLT); 4019 } 4020 } 4021 4022 // Match these patterns in any of their permutations: 4023 // (X & Y) == Y 4024 // (X & Y) != Y 4025 SDValue X, Y; 4026 if (N0.getOperand(0) == N1) { 4027 X = N0.getOperand(1); 4028 Y = N0.getOperand(0); 4029 } else if (N0.getOperand(1) == N1) { 4030 X = N0.getOperand(0); 4031 Y = N0.getOperand(1); 4032 } else { 4033 return SDValue(); 4034 } 4035 4036 // TODO: We should invert (X & Y) eq/ne 0 -> (X & Y) ne/eq Y if 4037 // `isXAndYEqZeroPreferableToXAndYEqY` is false. This is a bit difficult as 4038 // its liable to create and infinite loop. 4039 SDValue Zero = DAG.getConstant(0, DL, OpVT); 4040 if (isXAndYEqZeroPreferableToXAndYEqY(Cond, OpVT) && 4041 DAG.isKnownToBeAPowerOfTwo(Y)) { 4042 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 4043 // Note that where Y is variable and is known to have at most one bit set 4044 // (for example, if it is Z & 1) we cannot do this; the expressions are not 4045 // equivalent when Y == 0. 4046 assert(OpVT.isInteger()); 4047 Cond = ISD::getSetCCInverse(Cond, OpVT); 4048 if (DCI.isBeforeLegalizeOps() || 4049 isCondCodeLegal(Cond, N0.getSimpleValueType())) 4050 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 4051 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 4052 // If the target supports an 'and-not' or 'and-complement' logic operation, 4053 // try to use that to make a comparison operation more efficient. 4054 // But don't do this transform if the mask is a single bit because there are 4055 // more efficient ways to deal with that case (for example, 'bt' on x86 or 4056 // 'rlwinm' on PPC). 4057 4058 // Bail out if the compare operand that we want to turn into a zero is 4059 // already a zero (otherwise, infinite loop). 4060 if (isNullConstant(Y)) 4061 return SDValue(); 4062 4063 // Transform this into: ~X & Y == 0. 4064 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 4065 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 4066 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 4067 } 4068 4069 return SDValue(); 4070 } 4071 4072 /// There are multiple IR patterns that could be checking whether certain 4073 /// truncation of a signed number would be lossy or not. The pattern which is 4074 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 4075 /// We are looking for the following pattern: (KeptBits is a constant) 4076 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 4077 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 4078 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 4079 /// We will unfold it into the natural trunc+sext pattern: 4080 /// ((%x << C) a>> C) dstcond %x 4081 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 4082 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 4083 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 4084 const SDLoc &DL) const { 4085 // We must be comparing with a constant. 4086 ConstantSDNode *C1; 4087 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 4088 return SDValue(); 4089 4090 // N0 should be: add %x, (1 << (KeptBits-1)) 4091 if (N0->getOpcode() != ISD::ADD) 4092 return SDValue(); 4093 4094 // And we must be 'add'ing a constant. 4095 ConstantSDNode *C01; 4096 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 4097 return SDValue(); 4098 4099 SDValue X = N0->getOperand(0); 4100 EVT XVT = X.getValueType(); 4101 4102 // Validate constants ... 4103 4104 APInt I1 = C1->getAPIntValue(); 4105 4106 ISD::CondCode NewCond; 4107 if (Cond == ISD::CondCode::SETULT) { 4108 NewCond = ISD::CondCode::SETEQ; 4109 } else if (Cond == ISD::CondCode::SETULE) { 4110 NewCond = ISD::CondCode::SETEQ; 4111 // But need to 'canonicalize' the constant. 4112 I1 += 1; 4113 } else if (Cond == ISD::CondCode::SETUGT) { 4114 NewCond = ISD::CondCode::SETNE; 4115 // But need to 'canonicalize' the constant. 4116 I1 += 1; 4117 } else if (Cond == ISD::CondCode::SETUGE) { 4118 NewCond = ISD::CondCode::SETNE; 4119 } else 4120 return SDValue(); 4121 4122 APInt I01 = C01->getAPIntValue(); 4123 4124 auto checkConstants = [&I1, &I01]() -> bool { 4125 // Both of them must be power-of-two, and the constant from setcc is bigger. 4126 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 4127 }; 4128 4129 if (checkConstants()) { 4130 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 4131 } else { 4132 // What if we invert constants? (and the target predicate) 4133 I1.negate(); 4134 I01.negate(); 4135 assert(XVT.isInteger()); 4136 NewCond = getSetCCInverse(NewCond, XVT); 4137 if (!checkConstants()) 4138 return SDValue(); 4139 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 4140 } 4141 4142 // They are power-of-two, so which bit is set? 4143 const unsigned KeptBits = I1.logBase2(); 4144 const unsigned KeptBitsMinusOne = I01.logBase2(); 4145 4146 // Magic! 4147 if (KeptBits != (KeptBitsMinusOne + 1)) 4148 return SDValue(); 4149 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 4150 4151 // We don't want to do this in every single case. 4152 SelectionDAG &DAG = DCI.DAG; 4153 if (!shouldTransformSignedTruncationCheck(XVT, KeptBits)) 4154 return SDValue(); 4155 4156 // Unfold into: sext_inreg(%x) cond %x 4157 // Where 'cond' will be either 'eq' or 'ne'. 4158 SDValue SExtInReg = DAG.getNode( 4159 ISD::SIGN_EXTEND_INREG, DL, XVT, X, 4160 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), KeptBits))); 4161 return DAG.getSetCC(DL, SCCVT, SExtInReg, X, NewCond); 4162 } 4163 4164 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4165 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 4166 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 4167 DAGCombinerInfo &DCI, const SDLoc &DL) const { 4168 assert(isConstOrConstSplat(N1C) && isConstOrConstSplat(N1C)->isZero() && 4169 "Should be a comparison with 0."); 4170 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4171 "Valid only for [in]equality comparisons."); 4172 4173 unsigned NewShiftOpcode; 4174 SDValue X, C, Y; 4175 4176 SelectionDAG &DAG = DCI.DAG; 4177 4178 // Look for '(C l>>/<< Y)'. 4179 auto Match = [&NewShiftOpcode, &X, &C, &Y, &DAG, this](SDValue V) { 4180 // The shift should be one-use. 4181 if (!V.hasOneUse()) 4182 return false; 4183 unsigned OldShiftOpcode = V.getOpcode(); 4184 switch (OldShiftOpcode) { 4185 case ISD::SHL: 4186 NewShiftOpcode = ISD::SRL; 4187 break; 4188 case ISD::SRL: 4189 NewShiftOpcode = ISD::SHL; 4190 break; 4191 default: 4192 return false; // must be a logical shift. 4193 } 4194 // We should be shifting a constant. 4195 // FIXME: best to use isConstantOrConstantVector(). 4196 C = V.getOperand(0); 4197 ConstantSDNode *CC = 4198 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 4199 if (!CC) 4200 return false; 4201 Y = V.getOperand(1); 4202 4203 ConstantSDNode *XC = 4204 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 4205 return shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 4206 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 4207 }; 4208 4209 // LHS of comparison should be an one-use 'and'. 4210 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 4211 return SDValue(); 4212 4213 X = N0.getOperand(0); 4214 SDValue Mask = N0.getOperand(1); 4215 4216 // 'and' is commutative! 4217 if (!Match(Mask)) { 4218 std::swap(X, Mask); 4219 if (!Match(Mask)) 4220 return SDValue(); 4221 } 4222 4223 EVT VT = X.getValueType(); 4224 4225 // Produce: 4226 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 4227 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 4228 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 4229 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 4230 return T2; 4231 } 4232 4233 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 4234 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 4235 /// handle the commuted versions of these patterns. 4236 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 4237 ISD::CondCode Cond, const SDLoc &DL, 4238 DAGCombinerInfo &DCI) const { 4239 unsigned BOpcode = N0.getOpcode(); 4240 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 4241 "Unexpected binop"); 4242 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 4243 4244 // (X + Y) == X --> Y == 0 4245 // (X - Y) == X --> Y == 0 4246 // (X ^ Y) == X --> Y == 0 4247 SelectionDAG &DAG = DCI.DAG; 4248 EVT OpVT = N0.getValueType(); 4249 SDValue X = N0.getOperand(0); 4250 SDValue Y = N0.getOperand(1); 4251 if (X == N1) 4252 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 4253 4254 if (Y != N1) 4255 return SDValue(); 4256 4257 // (X + Y) == Y --> X == 0 4258 // (X ^ Y) == Y --> X == 0 4259 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 4260 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 4261 4262 // The shift would not be valid if the operands are boolean (i1). 4263 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 4264 return SDValue(); 4265 4266 // (X - Y) == Y --> X == Y << 1 4267 SDValue One = DAG.getShiftAmountConstant(1, OpVT, DL); 4268 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 4269 if (!DCI.isCalledByLegalizer()) 4270 DCI.AddToWorklist(YShl1.getNode()); 4271 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 4272 } 4273 4274 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 4275 SDValue N0, const APInt &C1, 4276 ISD::CondCode Cond, const SDLoc &dl, 4277 SelectionDAG &DAG) { 4278 // Look through truncs that don't change the value of a ctpop. 4279 // FIXME: Add vector support? Need to be careful with setcc result type below. 4280 SDValue CTPOP = N0; 4281 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 4282 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 4283 CTPOP = N0.getOperand(0); 4284 4285 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 4286 return SDValue(); 4287 4288 EVT CTVT = CTPOP.getValueType(); 4289 SDValue CTOp = CTPOP.getOperand(0); 4290 4291 // Expand a power-of-2-or-zero comparison based on ctpop: 4292 // (ctpop x) u< 2 -> (x & x-1) == 0 4293 // (ctpop x) u> 1 -> (x & x-1) != 0 4294 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 4295 // Keep the CTPOP if it is a cheap vector op. 4296 if (CTVT.isVector() && TLI.isCtpopFast(CTVT)) 4297 return SDValue(); 4298 4299 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 4300 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 4301 return SDValue(); 4302 if (C1 == 0 && (Cond == ISD::SETULT)) 4303 return SDValue(); // This is handled elsewhere. 4304 4305 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 4306 4307 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 4308 SDValue Result = CTOp; 4309 for (unsigned i = 0; i < Passes; i++) { 4310 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 4311 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 4312 } 4313 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 4314 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 4315 } 4316 4317 // Expand a power-of-2 comparison based on ctpop 4318 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 4319 // Keep the CTPOP if it is cheap. 4320 if (TLI.isCtpopFast(CTVT)) 4321 return SDValue(); 4322 4323 SDValue Zero = DAG.getConstant(0, dl, CTVT); 4324 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 4325 assert(CTVT.isInteger()); 4326 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 4327 4328 // Its not uncommon for known-never-zero X to exist in (ctpop X) eq/ne 1, so 4329 // check before emitting a potentially unnecessary op. 4330 if (DAG.isKnownNeverZero(CTOp)) { 4331 // (ctpop x) == 1 --> (x & x-1) == 0 4332 // (ctpop x) != 1 --> (x & x-1) != 0 4333 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 4334 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 4335 return RHS; 4336 } 4337 4338 // (ctpop x) == 1 --> (x ^ x-1) > x-1 4339 // (ctpop x) != 1 --> (x ^ x-1) <= x-1 4340 SDValue Xor = DAG.getNode(ISD::XOR, dl, CTVT, CTOp, Add); 4341 ISD::CondCode CmpCond = Cond == ISD::SETEQ ? ISD::SETUGT : ISD::SETULE; 4342 return DAG.getSetCC(dl, VT, Xor, Add, CmpCond); 4343 } 4344 4345 return SDValue(); 4346 } 4347 4348 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, 4349 ISD::CondCode Cond, const SDLoc &dl, 4350 SelectionDAG &DAG) { 4351 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 4352 return SDValue(); 4353 4354 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 4355 if (!C1 || !(C1->isZero() || C1->isAllOnes())) 4356 return SDValue(); 4357 4358 auto getRotateSource = [](SDValue X) { 4359 if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR) 4360 return X.getOperand(0); 4361 return SDValue(); 4362 }; 4363 4364 // Peek through a rotated value compared against 0 or -1: 4365 // (rot X, Y) == 0/-1 --> X == 0/-1 4366 // (rot X, Y) != 0/-1 --> X != 0/-1 4367 if (SDValue R = getRotateSource(N0)) 4368 return DAG.getSetCC(dl, VT, R, N1, Cond); 4369 4370 // Peek through an 'or' of a rotated value compared against 0: 4371 // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0 4372 // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0 4373 // 4374 // TODO: Add the 'and' with -1 sibling. 4375 // TODO: Recurse through a series of 'or' ops to find the rotate. 4376 EVT OpVT = N0.getValueType(); 4377 if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) { 4378 if (SDValue R = getRotateSource(N0.getOperand(0))) { 4379 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1)); 4380 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4381 } 4382 if (SDValue R = getRotateSource(N0.getOperand(1))) { 4383 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0)); 4384 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4385 } 4386 } 4387 4388 return SDValue(); 4389 } 4390 4391 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1, 4392 ISD::CondCode Cond, const SDLoc &dl, 4393 SelectionDAG &DAG) { 4394 // If we are testing for all-bits-clear, we might be able to do that with 4395 // less shifting since bit-order does not matter. 4396 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 4397 return SDValue(); 4398 4399 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 4400 if (!C1 || !C1->isZero()) 4401 return SDValue(); 4402 4403 if (!N0.hasOneUse() || 4404 (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR)) 4405 return SDValue(); 4406 4407 unsigned BitWidth = N0.getScalarValueSizeInBits(); 4408 auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2)); 4409 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 4410 return SDValue(); 4411 4412 // Canonicalize fshr as fshl to reduce pattern-matching. 4413 unsigned ShAmt = ShAmtC->getZExtValue(); 4414 if (N0.getOpcode() == ISD::FSHR) 4415 ShAmt = BitWidth - ShAmt; 4416 4417 // Match an 'or' with a specific operand 'Other' in either commuted variant. 4418 SDValue X, Y; 4419 auto matchOr = [&X, &Y](SDValue Or, SDValue Other) { 4420 if (Or.getOpcode() != ISD::OR || !Or.hasOneUse()) 4421 return false; 4422 if (Or.getOperand(0) == Other) { 4423 X = Or.getOperand(0); 4424 Y = Or.getOperand(1); 4425 return true; 4426 } 4427 if (Or.getOperand(1) == Other) { 4428 X = Or.getOperand(1); 4429 Y = Or.getOperand(0); 4430 return true; 4431 } 4432 return false; 4433 }; 4434 4435 EVT OpVT = N0.getValueType(); 4436 EVT ShAmtVT = N0.getOperand(2).getValueType(); 4437 SDValue F0 = N0.getOperand(0); 4438 SDValue F1 = N0.getOperand(1); 4439 if (matchOr(F0, F1)) { 4440 // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0 4441 SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT); 4442 SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt); 4443 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 4444 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4445 } 4446 if (matchOr(F1, F0)) { 4447 // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0 4448 SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT); 4449 SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt); 4450 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 4451 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4452 } 4453 4454 return SDValue(); 4455 } 4456 4457 /// Try to simplify a setcc built with the specified operands and cc. If it is 4458 /// unable to simplify it, return a null SDValue. 4459 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 4460 ISD::CondCode Cond, bool foldBooleans, 4461 DAGCombinerInfo &DCI, 4462 const SDLoc &dl) const { 4463 SelectionDAG &DAG = DCI.DAG; 4464 const DataLayout &Layout = DAG.getDataLayout(); 4465 EVT OpVT = N0.getValueType(); 4466 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4467 4468 // Constant fold or commute setcc. 4469 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 4470 return Fold; 4471 4472 bool N0ConstOrSplat = 4473 isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4474 bool N1ConstOrSplat = 4475 isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4476 4477 // Canonicalize toward having the constant on the RHS. 4478 // TODO: Handle non-splat vector constants. All undef causes trouble. 4479 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 4480 // infinite loop here when we encounter one. 4481 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 4482 if (N0ConstOrSplat && !N1ConstOrSplat && 4483 (DCI.isBeforeLegalizeOps() || 4484 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 4485 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4486 4487 // If we have a subtract with the same 2 non-constant operands as this setcc 4488 // -- but in reverse order -- then try to commute the operands of this setcc 4489 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 4490 // instruction on some targets. 4491 if (!N0ConstOrSplat && !N1ConstOrSplat && 4492 (DCI.isBeforeLegalizeOps() || 4493 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 4494 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 4495 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 4496 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4497 4498 if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG)) 4499 return V; 4500 4501 if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG)) 4502 return V; 4503 4504 if (auto *N1C = isConstOrConstSplat(N1)) { 4505 const APInt &C1 = N1C->getAPIntValue(); 4506 4507 // Optimize some CTPOP cases. 4508 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 4509 return V; 4510 4511 // For equality to 0 of a no-wrap multiply, decompose and test each op: 4512 // X * Y == 0 --> (X == 0) || (Y == 0) 4513 // X * Y != 0 --> (X != 0) && (Y != 0) 4514 // TODO: This bails out if minsize is set, but if the target doesn't have a 4515 // single instruction multiply for this type, it would likely be 4516 // smaller to decompose. 4517 if (C1.isZero() && (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4518 N0.getOpcode() == ISD::MUL && N0.hasOneUse() && 4519 (N0->getFlags().hasNoUnsignedWrap() || 4520 N0->getFlags().hasNoSignedWrap()) && 4521 !Attr.hasFnAttr(Attribute::MinSize)) { 4522 SDValue IsXZero = DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4523 SDValue IsYZero = DAG.getSetCC(dl, VT, N0.getOperand(1), N1, Cond); 4524 unsigned LogicOp = Cond == ISD::SETEQ ? ISD::OR : ISD::AND; 4525 return DAG.getNode(LogicOp, dl, VT, IsXZero, IsYZero); 4526 } 4527 4528 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 4529 // equality comparison, then we're just comparing whether X itself is 4530 // zero. 4531 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 4532 N0.getOperand(0).getOpcode() == ISD::CTLZ && 4533 llvm::has_single_bit<uint32_t>(N0.getScalarValueSizeInBits())) { 4534 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 4535 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4536 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 4537 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 4538 // (srl (ctlz x), 5) == 0 -> X != 0 4539 // (srl (ctlz x), 5) != 1 -> X != 0 4540 Cond = ISD::SETNE; 4541 } else { 4542 // (srl (ctlz x), 5) != 0 -> X == 0 4543 // (srl (ctlz x), 5) == 1 -> X == 0 4544 Cond = ISD::SETEQ; 4545 } 4546 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 4547 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 4548 Cond); 4549 } 4550 } 4551 } 4552 } 4553 4554 // FIXME: Support vectors. 4555 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4556 const APInt &C1 = N1C->getAPIntValue(); 4557 4558 // (zext x) == C --> x == (trunc C) 4559 // (sext x) == C --> x == (trunc C) 4560 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4561 DCI.isBeforeLegalize() && N0->hasOneUse()) { 4562 unsigned MinBits = N0.getValueSizeInBits(); 4563 SDValue PreExt; 4564 bool Signed = false; 4565 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 4566 // ZExt 4567 MinBits = N0->getOperand(0).getValueSizeInBits(); 4568 PreExt = N0->getOperand(0); 4569 } else if (N0->getOpcode() == ISD::AND) { 4570 // DAGCombine turns costly ZExts into ANDs 4571 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 4572 if ((C->getAPIntValue()+1).isPowerOf2()) { 4573 MinBits = C->getAPIntValue().countr_one(); 4574 PreExt = N0->getOperand(0); 4575 } 4576 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 4577 // SExt 4578 MinBits = N0->getOperand(0).getValueSizeInBits(); 4579 PreExt = N0->getOperand(0); 4580 Signed = true; 4581 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 4582 // ZEXTLOAD / SEXTLOAD 4583 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 4584 MinBits = LN0->getMemoryVT().getSizeInBits(); 4585 PreExt = N0; 4586 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 4587 Signed = true; 4588 MinBits = LN0->getMemoryVT().getSizeInBits(); 4589 PreExt = N0; 4590 } 4591 } 4592 4593 // Figure out how many bits we need to preserve this constant. 4594 unsigned ReqdBits = Signed ? C1.getSignificantBits() : C1.getActiveBits(); 4595 4596 // Make sure we're not losing bits from the constant. 4597 if (MinBits > 0 && 4598 MinBits < C1.getBitWidth() && 4599 MinBits >= ReqdBits) { 4600 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 4601 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 4602 // Will get folded away. 4603 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 4604 if (MinBits == 1 && C1 == 1) 4605 // Invert the condition. 4606 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 4607 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4608 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 4609 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 4610 } 4611 4612 // If truncating the setcc operands is not desirable, we can still 4613 // simplify the expression in some cases: 4614 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 4615 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 4616 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 4617 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 4618 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 4619 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 4620 SDValue TopSetCC = N0->getOperand(0); 4621 unsigned N0Opc = N0->getOpcode(); 4622 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 4623 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 4624 TopSetCC.getOpcode() == ISD::SETCC && 4625 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 4626 (isConstFalseVal(N1) || 4627 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 4628 4629 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 4630 (!N1C->isZero() && Cond == ISD::SETNE); 4631 4632 if (!Inverse) 4633 return TopSetCC; 4634 4635 ISD::CondCode InvCond = ISD::getSetCCInverse( 4636 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 4637 TopSetCC.getOperand(0).getValueType()); 4638 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 4639 TopSetCC.getOperand(1), 4640 InvCond); 4641 } 4642 } 4643 } 4644 4645 // If the LHS is '(and load, const)', the RHS is 0, the test is for 4646 // equality or unsigned, and all 1 bits of the const are in the same 4647 // partial word, see if we can shorten the load. 4648 if (DCI.isBeforeLegalize() && 4649 !ISD::isSignedIntSetCC(Cond) && 4650 N0.getOpcode() == ISD::AND && C1 == 0 && 4651 N0.getNode()->hasOneUse() && 4652 isa<LoadSDNode>(N0.getOperand(0)) && 4653 N0.getOperand(0).getNode()->hasOneUse() && 4654 isa<ConstantSDNode>(N0.getOperand(1))) { 4655 auto *Lod = cast<LoadSDNode>(N0.getOperand(0)); 4656 APInt bestMask; 4657 unsigned bestWidth = 0, bestOffset = 0; 4658 if (Lod->isSimple() && Lod->isUnindexed() && 4659 (Lod->getMemoryVT().isByteSized() || 4660 isPaddedAtMostSignificantBitsWhenStored(Lod->getMemoryVT()))) { 4661 unsigned memWidth = Lod->getMemoryVT().getStoreSizeInBits(); 4662 unsigned origWidth = N0.getValueSizeInBits(); 4663 unsigned maskWidth = origWidth; 4664 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 4665 // 8 bits, but have to be careful... 4666 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 4667 origWidth = Lod->getMemoryVT().getSizeInBits(); 4668 const APInt &Mask = N0.getConstantOperandAPInt(1); 4669 // Only consider power-of-2 widths (and at least one byte) as candiates 4670 // for the narrowed load. 4671 for (unsigned width = 8; width < origWidth; width *= 2) { 4672 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), width); 4673 if (!shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) 4674 continue; 4675 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 4676 // Avoid accessing any padding here for now (we could use memWidth 4677 // instead of origWidth here otherwise). 4678 unsigned maxOffset = origWidth - width; 4679 for (unsigned offset = 0; offset <= maxOffset; offset += 8) { 4680 if (Mask.isSubsetOf(newMask)) { 4681 unsigned ptrOffset = 4682 Layout.isLittleEndian() ? offset : memWidth - width - offset; 4683 unsigned IsFast = 0; 4684 Align NewAlign = commonAlignment(Lod->getAlign(), ptrOffset / 8); 4685 if (allowsMemoryAccess( 4686 *DAG.getContext(), Layout, newVT, Lod->getAddressSpace(), 4687 NewAlign, Lod->getMemOperand()->getFlags(), &IsFast) && 4688 IsFast) { 4689 bestOffset = ptrOffset / 8; 4690 bestMask = Mask.lshr(offset); 4691 bestWidth = width; 4692 break; 4693 } 4694 } 4695 newMask <<= 8; 4696 } 4697 if (bestWidth) 4698 break; 4699 } 4700 } 4701 if (bestWidth) { 4702 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 4703 SDValue Ptr = Lod->getBasePtr(); 4704 if (bestOffset != 0) 4705 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(bestOffset)); 4706 SDValue NewLoad = 4707 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 4708 Lod->getPointerInfo().getWithOffset(bestOffset), 4709 Lod->getOriginalAlign()); 4710 SDValue And = 4711 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 4712 DAG.getConstant(bestMask.trunc(bestWidth), dl, newVT)); 4713 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0LL, dl, newVT), Cond); 4714 } 4715 } 4716 4717 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 4718 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 4719 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 4720 4721 // If the comparison constant has bits in the upper part, the 4722 // zero-extended value could never match. 4723 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 4724 C1.getBitWidth() - InSize))) { 4725 switch (Cond) { 4726 case ISD::SETUGT: 4727 case ISD::SETUGE: 4728 case ISD::SETEQ: 4729 return DAG.getConstant(0, dl, VT); 4730 case ISD::SETULT: 4731 case ISD::SETULE: 4732 case ISD::SETNE: 4733 return DAG.getConstant(1, dl, VT); 4734 case ISD::SETGT: 4735 case ISD::SETGE: 4736 // True if the sign bit of C1 is set. 4737 return DAG.getConstant(C1.isNegative(), dl, VT); 4738 case ISD::SETLT: 4739 case ISD::SETLE: 4740 // True if the sign bit of C1 isn't set. 4741 return DAG.getConstant(C1.isNonNegative(), dl, VT); 4742 default: 4743 break; 4744 } 4745 } 4746 4747 // Otherwise, we can perform the comparison with the low bits. 4748 switch (Cond) { 4749 case ISD::SETEQ: 4750 case ISD::SETNE: 4751 case ISD::SETUGT: 4752 case ISD::SETUGE: 4753 case ISD::SETULT: 4754 case ISD::SETULE: { 4755 EVT newVT = N0.getOperand(0).getValueType(); 4756 // FIXME: Should use isNarrowingProfitable. 4757 if (DCI.isBeforeLegalizeOps() || 4758 (isOperationLegal(ISD::SETCC, newVT) && 4759 isCondCodeLegal(Cond, newVT.getSimpleVT()) && 4760 isTypeDesirableForOp(ISD::SETCC, newVT))) { 4761 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 4762 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 4763 4764 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 4765 NewConst, Cond); 4766 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 4767 } 4768 break; 4769 } 4770 default: 4771 break; // todo, be more careful with signed comparisons 4772 } 4773 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 4774 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4775 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 4776 OpVT)) { 4777 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 4778 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 4779 EVT ExtDstTy = N0.getValueType(); 4780 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 4781 4782 // If the constant doesn't fit into the number of bits for the source of 4783 // the sign extension, it is impossible for both sides to be equal. 4784 if (C1.getSignificantBits() > ExtSrcTyBits) 4785 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 4786 4787 assert(ExtDstTy == N0.getOperand(0).getValueType() && 4788 ExtDstTy != ExtSrcTy && "Unexpected types!"); 4789 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 4790 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 4791 DAG.getConstant(Imm, dl, ExtDstTy)); 4792 if (!DCI.isCalledByLegalizer()) 4793 DCI.AddToWorklist(ZextOp.getNode()); 4794 // Otherwise, make this a use of a zext. 4795 return DAG.getSetCC(dl, VT, ZextOp, 4796 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 4797 } else if ((N1C->isZero() || N1C->isOne()) && 4798 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4799 // SETCC (X), [0|1], [EQ|NE] -> X if X is known 0/1. i1 types are 4800 // excluded as they are handled below whilst checking for foldBooleans. 4801 if ((N0.getOpcode() == ISD::SETCC || VT.getScalarType() != MVT::i1) && 4802 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 4803 (N0.getValueType() == MVT::i1 || 4804 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4805 DAG.MaskedValueIsZero( 4806 N0, APInt::getBitsSetFrom(N0.getValueSizeInBits(), 1))) { 4807 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 4808 if (TrueWhenTrue) 4809 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 4810 // Invert the condition. 4811 if (N0.getOpcode() == ISD::SETCC) { 4812 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 4813 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 4814 if (DCI.isBeforeLegalizeOps() || 4815 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 4816 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 4817 } 4818 } 4819 4820 if ((N0.getOpcode() == ISD::XOR || 4821 (N0.getOpcode() == ISD::AND && 4822 N0.getOperand(0).getOpcode() == ISD::XOR && 4823 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 4824 isOneConstant(N0.getOperand(1))) { 4825 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 4826 // can only do this if the top bits are known zero. 4827 unsigned BitWidth = N0.getValueSizeInBits(); 4828 if (DAG.MaskedValueIsZero(N0, 4829 APInt::getHighBitsSet(BitWidth, 4830 BitWidth-1))) { 4831 // Okay, get the un-inverted input value. 4832 SDValue Val; 4833 if (N0.getOpcode() == ISD::XOR) { 4834 Val = N0.getOperand(0); 4835 } else { 4836 assert(N0.getOpcode() == ISD::AND && 4837 N0.getOperand(0).getOpcode() == ISD::XOR); 4838 // ((X^1)&1)^1 -> X & 1 4839 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 4840 N0.getOperand(0).getOperand(0), 4841 N0.getOperand(1)); 4842 } 4843 4844 return DAG.getSetCC(dl, VT, Val, N1, 4845 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4846 } 4847 } else if (N1C->isOne()) { 4848 SDValue Op0 = N0; 4849 if (Op0.getOpcode() == ISD::TRUNCATE) 4850 Op0 = Op0.getOperand(0); 4851 4852 if ((Op0.getOpcode() == ISD::XOR) && 4853 Op0.getOperand(0).getOpcode() == ISD::SETCC && 4854 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 4855 SDValue XorLHS = Op0.getOperand(0); 4856 SDValue XorRHS = Op0.getOperand(1); 4857 // Ensure that the input setccs return an i1 type or 0/1 value. 4858 if (Op0.getValueType() == MVT::i1 || 4859 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 4860 ZeroOrOneBooleanContent && 4861 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 4862 ZeroOrOneBooleanContent)) { 4863 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 4864 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 4865 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 4866 } 4867 } 4868 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 4869 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 4870 if (Op0.getValueType().bitsGT(VT)) 4871 Op0 = DAG.getNode(ISD::AND, dl, VT, 4872 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 4873 DAG.getConstant(1, dl, VT)); 4874 else if (Op0.getValueType().bitsLT(VT)) 4875 Op0 = DAG.getNode(ISD::AND, dl, VT, 4876 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 4877 DAG.getConstant(1, dl, VT)); 4878 4879 return DAG.getSetCC(dl, VT, Op0, 4880 DAG.getConstant(0, dl, Op0.getValueType()), 4881 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4882 } 4883 if (Op0.getOpcode() == ISD::AssertZext && 4884 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 4885 return DAG.getSetCC(dl, VT, Op0, 4886 DAG.getConstant(0, dl, Op0.getValueType()), 4887 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4888 } 4889 } 4890 4891 // Given: 4892 // icmp eq/ne (urem %x, %y), 0 4893 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 4894 // icmp eq/ne %x, 0 4895 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 4896 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4897 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 4898 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 4899 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 4900 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4901 } 4902 4903 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 4904 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 4905 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4906 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 4907 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 4908 N1C->isAllOnes()) { 4909 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4910 DAG.getConstant(0, dl, OpVT), 4911 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 4912 } 4913 4914 if (SDValue V = 4915 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 4916 return V; 4917 } 4918 4919 // These simplifications apply to splat vectors as well. 4920 // TODO: Handle more splat vector cases. 4921 if (auto *N1C = isConstOrConstSplat(N1)) { 4922 const APInt &C1 = N1C->getAPIntValue(); 4923 4924 APInt MinVal, MaxVal; 4925 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 4926 if (ISD::isSignedIntSetCC(Cond)) { 4927 MinVal = APInt::getSignedMinValue(OperandBitSize); 4928 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 4929 } else { 4930 MinVal = APInt::getMinValue(OperandBitSize); 4931 MaxVal = APInt::getMaxValue(OperandBitSize); 4932 } 4933 4934 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 4935 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 4936 // X >= MIN --> true 4937 if (C1 == MinVal) 4938 return DAG.getBoolConstant(true, dl, VT, OpVT); 4939 4940 if (!VT.isVector()) { // TODO: Support this for vectors. 4941 // X >= C0 --> X > (C0 - 1) 4942 APInt C = C1 - 1; 4943 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 4944 if ((DCI.isBeforeLegalizeOps() || 4945 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4946 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4947 isLegalICmpImmediate(C.getSExtValue())))) { 4948 return DAG.getSetCC(dl, VT, N0, 4949 DAG.getConstant(C, dl, N1.getValueType()), 4950 NewCC); 4951 } 4952 } 4953 } 4954 4955 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 4956 // X <= MAX --> true 4957 if (C1 == MaxVal) 4958 return DAG.getBoolConstant(true, dl, VT, OpVT); 4959 4960 // X <= C0 --> X < (C0 + 1) 4961 if (!VT.isVector()) { // TODO: Support this for vectors. 4962 APInt C = C1 + 1; 4963 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 4964 if ((DCI.isBeforeLegalizeOps() || 4965 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4966 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4967 isLegalICmpImmediate(C.getSExtValue())))) { 4968 return DAG.getSetCC(dl, VT, N0, 4969 DAG.getConstant(C, dl, N1.getValueType()), 4970 NewCC); 4971 } 4972 } 4973 } 4974 4975 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 4976 if (C1 == MinVal) 4977 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 4978 4979 // TODO: Support this for vectors after legalize ops. 4980 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4981 // Canonicalize setlt X, Max --> setne X, Max 4982 if (C1 == MaxVal) 4983 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4984 4985 // If we have setult X, 1, turn it into seteq X, 0 4986 if (C1 == MinVal+1) 4987 return DAG.getSetCC(dl, VT, N0, 4988 DAG.getConstant(MinVal, dl, N0.getValueType()), 4989 ISD::SETEQ); 4990 } 4991 } 4992 4993 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 4994 if (C1 == MaxVal) 4995 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 4996 4997 // TODO: Support this for vectors after legalize ops. 4998 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4999 // Canonicalize setgt X, Min --> setne X, Min 5000 if (C1 == MinVal) 5001 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 5002 5003 // If we have setugt X, Max-1, turn it into seteq X, Max 5004 if (C1 == MaxVal-1) 5005 return DAG.getSetCC(dl, VT, N0, 5006 DAG.getConstant(MaxVal, dl, N0.getValueType()), 5007 ISD::SETEQ); 5008 } 5009 } 5010 5011 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 5012 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 5013 if (C1.isZero()) 5014 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 5015 VT, N0, N1, Cond, DCI, dl)) 5016 return CC; 5017 5018 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 5019 // For example, when high 32-bits of i64 X are known clear: 5020 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 5021 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 5022 bool CmpZero = N1C->isZero(); 5023 bool CmpNegOne = N1C->isAllOnes(); 5024 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 5025 // Match or(lo,shl(hi,bw/2)) pattern. 5026 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 5027 unsigned EltBits = V.getScalarValueSizeInBits(); 5028 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 5029 return false; 5030 SDValue LHS = V.getOperand(0); 5031 SDValue RHS = V.getOperand(1); 5032 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 5033 // Unshifted element must have zero upperbits. 5034 if (RHS.getOpcode() == ISD::SHL && 5035 isa<ConstantSDNode>(RHS.getOperand(1)) && 5036 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 5037 DAG.MaskedValueIsZero(LHS, HiBits)) { 5038 Lo = LHS; 5039 Hi = RHS.getOperand(0); 5040 return true; 5041 } 5042 if (LHS.getOpcode() == ISD::SHL && 5043 isa<ConstantSDNode>(LHS.getOperand(1)) && 5044 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 5045 DAG.MaskedValueIsZero(RHS, HiBits)) { 5046 Lo = RHS; 5047 Hi = LHS.getOperand(0); 5048 return true; 5049 } 5050 return false; 5051 }; 5052 5053 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 5054 unsigned EltBits = N0.getScalarValueSizeInBits(); 5055 unsigned HalfBits = EltBits / 2; 5056 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 5057 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 5058 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 5059 SDValue NewN0 = 5060 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 5061 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 5062 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 5063 }; 5064 5065 SDValue Lo, Hi; 5066 if (IsConcat(N0, Lo, Hi)) 5067 return MergeConcat(Lo, Hi); 5068 5069 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 5070 SDValue Lo0, Lo1, Hi0, Hi1; 5071 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 5072 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 5073 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 5074 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 5075 } 5076 } 5077 } 5078 } 5079 5080 // If we have "setcc X, C0", check to see if we can shrink the immediate 5081 // by changing cc. 5082 // TODO: Support this for vectors after legalize ops. 5083 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 5084 // SETUGT X, SINTMAX -> SETLT X, 0 5085 // SETUGE X, SINTMIN -> SETLT X, 0 5086 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 5087 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 5088 return DAG.getSetCC(dl, VT, N0, 5089 DAG.getConstant(0, dl, N1.getValueType()), 5090 ISD::SETLT); 5091 5092 // SETULT X, SINTMIN -> SETGT X, -1 5093 // SETULE X, SINTMAX -> SETGT X, -1 5094 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 5095 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 5096 return DAG.getSetCC(dl, VT, N0, 5097 DAG.getAllOnesConstant(dl, N1.getValueType()), 5098 ISD::SETGT); 5099 } 5100 } 5101 5102 // Back to non-vector simplifications. 5103 // TODO: Can we do these for vector splats? 5104 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 5105 const APInt &C1 = N1C->getAPIntValue(); 5106 EVT ShValTy = N0.getValueType(); 5107 5108 // Fold bit comparisons when we can. This will result in an 5109 // incorrect value when boolean false is negative one, unless 5110 // the bitsize is 1 in which case the false value is the same 5111 // in practice regardless of the representation. 5112 if ((VT.getSizeInBits() == 1 || 5113 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 5114 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5115 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 5116 N0.getOpcode() == ISD::AND) { 5117 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5118 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 5119 // Perform the xform if the AND RHS is a single bit. 5120 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 5121 if (AndRHS->getAPIntValue().isPowerOf2() && 5122 !shouldAvoidTransformToShift(ShValTy, ShCt)) { 5123 return DAG.getNode( 5124 ISD::TRUNCATE, dl, VT, 5125 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 5126 DAG.getShiftAmountConstant(ShCt, ShValTy, dl))); 5127 } 5128 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 5129 // (X & 8) == 8 --> (X & 8) >> 3 5130 // Perform the xform if C1 is a single bit. 5131 unsigned ShCt = C1.logBase2(); 5132 if (C1.isPowerOf2() && !shouldAvoidTransformToShift(ShValTy, ShCt)) { 5133 return DAG.getNode( 5134 ISD::TRUNCATE, dl, VT, 5135 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 5136 DAG.getShiftAmountConstant(ShCt, ShValTy, dl))); 5137 } 5138 } 5139 } 5140 } 5141 5142 if (C1.getSignificantBits() <= 64 && 5143 !isLegalICmpImmediate(C1.getSExtValue())) { 5144 // (X & -256) == 256 -> (X >> 8) == 1 5145 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5146 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 5147 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5148 const APInt &AndRHSC = AndRHS->getAPIntValue(); 5149 if (AndRHSC.isNegatedPowerOf2() && C1.isSubsetOf(AndRHSC)) { 5150 unsigned ShiftBits = AndRHSC.countr_zero(); 5151 if (!shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 5152 SDValue Shift = DAG.getNode( 5153 ISD::SRL, dl, ShValTy, N0.getOperand(0), 5154 DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl)); 5155 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 5156 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 5157 } 5158 } 5159 } 5160 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 5161 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 5162 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 5163 // X < 0x100000000 -> (X >> 32) < 1 5164 // X >= 0x100000000 -> (X >> 32) >= 1 5165 // X <= 0x0ffffffff -> (X >> 32) < 1 5166 // X > 0x0ffffffff -> (X >> 32) >= 1 5167 unsigned ShiftBits; 5168 APInt NewC = C1; 5169 ISD::CondCode NewCond = Cond; 5170 if (AdjOne) { 5171 ShiftBits = C1.countr_one(); 5172 NewC = NewC + 1; 5173 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 5174 } else { 5175 ShiftBits = C1.countr_zero(); 5176 } 5177 NewC.lshrInPlace(ShiftBits); 5178 if (ShiftBits && NewC.getSignificantBits() <= 64 && 5179 isLegalICmpImmediate(NewC.getSExtValue()) && 5180 !shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 5181 SDValue Shift = 5182 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 5183 DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl)); 5184 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 5185 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 5186 } 5187 } 5188 } 5189 } 5190 5191 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 5192 auto *CFP = cast<ConstantFPSDNode>(N1); 5193 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 5194 5195 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 5196 // constant if knowing that the operand is non-nan is enough. We prefer to 5197 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 5198 // materialize 0.0. 5199 if (Cond == ISD::SETO || Cond == ISD::SETUO) 5200 return DAG.getSetCC(dl, VT, N0, N0, Cond); 5201 5202 // setcc (fneg x), C -> setcc swap(pred) x, -C 5203 if (N0.getOpcode() == ISD::FNEG) { 5204 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 5205 if (DCI.isBeforeLegalizeOps() || 5206 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 5207 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 5208 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 5209 } 5210 } 5211 5212 // setueq/setoeq X, (fabs Inf) -> is_fpclass X, fcInf 5213 if (isOperationLegalOrCustom(ISD::IS_FPCLASS, N0.getValueType()) && 5214 !isFPImmLegal(CFP->getValueAPF(), CFP->getValueType(0))) { 5215 bool IsFabs = N0.getOpcode() == ISD::FABS; 5216 SDValue Op = IsFabs ? N0.getOperand(0) : N0; 5217 if ((Cond == ISD::SETOEQ || Cond == ISD::SETUEQ) && CFP->isInfinity()) { 5218 FPClassTest Flag = CFP->isNegative() ? (IsFabs ? fcNone : fcNegInf) 5219 : (IsFabs ? fcInf : fcPosInf); 5220 if (Cond == ISD::SETUEQ) 5221 Flag |= fcNan; 5222 return DAG.getNode(ISD::IS_FPCLASS, dl, VT, Op, 5223 DAG.getTargetConstant(Flag, dl, MVT::i32)); 5224 } 5225 } 5226 5227 // If the condition is not legal, see if we can find an equivalent one 5228 // which is legal. 5229 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 5230 // If the comparison was an awkward floating-point == or != and one of 5231 // the comparison operands is infinity or negative infinity, convert the 5232 // condition to a less-awkward <= or >=. 5233 if (CFP->getValueAPF().isInfinity()) { 5234 bool IsNegInf = CFP->getValueAPF().isNegative(); 5235 ISD::CondCode NewCond = ISD::SETCC_INVALID; 5236 switch (Cond) { 5237 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 5238 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 5239 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 5240 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 5241 default: break; 5242 } 5243 if (NewCond != ISD::SETCC_INVALID && 5244 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 5245 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 5246 } 5247 } 5248 } 5249 5250 if (N0 == N1) { 5251 // The sext(setcc()) => setcc() optimization relies on the appropriate 5252 // constant being emitted. 5253 assert(!N0.getValueType().isInteger() && 5254 "Integer types should be handled by FoldSetCC"); 5255 5256 bool EqTrue = ISD::isTrueWhenEqual(Cond); 5257 unsigned UOF = ISD::getUnorderedFlavor(Cond); 5258 if (UOF == 2) // FP operators that are undefined on NaNs. 5259 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 5260 if (UOF == unsigned(EqTrue)) 5261 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 5262 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 5263 // if it is not already. 5264 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 5265 if (NewCond != Cond && 5266 (DCI.isBeforeLegalizeOps() || 5267 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 5268 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 5269 } 5270 5271 // ~X > ~Y --> Y > X 5272 // ~X < ~Y --> Y < X 5273 // ~X < C --> X > ~C 5274 // ~X > C --> X < ~C 5275 if ((isSignedIntSetCC(Cond) || isUnsignedIntSetCC(Cond)) && 5276 N0.getValueType().isInteger()) { 5277 if (isBitwiseNot(N0)) { 5278 if (isBitwiseNot(N1)) 5279 return DAG.getSetCC(dl, VT, N1.getOperand(0), N0.getOperand(0), Cond); 5280 5281 if (DAG.isConstantIntBuildVectorOrConstantInt(N1) && 5282 !DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(0))) { 5283 SDValue Not = DAG.getNOT(dl, N1, OpVT); 5284 return DAG.getSetCC(dl, VT, Not, N0.getOperand(0), Cond); 5285 } 5286 } 5287 } 5288 5289 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5290 N0.getValueType().isInteger()) { 5291 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 5292 N0.getOpcode() == ISD::XOR) { 5293 // Simplify (X+Y) == (X+Z) --> Y == Z 5294 if (N0.getOpcode() == N1.getOpcode()) { 5295 if (N0.getOperand(0) == N1.getOperand(0)) 5296 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 5297 if (N0.getOperand(1) == N1.getOperand(1)) 5298 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 5299 if (isCommutativeBinOp(N0.getOpcode())) { 5300 // If X op Y == Y op X, try other combinations. 5301 if (N0.getOperand(0) == N1.getOperand(1)) 5302 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 5303 Cond); 5304 if (N0.getOperand(1) == N1.getOperand(0)) 5305 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 5306 Cond); 5307 } 5308 } 5309 5310 // If RHS is a legal immediate value for a compare instruction, we need 5311 // to be careful about increasing register pressure needlessly. 5312 bool LegalRHSImm = false; 5313 5314 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 5315 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5316 // Turn (X+C1) == C2 --> X == C2-C1 5317 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) 5318 return DAG.getSetCC( 5319 dl, VT, N0.getOperand(0), 5320 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(), 5321 dl, N0.getValueType()), 5322 Cond); 5323 5324 // Turn (X^C1) == C2 --> X == C1^C2 5325 if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse()) 5326 return DAG.getSetCC( 5327 dl, VT, N0.getOperand(0), 5328 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(), 5329 dl, N0.getValueType()), 5330 Cond); 5331 } 5332 5333 // Turn (C1-X) == C2 --> X == C1-C2 5334 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) 5335 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) 5336 return DAG.getSetCC( 5337 dl, VT, N0.getOperand(1), 5338 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(), 5339 dl, N0.getValueType()), 5340 Cond); 5341 5342 // Could RHSC fold directly into a compare? 5343 if (RHSC->getValueType(0).getSizeInBits() <= 64) 5344 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 5345 } 5346 5347 // (X+Y) == X --> Y == 0 and similar folds. 5348 // Don't do this if X is an immediate that can fold into a cmp 5349 // instruction and X+Y has other uses. It could be an induction variable 5350 // chain, and the transform would increase register pressure. 5351 if (!LegalRHSImm || N0.hasOneUse()) 5352 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 5353 return V; 5354 } 5355 5356 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 5357 N1.getOpcode() == ISD::XOR) 5358 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 5359 return V; 5360 5361 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 5362 return V; 5363 } 5364 5365 // Fold remainder of division by a constant. 5366 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 5367 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 5368 // When division is cheap or optimizing for minimum size, 5369 // fall through to DIVREM creation by skipping this fold. 5370 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 5371 if (N0.getOpcode() == ISD::UREM) { 5372 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 5373 return Folded; 5374 } else if (N0.getOpcode() == ISD::SREM) { 5375 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 5376 return Folded; 5377 } 5378 } 5379 } 5380 5381 // Fold away ALL boolean setcc's. 5382 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 5383 SDValue Temp; 5384 switch (Cond) { 5385 default: llvm_unreachable("Unknown integer setcc!"); 5386 case ISD::SETEQ: // X == Y -> ~(X^Y) 5387 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 5388 N0 = DAG.getNOT(dl, Temp, OpVT); 5389 if (!DCI.isCalledByLegalizer()) 5390 DCI.AddToWorklist(Temp.getNode()); 5391 break; 5392 case ISD::SETNE: // X != Y --> (X^Y) 5393 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 5394 break; 5395 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 5396 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 5397 Temp = DAG.getNOT(dl, N0, OpVT); 5398 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 5399 if (!DCI.isCalledByLegalizer()) 5400 DCI.AddToWorklist(Temp.getNode()); 5401 break; 5402 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 5403 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 5404 Temp = DAG.getNOT(dl, N1, OpVT); 5405 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 5406 if (!DCI.isCalledByLegalizer()) 5407 DCI.AddToWorklist(Temp.getNode()); 5408 break; 5409 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 5410 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 5411 Temp = DAG.getNOT(dl, N0, OpVT); 5412 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 5413 if (!DCI.isCalledByLegalizer()) 5414 DCI.AddToWorklist(Temp.getNode()); 5415 break; 5416 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 5417 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 5418 Temp = DAG.getNOT(dl, N1, OpVT); 5419 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 5420 break; 5421 } 5422 if (VT.getScalarType() != MVT::i1) { 5423 if (!DCI.isCalledByLegalizer()) 5424 DCI.AddToWorklist(N0.getNode()); 5425 // FIXME: If running after legalize, we probably can't do this. 5426 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 5427 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 5428 } 5429 return N0; 5430 } 5431 5432 // Could not fold it. 5433 return SDValue(); 5434 } 5435 5436 /// Returns true (and the GlobalValue and the offset) if the node is a 5437 /// GlobalAddress + offset. 5438 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 5439 int64_t &Offset) const { 5440 5441 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 5442 5443 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 5444 GA = GASD->getGlobal(); 5445 Offset += GASD->getOffset(); 5446 return true; 5447 } 5448 5449 if (N->getOpcode() == ISD::ADD) { 5450 SDValue N1 = N->getOperand(0); 5451 SDValue N2 = N->getOperand(1); 5452 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 5453 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 5454 Offset += V->getSExtValue(); 5455 return true; 5456 } 5457 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 5458 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 5459 Offset += V->getSExtValue(); 5460 return true; 5461 } 5462 } 5463 } 5464 5465 return false; 5466 } 5467 5468 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 5469 DAGCombinerInfo &DCI) const { 5470 // Default implementation: no optimization. 5471 return SDValue(); 5472 } 5473 5474 //===----------------------------------------------------------------------===// 5475 // Inline Assembler Implementation Methods 5476 //===----------------------------------------------------------------------===// 5477 5478 TargetLowering::ConstraintType 5479 TargetLowering::getConstraintType(StringRef Constraint) const { 5480 unsigned S = Constraint.size(); 5481 5482 if (S == 1) { 5483 switch (Constraint[0]) { 5484 default: break; 5485 case 'r': 5486 return C_RegisterClass; 5487 case 'm': // memory 5488 case 'o': // offsetable 5489 case 'V': // not offsetable 5490 return C_Memory; 5491 case 'p': // Address. 5492 return C_Address; 5493 case 'n': // Simple Integer 5494 case 'E': // Floating Point Constant 5495 case 'F': // Floating Point Constant 5496 return C_Immediate; 5497 case 'i': // Simple Integer or Relocatable Constant 5498 case 's': // Relocatable Constant 5499 case 'X': // Allow ANY value. 5500 case 'I': // Target registers. 5501 case 'J': 5502 case 'K': 5503 case 'L': 5504 case 'M': 5505 case 'N': 5506 case 'O': 5507 case 'P': 5508 case '<': 5509 case '>': 5510 return C_Other; 5511 } 5512 } 5513 5514 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 5515 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 5516 return C_Memory; 5517 return C_Register; 5518 } 5519 return C_Unknown; 5520 } 5521 5522 /// Try to replace an X constraint, which matches anything, with another that 5523 /// has more specific requirements based on the type of the corresponding 5524 /// operand. 5525 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 5526 if (ConstraintVT.isInteger()) 5527 return "r"; 5528 if (ConstraintVT.isFloatingPoint()) 5529 return "f"; // works for many targets 5530 return nullptr; 5531 } 5532 5533 SDValue TargetLowering::LowerAsmOutputForConstraint( 5534 SDValue &Chain, SDValue &Glue, const SDLoc &DL, 5535 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 5536 return SDValue(); 5537 } 5538 5539 /// Lower the specified operand into the Ops vector. 5540 /// If it is invalid, don't add anything to Ops. 5541 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 5542 StringRef Constraint, 5543 std::vector<SDValue> &Ops, 5544 SelectionDAG &DAG) const { 5545 5546 if (Constraint.size() > 1) 5547 return; 5548 5549 char ConstraintLetter = Constraint[0]; 5550 switch (ConstraintLetter) { 5551 default: break; 5552 case 'X': // Allows any operand 5553 case 'i': // Simple Integer or Relocatable Constant 5554 case 'n': // Simple Integer 5555 case 's': { // Relocatable Constant 5556 5557 ConstantSDNode *C; 5558 uint64_t Offset = 0; 5559 5560 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 5561 // etc., since getelementpointer is variadic. We can't use 5562 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 5563 // while in this case the GA may be furthest from the root node which is 5564 // likely an ISD::ADD. 5565 while (true) { 5566 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 5567 // gcc prints these as sign extended. Sign extend value to 64 bits 5568 // now; without this it would get ZExt'd later in 5569 // ScheduleDAGSDNodes::EmitNode, which is very generic. 5570 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 5571 BooleanContent BCont = getBooleanContents(MVT::i64); 5572 ISD::NodeType ExtOpc = 5573 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 5574 int64_t ExtVal = 5575 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 5576 Ops.push_back( 5577 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 5578 return; 5579 } 5580 if (ConstraintLetter != 'n') { 5581 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 5582 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 5583 GA->getValueType(0), 5584 Offset + GA->getOffset())); 5585 return; 5586 } 5587 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 5588 Ops.push_back(DAG.getTargetBlockAddress( 5589 BA->getBlockAddress(), BA->getValueType(0), 5590 Offset + BA->getOffset(), BA->getTargetFlags())); 5591 return; 5592 } 5593 if (isa<BasicBlockSDNode>(Op)) { 5594 Ops.push_back(Op); 5595 return; 5596 } 5597 } 5598 const unsigned OpCode = Op.getOpcode(); 5599 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 5600 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 5601 Op = Op.getOperand(1); 5602 // Subtraction is not commutative. 5603 else if (OpCode == ISD::ADD && 5604 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 5605 Op = Op.getOperand(0); 5606 else 5607 return; 5608 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 5609 continue; 5610 } 5611 return; 5612 } 5613 break; 5614 } 5615 } 5616 } 5617 5618 void TargetLowering::CollectTargetIntrinsicOperands( 5619 const CallInst &I, SmallVectorImpl<SDValue> &Ops, SelectionDAG &DAG) const { 5620 } 5621 5622 std::pair<unsigned, const TargetRegisterClass *> 5623 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 5624 StringRef Constraint, 5625 MVT VT) const { 5626 if (!Constraint.starts_with("{")) 5627 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 5628 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 5629 5630 // Remove the braces from around the name. 5631 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 5632 5633 std::pair<unsigned, const TargetRegisterClass *> R = 5634 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 5635 5636 // Figure out which register class contains this reg. 5637 for (const TargetRegisterClass *RC : RI->regclasses()) { 5638 // If none of the value types for this register class are valid, we 5639 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5640 if (!isLegalRC(*RI, *RC)) 5641 continue; 5642 5643 for (const MCPhysReg &PR : *RC) { 5644 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 5645 std::pair<unsigned, const TargetRegisterClass *> S = 5646 std::make_pair(PR, RC); 5647 5648 // If this register class has the requested value type, return it, 5649 // otherwise keep searching and return the first class found 5650 // if no other is found which explicitly has the requested type. 5651 if (RI->isTypeLegalForClass(*RC, VT)) 5652 return S; 5653 if (!R.second) 5654 R = S; 5655 } 5656 } 5657 } 5658 5659 return R; 5660 } 5661 5662 //===----------------------------------------------------------------------===// 5663 // Constraint Selection. 5664 5665 /// Return true of this is an input operand that is a matching constraint like 5666 /// "4". 5667 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 5668 assert(!ConstraintCode.empty() && "No known constraint!"); 5669 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 5670 } 5671 5672 /// If this is an input matching constraint, this method returns the output 5673 /// operand it matches. 5674 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 5675 assert(!ConstraintCode.empty() && "No known constraint!"); 5676 return atoi(ConstraintCode.c_str()); 5677 } 5678 5679 /// Split up the constraint string from the inline assembly value into the 5680 /// specific constraints and their prefixes, and also tie in the associated 5681 /// operand values. 5682 /// If this returns an empty vector, and if the constraint string itself 5683 /// isn't empty, there was an error parsing. 5684 TargetLowering::AsmOperandInfoVector 5685 TargetLowering::ParseConstraints(const DataLayout &DL, 5686 const TargetRegisterInfo *TRI, 5687 const CallBase &Call) const { 5688 /// Information about all of the constraints. 5689 AsmOperandInfoVector ConstraintOperands; 5690 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 5691 unsigned maCount = 0; // Largest number of multiple alternative constraints. 5692 5693 // Do a prepass over the constraints, canonicalizing them, and building up the 5694 // ConstraintOperands list. 5695 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5696 unsigned ResNo = 0; // ResNo - The result number of the next output. 5697 unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number. 5698 5699 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 5700 ConstraintOperands.emplace_back(std::move(CI)); 5701 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 5702 5703 // Update multiple alternative constraint count. 5704 if (OpInfo.multipleAlternatives.size() > maCount) 5705 maCount = OpInfo.multipleAlternatives.size(); 5706 5707 OpInfo.ConstraintVT = MVT::Other; 5708 5709 // Compute the value type for each operand. 5710 switch (OpInfo.Type) { 5711 case InlineAsm::isOutput: 5712 // Indirect outputs just consume an argument. 5713 if (OpInfo.isIndirect) { 5714 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5715 break; 5716 } 5717 5718 // The return value of the call is this value. As such, there is no 5719 // corresponding argument. 5720 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 5721 if (auto *STy = dyn_cast<StructType>(Call.getType())) { 5722 OpInfo.ConstraintVT = 5723 getSimpleValueType(DL, STy->getElementType(ResNo)); 5724 } else { 5725 assert(ResNo == 0 && "Asm only has one result!"); 5726 OpInfo.ConstraintVT = 5727 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 5728 } 5729 ++ResNo; 5730 break; 5731 case InlineAsm::isInput: 5732 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5733 break; 5734 case InlineAsm::isLabel: 5735 OpInfo.CallOperandVal = cast<CallBrInst>(&Call)->getIndirectDest(LabelNo); 5736 ++LabelNo; 5737 continue; 5738 case InlineAsm::isClobber: 5739 // Nothing to do. 5740 break; 5741 } 5742 5743 if (OpInfo.CallOperandVal) { 5744 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 5745 if (OpInfo.isIndirect) { 5746 OpTy = Call.getParamElementType(ArgNo); 5747 assert(OpTy && "Indirect operand must have elementtype attribute"); 5748 } 5749 5750 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5751 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5752 if (STy->getNumElements() == 1) 5753 OpTy = STy->getElementType(0); 5754 5755 // If OpTy is not a single value, it may be a struct/union that we 5756 // can tile with integers. 5757 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5758 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5759 switch (BitSize) { 5760 default: break; 5761 case 1: 5762 case 8: 5763 case 16: 5764 case 32: 5765 case 64: 5766 case 128: 5767 OpTy = IntegerType::get(OpTy->getContext(), BitSize); 5768 break; 5769 } 5770 } 5771 5772 EVT VT = getAsmOperandValueType(DL, OpTy, true); 5773 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; 5774 ArgNo++; 5775 } 5776 } 5777 5778 // If we have multiple alternative constraints, select the best alternative. 5779 if (!ConstraintOperands.empty()) { 5780 if (maCount) { 5781 unsigned bestMAIndex = 0; 5782 int bestWeight = -1; 5783 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 5784 int weight = -1; 5785 unsigned maIndex; 5786 // Compute the sums of the weights for each alternative, keeping track 5787 // of the best (highest weight) one so far. 5788 for (maIndex = 0; maIndex < maCount; ++maIndex) { 5789 int weightSum = 0; 5790 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5791 cIndex != eIndex; ++cIndex) { 5792 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5793 if (OpInfo.Type == InlineAsm::isClobber) 5794 continue; 5795 5796 // If this is an output operand with a matching input operand, 5797 // look up the matching input. If their types mismatch, e.g. one 5798 // is an integer, the other is floating point, or their sizes are 5799 // different, flag it as an maCantMatch. 5800 if (OpInfo.hasMatchingInput()) { 5801 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5802 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5803 if ((OpInfo.ConstraintVT.isInteger() != 5804 Input.ConstraintVT.isInteger()) || 5805 (OpInfo.ConstraintVT.getSizeInBits() != 5806 Input.ConstraintVT.getSizeInBits())) { 5807 weightSum = -1; // Can't match. 5808 break; 5809 } 5810 } 5811 } 5812 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 5813 if (weight == -1) { 5814 weightSum = -1; 5815 break; 5816 } 5817 weightSum += weight; 5818 } 5819 // Update best. 5820 if (weightSum > bestWeight) { 5821 bestWeight = weightSum; 5822 bestMAIndex = maIndex; 5823 } 5824 } 5825 5826 // Now select chosen alternative in each constraint. 5827 for (AsmOperandInfo &cInfo : ConstraintOperands) 5828 if (cInfo.Type != InlineAsm::isClobber) 5829 cInfo.selectAlternative(bestMAIndex); 5830 } 5831 } 5832 5833 // Check and hook up tied operands, choose constraint code to use. 5834 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5835 cIndex != eIndex; ++cIndex) { 5836 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5837 5838 // If this is an output operand with a matching input operand, look up the 5839 // matching input. If their types mismatch, e.g. one is an integer, the 5840 // other is floating point, or their sizes are different, flag it as an 5841 // error. 5842 if (OpInfo.hasMatchingInput()) { 5843 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5844 5845 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5846 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5847 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5848 OpInfo.ConstraintVT); 5849 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5850 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5851 Input.ConstraintVT); 5852 const bool OutOpIsIntOrFP = OpInfo.ConstraintVT.isInteger() || 5853 OpInfo.ConstraintVT.isFloatingPoint(); 5854 const bool InOpIsIntOrFP = Input.ConstraintVT.isInteger() || 5855 Input.ConstraintVT.isFloatingPoint(); 5856 if ((OutOpIsIntOrFP != InOpIsIntOrFP) || 5857 (MatchRC.second != InputRC.second)) { 5858 report_fatal_error("Unsupported asm: input constraint" 5859 " with a matching output constraint of" 5860 " incompatible type!"); 5861 } 5862 } 5863 } 5864 } 5865 5866 return ConstraintOperands; 5867 } 5868 5869 /// Return a number indicating our preference for chosing a type of constraint 5870 /// over another, for the purpose of sorting them. Immediates are almost always 5871 /// preferrable (when they can be emitted). A higher return value means a 5872 /// stronger preference for one constraint type relative to another. 5873 /// FIXME: We should prefer registers over memory but doing so may lead to 5874 /// unrecoverable register exhaustion later. 5875 /// https://github.com/llvm/llvm-project/issues/20571 5876 static unsigned getConstraintPiority(TargetLowering::ConstraintType CT) { 5877 switch (CT) { 5878 case TargetLowering::C_Immediate: 5879 case TargetLowering::C_Other: 5880 return 4; 5881 case TargetLowering::C_Memory: 5882 case TargetLowering::C_Address: 5883 return 3; 5884 case TargetLowering::C_RegisterClass: 5885 return 2; 5886 case TargetLowering::C_Register: 5887 return 1; 5888 case TargetLowering::C_Unknown: 5889 return 0; 5890 } 5891 llvm_unreachable("Invalid constraint type"); 5892 } 5893 5894 /// Examine constraint type and operand type and determine a weight value. 5895 /// This object must already have been set up with the operand type 5896 /// and the current alternative constraint selected. 5897 TargetLowering::ConstraintWeight 5898 TargetLowering::getMultipleConstraintMatchWeight( 5899 AsmOperandInfo &info, int maIndex) const { 5900 InlineAsm::ConstraintCodeVector *rCodes; 5901 if (maIndex >= (int)info.multipleAlternatives.size()) 5902 rCodes = &info.Codes; 5903 else 5904 rCodes = &info.multipleAlternatives[maIndex].Codes; 5905 ConstraintWeight BestWeight = CW_Invalid; 5906 5907 // Loop over the options, keeping track of the most general one. 5908 for (const std::string &rCode : *rCodes) { 5909 ConstraintWeight weight = 5910 getSingleConstraintMatchWeight(info, rCode.c_str()); 5911 if (weight > BestWeight) 5912 BestWeight = weight; 5913 } 5914 5915 return BestWeight; 5916 } 5917 5918 /// Examine constraint type and operand type and determine a weight value. 5919 /// This object must already have been set up with the operand type 5920 /// and the current alternative constraint selected. 5921 TargetLowering::ConstraintWeight 5922 TargetLowering::getSingleConstraintMatchWeight( 5923 AsmOperandInfo &info, const char *constraint) const { 5924 ConstraintWeight weight = CW_Invalid; 5925 Value *CallOperandVal = info.CallOperandVal; 5926 // If we don't have a value, we can't do a match, 5927 // but allow it at the lowest weight. 5928 if (!CallOperandVal) 5929 return CW_Default; 5930 // Look at the constraint type. 5931 switch (*constraint) { 5932 case 'i': // immediate integer. 5933 case 'n': // immediate integer with a known value. 5934 if (isa<ConstantInt>(CallOperandVal)) 5935 weight = CW_Constant; 5936 break; 5937 case 's': // non-explicit intregal immediate. 5938 if (isa<GlobalValue>(CallOperandVal)) 5939 weight = CW_Constant; 5940 break; 5941 case 'E': // immediate float if host format. 5942 case 'F': // immediate float. 5943 if (isa<ConstantFP>(CallOperandVal)) 5944 weight = CW_Constant; 5945 break; 5946 case '<': // memory operand with autodecrement. 5947 case '>': // memory operand with autoincrement. 5948 case 'm': // memory operand. 5949 case 'o': // offsettable memory operand 5950 case 'V': // non-offsettable memory operand 5951 weight = CW_Memory; 5952 break; 5953 case 'r': // general register. 5954 case 'g': // general register, memory operand or immediate integer. 5955 // note: Clang converts "g" to "imr". 5956 if (CallOperandVal->getType()->isIntegerTy()) 5957 weight = CW_Register; 5958 break; 5959 case 'X': // any operand. 5960 default: 5961 weight = CW_Default; 5962 break; 5963 } 5964 return weight; 5965 } 5966 5967 /// If there are multiple different constraints that we could pick for this 5968 /// operand (e.g. "imr") try to pick the 'best' one. 5969 /// This is somewhat tricky: constraints (TargetLowering::ConstraintType) fall 5970 /// into seven classes: 5971 /// Register -> one specific register 5972 /// RegisterClass -> a group of regs 5973 /// Memory -> memory 5974 /// Address -> a symbolic memory reference 5975 /// Immediate -> immediate values 5976 /// Other -> magic values (such as "Flag Output Operands") 5977 /// Unknown -> something we don't recognize yet and can't handle 5978 /// Ideally, we would pick the most specific constraint possible: if we have 5979 /// something that fits into a register, we would pick it. The problem here 5980 /// is that if we have something that could either be in a register or in 5981 /// memory that use of the register could cause selection of *other* 5982 /// operands to fail: they might only succeed if we pick memory. Because of 5983 /// this the heuristic we use is: 5984 /// 5985 /// 1) If there is an 'other' constraint, and if the operand is valid for 5986 /// that constraint, use it. This makes us take advantage of 'i' 5987 /// constraints when available. 5988 /// 2) Otherwise, pick the most general constraint present. This prefers 5989 /// 'm' over 'r', for example. 5990 /// 5991 TargetLowering::ConstraintGroup TargetLowering::getConstraintPreferences( 5992 TargetLowering::AsmOperandInfo &OpInfo) const { 5993 ConstraintGroup Ret; 5994 5995 Ret.reserve(OpInfo.Codes.size()); 5996 for (StringRef Code : OpInfo.Codes) { 5997 TargetLowering::ConstraintType CType = getConstraintType(Code); 5998 5999 // Indirect 'other' or 'immediate' constraints are not allowed. 6000 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 6001 CType == TargetLowering::C_Register || 6002 CType == TargetLowering::C_RegisterClass)) 6003 continue; 6004 6005 // Things with matching constraints can only be registers, per gcc 6006 // documentation. This mainly affects "g" constraints. 6007 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 6008 continue; 6009 6010 Ret.emplace_back(Code, CType); 6011 } 6012 6013 std::stable_sort( 6014 Ret.begin(), Ret.end(), [](ConstraintPair a, ConstraintPair b) { 6015 return getConstraintPiority(a.second) > getConstraintPiority(b.second); 6016 }); 6017 6018 return Ret; 6019 } 6020 6021 /// If we have an immediate, see if we can lower it. Return true if we can, 6022 /// false otherwise. 6023 static bool lowerImmediateIfPossible(TargetLowering::ConstraintPair &P, 6024 SDValue Op, SelectionDAG *DAG, 6025 const TargetLowering &TLI) { 6026 6027 assert((P.second == TargetLowering::C_Other || 6028 P.second == TargetLowering::C_Immediate) && 6029 "need immediate or other"); 6030 6031 if (!Op.getNode()) 6032 return false; 6033 6034 std::vector<SDValue> ResultOps; 6035 TLI.LowerAsmOperandForConstraint(Op, P.first, ResultOps, *DAG); 6036 return !ResultOps.empty(); 6037 } 6038 6039 /// Determines the constraint code and constraint type to use for the specific 6040 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 6041 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 6042 SDValue Op, 6043 SelectionDAG *DAG) const { 6044 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 6045 6046 // Single-letter constraints ('r') are very common. 6047 if (OpInfo.Codes.size() == 1) { 6048 OpInfo.ConstraintCode = OpInfo.Codes[0]; 6049 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 6050 } else { 6051 ConstraintGroup G = getConstraintPreferences(OpInfo); 6052 if (G.empty()) 6053 return; 6054 6055 unsigned BestIdx = 0; 6056 for (const unsigned E = G.size(); 6057 BestIdx < E && (G[BestIdx].second == TargetLowering::C_Other || 6058 G[BestIdx].second == TargetLowering::C_Immediate); 6059 ++BestIdx) { 6060 if (lowerImmediateIfPossible(G[BestIdx], Op, DAG, *this)) 6061 break; 6062 // If we're out of constraints, just pick the first one. 6063 if (BestIdx + 1 == E) { 6064 BestIdx = 0; 6065 break; 6066 } 6067 } 6068 6069 OpInfo.ConstraintCode = G[BestIdx].first; 6070 OpInfo.ConstraintType = G[BestIdx].second; 6071 } 6072 6073 // 'X' matches anything. 6074 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 6075 // Constants are handled elsewhere. For Functions, the type here is the 6076 // type of the result, which is not what we want to look at; leave them 6077 // alone. 6078 Value *v = OpInfo.CallOperandVal; 6079 if (isa<ConstantInt>(v) || isa<Function>(v)) { 6080 return; 6081 } 6082 6083 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) { 6084 OpInfo.ConstraintCode = "i"; 6085 return; 6086 } 6087 6088 // Otherwise, try to resolve it to something we know about by looking at 6089 // the actual operand type. 6090 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 6091 OpInfo.ConstraintCode = Repl; 6092 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 6093 } 6094 } 6095 } 6096 6097 /// Given an exact SDIV by a constant, create a multiplication 6098 /// with the multiplicative inverse of the constant. 6099 /// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242 6100 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 6101 const SDLoc &dl, SelectionDAG &DAG, 6102 SmallVectorImpl<SDNode *> &Created) { 6103 SDValue Op0 = N->getOperand(0); 6104 SDValue Op1 = N->getOperand(1); 6105 EVT VT = N->getValueType(0); 6106 EVT SVT = VT.getScalarType(); 6107 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 6108 EVT ShSVT = ShVT.getScalarType(); 6109 6110 bool UseSRA = false; 6111 SmallVector<SDValue, 16> Shifts, Factors; 6112 6113 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 6114 if (C->isZero()) 6115 return false; 6116 APInt Divisor = C->getAPIntValue(); 6117 unsigned Shift = Divisor.countr_zero(); 6118 if (Shift) { 6119 Divisor.ashrInPlace(Shift); 6120 UseSRA = true; 6121 } 6122 APInt Factor = Divisor.multiplicativeInverse(); 6123 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 6124 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 6125 return true; 6126 }; 6127 6128 // Collect all magic values from the build vector. 6129 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 6130 return SDValue(); 6131 6132 SDValue Shift, Factor; 6133 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 6134 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 6135 Factor = DAG.getBuildVector(VT, dl, Factors); 6136 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 6137 assert(Shifts.size() == 1 && Factors.size() == 1 && 6138 "Expected matchUnaryPredicate to return one element for scalable " 6139 "vectors"); 6140 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 6141 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 6142 } else { 6143 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 6144 Shift = Shifts[0]; 6145 Factor = Factors[0]; 6146 } 6147 6148 SDValue Res = Op0; 6149 if (UseSRA) { 6150 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, SDNodeFlags::Exact); 6151 Created.push_back(Res.getNode()); 6152 } 6153 6154 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 6155 } 6156 6157 /// Given an exact UDIV by a constant, create a multiplication 6158 /// with the multiplicative inverse of the constant. 6159 /// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242 6160 static SDValue BuildExactUDIV(const TargetLowering &TLI, SDNode *N, 6161 const SDLoc &dl, SelectionDAG &DAG, 6162 SmallVectorImpl<SDNode *> &Created) { 6163 EVT VT = N->getValueType(0); 6164 EVT SVT = VT.getScalarType(); 6165 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 6166 EVT ShSVT = ShVT.getScalarType(); 6167 6168 bool UseSRL = false; 6169 SmallVector<SDValue, 16> Shifts, Factors; 6170 6171 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 6172 if (C->isZero()) 6173 return false; 6174 APInt Divisor = C->getAPIntValue(); 6175 unsigned Shift = Divisor.countr_zero(); 6176 if (Shift) { 6177 Divisor.lshrInPlace(Shift); 6178 UseSRL = true; 6179 } 6180 // Calculate the multiplicative inverse modulo BW. 6181 APInt Factor = Divisor.multiplicativeInverse(); 6182 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 6183 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 6184 return true; 6185 }; 6186 6187 SDValue Op1 = N->getOperand(1); 6188 6189 // Collect all magic values from the build vector. 6190 if (!ISD::matchUnaryPredicate(Op1, BuildUDIVPattern)) 6191 return SDValue(); 6192 6193 SDValue Shift, Factor; 6194 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 6195 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 6196 Factor = DAG.getBuildVector(VT, dl, Factors); 6197 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 6198 assert(Shifts.size() == 1 && Factors.size() == 1 && 6199 "Expected matchUnaryPredicate to return one element for scalable " 6200 "vectors"); 6201 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 6202 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 6203 } else { 6204 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 6205 Shift = Shifts[0]; 6206 Factor = Factors[0]; 6207 } 6208 6209 SDValue Res = N->getOperand(0); 6210 if (UseSRL) { 6211 Res = DAG.getNode(ISD::SRL, dl, VT, Res, Shift, SDNodeFlags::Exact); 6212 Created.push_back(Res.getNode()); 6213 } 6214 6215 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 6216 } 6217 6218 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 6219 SelectionDAG &DAG, 6220 SmallVectorImpl<SDNode *> &Created) const { 6221 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 6222 if (isIntDivCheap(N->getValueType(0), Attr)) 6223 return SDValue(N, 0); // Lower SDIV as SDIV 6224 return SDValue(); 6225 } 6226 6227 SDValue 6228 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor, 6229 SelectionDAG &DAG, 6230 SmallVectorImpl<SDNode *> &Created) const { 6231 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 6232 if (isIntDivCheap(N->getValueType(0), Attr)) 6233 return SDValue(N, 0); // Lower SREM as SREM 6234 return SDValue(); 6235 } 6236 6237 /// Build sdiv by power-of-2 with conditional move instructions 6238 /// Ref: "Hacker's Delight" by Henry Warren 10-1 6239 /// If conditional move/branch is preferred, we lower sdiv x, +/-2**k into: 6240 /// bgez x, label 6241 /// add x, x, 2**k-1 6242 /// label: 6243 /// sra res, x, k 6244 /// neg res, res (when the divisor is negative) 6245 SDValue TargetLowering::buildSDIVPow2WithCMov( 6246 SDNode *N, const APInt &Divisor, SelectionDAG &DAG, 6247 SmallVectorImpl<SDNode *> &Created) const { 6248 unsigned Lg2 = Divisor.countr_zero(); 6249 EVT VT = N->getValueType(0); 6250 6251 SDLoc DL(N); 6252 SDValue N0 = N->getOperand(0); 6253 SDValue Zero = DAG.getConstant(0, DL, VT); 6254 APInt Lg2Mask = APInt::getLowBitsSet(VT.getSizeInBits(), Lg2); 6255 SDValue Pow2MinusOne = DAG.getConstant(Lg2Mask, DL, VT); 6256 6257 // If N0 is negative, we need to add (Pow2 - 1) to it before shifting right. 6258 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6259 SDValue Cmp = DAG.getSetCC(DL, CCVT, N0, Zero, ISD::SETLT); 6260 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 6261 SDValue CMov = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 6262 6263 Created.push_back(Cmp.getNode()); 6264 Created.push_back(Add.getNode()); 6265 Created.push_back(CMov.getNode()); 6266 6267 // Divide by pow2. 6268 SDValue SRA = 6269 DAG.getNode(ISD::SRA, DL, VT, CMov, DAG.getConstant(Lg2, DL, VT)); 6270 6271 // If we're dividing by a positive value, we're done. Otherwise, we must 6272 // negate the result. 6273 if (Divisor.isNonNegative()) 6274 return SRA; 6275 6276 Created.push_back(SRA.getNode()); 6277 return DAG.getNode(ISD::SUB, DL, VT, Zero, SRA); 6278 } 6279 6280 /// Given an ISD::SDIV node expressing a divide by constant, 6281 /// return a DAG expression to select that will generate the same value by 6282 /// multiplying by a magic number. 6283 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 6284 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 6285 bool IsAfterLegalization, 6286 bool IsAfterLegalTypes, 6287 SmallVectorImpl<SDNode *> &Created) const { 6288 SDLoc dl(N); 6289 EVT VT = N->getValueType(0); 6290 EVT SVT = VT.getScalarType(); 6291 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6292 EVT ShSVT = ShVT.getScalarType(); 6293 unsigned EltBits = VT.getScalarSizeInBits(); 6294 EVT MulVT; 6295 6296 // Check to see if we can do this. 6297 // FIXME: We should be more aggressive here. 6298 if (!isTypeLegal(VT)) { 6299 // Limit this to simple scalars for now. 6300 if (VT.isVector() || !VT.isSimple()) 6301 return SDValue(); 6302 6303 // If this type will be promoted to a large enough type with a legal 6304 // multiply operation, we can go ahead and do this transform. 6305 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 6306 return SDValue(); 6307 6308 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 6309 if (MulVT.getSizeInBits() < (2 * EltBits) || 6310 !isOperationLegal(ISD::MUL, MulVT)) 6311 return SDValue(); 6312 } 6313 6314 // If the sdiv has an 'exact' bit we can use a simpler lowering. 6315 if (N->getFlags().hasExact()) 6316 return BuildExactSDIV(*this, N, dl, DAG, Created); 6317 6318 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 6319 6320 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 6321 if (C->isZero()) 6322 return false; 6323 6324 const APInt &Divisor = C->getAPIntValue(); 6325 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 6326 int NumeratorFactor = 0; 6327 int ShiftMask = -1; 6328 6329 if (Divisor.isOne() || Divisor.isAllOnes()) { 6330 // If d is +1/-1, we just multiply the numerator by +1/-1. 6331 NumeratorFactor = Divisor.getSExtValue(); 6332 magics.Magic = 0; 6333 magics.ShiftAmount = 0; 6334 ShiftMask = 0; 6335 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 6336 // If d > 0 and m < 0, add the numerator. 6337 NumeratorFactor = 1; 6338 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 6339 // If d < 0 and m > 0, subtract the numerator. 6340 NumeratorFactor = -1; 6341 } 6342 6343 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 6344 Factors.push_back(DAG.getSignedConstant(NumeratorFactor, dl, SVT)); 6345 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 6346 ShiftMasks.push_back(DAG.getSignedConstant(ShiftMask, dl, SVT)); 6347 return true; 6348 }; 6349 6350 SDValue N0 = N->getOperand(0); 6351 SDValue N1 = N->getOperand(1); 6352 6353 // Collect the shifts / magic values from each element. 6354 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 6355 return SDValue(); 6356 6357 SDValue MagicFactor, Factor, Shift, ShiftMask; 6358 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 6359 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 6360 Factor = DAG.getBuildVector(VT, dl, Factors); 6361 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 6362 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 6363 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 6364 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 6365 Shifts.size() == 1 && ShiftMasks.size() == 1 && 6366 "Expected matchUnaryPredicate to return one element for scalable " 6367 "vectors"); 6368 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 6369 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 6370 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 6371 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 6372 } else { 6373 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 6374 MagicFactor = MagicFactors[0]; 6375 Factor = Factors[0]; 6376 Shift = Shifts[0]; 6377 ShiftMask = ShiftMasks[0]; 6378 } 6379 6380 // Multiply the numerator (operand 0) by the magic value. 6381 // FIXME: We should support doing a MUL in a wider type. 6382 auto GetMULHS = [&](SDValue X, SDValue Y) { 6383 // If the type isn't legal, use a wider mul of the type calculated 6384 // earlier. 6385 if (!isTypeLegal(VT)) { 6386 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 6387 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 6388 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 6389 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 6390 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 6391 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6392 } 6393 6394 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 6395 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 6396 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 6397 SDValue LoHi = 6398 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 6399 return SDValue(LoHi.getNode(), 1); 6400 } 6401 // If type twice as wide legal, widen and use a mul plus a shift. 6402 unsigned Size = VT.getScalarSizeInBits(); 6403 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2); 6404 if (VT.isVector()) 6405 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 6406 VT.getVectorElementCount()); 6407 // Some targets like AMDGPU try to go from SDIV to SDIVREM which is then 6408 // custom lowered. This is very expensive so avoid it at all costs for 6409 // constant divisors. 6410 if ((!IsAfterLegalTypes && isOperationExpand(ISD::SDIV, VT) && 6411 isOperationCustom(ISD::SDIVREM, VT.getScalarType())) || 6412 isOperationLegalOrCustom(ISD::MUL, WideVT)) { 6413 X = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, X); 6414 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, Y); 6415 Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y); 6416 Y = DAG.getNode(ISD::SRL, dl, WideVT, Y, 6417 DAG.getShiftAmountConstant(EltBits, WideVT, dl)); 6418 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6419 } 6420 return SDValue(); 6421 }; 6422 6423 SDValue Q = GetMULHS(N0, MagicFactor); 6424 if (!Q) 6425 return SDValue(); 6426 6427 Created.push_back(Q.getNode()); 6428 6429 // (Optionally) Add/subtract the numerator using Factor. 6430 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 6431 Created.push_back(Factor.getNode()); 6432 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 6433 Created.push_back(Q.getNode()); 6434 6435 // Shift right algebraic by shift value. 6436 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 6437 Created.push_back(Q.getNode()); 6438 6439 // Extract the sign bit, mask it and add it to the quotient. 6440 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 6441 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 6442 Created.push_back(T.getNode()); 6443 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 6444 Created.push_back(T.getNode()); 6445 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 6446 } 6447 6448 /// Given an ISD::UDIV node expressing a divide by constant, 6449 /// return a DAG expression to select that will generate the same value by 6450 /// multiplying by a magic number. 6451 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 6452 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 6453 bool IsAfterLegalization, 6454 bool IsAfterLegalTypes, 6455 SmallVectorImpl<SDNode *> &Created) const { 6456 SDLoc dl(N); 6457 EVT VT = N->getValueType(0); 6458 EVT SVT = VT.getScalarType(); 6459 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6460 EVT ShSVT = ShVT.getScalarType(); 6461 unsigned EltBits = VT.getScalarSizeInBits(); 6462 EVT MulVT; 6463 6464 // Check to see if we can do this. 6465 // FIXME: We should be more aggressive here. 6466 if (!isTypeLegal(VT)) { 6467 // Limit this to simple scalars for now. 6468 if (VT.isVector() || !VT.isSimple()) 6469 return SDValue(); 6470 6471 // If this type will be promoted to a large enough type with a legal 6472 // multiply operation, we can go ahead and do this transform. 6473 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 6474 return SDValue(); 6475 6476 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 6477 if (MulVT.getSizeInBits() < (2 * EltBits) || 6478 !isOperationLegal(ISD::MUL, MulVT)) 6479 return SDValue(); 6480 } 6481 6482 // If the udiv has an 'exact' bit we can use a simpler lowering. 6483 if (N->getFlags().hasExact()) 6484 return BuildExactUDIV(*this, N, dl, DAG, Created); 6485 6486 SDValue N0 = N->getOperand(0); 6487 SDValue N1 = N->getOperand(1); 6488 6489 // Try to use leading zeros of the dividend to reduce the multiplier and 6490 // avoid expensive fixups. 6491 unsigned KnownLeadingZeros = DAG.computeKnownBits(N0).countMinLeadingZeros(); 6492 6493 bool UseNPQ = false, UsePreShift = false, UsePostShift = false; 6494 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 6495 6496 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 6497 if (C->isZero()) 6498 return false; 6499 const APInt& Divisor = C->getAPIntValue(); 6500 6501 SDValue PreShift, MagicFactor, NPQFactor, PostShift; 6502 6503 // Magic algorithm doesn't work for division by 1. We need to emit a select 6504 // at the end. 6505 if (Divisor.isOne()) { 6506 PreShift = PostShift = DAG.getUNDEF(ShSVT); 6507 MagicFactor = NPQFactor = DAG.getUNDEF(SVT); 6508 } else { 6509 UnsignedDivisionByConstantInfo magics = 6510 UnsignedDivisionByConstantInfo::get( 6511 Divisor, std::min(KnownLeadingZeros, Divisor.countl_zero())); 6512 6513 MagicFactor = DAG.getConstant(magics.Magic, dl, SVT); 6514 6515 assert(magics.PreShift < Divisor.getBitWidth() && 6516 "We shouldn't generate an undefined shift!"); 6517 assert(magics.PostShift < Divisor.getBitWidth() && 6518 "We shouldn't generate an undefined shift!"); 6519 assert((!magics.IsAdd || magics.PreShift == 0) && 6520 "Unexpected pre-shift"); 6521 PreShift = DAG.getConstant(magics.PreShift, dl, ShSVT); 6522 PostShift = DAG.getConstant(magics.PostShift, dl, ShSVT); 6523 NPQFactor = DAG.getConstant( 6524 magics.IsAdd ? APInt::getOneBitSet(EltBits, EltBits - 1) 6525 : APInt::getZero(EltBits), 6526 dl, SVT); 6527 UseNPQ |= magics.IsAdd; 6528 UsePreShift |= magics.PreShift != 0; 6529 UsePostShift |= magics.PostShift != 0; 6530 } 6531 6532 PreShifts.push_back(PreShift); 6533 MagicFactors.push_back(MagicFactor); 6534 NPQFactors.push_back(NPQFactor); 6535 PostShifts.push_back(PostShift); 6536 return true; 6537 }; 6538 6539 // Collect the shifts/magic values from each element. 6540 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 6541 return SDValue(); 6542 6543 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 6544 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 6545 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 6546 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 6547 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 6548 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 6549 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 6550 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 6551 NPQFactors.size() == 1 && PostShifts.size() == 1 && 6552 "Expected matchUnaryPredicate to return one for scalable vectors"); 6553 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 6554 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 6555 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 6556 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 6557 } else { 6558 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 6559 PreShift = PreShifts[0]; 6560 MagicFactor = MagicFactors[0]; 6561 PostShift = PostShifts[0]; 6562 } 6563 6564 SDValue Q = N0; 6565 if (UsePreShift) { 6566 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 6567 Created.push_back(Q.getNode()); 6568 } 6569 6570 // FIXME: We should support doing a MUL in a wider type. 6571 auto GetMULHU = [&](SDValue X, SDValue Y) { 6572 // If the type isn't legal, use a wider mul of the type calculated 6573 // earlier. 6574 if (!isTypeLegal(VT)) { 6575 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 6576 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 6577 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 6578 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 6579 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 6580 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6581 } 6582 6583 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 6584 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 6585 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 6586 SDValue LoHi = 6587 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 6588 return SDValue(LoHi.getNode(), 1); 6589 } 6590 // If type twice as wide legal, widen and use a mul plus a shift. 6591 unsigned Size = VT.getScalarSizeInBits(); 6592 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2); 6593 if (VT.isVector()) 6594 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 6595 VT.getVectorElementCount()); 6596 // Some targets like AMDGPU try to go from UDIV to UDIVREM which is then 6597 // custom lowered. This is very expensive so avoid it at all costs for 6598 // constant divisors. 6599 if ((!IsAfterLegalTypes && isOperationExpand(ISD::UDIV, VT) && 6600 isOperationCustom(ISD::UDIVREM, VT.getScalarType())) || 6601 isOperationLegalOrCustom(ISD::MUL, WideVT)) { 6602 X = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, X); 6603 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, Y); 6604 Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y); 6605 Y = DAG.getNode(ISD::SRL, dl, WideVT, Y, 6606 DAG.getShiftAmountConstant(EltBits, WideVT, dl)); 6607 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6608 } 6609 return SDValue(); // No mulhu or equivalent 6610 }; 6611 6612 // Multiply the numerator (operand 0) by the magic value. 6613 Q = GetMULHU(Q, MagicFactor); 6614 if (!Q) 6615 return SDValue(); 6616 6617 Created.push_back(Q.getNode()); 6618 6619 if (UseNPQ) { 6620 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 6621 Created.push_back(NPQ.getNode()); 6622 6623 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 6624 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 6625 if (VT.isVector()) 6626 NPQ = GetMULHU(NPQ, NPQFactor); 6627 else 6628 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 6629 6630 Created.push_back(NPQ.getNode()); 6631 6632 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 6633 Created.push_back(Q.getNode()); 6634 } 6635 6636 if (UsePostShift) { 6637 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 6638 Created.push_back(Q.getNode()); 6639 } 6640 6641 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6642 6643 SDValue One = DAG.getConstant(1, dl, VT); 6644 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 6645 return DAG.getSelect(dl, VT, IsOne, N0, Q); 6646 } 6647 6648 /// If all values in Values that *don't* match the predicate are same 'splat' 6649 /// value, then replace all values with that splat value. 6650 /// Else, if AlternativeReplacement was provided, then replace all values that 6651 /// do match predicate with AlternativeReplacement value. 6652 static void 6653 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 6654 std::function<bool(SDValue)> Predicate, 6655 SDValue AlternativeReplacement = SDValue()) { 6656 SDValue Replacement; 6657 // Is there a value for which the Predicate does *NOT* match? What is it? 6658 auto SplatValue = llvm::find_if_not(Values, Predicate); 6659 if (SplatValue != Values.end()) { 6660 // Does Values consist only of SplatValue's and values matching Predicate? 6661 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 6662 return Value == *SplatValue || Predicate(Value); 6663 })) // Then we shall replace values matching predicate with SplatValue. 6664 Replacement = *SplatValue; 6665 } 6666 if (!Replacement) { 6667 // Oops, we did not find the "baseline" splat value. 6668 if (!AlternativeReplacement) 6669 return; // Nothing to do. 6670 // Let's replace with provided value then. 6671 Replacement = AlternativeReplacement; 6672 } 6673 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 6674 } 6675 6676 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 6677 /// where the divisor is constant and the comparison target is zero, 6678 /// return a DAG expression that will generate the same comparison result 6679 /// using only multiplications, additions and shifts/rotations. 6680 /// Ref: "Hacker's Delight" 10-17. 6681 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 6682 SDValue CompTargetNode, 6683 ISD::CondCode Cond, 6684 DAGCombinerInfo &DCI, 6685 const SDLoc &DL) const { 6686 SmallVector<SDNode *, 5> Built; 6687 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6688 DCI, DL, Built)) { 6689 for (SDNode *N : Built) 6690 DCI.AddToWorklist(N); 6691 return Folded; 6692 } 6693 6694 return SDValue(); 6695 } 6696 6697 SDValue 6698 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 6699 SDValue CompTargetNode, ISD::CondCode Cond, 6700 DAGCombinerInfo &DCI, const SDLoc &DL, 6701 SmallVectorImpl<SDNode *> &Created) const { 6702 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 6703 // - D must be constant, with D = D0 * 2^K where D0 is odd 6704 // - P is the multiplicative inverse of D0 modulo 2^W 6705 // - Q = floor(((2^W) - 1) / D) 6706 // where W is the width of the common type of N and D. 6707 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6708 "Only applicable for (in)equality comparisons."); 6709 6710 SelectionDAG &DAG = DCI.DAG; 6711 6712 EVT VT = REMNode.getValueType(); 6713 EVT SVT = VT.getScalarType(); 6714 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6715 EVT ShSVT = ShVT.getScalarType(); 6716 6717 // If MUL is unavailable, we cannot proceed in any case. 6718 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6719 return SDValue(); 6720 6721 bool ComparingWithAllZeros = true; 6722 bool AllComparisonsWithNonZerosAreTautological = true; 6723 bool HadTautologicalLanes = false; 6724 bool AllLanesAreTautological = true; 6725 bool HadEvenDivisor = false; 6726 bool AllDivisorsArePowerOfTwo = true; 6727 bool HadTautologicalInvertedLanes = false; 6728 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 6729 6730 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 6731 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6732 if (CDiv->isZero()) 6733 return false; 6734 6735 const APInt &D = CDiv->getAPIntValue(); 6736 const APInt &Cmp = CCmp->getAPIntValue(); 6737 6738 ComparingWithAllZeros &= Cmp.isZero(); 6739 6740 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6741 // if C2 is not less than C1, the comparison is always false. 6742 // But we will only be able to produce the comparison that will give the 6743 // opposive tautological answer. So this lane would need to be fixed up. 6744 bool TautologicalInvertedLane = D.ule(Cmp); 6745 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 6746 6747 // If all lanes are tautological (either all divisors are ones, or divisor 6748 // is not greater than the constant we are comparing with), 6749 // we will prefer to avoid the fold. 6750 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 6751 HadTautologicalLanes |= TautologicalLane; 6752 AllLanesAreTautological &= TautologicalLane; 6753 6754 // If we are comparing with non-zero, we need'll need to subtract said 6755 // comparison value from the LHS. But there is no point in doing that if 6756 // every lane where we are comparing with non-zero is tautological.. 6757 if (!Cmp.isZero()) 6758 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 6759 6760 // Decompose D into D0 * 2^K 6761 unsigned K = D.countr_zero(); 6762 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6763 APInt D0 = D.lshr(K); 6764 6765 // D is even if it has trailing zeros. 6766 HadEvenDivisor |= (K != 0); 6767 // D is a power-of-two if D0 is one. 6768 // If all divisors are power-of-two, we will prefer to avoid the fold. 6769 AllDivisorsArePowerOfTwo &= D0.isOne(); 6770 6771 // P = inv(D0, 2^W) 6772 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6773 unsigned W = D.getBitWidth(); 6774 APInt P = D0.multiplicativeInverse(); 6775 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6776 6777 // Q = floor((2^W - 1) u/ D) 6778 // R = ((2^W - 1) u% D) 6779 APInt Q, R; 6780 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 6781 6782 // If we are comparing with zero, then that comparison constant is okay, 6783 // else it may need to be one less than that. 6784 if (Cmp.ugt(R)) 6785 Q -= 1; 6786 6787 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6788 "We are expecting that K is always less than all-ones for ShSVT"); 6789 6790 // If the lane is tautological the result can be constant-folded. 6791 if (TautologicalLane) { 6792 // Set P and K amount to a bogus values so we can try to splat them. 6793 P = 0; 6794 K = -1; 6795 // And ensure that comparison constant is tautological, 6796 // it will always compare true/false. 6797 Q = -1; 6798 } 6799 6800 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6801 KAmts.push_back( 6802 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K, /*isSigned=*/false, 6803 /*implicitTrunc=*/true), 6804 DL, ShSVT)); 6805 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6806 return true; 6807 }; 6808 6809 SDValue N = REMNode.getOperand(0); 6810 SDValue D = REMNode.getOperand(1); 6811 6812 // Collect the values from each element. 6813 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 6814 return SDValue(); 6815 6816 // If all lanes are tautological, the result can be constant-folded. 6817 if (AllLanesAreTautological) 6818 return SDValue(); 6819 6820 // If this is a urem by a powers-of-two, avoid the fold since it can be 6821 // best implemented as a bit test. 6822 if (AllDivisorsArePowerOfTwo) 6823 return SDValue(); 6824 6825 SDValue PVal, KVal, QVal; 6826 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6827 if (HadTautologicalLanes) { 6828 // Try to turn PAmts into a splat, since we don't care about the values 6829 // that are currently '0'. If we can't, just keep '0'`s. 6830 turnVectorIntoSplatVector(PAmts, isNullConstant); 6831 // Try to turn KAmts into a splat, since we don't care about the values 6832 // that are currently '-1'. If we can't, change them to '0'`s. 6833 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6834 DAG.getConstant(0, DL, ShSVT)); 6835 } 6836 6837 PVal = DAG.getBuildVector(VT, DL, PAmts); 6838 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6839 QVal = DAG.getBuildVector(VT, DL, QAmts); 6840 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6841 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 6842 "Expected matchBinaryPredicate to return one element for " 6843 "SPLAT_VECTORs"); 6844 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6845 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6846 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6847 } else { 6848 PVal = PAmts[0]; 6849 KVal = KAmts[0]; 6850 QVal = QAmts[0]; 6851 } 6852 6853 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 6854 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 6855 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 6856 assert(CompTargetNode.getValueType() == N.getValueType() && 6857 "Expecting that the types on LHS and RHS of comparisons match."); 6858 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 6859 } 6860 6861 // (mul N, P) 6862 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6863 Created.push_back(Op0.getNode()); 6864 6865 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6866 // divisors as a performance improvement, since rotating by 0 is a no-op. 6867 if (HadEvenDivisor) { 6868 // We need ROTR to do this. 6869 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6870 return SDValue(); 6871 // UREM: (rotr (mul N, P), K) 6872 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6873 Created.push_back(Op0.getNode()); 6874 } 6875 6876 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 6877 SDValue NewCC = 6878 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6879 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6880 if (!HadTautologicalInvertedLanes) 6881 return NewCC; 6882 6883 // If any lanes previously compared always-false, the NewCC will give 6884 // always-true result for them, so we need to fixup those lanes. 6885 // Or the other way around for inequality predicate. 6886 assert(VT.isVector() && "Can/should only get here for vectors."); 6887 Created.push_back(NewCC.getNode()); 6888 6889 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6890 // if C2 is not less than C1, the comparison is always false. 6891 // But we have produced the comparison that will give the 6892 // opposive tautological answer. So these lanes would need to be fixed up. 6893 SDValue TautologicalInvertedChannels = 6894 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 6895 Created.push_back(TautologicalInvertedChannels.getNode()); 6896 6897 // NOTE: we avoid letting illegal types through even if we're before legalize 6898 // ops – legalization has a hard time producing good code for this. 6899 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 6900 // If we have a vector select, let's replace the comparison results in the 6901 // affected lanes with the correct tautological result. 6902 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 6903 DL, SETCCVT, SETCCVT); 6904 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 6905 Replacement, NewCC); 6906 } 6907 6908 // Else, we can just invert the comparison result in the appropriate lanes. 6909 // 6910 // NOTE: see the note above VSELECT above. 6911 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 6912 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 6913 TautologicalInvertedChannels); 6914 6915 return SDValue(); // Don't know how to lower. 6916 } 6917 6918 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 6919 /// where the divisor is constant and the comparison target is zero, 6920 /// return a DAG expression that will generate the same comparison result 6921 /// using only multiplications, additions and shifts/rotations. 6922 /// Ref: "Hacker's Delight" 10-17. 6923 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 6924 SDValue CompTargetNode, 6925 ISD::CondCode Cond, 6926 DAGCombinerInfo &DCI, 6927 const SDLoc &DL) const { 6928 SmallVector<SDNode *, 7> Built; 6929 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6930 DCI, DL, Built)) { 6931 assert(Built.size() <= 7 && "Max size prediction failed."); 6932 for (SDNode *N : Built) 6933 DCI.AddToWorklist(N); 6934 return Folded; 6935 } 6936 6937 return SDValue(); 6938 } 6939 6940 SDValue 6941 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 6942 SDValue CompTargetNode, ISD::CondCode Cond, 6943 DAGCombinerInfo &DCI, const SDLoc &DL, 6944 SmallVectorImpl<SDNode *> &Created) const { 6945 // Derived from Hacker's Delight, 2nd Edition, by Hank Warren. Section 10-17. 6946 // Fold: 6947 // (seteq/ne (srem N, D), 0) 6948 // To: 6949 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 6950 // 6951 // - D must be constant, with D = D0 * 2^K where D0 is odd 6952 // - P is the multiplicative inverse of D0 modulo 2^W 6953 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 6954 // - Q = floor((2 * A) / (2^K)) 6955 // where W is the width of the common type of N and D. 6956 // 6957 // When D is a power of two (and thus D0 is 1), the normal 6958 // formula for A and Q don't apply, because the derivation 6959 // depends on D not dividing 2^(W-1), and thus theorem ZRS 6960 // does not apply. This specifically fails when N = INT_MIN. 6961 // 6962 // Instead, for power-of-two D, we use: 6963 // - A = 2^(W-1) 6964 // |-> Order-preserving map from [-2^(W-1), 2^(W-1) - 1] to [0,2^W - 1]) 6965 // - Q = 2^(W-K) - 1 6966 // |-> Test that the top K bits are zero after rotation 6967 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6968 "Only applicable for (in)equality comparisons."); 6969 6970 SelectionDAG &DAG = DCI.DAG; 6971 6972 EVT VT = REMNode.getValueType(); 6973 EVT SVT = VT.getScalarType(); 6974 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6975 EVT ShSVT = ShVT.getScalarType(); 6976 6977 // If we are after ops legalization, and MUL is unavailable, we can not 6978 // proceed. 6979 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6980 return SDValue(); 6981 6982 // TODO: Could support comparing with non-zero too. 6983 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 6984 if (!CompTarget || !CompTarget->isZero()) 6985 return SDValue(); 6986 6987 bool HadIntMinDivisor = false; 6988 bool HadOneDivisor = false; 6989 bool AllDivisorsAreOnes = true; 6990 bool HadEvenDivisor = false; 6991 bool NeedToApplyOffset = false; 6992 bool AllDivisorsArePowerOfTwo = true; 6993 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 6994 6995 auto BuildSREMPattern = [&](ConstantSDNode *C) { 6996 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6997 if (C->isZero()) 6998 return false; 6999 7000 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 7001 7002 // WARNING: this fold is only valid for positive divisors! 7003 APInt D = C->getAPIntValue(); 7004 if (D.isNegative()) 7005 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 7006 7007 HadIntMinDivisor |= D.isMinSignedValue(); 7008 7009 // If all divisors are ones, we will prefer to avoid the fold. 7010 HadOneDivisor |= D.isOne(); 7011 AllDivisorsAreOnes &= D.isOne(); 7012 7013 // Decompose D into D0 * 2^K 7014 unsigned K = D.countr_zero(); 7015 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 7016 APInt D0 = D.lshr(K); 7017 7018 if (!D.isMinSignedValue()) { 7019 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 7020 // we don't care about this lane in this fold, we'll special-handle it. 7021 HadEvenDivisor |= (K != 0); 7022 } 7023 7024 // D is a power-of-two if D0 is one. This includes INT_MIN. 7025 // If all divisors are power-of-two, we will prefer to avoid the fold. 7026 AllDivisorsArePowerOfTwo &= D0.isOne(); 7027 7028 // P = inv(D0, 2^W) 7029 // 2^W requires W + 1 bits, so we have to extend and then truncate. 7030 unsigned W = D.getBitWidth(); 7031 APInt P = D0.multiplicativeInverse(); 7032 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 7033 7034 // A = floor((2^(W - 1) - 1) / D0) & -2^K 7035 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 7036 A.clearLowBits(K); 7037 7038 if (!D.isMinSignedValue()) { 7039 // If divisor INT_MIN, then we don't care about this lane in this fold, 7040 // we'll special-handle it. 7041 NeedToApplyOffset |= A != 0; 7042 } 7043 7044 // Q = floor((2 * A) / (2^K)) 7045 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 7046 7047 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 7048 "We are expecting that A is always less than all-ones for SVT"); 7049 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 7050 "We are expecting that K is always less than all-ones for ShSVT"); 7051 7052 // If D was a power of two, apply the alternate constant derivation. 7053 if (D0.isOne()) { 7054 // A = 2^(W-1) 7055 A = APInt::getSignedMinValue(W); 7056 // - Q = 2^(W-K) - 1 7057 Q = APInt::getAllOnes(W - K).zext(W); 7058 } 7059 7060 // If the divisor is 1 the result can be constant-folded. Likewise, we 7061 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 7062 if (D.isOne()) { 7063 // Set P, A and K to a bogus values so we can try to splat them. 7064 P = 0; 7065 A = -1; 7066 K = -1; 7067 7068 // x ?% 1 == 0 <--> true <--> x u<= -1 7069 Q = -1; 7070 } 7071 7072 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 7073 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 7074 KAmts.push_back( 7075 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K, /*isSigned=*/false, 7076 /*implicitTrunc=*/true), 7077 DL, ShSVT)); 7078 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 7079 return true; 7080 }; 7081 7082 SDValue N = REMNode.getOperand(0); 7083 SDValue D = REMNode.getOperand(1); 7084 7085 // Collect the values from each element. 7086 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 7087 return SDValue(); 7088 7089 // If this is a srem by a one, avoid the fold since it can be constant-folded. 7090 if (AllDivisorsAreOnes) 7091 return SDValue(); 7092 7093 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 7094 // since it can be best implemented as a bit test. 7095 if (AllDivisorsArePowerOfTwo) 7096 return SDValue(); 7097 7098 SDValue PVal, AVal, KVal, QVal; 7099 if (D.getOpcode() == ISD::BUILD_VECTOR) { 7100 if (HadOneDivisor) { 7101 // Try to turn PAmts into a splat, since we don't care about the values 7102 // that are currently '0'. If we can't, just keep '0'`s. 7103 turnVectorIntoSplatVector(PAmts, isNullConstant); 7104 // Try to turn AAmts into a splat, since we don't care about the 7105 // values that are currently '-1'. If we can't, change them to '0'`s. 7106 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 7107 DAG.getConstant(0, DL, SVT)); 7108 // Try to turn KAmts into a splat, since we don't care about the values 7109 // that are currently '-1'. If we can't, change them to '0'`s. 7110 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 7111 DAG.getConstant(0, DL, ShSVT)); 7112 } 7113 7114 PVal = DAG.getBuildVector(VT, DL, PAmts); 7115 AVal = DAG.getBuildVector(VT, DL, AAmts); 7116 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 7117 QVal = DAG.getBuildVector(VT, DL, QAmts); 7118 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 7119 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 7120 QAmts.size() == 1 && 7121 "Expected matchUnaryPredicate to return one element for scalable " 7122 "vectors"); 7123 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 7124 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 7125 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 7126 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 7127 } else { 7128 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 7129 PVal = PAmts[0]; 7130 AVal = AAmts[0]; 7131 KVal = KAmts[0]; 7132 QVal = QAmts[0]; 7133 } 7134 7135 // (mul N, P) 7136 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 7137 Created.push_back(Op0.getNode()); 7138 7139 if (NeedToApplyOffset) { 7140 // We need ADD to do this. 7141 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 7142 return SDValue(); 7143 7144 // (add (mul N, P), A) 7145 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 7146 Created.push_back(Op0.getNode()); 7147 } 7148 7149 // Rotate right only if any divisor was even. We avoid rotates for all-odd 7150 // divisors as a performance improvement, since rotating by 0 is a no-op. 7151 if (HadEvenDivisor) { 7152 // We need ROTR to do this. 7153 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 7154 return SDValue(); 7155 // SREM: (rotr (add (mul N, P), A), K) 7156 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 7157 Created.push_back(Op0.getNode()); 7158 } 7159 7160 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 7161 SDValue Fold = 7162 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 7163 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 7164 7165 // If we didn't have lanes with INT_MIN divisor, then we're done. 7166 if (!HadIntMinDivisor) 7167 return Fold; 7168 7169 // That fold is only valid for positive divisors. Which effectively means, 7170 // it is invalid for INT_MIN divisors. So if we have such a lane, 7171 // we must fix-up results for said lanes. 7172 assert(VT.isVector() && "Can/should only get here for vectors."); 7173 7174 // NOTE: we avoid letting illegal types through even if we're before legalize 7175 // ops – legalization has a hard time producing good code for the code that 7176 // follows. 7177 if (!isOperationLegalOrCustom(ISD::SETCC, SETCCVT) || 7178 !isOperationLegalOrCustom(ISD::AND, VT) || 7179 !isCondCodeLegalOrCustom(Cond, VT.getSimpleVT()) || 7180 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 7181 return SDValue(); 7182 7183 Created.push_back(Fold.getNode()); 7184 7185 SDValue IntMin = DAG.getConstant( 7186 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 7187 SDValue IntMax = DAG.getConstant( 7188 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 7189 SDValue Zero = 7190 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 7191 7192 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 7193 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 7194 Created.push_back(DivisorIsIntMin.getNode()); 7195 7196 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 7197 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 7198 Created.push_back(Masked.getNode()); 7199 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 7200 Created.push_back(MaskedIsZero.getNode()); 7201 7202 // To produce final result we need to blend 2 vectors: 'SetCC' and 7203 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 7204 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 7205 // constant-folded, select can get lowered to a shuffle with constant mask. 7206 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 7207 MaskedIsZero, Fold); 7208 7209 return Blended; 7210 } 7211 7212 bool TargetLowering:: 7213 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 7214 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 7215 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 7216 "be a constant integer"); 7217 return true; 7218 } 7219 7220 return false; 7221 } 7222 7223 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 7224 const DenormalMode &Mode) const { 7225 SDLoc DL(Op); 7226 EVT VT = Op.getValueType(); 7227 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7228 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 7229 7230 // This is specifically a check for the handling of denormal inputs, not the 7231 // result. 7232 if (Mode.Input == DenormalMode::PreserveSign || 7233 Mode.Input == DenormalMode::PositiveZero) { 7234 // Test = X == 0.0 7235 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 7236 } 7237 7238 // Testing it with denormal inputs to avoid wrong estimate. 7239 // 7240 // Test = fabs(X) < SmallestNormal 7241 const fltSemantics &FltSem = VT.getFltSemantics(); 7242 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 7243 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 7244 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 7245 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 7246 } 7247 7248 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 7249 bool LegalOps, bool OptForSize, 7250 NegatibleCost &Cost, 7251 unsigned Depth) const { 7252 // fneg is removable even if it has multiple uses. 7253 if (Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::VP_FNEG) { 7254 Cost = NegatibleCost::Cheaper; 7255 return Op.getOperand(0); 7256 } 7257 7258 // Don't recurse exponentially. 7259 if (Depth > SelectionDAG::MaxRecursionDepth) 7260 return SDValue(); 7261 7262 // Pre-increment recursion depth for use in recursive calls. 7263 ++Depth; 7264 const SDNodeFlags Flags = Op->getFlags(); 7265 const TargetOptions &Options = DAG.getTarget().Options; 7266 EVT VT = Op.getValueType(); 7267 unsigned Opcode = Op.getOpcode(); 7268 7269 // Don't allow anything with multiple uses unless we know it is free. 7270 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 7271 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 7272 isFPExtFree(VT, Op.getOperand(0).getValueType()); 7273 if (!IsFreeExtend) 7274 return SDValue(); 7275 } 7276 7277 auto RemoveDeadNode = [&](SDValue N) { 7278 if (N && N.getNode()->use_empty()) 7279 DAG.RemoveDeadNode(N.getNode()); 7280 }; 7281 7282 SDLoc DL(Op); 7283 7284 // Because getNegatedExpression can delete nodes we need a handle to keep 7285 // temporary nodes alive in case the recursion manages to create an identical 7286 // node. 7287 std::list<HandleSDNode> Handles; 7288 7289 switch (Opcode) { 7290 case ISD::ConstantFP: { 7291 // Don't invert constant FP values after legalization unless the target says 7292 // the negated constant is legal. 7293 bool IsOpLegal = 7294 isOperationLegal(ISD::ConstantFP, VT) || 7295 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 7296 OptForSize); 7297 7298 if (LegalOps && !IsOpLegal) 7299 break; 7300 7301 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 7302 V.changeSign(); 7303 SDValue CFP = DAG.getConstantFP(V, DL, VT); 7304 7305 // If we already have the use of the negated floating constant, it is free 7306 // to negate it even it has multiple uses. 7307 if (!Op.hasOneUse() && CFP.use_empty()) 7308 break; 7309 Cost = NegatibleCost::Neutral; 7310 return CFP; 7311 } 7312 case ISD::BUILD_VECTOR: { 7313 // Only permit BUILD_VECTOR of constants. 7314 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 7315 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 7316 })) 7317 break; 7318 7319 bool IsOpLegal = 7320 (isOperationLegal(ISD::ConstantFP, VT) && 7321 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 7322 llvm::all_of(Op->op_values(), [&](SDValue N) { 7323 return N.isUndef() || 7324 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 7325 OptForSize); 7326 }); 7327 7328 if (LegalOps && !IsOpLegal) 7329 break; 7330 7331 SmallVector<SDValue, 4> Ops; 7332 for (SDValue C : Op->op_values()) { 7333 if (C.isUndef()) { 7334 Ops.push_back(C); 7335 continue; 7336 } 7337 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 7338 V.changeSign(); 7339 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 7340 } 7341 Cost = NegatibleCost::Neutral; 7342 return DAG.getBuildVector(VT, DL, Ops); 7343 } 7344 case ISD::FADD: { 7345 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 7346 break; 7347 7348 // After operation legalization, it might not be legal to create new FSUBs. 7349 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 7350 break; 7351 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 7352 7353 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 7354 NegatibleCost CostX = NegatibleCost::Expensive; 7355 SDValue NegX = 7356 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 7357 // Prevent this node from being deleted by the next call. 7358 if (NegX) 7359 Handles.emplace_back(NegX); 7360 7361 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 7362 NegatibleCost CostY = NegatibleCost::Expensive; 7363 SDValue NegY = 7364 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 7365 7366 // We're done with the handles. 7367 Handles.clear(); 7368 7369 // Negate the X if its cost is less or equal than Y. 7370 if (NegX && (CostX <= CostY)) { 7371 Cost = CostX; 7372 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 7373 if (NegY != N) 7374 RemoveDeadNode(NegY); 7375 return N; 7376 } 7377 7378 // Negate the Y if it is not expensive. 7379 if (NegY) { 7380 Cost = CostY; 7381 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 7382 if (NegX != N) 7383 RemoveDeadNode(NegX); 7384 return N; 7385 } 7386 break; 7387 } 7388 case ISD::FSUB: { 7389 // We can't turn -(A-B) into B-A when we honor signed zeros. 7390 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 7391 break; 7392 7393 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 7394 // fold (fneg (fsub 0, Y)) -> Y 7395 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 7396 if (C->isZero()) { 7397 Cost = NegatibleCost::Cheaper; 7398 return Y; 7399 } 7400 7401 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 7402 Cost = NegatibleCost::Neutral; 7403 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 7404 } 7405 case ISD::FMUL: 7406 case ISD::FDIV: { 7407 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 7408 7409 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 7410 NegatibleCost CostX = NegatibleCost::Expensive; 7411 SDValue NegX = 7412 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 7413 // Prevent this node from being deleted by the next call. 7414 if (NegX) 7415 Handles.emplace_back(NegX); 7416 7417 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 7418 NegatibleCost CostY = NegatibleCost::Expensive; 7419 SDValue NegY = 7420 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 7421 7422 // We're done with the handles. 7423 Handles.clear(); 7424 7425 // Negate the X if its cost is less or equal than Y. 7426 if (NegX && (CostX <= CostY)) { 7427 Cost = CostX; 7428 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 7429 if (NegY != N) 7430 RemoveDeadNode(NegY); 7431 return N; 7432 } 7433 7434 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 7435 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 7436 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 7437 break; 7438 7439 // Negate the Y if it is not expensive. 7440 if (NegY) { 7441 Cost = CostY; 7442 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 7443 if (NegX != N) 7444 RemoveDeadNode(NegX); 7445 return N; 7446 } 7447 break; 7448 } 7449 case ISD::FMA: 7450 case ISD::FMAD: { 7451 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 7452 break; 7453 7454 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 7455 NegatibleCost CostZ = NegatibleCost::Expensive; 7456 SDValue NegZ = 7457 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 7458 // Give up if fail to negate the Z. 7459 if (!NegZ) 7460 break; 7461 7462 // Prevent this node from being deleted by the next two calls. 7463 Handles.emplace_back(NegZ); 7464 7465 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 7466 NegatibleCost CostX = NegatibleCost::Expensive; 7467 SDValue NegX = 7468 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 7469 // Prevent this node from being deleted by the next call. 7470 if (NegX) 7471 Handles.emplace_back(NegX); 7472 7473 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 7474 NegatibleCost CostY = NegatibleCost::Expensive; 7475 SDValue NegY = 7476 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 7477 7478 // We're done with the handles. 7479 Handles.clear(); 7480 7481 // Negate the X if its cost is less or equal than Y. 7482 if (NegX && (CostX <= CostY)) { 7483 Cost = std::min(CostX, CostZ); 7484 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 7485 if (NegY != N) 7486 RemoveDeadNode(NegY); 7487 return N; 7488 } 7489 7490 // Negate the Y if it is not expensive. 7491 if (NegY) { 7492 Cost = std::min(CostY, CostZ); 7493 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 7494 if (NegX != N) 7495 RemoveDeadNode(NegX); 7496 return N; 7497 } 7498 break; 7499 } 7500 7501 case ISD::FP_EXTEND: 7502 case ISD::FSIN: 7503 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 7504 OptForSize, Cost, Depth)) 7505 return DAG.getNode(Opcode, DL, VT, NegV); 7506 break; 7507 case ISD::FP_ROUND: 7508 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 7509 OptForSize, Cost, Depth)) 7510 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 7511 break; 7512 case ISD::SELECT: 7513 case ISD::VSELECT: { 7514 // fold (fneg (select C, LHS, RHS)) -> (select C, (fneg LHS), (fneg RHS)) 7515 // iff at least one cost is cheaper and the other is neutral/cheaper 7516 SDValue LHS = Op.getOperand(1); 7517 NegatibleCost CostLHS = NegatibleCost::Expensive; 7518 SDValue NegLHS = 7519 getNegatedExpression(LHS, DAG, LegalOps, OptForSize, CostLHS, Depth); 7520 if (!NegLHS || CostLHS > NegatibleCost::Neutral) { 7521 RemoveDeadNode(NegLHS); 7522 break; 7523 } 7524 7525 // Prevent this node from being deleted by the next call. 7526 Handles.emplace_back(NegLHS); 7527 7528 SDValue RHS = Op.getOperand(2); 7529 NegatibleCost CostRHS = NegatibleCost::Expensive; 7530 SDValue NegRHS = 7531 getNegatedExpression(RHS, DAG, LegalOps, OptForSize, CostRHS, Depth); 7532 7533 // We're done with the handles. 7534 Handles.clear(); 7535 7536 if (!NegRHS || CostRHS > NegatibleCost::Neutral || 7537 (CostLHS != NegatibleCost::Cheaper && 7538 CostRHS != NegatibleCost::Cheaper)) { 7539 RemoveDeadNode(NegLHS); 7540 RemoveDeadNode(NegRHS); 7541 break; 7542 } 7543 7544 Cost = std::min(CostLHS, CostRHS); 7545 return DAG.getSelect(DL, VT, Op.getOperand(0), NegLHS, NegRHS); 7546 } 7547 } 7548 7549 return SDValue(); 7550 } 7551 7552 //===----------------------------------------------------------------------===// 7553 // Legalization Utilities 7554 //===----------------------------------------------------------------------===// 7555 7556 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 7557 SDValue LHS, SDValue RHS, 7558 SmallVectorImpl<SDValue> &Result, 7559 EVT HiLoVT, SelectionDAG &DAG, 7560 MulExpansionKind Kind, SDValue LL, 7561 SDValue LH, SDValue RL, SDValue RH) const { 7562 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 7563 Opcode == ISD::SMUL_LOHI); 7564 7565 bool HasMULHS = (Kind == MulExpansionKind::Always) || 7566 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 7567 bool HasMULHU = (Kind == MulExpansionKind::Always) || 7568 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 7569 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 7570 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 7571 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 7572 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 7573 7574 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 7575 return false; 7576 7577 unsigned OuterBitSize = VT.getScalarSizeInBits(); 7578 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 7579 7580 // LL, LH, RL, and RH must be either all NULL or all set to a value. 7581 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 7582 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 7583 7584 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 7585 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 7586 bool Signed) -> bool { 7587 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 7588 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 7589 Hi = SDValue(Lo.getNode(), 1); 7590 return true; 7591 } 7592 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 7593 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 7594 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 7595 return true; 7596 } 7597 return false; 7598 }; 7599 7600 SDValue Lo, Hi; 7601 7602 if (!LL.getNode() && !RL.getNode() && 7603 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 7604 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 7605 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 7606 } 7607 7608 if (!LL.getNode()) 7609 return false; 7610 7611 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 7612 if (DAG.MaskedValueIsZero(LHS, HighMask) && 7613 DAG.MaskedValueIsZero(RHS, HighMask)) { 7614 // The inputs are both zero-extended. 7615 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 7616 Result.push_back(Lo); 7617 Result.push_back(Hi); 7618 if (Opcode != ISD::MUL) { 7619 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 7620 Result.push_back(Zero); 7621 Result.push_back(Zero); 7622 } 7623 return true; 7624 } 7625 } 7626 7627 if (!VT.isVector() && Opcode == ISD::MUL && 7628 DAG.ComputeMaxSignificantBits(LHS) <= InnerBitSize && 7629 DAG.ComputeMaxSignificantBits(RHS) <= InnerBitSize) { 7630 // The input values are both sign-extended. 7631 // TODO non-MUL case? 7632 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 7633 Result.push_back(Lo); 7634 Result.push_back(Hi); 7635 return true; 7636 } 7637 } 7638 7639 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 7640 SDValue Shift = DAG.getShiftAmountConstant(ShiftAmount, VT, dl); 7641 7642 if (!LH.getNode() && !RH.getNode() && 7643 isOperationLegalOrCustom(ISD::SRL, VT) && 7644 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 7645 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 7646 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 7647 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 7648 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 7649 } 7650 7651 if (!LH.getNode()) 7652 return false; 7653 7654 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 7655 return false; 7656 7657 Result.push_back(Lo); 7658 7659 if (Opcode == ISD::MUL) { 7660 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 7661 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 7662 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 7663 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 7664 Result.push_back(Hi); 7665 return true; 7666 } 7667 7668 // Compute the full width result. 7669 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 7670 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 7671 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 7672 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 7673 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 7674 }; 7675 7676 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 7677 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 7678 return false; 7679 7680 // This is effectively the add part of a multiply-add of half-sized operands, 7681 // so it cannot overflow. 7682 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 7683 7684 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 7685 return false; 7686 7687 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 7688 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7689 7690 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 7691 isOperationLegalOrCustom(ISD::ADDE, VT)); 7692 if (UseGlue) 7693 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 7694 Merge(Lo, Hi)); 7695 else 7696 Next = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(VT, BoolType), Next, 7697 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 7698 7699 SDValue Carry = Next.getValue(1); 7700 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7701 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 7702 7703 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 7704 return false; 7705 7706 if (UseGlue) 7707 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 7708 Carry); 7709 else 7710 Hi = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 7711 Zero, Carry); 7712 7713 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 7714 7715 if (Opcode == ISD::SMUL_LOHI) { 7716 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 7717 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 7718 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 7719 7720 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 7721 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 7722 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 7723 } 7724 7725 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7726 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 7727 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7728 return true; 7729 } 7730 7731 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 7732 SelectionDAG &DAG, MulExpansionKind Kind, 7733 SDValue LL, SDValue LH, SDValue RL, 7734 SDValue RH) const { 7735 SmallVector<SDValue, 2> Result; 7736 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 7737 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 7738 DAG, Kind, LL, LH, RL, RH); 7739 if (Ok) { 7740 assert(Result.size() == 2); 7741 Lo = Result[0]; 7742 Hi = Result[1]; 7743 } 7744 return Ok; 7745 } 7746 7747 // Optimize unsigned division or remainder by constants for types twice as large 7748 // as a legal VT. 7749 // 7750 // If (1 << (BitWidth / 2)) % Constant == 1, then the remainder 7751 // can be computed 7752 // as: 7753 // Sum += __builtin_uadd_overflow(Lo, High, &Sum); 7754 // Remainder = Sum % Constant 7755 // This is based on "Remainder by Summing Digits" from Hacker's Delight. 7756 // 7757 // For division, we can compute the remainder using the algorithm described 7758 // above, subtract it from the dividend to get an exact multiple of Constant. 7759 // Then multiply that exact multiply by the multiplicative inverse modulo 7760 // (1 << (BitWidth / 2)) to get the quotient. 7761 7762 // If Constant is even, we can shift right the dividend and the divisor by the 7763 // number of trailing zeros in Constant before applying the remainder algorithm. 7764 // If we're after the quotient, we can subtract this value from the shifted 7765 // dividend and multiply by the multiplicative inverse of the shifted divisor. 7766 // If we want the remainder, we shift the value left by the number of trailing 7767 // zeros and add the bits that were shifted out of the dividend. 7768 bool TargetLowering::expandDIVREMByConstant(SDNode *N, 7769 SmallVectorImpl<SDValue> &Result, 7770 EVT HiLoVT, SelectionDAG &DAG, 7771 SDValue LL, SDValue LH) const { 7772 unsigned Opcode = N->getOpcode(); 7773 EVT VT = N->getValueType(0); 7774 7775 // TODO: Support signed division/remainder. 7776 if (Opcode == ISD::SREM || Opcode == ISD::SDIV || Opcode == ISD::SDIVREM) 7777 return false; 7778 assert( 7779 (Opcode == ISD::UREM || Opcode == ISD::UDIV || Opcode == ISD::UDIVREM) && 7780 "Unexpected opcode"); 7781 7782 auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7783 if (!CN) 7784 return false; 7785 7786 APInt Divisor = CN->getAPIntValue(); 7787 unsigned BitWidth = Divisor.getBitWidth(); 7788 unsigned HBitWidth = BitWidth / 2; 7789 assert(VT.getScalarSizeInBits() == BitWidth && 7790 HiLoVT.getScalarSizeInBits() == HBitWidth && "Unexpected VTs"); 7791 7792 // Divisor needs to less than (1 << HBitWidth). 7793 APInt HalfMaxPlus1 = APInt::getOneBitSet(BitWidth, HBitWidth); 7794 if (Divisor.uge(HalfMaxPlus1)) 7795 return false; 7796 7797 // We depend on the UREM by constant optimization in DAGCombiner that requires 7798 // high multiply. 7799 if (!isOperationLegalOrCustom(ISD::MULHU, HiLoVT) && 7800 !isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT)) 7801 return false; 7802 7803 // Don't expand if optimizing for size. 7804 if (DAG.shouldOptForSize()) 7805 return false; 7806 7807 // Early out for 0 or 1 divisors. 7808 if (Divisor.ule(1)) 7809 return false; 7810 7811 // If the divisor is even, shift it until it becomes odd. 7812 unsigned TrailingZeros = 0; 7813 if (!Divisor[0]) { 7814 TrailingZeros = Divisor.countr_zero(); 7815 Divisor.lshrInPlace(TrailingZeros); 7816 } 7817 7818 SDLoc dl(N); 7819 SDValue Sum; 7820 SDValue PartialRem; 7821 7822 // If (1 << HBitWidth) % divisor == 1, we can add the two halves together and 7823 // then add in the carry. 7824 // TODO: If we can't split it in half, we might be able to split into 3 or 7825 // more pieces using a smaller bit width. 7826 if (HalfMaxPlus1.urem(Divisor).isOne()) { 7827 assert(!LL == !LH && "Expected both input halves or no input halves!"); 7828 if (!LL) 7829 std::tie(LL, LH) = DAG.SplitScalar(N->getOperand(0), dl, HiLoVT, HiLoVT); 7830 7831 // Shift the input by the number of TrailingZeros in the divisor. The 7832 // shifted out bits will be added to the remainder later. 7833 if (TrailingZeros) { 7834 // Save the shifted off bits if we need the remainder. 7835 if (Opcode != ISD::UDIV) { 7836 APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros); 7837 PartialRem = DAG.getNode(ISD::AND, dl, HiLoVT, LL, 7838 DAG.getConstant(Mask, dl, HiLoVT)); 7839 } 7840 7841 LL = DAG.getNode( 7842 ISD::OR, dl, HiLoVT, 7843 DAG.getNode(ISD::SRL, dl, HiLoVT, LL, 7844 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)), 7845 DAG.getNode(ISD::SHL, dl, HiLoVT, LH, 7846 DAG.getShiftAmountConstant(HBitWidth - TrailingZeros, 7847 HiLoVT, dl))); 7848 LH = DAG.getNode(ISD::SRL, dl, HiLoVT, LH, 7849 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)); 7850 } 7851 7852 // Use uaddo_carry if we can, otherwise use a compare to detect overflow. 7853 EVT SetCCType = 7854 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), HiLoVT); 7855 if (isOperationLegalOrCustom(ISD::UADDO_CARRY, HiLoVT)) { 7856 SDVTList VTList = DAG.getVTList(HiLoVT, SetCCType); 7857 Sum = DAG.getNode(ISD::UADDO, dl, VTList, LL, LH); 7858 Sum = DAG.getNode(ISD::UADDO_CARRY, dl, VTList, Sum, 7859 DAG.getConstant(0, dl, HiLoVT), Sum.getValue(1)); 7860 } else { 7861 Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, LL, LH); 7862 SDValue Carry = DAG.getSetCC(dl, SetCCType, Sum, LL, ISD::SETULT); 7863 // If the boolean for the target is 0 or 1, we can add the setcc result 7864 // directly. 7865 if (getBooleanContents(HiLoVT) == 7866 TargetLoweringBase::ZeroOrOneBooleanContent) 7867 Carry = DAG.getZExtOrTrunc(Carry, dl, HiLoVT); 7868 else 7869 Carry = DAG.getSelect(dl, HiLoVT, Carry, DAG.getConstant(1, dl, HiLoVT), 7870 DAG.getConstant(0, dl, HiLoVT)); 7871 Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, Sum, Carry); 7872 } 7873 } 7874 7875 // If we didn't find a sum, we can't do the expansion. 7876 if (!Sum) 7877 return false; 7878 7879 // Perform a HiLoVT urem on the Sum using truncated divisor. 7880 SDValue RemL = 7881 DAG.getNode(ISD::UREM, dl, HiLoVT, Sum, 7882 DAG.getConstant(Divisor.trunc(HBitWidth), dl, HiLoVT)); 7883 SDValue RemH = DAG.getConstant(0, dl, HiLoVT); 7884 7885 if (Opcode != ISD::UREM) { 7886 // Subtract the remainder from the shifted dividend. 7887 SDValue Dividend = DAG.getNode(ISD::BUILD_PAIR, dl, VT, LL, LH); 7888 SDValue Rem = DAG.getNode(ISD::BUILD_PAIR, dl, VT, RemL, RemH); 7889 7890 Dividend = DAG.getNode(ISD::SUB, dl, VT, Dividend, Rem); 7891 7892 // Multiply by the multiplicative inverse of the divisor modulo 7893 // (1 << BitWidth). 7894 APInt MulFactor = Divisor.multiplicativeInverse(); 7895 7896 SDValue Quotient = DAG.getNode(ISD::MUL, dl, VT, Dividend, 7897 DAG.getConstant(MulFactor, dl, VT)); 7898 7899 // Split the quotient into low and high parts. 7900 SDValue QuotL, QuotH; 7901 std::tie(QuotL, QuotH) = DAG.SplitScalar(Quotient, dl, HiLoVT, HiLoVT); 7902 Result.push_back(QuotL); 7903 Result.push_back(QuotH); 7904 } 7905 7906 if (Opcode != ISD::UDIV) { 7907 // If we shifted the input, shift the remainder left and add the bits we 7908 // shifted off the input. 7909 if (TrailingZeros) { 7910 APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros); 7911 RemL = DAG.getNode(ISD::SHL, dl, HiLoVT, RemL, 7912 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)); 7913 RemL = DAG.getNode(ISD::ADD, dl, HiLoVT, RemL, PartialRem); 7914 } 7915 Result.push_back(RemL); 7916 Result.push_back(DAG.getConstant(0, dl, HiLoVT)); 7917 } 7918 7919 return true; 7920 } 7921 7922 // Check that (every element of) Z is undef or not an exact multiple of BW. 7923 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 7924 return ISD::matchUnaryPredicate( 7925 Z, 7926 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 7927 true); 7928 } 7929 7930 static SDValue expandVPFunnelShift(SDNode *Node, SelectionDAG &DAG) { 7931 EVT VT = Node->getValueType(0); 7932 SDValue ShX, ShY; 7933 SDValue ShAmt, InvShAmt; 7934 SDValue X = Node->getOperand(0); 7935 SDValue Y = Node->getOperand(1); 7936 SDValue Z = Node->getOperand(2); 7937 SDValue Mask = Node->getOperand(3); 7938 SDValue VL = Node->getOperand(4); 7939 7940 unsigned BW = VT.getScalarSizeInBits(); 7941 bool IsFSHL = Node->getOpcode() == ISD::VP_FSHL; 7942 SDLoc DL(SDValue(Node, 0)); 7943 7944 EVT ShVT = Z.getValueType(); 7945 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7946 // fshl: X << C | Y >> (BW - C) 7947 // fshr: X << (BW - C) | Y >> C 7948 // where C = Z % BW is not zero 7949 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7950 ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL); 7951 InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitWidthC, ShAmt, Mask, VL); 7952 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt, Mask, 7953 VL); 7954 ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt, Mask, 7955 VL); 7956 } else { 7957 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 7958 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 7959 SDValue BitMask = DAG.getConstant(BW - 1, DL, ShVT); 7960 if (isPowerOf2_32(BW)) { 7961 // Z % BW -> Z & (BW - 1) 7962 ShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, Z, BitMask, Mask, VL); 7963 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 7964 SDValue NotZ = DAG.getNode(ISD::VP_XOR, DL, ShVT, Z, 7965 DAG.getAllOnesConstant(DL, ShVT), Mask, VL); 7966 InvShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, NotZ, BitMask, Mask, VL); 7967 } else { 7968 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7969 ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL); 7970 InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitMask, ShAmt, Mask, VL); 7971 } 7972 7973 SDValue One = DAG.getConstant(1, DL, ShVT); 7974 if (IsFSHL) { 7975 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, ShAmt, Mask, VL); 7976 SDValue ShY1 = DAG.getNode(ISD::VP_SRL, DL, VT, Y, One, Mask, VL); 7977 ShY = DAG.getNode(ISD::VP_SRL, DL, VT, ShY1, InvShAmt, Mask, VL); 7978 } else { 7979 SDValue ShX1 = DAG.getNode(ISD::VP_SHL, DL, VT, X, One, Mask, VL); 7980 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, ShX1, InvShAmt, Mask, VL); 7981 ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, ShAmt, Mask, VL); 7982 } 7983 } 7984 return DAG.getNode(ISD::VP_OR, DL, VT, ShX, ShY, Mask, VL); 7985 } 7986 7987 SDValue TargetLowering::expandFunnelShift(SDNode *Node, 7988 SelectionDAG &DAG) const { 7989 if (Node->isVPOpcode()) 7990 return expandVPFunnelShift(Node, DAG); 7991 7992 EVT VT = Node->getValueType(0); 7993 7994 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 7995 !isOperationLegalOrCustom(ISD::SRL, VT) || 7996 !isOperationLegalOrCustom(ISD::SUB, VT) || 7997 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7998 return SDValue(); 7999 8000 SDValue X = Node->getOperand(0); 8001 SDValue Y = Node->getOperand(1); 8002 SDValue Z = Node->getOperand(2); 8003 8004 unsigned BW = VT.getScalarSizeInBits(); 8005 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 8006 SDLoc DL(SDValue(Node, 0)); 8007 8008 EVT ShVT = Z.getValueType(); 8009 8010 // If a funnel shift in the other direction is more supported, use it. 8011 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 8012 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 8013 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 8014 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 8015 // fshl X, Y, Z -> fshr X, Y, -Z 8016 // fshr X, Y, Z -> fshl X, Y, -Z 8017 SDValue Zero = DAG.getConstant(0, DL, ShVT); 8018 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 8019 } else { 8020 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 8021 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 8022 SDValue One = DAG.getConstant(1, DL, ShVT); 8023 if (IsFSHL) { 8024 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 8025 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 8026 } else { 8027 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 8028 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 8029 } 8030 Z = DAG.getNOT(DL, Z, ShVT); 8031 } 8032 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 8033 } 8034 8035 SDValue ShX, ShY; 8036 SDValue ShAmt, InvShAmt; 8037 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 8038 // fshl: X << C | Y >> (BW - C) 8039 // fshr: X << (BW - C) | Y >> C 8040 // where C = Z % BW is not zero 8041 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 8042 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 8043 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 8044 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 8045 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 8046 } else { 8047 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 8048 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 8049 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 8050 if (isPowerOf2_32(BW)) { 8051 // Z % BW -> Z & (BW - 1) 8052 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 8053 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 8054 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 8055 } else { 8056 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 8057 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 8058 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 8059 } 8060 8061 SDValue One = DAG.getConstant(1, DL, ShVT); 8062 if (IsFSHL) { 8063 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 8064 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 8065 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 8066 } else { 8067 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 8068 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 8069 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 8070 } 8071 } 8072 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 8073 } 8074 8075 // TODO: Merge with expandFunnelShift. 8076 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 8077 SelectionDAG &DAG) const { 8078 EVT VT = Node->getValueType(0); 8079 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 8080 bool IsLeft = Node->getOpcode() == ISD::ROTL; 8081 SDValue Op0 = Node->getOperand(0); 8082 SDValue Op1 = Node->getOperand(1); 8083 SDLoc DL(SDValue(Node, 0)); 8084 8085 EVT ShVT = Op1.getValueType(); 8086 SDValue Zero = DAG.getConstant(0, DL, ShVT); 8087 8088 // If a rotate in the other direction is more supported, use it. 8089 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 8090 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 8091 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 8092 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 8093 return DAG.getNode(RevRot, DL, VT, Op0, Sub); 8094 } 8095 8096 if (!AllowVectorOps && VT.isVector() && 8097 (!isOperationLegalOrCustom(ISD::SHL, VT) || 8098 !isOperationLegalOrCustom(ISD::SRL, VT) || 8099 !isOperationLegalOrCustom(ISD::SUB, VT) || 8100 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 8101 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 8102 return SDValue(); 8103 8104 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 8105 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 8106 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 8107 SDValue ShVal; 8108 SDValue HsVal; 8109 if (isPowerOf2_32(EltSizeInBits)) { 8110 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 8111 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 8112 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 8113 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 8114 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 8115 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 8116 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 8117 } else { 8118 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 8119 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 8120 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 8121 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 8122 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 8123 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 8124 SDValue One = DAG.getConstant(1, DL, ShVT); 8125 HsVal = 8126 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 8127 } 8128 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 8129 } 8130 8131 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 8132 SelectionDAG &DAG) const { 8133 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 8134 EVT VT = Node->getValueType(0); 8135 unsigned VTBits = VT.getScalarSizeInBits(); 8136 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 8137 8138 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 8139 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 8140 SDValue ShOpLo = Node->getOperand(0); 8141 SDValue ShOpHi = Node->getOperand(1); 8142 SDValue ShAmt = Node->getOperand(2); 8143 EVT ShAmtVT = ShAmt.getValueType(); 8144 EVT ShAmtCCVT = 8145 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 8146 SDLoc dl(Node); 8147 8148 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 8149 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 8150 // away during isel. 8151 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 8152 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 8153 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 8154 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 8155 : DAG.getConstant(0, dl, VT); 8156 8157 SDValue Tmp2, Tmp3; 8158 if (IsSHL) { 8159 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 8160 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 8161 } else { 8162 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 8163 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 8164 } 8165 8166 // If the shift amount is larger or equal than the width of a part we don't 8167 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 8168 // values for large shift amounts. 8169 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 8170 DAG.getConstant(VTBits, dl, ShAmtVT)); 8171 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 8172 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 8173 8174 if (IsSHL) { 8175 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 8176 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 8177 } else { 8178 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 8179 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 8180 } 8181 } 8182 8183 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 8184 SelectionDAG &DAG) const { 8185 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 8186 SDValue Src = Node->getOperand(OpNo); 8187 EVT SrcVT = Src.getValueType(); 8188 EVT DstVT = Node->getValueType(0); 8189 SDLoc dl(SDValue(Node, 0)); 8190 8191 // FIXME: Only f32 to i64 conversions are supported. 8192 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 8193 return false; 8194 8195 if (Node->isStrictFPOpcode()) 8196 // When a NaN is converted to an integer a trap is allowed. We can't 8197 // use this expansion here because it would eliminate that trap. Other 8198 // traps are also allowed and cannot be eliminated. See 8199 // IEEE 754-2008 sec 5.8. 8200 return false; 8201 8202 // Expand f32 -> i64 conversion 8203 // This algorithm comes from compiler-rt's implementation of fixsfdi: 8204 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 8205 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 8206 EVT IntVT = SrcVT.changeTypeToInteger(); 8207 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 8208 8209 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 8210 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 8211 SDValue Bias = DAG.getConstant(127, dl, IntVT); 8212 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 8213 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 8214 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 8215 8216 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 8217 8218 SDValue ExponentBits = DAG.getNode( 8219 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 8220 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 8221 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 8222 8223 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 8224 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 8225 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 8226 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 8227 8228 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 8229 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 8230 DAG.getConstant(0x00800000, dl, IntVT)); 8231 8232 R = DAG.getZExtOrTrunc(R, dl, DstVT); 8233 8234 R = DAG.getSelectCC( 8235 dl, Exponent, ExponentLoBit, 8236 DAG.getNode(ISD::SHL, dl, DstVT, R, 8237 DAG.getZExtOrTrunc( 8238 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 8239 dl, IntShVT)), 8240 DAG.getNode(ISD::SRL, dl, DstVT, R, 8241 DAG.getZExtOrTrunc( 8242 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 8243 dl, IntShVT)), 8244 ISD::SETGT); 8245 8246 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 8247 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 8248 8249 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 8250 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 8251 return true; 8252 } 8253 8254 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 8255 SDValue &Chain, 8256 SelectionDAG &DAG) const { 8257 SDLoc dl(SDValue(Node, 0)); 8258 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 8259 SDValue Src = Node->getOperand(OpNo); 8260 8261 EVT SrcVT = Src.getValueType(); 8262 EVT DstVT = Node->getValueType(0); 8263 EVT SetCCVT = 8264 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 8265 EVT DstSetCCVT = 8266 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 8267 8268 // Only expand vector types if we have the appropriate vector bit operations. 8269 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 8270 ISD::FP_TO_SINT; 8271 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 8272 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 8273 return false; 8274 8275 // If the maximum float value is smaller then the signed integer range, 8276 // the destination signmask can't be represented by the float, so we can 8277 // just use FP_TO_SINT directly. 8278 const fltSemantics &APFSem = SrcVT.getFltSemantics(); 8279 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 8280 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 8281 if (APFloat::opOverflow & 8282 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 8283 if (Node->isStrictFPOpcode()) { 8284 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 8285 { Node->getOperand(0), Src }); 8286 Chain = Result.getValue(1); 8287 } else 8288 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 8289 return true; 8290 } 8291 8292 // Don't expand it if there isn't cheap fsub instruction. 8293 if (!isOperationLegalOrCustom( 8294 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 8295 return false; 8296 8297 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 8298 SDValue Sel; 8299 8300 if (Node->isStrictFPOpcode()) { 8301 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 8302 Node->getOperand(0), /*IsSignaling*/ true); 8303 Chain = Sel.getValue(1); 8304 } else { 8305 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 8306 } 8307 8308 bool Strict = Node->isStrictFPOpcode() || 8309 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 8310 8311 if (Strict) { 8312 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 8313 // signmask then offset (the result of which should be fully representable). 8314 // Sel = Src < 0x8000000000000000 8315 // FltOfs = select Sel, 0, 0x8000000000000000 8316 // IntOfs = select Sel, 0, 0x8000000000000000 8317 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 8318 8319 // TODO: Should any fast-math-flags be set for the FSUB? 8320 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 8321 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 8322 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8323 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 8324 DAG.getConstant(0, dl, DstVT), 8325 DAG.getConstant(SignMask, dl, DstVT)); 8326 SDValue SInt; 8327 if (Node->isStrictFPOpcode()) { 8328 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 8329 { Chain, Src, FltOfs }); 8330 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 8331 { Val.getValue(1), Val }); 8332 Chain = SInt.getValue(1); 8333 } else { 8334 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 8335 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 8336 } 8337 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 8338 } else { 8339 // Expand based on maximum range of FP_TO_SINT: 8340 // True = fp_to_sint(Src) 8341 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 8342 // Result = select (Src < 0x8000000000000000), True, False 8343 8344 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 8345 // TODO: Should any fast-math-flags be set for the FSUB? 8346 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 8347 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 8348 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 8349 DAG.getConstant(SignMask, dl, DstVT)); 8350 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8351 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 8352 } 8353 return true; 8354 } 8355 8356 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 8357 SDValue &Chain, SelectionDAG &DAG) const { 8358 // This transform is not correct for converting 0 when rounding mode is set 8359 // to round toward negative infinity which will produce -0.0. So disable 8360 // under strictfp. 8361 if (Node->isStrictFPOpcode()) 8362 return false; 8363 8364 SDValue Src = Node->getOperand(0); 8365 EVT SrcVT = Src.getValueType(); 8366 EVT DstVT = Node->getValueType(0); 8367 8368 // If the input is known to be non-negative and SINT_TO_FP is legal then use 8369 // it. 8370 if (Node->getFlags().hasNonNeg() && 8371 isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT)) { 8372 Result = 8373 DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), DstVT, Node->getOperand(0)); 8374 return true; 8375 } 8376 8377 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 8378 return false; 8379 8380 // Only expand vector types if we have the appropriate vector bit 8381 // operations. 8382 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 8383 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 8384 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 8385 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 8386 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 8387 return false; 8388 8389 SDLoc dl(SDValue(Node, 0)); 8390 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 8391 8392 // Implementation of unsigned i64 to f64 following the algorithm in 8393 // __floatundidf in compiler_rt. This implementation performs rounding 8394 // correctly in all rounding modes with the exception of converting 0 8395 // when rounding toward negative infinity. In that case the fsub will 8396 // produce -0.0. This will be added to +0.0 and produce -0.0 which is 8397 // incorrect. 8398 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 8399 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 8400 llvm::bit_cast<double>(UINT64_C(0x4530000000100000)), dl, DstVT); 8401 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 8402 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 8403 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 8404 8405 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 8406 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 8407 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 8408 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 8409 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 8410 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 8411 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 8412 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 8413 return true; 8414 } 8415 8416 SDValue 8417 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node, 8418 SelectionDAG &DAG) const { 8419 unsigned Opcode = Node->getOpcode(); 8420 assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM || 8421 Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) && 8422 "Wrong opcode"); 8423 8424 if (Node->getFlags().hasNoNaNs()) { 8425 ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 8426 EVT VT = Node->getValueType(0); 8427 if ((!isCondCodeLegal(Pred, VT.getSimpleVT()) || 8428 !isOperationLegalOrCustom(ISD::VSELECT, VT)) && 8429 VT.isVector()) 8430 return SDValue(); 8431 SDValue Op1 = Node->getOperand(0); 8432 SDValue Op2 = Node->getOperand(1); 8433 SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred); 8434 // Copy FMF flags, but always set the no-signed-zeros flag 8435 // as this is implied by the FMINNUM/FMAXNUM semantics. 8436 SelCC->setFlags(Node->getFlags() | SDNodeFlags::NoSignedZeros); 8437 return SelCC; 8438 } 8439 8440 return SDValue(); 8441 } 8442 8443 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 8444 SelectionDAG &DAG) const { 8445 if (SDValue Expanded = expandVectorNaryOpBySplitting(Node, DAG)) 8446 return Expanded; 8447 8448 EVT VT = Node->getValueType(0); 8449 if (VT.isScalableVector()) 8450 report_fatal_error( 8451 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 8452 8453 SDLoc dl(Node); 8454 unsigned NewOp = 8455 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 8456 8457 if (isOperationLegalOrCustom(NewOp, VT)) { 8458 SDValue Quiet0 = Node->getOperand(0); 8459 SDValue Quiet1 = Node->getOperand(1); 8460 8461 if (!Node->getFlags().hasNoNaNs()) { 8462 // Insert canonicalizes if it's possible we need to quiet to get correct 8463 // sNaN behavior. 8464 if (!DAG.isKnownNeverSNaN(Quiet0)) { 8465 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 8466 Node->getFlags()); 8467 } 8468 if (!DAG.isKnownNeverSNaN(Quiet1)) { 8469 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 8470 Node->getFlags()); 8471 } 8472 } 8473 8474 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 8475 } 8476 8477 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 8478 // instead if there are no NaNs and there can't be an incompatible zero 8479 // compare: at least one operand isn't +/-0, or there are no signed-zeros. 8480 if ((Node->getFlags().hasNoNaNs() || 8481 (DAG.isKnownNeverNaN(Node->getOperand(0)) && 8482 DAG.isKnownNeverNaN(Node->getOperand(1)))) && 8483 (Node->getFlags().hasNoSignedZeros() || 8484 DAG.isKnownNeverZeroFloat(Node->getOperand(0)) || 8485 DAG.isKnownNeverZeroFloat(Node->getOperand(1)))) { 8486 unsigned IEEE2018Op = 8487 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 8488 if (isOperationLegalOrCustom(IEEE2018Op, VT)) 8489 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 8490 Node->getOperand(1), Node->getFlags()); 8491 } 8492 8493 if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG)) 8494 return SelCC; 8495 8496 return SDValue(); 8497 } 8498 8499 SDValue TargetLowering::expandFMINIMUM_FMAXIMUM(SDNode *N, 8500 SelectionDAG &DAG) const { 8501 if (SDValue Expanded = expandVectorNaryOpBySplitting(N, DAG)) 8502 return Expanded; 8503 8504 SDLoc DL(N); 8505 SDValue LHS = N->getOperand(0); 8506 SDValue RHS = N->getOperand(1); 8507 unsigned Opc = N->getOpcode(); 8508 EVT VT = N->getValueType(0); 8509 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8510 bool IsMax = Opc == ISD::FMAXIMUM; 8511 SDNodeFlags Flags = N->getFlags(); 8512 8513 // First, implement comparison not propagating NaN. If no native fmin or fmax 8514 // available, use plain select with setcc instead. 8515 SDValue MinMax; 8516 unsigned CompOpcIeee = IsMax ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE; 8517 unsigned CompOpc = IsMax ? ISD::FMAXNUM : ISD::FMINNUM; 8518 8519 // FIXME: We should probably define fminnum/fmaxnum variants with correct 8520 // signed zero behavior. 8521 bool MinMaxMustRespectOrderedZero = false; 8522 8523 if (isOperationLegalOrCustom(CompOpcIeee, VT)) { 8524 MinMax = DAG.getNode(CompOpcIeee, DL, VT, LHS, RHS, Flags); 8525 MinMaxMustRespectOrderedZero = true; 8526 } else if (isOperationLegalOrCustom(CompOpc, VT)) { 8527 MinMax = DAG.getNode(CompOpc, DL, VT, LHS, RHS, Flags); 8528 } else { 8529 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8530 return DAG.UnrollVectorOp(N); 8531 8532 // NaN (if exists) will be propagated later, so orderness doesn't matter. 8533 SDValue Compare = 8534 DAG.getSetCC(DL, CCVT, LHS, RHS, IsMax ? ISD::SETOGT : ISD::SETOLT); 8535 MinMax = DAG.getSelect(DL, VT, Compare, LHS, RHS, Flags); 8536 } 8537 8538 // Propagate any NaN of both operands 8539 if (!N->getFlags().hasNoNaNs() && 8540 (!DAG.isKnownNeverNaN(RHS) || !DAG.isKnownNeverNaN(LHS))) { 8541 ConstantFP *FPNaN = ConstantFP::get(*DAG.getContext(), 8542 APFloat::getNaN(VT.getFltSemantics())); 8543 MinMax = DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, LHS, RHS, ISD::SETUO), 8544 DAG.getConstantFP(*FPNaN, DL, VT), MinMax, Flags); 8545 } 8546 8547 // fminimum/fmaximum requires -0.0 less than +0.0 8548 if (!MinMaxMustRespectOrderedZero && !N->getFlags().hasNoSignedZeros() && 8549 !DAG.isKnownNeverZeroFloat(RHS) && !DAG.isKnownNeverZeroFloat(LHS)) { 8550 SDValue IsZero = DAG.getSetCC(DL, CCVT, MinMax, 8551 DAG.getConstantFP(0.0, DL, VT), ISD::SETOEQ); 8552 SDValue TestZero = 8553 DAG.getTargetConstant(IsMax ? fcPosZero : fcNegZero, DL, MVT::i32); 8554 SDValue LCmp = DAG.getSelect( 8555 DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, LHS, TestZero), LHS, 8556 MinMax, Flags); 8557 SDValue RCmp = DAG.getSelect( 8558 DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, RHS, TestZero), RHS, 8559 LCmp, Flags); 8560 MinMax = DAG.getSelect(DL, VT, IsZero, RCmp, MinMax, Flags); 8561 } 8562 8563 return MinMax; 8564 } 8565 8566 SDValue TargetLowering::expandFMINIMUMNUM_FMAXIMUMNUM(SDNode *Node, 8567 SelectionDAG &DAG) const { 8568 SDLoc DL(Node); 8569 SDValue LHS = Node->getOperand(0); 8570 SDValue RHS = Node->getOperand(1); 8571 unsigned Opc = Node->getOpcode(); 8572 EVT VT = Node->getValueType(0); 8573 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8574 bool IsMax = Opc == ISD::FMAXIMUMNUM; 8575 const TargetOptions &Options = DAG.getTarget().Options; 8576 SDNodeFlags Flags = Node->getFlags(); 8577 8578 unsigned NewOp = 8579 Opc == ISD::FMINIMUMNUM ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 8580 8581 if (isOperationLegalOrCustom(NewOp, VT)) { 8582 if (!Flags.hasNoNaNs()) { 8583 // Insert canonicalizes if it's possible we need to quiet to get correct 8584 // sNaN behavior. 8585 if (!DAG.isKnownNeverSNaN(LHS)) { 8586 LHS = DAG.getNode(ISD::FCANONICALIZE, DL, VT, LHS, Flags); 8587 } 8588 if (!DAG.isKnownNeverSNaN(RHS)) { 8589 RHS = DAG.getNode(ISD::FCANONICALIZE, DL, VT, RHS, Flags); 8590 } 8591 } 8592 8593 return DAG.getNode(NewOp, DL, VT, LHS, RHS, Flags); 8594 } 8595 8596 // We can use FMINIMUM/FMAXIMUM if there is no NaN, since it has 8597 // same behaviors for all of other cases: +0.0 vs -0.0 included. 8598 if (Flags.hasNoNaNs() || 8599 (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS))) { 8600 unsigned IEEE2019Op = 8601 Opc == ISD::FMINIMUMNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 8602 if (isOperationLegalOrCustom(IEEE2019Op, VT)) 8603 return DAG.getNode(IEEE2019Op, DL, VT, LHS, RHS, Flags); 8604 } 8605 8606 // FMINNUM/FMAXMUM returns qNaN if either operand is sNaN, and it may return 8607 // either one for +0.0 vs -0.0. 8608 if ((Flags.hasNoNaNs() || 8609 (DAG.isKnownNeverSNaN(LHS) && DAG.isKnownNeverSNaN(RHS))) && 8610 (Flags.hasNoSignedZeros() || DAG.isKnownNeverZeroFloat(LHS) || 8611 DAG.isKnownNeverZeroFloat(RHS))) { 8612 unsigned IEEE2008Op = Opc == ISD::FMINIMUMNUM ? ISD::FMINNUM : ISD::FMAXNUM; 8613 if (isOperationLegalOrCustom(IEEE2008Op, VT)) 8614 return DAG.getNode(IEEE2008Op, DL, VT, LHS, RHS, Flags); 8615 } 8616 8617 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8618 return DAG.UnrollVectorOp(Node); 8619 8620 // If only one operand is NaN, override it with another operand. 8621 if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(LHS)) { 8622 LHS = DAG.getSelectCC(DL, LHS, LHS, RHS, LHS, ISD::SETUO); 8623 } 8624 if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(RHS)) { 8625 RHS = DAG.getSelectCC(DL, RHS, RHS, LHS, RHS, ISD::SETUO); 8626 } 8627 8628 SDValue MinMax = 8629 DAG.getSelectCC(DL, LHS, RHS, LHS, RHS, IsMax ? ISD::SETGT : ISD::SETLT); 8630 // If MinMax is NaN, let's quiet it. 8631 if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(LHS) && 8632 !DAG.isKnownNeverNaN(RHS)) { 8633 MinMax = DAG.getNode(ISD::FCANONICALIZE, DL, VT, MinMax, Flags); 8634 } 8635 8636 // Fixup signed zero behavior. 8637 if (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros() || 8638 DAG.isKnownNeverZeroFloat(LHS) || DAG.isKnownNeverZeroFloat(RHS)) { 8639 return MinMax; 8640 } 8641 SDValue TestZero = 8642 DAG.getTargetConstant(IsMax ? fcPosZero : fcNegZero, DL, MVT::i32); 8643 SDValue IsZero = DAG.getSetCC(DL, CCVT, MinMax, 8644 DAG.getConstantFP(0.0, DL, VT), ISD::SETEQ); 8645 SDValue LCmp = DAG.getSelect( 8646 DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, LHS, TestZero), LHS, 8647 MinMax, Flags); 8648 SDValue RCmp = DAG.getSelect( 8649 DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, RHS, TestZero), RHS, LCmp, 8650 Flags); 8651 return DAG.getSelect(DL, VT, IsZero, RCmp, MinMax, Flags); 8652 } 8653 8654 /// Returns a true value if if this FPClassTest can be performed with an ordered 8655 /// fcmp to 0, and a false value if it's an unordered fcmp to 0. Returns 8656 /// std::nullopt if it cannot be performed as a compare with 0. 8657 static std::optional<bool> isFCmpEqualZero(FPClassTest Test, 8658 const fltSemantics &Semantics, 8659 const MachineFunction &MF) { 8660 FPClassTest OrderedMask = Test & ~fcNan; 8661 FPClassTest NanTest = Test & fcNan; 8662 bool IsOrdered = NanTest == fcNone; 8663 bool IsUnordered = NanTest == fcNan; 8664 8665 // Skip cases that are testing for only a qnan or snan. 8666 if (!IsOrdered && !IsUnordered) 8667 return std::nullopt; 8668 8669 if (OrderedMask == fcZero && 8670 MF.getDenormalMode(Semantics).Input == DenormalMode::IEEE) 8671 return IsOrdered; 8672 if (OrderedMask == (fcZero | fcSubnormal) && 8673 MF.getDenormalMode(Semantics).inputsAreZero()) 8674 return IsOrdered; 8675 return std::nullopt; 8676 } 8677 8678 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op, 8679 const FPClassTest OrigTestMask, 8680 SDNodeFlags Flags, const SDLoc &DL, 8681 SelectionDAG &DAG) const { 8682 EVT OperandVT = Op.getValueType(); 8683 assert(OperandVT.isFloatingPoint()); 8684 FPClassTest Test = OrigTestMask; 8685 8686 // Degenerated cases. 8687 if (Test == fcNone) 8688 return DAG.getBoolConstant(false, DL, ResultVT, OperandVT); 8689 if (Test == fcAllFlags) 8690 return DAG.getBoolConstant(true, DL, ResultVT, OperandVT); 8691 8692 // PPC double double is a pair of doubles, of which the higher part determines 8693 // the value class. 8694 if (OperandVT == MVT::ppcf128) { 8695 Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op, 8696 DAG.getConstant(1, DL, MVT::i32)); 8697 OperandVT = MVT::f64; 8698 } 8699 8700 // Floating-point type properties. 8701 EVT ScalarFloatVT = OperandVT.getScalarType(); 8702 const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext()); 8703 const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics(); 8704 bool IsF80 = (ScalarFloatVT == MVT::f80); 8705 8706 // Some checks can be implemented using float comparisons, if floating point 8707 // exceptions are ignored. 8708 if (Flags.hasNoFPExcept() && 8709 isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) { 8710 FPClassTest FPTestMask = Test; 8711 bool IsInvertedFP = false; 8712 8713 if (FPClassTest InvertedFPCheck = 8714 invertFPClassTestIfSimpler(FPTestMask, true)) { 8715 FPTestMask = InvertedFPCheck; 8716 IsInvertedFP = true; 8717 } 8718 8719 ISD::CondCode OrderedCmpOpcode = IsInvertedFP ? ISD::SETUNE : ISD::SETOEQ; 8720 ISD::CondCode UnorderedCmpOpcode = IsInvertedFP ? ISD::SETONE : ISD::SETUEQ; 8721 8722 // See if we can fold an | fcNan into an unordered compare. 8723 FPClassTest OrderedFPTestMask = FPTestMask & ~fcNan; 8724 8725 // Can't fold the ordered check if we're only testing for snan or qnan 8726 // individually. 8727 if ((FPTestMask & fcNan) != fcNan) 8728 OrderedFPTestMask = FPTestMask; 8729 8730 const bool IsOrdered = FPTestMask == OrderedFPTestMask; 8731 8732 if (std::optional<bool> IsCmp0 = 8733 isFCmpEqualZero(FPTestMask, Semantics, DAG.getMachineFunction()); 8734 IsCmp0 && (isCondCodeLegalOrCustom( 8735 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode, 8736 OperandVT.getScalarType().getSimpleVT()))) { 8737 8738 // If denormals could be implicitly treated as 0, this is not equivalent 8739 // to a compare with 0 since it will also be true for denormals. 8740 return DAG.getSetCC(DL, ResultVT, Op, 8741 DAG.getConstantFP(0.0, DL, OperandVT), 8742 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode); 8743 } 8744 8745 if (FPTestMask == fcNan && 8746 isCondCodeLegalOrCustom(IsInvertedFP ? ISD::SETO : ISD::SETUO, 8747 OperandVT.getScalarType().getSimpleVT())) 8748 return DAG.getSetCC(DL, ResultVT, Op, Op, 8749 IsInvertedFP ? ISD::SETO : ISD::SETUO); 8750 8751 bool IsOrderedInf = FPTestMask == fcInf; 8752 if ((FPTestMask == fcInf || FPTestMask == (fcInf | fcNan)) && 8753 isCondCodeLegalOrCustom(IsOrderedInf ? OrderedCmpOpcode 8754 : UnorderedCmpOpcode, 8755 OperandVT.getScalarType().getSimpleVT()) && 8756 isOperationLegalOrCustom(ISD::FABS, OperandVT.getScalarType()) && 8757 (isOperationLegal(ISD::ConstantFP, OperandVT.getScalarType()) || 8758 (OperandVT.isVector() && 8759 isOperationLegalOrCustom(ISD::BUILD_VECTOR, OperandVT)))) { 8760 // isinf(x) --> fabs(x) == inf 8761 SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op); 8762 SDValue Inf = 8763 DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT); 8764 return DAG.getSetCC(DL, ResultVT, Abs, Inf, 8765 IsOrderedInf ? OrderedCmpOpcode : UnorderedCmpOpcode); 8766 } 8767 8768 if ((OrderedFPTestMask == fcPosInf || OrderedFPTestMask == fcNegInf) && 8769 isCondCodeLegalOrCustom(IsOrdered ? OrderedCmpOpcode 8770 : UnorderedCmpOpcode, 8771 OperandVT.getSimpleVT())) { 8772 // isposinf(x) --> x == inf 8773 // isneginf(x) --> x == -inf 8774 // isposinf(x) || nan --> x u== inf 8775 // isneginf(x) || nan --> x u== -inf 8776 8777 SDValue Inf = DAG.getConstantFP( 8778 APFloat::getInf(Semantics, OrderedFPTestMask == fcNegInf), DL, 8779 OperandVT); 8780 return DAG.getSetCC(DL, ResultVT, Op, Inf, 8781 IsOrdered ? OrderedCmpOpcode : UnorderedCmpOpcode); 8782 } 8783 8784 if (OrderedFPTestMask == (fcSubnormal | fcZero) && !IsOrdered) { 8785 // TODO: Could handle ordered case, but it produces worse code for 8786 // x86. Maybe handle ordered if fabs is free? 8787 8788 ISD::CondCode OrderedOp = IsInvertedFP ? ISD::SETUGE : ISD::SETOLT; 8789 ISD::CondCode UnorderedOp = IsInvertedFP ? ISD::SETOGE : ISD::SETULT; 8790 8791 if (isCondCodeLegalOrCustom(IsOrdered ? OrderedOp : UnorderedOp, 8792 OperandVT.getScalarType().getSimpleVT())) { 8793 // (issubnormal(x) || iszero(x)) --> fabs(x) < smallest_normal 8794 8795 // TODO: Maybe only makes sense if fabs is free. Integer test of 8796 // exponent bits seems better for x86. 8797 SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op); 8798 SDValue SmallestNormal = DAG.getConstantFP( 8799 APFloat::getSmallestNormalized(Semantics), DL, OperandVT); 8800 return DAG.getSetCC(DL, ResultVT, Abs, SmallestNormal, 8801 IsOrdered ? OrderedOp : UnorderedOp); 8802 } 8803 } 8804 8805 if (FPTestMask == fcNormal) { 8806 // TODO: Handle unordered 8807 ISD::CondCode IsFiniteOp = IsInvertedFP ? ISD::SETUGE : ISD::SETOLT; 8808 ISD::CondCode IsNormalOp = IsInvertedFP ? ISD::SETOLT : ISD::SETUGE; 8809 8810 if (isCondCodeLegalOrCustom(IsFiniteOp, 8811 OperandVT.getScalarType().getSimpleVT()) && 8812 isCondCodeLegalOrCustom(IsNormalOp, 8813 OperandVT.getScalarType().getSimpleVT()) && 8814 isFAbsFree(OperandVT)) { 8815 // isnormal(x) --> fabs(x) < infinity && !(fabs(x) < smallest_normal) 8816 SDValue Inf = 8817 DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT); 8818 SDValue SmallestNormal = DAG.getConstantFP( 8819 APFloat::getSmallestNormalized(Semantics), DL, OperandVT); 8820 8821 SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op); 8822 SDValue IsFinite = DAG.getSetCC(DL, ResultVT, Abs, Inf, IsFiniteOp); 8823 SDValue IsNormal = 8824 DAG.getSetCC(DL, ResultVT, Abs, SmallestNormal, IsNormalOp); 8825 unsigned LogicOp = IsInvertedFP ? ISD::OR : ISD::AND; 8826 return DAG.getNode(LogicOp, DL, ResultVT, IsFinite, IsNormal); 8827 } 8828 } 8829 } 8830 8831 // Some checks may be represented as inversion of simpler check, for example 8832 // "inf|normal|subnormal|zero" => !"nan". 8833 bool IsInverted = false; 8834 8835 if (FPClassTest InvertedCheck = invertFPClassTestIfSimpler(Test, false)) { 8836 Test = InvertedCheck; 8837 IsInverted = true; 8838 } 8839 8840 // In the general case use integer operations. 8841 unsigned BitSize = OperandVT.getScalarSizeInBits(); 8842 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize); 8843 if (OperandVT.isVector()) 8844 IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT, 8845 OperandVT.getVectorElementCount()); 8846 SDValue OpAsInt = DAG.getBitcast(IntVT, Op); 8847 8848 // Various masks. 8849 APInt SignBit = APInt::getSignMask(BitSize); 8850 APInt ValueMask = APInt::getSignedMaxValue(BitSize); // All bits but sign. 8851 APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit. 8852 const unsigned ExplicitIntBitInF80 = 63; 8853 APInt ExpMask = Inf; 8854 if (IsF80) 8855 ExpMask.clearBit(ExplicitIntBitInF80); 8856 APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf; 8857 APInt QNaNBitMask = 8858 APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1); 8859 APInt InvertionMask = APInt::getAllOnes(ResultVT.getScalarSizeInBits()); 8860 8861 SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT); 8862 SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT); 8863 SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT); 8864 SDValue ZeroV = DAG.getConstant(0, DL, IntVT); 8865 SDValue InfV = DAG.getConstant(Inf, DL, IntVT); 8866 SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT); 8867 8868 SDValue Res; 8869 const auto appendResult = [&](SDValue PartialRes) { 8870 if (PartialRes) { 8871 if (Res) 8872 Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes); 8873 else 8874 Res = PartialRes; 8875 } 8876 }; 8877 8878 SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set. 8879 const auto getIntBitIsSet = [&]() -> SDValue { 8880 if (!IntBitIsSetV) { 8881 APInt IntBitMask(BitSize, 0); 8882 IntBitMask.setBit(ExplicitIntBitInF80); 8883 SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT); 8884 SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV); 8885 IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE); 8886 } 8887 return IntBitIsSetV; 8888 }; 8889 8890 // Split the value into sign bit and absolute value. 8891 SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV); 8892 SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt, 8893 DAG.getConstant(0, DL, IntVT), ISD::SETLT); 8894 8895 // Tests that involve more than one class should be processed first. 8896 SDValue PartialRes; 8897 8898 if (IsF80) 8899 ; // Detect finite numbers of f80 by checking individual classes because 8900 // they have different settings of the explicit integer bit. 8901 else if ((Test & fcFinite) == fcFinite) { 8902 // finite(V) ==> abs(V) < exp_mask 8903 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 8904 Test &= ~fcFinite; 8905 } else if ((Test & fcFinite) == fcPosFinite) { 8906 // finite(V) && V > 0 ==> V < exp_mask 8907 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT); 8908 Test &= ~fcPosFinite; 8909 } else if ((Test & fcFinite) == fcNegFinite) { 8910 // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1 8911 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 8912 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 8913 Test &= ~fcNegFinite; 8914 } 8915 appendResult(PartialRes); 8916 8917 if (FPClassTest PartialCheck = Test & (fcZero | fcSubnormal)) { 8918 // fcZero | fcSubnormal => test all exponent bits are 0 8919 // TODO: Handle sign bit specific cases 8920 if (PartialCheck == (fcZero | fcSubnormal)) { 8921 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ExpMaskV); 8922 SDValue ExpIsZero = 8923 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ); 8924 appendResult(ExpIsZero); 8925 Test &= ~PartialCheck & fcAllFlags; 8926 } 8927 } 8928 8929 // Check for individual classes. 8930 8931 if (unsigned PartialCheck = Test & fcZero) { 8932 if (PartialCheck == fcPosZero) 8933 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ); 8934 else if (PartialCheck == fcZero) 8935 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ); 8936 else // ISD::fcNegZero 8937 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ); 8938 appendResult(PartialRes); 8939 } 8940 8941 if (unsigned PartialCheck = Test & fcSubnormal) { 8942 // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set) 8943 // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set) 8944 SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV; 8945 SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT); 8946 SDValue VMinusOneV = 8947 DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT)); 8948 PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT); 8949 if (PartialCheck == fcNegSubnormal) 8950 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 8951 appendResult(PartialRes); 8952 } 8953 8954 if (unsigned PartialCheck = Test & fcInf) { 8955 if (PartialCheck == fcPosInf) 8956 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ); 8957 else if (PartialCheck == fcInf) 8958 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ); 8959 else { // ISD::fcNegInf 8960 APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt(); 8961 SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT); 8962 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ); 8963 } 8964 appendResult(PartialRes); 8965 } 8966 8967 if (unsigned PartialCheck = Test & fcNan) { 8968 APInt InfWithQnanBit = Inf | QNaNBitMask; 8969 SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT); 8970 if (PartialCheck == fcNan) { 8971 // isnan(V) ==> abs(V) > int(inf) 8972 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 8973 if (IsF80) { 8974 // Recognize unsupported values as NaNs for compatibility with glibc. 8975 // In them (exp(V)==0) == int_bit. 8976 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV); 8977 SDValue ExpIsZero = 8978 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ); 8979 SDValue IsPseudo = 8980 DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ); 8981 PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo); 8982 } 8983 } else if (PartialCheck == fcQNan) { 8984 // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit) 8985 PartialRes = 8986 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE); 8987 } else { // ISD::fcSNan 8988 // issignaling(V) ==> abs(V) > unsigned(Inf) && 8989 // abs(V) < (unsigned(Inf) | quiet_bit) 8990 SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 8991 SDValue IsNotQnan = 8992 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT); 8993 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan); 8994 } 8995 appendResult(PartialRes); 8996 } 8997 8998 if (unsigned PartialCheck = Test & fcNormal) { 8999 // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1)) 9000 APInt ExpLSB = ExpMask & ~(ExpMask.shl(1)); 9001 SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT); 9002 SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV); 9003 APInt ExpLimit = ExpMask - ExpLSB; 9004 SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT); 9005 PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT); 9006 if (PartialCheck == fcNegNormal) 9007 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 9008 else if (PartialCheck == fcPosNormal) { 9009 SDValue PosSignV = 9010 DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask); 9011 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV); 9012 } 9013 if (IsF80) 9014 PartialRes = 9015 DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet()); 9016 appendResult(PartialRes); 9017 } 9018 9019 if (!Res) 9020 return DAG.getConstant(IsInverted, DL, ResultVT); 9021 if (IsInverted) 9022 Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask); 9023 return Res; 9024 } 9025 9026 // Only expand vector types if we have the appropriate vector bit operations. 9027 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 9028 assert(VT.isVector() && "Expected vector type"); 9029 unsigned Len = VT.getScalarSizeInBits(); 9030 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 9031 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 9032 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 9033 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 9034 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 9035 } 9036 9037 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 9038 SDLoc dl(Node); 9039 EVT VT = Node->getValueType(0); 9040 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9041 SDValue Op = Node->getOperand(0); 9042 unsigned Len = VT.getScalarSizeInBits(); 9043 assert(VT.isInteger() && "CTPOP not implemented for this type."); 9044 9045 // TODO: Add support for irregular type lengths. 9046 if (!(Len <= 128 && Len % 8 == 0)) 9047 return SDValue(); 9048 9049 // Only expand vector types if we have the appropriate vector bit operations. 9050 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 9051 return SDValue(); 9052 9053 // This is the "best" algorithm from 9054 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 9055 SDValue Mask55 = 9056 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 9057 SDValue Mask33 = 9058 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 9059 SDValue Mask0F = 9060 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 9061 9062 // v = v - ((v >> 1) & 0x55555555...) 9063 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 9064 DAG.getNode(ISD::AND, dl, VT, 9065 DAG.getNode(ISD::SRL, dl, VT, Op, 9066 DAG.getConstant(1, dl, ShVT)), 9067 Mask55)); 9068 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 9069 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 9070 DAG.getNode(ISD::AND, dl, VT, 9071 DAG.getNode(ISD::SRL, dl, VT, Op, 9072 DAG.getConstant(2, dl, ShVT)), 9073 Mask33)); 9074 // v = (v + (v >> 4)) & 0x0F0F0F0F... 9075 Op = DAG.getNode(ISD::AND, dl, VT, 9076 DAG.getNode(ISD::ADD, dl, VT, Op, 9077 DAG.getNode(ISD::SRL, dl, VT, Op, 9078 DAG.getConstant(4, dl, ShVT))), 9079 Mask0F); 9080 9081 if (Len <= 8) 9082 return Op; 9083 9084 // Avoid the multiply if we only have 2 bytes to add. 9085 // TODO: Only doing this for scalars because vectors weren't as obviously 9086 // improved. 9087 if (Len == 16 && !VT.isVector()) { 9088 // v = (v + (v >> 8)) & 0x00FF; 9089 return DAG.getNode(ISD::AND, dl, VT, 9090 DAG.getNode(ISD::ADD, dl, VT, Op, 9091 DAG.getNode(ISD::SRL, dl, VT, Op, 9092 DAG.getConstant(8, dl, ShVT))), 9093 DAG.getConstant(0xFF, dl, VT)); 9094 } 9095 9096 // v = (v * 0x01010101...) >> (Len - 8) 9097 SDValue V; 9098 if (isOperationLegalOrCustomOrPromote( 9099 ISD::MUL, getTypeToTransformTo(*DAG.getContext(), VT))) { 9100 SDValue Mask01 = 9101 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 9102 V = DAG.getNode(ISD::MUL, dl, VT, Op, Mask01); 9103 } else { 9104 V = Op; 9105 for (unsigned Shift = 8; Shift < Len; Shift *= 2) { 9106 SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl); 9107 V = DAG.getNode(ISD::ADD, dl, VT, V, 9108 DAG.getNode(ISD::SHL, dl, VT, V, ShiftC)); 9109 } 9110 } 9111 return DAG.getNode(ISD::SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT)); 9112 } 9113 9114 SDValue TargetLowering::expandVPCTPOP(SDNode *Node, SelectionDAG &DAG) const { 9115 SDLoc dl(Node); 9116 EVT VT = Node->getValueType(0); 9117 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9118 SDValue Op = Node->getOperand(0); 9119 SDValue Mask = Node->getOperand(1); 9120 SDValue VL = Node->getOperand(2); 9121 unsigned Len = VT.getScalarSizeInBits(); 9122 assert(VT.isInteger() && "VP_CTPOP not implemented for this type."); 9123 9124 // TODO: Add support for irregular type lengths. 9125 if (!(Len <= 128 && Len % 8 == 0)) 9126 return SDValue(); 9127 9128 // This is same algorithm of expandCTPOP from 9129 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 9130 SDValue Mask55 = 9131 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 9132 SDValue Mask33 = 9133 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 9134 SDValue Mask0F = 9135 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 9136 9137 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5; 9138 9139 // v = v - ((v >> 1) & 0x55555555...) 9140 Tmp1 = DAG.getNode(ISD::VP_AND, dl, VT, 9141 DAG.getNode(ISD::VP_SRL, dl, VT, Op, 9142 DAG.getConstant(1, dl, ShVT), Mask, VL), 9143 Mask55, Mask, VL); 9144 Op = DAG.getNode(ISD::VP_SUB, dl, VT, Op, Tmp1, Mask, VL); 9145 9146 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 9147 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Op, Mask33, Mask, VL); 9148 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, 9149 DAG.getNode(ISD::VP_SRL, dl, VT, Op, 9150 DAG.getConstant(2, dl, ShVT), Mask, VL), 9151 Mask33, Mask, VL); 9152 Op = DAG.getNode(ISD::VP_ADD, dl, VT, Tmp2, Tmp3, Mask, VL); 9153 9154 // v = (v + (v >> 4)) & 0x0F0F0F0F... 9155 Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(4, dl, ShVT), 9156 Mask, VL), 9157 Tmp5 = DAG.getNode(ISD::VP_ADD, dl, VT, Op, Tmp4, Mask, VL); 9158 Op = DAG.getNode(ISD::VP_AND, dl, VT, Tmp5, Mask0F, Mask, VL); 9159 9160 if (Len <= 8) 9161 return Op; 9162 9163 // v = (v * 0x01010101...) >> (Len - 8) 9164 SDValue V; 9165 if (isOperationLegalOrCustomOrPromote( 9166 ISD::VP_MUL, getTypeToTransformTo(*DAG.getContext(), VT))) { 9167 SDValue Mask01 = 9168 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 9169 V = DAG.getNode(ISD::VP_MUL, dl, VT, Op, Mask01, Mask, VL); 9170 } else { 9171 V = Op; 9172 for (unsigned Shift = 8; Shift < Len; Shift *= 2) { 9173 SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl); 9174 V = DAG.getNode(ISD::VP_ADD, dl, VT, V, 9175 DAG.getNode(ISD::VP_SHL, dl, VT, V, ShiftC, Mask, VL), 9176 Mask, VL); 9177 } 9178 } 9179 return DAG.getNode(ISD::VP_SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT), 9180 Mask, VL); 9181 } 9182 9183 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 9184 SDLoc dl(Node); 9185 EVT VT = Node->getValueType(0); 9186 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9187 SDValue Op = Node->getOperand(0); 9188 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 9189 9190 // If the non-ZERO_UNDEF version is supported we can use that instead. 9191 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 9192 isOperationLegalOrCustom(ISD::CTLZ, VT)) 9193 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 9194 9195 // If the ZERO_UNDEF version is supported use that and handle the zero case. 9196 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 9197 EVT SetCCVT = 9198 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9199 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 9200 SDValue Zero = DAG.getConstant(0, dl, VT); 9201 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 9202 return DAG.getSelect(dl, VT, SrcIsZero, 9203 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 9204 } 9205 9206 // Only expand vector types if we have the appropriate vector bit operations. 9207 // This includes the operations needed to expand CTPOP if it isn't supported. 9208 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 9209 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 9210 !canExpandVectorCTPOP(*this, VT)) || 9211 !isOperationLegalOrCustom(ISD::SRL, VT) || 9212 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 9213 return SDValue(); 9214 9215 // for now, we do this: 9216 // x = x | (x >> 1); 9217 // x = x | (x >> 2); 9218 // ... 9219 // x = x | (x >>16); 9220 // x = x | (x >>32); // for 64-bit input 9221 // return popcount(~x); 9222 // 9223 // Ref: "Hacker's Delight" by Henry Warren 9224 for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) { 9225 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 9226 Op = DAG.getNode(ISD::OR, dl, VT, Op, 9227 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 9228 } 9229 Op = DAG.getNOT(dl, Op, VT); 9230 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 9231 } 9232 9233 SDValue TargetLowering::expandVPCTLZ(SDNode *Node, SelectionDAG &DAG) const { 9234 SDLoc dl(Node); 9235 EVT VT = Node->getValueType(0); 9236 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9237 SDValue Op = Node->getOperand(0); 9238 SDValue Mask = Node->getOperand(1); 9239 SDValue VL = Node->getOperand(2); 9240 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 9241 9242 // do this: 9243 // x = x | (x >> 1); 9244 // x = x | (x >> 2); 9245 // ... 9246 // x = x | (x >>16); 9247 // x = x | (x >>32); // for 64-bit input 9248 // return popcount(~x); 9249 for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) { 9250 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 9251 Op = DAG.getNode(ISD::VP_OR, dl, VT, Op, 9252 DAG.getNode(ISD::VP_SRL, dl, VT, Op, Tmp, Mask, VL), Mask, 9253 VL); 9254 } 9255 Op = DAG.getNode(ISD::VP_XOR, dl, VT, Op, DAG.getAllOnesConstant(dl, VT), 9256 Mask, VL); 9257 return DAG.getNode(ISD::VP_CTPOP, dl, VT, Op, Mask, VL); 9258 } 9259 9260 SDValue TargetLowering::CTTZTableLookup(SDNode *Node, SelectionDAG &DAG, 9261 const SDLoc &DL, EVT VT, SDValue Op, 9262 unsigned BitWidth) const { 9263 if (BitWidth != 32 && BitWidth != 64) 9264 return SDValue(); 9265 APInt DeBruijn = BitWidth == 32 ? APInt(32, 0x077CB531U) 9266 : APInt(64, 0x0218A392CD3D5DBFULL); 9267 const DataLayout &TD = DAG.getDataLayout(); 9268 MachinePointerInfo PtrInfo = 9269 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()); 9270 unsigned ShiftAmt = BitWidth - Log2_32(BitWidth); 9271 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 9272 SDValue Lookup = DAG.getNode( 9273 ISD::SRL, DL, VT, 9274 DAG.getNode(ISD::MUL, DL, VT, DAG.getNode(ISD::AND, DL, VT, Op, Neg), 9275 DAG.getConstant(DeBruijn, DL, VT)), 9276 DAG.getConstant(ShiftAmt, DL, VT)); 9277 Lookup = DAG.getSExtOrTrunc(Lookup, DL, getPointerTy(TD)); 9278 9279 SmallVector<uint8_t> Table(BitWidth, 0); 9280 for (unsigned i = 0; i < BitWidth; i++) { 9281 APInt Shl = DeBruijn.shl(i); 9282 APInt Lshr = Shl.lshr(ShiftAmt); 9283 Table[Lshr.getZExtValue()] = i; 9284 } 9285 9286 // Create a ConstantArray in Constant Pool 9287 auto *CA = ConstantDataArray::get(*DAG.getContext(), Table); 9288 SDValue CPIdx = DAG.getConstantPool(CA, getPointerTy(TD), 9289 TD.getPrefTypeAlign(CA->getType())); 9290 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, VT, DAG.getEntryNode(), 9291 DAG.getMemBasePlusOffset(CPIdx, Lookup, DL), 9292 PtrInfo, MVT::i8); 9293 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) 9294 return ExtLoad; 9295 9296 EVT SetCCVT = 9297 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9298 SDValue Zero = DAG.getConstant(0, DL, VT); 9299 SDValue SrcIsZero = DAG.getSetCC(DL, SetCCVT, Op, Zero, ISD::SETEQ); 9300 return DAG.getSelect(DL, VT, SrcIsZero, 9301 DAG.getConstant(BitWidth, DL, VT), ExtLoad); 9302 } 9303 9304 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 9305 SDLoc dl(Node); 9306 EVT VT = Node->getValueType(0); 9307 SDValue Op = Node->getOperand(0); 9308 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 9309 9310 // If the non-ZERO_UNDEF version is supported we can use that instead. 9311 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 9312 isOperationLegalOrCustom(ISD::CTTZ, VT)) 9313 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 9314 9315 // If the ZERO_UNDEF version is supported use that and handle the zero case. 9316 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 9317 EVT SetCCVT = 9318 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9319 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 9320 SDValue Zero = DAG.getConstant(0, dl, VT); 9321 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 9322 return DAG.getSelect(dl, VT, SrcIsZero, 9323 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 9324 } 9325 9326 // Only expand vector types if we have the appropriate vector bit operations. 9327 // This includes the operations needed to expand CTPOP if it isn't supported. 9328 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 9329 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 9330 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 9331 !canExpandVectorCTPOP(*this, VT)) || 9332 !isOperationLegalOrCustom(ISD::SUB, VT) || 9333 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 9334 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 9335 return SDValue(); 9336 9337 // Emit Table Lookup if ISD::CTLZ and ISD::CTPOP are not legal. 9338 if (!VT.isVector() && isOperationExpand(ISD::CTPOP, VT) && 9339 !isOperationLegal(ISD::CTLZ, VT)) 9340 if (SDValue V = CTTZTableLookup(Node, DAG, dl, VT, Op, NumBitsPerElt)) 9341 return V; 9342 9343 // for now, we use: { return popcount(~x & (x - 1)); } 9344 // unless the target has ctlz but not ctpop, in which case we use: 9345 // { return 32 - nlz(~x & (x-1)); } 9346 // Ref: "Hacker's Delight" by Henry Warren 9347 SDValue Tmp = DAG.getNode( 9348 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 9349 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 9350 9351 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 9352 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 9353 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 9354 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 9355 } 9356 9357 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 9358 } 9359 9360 SDValue TargetLowering::expandVPCTTZ(SDNode *Node, SelectionDAG &DAG) const { 9361 SDValue Op = Node->getOperand(0); 9362 SDValue Mask = Node->getOperand(1); 9363 SDValue VL = Node->getOperand(2); 9364 SDLoc dl(Node); 9365 EVT VT = Node->getValueType(0); 9366 9367 // Same as the vector part of expandCTTZ, use: popcount(~x & (x - 1)) 9368 SDValue Not = DAG.getNode(ISD::VP_XOR, dl, VT, Op, 9369 DAG.getAllOnesConstant(dl, VT), Mask, VL); 9370 SDValue MinusOne = DAG.getNode(ISD::VP_SUB, dl, VT, Op, 9371 DAG.getConstant(1, dl, VT), Mask, VL); 9372 SDValue Tmp = DAG.getNode(ISD::VP_AND, dl, VT, Not, MinusOne, Mask, VL); 9373 return DAG.getNode(ISD::VP_CTPOP, dl, VT, Tmp, Mask, VL); 9374 } 9375 9376 SDValue TargetLowering::expandVPCTTZElements(SDNode *N, 9377 SelectionDAG &DAG) const { 9378 // %cond = to_bool_vec %source 9379 // %splat = splat /*val=*/VL 9380 // %tz = step_vector 9381 // %v = vp.select %cond, /*true=*/tz, /*false=*/%splat 9382 // %r = vp.reduce.umin %v 9383 SDLoc DL(N); 9384 SDValue Source = N->getOperand(0); 9385 SDValue Mask = N->getOperand(1); 9386 SDValue EVL = N->getOperand(2); 9387 EVT SrcVT = Source.getValueType(); 9388 EVT ResVT = N->getValueType(0); 9389 EVT ResVecVT = 9390 EVT::getVectorVT(*DAG.getContext(), ResVT, SrcVT.getVectorElementCount()); 9391 9392 // Convert to boolean vector. 9393 if (SrcVT.getScalarType() != MVT::i1) { 9394 SDValue AllZero = DAG.getConstant(0, DL, SrcVT); 9395 SrcVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 9396 SrcVT.getVectorElementCount()); 9397 Source = DAG.getNode(ISD::VP_SETCC, DL, SrcVT, Source, AllZero, 9398 DAG.getCondCode(ISD::SETNE), Mask, EVL); 9399 } 9400 9401 SDValue ExtEVL = DAG.getZExtOrTrunc(EVL, DL, ResVT); 9402 SDValue Splat = DAG.getSplat(ResVecVT, DL, ExtEVL); 9403 SDValue StepVec = DAG.getStepVector(DL, ResVecVT); 9404 SDValue Select = 9405 DAG.getNode(ISD::VP_SELECT, DL, ResVecVT, Source, StepVec, Splat, EVL); 9406 return DAG.getNode(ISD::VP_REDUCE_UMIN, DL, ResVT, ExtEVL, Select, Mask, EVL); 9407 } 9408 9409 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 9410 bool IsNegative) const { 9411 SDLoc dl(N); 9412 EVT VT = N->getValueType(0); 9413 SDValue Op = N->getOperand(0); 9414 9415 // abs(x) -> smax(x,sub(0,x)) 9416 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 9417 isOperationLegal(ISD::SMAX, VT)) { 9418 SDValue Zero = DAG.getConstant(0, dl, VT); 9419 Op = DAG.getFreeze(Op); 9420 return DAG.getNode(ISD::SMAX, dl, VT, Op, 9421 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 9422 } 9423 9424 // abs(x) -> umin(x,sub(0,x)) 9425 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 9426 isOperationLegal(ISD::UMIN, VT)) { 9427 SDValue Zero = DAG.getConstant(0, dl, VT); 9428 Op = DAG.getFreeze(Op); 9429 return DAG.getNode(ISD::UMIN, dl, VT, Op, 9430 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 9431 } 9432 9433 // 0 - abs(x) -> smin(x, sub(0,x)) 9434 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 9435 isOperationLegal(ISD::SMIN, VT)) { 9436 SDValue Zero = DAG.getConstant(0, dl, VT); 9437 Op = DAG.getFreeze(Op); 9438 return DAG.getNode(ISD::SMIN, dl, VT, Op, 9439 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 9440 } 9441 9442 // Only expand vector types if we have the appropriate vector operations. 9443 if (VT.isVector() && 9444 (!isOperationLegalOrCustom(ISD::SRA, VT) || 9445 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 9446 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 9447 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 9448 return SDValue(); 9449 9450 Op = DAG.getFreeze(Op); 9451 SDValue Shift = DAG.getNode( 9452 ISD::SRA, dl, VT, Op, 9453 DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, dl)); 9454 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 9455 9456 // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y) 9457 if (!IsNegative) 9458 return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift); 9459 9460 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 9461 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 9462 } 9463 9464 SDValue TargetLowering::expandABD(SDNode *N, SelectionDAG &DAG) const { 9465 SDLoc dl(N); 9466 EVT VT = N->getValueType(0); 9467 SDValue LHS = DAG.getFreeze(N->getOperand(0)); 9468 SDValue RHS = DAG.getFreeze(N->getOperand(1)); 9469 bool IsSigned = N->getOpcode() == ISD::ABDS; 9470 9471 // abds(lhs, rhs) -> sub(smax(lhs,rhs), smin(lhs,rhs)) 9472 // abdu(lhs, rhs) -> sub(umax(lhs,rhs), umin(lhs,rhs)) 9473 unsigned MaxOpc = IsSigned ? ISD::SMAX : ISD::UMAX; 9474 unsigned MinOpc = IsSigned ? ISD::SMIN : ISD::UMIN; 9475 if (isOperationLegal(MaxOpc, VT) && isOperationLegal(MinOpc, VT)) { 9476 SDValue Max = DAG.getNode(MaxOpc, dl, VT, LHS, RHS); 9477 SDValue Min = DAG.getNode(MinOpc, dl, VT, LHS, RHS); 9478 return DAG.getNode(ISD::SUB, dl, VT, Max, Min); 9479 } 9480 9481 // abdu(lhs, rhs) -> or(usubsat(lhs,rhs), usubsat(rhs,lhs)) 9482 if (!IsSigned && isOperationLegal(ISD::USUBSAT, VT)) 9483 return DAG.getNode(ISD::OR, dl, VT, 9484 DAG.getNode(ISD::USUBSAT, dl, VT, LHS, RHS), 9485 DAG.getNode(ISD::USUBSAT, dl, VT, RHS, LHS)); 9486 9487 // If the subtract doesn't overflow then just use abs(sub()) 9488 // NOTE: don't use frozen operands for value tracking. 9489 bool IsNonNegative = DAG.SignBitIsZero(N->getOperand(1)) && 9490 DAG.SignBitIsZero(N->getOperand(0)); 9491 9492 if (DAG.willNotOverflowSub(IsSigned || IsNonNegative, N->getOperand(0), 9493 N->getOperand(1))) 9494 return DAG.getNode(ISD::ABS, dl, VT, 9495 DAG.getNode(ISD::SUB, dl, VT, LHS, RHS)); 9496 9497 if (DAG.willNotOverflowSub(IsSigned || IsNonNegative, N->getOperand(1), 9498 N->getOperand(0))) 9499 return DAG.getNode(ISD::ABS, dl, VT, 9500 DAG.getNode(ISD::SUB, dl, VT, RHS, LHS)); 9501 9502 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9503 ISD::CondCode CC = IsSigned ? ISD::CondCode::SETGT : ISD::CondCode::SETUGT; 9504 SDValue Cmp = DAG.getSetCC(dl, CCVT, LHS, RHS, CC); 9505 9506 // Branchless expansion iff cmp result is allbits: 9507 // abds(lhs, rhs) -> sub(sgt(lhs, rhs), xor(sgt(lhs, rhs), sub(lhs, rhs))) 9508 // abdu(lhs, rhs) -> sub(ugt(lhs, rhs), xor(ugt(lhs, rhs), sub(lhs, rhs))) 9509 if (CCVT == VT && getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 9510 SDValue Diff = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS); 9511 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Diff, Cmp); 9512 return DAG.getNode(ISD::SUB, dl, VT, Cmp, Xor); 9513 } 9514 9515 // Similar to the branchless expansion, use the (sign-extended) usubo overflow 9516 // flag if the (scalar) type is illegal as this is more likely to legalize 9517 // cleanly: 9518 // abdu(lhs, rhs) -> sub(xor(sub(lhs, rhs), uof(lhs, rhs)), uof(lhs, rhs)) 9519 if (!IsSigned && VT.isScalarInteger() && !isTypeLegal(VT)) { 9520 SDValue USubO = 9521 DAG.getNode(ISD::USUBO, dl, DAG.getVTList(VT, MVT::i1), {LHS, RHS}); 9522 SDValue Cmp = DAG.getNode(ISD::SIGN_EXTEND, dl, VT, USubO.getValue(1)); 9523 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, USubO.getValue(0), Cmp); 9524 return DAG.getNode(ISD::SUB, dl, VT, Xor, Cmp); 9525 } 9526 9527 // FIXME: Should really try to split the vector in case it's legal on a 9528 // subvector. 9529 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 9530 return DAG.UnrollVectorOp(N); 9531 9532 // abds(lhs, rhs) -> select(sgt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs)) 9533 // abdu(lhs, rhs) -> select(ugt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs)) 9534 return DAG.getSelect(dl, VT, Cmp, DAG.getNode(ISD::SUB, dl, VT, LHS, RHS), 9535 DAG.getNode(ISD::SUB, dl, VT, RHS, LHS)); 9536 } 9537 9538 SDValue TargetLowering::expandAVG(SDNode *N, SelectionDAG &DAG) const { 9539 SDLoc dl(N); 9540 EVT VT = N->getValueType(0); 9541 SDValue LHS = N->getOperand(0); 9542 SDValue RHS = N->getOperand(1); 9543 9544 unsigned Opc = N->getOpcode(); 9545 bool IsFloor = Opc == ISD::AVGFLOORS || Opc == ISD::AVGFLOORU; 9546 bool IsSigned = Opc == ISD::AVGCEILS || Opc == ISD::AVGFLOORS; 9547 unsigned SumOpc = IsFloor ? ISD::ADD : ISD::SUB; 9548 unsigned SignOpc = IsFloor ? ISD::AND : ISD::OR; 9549 unsigned ShiftOpc = IsSigned ? ISD::SRA : ISD::SRL; 9550 unsigned ExtOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 9551 assert((Opc == ISD::AVGFLOORS || Opc == ISD::AVGCEILS || 9552 Opc == ISD::AVGFLOORU || Opc == ISD::AVGCEILU) && 9553 "Unknown AVG node"); 9554 9555 // If the operands are already extended, we can add+shift. 9556 bool IsExt = 9557 (IsSigned && DAG.ComputeNumSignBits(LHS) >= 2 && 9558 DAG.ComputeNumSignBits(RHS) >= 2) || 9559 (!IsSigned && DAG.computeKnownBits(LHS).countMinLeadingZeros() >= 1 && 9560 DAG.computeKnownBits(RHS).countMinLeadingZeros() >= 1); 9561 if (IsExt) { 9562 SDValue Sum = DAG.getNode(ISD::ADD, dl, VT, LHS, RHS); 9563 if (!IsFloor) 9564 Sum = DAG.getNode(ISD::ADD, dl, VT, Sum, DAG.getConstant(1, dl, VT)); 9565 return DAG.getNode(ShiftOpc, dl, VT, Sum, 9566 DAG.getShiftAmountConstant(1, VT, dl)); 9567 } 9568 9569 // For scalars, see if we can efficiently extend/truncate to use add+shift. 9570 if (VT.isScalarInteger()) { 9571 unsigned BW = VT.getScalarSizeInBits(); 9572 EVT ExtVT = VT.getIntegerVT(*DAG.getContext(), 2 * BW); 9573 if (isTypeLegal(ExtVT) && isTruncateFree(ExtVT, VT)) { 9574 LHS = DAG.getNode(ExtOpc, dl, ExtVT, LHS); 9575 RHS = DAG.getNode(ExtOpc, dl, ExtVT, RHS); 9576 SDValue Avg = DAG.getNode(ISD::ADD, dl, ExtVT, LHS, RHS); 9577 if (!IsFloor) 9578 Avg = DAG.getNode(ISD::ADD, dl, ExtVT, Avg, 9579 DAG.getConstant(1, dl, ExtVT)); 9580 // Just use SRL as we will be truncating away the extended sign bits. 9581 Avg = DAG.getNode(ISD::SRL, dl, ExtVT, Avg, 9582 DAG.getShiftAmountConstant(1, ExtVT, dl)); 9583 return DAG.getNode(ISD::TRUNCATE, dl, VT, Avg); 9584 } 9585 } 9586 9587 // avgflooru(lhs, rhs) -> or(lshr(add(lhs, rhs),1),shl(overflow, typesize-1)) 9588 if (Opc == ISD::AVGFLOORU && VT.isScalarInteger() && !isTypeLegal(VT)) { 9589 SDValue UAddWithOverflow = 9590 DAG.getNode(ISD::UADDO, dl, DAG.getVTList(VT, MVT::i1), {RHS, LHS}); 9591 9592 SDValue Sum = UAddWithOverflow.getValue(0); 9593 SDValue Overflow = UAddWithOverflow.getValue(1); 9594 9595 // Right shift the sum by 1 9596 SDValue LShrVal = DAG.getNode(ISD::SRL, dl, VT, Sum, 9597 DAG.getShiftAmountConstant(1, VT, dl)); 9598 9599 SDValue ZeroExtOverflow = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Overflow); 9600 SDValue OverflowShl = DAG.getNode( 9601 ISD::SHL, dl, VT, ZeroExtOverflow, 9602 DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, dl)); 9603 9604 return DAG.getNode(ISD::OR, dl, VT, LShrVal, OverflowShl); 9605 } 9606 9607 // avgceils(lhs, rhs) -> sub(or(lhs,rhs),ashr(xor(lhs,rhs),1)) 9608 // avgceilu(lhs, rhs) -> sub(or(lhs,rhs),lshr(xor(lhs,rhs),1)) 9609 // avgfloors(lhs, rhs) -> add(and(lhs,rhs),ashr(xor(lhs,rhs),1)) 9610 // avgflooru(lhs, rhs) -> add(and(lhs,rhs),lshr(xor(lhs,rhs),1)) 9611 LHS = DAG.getFreeze(LHS); 9612 RHS = DAG.getFreeze(RHS); 9613 SDValue Sign = DAG.getNode(SignOpc, dl, VT, LHS, RHS); 9614 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 9615 SDValue Shift = 9616 DAG.getNode(ShiftOpc, dl, VT, Xor, DAG.getShiftAmountConstant(1, VT, dl)); 9617 return DAG.getNode(SumOpc, dl, VT, Sign, Shift); 9618 } 9619 9620 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 9621 SDLoc dl(N); 9622 EVT VT = N->getValueType(0); 9623 SDValue Op = N->getOperand(0); 9624 9625 if (!VT.isSimple()) 9626 return SDValue(); 9627 9628 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9629 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 9630 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 9631 default: 9632 return SDValue(); 9633 case MVT::i16: 9634 // Use a rotate by 8. This can be further expanded if necessary. 9635 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 9636 case MVT::i32: 9637 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 9638 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Op, 9639 DAG.getConstant(0xFF00, dl, VT)); 9640 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT)); 9641 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 9642 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 9643 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 9644 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 9645 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 9646 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 9647 case MVT::i64: 9648 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 9649 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Op, 9650 DAG.getConstant(255ULL<<8, dl, VT)); 9651 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT)); 9652 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Op, 9653 DAG.getConstant(255ULL<<16, dl, VT)); 9654 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT)); 9655 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Op, 9656 DAG.getConstant(255ULL<<24, dl, VT)); 9657 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT)); 9658 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 9659 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 9660 DAG.getConstant(255ULL<<24, dl, VT)); 9661 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 9662 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 9663 DAG.getConstant(255ULL<<16, dl, VT)); 9664 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 9665 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 9666 DAG.getConstant(255ULL<<8, dl, VT)); 9667 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 9668 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 9669 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 9670 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 9671 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 9672 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 9673 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 9674 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 9675 } 9676 } 9677 9678 SDValue TargetLowering::expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const { 9679 SDLoc dl(N); 9680 EVT VT = N->getValueType(0); 9681 SDValue Op = N->getOperand(0); 9682 SDValue Mask = N->getOperand(1); 9683 SDValue EVL = N->getOperand(2); 9684 9685 if (!VT.isSimple()) 9686 return SDValue(); 9687 9688 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9689 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 9690 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 9691 default: 9692 return SDValue(); 9693 case MVT::i16: 9694 Tmp1 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 9695 Mask, EVL); 9696 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 9697 Mask, EVL); 9698 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp1, Tmp2, Mask, EVL); 9699 case MVT::i32: 9700 Tmp4 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT), 9701 Mask, EVL); 9702 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Op, DAG.getConstant(0xFF00, dl, VT), 9703 Mask, EVL); 9704 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT), 9705 Mask, EVL); 9706 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 9707 Mask, EVL); 9708 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9709 DAG.getConstant(0xFF00, dl, VT), Mask, EVL); 9710 Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT), 9711 Mask, EVL); 9712 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL); 9713 Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL); 9714 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL); 9715 case MVT::i64: 9716 Tmp8 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT), 9717 Mask, EVL); 9718 Tmp7 = DAG.getNode(ISD::VP_AND, dl, VT, Op, 9719 DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL); 9720 Tmp7 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT), 9721 Mask, EVL); 9722 Tmp6 = DAG.getNode(ISD::VP_AND, dl, VT, Op, 9723 DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL); 9724 Tmp6 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT), 9725 Mask, EVL); 9726 Tmp5 = DAG.getNode(ISD::VP_AND, dl, VT, Op, 9727 DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL); 9728 Tmp5 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT), 9729 Mask, EVL); 9730 Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 9731 Mask, EVL); 9732 Tmp4 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp4, 9733 DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL); 9734 Tmp3 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT), 9735 Mask, EVL); 9736 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp3, 9737 DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL); 9738 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT), 9739 Mask, EVL); 9740 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9741 DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL); 9742 Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT), 9743 Mask, EVL); 9744 Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp7, Mask, EVL); 9745 Tmp6 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp6, Tmp5, Mask, EVL); 9746 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL); 9747 Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL); 9748 Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp6, Mask, EVL); 9749 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL); 9750 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp4, Mask, EVL); 9751 } 9752 } 9753 9754 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 9755 SDLoc dl(N); 9756 EVT VT = N->getValueType(0); 9757 SDValue Op = N->getOperand(0); 9758 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9759 unsigned Sz = VT.getScalarSizeInBits(); 9760 9761 SDValue Tmp, Tmp2, Tmp3; 9762 9763 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 9764 // and finally the i1 pairs. 9765 // TODO: We can easily support i4/i2 legal types if any target ever does. 9766 if (Sz >= 8 && isPowerOf2_32(Sz)) { 9767 // Create the masks - repeating the pattern every byte. 9768 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 9769 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 9770 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 9771 9772 // BSWAP if the type is wider than a single byte. 9773 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 9774 9775 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 9776 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 9777 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 9778 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 9779 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 9780 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 9781 9782 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 9783 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 9784 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 9785 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 9786 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 9787 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 9788 9789 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 9790 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 9791 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 9792 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 9793 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 9794 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 9795 return Tmp; 9796 } 9797 9798 Tmp = DAG.getConstant(0, dl, VT); 9799 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 9800 if (I < J) 9801 Tmp2 = 9802 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 9803 else 9804 Tmp2 = 9805 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 9806 9807 APInt Shift = APInt::getOneBitSet(Sz, J); 9808 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 9809 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 9810 } 9811 9812 return Tmp; 9813 } 9814 9815 SDValue TargetLowering::expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 9816 assert(N->getOpcode() == ISD::VP_BITREVERSE); 9817 9818 SDLoc dl(N); 9819 EVT VT = N->getValueType(0); 9820 SDValue Op = N->getOperand(0); 9821 SDValue Mask = N->getOperand(1); 9822 SDValue EVL = N->getOperand(2); 9823 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9824 unsigned Sz = VT.getScalarSizeInBits(); 9825 9826 SDValue Tmp, Tmp2, Tmp3; 9827 9828 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 9829 // and finally the i1 pairs. 9830 // TODO: We can easily support i4/i2 legal types if any target ever does. 9831 if (Sz >= 8 && isPowerOf2_32(Sz)) { 9832 // Create the masks - repeating the pattern every byte. 9833 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 9834 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 9835 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 9836 9837 // BSWAP if the type is wider than a single byte. 9838 Tmp = (Sz > 8 ? DAG.getNode(ISD::VP_BSWAP, dl, VT, Op, Mask, EVL) : Op); 9839 9840 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 9841 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT), 9842 Mask, EVL); 9843 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9844 DAG.getConstant(Mask4, dl, VT), Mask, EVL); 9845 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT), 9846 Mask, EVL); 9847 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT), 9848 Mask, EVL); 9849 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL); 9850 9851 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 9852 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT), 9853 Mask, EVL); 9854 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9855 DAG.getConstant(Mask2, dl, VT), Mask, EVL); 9856 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT), 9857 Mask, EVL); 9858 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT), 9859 Mask, EVL); 9860 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL); 9861 9862 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 9863 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT), 9864 Mask, EVL); 9865 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9866 DAG.getConstant(Mask1, dl, VT), Mask, EVL); 9867 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT), 9868 Mask, EVL); 9869 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT), 9870 Mask, EVL); 9871 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL); 9872 return Tmp; 9873 } 9874 return SDValue(); 9875 } 9876 9877 std::pair<SDValue, SDValue> 9878 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 9879 SelectionDAG &DAG) const { 9880 SDLoc SL(LD); 9881 SDValue Chain = LD->getChain(); 9882 SDValue BasePTR = LD->getBasePtr(); 9883 EVT SrcVT = LD->getMemoryVT(); 9884 EVT DstVT = LD->getValueType(0); 9885 ISD::LoadExtType ExtType = LD->getExtensionType(); 9886 9887 if (SrcVT.isScalableVector()) 9888 report_fatal_error("Cannot scalarize scalable vector loads"); 9889 9890 unsigned NumElem = SrcVT.getVectorNumElements(); 9891 9892 EVT SrcEltVT = SrcVT.getScalarType(); 9893 EVT DstEltVT = DstVT.getScalarType(); 9894 9895 // A vector must always be stored in memory as-is, i.e. without any padding 9896 // between the elements, since various code depend on it, e.g. in the 9897 // handling of a bitcast of a vector type to int, which may be done with a 9898 // vector store followed by an integer load. A vector that does not have 9899 // elements that are byte-sized must therefore be stored as an integer 9900 // built out of the extracted vector elements. 9901 if (!SrcEltVT.isByteSized()) { 9902 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 9903 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 9904 9905 unsigned NumSrcBits = SrcVT.getSizeInBits(); 9906 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 9907 9908 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 9909 SDValue SrcEltBitMask = DAG.getConstant( 9910 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 9911 9912 // Load the whole vector and avoid masking off the top bits as it makes 9913 // the codegen worse. 9914 SDValue Load = 9915 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 9916 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 9917 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 9918 9919 SmallVector<SDValue, 8> Vals; 9920 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 9921 unsigned ShiftIntoIdx = 9922 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 9923 SDValue ShiftAmount = DAG.getShiftAmountConstant( 9924 ShiftIntoIdx * SrcEltVT.getSizeInBits(), LoadVT, SL); 9925 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 9926 SDValue Elt = 9927 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 9928 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 9929 9930 if (ExtType != ISD::NON_EXTLOAD) { 9931 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 9932 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 9933 } 9934 9935 Vals.push_back(Scalar); 9936 } 9937 9938 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 9939 return std::make_pair(Value, Load.getValue(1)); 9940 } 9941 9942 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 9943 assert(SrcEltVT.isByteSized()); 9944 9945 SmallVector<SDValue, 8> Vals; 9946 SmallVector<SDValue, 8> LoadChains; 9947 9948 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 9949 SDValue ScalarLoad = 9950 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 9951 LD->getPointerInfo().getWithOffset(Idx * Stride), 9952 SrcEltVT, LD->getOriginalAlign(), 9953 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 9954 9955 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::getFixed(Stride)); 9956 9957 Vals.push_back(ScalarLoad.getValue(0)); 9958 LoadChains.push_back(ScalarLoad.getValue(1)); 9959 } 9960 9961 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 9962 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 9963 9964 return std::make_pair(Value, NewChain); 9965 } 9966 9967 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 9968 SelectionDAG &DAG) const { 9969 SDLoc SL(ST); 9970 9971 SDValue Chain = ST->getChain(); 9972 SDValue BasePtr = ST->getBasePtr(); 9973 SDValue Value = ST->getValue(); 9974 EVT StVT = ST->getMemoryVT(); 9975 9976 if (StVT.isScalableVector()) 9977 report_fatal_error("Cannot scalarize scalable vector stores"); 9978 9979 // The type of the data we want to save 9980 EVT RegVT = Value.getValueType(); 9981 EVT RegSclVT = RegVT.getScalarType(); 9982 9983 // The type of data as saved in memory. 9984 EVT MemSclVT = StVT.getScalarType(); 9985 9986 unsigned NumElem = StVT.getVectorNumElements(); 9987 9988 // A vector must always be stored in memory as-is, i.e. without any padding 9989 // between the elements, since various code depend on it, e.g. in the 9990 // handling of a bitcast of a vector type to int, which may be done with a 9991 // vector store followed by an integer load. A vector that does not have 9992 // elements that are byte-sized must therefore be stored as an integer 9993 // built out of the extracted vector elements. 9994 if (!MemSclVT.isByteSized()) { 9995 unsigned NumBits = StVT.getSizeInBits(); 9996 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 9997 9998 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 9999 10000 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 10001 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 10002 DAG.getVectorIdxConstant(Idx, SL)); 10003 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 10004 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 10005 unsigned ShiftIntoIdx = 10006 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 10007 SDValue ShiftAmount = 10008 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 10009 SDValue ShiftedElt = 10010 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 10011 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 10012 } 10013 10014 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 10015 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 10016 ST->getAAInfo()); 10017 } 10018 10019 // Store Stride in bytes 10020 unsigned Stride = MemSclVT.getSizeInBits() / 8; 10021 assert(Stride && "Zero stride!"); 10022 // Extract each of the elements from the original vector and save them into 10023 // memory individually. 10024 SmallVector<SDValue, 8> Stores; 10025 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 10026 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 10027 DAG.getVectorIdxConstant(Idx, SL)); 10028 10029 SDValue Ptr = 10030 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::getFixed(Idx * Stride)); 10031 10032 // This scalar TruncStore may be illegal, but we legalize it later. 10033 SDValue Store = DAG.getTruncStore( 10034 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 10035 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 10036 ST->getAAInfo()); 10037 10038 Stores.push_back(Store); 10039 } 10040 10041 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 10042 } 10043 10044 std::pair<SDValue, SDValue> 10045 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 10046 assert(LD->getAddressingMode() == ISD::UNINDEXED && 10047 "unaligned indexed loads not implemented!"); 10048 SDValue Chain = LD->getChain(); 10049 SDValue Ptr = LD->getBasePtr(); 10050 EVT VT = LD->getValueType(0); 10051 EVT LoadedVT = LD->getMemoryVT(); 10052 SDLoc dl(LD); 10053 auto &MF = DAG.getMachineFunction(); 10054 10055 if (VT.isFloatingPoint() || VT.isVector()) { 10056 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 10057 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 10058 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 10059 LoadedVT.isVector()) { 10060 // Scalarize the load and let the individual components be handled. 10061 return scalarizeVectorLoad(LD, DAG); 10062 } 10063 10064 // Expand to a (misaligned) integer load of the same size, 10065 // then bitconvert to floating point or vector. 10066 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 10067 LD->getMemOperand()); 10068 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 10069 if (LoadedVT != VT) 10070 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 10071 ISD::ANY_EXTEND, dl, VT, Result); 10072 10073 return std::make_pair(Result, newLoad.getValue(1)); 10074 } 10075 10076 // Copy the value to a (aligned) stack slot using (unaligned) integer 10077 // loads and stores, then do a (aligned) load from the stack slot. 10078 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 10079 unsigned LoadedBytes = LoadedVT.getStoreSize(); 10080 unsigned RegBytes = RegVT.getSizeInBits() / 8; 10081 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 10082 10083 // Make sure the stack slot is also aligned for the register type. 10084 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 10085 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 10086 SmallVector<SDValue, 8> Stores; 10087 SDValue StackPtr = StackBase; 10088 unsigned Offset = 0; 10089 10090 EVT PtrVT = Ptr.getValueType(); 10091 EVT StackPtrVT = StackPtr.getValueType(); 10092 10093 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 10094 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 10095 10096 // Do all but one copies using the full register width. 10097 for (unsigned i = 1; i < NumRegs; i++) { 10098 // Load one integer register's worth from the original location. 10099 SDValue Load = DAG.getLoad( 10100 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 10101 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 10102 LD->getAAInfo()); 10103 // Follow the load with a store to the stack slot. Remember the store. 10104 Stores.push_back(DAG.getStore( 10105 Load.getValue(1), dl, Load, StackPtr, 10106 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 10107 // Increment the pointers. 10108 Offset += RegBytes; 10109 10110 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 10111 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 10112 } 10113 10114 // The last copy may be partial. Do an extending load. 10115 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 10116 8 * (LoadedBytes - Offset)); 10117 SDValue Load = 10118 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 10119 LD->getPointerInfo().getWithOffset(Offset), MemVT, 10120 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 10121 LD->getAAInfo()); 10122 // Follow the load with a store to the stack slot. Remember the store. 10123 // On big-endian machines this requires a truncating store to ensure 10124 // that the bits end up in the right place. 10125 Stores.push_back(DAG.getTruncStore( 10126 Load.getValue(1), dl, Load, StackPtr, 10127 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 10128 10129 // The order of the stores doesn't matter - say it with a TokenFactor. 10130 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10131 10132 // Finally, perform the original load only redirected to the stack slot. 10133 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 10134 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 10135 LoadedVT); 10136 10137 // Callers expect a MERGE_VALUES node. 10138 return std::make_pair(Load, TF); 10139 } 10140 10141 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 10142 "Unaligned load of unsupported type."); 10143 10144 // Compute the new VT that is half the size of the old one. This is an 10145 // integer MVT. 10146 unsigned NumBits = LoadedVT.getSizeInBits(); 10147 EVT NewLoadedVT; 10148 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 10149 NumBits >>= 1; 10150 10151 Align Alignment = LD->getOriginalAlign(); 10152 unsigned IncrementSize = NumBits / 8; 10153 ISD::LoadExtType HiExtType = LD->getExtensionType(); 10154 10155 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 10156 if (HiExtType == ISD::NON_EXTLOAD) 10157 HiExtType = ISD::ZEXTLOAD; 10158 10159 // Load the value in two parts 10160 SDValue Lo, Hi; 10161 if (DAG.getDataLayout().isLittleEndian()) { 10162 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 10163 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 10164 LD->getAAInfo()); 10165 10166 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize)); 10167 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 10168 LD->getPointerInfo().getWithOffset(IncrementSize), 10169 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 10170 LD->getAAInfo()); 10171 } else { 10172 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 10173 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 10174 LD->getAAInfo()); 10175 10176 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize)); 10177 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 10178 LD->getPointerInfo().getWithOffset(IncrementSize), 10179 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 10180 LD->getAAInfo()); 10181 } 10182 10183 // aggregate the two parts 10184 SDValue ShiftAmount = DAG.getShiftAmountConstant(NumBits, VT, dl); 10185 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 10186 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 10187 10188 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 10189 Hi.getValue(1)); 10190 10191 return std::make_pair(Result, TF); 10192 } 10193 10194 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 10195 SelectionDAG &DAG) const { 10196 assert(ST->getAddressingMode() == ISD::UNINDEXED && 10197 "unaligned indexed stores not implemented!"); 10198 SDValue Chain = ST->getChain(); 10199 SDValue Ptr = ST->getBasePtr(); 10200 SDValue Val = ST->getValue(); 10201 EVT VT = Val.getValueType(); 10202 Align Alignment = ST->getOriginalAlign(); 10203 auto &MF = DAG.getMachineFunction(); 10204 EVT StoreMemVT = ST->getMemoryVT(); 10205 10206 SDLoc dl(ST); 10207 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 10208 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 10209 if (isTypeLegal(intVT)) { 10210 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 10211 StoreMemVT.isVector()) { 10212 // Scalarize the store and let the individual components be handled. 10213 SDValue Result = scalarizeVectorStore(ST, DAG); 10214 return Result; 10215 } 10216 // Expand to a bitconvert of the value to the integer type of the 10217 // same size, then a (misaligned) int store. 10218 // FIXME: Does not handle truncating floating point stores! 10219 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 10220 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 10221 Alignment, ST->getMemOperand()->getFlags()); 10222 return Result; 10223 } 10224 // Do a (aligned) store to a stack slot, then copy from the stack slot 10225 // to the final destination using (unaligned) integer loads and stores. 10226 MVT RegVT = getRegisterType( 10227 *DAG.getContext(), 10228 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 10229 EVT PtrVT = Ptr.getValueType(); 10230 unsigned StoredBytes = StoreMemVT.getStoreSize(); 10231 unsigned RegBytes = RegVT.getSizeInBits() / 8; 10232 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 10233 10234 // Make sure the stack slot is also aligned for the register type. 10235 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 10236 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 10237 10238 // Perform the original store, only redirected to the stack slot. 10239 SDValue Store = DAG.getTruncStore( 10240 Chain, dl, Val, StackPtr, 10241 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 10242 10243 EVT StackPtrVT = StackPtr.getValueType(); 10244 10245 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 10246 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 10247 SmallVector<SDValue, 8> Stores; 10248 unsigned Offset = 0; 10249 10250 // Do all but one copies using the full register width. 10251 for (unsigned i = 1; i < NumRegs; i++) { 10252 // Load one integer register's worth from the stack slot. 10253 SDValue Load = DAG.getLoad( 10254 RegVT, dl, Store, StackPtr, 10255 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 10256 // Store it to the final location. Remember the store. 10257 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 10258 ST->getPointerInfo().getWithOffset(Offset), 10259 ST->getOriginalAlign(), 10260 ST->getMemOperand()->getFlags())); 10261 // Increment the pointers. 10262 Offset += RegBytes; 10263 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 10264 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 10265 } 10266 10267 // The last store may be partial. Do a truncating store. On big-endian 10268 // machines this requires an extending load from the stack slot to ensure 10269 // that the bits are in the right place. 10270 EVT LoadMemVT = 10271 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 10272 10273 // Load from the stack slot. 10274 SDValue Load = DAG.getExtLoad( 10275 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 10276 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 10277 10278 Stores.push_back( 10279 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 10280 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 10281 ST->getOriginalAlign(), 10282 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 10283 // The order of the stores doesn't matter - say it with a TokenFactor. 10284 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10285 return Result; 10286 } 10287 10288 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 10289 "Unaligned store of unknown type."); 10290 // Get the half-size VT 10291 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 10292 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 10293 unsigned IncrementSize = NumBits / 8; 10294 10295 // Divide the stored value in two parts. 10296 SDValue ShiftAmount = 10297 DAG.getShiftAmountConstant(NumBits, Val.getValueType(), dl); 10298 SDValue Lo = Val; 10299 // If Val is a constant, replace the upper bits with 0. The SRL will constant 10300 // fold and not use the upper bits. A smaller constant may be easier to 10301 // materialize. 10302 if (auto *C = dyn_cast<ConstantSDNode>(Lo); C && !C->isOpaque()) 10303 Lo = DAG.getNode( 10304 ISD::AND, dl, VT, Lo, 10305 DAG.getConstant(APInt::getLowBitsSet(VT.getSizeInBits(), NumBits), dl, 10306 VT)); 10307 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 10308 10309 // Store the two parts 10310 SDValue Store1, Store2; 10311 Store1 = DAG.getTruncStore(Chain, dl, 10312 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 10313 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 10314 ST->getMemOperand()->getFlags()); 10315 10316 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize)); 10317 Store2 = DAG.getTruncStore( 10318 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 10319 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 10320 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 10321 10322 SDValue Result = 10323 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 10324 return Result; 10325 } 10326 10327 SDValue 10328 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 10329 const SDLoc &DL, EVT DataVT, 10330 SelectionDAG &DAG, 10331 bool IsCompressedMemory) const { 10332 SDValue Increment; 10333 EVT AddrVT = Addr.getValueType(); 10334 EVT MaskVT = Mask.getValueType(); 10335 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 10336 "Incompatible types of Data and Mask"); 10337 if (IsCompressedMemory) { 10338 if (DataVT.isScalableVector()) 10339 report_fatal_error( 10340 "Cannot currently handle compressed memory with scalable vectors"); 10341 // Incrementing the pointer according to number of '1's in the mask. 10342 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 10343 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 10344 if (MaskIntVT.getSizeInBits() < 32) { 10345 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 10346 MaskIntVT = MVT::i32; 10347 } 10348 10349 // Count '1's with POPCNT. 10350 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 10351 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 10352 // Scale is an element size in bytes. 10353 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 10354 AddrVT); 10355 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 10356 } else if (DataVT.isScalableVector()) { 10357 Increment = DAG.getVScale(DL, AddrVT, 10358 APInt(AddrVT.getFixedSizeInBits(), 10359 DataVT.getStoreSize().getKnownMinValue())); 10360 } else 10361 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 10362 10363 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 10364 } 10365 10366 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 10367 EVT VecVT, const SDLoc &dl, 10368 ElementCount SubEC) { 10369 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 10370 "Cannot index a scalable vector within a fixed-width vector"); 10371 10372 unsigned NElts = VecVT.getVectorMinNumElements(); 10373 unsigned NumSubElts = SubEC.getKnownMinValue(); 10374 EVT IdxVT = Idx.getValueType(); 10375 10376 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 10377 // If this is a constant index and we know the value plus the number of the 10378 // elements in the subvector minus one is less than the minimum number of 10379 // elements then it's safe to return Idx. 10380 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 10381 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 10382 return Idx; 10383 SDValue VS = 10384 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 10385 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 10386 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 10387 DAG.getConstant(NumSubElts, dl, IdxVT)); 10388 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 10389 } 10390 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 10391 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 10392 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 10393 DAG.getConstant(Imm, dl, IdxVT)); 10394 } 10395 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 10396 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 10397 DAG.getConstant(MaxIndex, dl, IdxVT)); 10398 } 10399 10400 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 10401 SDValue VecPtr, EVT VecVT, 10402 SDValue Index) const { 10403 return getVectorSubVecPointer( 10404 DAG, VecPtr, VecVT, 10405 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 10406 Index); 10407 } 10408 10409 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 10410 SDValue VecPtr, EVT VecVT, 10411 EVT SubVecVT, 10412 SDValue Index) const { 10413 SDLoc dl(Index); 10414 // Make sure the index type is big enough to compute in. 10415 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 10416 10417 EVT EltVT = VecVT.getVectorElementType(); 10418 10419 // Calculate the element offset and add it to the pointer. 10420 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 10421 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 10422 "Converting bits to bytes lost precision"); 10423 assert(SubVecVT.getVectorElementType() == EltVT && 10424 "Sub-vector must be a vector with matching element type"); 10425 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 10426 SubVecVT.getVectorElementCount()); 10427 10428 EVT IdxVT = Index.getValueType(); 10429 if (SubVecVT.isScalableVector()) 10430 Index = 10431 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 10432 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 10433 10434 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 10435 DAG.getConstant(EltSize, dl, IdxVT)); 10436 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 10437 } 10438 10439 //===----------------------------------------------------------------------===// 10440 // Implementation of Emulated TLS Model 10441 //===----------------------------------------------------------------------===// 10442 10443 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 10444 SelectionDAG &DAG) const { 10445 // Access to address of TLS varialbe xyz is lowered to a function call: 10446 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 10447 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10448 PointerType *VoidPtrType = PointerType::get(*DAG.getContext(), 0); 10449 SDLoc dl(GA); 10450 10451 ArgListTy Args; 10452 ArgListEntry Entry; 10453 const GlobalValue *GV = 10454 cast<GlobalValue>(GA->getGlobal()->stripPointerCastsAndAliases()); 10455 SmallString<32> NameString("__emutls_v."); 10456 NameString += GV->getName(); 10457 StringRef EmuTlsVarName(NameString); 10458 const GlobalVariable *EmuTlsVar = 10459 GV->getParent()->getNamedGlobal(EmuTlsVarName); 10460 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 10461 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 10462 Entry.Ty = VoidPtrType; 10463 Args.push_back(Entry); 10464 10465 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 10466 10467 TargetLowering::CallLoweringInfo CLI(DAG); 10468 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 10469 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 10470 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 10471 10472 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 10473 // At last for X86 targets, maybe good for other targets too? 10474 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10475 MFI.setAdjustsStack(true); // Is this only for X86 target? 10476 MFI.setHasCalls(true); 10477 10478 assert((GA->getOffset() == 0) && 10479 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 10480 return CallResult.first; 10481 } 10482 10483 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 10484 SelectionDAG &DAG) const { 10485 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 10486 if (!isCtlzFast()) 10487 return SDValue(); 10488 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 10489 SDLoc dl(Op); 10490 if (isNullConstant(Op.getOperand(1)) && CC == ISD::SETEQ) { 10491 EVT VT = Op.getOperand(0).getValueType(); 10492 SDValue Zext = Op.getOperand(0); 10493 if (VT.bitsLT(MVT::i32)) { 10494 VT = MVT::i32; 10495 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 10496 } 10497 unsigned Log2b = Log2_32(VT.getSizeInBits()); 10498 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 10499 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 10500 DAG.getConstant(Log2b, dl, MVT::i32)); 10501 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 10502 } 10503 return SDValue(); 10504 } 10505 10506 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 10507 SDValue Op0 = Node->getOperand(0); 10508 SDValue Op1 = Node->getOperand(1); 10509 EVT VT = Op0.getValueType(); 10510 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10511 unsigned Opcode = Node->getOpcode(); 10512 SDLoc DL(Node); 10513 10514 // umax(x,1) --> sub(x,cmpeq(x,0)) iff cmp result is allbits 10515 if (Opcode == ISD::UMAX && llvm::isOneOrOneSplat(Op1, true) && BoolVT == VT && 10516 getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 10517 Op0 = DAG.getFreeze(Op0); 10518 SDValue Zero = DAG.getConstant(0, DL, VT); 10519 return DAG.getNode(ISD::SUB, DL, VT, Op0, 10520 DAG.getSetCC(DL, VT, Op0, Zero, ISD::SETEQ)); 10521 } 10522 10523 // umin(x,y) -> sub(x,usubsat(x,y)) 10524 // TODO: Missing freeze(Op0)? 10525 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 10526 isOperationLegal(ISD::USUBSAT, VT)) { 10527 return DAG.getNode(ISD::SUB, DL, VT, Op0, 10528 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 10529 } 10530 10531 // umax(x,y) -> add(x,usubsat(y,x)) 10532 // TODO: Missing freeze(Op0)? 10533 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 10534 isOperationLegal(ISD::USUBSAT, VT)) { 10535 return DAG.getNode(ISD::ADD, DL, VT, Op0, 10536 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 10537 } 10538 10539 // FIXME: Should really try to split the vector in case it's legal on a 10540 // subvector. 10541 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 10542 return DAG.UnrollVectorOp(Node); 10543 10544 // Attempt to find an existing SETCC node that we can reuse. 10545 // TODO: Do we need a generic doesSETCCNodeExist? 10546 // TODO: Missing freeze(Op0)/freeze(Op1)? 10547 auto buildMinMax = [&](ISD::CondCode PrefCC, ISD::CondCode AltCC, 10548 ISD::CondCode PrefCommuteCC, 10549 ISD::CondCode AltCommuteCC) { 10550 SDVTList BoolVTList = DAG.getVTList(BoolVT); 10551 for (ISD::CondCode CC : {PrefCC, AltCC}) { 10552 if (DAG.doesNodeExist(ISD::SETCC, BoolVTList, 10553 {Op0, Op1, DAG.getCondCode(CC)})) { 10554 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 10555 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 10556 } 10557 } 10558 for (ISD::CondCode CC : {PrefCommuteCC, AltCommuteCC}) { 10559 if (DAG.doesNodeExist(ISD::SETCC, BoolVTList, 10560 {Op0, Op1, DAG.getCondCode(CC)})) { 10561 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 10562 return DAG.getSelect(DL, VT, Cond, Op1, Op0); 10563 } 10564 } 10565 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, PrefCC); 10566 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 10567 }; 10568 10569 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 10570 // -> Y = (A < B) ? B : A 10571 // -> Y = (A >= B) ? A : B 10572 // -> Y = (A <= B) ? B : A 10573 switch (Opcode) { 10574 case ISD::SMAX: 10575 return buildMinMax(ISD::SETGT, ISD::SETGE, ISD::SETLT, ISD::SETLE); 10576 case ISD::SMIN: 10577 return buildMinMax(ISD::SETLT, ISD::SETLE, ISD::SETGT, ISD::SETGE); 10578 case ISD::UMAX: 10579 return buildMinMax(ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE); 10580 case ISD::UMIN: 10581 return buildMinMax(ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE); 10582 } 10583 10584 llvm_unreachable("How did we get here?"); 10585 } 10586 10587 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 10588 unsigned Opcode = Node->getOpcode(); 10589 SDValue LHS = Node->getOperand(0); 10590 SDValue RHS = Node->getOperand(1); 10591 EVT VT = LHS.getValueType(); 10592 SDLoc dl(Node); 10593 10594 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 10595 assert(VT.isInteger() && "Expected operands to be integers"); 10596 10597 // usub.sat(a, b) -> umax(a, b) - b 10598 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 10599 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 10600 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 10601 } 10602 10603 // uadd.sat(a, b) -> umin(a, ~b) + b 10604 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 10605 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 10606 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 10607 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 10608 } 10609 10610 unsigned OverflowOp; 10611 switch (Opcode) { 10612 case ISD::SADDSAT: 10613 OverflowOp = ISD::SADDO; 10614 break; 10615 case ISD::UADDSAT: 10616 OverflowOp = ISD::UADDO; 10617 break; 10618 case ISD::SSUBSAT: 10619 OverflowOp = ISD::SSUBO; 10620 break; 10621 case ISD::USUBSAT: 10622 OverflowOp = ISD::USUBO; 10623 break; 10624 default: 10625 llvm_unreachable("Expected method to receive signed or unsigned saturation " 10626 "addition or subtraction node."); 10627 } 10628 10629 // FIXME: Should really try to split the vector in case it's legal on a 10630 // subvector. 10631 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 10632 return DAG.UnrollVectorOp(Node); 10633 10634 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 10635 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10636 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 10637 SDValue SumDiff = Result.getValue(0); 10638 SDValue Overflow = Result.getValue(1); 10639 SDValue Zero = DAG.getConstant(0, dl, VT); 10640 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 10641 10642 if (Opcode == ISD::UADDSAT) { 10643 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 10644 // (LHS + RHS) | OverflowMask 10645 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 10646 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 10647 } 10648 // Overflow ? 0xffff.... : (LHS + RHS) 10649 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 10650 } 10651 10652 if (Opcode == ISD::USUBSAT) { 10653 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 10654 // (LHS - RHS) & ~OverflowMask 10655 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 10656 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 10657 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 10658 } 10659 // Overflow ? 0 : (LHS - RHS) 10660 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 10661 } 10662 10663 if (Opcode == ISD::SADDSAT || Opcode == ISD::SSUBSAT) { 10664 APInt MinVal = APInt::getSignedMinValue(BitWidth); 10665 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 10666 10667 KnownBits KnownLHS = DAG.computeKnownBits(LHS); 10668 KnownBits KnownRHS = DAG.computeKnownBits(RHS); 10669 10670 // If either of the operand signs are known, then they are guaranteed to 10671 // only saturate in one direction. If non-negative they will saturate 10672 // towards SIGNED_MAX, if negative they will saturate towards SIGNED_MIN. 10673 // 10674 // In the case of ISD::SSUBSAT, 'x - y' is equivalent to 'x + (-y)', so the 10675 // sign of 'y' has to be flipped. 10676 10677 bool LHSIsNonNegative = KnownLHS.isNonNegative(); 10678 bool RHSIsNonNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNonNegative() 10679 : KnownRHS.isNegative(); 10680 if (LHSIsNonNegative || RHSIsNonNegative) { 10681 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 10682 return DAG.getSelect(dl, VT, Overflow, SatMax, SumDiff); 10683 } 10684 10685 bool LHSIsNegative = KnownLHS.isNegative(); 10686 bool RHSIsNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNegative() 10687 : KnownRHS.isNonNegative(); 10688 if (LHSIsNegative || RHSIsNegative) { 10689 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 10690 return DAG.getSelect(dl, VT, Overflow, SatMin, SumDiff); 10691 } 10692 } 10693 10694 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 10695 APInt MinVal = APInt::getSignedMinValue(BitWidth); 10696 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 10697 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 10698 DAG.getConstant(BitWidth - 1, dl, VT)); 10699 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 10700 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 10701 } 10702 10703 SDValue TargetLowering::expandCMP(SDNode *Node, SelectionDAG &DAG) const { 10704 unsigned Opcode = Node->getOpcode(); 10705 SDValue LHS = Node->getOperand(0); 10706 SDValue RHS = Node->getOperand(1); 10707 EVT VT = LHS.getValueType(); 10708 EVT ResVT = Node->getValueType(0); 10709 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10710 SDLoc dl(Node); 10711 10712 auto LTPredicate = (Opcode == ISD::UCMP ? ISD::SETULT : ISD::SETLT); 10713 auto GTPredicate = (Opcode == ISD::UCMP ? ISD::SETUGT : ISD::SETGT); 10714 SDValue IsLT = DAG.getSetCC(dl, BoolVT, LHS, RHS, LTPredicate); 10715 SDValue IsGT = DAG.getSetCC(dl, BoolVT, LHS, RHS, GTPredicate); 10716 10717 // We can't perform arithmetic on i1 values. Extending them would 10718 // probably result in worse codegen, so let's just use two selects instead. 10719 // Some targets are also just better off using selects rather than subtraction 10720 // because one of the conditions can be merged with one of the selects. 10721 // And finally, if we don't know the contents of high bits of a boolean value 10722 // we can't perform any arithmetic either. 10723 if (shouldExpandCmpUsingSelects(VT) || BoolVT.getScalarSizeInBits() == 1 || 10724 getBooleanContents(BoolVT) == UndefinedBooleanContent) { 10725 SDValue SelectZeroOrOne = 10726 DAG.getSelect(dl, ResVT, IsGT, DAG.getConstant(1, dl, ResVT), 10727 DAG.getConstant(0, dl, ResVT)); 10728 return DAG.getSelect(dl, ResVT, IsLT, DAG.getAllOnesConstant(dl, ResVT), 10729 SelectZeroOrOne); 10730 } 10731 10732 if (getBooleanContents(BoolVT) == ZeroOrNegativeOneBooleanContent) 10733 std::swap(IsGT, IsLT); 10734 return DAG.getSExtOrTrunc(DAG.getNode(ISD::SUB, dl, BoolVT, IsGT, IsLT), dl, 10735 ResVT); 10736 } 10737 10738 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 10739 unsigned Opcode = Node->getOpcode(); 10740 bool IsSigned = Opcode == ISD::SSHLSAT; 10741 SDValue LHS = Node->getOperand(0); 10742 SDValue RHS = Node->getOperand(1); 10743 EVT VT = LHS.getValueType(); 10744 SDLoc dl(Node); 10745 10746 assert((Node->getOpcode() == ISD::SSHLSAT || 10747 Node->getOpcode() == ISD::USHLSAT) && 10748 "Expected a SHLSAT opcode"); 10749 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 10750 assert(VT.isInteger() && "Expected operands to be integers"); 10751 10752 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 10753 return DAG.UnrollVectorOp(Node); 10754 10755 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 10756 10757 unsigned BW = VT.getScalarSizeInBits(); 10758 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10759 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 10760 SDValue Orig = 10761 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 10762 10763 SDValue SatVal; 10764 if (IsSigned) { 10765 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 10766 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 10767 SDValue Cond = 10768 DAG.getSetCC(dl, BoolVT, LHS, DAG.getConstant(0, dl, VT), ISD::SETLT); 10769 SatVal = DAG.getSelect(dl, VT, Cond, SatMin, SatMax); 10770 } else { 10771 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 10772 } 10773 SDValue Cond = DAG.getSetCC(dl, BoolVT, LHS, Orig, ISD::SETNE); 10774 return DAG.getSelect(dl, VT, Cond, SatVal, Result); 10775 } 10776 10777 void TargetLowering::forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, 10778 bool Signed, EVT WideVT, 10779 const SDValue LL, const SDValue LH, 10780 const SDValue RL, const SDValue RH, 10781 SDValue &Lo, SDValue &Hi) const { 10782 // We can fall back to a libcall with an illegal type for the MUL if we 10783 // have a libcall big enough. 10784 // Also, we can fall back to a division in some cases, but that's a big 10785 // performance hit in the general case. 10786 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 10787 if (WideVT == MVT::i16) 10788 LC = RTLIB::MUL_I16; 10789 else if (WideVT == MVT::i32) 10790 LC = RTLIB::MUL_I32; 10791 else if (WideVT == MVT::i64) 10792 LC = RTLIB::MUL_I64; 10793 else if (WideVT == MVT::i128) 10794 LC = RTLIB::MUL_I128; 10795 10796 if (LC == RTLIB::UNKNOWN_LIBCALL || !getLibcallName(LC)) { 10797 // We'll expand the multiplication by brute force because we have no other 10798 // options. This is a trivially-generalized version of the code from 10799 // Hacker's Delight (itself derived from Knuth's Algorithm M from section 10800 // 4.3.1). 10801 EVT VT = LL.getValueType(); 10802 unsigned Bits = VT.getSizeInBits(); 10803 unsigned HalfBits = Bits >> 1; 10804 SDValue Mask = 10805 DAG.getConstant(APInt::getLowBitsSet(Bits, HalfBits), dl, VT); 10806 SDValue LLL = DAG.getNode(ISD::AND, dl, VT, LL, Mask); 10807 SDValue RLL = DAG.getNode(ISD::AND, dl, VT, RL, Mask); 10808 10809 SDValue T = DAG.getNode(ISD::MUL, dl, VT, LLL, RLL); 10810 SDValue TL = DAG.getNode(ISD::AND, dl, VT, T, Mask); 10811 10812 SDValue Shift = DAG.getShiftAmountConstant(HalfBits, VT, dl); 10813 SDValue TH = DAG.getNode(ISD::SRL, dl, VT, T, Shift); 10814 SDValue LLH = DAG.getNode(ISD::SRL, dl, VT, LL, Shift); 10815 SDValue RLH = DAG.getNode(ISD::SRL, dl, VT, RL, Shift); 10816 10817 SDValue U = DAG.getNode(ISD::ADD, dl, VT, 10818 DAG.getNode(ISD::MUL, dl, VT, LLH, RLL), TH); 10819 SDValue UL = DAG.getNode(ISD::AND, dl, VT, U, Mask); 10820 SDValue UH = DAG.getNode(ISD::SRL, dl, VT, U, Shift); 10821 10822 SDValue V = DAG.getNode(ISD::ADD, dl, VT, 10823 DAG.getNode(ISD::MUL, dl, VT, LLL, RLH), UL); 10824 SDValue VH = DAG.getNode(ISD::SRL, dl, VT, V, Shift); 10825 10826 SDValue W = 10827 DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::MUL, dl, VT, LLH, RLH), 10828 DAG.getNode(ISD::ADD, dl, VT, UH, VH)); 10829 Lo = DAG.getNode(ISD::ADD, dl, VT, TL, 10830 DAG.getNode(ISD::SHL, dl, VT, V, Shift)); 10831 10832 Hi = DAG.getNode(ISD::ADD, dl, VT, W, 10833 DAG.getNode(ISD::ADD, dl, VT, 10834 DAG.getNode(ISD::MUL, dl, VT, RH, LL), 10835 DAG.getNode(ISD::MUL, dl, VT, RL, LH))); 10836 } else { 10837 // Attempt a libcall. 10838 SDValue Ret; 10839 TargetLowering::MakeLibCallOptions CallOptions; 10840 CallOptions.setSExt(Signed); 10841 CallOptions.setIsPostTypeLegalization(true); 10842 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 10843 // Halves of WideVT are packed into registers in different order 10844 // depending on platform endianness. This is usually handled by 10845 // the C calling convention, but we can't defer to it in 10846 // the legalizer. 10847 SDValue Args[] = {LL, LH, RL, RH}; 10848 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 10849 } else { 10850 SDValue Args[] = {LH, LL, RH, RL}; 10851 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 10852 } 10853 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 10854 "Ret value is a collection of constituent nodes holding result."); 10855 if (DAG.getDataLayout().isLittleEndian()) { 10856 // Same as above. 10857 Lo = Ret.getOperand(0); 10858 Hi = Ret.getOperand(1); 10859 } else { 10860 Lo = Ret.getOperand(1); 10861 Hi = Ret.getOperand(0); 10862 } 10863 } 10864 } 10865 10866 void TargetLowering::forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, 10867 bool Signed, const SDValue LHS, 10868 const SDValue RHS, SDValue &Lo, 10869 SDValue &Hi) const { 10870 EVT VT = LHS.getValueType(); 10871 assert(RHS.getValueType() == VT && "Mismatching operand types"); 10872 10873 SDValue HiLHS; 10874 SDValue HiRHS; 10875 if (Signed) { 10876 // The high part is obtained by SRA'ing all but one of the bits of low 10877 // part. 10878 unsigned LoSize = VT.getFixedSizeInBits(); 10879 HiLHS = DAG.getNode( 10880 ISD::SRA, dl, VT, LHS, 10881 DAG.getConstant(LoSize - 1, dl, getPointerTy(DAG.getDataLayout()))); 10882 HiRHS = DAG.getNode( 10883 ISD::SRA, dl, VT, RHS, 10884 DAG.getConstant(LoSize - 1, dl, getPointerTy(DAG.getDataLayout()))); 10885 } else { 10886 HiLHS = DAG.getConstant(0, dl, VT); 10887 HiRHS = DAG.getConstant(0, dl, VT); 10888 } 10889 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); 10890 forceExpandWideMUL(DAG, dl, Signed, WideVT, LHS, HiLHS, RHS, HiRHS, Lo, Hi); 10891 } 10892 10893 SDValue 10894 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 10895 assert((Node->getOpcode() == ISD::SMULFIX || 10896 Node->getOpcode() == ISD::UMULFIX || 10897 Node->getOpcode() == ISD::SMULFIXSAT || 10898 Node->getOpcode() == ISD::UMULFIXSAT) && 10899 "Expected a fixed point multiplication opcode"); 10900 10901 SDLoc dl(Node); 10902 SDValue LHS = Node->getOperand(0); 10903 SDValue RHS = Node->getOperand(1); 10904 EVT VT = LHS.getValueType(); 10905 unsigned Scale = Node->getConstantOperandVal(2); 10906 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 10907 Node->getOpcode() == ISD::UMULFIXSAT); 10908 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 10909 Node->getOpcode() == ISD::SMULFIXSAT); 10910 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10911 unsigned VTSize = VT.getScalarSizeInBits(); 10912 10913 if (!Scale) { 10914 // [us]mul.fix(a, b, 0) -> mul(a, b) 10915 if (!Saturating) { 10916 if (isOperationLegalOrCustom(ISD::MUL, VT)) 10917 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 10918 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 10919 SDValue Result = 10920 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 10921 SDValue Product = Result.getValue(0); 10922 SDValue Overflow = Result.getValue(1); 10923 SDValue Zero = DAG.getConstant(0, dl, VT); 10924 10925 APInt MinVal = APInt::getSignedMinValue(VTSize); 10926 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 10927 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 10928 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 10929 // Xor the inputs, if resulting sign bit is 0 the product will be 10930 // positive, else negative. 10931 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 10932 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 10933 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 10934 return DAG.getSelect(dl, VT, Overflow, Result, Product); 10935 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 10936 SDValue Result = 10937 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 10938 SDValue Product = Result.getValue(0); 10939 SDValue Overflow = Result.getValue(1); 10940 10941 APInt MaxVal = APInt::getMaxValue(VTSize); 10942 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 10943 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 10944 } 10945 } 10946 10947 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 10948 "Expected scale to be less than the number of bits if signed or at " 10949 "most the number of bits if unsigned."); 10950 assert(LHS.getValueType() == RHS.getValueType() && 10951 "Expected both operands to be the same type"); 10952 10953 // Get the upper and lower bits of the result. 10954 SDValue Lo, Hi; 10955 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 10956 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 10957 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VTSize * 2); 10958 if (VT.isVector()) 10959 WideVT = 10960 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 10961 if (isOperationLegalOrCustom(LoHiOp, VT)) { 10962 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 10963 Lo = Result.getValue(0); 10964 Hi = Result.getValue(1); 10965 } else if (isOperationLegalOrCustom(HiOp, VT)) { 10966 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 10967 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 10968 } else if (isOperationLegalOrCustom(ISD::MUL, WideVT)) { 10969 // Try for a multiplication using a wider type. 10970 unsigned Ext = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 10971 SDValue LHSExt = DAG.getNode(Ext, dl, WideVT, LHS); 10972 SDValue RHSExt = DAG.getNode(Ext, dl, WideVT, RHS); 10973 SDValue Res = DAG.getNode(ISD::MUL, dl, WideVT, LHSExt, RHSExt); 10974 Lo = DAG.getNode(ISD::TRUNCATE, dl, VT, Res); 10975 SDValue Shifted = 10976 DAG.getNode(ISD::SRA, dl, WideVT, Res, 10977 DAG.getShiftAmountConstant(VTSize, WideVT, dl)); 10978 Hi = DAG.getNode(ISD::TRUNCATE, dl, VT, Shifted); 10979 } else if (VT.isVector()) { 10980 return SDValue(); 10981 } else { 10982 forceExpandWideMUL(DAG, dl, Signed, LHS, RHS, Lo, Hi); 10983 } 10984 10985 if (Scale == VTSize) 10986 // Result is just the top half since we'd be shifting by the width of the 10987 // operand. Overflow impossible so this works for both UMULFIX and 10988 // UMULFIXSAT. 10989 return Hi; 10990 10991 // The result will need to be shifted right by the scale since both operands 10992 // are scaled. The result is given to us in 2 halves, so we only want part of 10993 // both in the result. 10994 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 10995 DAG.getShiftAmountConstant(Scale, VT, dl)); 10996 if (!Saturating) 10997 return Result; 10998 10999 if (!Signed) { 11000 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 11001 // widened multiplication) aren't all zeroes. 11002 11003 // Saturate to max if ((Hi >> Scale) != 0), 11004 // which is the same as if (Hi > ((1 << Scale) - 1)) 11005 APInt MaxVal = APInt::getMaxValue(VTSize); 11006 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 11007 dl, VT); 11008 Result = DAG.getSelectCC(dl, Hi, LowMask, 11009 DAG.getConstant(MaxVal, dl, VT), Result, 11010 ISD::SETUGT); 11011 11012 return Result; 11013 } 11014 11015 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 11016 // widened multiplication) aren't all ones or all zeroes. 11017 11018 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 11019 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 11020 11021 if (Scale == 0) { 11022 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 11023 DAG.getShiftAmountConstant(VTSize - 1, VT, dl)); 11024 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 11025 // Saturated to SatMin if wide product is negative, and SatMax if wide 11026 // product is positive ... 11027 SDValue Zero = DAG.getConstant(0, dl, VT); 11028 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 11029 ISD::SETLT); 11030 // ... but only if we overflowed. 11031 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 11032 } 11033 11034 // We handled Scale==0 above so all the bits to examine is in Hi. 11035 11036 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 11037 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 11038 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 11039 dl, VT); 11040 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 11041 // Saturate to min if (Hi >> (Scale - 1)) < -1), 11042 // which is the same as if (HI < (-1 << (Scale - 1)) 11043 SDValue HighMask = 11044 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 11045 dl, VT); 11046 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 11047 return Result; 11048 } 11049 11050 SDValue 11051 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 11052 SDValue LHS, SDValue RHS, 11053 unsigned Scale, SelectionDAG &DAG) const { 11054 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 11055 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 11056 "Expected a fixed point division opcode"); 11057 11058 EVT VT = LHS.getValueType(); 11059 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 11060 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 11061 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 11062 11063 // If there is enough room in the type to upscale the LHS or downscale the 11064 // RHS before the division, we can perform it in this type without having to 11065 // resize. For signed operations, the LHS headroom is the number of 11066 // redundant sign bits, and for unsigned ones it is the number of zeroes. 11067 // The headroom for the RHS is the number of trailing zeroes. 11068 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 11069 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 11070 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 11071 11072 // For signed saturating operations, we need to be able to detect true integer 11073 // division overflow; that is, when you have MIN / -EPS. However, this 11074 // is undefined behavior and if we emit divisions that could take such 11075 // values it may cause undesired behavior (arithmetic exceptions on x86, for 11076 // example). 11077 // Avoid this by requiring an extra bit so that we never get this case. 11078 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 11079 // signed saturating division, we need to emit a whopping 32-bit division. 11080 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 11081 return SDValue(); 11082 11083 unsigned LHSShift = std::min(LHSLead, Scale); 11084 unsigned RHSShift = Scale - LHSShift; 11085 11086 // At this point, we know that if we shift the LHS up by LHSShift and the 11087 // RHS down by RHSShift, we can emit a regular division with a final scaling 11088 // factor of Scale. 11089 11090 if (LHSShift) 11091 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 11092 DAG.getShiftAmountConstant(LHSShift, VT, dl)); 11093 if (RHSShift) 11094 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 11095 DAG.getShiftAmountConstant(RHSShift, VT, dl)); 11096 11097 SDValue Quot; 11098 if (Signed) { 11099 // For signed operations, if the resulting quotient is negative and the 11100 // remainder is nonzero, subtract 1 from the quotient to round towards 11101 // negative infinity. 11102 SDValue Rem; 11103 // FIXME: Ideally we would always produce an SDIVREM here, but if the 11104 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 11105 // we couldn't just form a libcall, but the type legalizer doesn't do it. 11106 if (isTypeLegal(VT) && 11107 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 11108 Quot = DAG.getNode(ISD::SDIVREM, dl, 11109 DAG.getVTList(VT, VT), 11110 LHS, RHS); 11111 Rem = Quot.getValue(1); 11112 Quot = Quot.getValue(0); 11113 } else { 11114 Quot = DAG.getNode(ISD::SDIV, dl, VT, 11115 LHS, RHS); 11116 Rem = DAG.getNode(ISD::SREM, dl, VT, 11117 LHS, RHS); 11118 } 11119 SDValue Zero = DAG.getConstant(0, dl, VT); 11120 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 11121 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 11122 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 11123 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 11124 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 11125 DAG.getConstant(1, dl, VT)); 11126 Quot = DAG.getSelect(dl, VT, 11127 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 11128 Sub1, Quot); 11129 } else 11130 Quot = DAG.getNode(ISD::UDIV, dl, VT, 11131 LHS, RHS); 11132 11133 return Quot; 11134 } 11135 11136 void TargetLowering::expandUADDSUBO( 11137 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 11138 SDLoc dl(Node); 11139 SDValue LHS = Node->getOperand(0); 11140 SDValue RHS = Node->getOperand(1); 11141 bool IsAdd = Node->getOpcode() == ISD::UADDO; 11142 11143 // If UADDO_CARRY/SUBO_CARRY is legal, use that instead. 11144 unsigned OpcCarry = IsAdd ? ISD::UADDO_CARRY : ISD::USUBO_CARRY; 11145 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 11146 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 11147 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 11148 { LHS, RHS, CarryIn }); 11149 Result = SDValue(NodeCarry.getNode(), 0); 11150 Overflow = SDValue(NodeCarry.getNode(), 1); 11151 return; 11152 } 11153 11154 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 11155 LHS.getValueType(), LHS, RHS); 11156 11157 EVT ResultType = Node->getValueType(1); 11158 EVT SetCCType = getSetCCResultType( 11159 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 11160 SDValue SetCC; 11161 if (IsAdd && isOneConstant(RHS)) { 11162 // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces 11163 // the live range of X. We assume comparing with 0 is cheap. 11164 // The general case (X + C) < C is not necessarily beneficial. Although we 11165 // reduce the live range of X, we may introduce the materialization of 11166 // constant C. 11167 SetCC = 11168 DAG.getSetCC(dl, SetCCType, Result, 11169 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ); 11170 } else if (IsAdd && isAllOnesConstant(RHS)) { 11171 // Special case: uaddo X, -1 overflows if X != 0. 11172 SetCC = 11173 DAG.getSetCC(dl, SetCCType, LHS, 11174 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETNE); 11175 } else { 11176 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 11177 SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 11178 } 11179 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 11180 } 11181 11182 void TargetLowering::expandSADDSUBO( 11183 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 11184 SDLoc dl(Node); 11185 SDValue LHS = Node->getOperand(0); 11186 SDValue RHS = Node->getOperand(1); 11187 bool IsAdd = Node->getOpcode() == ISD::SADDO; 11188 11189 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 11190 LHS.getValueType(), LHS, RHS); 11191 11192 EVT ResultType = Node->getValueType(1); 11193 EVT OType = getSetCCResultType( 11194 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 11195 11196 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 11197 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 11198 if (isOperationLegal(OpcSat, LHS.getValueType())) { 11199 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 11200 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 11201 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 11202 return; 11203 } 11204 11205 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 11206 11207 // For an addition, the result should be less than one of the operands (LHS) 11208 // if and only if the other operand (RHS) is negative, otherwise there will 11209 // be overflow. 11210 // For a subtraction, the result should be less than one of the operands 11211 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 11212 // otherwise there will be overflow. 11213 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 11214 SDValue ConditionRHS = 11215 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 11216 11217 Overflow = DAG.getBoolExtOrTrunc( 11218 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 11219 ResultType, ResultType); 11220 } 11221 11222 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 11223 SDValue &Overflow, SelectionDAG &DAG) const { 11224 SDLoc dl(Node); 11225 EVT VT = Node->getValueType(0); 11226 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 11227 SDValue LHS = Node->getOperand(0); 11228 SDValue RHS = Node->getOperand(1); 11229 bool isSigned = Node->getOpcode() == ISD::SMULO; 11230 11231 // For power-of-two multiplications we can use a simpler shift expansion. 11232 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 11233 const APInt &C = RHSC->getAPIntValue(); 11234 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 11235 if (C.isPowerOf2()) { 11236 // smulo(x, signed_min) is same as umulo(x, signed_min). 11237 bool UseArithShift = isSigned && !C.isMinSignedValue(); 11238 SDValue ShiftAmt = DAG.getShiftAmountConstant(C.logBase2(), VT, dl); 11239 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 11240 Overflow = DAG.getSetCC(dl, SetCCVT, 11241 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 11242 dl, VT, Result, ShiftAmt), 11243 LHS, ISD::SETNE); 11244 return true; 11245 } 11246 } 11247 11248 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 11249 if (VT.isVector()) 11250 WideVT = 11251 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 11252 11253 SDValue BottomHalf; 11254 SDValue TopHalf; 11255 static const unsigned Ops[2][3] = 11256 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 11257 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 11258 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 11259 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 11260 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 11261 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 11262 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 11263 RHS); 11264 TopHalf = BottomHalf.getValue(1); 11265 } else if (isTypeLegal(WideVT)) { 11266 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 11267 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 11268 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 11269 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 11270 SDValue ShiftAmt = 11271 DAG.getShiftAmountConstant(VT.getScalarSizeInBits(), WideVT, dl); 11272 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 11273 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 11274 } else { 11275 if (VT.isVector()) 11276 return false; 11277 11278 forceExpandWideMUL(DAG, dl, isSigned, LHS, RHS, BottomHalf, TopHalf); 11279 } 11280 11281 Result = BottomHalf; 11282 if (isSigned) { 11283 SDValue ShiftAmt = DAG.getShiftAmountConstant( 11284 VT.getScalarSizeInBits() - 1, BottomHalf.getValueType(), dl); 11285 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 11286 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 11287 } else { 11288 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 11289 DAG.getConstant(0, dl, VT), ISD::SETNE); 11290 } 11291 11292 // Truncate the result if SetCC returns a larger type than needed. 11293 EVT RType = Node->getValueType(1); 11294 if (RType.bitsLT(Overflow.getValueType())) 11295 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 11296 11297 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 11298 "Unexpected result type for S/UMULO legalization"); 11299 return true; 11300 } 11301 11302 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 11303 SDLoc dl(Node); 11304 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 11305 SDValue Op = Node->getOperand(0); 11306 EVT VT = Op.getValueType(); 11307 11308 if (VT.isScalableVector()) 11309 report_fatal_error( 11310 "Expanding reductions for scalable vectors is undefined."); 11311 11312 // Try to use a shuffle reduction for power of two vectors. 11313 if (VT.isPow2VectorType()) { 11314 while (VT.getVectorNumElements() > 1) { 11315 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 11316 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 11317 break; 11318 11319 SDValue Lo, Hi; 11320 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 11321 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi, Node->getFlags()); 11322 VT = HalfVT; 11323 } 11324 } 11325 11326 EVT EltVT = VT.getVectorElementType(); 11327 unsigned NumElts = VT.getVectorNumElements(); 11328 11329 SmallVector<SDValue, 8> Ops; 11330 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 11331 11332 SDValue Res = Ops[0]; 11333 for (unsigned i = 1; i < NumElts; i++) 11334 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 11335 11336 // Result type may be wider than element type. 11337 if (EltVT != Node->getValueType(0)) 11338 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 11339 return Res; 11340 } 11341 11342 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 11343 SDLoc dl(Node); 11344 SDValue AccOp = Node->getOperand(0); 11345 SDValue VecOp = Node->getOperand(1); 11346 SDNodeFlags Flags = Node->getFlags(); 11347 11348 EVT VT = VecOp.getValueType(); 11349 EVT EltVT = VT.getVectorElementType(); 11350 11351 if (VT.isScalableVector()) 11352 report_fatal_error( 11353 "Expanding reductions for scalable vectors is undefined."); 11354 11355 unsigned NumElts = VT.getVectorNumElements(); 11356 11357 SmallVector<SDValue, 8> Ops; 11358 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 11359 11360 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 11361 11362 SDValue Res = AccOp; 11363 for (unsigned i = 0; i < NumElts; i++) 11364 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 11365 11366 return Res; 11367 } 11368 11369 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 11370 SelectionDAG &DAG) const { 11371 EVT VT = Node->getValueType(0); 11372 SDLoc dl(Node); 11373 bool isSigned = Node->getOpcode() == ISD::SREM; 11374 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 11375 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 11376 SDValue Dividend = Node->getOperand(0); 11377 SDValue Divisor = Node->getOperand(1); 11378 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 11379 SDVTList VTs = DAG.getVTList(VT, VT); 11380 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 11381 return true; 11382 } 11383 if (isOperationLegalOrCustom(DivOpc, VT)) { 11384 // X % Y -> X-X/Y*Y 11385 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 11386 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 11387 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 11388 return true; 11389 } 11390 return false; 11391 } 11392 11393 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 11394 SelectionDAG &DAG) const { 11395 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 11396 SDLoc dl(SDValue(Node, 0)); 11397 SDValue Src = Node->getOperand(0); 11398 11399 // DstVT is the result type, while SatVT is the size to which we saturate 11400 EVT SrcVT = Src.getValueType(); 11401 EVT DstVT = Node->getValueType(0); 11402 11403 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 11404 unsigned SatWidth = SatVT.getScalarSizeInBits(); 11405 unsigned DstWidth = DstVT.getScalarSizeInBits(); 11406 assert(SatWidth <= DstWidth && 11407 "Expected saturation width smaller than result width"); 11408 11409 // Determine minimum and maximum integer values and their corresponding 11410 // floating-point values. 11411 APInt MinInt, MaxInt; 11412 if (IsSigned) { 11413 MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth); 11414 MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth); 11415 } else { 11416 MinInt = APInt::getMinValue(SatWidth).zext(DstWidth); 11417 MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth); 11418 } 11419 11420 // We cannot risk emitting FP_TO_XINT nodes with a source VT of [b]f16, as 11421 // libcall emission cannot handle this. Large result types will fail. 11422 if (SrcVT == MVT::f16 || SrcVT == MVT::bf16) { 11423 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 11424 SrcVT = Src.getValueType(); 11425 } 11426 11427 const fltSemantics &Sem = SrcVT.getFltSemantics(); 11428 APFloat MinFloat(Sem); 11429 APFloat MaxFloat(Sem); 11430 11431 APFloat::opStatus MinStatus = 11432 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 11433 APFloat::opStatus MaxStatus = 11434 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 11435 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 11436 !(MaxStatus & APFloat::opStatus::opInexact); 11437 11438 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 11439 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 11440 11441 // If the integer bounds are exactly representable as floats and min/max are 11442 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 11443 // of comparisons and selects. 11444 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 11445 isOperationLegal(ISD::FMAXNUM, SrcVT); 11446 if (AreExactFloatBounds && MinMaxLegal) { 11447 SDValue Clamped = Src; 11448 11449 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 11450 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 11451 // Clamp by MaxFloat from above. NaN cannot occur. 11452 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 11453 // Convert clamped value to integer. 11454 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 11455 dl, DstVT, Clamped); 11456 11457 // In the unsigned case we're done, because we mapped NaN to MinFloat, 11458 // which will cast to zero. 11459 if (!IsSigned) 11460 return FpToInt; 11461 11462 // Otherwise, select 0 if Src is NaN. 11463 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 11464 EVT SetCCVT = 11465 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 11466 SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO); 11467 return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, FpToInt); 11468 } 11469 11470 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 11471 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 11472 11473 // Result of direct conversion. The assumption here is that the operation is 11474 // non-trapping and it's fine to apply it to an out-of-range value if we 11475 // select it away later. 11476 SDValue FpToInt = 11477 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 11478 11479 SDValue Select = FpToInt; 11480 11481 EVT SetCCVT = 11482 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 11483 11484 // If Src ULT MinFloat, select MinInt. In particular, this also selects 11485 // MinInt if Src is NaN. 11486 SDValue ULT = DAG.getSetCC(dl, SetCCVT, Src, MinFloatNode, ISD::SETULT); 11487 Select = DAG.getSelect(dl, DstVT, ULT, MinIntNode, Select); 11488 // If Src OGT MaxFloat, select MaxInt. 11489 SDValue OGT = DAG.getSetCC(dl, SetCCVT, Src, MaxFloatNode, ISD::SETOGT); 11490 Select = DAG.getSelect(dl, DstVT, OGT, MaxIntNode, Select); 11491 11492 // In the unsigned case we are done, because we mapped NaN to MinInt, which 11493 // is already zero. 11494 if (!IsSigned) 11495 return Select; 11496 11497 // Otherwise, select 0 if Src is NaN. 11498 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 11499 SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO); 11500 return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, Select); 11501 } 11502 11503 SDValue TargetLowering::expandRoundInexactToOdd(EVT ResultVT, SDValue Op, 11504 const SDLoc &dl, 11505 SelectionDAG &DAG) const { 11506 EVT OperandVT = Op.getValueType(); 11507 if (OperandVT.getScalarType() == ResultVT.getScalarType()) 11508 return Op; 11509 EVT ResultIntVT = ResultVT.changeTypeToInteger(); 11510 // We are rounding binary64/binary128 -> binary32 -> bfloat16. This 11511 // can induce double-rounding which may alter the results. We can 11512 // correct for this using a trick explained in: Boldo, Sylvie, and 11513 // Guillaume Melquiond. "When double rounding is odd." 17th IMACS 11514 // World Congress. 2005. 11515 unsigned BitSize = OperandVT.getScalarSizeInBits(); 11516 EVT WideIntVT = OperandVT.changeTypeToInteger(); 11517 SDValue OpAsInt = DAG.getBitcast(WideIntVT, Op); 11518 SDValue SignBit = 11519 DAG.getNode(ISD::AND, dl, WideIntVT, OpAsInt, 11520 DAG.getConstant(APInt::getSignMask(BitSize), dl, WideIntVT)); 11521 SDValue AbsWide; 11522 if (isOperationLegalOrCustom(ISD::FABS, OperandVT)) { 11523 AbsWide = DAG.getNode(ISD::FABS, dl, OperandVT, Op); 11524 } else { 11525 SDValue ClearedSign = DAG.getNode( 11526 ISD::AND, dl, WideIntVT, OpAsInt, 11527 DAG.getConstant(APInt::getSignedMaxValue(BitSize), dl, WideIntVT)); 11528 AbsWide = DAG.getBitcast(OperandVT, ClearedSign); 11529 } 11530 SDValue AbsNarrow = DAG.getFPExtendOrRound(AbsWide, dl, ResultVT); 11531 SDValue AbsNarrowAsWide = DAG.getFPExtendOrRound(AbsNarrow, dl, OperandVT); 11532 11533 // We can keep the narrow value as-is if narrowing was exact (no 11534 // rounding error), the wide value was NaN (the narrow value is also 11535 // NaN and should be preserved) or if we rounded to the odd value. 11536 SDValue NarrowBits = DAG.getNode(ISD::BITCAST, dl, ResultIntVT, AbsNarrow); 11537 SDValue One = DAG.getConstant(1, dl, ResultIntVT); 11538 SDValue NegativeOne = DAG.getAllOnesConstant(dl, ResultIntVT); 11539 SDValue And = DAG.getNode(ISD::AND, dl, ResultIntVT, NarrowBits, One); 11540 EVT ResultIntVTCCVT = getSetCCResultType( 11541 DAG.getDataLayout(), *DAG.getContext(), And.getValueType()); 11542 SDValue Zero = DAG.getConstant(0, dl, ResultIntVT); 11543 // The result is already odd so we don't need to do anything. 11544 SDValue AlreadyOdd = DAG.getSetCC(dl, ResultIntVTCCVT, And, Zero, ISD::SETNE); 11545 11546 EVT WideSetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 11547 AbsWide.getValueType()); 11548 // We keep results which are exact, odd or NaN. 11549 SDValue KeepNarrow = 11550 DAG.getSetCC(dl, WideSetCCVT, AbsWide, AbsNarrowAsWide, ISD::SETUEQ); 11551 KeepNarrow = DAG.getNode(ISD::OR, dl, WideSetCCVT, KeepNarrow, AlreadyOdd); 11552 // We morally performed a round-down if AbsNarrow is smaller than 11553 // AbsWide. 11554 SDValue NarrowIsRd = 11555 DAG.getSetCC(dl, WideSetCCVT, AbsWide, AbsNarrowAsWide, ISD::SETOGT); 11556 // If the narrow value is odd or exact, pick it. 11557 // Otherwise, narrow is even and corresponds to either the rounded-up 11558 // or rounded-down value. If narrow is the rounded-down value, we want 11559 // the rounded-up value as it will be odd. 11560 SDValue Adjust = DAG.getSelect(dl, ResultIntVT, NarrowIsRd, One, NegativeOne); 11561 SDValue Adjusted = DAG.getNode(ISD::ADD, dl, ResultIntVT, NarrowBits, Adjust); 11562 Op = DAG.getSelect(dl, ResultIntVT, KeepNarrow, NarrowBits, Adjusted); 11563 int ShiftAmount = BitSize - ResultVT.getScalarSizeInBits(); 11564 SDValue ShiftCnst = DAG.getShiftAmountConstant(ShiftAmount, WideIntVT, dl); 11565 SignBit = DAG.getNode(ISD::SRL, dl, WideIntVT, SignBit, ShiftCnst); 11566 SignBit = DAG.getNode(ISD::TRUNCATE, dl, ResultIntVT, SignBit); 11567 Op = DAG.getNode(ISD::OR, dl, ResultIntVT, Op, SignBit); 11568 return DAG.getNode(ISD::BITCAST, dl, ResultVT, Op); 11569 } 11570 11571 SDValue TargetLowering::expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const { 11572 assert(Node->getOpcode() == ISD::FP_ROUND && "Unexpected opcode!"); 11573 SDValue Op = Node->getOperand(0); 11574 EVT VT = Node->getValueType(0); 11575 SDLoc dl(Node); 11576 if (VT.getScalarType() == MVT::bf16) { 11577 if (Node->getConstantOperandVal(1) == 1) { 11578 return DAG.getNode(ISD::FP_TO_BF16, dl, VT, Node->getOperand(0)); 11579 } 11580 EVT OperandVT = Op.getValueType(); 11581 SDValue IsNaN = DAG.getSetCC( 11582 dl, 11583 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), OperandVT), 11584 Op, Op, ISD::SETUO); 11585 11586 // We are rounding binary64/binary128 -> binary32 -> bfloat16. This 11587 // can induce double-rounding which may alter the results. We can 11588 // correct for this using a trick explained in: Boldo, Sylvie, and 11589 // Guillaume Melquiond. "When double rounding is odd." 17th IMACS 11590 // World Congress. 2005. 11591 EVT F32 = VT.isVector() ? VT.changeVectorElementType(MVT::f32) : MVT::f32; 11592 EVT I32 = F32.changeTypeToInteger(); 11593 Op = expandRoundInexactToOdd(F32, Op, dl, DAG); 11594 Op = DAG.getNode(ISD::BITCAST, dl, I32, Op); 11595 11596 // Conversions should set NaN's quiet bit. This also prevents NaNs from 11597 // turning into infinities. 11598 SDValue NaN = 11599 DAG.getNode(ISD::OR, dl, I32, Op, DAG.getConstant(0x400000, dl, I32)); 11600 11601 // Factor in the contribution of the low 16 bits. 11602 SDValue One = DAG.getConstant(1, dl, I32); 11603 SDValue Lsb = DAG.getNode(ISD::SRL, dl, I32, Op, 11604 DAG.getShiftAmountConstant(16, I32, dl)); 11605 Lsb = DAG.getNode(ISD::AND, dl, I32, Lsb, One); 11606 SDValue RoundingBias = 11607 DAG.getNode(ISD::ADD, dl, I32, DAG.getConstant(0x7fff, dl, I32), Lsb); 11608 SDValue Add = DAG.getNode(ISD::ADD, dl, I32, Op, RoundingBias); 11609 11610 // Don't round if we had a NaN, we don't want to turn 0x7fffffff into 11611 // 0x80000000. 11612 Op = DAG.getSelect(dl, I32, IsNaN, NaN, Add); 11613 11614 // Now that we have rounded, shift the bits into position. 11615 Op = DAG.getNode(ISD::SRL, dl, I32, Op, 11616 DAG.getShiftAmountConstant(16, I32, dl)); 11617 Op = DAG.getNode(ISD::BITCAST, dl, I32, Op); 11618 EVT I16 = I32.isVector() ? I32.changeVectorElementType(MVT::i16) : MVT::i16; 11619 Op = DAG.getNode(ISD::TRUNCATE, dl, I16, Op); 11620 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 11621 } 11622 return SDValue(); 11623 } 11624 11625 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 11626 SelectionDAG &DAG) const { 11627 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 11628 assert(Node->getValueType(0).isScalableVector() && 11629 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 11630 11631 EVT VT = Node->getValueType(0); 11632 SDValue V1 = Node->getOperand(0); 11633 SDValue V2 = Node->getOperand(1); 11634 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 11635 SDLoc DL(Node); 11636 11637 // Expand through memory thusly: 11638 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 11639 // Store V1, Ptr 11640 // Store V2, Ptr + sizeof(V1) 11641 // If (Imm < 0) 11642 // TrailingElts = -Imm 11643 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 11644 // else 11645 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 11646 // Res = Load Ptr 11647 11648 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 11649 11650 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 11651 VT.getVectorElementCount() * 2); 11652 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 11653 EVT PtrVT = StackPtr.getValueType(); 11654 auto &MF = DAG.getMachineFunction(); 11655 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 11656 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 11657 11658 // Store the lo part of CONCAT_VECTORS(V1, V2) 11659 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 11660 // Store the hi part of CONCAT_VECTORS(V1, V2) 11661 SDValue OffsetToV2 = DAG.getVScale( 11662 DL, PtrVT, 11663 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinValue())); 11664 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 11665 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 11666 11667 if (Imm >= 0) { 11668 // Load back the required element. getVectorElementPointer takes care of 11669 // clamping the index if it's out-of-bounds. 11670 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 11671 // Load the spliced result 11672 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 11673 MachinePointerInfo::getUnknownStack(MF)); 11674 } 11675 11676 uint64_t TrailingElts = -Imm; 11677 11678 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 11679 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 11680 SDValue TrailingBytes = 11681 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 11682 11683 if (TrailingElts > VT.getVectorMinNumElements()) { 11684 SDValue VLBytes = 11685 DAG.getVScale(DL, PtrVT, 11686 APInt(PtrVT.getFixedSizeInBits(), 11687 VT.getStoreSize().getKnownMinValue())); 11688 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 11689 } 11690 11691 // Calculate the start address of the spliced result. 11692 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 11693 11694 // Load the spliced result 11695 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 11696 MachinePointerInfo::getUnknownStack(MF)); 11697 } 11698 11699 SDValue TargetLowering::expandVECTOR_COMPRESS(SDNode *Node, 11700 SelectionDAG &DAG) const { 11701 SDLoc DL(Node); 11702 SDValue Vec = Node->getOperand(0); 11703 SDValue Mask = Node->getOperand(1); 11704 SDValue Passthru = Node->getOperand(2); 11705 11706 EVT VecVT = Vec.getValueType(); 11707 EVT ScalarVT = VecVT.getScalarType(); 11708 EVT MaskVT = Mask.getValueType(); 11709 EVT MaskScalarVT = MaskVT.getScalarType(); 11710 11711 // Needs to be handled by targets that have scalable vector types. 11712 if (VecVT.isScalableVector()) 11713 report_fatal_error("Cannot expand masked_compress for scalable vectors."); 11714 11715 SDValue StackPtr = DAG.CreateStackTemporary( 11716 VecVT.getStoreSize(), DAG.getReducedAlign(VecVT, /*UseABI=*/false)); 11717 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 11718 MachinePointerInfo PtrInfo = 11719 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 11720 11721 MVT PositionVT = getVectorIdxTy(DAG.getDataLayout()); 11722 SDValue Chain = DAG.getEntryNode(); 11723 SDValue OutPos = DAG.getConstant(0, DL, PositionVT); 11724 11725 bool HasPassthru = !Passthru.isUndef(); 11726 11727 // If we have a passthru vector, store it on the stack, overwrite the matching 11728 // positions and then re-write the last element that was potentially 11729 // overwritten even though mask[i] = false. 11730 if (HasPassthru) 11731 Chain = DAG.getStore(Chain, DL, Passthru, StackPtr, PtrInfo); 11732 11733 SDValue LastWriteVal; 11734 APInt PassthruSplatVal; 11735 bool IsSplatPassthru = 11736 ISD::isConstantSplatVector(Passthru.getNode(), PassthruSplatVal); 11737 11738 if (IsSplatPassthru) { 11739 // As we do not know which position we wrote to last, we cannot simply 11740 // access that index from the passthru vector. So we first check if passthru 11741 // is a splat vector, to use any element ... 11742 LastWriteVal = DAG.getConstant(PassthruSplatVal, DL, ScalarVT); 11743 } else if (HasPassthru) { 11744 // ... if it is not a splat vector, we need to get the passthru value at 11745 // position = popcount(mask) and re-load it from the stack before it is 11746 // overwritten in the loop below. 11747 EVT PopcountVT = ScalarVT.changeTypeToInteger(); 11748 SDValue Popcount = DAG.getNode( 11749 ISD::TRUNCATE, DL, MaskVT.changeVectorElementType(MVT::i1), Mask); 11750 Popcount = 11751 DAG.getNode(ISD::ZERO_EXTEND, DL, 11752 MaskVT.changeVectorElementType(PopcountVT), Popcount); 11753 Popcount = DAG.getNode(ISD::VECREDUCE_ADD, DL, PopcountVT, Popcount); 11754 SDValue LastElmtPtr = 11755 getVectorElementPointer(DAG, StackPtr, VecVT, Popcount); 11756 LastWriteVal = DAG.getLoad( 11757 ScalarVT, DL, Chain, LastElmtPtr, 11758 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 11759 Chain = LastWriteVal.getValue(1); 11760 } 11761 11762 unsigned NumElms = VecVT.getVectorNumElements(); 11763 for (unsigned I = 0; I < NumElms; I++) { 11764 SDValue Idx = DAG.getVectorIdxConstant(I, DL); 11765 11766 SDValue ValI = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, Vec, Idx); 11767 SDValue OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos); 11768 Chain = DAG.getStore( 11769 Chain, DL, ValI, OutPtr, 11770 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 11771 11772 // Get the mask value and add it to the current output position. This 11773 // either increments by 1 if MaskI is true or adds 0 otherwise. 11774 // Freeze in case we have poison/undef mask entries. 11775 SDValue MaskI = DAG.getFreeze( 11776 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskScalarVT, Mask, Idx)); 11777 MaskI = DAG.getFreeze(MaskI); 11778 MaskI = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, MaskI); 11779 MaskI = DAG.getNode(ISD::ZERO_EXTEND, DL, PositionVT, MaskI); 11780 OutPos = DAG.getNode(ISD::ADD, DL, PositionVT, OutPos, MaskI); 11781 11782 if (HasPassthru && I == NumElms - 1) { 11783 SDValue EndOfVector = 11784 DAG.getConstant(VecVT.getVectorNumElements() - 1, DL, PositionVT); 11785 SDValue AllLanesSelected = 11786 DAG.getSetCC(DL, MVT::i1, OutPos, EndOfVector, ISD::CondCode::SETUGT); 11787 OutPos = DAG.getNode(ISD::UMIN, DL, PositionVT, OutPos, EndOfVector); 11788 OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos); 11789 11790 // Re-write the last ValI if all lanes were selected. Otherwise, 11791 // overwrite the last write it with the passthru value. 11792 LastWriteVal = DAG.getSelect(DL, ScalarVT, AllLanesSelected, ValI, 11793 LastWriteVal, SDNodeFlags::Unpredictable); 11794 Chain = DAG.getStore( 11795 Chain, DL, LastWriteVal, OutPtr, 11796 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 11797 } 11798 } 11799 11800 return DAG.getLoad(VecVT, DL, Chain, StackPtr, PtrInfo); 11801 } 11802 11803 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 11804 SDValue &LHS, SDValue &RHS, 11805 SDValue &CC, SDValue Mask, 11806 SDValue EVL, bool &NeedInvert, 11807 const SDLoc &dl, SDValue &Chain, 11808 bool IsSignaling) const { 11809 MVT OpVT = LHS.getSimpleValueType(); 11810 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 11811 NeedInvert = false; 11812 assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset"); 11813 bool IsNonVP = !EVL; 11814 switch (getCondCodeAction(CCCode, OpVT)) { 11815 default: 11816 llvm_unreachable("Unknown condition code action!"); 11817 case TargetLowering::Legal: 11818 // Nothing to do. 11819 break; 11820 case TargetLowering::Expand: { 11821 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 11822 if (isCondCodeLegalOrCustom(InvCC, OpVT)) { 11823 std::swap(LHS, RHS); 11824 CC = DAG.getCondCode(InvCC); 11825 return true; 11826 } 11827 // Swapping operands didn't work. Try inverting the condition. 11828 bool NeedSwap = false; 11829 InvCC = getSetCCInverse(CCCode, OpVT); 11830 if (!isCondCodeLegalOrCustom(InvCC, OpVT)) { 11831 // If inverting the condition is not enough, try swapping operands 11832 // on top of it. 11833 InvCC = ISD::getSetCCSwappedOperands(InvCC); 11834 NeedSwap = true; 11835 } 11836 if (isCondCodeLegalOrCustom(InvCC, OpVT)) { 11837 CC = DAG.getCondCode(InvCC); 11838 NeedInvert = true; 11839 if (NeedSwap) 11840 std::swap(LHS, RHS); 11841 return true; 11842 } 11843 11844 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 11845 unsigned Opc = 0; 11846 switch (CCCode) { 11847 default: 11848 llvm_unreachable("Don't know how to expand this condition!"); 11849 case ISD::SETUO: 11850 if (isCondCodeLegal(ISD::SETUNE, OpVT)) { 11851 CC1 = ISD::SETUNE; 11852 CC2 = ISD::SETUNE; 11853 Opc = ISD::OR; 11854 break; 11855 } 11856 assert(isCondCodeLegal(ISD::SETOEQ, OpVT) && 11857 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 11858 NeedInvert = true; 11859 [[fallthrough]]; 11860 case ISD::SETO: 11861 assert(isCondCodeLegal(ISD::SETOEQ, OpVT) && 11862 "If SETO is expanded, SETOEQ must be legal!"); 11863 CC1 = ISD::SETOEQ; 11864 CC2 = ISD::SETOEQ; 11865 Opc = ISD::AND; 11866 break; 11867 case ISD::SETONE: 11868 case ISD::SETUEQ: 11869 // If the SETUO or SETO CC isn't legal, we might be able to use 11870 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 11871 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 11872 // the operands. 11873 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 11874 if (!isCondCodeLegal(CC2, OpVT) && (isCondCodeLegal(ISD::SETOGT, OpVT) || 11875 isCondCodeLegal(ISD::SETOLT, OpVT))) { 11876 CC1 = ISD::SETOGT; 11877 CC2 = ISD::SETOLT; 11878 Opc = ISD::OR; 11879 NeedInvert = ((unsigned)CCCode & 0x8U); 11880 break; 11881 } 11882 [[fallthrough]]; 11883 case ISD::SETOEQ: 11884 case ISD::SETOGT: 11885 case ISD::SETOGE: 11886 case ISD::SETOLT: 11887 case ISD::SETOLE: 11888 case ISD::SETUNE: 11889 case ISD::SETUGT: 11890 case ISD::SETUGE: 11891 case ISD::SETULT: 11892 case ISD::SETULE: 11893 // If we are floating point, assign and break, otherwise fall through. 11894 if (!OpVT.isInteger()) { 11895 // We can use the 4th bit to tell if we are the unordered 11896 // or ordered version of the opcode. 11897 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 11898 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 11899 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 11900 break; 11901 } 11902 // Fallthrough if we are unsigned integer. 11903 [[fallthrough]]; 11904 case ISD::SETLE: 11905 case ISD::SETGT: 11906 case ISD::SETGE: 11907 case ISD::SETLT: 11908 case ISD::SETNE: 11909 case ISD::SETEQ: 11910 // If all combinations of inverting the condition and swapping operands 11911 // didn't work then we have no means to expand the condition. 11912 llvm_unreachable("Don't know how to expand this condition!"); 11913 } 11914 11915 SDValue SetCC1, SetCC2; 11916 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 11917 // If we aren't the ordered or unorder operation, 11918 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 11919 if (IsNonVP) { 11920 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 11921 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 11922 } else { 11923 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL); 11924 SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL); 11925 } 11926 } else { 11927 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 11928 if (IsNonVP) { 11929 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 11930 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 11931 } else { 11932 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL); 11933 SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL); 11934 } 11935 } 11936 if (Chain) 11937 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 11938 SetCC2.getValue(1)); 11939 if (IsNonVP) 11940 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 11941 else { 11942 // Transform the binary opcode to the VP equivalent. 11943 assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode"); 11944 Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND; 11945 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL); 11946 } 11947 RHS = SDValue(); 11948 CC = SDValue(); 11949 return true; 11950 } 11951 } 11952 return false; 11953 } 11954 11955 SDValue TargetLowering::expandVectorNaryOpBySplitting(SDNode *Node, 11956 SelectionDAG &DAG) const { 11957 EVT VT = Node->getValueType(0); 11958 // Despite its documentation, GetSplitDestVTs will assert if VT cannot be 11959 // split into two equal parts. 11960 if (!VT.isVector() || !VT.getVectorElementCount().isKnownMultipleOf(2)) 11961 return SDValue(); 11962 11963 // Restrict expansion to cases where both parts can be concatenated. 11964 auto [LoVT, HiVT] = DAG.GetSplitDestVTs(VT); 11965 if (LoVT != HiVT || !isTypeLegal(LoVT)) 11966 return SDValue(); 11967 11968 SDLoc DL(Node); 11969 unsigned Opcode = Node->getOpcode(); 11970 11971 // Don't expand if the result is likely to be unrolled anyway. 11972 if (!isOperationLegalOrCustomOrPromote(Opcode, LoVT)) 11973 return SDValue(); 11974 11975 SmallVector<SDValue, 4> LoOps, HiOps; 11976 for (const SDValue &V : Node->op_values()) { 11977 auto [Lo, Hi] = DAG.SplitVector(V, DL, LoVT, HiVT); 11978 LoOps.push_back(Lo); 11979 HiOps.push_back(Hi); 11980 } 11981 11982 SDValue SplitOpLo = DAG.getNode(Opcode, DL, LoVT, LoOps); 11983 SDValue SplitOpHi = DAG.getNode(Opcode, DL, HiVT, HiOps); 11984 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, SplitOpLo, SplitOpHi); 11985 } 11986