xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp (revision 9540a7ae82dfabe551bfef94fc9f29ebebf841da)
1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/Analysis/VectorUtils.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/CodeGenCommonISel.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/TargetRegisterInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCExpr.h"
30 #include "llvm/Support/DivisionByConstantInfo.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/KnownBits.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40     : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function &F = DAG.getMachineFunction().getFunction();
55 
56   // First, check if tail calls have been disabled in this function.
57   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
58     return false;
59 
60   // Conservatively require the attributes of the call to match those of
61   // the return. Ignore following attributes because they don't affect the
62   // call sequence.
63   AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
64   for (const auto &Attr :
65        {Attribute::Alignment, Attribute::Dereferenceable,
66         Attribute::DereferenceableOrNull, Attribute::NoAlias,
67         Attribute::NonNull, Attribute::NoUndef, Attribute::Range})
68     CallerAttrs.removeAttribute(Attr);
69 
70   if (CallerAttrs.hasAttributes())
71     return false;
72 
73   // It's not safe to eliminate the sign / zero extension of the return value.
74   if (CallerAttrs.contains(Attribute::ZExt) ||
75       CallerAttrs.contains(Attribute::SExt))
76     return false;
77 
78   // Check if the only use is a function return node.
79   return isUsedByReturnOnly(Node, Chain);
80 }
81 
82 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
83     const uint32_t *CallerPreservedMask,
84     const SmallVectorImpl<CCValAssign> &ArgLocs,
85     const SmallVectorImpl<SDValue> &OutVals) const {
86   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
87     const CCValAssign &ArgLoc = ArgLocs[I];
88     if (!ArgLoc.isRegLoc())
89       continue;
90     MCRegister Reg = ArgLoc.getLocReg();
91     // Only look at callee saved registers.
92     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
93       continue;
94     // Check that we pass the value used for the caller.
95     // (We look for a CopyFromReg reading a virtual register that is used
96     //  for the function live-in value of register Reg)
97     SDValue Value = OutVals[I];
98     if (Value->getOpcode() == ISD::AssertZext)
99       Value = Value.getOperand(0);
100     if (Value->getOpcode() != ISD::CopyFromReg)
101       return false;
102     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
103     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
104       return false;
105   }
106   return true;
107 }
108 
109 /// Set CallLoweringInfo attribute flags based on a call instruction
110 /// and called function attributes.
111 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
112                                                      unsigned ArgIdx) {
113   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
114   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
115   IsNoExt = Call->paramHasAttr(ArgIdx, Attribute::NoExt);
116   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
117   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
118   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
119   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
120   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
121   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
122   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
123   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
124   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
125   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
126   Alignment = Call->getParamStackAlign(ArgIdx);
127   IndirectType = nullptr;
128   assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 &&
129          "multiple ABI attributes?");
130   if (IsByVal) {
131     IndirectType = Call->getParamByValType(ArgIdx);
132     if (!Alignment)
133       Alignment = Call->getParamAlign(ArgIdx);
134   }
135   if (IsPreallocated)
136     IndirectType = Call->getParamPreallocatedType(ArgIdx);
137   if (IsInAlloca)
138     IndirectType = Call->getParamInAllocaType(ArgIdx);
139   if (IsSRet)
140     IndirectType = Call->getParamStructRetType(ArgIdx);
141 }
142 
143 /// Generate a libcall taking the given operands as arguments and returning a
144 /// result of type RetVT.
145 std::pair<SDValue, SDValue>
146 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
147                             ArrayRef<SDValue> Ops,
148                             MakeLibCallOptions CallOptions,
149                             const SDLoc &dl,
150                             SDValue InChain) const {
151   if (!InChain)
152     InChain = DAG.getEntryNode();
153 
154   TargetLowering::ArgListTy Args;
155   Args.reserve(Ops.size());
156 
157   TargetLowering::ArgListEntry Entry;
158   for (unsigned i = 0; i < Ops.size(); ++i) {
159     SDValue NewOp = Ops[i];
160     Entry.Node = NewOp;
161     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
162     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
163                                                  CallOptions.IsSExt);
164     Entry.IsZExt = !Entry.IsSExt;
165 
166     if (CallOptions.IsSoften &&
167         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
168       Entry.IsSExt = Entry.IsZExt = false;
169     }
170     Args.push_back(Entry);
171   }
172 
173   if (LC == RTLIB::UNKNOWN_LIBCALL)
174     report_fatal_error("Unsupported library call operation!");
175   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
176                                          getPointerTy(DAG.getDataLayout()));
177 
178   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
179   TargetLowering::CallLoweringInfo CLI(DAG);
180   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
181   bool zeroExtend = !signExtend;
182 
183   if (CallOptions.IsSoften &&
184       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
185     signExtend = zeroExtend = false;
186   }
187 
188   CLI.setDebugLoc(dl)
189       .setChain(InChain)
190       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
191       .setNoReturn(CallOptions.DoesNotReturn)
192       .setDiscardResult(!CallOptions.IsReturnValueUsed)
193       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
194       .setSExtResult(signExtend)
195       .setZExtResult(zeroExtend);
196   return LowerCallTo(CLI);
197 }
198 
199 bool TargetLowering::findOptimalMemOpLowering(
200     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
201     unsigned SrcAS, const AttributeList &FuncAttributes) const {
202   if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() &&
203       Op.getSrcAlign() < Op.getDstAlign())
204     return false;
205 
206   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
207 
208   if (VT == MVT::Other) {
209     // Use the largest integer type whose alignment constraints are satisfied.
210     // We only need to check DstAlign here as SrcAlign is always greater or
211     // equal to DstAlign (or zero).
212     VT = MVT::LAST_INTEGER_VALUETYPE;
213     if (Op.isFixedDstAlign())
214       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
215              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
216         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
217     assert(VT.isInteger());
218 
219     // Find the largest legal integer type.
220     MVT LVT = MVT::LAST_INTEGER_VALUETYPE;
221     while (!isTypeLegal(LVT))
222       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
223     assert(LVT.isInteger());
224 
225     // If the type we've chosen is larger than the largest legal integer type
226     // then use that instead.
227     if (VT.bitsGT(LVT))
228       VT = LVT;
229   }
230 
231   unsigned NumMemOps = 0;
232   uint64_t Size = Op.size();
233   while (Size) {
234     unsigned VTSize = VT.getSizeInBits() / 8;
235     while (VTSize > Size) {
236       // For now, only use non-vector load / store's for the left-over pieces.
237       EVT NewVT = VT;
238       unsigned NewVTSize;
239 
240       bool Found = false;
241       if (VT.isVector() || VT.isFloatingPoint()) {
242         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
243         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
244             isSafeMemOpType(NewVT.getSimpleVT()))
245           Found = true;
246         else if (NewVT == MVT::i64 &&
247                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
248                  isSafeMemOpType(MVT::f64)) {
249           // i64 is usually not legal on 32-bit targets, but f64 may be.
250           NewVT = MVT::f64;
251           Found = true;
252         }
253       }
254 
255       if (!Found) {
256         do {
257           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
258           if (NewVT == MVT::i8)
259             break;
260         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
261       }
262       NewVTSize = NewVT.getSizeInBits() / 8;
263 
264       // If the new VT cannot cover all of the remaining bits, then consider
265       // issuing a (or a pair of) unaligned and overlapping load / store.
266       unsigned Fast;
267       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
268           allowsMisalignedMemoryAccesses(
269               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
270               MachineMemOperand::MONone, &Fast) &&
271           Fast)
272         VTSize = Size;
273       else {
274         VT = NewVT;
275         VTSize = NewVTSize;
276       }
277     }
278 
279     if (++NumMemOps > Limit)
280       return false;
281 
282     MemOps.push_back(VT);
283     Size -= VTSize;
284   }
285 
286   return true;
287 }
288 
289 /// Soften the operands of a comparison. This code is shared among BR_CC,
290 /// SELECT_CC, and SETCC handlers.
291 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
292                                          SDValue &NewLHS, SDValue &NewRHS,
293                                          ISD::CondCode &CCCode,
294                                          const SDLoc &dl, const SDValue OldLHS,
295                                          const SDValue OldRHS) const {
296   SDValue Chain;
297   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
298                              OldRHS, Chain);
299 }
300 
301 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
302                                          SDValue &NewLHS, SDValue &NewRHS,
303                                          ISD::CondCode &CCCode,
304                                          const SDLoc &dl, const SDValue OldLHS,
305                                          const SDValue OldRHS,
306                                          SDValue &Chain,
307                                          bool IsSignaling) const {
308   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
309   // not supporting it. We can update this code when libgcc provides such
310   // functions.
311 
312   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
313          && "Unsupported setcc type!");
314 
315   // Expand into one or more soft-fp libcall(s).
316   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
317   bool ShouldInvertCC = false;
318   switch (CCCode) {
319   case ISD::SETEQ:
320   case ISD::SETOEQ:
321     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
322           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
323           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
324     break;
325   case ISD::SETNE:
326   case ISD::SETUNE:
327     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
328           (VT == MVT::f64) ? RTLIB::UNE_F64 :
329           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
330     break;
331   case ISD::SETGE:
332   case ISD::SETOGE:
333     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
334           (VT == MVT::f64) ? RTLIB::OGE_F64 :
335           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
336     break;
337   case ISD::SETLT:
338   case ISD::SETOLT:
339     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
340           (VT == MVT::f64) ? RTLIB::OLT_F64 :
341           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
342     break;
343   case ISD::SETLE:
344   case ISD::SETOLE:
345     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
346           (VT == MVT::f64) ? RTLIB::OLE_F64 :
347           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
348     break;
349   case ISD::SETGT:
350   case ISD::SETOGT:
351     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
352           (VT == MVT::f64) ? RTLIB::OGT_F64 :
353           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
354     break;
355   case ISD::SETO:
356     ShouldInvertCC = true;
357     [[fallthrough]];
358   case ISD::SETUO:
359     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
360           (VT == MVT::f64) ? RTLIB::UO_F64 :
361           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
362     break;
363   case ISD::SETONE:
364     // SETONE = O && UNE
365     ShouldInvertCC = true;
366     [[fallthrough]];
367   case ISD::SETUEQ:
368     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
369           (VT == MVT::f64) ? RTLIB::UO_F64 :
370           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
371     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
372           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
373           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
374     break;
375   default:
376     // Invert CC for unordered comparisons
377     ShouldInvertCC = true;
378     switch (CCCode) {
379     case ISD::SETULT:
380       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
381             (VT == MVT::f64) ? RTLIB::OGE_F64 :
382             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
383       break;
384     case ISD::SETULE:
385       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
386             (VT == MVT::f64) ? RTLIB::OGT_F64 :
387             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
388       break;
389     case ISD::SETUGT:
390       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
391             (VT == MVT::f64) ? RTLIB::OLE_F64 :
392             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
393       break;
394     case ISD::SETUGE:
395       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
396             (VT == MVT::f64) ? RTLIB::OLT_F64 :
397             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
398       break;
399     default: llvm_unreachable("Do not know how to soften this setcc!");
400     }
401   }
402 
403   // Use the target specific return value for comparison lib calls.
404   EVT RetVT = getCmpLibcallReturnType();
405   SDValue Ops[2] = {NewLHS, NewRHS};
406   TargetLowering::MakeLibCallOptions CallOptions;
407   EVT OpsVT[2] = { OldLHS.getValueType(),
408                    OldRHS.getValueType() };
409   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
410   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
411   NewLHS = Call.first;
412   NewRHS = DAG.getConstant(0, dl, RetVT);
413 
414   CCCode = getCmpLibcallCC(LC1);
415   if (ShouldInvertCC) {
416     assert(RetVT.isInteger());
417     CCCode = getSetCCInverse(CCCode, RetVT);
418   }
419 
420   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
421     // Update Chain.
422     Chain = Call.second;
423   } else {
424     EVT SetCCVT =
425         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
426     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
427     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
428     CCCode = getCmpLibcallCC(LC2);
429     if (ShouldInvertCC)
430       CCCode = getSetCCInverse(CCCode, RetVT);
431     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
432     if (Chain)
433       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
434                           Call2.second);
435     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
436                          Tmp.getValueType(), Tmp, NewLHS);
437     NewRHS = SDValue();
438   }
439 }
440 
441 /// Return the entry encoding for a jump table in the current function. The
442 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
443 unsigned TargetLowering::getJumpTableEncoding() const {
444   // In non-pic modes, just use the address of a block.
445   if (!isPositionIndependent())
446     return MachineJumpTableInfo::EK_BlockAddress;
447 
448   // In PIC mode, if the target supports a GPRel32 directive, use it.
449   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
450     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
451 
452   // Otherwise, use a label difference.
453   return MachineJumpTableInfo::EK_LabelDifference32;
454 }
455 
456 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
457                                                  SelectionDAG &DAG) const {
458   // If our PIC model is GP relative, use the global offset table as the base.
459   unsigned JTEncoding = getJumpTableEncoding();
460 
461   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
462       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
463     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
464 
465   return Table;
466 }
467 
468 /// This returns the relocation base for the given PIC jumptable, the same as
469 /// getPICJumpTableRelocBase, but as an MCExpr.
470 const MCExpr *
471 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
472                                              unsigned JTI,MCContext &Ctx) const{
473   // The normal PIC reloc base is the label at the start of the jump table.
474   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
475 }
476 
477 SDValue TargetLowering::expandIndirectJTBranch(const SDLoc &dl, SDValue Value,
478                                                SDValue Addr, int JTI,
479                                                SelectionDAG &DAG) const {
480   SDValue Chain = Value;
481   // Jump table debug info is only needed if CodeView is enabled.
482   if (DAG.getTarget().getTargetTriple().isOSBinFormatCOFF()) {
483     Chain = DAG.getJumpTableDebugInfo(JTI, Chain, dl);
484   }
485   return DAG.getNode(ISD::BRIND, dl, MVT::Other, Chain, Addr);
486 }
487 
488 bool
489 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
490   const TargetMachine &TM = getTargetMachine();
491   const GlobalValue *GV = GA->getGlobal();
492 
493   // If the address is not even local to this DSO we will have to load it from
494   // a got and then add the offset.
495   if (!TM.shouldAssumeDSOLocal(GV))
496     return false;
497 
498   // If the code is position independent we will have to add a base register.
499   if (isPositionIndependent())
500     return false;
501 
502   // Otherwise we can do it.
503   return true;
504 }
505 
506 //===----------------------------------------------------------------------===//
507 //  Optimization Methods
508 //===----------------------------------------------------------------------===//
509 
510 /// If the specified instruction has a constant integer operand and there are
511 /// bits set in that constant that are not demanded, then clear those bits and
512 /// return true.
513 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
514                                             const APInt &DemandedBits,
515                                             const APInt &DemandedElts,
516                                             TargetLoweringOpt &TLO) const {
517   SDLoc DL(Op);
518   unsigned Opcode = Op.getOpcode();
519 
520   // Early-out if we've ended up calling an undemanded node, leave this to
521   // constant folding.
522   if (DemandedBits.isZero() || DemandedElts.isZero())
523     return false;
524 
525   // Do target-specific constant optimization.
526   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
527     return TLO.New.getNode();
528 
529   // FIXME: ISD::SELECT, ISD::SELECT_CC
530   switch (Opcode) {
531   default:
532     break;
533   case ISD::XOR:
534   case ISD::AND:
535   case ISD::OR: {
536     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
537     if (!Op1C || Op1C->isOpaque())
538       return false;
539 
540     // If this is a 'not' op, don't touch it because that's a canonical form.
541     const APInt &C = Op1C->getAPIntValue();
542     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
543       return false;
544 
545     if (!C.isSubsetOf(DemandedBits)) {
546       EVT VT = Op.getValueType();
547       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
548       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC,
549                                       Op->getFlags());
550       return TLO.CombineTo(Op, NewOp);
551     }
552 
553     break;
554   }
555   }
556 
557   return false;
558 }
559 
560 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
561                                             const APInt &DemandedBits,
562                                             TargetLoweringOpt &TLO) const {
563   EVT VT = Op.getValueType();
564   APInt DemandedElts = VT.isVector()
565                            ? APInt::getAllOnes(VT.getVectorNumElements())
566                            : APInt(1, 1);
567   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
568 }
569 
570 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
571 /// This uses isTruncateFree/isZExtFree and ANY_EXTEND for the widening cast,
572 /// but it could be generalized for targets with other types of implicit
573 /// widening casts.
574 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
575                                       const APInt &DemandedBits,
576                                       TargetLoweringOpt &TLO) const {
577   assert(Op.getNumOperands() == 2 &&
578          "ShrinkDemandedOp only supports binary operators!");
579   assert(Op.getNode()->getNumValues() == 1 &&
580          "ShrinkDemandedOp only supports nodes with one result!");
581 
582   EVT VT = Op.getValueType();
583   SelectionDAG &DAG = TLO.DAG;
584   SDLoc dl(Op);
585 
586   // Early return, as this function cannot handle vector types.
587   if (VT.isVector())
588     return false;
589 
590   assert(Op.getOperand(0).getValueType().getScalarSizeInBits() == BitWidth &&
591          Op.getOperand(1).getValueType().getScalarSizeInBits() == BitWidth &&
592          "ShrinkDemandedOp only supports operands that have the same size!");
593 
594   // Don't do this if the node has another user, which may require the
595   // full value.
596   if (!Op.getNode()->hasOneUse())
597     return false;
598 
599   // Search for the smallest integer type with free casts to and from
600   // Op's type. For expedience, just check power-of-2 integer types.
601   unsigned DemandedSize = DemandedBits.getActiveBits();
602   for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize);
603        SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
604     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
605     if (isTruncateFree(VT, SmallVT) && isZExtFree(SmallVT, VT)) {
606       // We found a type with free casts.
607 
608       // If the operation has the 'disjoint' flag, then the
609       // operands on the new node are also disjoint.
610       SDNodeFlags Flags(Op->getFlags().hasDisjoint() ? SDNodeFlags::Disjoint
611                                                      : SDNodeFlags::None);
612       SDValue X = DAG.getNode(
613           Op.getOpcode(), dl, SmallVT,
614           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
615           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)), Flags);
616       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
617       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, VT, X);
618       return TLO.CombineTo(Op, Z);
619     }
620   }
621   return false;
622 }
623 
624 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
625                                           DAGCombinerInfo &DCI) const {
626   SelectionDAG &DAG = DCI.DAG;
627   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
628                         !DCI.isBeforeLegalizeOps());
629   KnownBits Known;
630 
631   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
632   if (Simplified) {
633     DCI.AddToWorklist(Op.getNode());
634     DCI.CommitTargetLoweringOpt(TLO);
635   }
636   return Simplified;
637 }
638 
639 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
640                                           const APInt &DemandedElts,
641                                           DAGCombinerInfo &DCI) const {
642   SelectionDAG &DAG = DCI.DAG;
643   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
644                         !DCI.isBeforeLegalizeOps());
645   KnownBits Known;
646 
647   bool Simplified =
648       SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
649   if (Simplified) {
650     DCI.AddToWorklist(Op.getNode());
651     DCI.CommitTargetLoweringOpt(TLO);
652   }
653   return Simplified;
654 }
655 
656 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
657                                           KnownBits &Known,
658                                           TargetLoweringOpt &TLO,
659                                           unsigned Depth,
660                                           bool AssumeSingleUse) const {
661   EVT VT = Op.getValueType();
662 
663   // Since the number of lanes in a scalable vector is unknown at compile time,
664   // we track one bit which is implicitly broadcast to all lanes.  This means
665   // that all lanes in a scalable vector are considered demanded.
666   APInt DemandedElts = VT.isFixedLengthVector()
667                            ? APInt::getAllOnes(VT.getVectorNumElements())
668                            : APInt(1, 1);
669   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
670                               AssumeSingleUse);
671 }
672 
673 // TODO: Under what circumstances can we create nodes? Constant folding?
674 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
675     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
676     SelectionDAG &DAG, unsigned Depth) const {
677   EVT VT = Op.getValueType();
678 
679   // Limit search depth.
680   if (Depth >= SelectionDAG::MaxRecursionDepth)
681     return SDValue();
682 
683   // Ignore UNDEFs.
684   if (Op.isUndef())
685     return SDValue();
686 
687   // Not demanding any bits/elts from Op.
688   if (DemandedBits == 0 || DemandedElts == 0)
689     return DAG.getUNDEF(VT);
690 
691   bool IsLE = DAG.getDataLayout().isLittleEndian();
692   unsigned NumElts = DemandedElts.getBitWidth();
693   unsigned BitWidth = DemandedBits.getBitWidth();
694   KnownBits LHSKnown, RHSKnown;
695   switch (Op.getOpcode()) {
696   case ISD::BITCAST: {
697     if (VT.isScalableVector())
698       return SDValue();
699 
700     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
701     EVT SrcVT = Src.getValueType();
702     EVT DstVT = Op.getValueType();
703     if (SrcVT == DstVT)
704       return Src;
705 
706     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
707     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
708     if (NumSrcEltBits == NumDstEltBits)
709       if (SDValue V = SimplifyMultipleUseDemandedBits(
710               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
711         return DAG.getBitcast(DstVT, V);
712 
713     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
714       unsigned Scale = NumDstEltBits / NumSrcEltBits;
715       unsigned NumSrcElts = SrcVT.getVectorNumElements();
716       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
717       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
718       for (unsigned i = 0; i != Scale; ++i) {
719         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
720         unsigned BitOffset = EltOffset * NumSrcEltBits;
721         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
722         if (!Sub.isZero()) {
723           DemandedSrcBits |= Sub;
724           for (unsigned j = 0; j != NumElts; ++j)
725             if (DemandedElts[j])
726               DemandedSrcElts.setBit((j * Scale) + i);
727         }
728       }
729 
730       if (SDValue V = SimplifyMultipleUseDemandedBits(
731               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
732         return DAG.getBitcast(DstVT, V);
733     }
734 
735     // TODO - bigendian once we have test coverage.
736     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
737       unsigned Scale = NumSrcEltBits / NumDstEltBits;
738       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
739       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
740       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
741       for (unsigned i = 0; i != NumElts; ++i)
742         if (DemandedElts[i]) {
743           unsigned Offset = (i % Scale) * NumDstEltBits;
744           DemandedSrcBits.insertBits(DemandedBits, Offset);
745           DemandedSrcElts.setBit(i / Scale);
746         }
747 
748       if (SDValue V = SimplifyMultipleUseDemandedBits(
749               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
750         return DAG.getBitcast(DstVT, V);
751     }
752 
753     break;
754   }
755   case ISD::FREEZE: {
756     SDValue N0 = Op.getOperand(0);
757     if (DAG.isGuaranteedNotToBeUndefOrPoison(N0, DemandedElts,
758                                              /*PoisonOnly=*/false))
759       return N0;
760     break;
761   }
762   case ISD::AND: {
763     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
764     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
765 
766     // If all of the demanded bits are known 1 on one side, return the other.
767     // These bits cannot contribute to the result of the 'and' in this
768     // context.
769     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
770       return Op.getOperand(0);
771     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
772       return Op.getOperand(1);
773     break;
774   }
775   case ISD::OR: {
776     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
777     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
778 
779     // If all of the demanded bits are known zero on one side, return the
780     // other.  These bits cannot contribute to the result of the 'or' in this
781     // context.
782     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
783       return Op.getOperand(0);
784     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
785       return Op.getOperand(1);
786     break;
787   }
788   case ISD::XOR: {
789     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
790     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
791 
792     // If all of the demanded bits are known zero on one side, return the
793     // other.
794     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
795       return Op.getOperand(0);
796     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
797       return Op.getOperand(1);
798     break;
799   }
800   case ISD::ADD: {
801     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
802     if (RHSKnown.isZero())
803       return Op.getOperand(0);
804 
805     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
806     if (LHSKnown.isZero())
807       return Op.getOperand(1);
808     break;
809   }
810   case ISD::SHL: {
811     // If we are only demanding sign bits then we can use the shift source
812     // directly.
813     if (std::optional<uint64_t> MaxSA =
814             DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
815       SDValue Op0 = Op.getOperand(0);
816       unsigned ShAmt = *MaxSA;
817       unsigned NumSignBits =
818           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
819       unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero();
820       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
821         return Op0;
822     }
823     break;
824   }
825   case ISD::SRL: {
826     // If we are only demanding sign bits then we can use the shift source
827     // directly.
828     if (std::optional<uint64_t> MaxSA =
829             DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
830       SDValue Op0 = Op.getOperand(0);
831       unsigned ShAmt = *MaxSA;
832       // Must already be signbits in DemandedBits bounds, and can't demand any
833       // shifted in zeroes.
834       if (DemandedBits.countl_zero() >= ShAmt) {
835         unsigned NumSignBits =
836             DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
837         if (DemandedBits.countr_zero() >= (BitWidth - NumSignBits))
838           return Op0;
839       }
840     }
841     break;
842   }
843   case ISD::SETCC: {
844     SDValue Op0 = Op.getOperand(0);
845     SDValue Op1 = Op.getOperand(1);
846     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
847     // If (1) we only need the sign-bit, (2) the setcc operands are the same
848     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
849     // -1, we may be able to bypass the setcc.
850     if (DemandedBits.isSignMask() &&
851         Op0.getScalarValueSizeInBits() == BitWidth &&
852         getBooleanContents(Op0.getValueType()) ==
853             BooleanContent::ZeroOrNegativeOneBooleanContent) {
854       // If we're testing X < 0, then this compare isn't needed - just use X!
855       // FIXME: We're limiting to integer types here, but this should also work
856       // if we don't care about FP signed-zero. The use of SETLT with FP means
857       // that we don't care about NaNs.
858       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
859           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
860         return Op0;
861     }
862     break;
863   }
864   case ISD::SIGN_EXTEND_INREG: {
865     // If none of the extended bits are demanded, eliminate the sextinreg.
866     SDValue Op0 = Op.getOperand(0);
867     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
868     unsigned ExBits = ExVT.getScalarSizeInBits();
869     if (DemandedBits.getActiveBits() <= ExBits &&
870         shouldRemoveRedundantExtend(Op))
871       return Op0;
872     // If the input is already sign extended, just drop the extension.
873     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
874     if (NumSignBits >= (BitWidth - ExBits + 1))
875       return Op0;
876     break;
877   }
878   case ISD::ANY_EXTEND_VECTOR_INREG:
879   case ISD::SIGN_EXTEND_VECTOR_INREG:
880   case ISD::ZERO_EXTEND_VECTOR_INREG: {
881     if (VT.isScalableVector())
882       return SDValue();
883 
884     // If we only want the lowest element and none of extended bits, then we can
885     // return the bitcasted source vector.
886     SDValue Src = Op.getOperand(0);
887     EVT SrcVT = Src.getValueType();
888     EVT DstVT = Op.getValueType();
889     if (IsLE && DemandedElts == 1 &&
890         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
891         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
892       return DAG.getBitcast(DstVT, Src);
893     }
894     break;
895   }
896   case ISD::INSERT_VECTOR_ELT: {
897     if (VT.isScalableVector())
898       return SDValue();
899 
900     // If we don't demand the inserted element, return the base vector.
901     SDValue Vec = Op.getOperand(0);
902     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
903     EVT VecVT = Vec.getValueType();
904     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
905         !DemandedElts[CIdx->getZExtValue()])
906       return Vec;
907     break;
908   }
909   case ISD::INSERT_SUBVECTOR: {
910     if (VT.isScalableVector())
911       return SDValue();
912 
913     SDValue Vec = Op.getOperand(0);
914     SDValue Sub = Op.getOperand(1);
915     uint64_t Idx = Op.getConstantOperandVal(2);
916     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
917     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
918     // If we don't demand the inserted subvector, return the base vector.
919     if (DemandedSubElts == 0)
920       return Vec;
921     break;
922   }
923   case ISD::VECTOR_SHUFFLE: {
924     assert(!VT.isScalableVector());
925     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
926 
927     // If all the demanded elts are from one operand and are inline,
928     // then we can use the operand directly.
929     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
930     for (unsigned i = 0; i != NumElts; ++i) {
931       int M = ShuffleMask[i];
932       if (M < 0 || !DemandedElts[i])
933         continue;
934       AllUndef = false;
935       IdentityLHS &= (M == (int)i);
936       IdentityRHS &= ((M - NumElts) == i);
937     }
938 
939     if (AllUndef)
940       return DAG.getUNDEF(Op.getValueType());
941     if (IdentityLHS)
942       return Op.getOperand(0);
943     if (IdentityRHS)
944       return Op.getOperand(1);
945     break;
946   }
947   default:
948     // TODO: Probably okay to remove after audit; here to reduce change size
949     // in initial enablement patch for scalable vectors
950     if (VT.isScalableVector())
951       return SDValue();
952 
953     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
954       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
955               Op, DemandedBits, DemandedElts, DAG, Depth))
956         return V;
957     break;
958   }
959   return SDValue();
960 }
961 
962 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
963     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
964     unsigned Depth) const {
965   EVT VT = Op.getValueType();
966   // Since the number of lanes in a scalable vector is unknown at compile time,
967   // we track one bit which is implicitly broadcast to all lanes.  This means
968   // that all lanes in a scalable vector are considered demanded.
969   APInt DemandedElts = VT.isFixedLengthVector()
970                            ? APInt::getAllOnes(VT.getVectorNumElements())
971                            : APInt(1, 1);
972   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
973                                          Depth);
974 }
975 
976 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
977     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
978     unsigned Depth) const {
979   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
980   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
981                                          Depth);
982 }
983 
984 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
985 //      or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
986 static SDValue combineShiftToAVG(SDValue Op,
987                                  TargetLowering::TargetLoweringOpt &TLO,
988                                  const TargetLowering &TLI,
989                                  const APInt &DemandedBits,
990                                  const APInt &DemandedElts, unsigned Depth) {
991   assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
992          "SRL or SRA node is required here!");
993   // Is the right shift using an immediate value of 1?
994   ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
995   if (!N1C || !N1C->isOne())
996     return SDValue();
997 
998   // We are looking for an avgfloor
999   // add(ext, ext)
1000   // or one of these as a avgceil
1001   // add(add(ext, ext), 1)
1002   // add(add(ext, 1), ext)
1003   // add(ext, add(ext, 1))
1004   SDValue Add = Op.getOperand(0);
1005   if (Add.getOpcode() != ISD::ADD)
1006     return SDValue();
1007 
1008   SDValue ExtOpA = Add.getOperand(0);
1009   SDValue ExtOpB = Add.getOperand(1);
1010   SDValue Add2;
1011   auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3, SDValue A) {
1012     ConstantSDNode *ConstOp;
1013     if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
1014         ConstOp->isOne()) {
1015       ExtOpA = Op1;
1016       ExtOpB = Op3;
1017       Add2 = A;
1018       return true;
1019     }
1020     if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
1021         ConstOp->isOne()) {
1022       ExtOpA = Op1;
1023       ExtOpB = Op2;
1024       Add2 = A;
1025       return true;
1026     }
1027     return false;
1028   };
1029   bool IsCeil =
1030       (ExtOpA.getOpcode() == ISD::ADD &&
1031        MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB, ExtOpA)) ||
1032       (ExtOpB.getOpcode() == ISD::ADD &&
1033        MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA, ExtOpB));
1034 
1035   // If the shift is signed (sra):
1036   //  - Needs >= 2 sign bit for both operands.
1037   //  - Needs >= 2 zero bits.
1038   // If the shift is unsigned (srl):
1039   //  - Needs >= 1 zero bit for both operands.
1040   //  - Needs 1 demanded bit zero and >= 2 sign bits.
1041   SelectionDAG &DAG = TLO.DAG;
1042   unsigned ShiftOpc = Op.getOpcode();
1043   bool IsSigned = false;
1044   unsigned KnownBits;
1045   unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
1046   unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
1047   unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
1048   unsigned NumZeroA =
1049       DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
1050   unsigned NumZeroB =
1051       DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
1052   unsigned NumZero = std::min(NumZeroA, NumZeroB);
1053 
1054   switch (ShiftOpc) {
1055   default:
1056     llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
1057   case ISD::SRA: {
1058     if (NumZero >= 2 && NumSigned < NumZero) {
1059       IsSigned = false;
1060       KnownBits = NumZero;
1061       break;
1062     }
1063     if (NumSigned >= 1) {
1064       IsSigned = true;
1065       KnownBits = NumSigned;
1066       break;
1067     }
1068     return SDValue();
1069   }
1070   case ISD::SRL: {
1071     if (NumZero >= 1 && NumSigned < NumZero) {
1072       IsSigned = false;
1073       KnownBits = NumZero;
1074       break;
1075     }
1076     if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
1077       IsSigned = true;
1078       KnownBits = NumSigned;
1079       break;
1080     }
1081     return SDValue();
1082   }
1083   }
1084 
1085   unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
1086                            : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
1087 
1088   // Find the smallest power-2 type that is legal for this vector size and
1089   // operation, given the original type size and the number of known sign/zero
1090   // bits.
1091   EVT VT = Op.getValueType();
1092   unsigned MinWidth =
1093       std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
1094   EVT NVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_ceil(MinWidth));
1095   if (NVT.getScalarSizeInBits() > VT.getScalarSizeInBits())
1096     return SDValue();
1097   if (VT.isVector())
1098     NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
1099   if (TLO.LegalTypes() && !TLI.isOperationLegal(AVGOpc, NVT)) {
1100     // If we could not transform, and (both) adds are nuw/nsw, we can use the
1101     // larger type size to do the transform.
1102     if (TLO.LegalOperations() && !TLI.isOperationLegal(AVGOpc, VT))
1103       return SDValue();
1104     if (DAG.willNotOverflowAdd(IsSigned, Add.getOperand(0),
1105                                Add.getOperand(1)) &&
1106         (!Add2 || DAG.willNotOverflowAdd(IsSigned, Add2.getOperand(0),
1107                                          Add2.getOperand(1))))
1108       NVT = VT;
1109     else
1110       return SDValue();
1111   }
1112 
1113   // Don't create a AVGFLOOR node with a scalar constant unless its legal as
1114   // this is likely to stop other folds (reassociation, value tracking etc.)
1115   if (!IsCeil && !TLI.isOperationLegal(AVGOpc, NVT) &&
1116       (isa<ConstantSDNode>(ExtOpA) || isa<ConstantSDNode>(ExtOpB)))
1117     return SDValue();
1118 
1119   SDLoc DL(Op);
1120   SDValue ResultAVG =
1121       DAG.getNode(AVGOpc, DL, NVT, DAG.getExtOrTrunc(IsSigned, ExtOpA, DL, NVT),
1122                   DAG.getExtOrTrunc(IsSigned, ExtOpB, DL, NVT));
1123   return DAG.getExtOrTrunc(IsSigned, ResultAVG, DL, VT);
1124 }
1125 
1126 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
1127 /// result of Op are ever used downstream. If we can use this information to
1128 /// simplify Op, create a new simplified DAG node and return true, returning the
1129 /// original and new nodes in Old and New. Otherwise, analyze the expression and
1130 /// return a mask of Known bits for the expression (used to simplify the
1131 /// caller).  The Known bits may only be accurate for those bits in the
1132 /// OriginalDemandedBits and OriginalDemandedElts.
1133 bool TargetLowering::SimplifyDemandedBits(
1134     SDValue Op, const APInt &OriginalDemandedBits,
1135     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
1136     unsigned Depth, bool AssumeSingleUse) const {
1137   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
1138   assert(Op.getScalarValueSizeInBits() == BitWidth &&
1139          "Mask size mismatches value type size!");
1140 
1141   // Don't know anything.
1142   Known = KnownBits(BitWidth);
1143 
1144   EVT VT = Op.getValueType();
1145   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
1146   unsigned NumElts = OriginalDemandedElts.getBitWidth();
1147   assert((!VT.isFixedLengthVector() || NumElts == VT.getVectorNumElements()) &&
1148          "Unexpected vector size");
1149 
1150   APInt DemandedBits = OriginalDemandedBits;
1151   APInt DemandedElts = OriginalDemandedElts;
1152   SDLoc dl(Op);
1153 
1154   // Undef operand.
1155   if (Op.isUndef())
1156     return false;
1157 
1158   // We can't simplify target constants.
1159   if (Op.getOpcode() == ISD::TargetConstant)
1160     return false;
1161 
1162   if (Op.getOpcode() == ISD::Constant) {
1163     // We know all of the bits for a constant!
1164     Known = KnownBits::makeConstant(Op->getAsAPIntVal());
1165     return false;
1166   }
1167 
1168   if (Op.getOpcode() == ISD::ConstantFP) {
1169     // We know all of the bits for a floating point constant!
1170     Known = KnownBits::makeConstant(
1171         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
1172     return false;
1173   }
1174 
1175   // Other users may use these bits.
1176   bool HasMultiUse = false;
1177   if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) {
1178     if (Depth >= SelectionDAG::MaxRecursionDepth) {
1179       // Limit search depth.
1180       return false;
1181     }
1182     // Allow multiple uses, just set the DemandedBits/Elts to all bits.
1183     DemandedBits = APInt::getAllOnes(BitWidth);
1184     DemandedElts = APInt::getAllOnes(NumElts);
1185     HasMultiUse = true;
1186   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1187     // Not demanding any bits/elts from Op.
1188     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1189   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
1190     // Limit search depth.
1191     return false;
1192   }
1193 
1194   KnownBits Known2;
1195   switch (Op.getOpcode()) {
1196   case ISD::SCALAR_TO_VECTOR: {
1197     if (VT.isScalableVector())
1198       return false;
1199     if (!DemandedElts[0])
1200       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1201 
1202     KnownBits SrcKnown;
1203     SDValue Src = Op.getOperand(0);
1204     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1205     APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth);
1206     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
1207       return true;
1208 
1209     // Upper elements are undef, so only get the knownbits if we just demand
1210     // the bottom element.
1211     if (DemandedElts == 1)
1212       Known = SrcKnown.anyextOrTrunc(BitWidth);
1213     break;
1214   }
1215   case ISD::BUILD_VECTOR:
1216     // Collect the known bits that are shared by every demanded element.
1217     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
1218     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1219     return false; // Don't fall through, will infinitely loop.
1220   case ISD::SPLAT_VECTOR: {
1221     SDValue Scl = Op.getOperand(0);
1222     APInt DemandedSclBits = DemandedBits.zextOrTrunc(Scl.getValueSizeInBits());
1223     KnownBits KnownScl;
1224     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1225       return true;
1226 
1227     // Implicitly truncate the bits to match the official semantics of
1228     // SPLAT_VECTOR.
1229     Known = KnownScl.trunc(BitWidth);
1230     break;
1231   }
1232   case ISD::LOAD: {
1233     auto *LD = cast<LoadSDNode>(Op);
1234     if (getTargetConstantFromLoad(LD)) {
1235       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1236       return false; // Don't fall through, will infinitely loop.
1237     }
1238     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1239       // If this is a ZEXTLoad and we are looking at the loaded value.
1240       EVT MemVT = LD->getMemoryVT();
1241       unsigned MemBits = MemVT.getScalarSizeInBits();
1242       Known.Zero.setBitsFrom(MemBits);
1243       return false; // Don't fall through, will infinitely loop.
1244     }
1245     break;
1246   }
1247   case ISD::INSERT_VECTOR_ELT: {
1248     if (VT.isScalableVector())
1249       return false;
1250     SDValue Vec = Op.getOperand(0);
1251     SDValue Scl = Op.getOperand(1);
1252     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1253     EVT VecVT = Vec.getValueType();
1254 
1255     // If index isn't constant, assume we need all vector elements AND the
1256     // inserted element.
1257     APInt DemandedVecElts(DemandedElts);
1258     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1259       unsigned Idx = CIdx->getZExtValue();
1260       DemandedVecElts.clearBit(Idx);
1261 
1262       // Inserted element is not required.
1263       if (!DemandedElts[Idx])
1264         return TLO.CombineTo(Op, Vec);
1265     }
1266 
1267     KnownBits KnownScl;
1268     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1269     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1270     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1271       return true;
1272 
1273     Known = KnownScl.anyextOrTrunc(BitWidth);
1274 
1275     KnownBits KnownVec;
1276     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1277                              Depth + 1))
1278       return true;
1279 
1280     if (!!DemandedVecElts)
1281       Known = Known.intersectWith(KnownVec);
1282 
1283     return false;
1284   }
1285   case ISD::INSERT_SUBVECTOR: {
1286     if (VT.isScalableVector())
1287       return false;
1288     // Demand any elements from the subvector and the remainder from the src its
1289     // inserted into.
1290     SDValue Src = Op.getOperand(0);
1291     SDValue Sub = Op.getOperand(1);
1292     uint64_t Idx = Op.getConstantOperandVal(2);
1293     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1294     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1295     APInt DemandedSrcElts = DemandedElts;
1296     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1297 
1298     KnownBits KnownSub, KnownSrc;
1299     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1300                              Depth + 1))
1301       return true;
1302     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1303                              Depth + 1))
1304       return true;
1305 
1306     Known.Zero.setAllBits();
1307     Known.One.setAllBits();
1308     if (!!DemandedSubElts)
1309       Known = Known.intersectWith(KnownSub);
1310     if (!!DemandedSrcElts)
1311       Known = Known.intersectWith(KnownSrc);
1312 
1313     // Attempt to avoid multi-use src if we don't need anything from it.
1314     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1315         !DemandedSrcElts.isAllOnes()) {
1316       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1317           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1318       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1319           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1320       if (NewSub || NewSrc) {
1321         NewSub = NewSub ? NewSub : Sub;
1322         NewSrc = NewSrc ? NewSrc : Src;
1323         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1324                                         Op.getOperand(2));
1325         return TLO.CombineTo(Op, NewOp);
1326       }
1327     }
1328     break;
1329   }
1330   case ISD::EXTRACT_SUBVECTOR: {
1331     if (VT.isScalableVector())
1332       return false;
1333     // Offset the demanded elts by the subvector index.
1334     SDValue Src = Op.getOperand(0);
1335     if (Src.getValueType().isScalableVector())
1336       break;
1337     uint64_t Idx = Op.getConstantOperandVal(1);
1338     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1339     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
1340 
1341     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1342                              Depth + 1))
1343       return true;
1344 
1345     // Attempt to avoid multi-use src if we don't need anything from it.
1346     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1347       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1348           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1349       if (DemandedSrc) {
1350         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1351                                         Op.getOperand(1));
1352         return TLO.CombineTo(Op, NewOp);
1353       }
1354     }
1355     break;
1356   }
1357   case ISD::CONCAT_VECTORS: {
1358     if (VT.isScalableVector())
1359       return false;
1360     Known.Zero.setAllBits();
1361     Known.One.setAllBits();
1362     EVT SubVT = Op.getOperand(0).getValueType();
1363     unsigned NumSubVecs = Op.getNumOperands();
1364     unsigned NumSubElts = SubVT.getVectorNumElements();
1365     for (unsigned i = 0; i != NumSubVecs; ++i) {
1366       APInt DemandedSubElts =
1367           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1368       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1369                                Known2, TLO, Depth + 1))
1370         return true;
1371       // Known bits are shared by every demanded subvector element.
1372       if (!!DemandedSubElts)
1373         Known = Known.intersectWith(Known2);
1374     }
1375     break;
1376   }
1377   case ISD::VECTOR_SHUFFLE: {
1378     assert(!VT.isScalableVector());
1379     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1380 
1381     // Collect demanded elements from shuffle operands..
1382     APInt DemandedLHS, DemandedRHS;
1383     if (!getShuffleDemandedElts(NumElts, ShuffleMask, DemandedElts, DemandedLHS,
1384                                 DemandedRHS))
1385       break;
1386 
1387     if (!!DemandedLHS || !!DemandedRHS) {
1388       SDValue Op0 = Op.getOperand(0);
1389       SDValue Op1 = Op.getOperand(1);
1390 
1391       Known.Zero.setAllBits();
1392       Known.One.setAllBits();
1393       if (!!DemandedLHS) {
1394         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1395                                  Depth + 1))
1396           return true;
1397         Known = Known.intersectWith(Known2);
1398       }
1399       if (!!DemandedRHS) {
1400         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1401                                  Depth + 1))
1402           return true;
1403         Known = Known.intersectWith(Known2);
1404       }
1405 
1406       // Attempt to avoid multi-use ops if we don't need anything from them.
1407       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1408           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1409       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1410           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1411       if (DemandedOp0 || DemandedOp1) {
1412         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1413         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1414         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1415         return TLO.CombineTo(Op, NewOp);
1416       }
1417     }
1418     break;
1419   }
1420   case ISD::AND: {
1421     SDValue Op0 = Op.getOperand(0);
1422     SDValue Op1 = Op.getOperand(1);
1423 
1424     // If the RHS is a constant, check to see if the LHS would be zero without
1425     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1426     // simplify the LHS, here we're using information from the LHS to simplify
1427     // the RHS.
1428     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1, DemandedElts)) {
1429       // Do not increment Depth here; that can cause an infinite loop.
1430       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1431       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1432       if ((LHSKnown.Zero & DemandedBits) ==
1433           (~RHSC->getAPIntValue() & DemandedBits))
1434         return TLO.CombineTo(Op, Op0);
1435 
1436       // If any of the set bits in the RHS are known zero on the LHS, shrink
1437       // the constant.
1438       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1439                                  DemandedElts, TLO))
1440         return true;
1441 
1442       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1443       // constant, but if this 'and' is only clearing bits that were just set by
1444       // the xor, then this 'and' can be eliminated by shrinking the mask of
1445       // the xor. For example, for a 32-bit X:
1446       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1447       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1448           LHSKnown.One == ~RHSC->getAPIntValue()) {
1449         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1450         return TLO.CombineTo(Op, Xor);
1451       }
1452     }
1453 
1454     // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I)
1455     // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits).
1456     if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR && !VT.isScalableVector() &&
1457         (Op0.getOperand(0).isUndef() ||
1458          ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) &&
1459         Op0->hasOneUse()) {
1460       unsigned NumSubElts =
1461           Op0.getOperand(1).getValueType().getVectorNumElements();
1462       unsigned SubIdx = Op0.getConstantOperandVal(2);
1463       APInt DemandedSub =
1464           APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts);
1465       KnownBits KnownSubMask =
1466           TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1);
1467       if (DemandedBits.isSubsetOf(KnownSubMask.One)) {
1468         SDValue NewAnd =
1469             TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1);
1470         SDValue NewInsert =
1471             TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd,
1472                             Op0.getOperand(1), Op0.getOperand(2));
1473         return TLO.CombineTo(Op, NewInsert);
1474       }
1475     }
1476 
1477     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1478                              Depth + 1))
1479       return true;
1480     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1481                              Known2, TLO, Depth + 1))
1482       return true;
1483 
1484     // If all of the demanded bits are known one on one side, return the other.
1485     // These bits cannot contribute to the result of the 'and'.
1486     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1487       return TLO.CombineTo(Op, Op0);
1488     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1489       return TLO.CombineTo(Op, Op1);
1490     // If all of the demanded bits in the inputs are known zeros, return zero.
1491     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1492       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1493     // If the RHS is a constant, see if we can simplify it.
1494     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1495                                TLO))
1496       return true;
1497     // If the operation can be done in a smaller type, do so.
1498     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1499       return true;
1500 
1501     // Attempt to avoid multi-use ops if we don't need anything from them.
1502     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1503       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1504           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1505       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1506           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1507       if (DemandedOp0 || DemandedOp1) {
1508         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1509         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1510         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1511         return TLO.CombineTo(Op, NewOp);
1512       }
1513     }
1514 
1515     Known &= Known2;
1516     break;
1517   }
1518   case ISD::OR: {
1519     SDValue Op0 = Op.getOperand(0);
1520     SDValue Op1 = Op.getOperand(1);
1521     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1522                              Depth + 1)) {
1523       Op->dropFlags(SDNodeFlags::Disjoint);
1524       return true;
1525     }
1526 
1527     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1528                              Known2, TLO, Depth + 1)) {
1529       Op->dropFlags(SDNodeFlags::Disjoint);
1530       return true;
1531     }
1532 
1533     // If all of the demanded bits are known zero on one side, return the other.
1534     // These bits cannot contribute to the result of the 'or'.
1535     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1536       return TLO.CombineTo(Op, Op0);
1537     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1538       return TLO.CombineTo(Op, Op1);
1539     // If the RHS is a constant, see if we can simplify it.
1540     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1541       return true;
1542     // If the operation can be done in a smaller type, do so.
1543     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1544       return true;
1545 
1546     // Attempt to avoid multi-use ops if we don't need anything from them.
1547     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1548       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1549           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1550       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1551           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1552       if (DemandedOp0 || DemandedOp1) {
1553         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1554         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1555         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1556         return TLO.CombineTo(Op, NewOp);
1557       }
1558     }
1559 
1560     // (or (and X, C1), (and (or X, Y), C2)) -> (or (and X, C1|C2), (and Y, C2))
1561     // TODO: Use SimplifyMultipleUseDemandedBits to peek through masks.
1562     if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::AND &&
1563         Op0->hasOneUse() && Op1->hasOneUse()) {
1564       // Attempt to match all commutations - m_c_Or would've been useful!
1565       for (int I = 0; I != 2; ++I) {
1566         SDValue X = Op.getOperand(I).getOperand(0);
1567         SDValue C1 = Op.getOperand(I).getOperand(1);
1568         SDValue Alt = Op.getOperand(1 - I).getOperand(0);
1569         SDValue C2 = Op.getOperand(1 - I).getOperand(1);
1570         if (Alt.getOpcode() == ISD::OR) {
1571           for (int J = 0; J != 2; ++J) {
1572             if (X == Alt.getOperand(J)) {
1573               SDValue Y = Alt.getOperand(1 - J);
1574               if (SDValue C12 = TLO.DAG.FoldConstantArithmetic(ISD::OR, dl, VT,
1575                                                                {C1, C2})) {
1576                 SDValue MaskX = TLO.DAG.getNode(ISD::AND, dl, VT, X, C12);
1577                 SDValue MaskY = TLO.DAG.getNode(ISD::AND, dl, VT, Y, C2);
1578                 return TLO.CombineTo(
1579                     Op, TLO.DAG.getNode(ISD::OR, dl, VT, MaskX, MaskY));
1580               }
1581             }
1582           }
1583         }
1584       }
1585     }
1586 
1587     Known |= Known2;
1588     break;
1589   }
1590   case ISD::XOR: {
1591     SDValue Op0 = Op.getOperand(0);
1592     SDValue Op1 = Op.getOperand(1);
1593 
1594     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1595                              Depth + 1))
1596       return true;
1597     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1598                              Depth + 1))
1599       return true;
1600 
1601     // If all of the demanded bits are known zero on one side, return the other.
1602     // These bits cannot contribute to the result of the 'xor'.
1603     if (DemandedBits.isSubsetOf(Known.Zero))
1604       return TLO.CombineTo(Op, Op0);
1605     if (DemandedBits.isSubsetOf(Known2.Zero))
1606       return TLO.CombineTo(Op, Op1);
1607     // If the operation can be done in a smaller type, do so.
1608     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1609       return true;
1610 
1611     // If all of the unknown bits are known to be zero on one side or the other
1612     // turn this into an *inclusive* or.
1613     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1614     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1615       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1616 
1617     ConstantSDNode *C = isConstOrConstSplat(Op1, DemandedElts);
1618     if (C) {
1619       // If one side is a constant, and all of the set bits in the constant are
1620       // also known set on the other side, turn this into an AND, as we know
1621       // the bits will be cleared.
1622       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1623       // NB: it is okay if more bits are known than are requested
1624       if (C->getAPIntValue() == Known2.One) {
1625         SDValue ANDC =
1626             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1627         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1628       }
1629 
1630       // If the RHS is a constant, see if we can change it. Don't alter a -1
1631       // constant because that's a 'not' op, and that is better for combining
1632       // and codegen.
1633       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1634         // We're flipping all demanded bits. Flip the undemanded bits too.
1635         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1636         return TLO.CombineTo(Op, New);
1637       }
1638 
1639       unsigned Op0Opcode = Op0.getOpcode();
1640       if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) {
1641         if (ConstantSDNode *ShiftC =
1642                 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1643           // Don't crash on an oversized shift. We can not guarantee that a
1644           // bogus shift has been simplified to undef.
1645           if (ShiftC->getAPIntValue().ult(BitWidth)) {
1646             uint64_t ShiftAmt = ShiftC->getZExtValue();
1647             APInt Ones = APInt::getAllOnes(BitWidth);
1648             Ones = Op0Opcode == ISD::SHL ? Ones.shl(ShiftAmt)
1649                                          : Ones.lshr(ShiftAmt);
1650             if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) &&
1651                 isDesirableToCommuteXorWithShift(Op.getNode())) {
1652               // If the xor constant is a demanded mask, do a 'not' before the
1653               // shift:
1654               // xor (X << ShiftC), XorC --> (not X) << ShiftC
1655               // xor (X >> ShiftC), XorC --> (not X) >> ShiftC
1656               SDValue Not = TLO.DAG.getNOT(dl, Op0.getOperand(0), VT);
1657               return TLO.CombineTo(Op, TLO.DAG.getNode(Op0Opcode, dl, VT, Not,
1658                                                        Op0.getOperand(1)));
1659             }
1660           }
1661         }
1662       }
1663     }
1664 
1665     // If we can't turn this into a 'not', try to shrink the constant.
1666     if (!C || !C->isAllOnes())
1667       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1668         return true;
1669 
1670     // Attempt to avoid multi-use ops if we don't need anything from them.
1671     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1672       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1673           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1674       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1675           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1676       if (DemandedOp0 || DemandedOp1) {
1677         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1678         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1679         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1680         return TLO.CombineTo(Op, NewOp);
1681       }
1682     }
1683 
1684     Known ^= Known2;
1685     break;
1686   }
1687   case ISD::SELECT:
1688     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1689                              Known, TLO, Depth + 1))
1690       return true;
1691     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
1692                              Known2, TLO, Depth + 1))
1693       return true;
1694 
1695     // If the operands are constants, see if we can simplify them.
1696     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1697       return true;
1698 
1699     // Only known if known in both the LHS and RHS.
1700     Known = Known.intersectWith(Known2);
1701     break;
1702   case ISD::VSELECT:
1703     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1704                              Known, TLO, Depth + 1))
1705       return true;
1706     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
1707                              Known2, TLO, Depth + 1))
1708       return true;
1709 
1710     // Only known if known in both the LHS and RHS.
1711     Known = Known.intersectWith(Known2);
1712     break;
1713   case ISD::SELECT_CC:
1714     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, DemandedElts,
1715                              Known, TLO, Depth + 1))
1716       return true;
1717     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1718                              Known2, TLO, Depth + 1))
1719       return true;
1720 
1721     // If the operands are constants, see if we can simplify them.
1722     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1723       return true;
1724 
1725     // Only known if known in both the LHS and RHS.
1726     Known = Known.intersectWith(Known2);
1727     break;
1728   case ISD::SETCC: {
1729     SDValue Op0 = Op.getOperand(0);
1730     SDValue Op1 = Op.getOperand(1);
1731     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1732     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1733     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1734     // -1, we may be able to bypass the setcc.
1735     if (DemandedBits.isSignMask() &&
1736         Op0.getScalarValueSizeInBits() == BitWidth &&
1737         getBooleanContents(Op0.getValueType()) ==
1738             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1739       // If we're testing X < 0, then this compare isn't needed - just use X!
1740       // FIXME: We're limiting to integer types here, but this should also work
1741       // if we don't care about FP signed-zero. The use of SETLT with FP means
1742       // that we don't care about NaNs.
1743       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1744           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1745         return TLO.CombineTo(Op, Op0);
1746 
1747       // TODO: Should we check for other forms of sign-bit comparisons?
1748       // Examples: X <= -1, X >= 0
1749     }
1750     if (getBooleanContents(Op0.getValueType()) ==
1751             TargetLowering::ZeroOrOneBooleanContent &&
1752         BitWidth > 1)
1753       Known.Zero.setBitsFrom(1);
1754     break;
1755   }
1756   case ISD::SHL: {
1757     SDValue Op0 = Op.getOperand(0);
1758     SDValue Op1 = Op.getOperand(1);
1759     EVT ShiftVT = Op1.getValueType();
1760 
1761     if (std::optional<uint64_t> KnownSA =
1762             TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) {
1763       unsigned ShAmt = *KnownSA;
1764       if (ShAmt == 0)
1765         return TLO.CombineTo(Op, Op0);
1766 
1767       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1768       // single shift.  We can do this if the bottom bits (which are shifted
1769       // out) are never demanded.
1770       // TODO - support non-uniform vector amounts.
1771       if (Op0.getOpcode() == ISD::SRL) {
1772         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1773           if (std::optional<uint64_t> InnerSA =
1774                   TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
1775             unsigned C1 = *InnerSA;
1776             unsigned Opc = ISD::SHL;
1777             int Diff = ShAmt - C1;
1778             if (Diff < 0) {
1779               Diff = -Diff;
1780               Opc = ISD::SRL;
1781             }
1782             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1783             return TLO.CombineTo(
1784                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1785           }
1786         }
1787       }
1788 
1789       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1790       // are not demanded. This will likely allow the anyext to be folded away.
1791       // TODO - support non-uniform vector amounts.
1792       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1793         SDValue InnerOp = Op0.getOperand(0);
1794         EVT InnerVT = InnerOp.getValueType();
1795         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1796         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1797             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1798           SDValue NarrowShl = TLO.DAG.getNode(
1799               ISD::SHL, dl, InnerVT, InnerOp,
1800               TLO.DAG.getShiftAmountConstant(ShAmt, InnerVT, dl));
1801           return TLO.CombineTo(
1802               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1803         }
1804 
1805         // Repeat the SHL optimization above in cases where an extension
1806         // intervenes: (shl (anyext (shr x, c1)), c2) to
1807         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1808         // aren't demanded (as above) and that the shifted upper c1 bits of
1809         // x aren't demanded.
1810         // TODO - support non-uniform vector amounts.
1811         if (InnerOp.getOpcode() == ISD::SRL && Op0.hasOneUse() &&
1812             InnerOp.hasOneUse()) {
1813           if (std::optional<uint64_t> SA2 = TLO.DAG.getValidShiftAmount(
1814                   InnerOp, DemandedElts, Depth + 2)) {
1815             unsigned InnerShAmt = *SA2;
1816             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1817                 DemandedBits.getActiveBits() <=
1818                     (InnerBits - InnerShAmt + ShAmt) &&
1819                 DemandedBits.countr_zero() >= ShAmt) {
1820               SDValue NewSA =
1821                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1822               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1823                                                InnerOp.getOperand(0));
1824               return TLO.CombineTo(
1825                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1826             }
1827           }
1828         }
1829       }
1830 
1831       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1832       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1833                                Depth + 1)) {
1834         // Disable the nsw and nuw flags. We can no longer guarantee that we
1835         // won't wrap after simplification.
1836         Op->dropFlags(SDNodeFlags::NoWrap);
1837         return true;
1838       }
1839       Known.Zero <<= ShAmt;
1840       Known.One <<= ShAmt;
1841       // low bits known zero.
1842       Known.Zero.setLowBits(ShAmt);
1843 
1844       // Attempt to avoid multi-use ops if we don't need anything from them.
1845       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1846         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1847             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1848         if (DemandedOp0) {
1849           SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1);
1850           return TLO.CombineTo(Op, NewOp);
1851         }
1852       }
1853 
1854       // TODO: Can we merge this fold with the one below?
1855       // Try shrinking the operation as long as the shift amount will still be
1856       // in range.
1857       if (ShAmt < DemandedBits.getActiveBits() && !VT.isVector() &&
1858           Op.getNode()->hasOneUse()) {
1859         // Search for the smallest integer type with free casts to and from
1860         // Op's type. For expedience, just check power-of-2 integer types.
1861         unsigned DemandedSize = DemandedBits.getActiveBits();
1862         for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize);
1863              SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1864           EVT SmallVT = EVT::getIntegerVT(*TLO.DAG.getContext(), SmallVTBits);
1865           if (isNarrowingProfitable(Op.getNode(), VT, SmallVT) &&
1866               isTypeDesirableForOp(ISD::SHL, SmallVT) &&
1867               isTruncateFree(VT, SmallVT) && isZExtFree(SmallVT, VT) &&
1868               (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, SmallVT))) {
1869             assert(DemandedSize <= SmallVTBits &&
1870                    "Narrowed below demanded bits?");
1871             // We found a type with free casts.
1872             SDValue NarrowShl = TLO.DAG.getNode(
1873                 ISD::SHL, dl, SmallVT,
1874                 TLO.DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
1875                 TLO.DAG.getShiftAmountConstant(ShAmt, SmallVT, dl));
1876             return TLO.CombineTo(
1877                 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1878           }
1879         }
1880       }
1881 
1882       // Narrow shift to lower half - similar to ShrinkDemandedOp.
1883       // (shl i64:x, K) -> (i64 zero_extend (shl (i32 (trunc i64:x)), K))
1884       // Only do this if we demand the upper half so the knownbits are correct.
1885       unsigned HalfWidth = BitWidth / 2;
1886       if ((BitWidth % 2) == 0 && !VT.isVector() && ShAmt < HalfWidth &&
1887           DemandedBits.countLeadingOnes() >= HalfWidth) {
1888         EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), HalfWidth);
1889         if (isNarrowingProfitable(Op.getNode(), VT, HalfVT) &&
1890             isTypeDesirableForOp(ISD::SHL, HalfVT) &&
1891             isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) &&
1892             (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, HalfVT))) {
1893           // If we're demanding the upper bits at all, we must ensure
1894           // that the upper bits of the shift result are known to be zero,
1895           // which is equivalent to the narrow shift being NUW.
1896           if (bool IsNUW = (Known.countMinLeadingZeros() >= HalfWidth)) {
1897             bool IsNSW = Known.countMinSignBits() > HalfWidth;
1898             SDNodeFlags Flags;
1899             Flags.setNoSignedWrap(IsNSW);
1900             Flags.setNoUnsignedWrap(IsNUW);
1901             SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0);
1902             SDValue NewShiftAmt =
1903                 TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl);
1904             SDValue NewShift = TLO.DAG.getNode(ISD::SHL, dl, HalfVT, NewOp,
1905                                                NewShiftAmt, Flags);
1906             SDValue NewExt =
1907                 TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift);
1908             return TLO.CombineTo(Op, NewExt);
1909           }
1910         }
1911       }
1912     } else {
1913       // This is a variable shift, so we can't shift the demand mask by a known
1914       // amount. But if we are not demanding high bits, then we are not
1915       // demanding those bits from the pre-shifted operand either.
1916       if (unsigned CTLZ = DemandedBits.countl_zero()) {
1917         APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ));
1918         if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO,
1919                                  Depth + 1)) {
1920           // Disable the nsw and nuw flags. We can no longer guarantee that we
1921           // won't wrap after simplification.
1922           Op->dropFlags(SDNodeFlags::NoWrap);
1923           return true;
1924         }
1925         Known.resetAll();
1926       }
1927     }
1928 
1929     // If we are only demanding sign bits then we can use the shift source
1930     // directly.
1931     if (std::optional<uint64_t> MaxSA =
1932             TLO.DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
1933       unsigned ShAmt = *MaxSA;
1934       unsigned NumSignBits =
1935           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1936       unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero();
1937       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1938         return TLO.CombineTo(Op, Op0);
1939     }
1940     break;
1941   }
1942   case ISD::SRL: {
1943     SDValue Op0 = Op.getOperand(0);
1944     SDValue Op1 = Op.getOperand(1);
1945     EVT ShiftVT = Op1.getValueType();
1946 
1947     if (std::optional<uint64_t> KnownSA =
1948             TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) {
1949       unsigned ShAmt = *KnownSA;
1950       if (ShAmt == 0)
1951         return TLO.CombineTo(Op, Op0);
1952 
1953       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1954       // single shift.  We can do this if the top bits (which are shifted out)
1955       // are never demanded.
1956       // TODO - support non-uniform vector amounts.
1957       if (Op0.getOpcode() == ISD::SHL) {
1958         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1959           if (std::optional<uint64_t> InnerSA =
1960                   TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
1961             unsigned C1 = *InnerSA;
1962             unsigned Opc = ISD::SRL;
1963             int Diff = ShAmt - C1;
1964             if (Diff < 0) {
1965               Diff = -Diff;
1966               Opc = ISD::SHL;
1967             }
1968             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1969             return TLO.CombineTo(
1970                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1971           }
1972         }
1973       }
1974 
1975       // If this is (srl (sra X, C1), ShAmt), see if we can combine this into a
1976       // single sra. We can do this if the top bits are never demanded.
1977       if (Op0.getOpcode() == ISD::SRA && Op0.hasOneUse()) {
1978         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1979           if (std::optional<uint64_t> InnerSA =
1980                   TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
1981             unsigned C1 = *InnerSA;
1982             // Clamp the combined shift amount if it exceeds the bit width.
1983             unsigned Combined = std::min(C1 + ShAmt, BitWidth - 1);
1984             SDValue NewSA = TLO.DAG.getConstant(Combined, dl, ShiftVT);
1985             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRA, dl, VT,
1986                                                      Op0.getOperand(0), NewSA));
1987           }
1988         }
1989       }
1990 
1991       APInt InDemandedMask = (DemandedBits << ShAmt);
1992 
1993       // If the shift is exact, then it does demand the low bits (and knows that
1994       // they are zero).
1995       if (Op->getFlags().hasExact())
1996         InDemandedMask.setLowBits(ShAmt);
1997 
1998       // Narrow shift to lower half - similar to ShrinkDemandedOp.
1999       // (srl i64:x, K) -> (i64 zero_extend (srl (i32 (trunc i64:x)), K))
2000       if ((BitWidth % 2) == 0 && !VT.isVector()) {
2001         APInt HiBits = APInt::getHighBitsSet(BitWidth, BitWidth / 2);
2002         EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), BitWidth / 2);
2003         if (isNarrowingProfitable(Op.getNode(), VT, HalfVT) &&
2004             isTypeDesirableForOp(ISD::SRL, HalfVT) &&
2005             isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) &&
2006             (!TLO.LegalOperations() || isOperationLegal(ISD::SRL, HalfVT)) &&
2007             ((InDemandedMask.countLeadingZeros() >= (BitWidth / 2)) ||
2008              TLO.DAG.MaskedValueIsZero(Op0, HiBits))) {
2009           SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0);
2010           SDValue NewShiftAmt =
2011               TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl);
2012           SDValue NewShift =
2013               TLO.DAG.getNode(ISD::SRL, dl, HalfVT, NewOp, NewShiftAmt);
2014           return TLO.CombineTo(
2015               Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift));
2016         }
2017       }
2018 
2019       // Compute the new bits that are at the top now.
2020       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
2021                                Depth + 1))
2022         return true;
2023       Known.Zero.lshrInPlace(ShAmt);
2024       Known.One.lshrInPlace(ShAmt);
2025       // High bits known zero.
2026       Known.Zero.setHighBits(ShAmt);
2027 
2028       // Attempt to avoid multi-use ops if we don't need anything from them.
2029       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2030         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2031             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
2032         if (DemandedOp0) {
2033           SDValue NewOp = TLO.DAG.getNode(ISD::SRL, dl, VT, DemandedOp0, Op1);
2034           return TLO.CombineTo(Op, NewOp);
2035         }
2036       }
2037     } else {
2038       // Use generic knownbits computation as it has support for non-uniform
2039       // shift amounts.
2040       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2041     }
2042 
2043     // If we are only demanding sign bits then we can use the shift source
2044     // directly.
2045     if (std::optional<uint64_t> MaxSA =
2046             TLO.DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
2047       unsigned ShAmt = *MaxSA;
2048       // Must already be signbits in DemandedBits bounds, and can't demand any
2049       // shifted in zeroes.
2050       if (DemandedBits.countl_zero() >= ShAmt) {
2051         unsigned NumSignBits =
2052             TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
2053         if (DemandedBits.countr_zero() >= (BitWidth - NumSignBits))
2054           return TLO.CombineTo(Op, Op0);
2055       }
2056     }
2057 
2058     // Try to match AVG patterns (after shift simplification).
2059     if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits,
2060                                         DemandedElts, Depth + 1))
2061       return TLO.CombineTo(Op, AVG);
2062 
2063     break;
2064   }
2065   case ISD::SRA: {
2066     SDValue Op0 = Op.getOperand(0);
2067     SDValue Op1 = Op.getOperand(1);
2068     EVT ShiftVT = Op1.getValueType();
2069 
2070     // If we only want bits that already match the signbit then we don't need
2071     // to shift.
2072     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countr_zero();
2073     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
2074         NumHiDemandedBits)
2075       return TLO.CombineTo(Op, Op0);
2076 
2077     // If this is an arithmetic shift right and only the low-bit is set, we can
2078     // always convert this into a logical shr, even if the shift amount is
2079     // variable.  The low bit of the shift cannot be an input sign bit unless
2080     // the shift amount is >= the size of the datatype, which is undefined.
2081     if (DemandedBits.isOne())
2082       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
2083 
2084     if (std::optional<uint64_t> KnownSA =
2085             TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) {
2086       unsigned ShAmt = *KnownSA;
2087       if (ShAmt == 0)
2088         return TLO.CombineTo(Op, Op0);
2089 
2090       // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target
2091       // supports sext_inreg.
2092       if (Op0.getOpcode() == ISD::SHL) {
2093         if (std::optional<uint64_t> InnerSA =
2094                 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
2095           unsigned LowBits = BitWidth - ShAmt;
2096           EVT ExtVT = EVT::getIntegerVT(*TLO.DAG.getContext(), LowBits);
2097           if (VT.isVector())
2098             ExtVT = EVT::getVectorVT(*TLO.DAG.getContext(), ExtVT,
2099                                      VT.getVectorElementCount());
2100 
2101           if (*InnerSA == ShAmt) {
2102             if (!TLO.LegalOperations() ||
2103                 getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) == Legal)
2104               return TLO.CombineTo(
2105                   Op, TLO.DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT,
2106                                       Op0.getOperand(0),
2107                                       TLO.DAG.getValueType(ExtVT)));
2108 
2109             // Even if we can't convert to sext_inreg, we might be able to
2110             // remove this shift pair if the input is already sign extended.
2111             unsigned NumSignBits =
2112                 TLO.DAG.ComputeNumSignBits(Op0.getOperand(0), DemandedElts);
2113             if (NumSignBits > ShAmt)
2114               return TLO.CombineTo(Op, Op0.getOperand(0));
2115           }
2116         }
2117       }
2118 
2119       APInt InDemandedMask = (DemandedBits << ShAmt);
2120 
2121       // If the shift is exact, then it does demand the low bits (and knows that
2122       // they are zero).
2123       if (Op->getFlags().hasExact())
2124         InDemandedMask.setLowBits(ShAmt);
2125 
2126       // If any of the demanded bits are produced by the sign extension, we also
2127       // demand the input sign bit.
2128       if (DemandedBits.countl_zero() < ShAmt)
2129         InDemandedMask.setSignBit();
2130 
2131       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
2132                                Depth + 1))
2133         return true;
2134       Known.Zero.lshrInPlace(ShAmt);
2135       Known.One.lshrInPlace(ShAmt);
2136 
2137       // If the input sign bit is known to be zero, or if none of the top bits
2138       // are demanded, turn this into an unsigned shift right.
2139       if (Known.Zero[BitWidth - ShAmt - 1] ||
2140           DemandedBits.countl_zero() >= ShAmt) {
2141         SDNodeFlags Flags;
2142         Flags.setExact(Op->getFlags().hasExact());
2143         return TLO.CombineTo(
2144             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
2145       }
2146 
2147       int Log2 = DemandedBits.exactLogBase2();
2148       if (Log2 >= 0) {
2149         // The bit must come from the sign.
2150         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
2151         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
2152       }
2153 
2154       if (Known.One[BitWidth - ShAmt - 1])
2155         // New bits are known one.
2156         Known.One.setHighBits(ShAmt);
2157 
2158       // Attempt to avoid multi-use ops if we don't need anything from them.
2159       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2160         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2161             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
2162         if (DemandedOp0) {
2163           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
2164           return TLO.CombineTo(Op, NewOp);
2165         }
2166       }
2167     }
2168 
2169     // Try to match AVG patterns (after shift simplification).
2170     if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits,
2171                                         DemandedElts, Depth + 1))
2172       return TLO.CombineTo(Op, AVG);
2173 
2174     break;
2175   }
2176   case ISD::FSHL:
2177   case ISD::FSHR: {
2178     SDValue Op0 = Op.getOperand(0);
2179     SDValue Op1 = Op.getOperand(1);
2180     SDValue Op2 = Op.getOperand(2);
2181     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
2182 
2183     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
2184       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
2185 
2186       // For fshl, 0-shift returns the 1st arg.
2187       // For fshr, 0-shift returns the 2nd arg.
2188       if (Amt == 0) {
2189         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
2190                                  Known, TLO, Depth + 1))
2191           return true;
2192         break;
2193       }
2194 
2195       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
2196       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
2197       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
2198       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
2199       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
2200                                Depth + 1))
2201         return true;
2202       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
2203                                Depth + 1))
2204         return true;
2205 
2206       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
2207       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
2208       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
2209       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
2210       Known = Known.unionWith(Known2);
2211 
2212       // Attempt to avoid multi-use ops if we don't need anything from them.
2213       if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() ||
2214           !DemandedElts.isAllOnes()) {
2215         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2216             Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1);
2217         SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2218             Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1);
2219         if (DemandedOp0 || DemandedOp1) {
2220           DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
2221           DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
2222           SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0,
2223                                           DemandedOp1, Op2);
2224           return TLO.CombineTo(Op, NewOp);
2225         }
2226       }
2227     }
2228 
2229     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2230     if (isPowerOf2_32(BitWidth)) {
2231       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
2232       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
2233                                Known2, TLO, Depth + 1))
2234         return true;
2235     }
2236     break;
2237   }
2238   case ISD::ROTL:
2239   case ISD::ROTR: {
2240     SDValue Op0 = Op.getOperand(0);
2241     SDValue Op1 = Op.getOperand(1);
2242     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
2243 
2244     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
2245     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
2246       return TLO.CombineTo(Op, Op0);
2247 
2248     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
2249       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
2250       unsigned RevAmt = BitWidth - Amt;
2251 
2252       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
2253       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
2254       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
2255       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
2256                                Depth + 1))
2257         return true;
2258 
2259       // rot*(x, 0) --> x
2260       if (Amt == 0)
2261         return TLO.CombineTo(Op, Op0);
2262 
2263       // See if we don't demand either half of the rotated bits.
2264       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
2265           DemandedBits.countr_zero() >= (IsROTL ? Amt : RevAmt)) {
2266         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
2267         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
2268       }
2269       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
2270           DemandedBits.countl_zero() >= (IsROTL ? RevAmt : Amt)) {
2271         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
2272         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
2273       }
2274     }
2275 
2276     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2277     if (isPowerOf2_32(BitWidth)) {
2278       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
2279       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
2280                                Depth + 1))
2281         return true;
2282     }
2283     break;
2284   }
2285   case ISD::SMIN:
2286   case ISD::SMAX:
2287   case ISD::UMIN:
2288   case ISD::UMAX: {
2289     unsigned Opc = Op.getOpcode();
2290     SDValue Op0 = Op.getOperand(0);
2291     SDValue Op1 = Op.getOperand(1);
2292 
2293     // If we're only demanding signbits, then we can simplify to OR/AND node.
2294     unsigned BitOp =
2295         (Opc == ISD::SMIN || Opc == ISD::UMAX) ? ISD::OR : ISD::AND;
2296     unsigned NumSignBits =
2297         std::min(TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1),
2298                  TLO.DAG.ComputeNumSignBits(Op1, DemandedElts, Depth + 1));
2299     unsigned NumDemandedUpperBits = BitWidth - DemandedBits.countr_zero();
2300     if (NumSignBits >= NumDemandedUpperBits)
2301       return TLO.CombineTo(Op, TLO.DAG.getNode(BitOp, SDLoc(Op), VT, Op0, Op1));
2302 
2303     // Check if one arg is always less/greater than (or equal) to the other arg.
2304     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
2305     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
2306     switch (Opc) {
2307     case ISD::SMIN:
2308       if (std::optional<bool> IsSLE = KnownBits::sle(Known0, Known1))
2309         return TLO.CombineTo(Op, *IsSLE ? Op0 : Op1);
2310       if (std::optional<bool> IsSLT = KnownBits::slt(Known0, Known1))
2311         return TLO.CombineTo(Op, *IsSLT ? Op0 : Op1);
2312       Known = KnownBits::smin(Known0, Known1);
2313       break;
2314     case ISD::SMAX:
2315       if (std::optional<bool> IsSGE = KnownBits::sge(Known0, Known1))
2316         return TLO.CombineTo(Op, *IsSGE ? Op0 : Op1);
2317       if (std::optional<bool> IsSGT = KnownBits::sgt(Known0, Known1))
2318         return TLO.CombineTo(Op, *IsSGT ? Op0 : Op1);
2319       Known = KnownBits::smax(Known0, Known1);
2320       break;
2321     case ISD::UMIN:
2322       if (std::optional<bool> IsULE = KnownBits::ule(Known0, Known1))
2323         return TLO.CombineTo(Op, *IsULE ? Op0 : Op1);
2324       if (std::optional<bool> IsULT = KnownBits::ult(Known0, Known1))
2325         return TLO.CombineTo(Op, *IsULT ? Op0 : Op1);
2326       Known = KnownBits::umin(Known0, Known1);
2327       break;
2328     case ISD::UMAX:
2329       if (std::optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
2330         return TLO.CombineTo(Op, *IsUGE ? Op0 : Op1);
2331       if (std::optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
2332         return TLO.CombineTo(Op, *IsUGT ? Op0 : Op1);
2333       Known = KnownBits::umax(Known0, Known1);
2334       break;
2335     }
2336     break;
2337   }
2338   case ISD::BITREVERSE: {
2339     SDValue Src = Op.getOperand(0);
2340     APInt DemandedSrcBits = DemandedBits.reverseBits();
2341     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2342                              Depth + 1))
2343       return true;
2344     Known.One = Known2.One.reverseBits();
2345     Known.Zero = Known2.Zero.reverseBits();
2346     break;
2347   }
2348   case ISD::BSWAP: {
2349     SDValue Src = Op.getOperand(0);
2350 
2351     // If the only bits demanded come from one byte of the bswap result,
2352     // just shift the input byte into position to eliminate the bswap.
2353     unsigned NLZ = DemandedBits.countl_zero();
2354     unsigned NTZ = DemandedBits.countr_zero();
2355 
2356     // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
2357     // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
2358     // have 14 leading zeros, round to 8.
2359     NLZ = alignDown(NLZ, 8);
2360     NTZ = alignDown(NTZ, 8);
2361     // If we need exactly one byte, we can do this transformation.
2362     if (BitWidth - NLZ - NTZ == 8) {
2363       // Replace this with either a left or right shift to get the byte into
2364       // the right place.
2365       unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
2366       if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
2367         unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
2368         SDValue ShAmt = TLO.DAG.getShiftAmountConstant(ShiftAmount, VT, dl);
2369         SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
2370         return TLO.CombineTo(Op, NewOp);
2371       }
2372     }
2373 
2374     APInt DemandedSrcBits = DemandedBits.byteSwap();
2375     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2376                              Depth + 1))
2377       return true;
2378     Known.One = Known2.One.byteSwap();
2379     Known.Zero = Known2.Zero.byteSwap();
2380     break;
2381   }
2382   case ISD::CTPOP: {
2383     // If only 1 bit is demanded, replace with PARITY as long as we're before
2384     // op legalization.
2385     // FIXME: Limit to scalars for now.
2386     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
2387       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
2388                                                Op.getOperand(0)));
2389 
2390     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2391     break;
2392   }
2393   case ISD::SIGN_EXTEND_INREG: {
2394     SDValue Op0 = Op.getOperand(0);
2395     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2396     unsigned ExVTBits = ExVT.getScalarSizeInBits();
2397 
2398     // If we only care about the highest bit, don't bother shifting right.
2399     if (DemandedBits.isSignMask()) {
2400       unsigned MinSignedBits =
2401           TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
2402       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2403       // However if the input is already sign extended we expect the sign
2404       // extension to be dropped altogether later and do not simplify.
2405       if (!AlreadySignExtended) {
2406         // Compute the correct shift amount type, which must be getShiftAmountTy
2407         // for scalar types after legalization.
2408         SDValue ShiftAmt =
2409             TLO.DAG.getShiftAmountConstant(BitWidth - ExVTBits, VT, dl);
2410         return TLO.CombineTo(Op,
2411                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
2412       }
2413     }
2414 
2415     // If none of the extended bits are demanded, eliminate the sextinreg.
2416     if (DemandedBits.getActiveBits() <= ExVTBits)
2417       return TLO.CombineTo(Op, Op0);
2418 
2419     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
2420 
2421     // Since the sign extended bits are demanded, we know that the sign
2422     // bit is demanded.
2423     InputDemandedBits.setBit(ExVTBits - 1);
2424 
2425     if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO,
2426                              Depth + 1))
2427       return true;
2428 
2429     // If the sign bit of the input is known set or clear, then we know the
2430     // top bits of the result.
2431 
2432     // If the input sign bit is known zero, convert this into a zero extension.
2433     if (Known.Zero[ExVTBits - 1])
2434       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
2435 
2436     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
2437     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
2438       Known.One.setBitsFrom(ExVTBits);
2439       Known.Zero &= Mask;
2440     } else { // Input sign bit unknown
2441       Known.Zero &= Mask;
2442       Known.One &= Mask;
2443     }
2444     break;
2445   }
2446   case ISD::BUILD_PAIR: {
2447     EVT HalfVT = Op.getOperand(0).getValueType();
2448     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
2449 
2450     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
2451     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
2452 
2453     KnownBits KnownLo, KnownHi;
2454 
2455     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
2456       return true;
2457 
2458     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
2459       return true;
2460 
2461     Known = KnownHi.concat(KnownLo);
2462     break;
2463   }
2464   case ISD::ZERO_EXTEND_VECTOR_INREG:
2465     if (VT.isScalableVector())
2466       return false;
2467     [[fallthrough]];
2468   case ISD::ZERO_EXTEND: {
2469     SDValue Src = Op.getOperand(0);
2470     EVT SrcVT = Src.getValueType();
2471     unsigned InBits = SrcVT.getScalarSizeInBits();
2472     unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2473     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
2474 
2475     // If none of the top bits are demanded, convert this into an any_extend.
2476     if (DemandedBits.getActiveBits() <= InBits) {
2477       // If we only need the non-extended bits of the bottom element
2478       // then we can just bitcast to the result.
2479       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2480           VT.getSizeInBits() == SrcVT.getSizeInBits())
2481         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2482 
2483       unsigned Opc =
2484           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2485       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2486         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2487     }
2488 
2489     APInt InDemandedBits = DemandedBits.trunc(InBits);
2490     APInt InDemandedElts = DemandedElts.zext(InElts);
2491     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2492                              Depth + 1)) {
2493       Op->dropFlags(SDNodeFlags::NonNeg);
2494       return true;
2495     }
2496     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2497     Known = Known.zext(BitWidth);
2498 
2499     // Attempt to avoid multi-use ops if we don't need anything from them.
2500     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2501             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2502       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2503     break;
2504   }
2505   case ISD::SIGN_EXTEND_VECTOR_INREG:
2506     if (VT.isScalableVector())
2507       return false;
2508     [[fallthrough]];
2509   case ISD::SIGN_EXTEND: {
2510     SDValue Src = Op.getOperand(0);
2511     EVT SrcVT = Src.getValueType();
2512     unsigned InBits = SrcVT.getScalarSizeInBits();
2513     unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2514     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
2515 
2516     APInt InDemandedElts = DemandedElts.zext(InElts);
2517     APInt InDemandedBits = DemandedBits.trunc(InBits);
2518 
2519     // Since some of the sign extended bits are demanded, we know that the sign
2520     // bit is demanded.
2521     InDemandedBits.setBit(InBits - 1);
2522 
2523     // If none of the top bits are demanded, convert this into an any_extend.
2524     if (DemandedBits.getActiveBits() <= InBits) {
2525       // If we only need the non-extended bits of the bottom element
2526       // then we can just bitcast to the result.
2527       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2528           VT.getSizeInBits() == SrcVT.getSizeInBits())
2529         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2530 
2531       // Don't lose an all signbits 0/-1 splat on targets with 0/-1 booleans.
2532       if (getBooleanContents(VT) != ZeroOrNegativeOneBooleanContent ||
2533           TLO.DAG.ComputeNumSignBits(Src, InDemandedElts, Depth + 1) !=
2534               InBits) {
2535         unsigned Opc =
2536             IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2537         if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2538           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2539       }
2540     }
2541 
2542     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2543                              Depth + 1))
2544       return true;
2545     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2546 
2547     // If the sign bit is known one, the top bits match.
2548     Known = Known.sext(BitWidth);
2549 
2550     // If the sign bit is known zero, convert this to a zero extend.
2551     if (Known.isNonNegative()) {
2552       unsigned Opc =
2553           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
2554       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) {
2555         SDNodeFlags Flags;
2556         if (!IsVecInReg)
2557           Flags |= SDNodeFlags::NonNeg;
2558         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src, Flags));
2559       }
2560     }
2561 
2562     // Attempt to avoid multi-use ops if we don't need anything from them.
2563     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2564             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2565       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2566     break;
2567   }
2568   case ISD::ANY_EXTEND_VECTOR_INREG:
2569     if (VT.isScalableVector())
2570       return false;
2571     [[fallthrough]];
2572   case ISD::ANY_EXTEND: {
2573     SDValue Src = Op.getOperand(0);
2574     EVT SrcVT = Src.getValueType();
2575     unsigned InBits = SrcVT.getScalarSizeInBits();
2576     unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2577     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2578 
2579     // If we only need the bottom element then we can just bitcast.
2580     // TODO: Handle ANY_EXTEND?
2581     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2582         VT.getSizeInBits() == SrcVT.getSizeInBits())
2583       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2584 
2585     APInt InDemandedBits = DemandedBits.trunc(InBits);
2586     APInt InDemandedElts = DemandedElts.zext(InElts);
2587     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2588                              Depth + 1))
2589       return true;
2590     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2591     Known = Known.anyext(BitWidth);
2592 
2593     // Attempt to avoid multi-use ops if we don't need anything from them.
2594     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2595             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2596       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2597     break;
2598   }
2599   case ISD::TRUNCATE: {
2600     SDValue Src = Op.getOperand(0);
2601 
2602     // Simplify the input, using demanded bit information, and compute the known
2603     // zero/one bits live out.
2604     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2605     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2606     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2607                              Depth + 1))
2608       return true;
2609     Known = Known.trunc(BitWidth);
2610 
2611     // Attempt to avoid multi-use ops if we don't need anything from them.
2612     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2613             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2614       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2615 
2616     // If the input is only used by this truncate, see if we can shrink it based
2617     // on the known demanded bits.
2618     switch (Src.getOpcode()) {
2619     default:
2620       break;
2621     case ISD::SRL:
2622       // Shrink SRL by a constant if none of the high bits shifted in are
2623       // demanded.
2624       if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2625         // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2626         // undesirable.
2627         break;
2628 
2629       if (Src.getNode()->hasOneUse()) {
2630         if (isTruncateFree(Src, VT) &&
2631             !isTruncateFree(Src.getValueType(), VT)) {
2632           // If truncate is only free at trunc(srl), do not turn it into
2633           // srl(trunc). The check is done by first check the truncate is free
2634           // at Src's opcode(srl), then check the truncate is not done by
2635           // referencing sub-register. In test, if both trunc(srl) and
2636           // srl(trunc)'s trunc are free, srl(trunc) performs better. If only
2637           // trunc(srl)'s trunc is free, trunc(srl) is better.
2638           break;
2639         }
2640 
2641         std::optional<uint64_t> ShAmtC =
2642             TLO.DAG.getValidShiftAmount(Src, DemandedElts, Depth + 2);
2643         if (!ShAmtC || *ShAmtC >= BitWidth)
2644           break;
2645         uint64_t ShVal = *ShAmtC;
2646 
2647         APInt HighBits =
2648             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2649         HighBits.lshrInPlace(ShVal);
2650         HighBits = HighBits.trunc(BitWidth);
2651         if (!(HighBits & DemandedBits)) {
2652           // None of the shifted in bits are needed.  Add a truncate of the
2653           // shift input, then shift it.
2654           SDValue NewShAmt = TLO.DAG.getShiftAmountConstant(ShVal, VT, dl);
2655           SDValue NewTrunc =
2656               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2657           return TLO.CombineTo(
2658               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2659         }
2660       }
2661       break;
2662     }
2663 
2664     break;
2665   }
2666   case ISD::AssertZext: {
2667     // AssertZext demands all of the high bits, plus any of the low bits
2668     // demanded by its users.
2669     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2670     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2671     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2672                              TLO, Depth + 1))
2673       return true;
2674 
2675     Known.Zero |= ~InMask;
2676     Known.One &= (~Known.Zero);
2677     break;
2678   }
2679   case ISD::EXTRACT_VECTOR_ELT: {
2680     SDValue Src = Op.getOperand(0);
2681     SDValue Idx = Op.getOperand(1);
2682     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2683     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2684 
2685     if (SrcEltCnt.isScalable())
2686       return false;
2687 
2688     // Demand the bits from every vector element without a constant index.
2689     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2690     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2691     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2692       if (CIdx->getAPIntValue().ult(NumSrcElts))
2693         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2694 
2695     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2696     // anything about the extended bits.
2697     APInt DemandedSrcBits = DemandedBits;
2698     if (BitWidth > EltBitWidth)
2699       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2700 
2701     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2702                              Depth + 1))
2703       return true;
2704 
2705     // Attempt to avoid multi-use ops if we don't need anything from them.
2706     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2707       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2708               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2709         SDValue NewOp =
2710             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2711         return TLO.CombineTo(Op, NewOp);
2712       }
2713     }
2714 
2715     Known = Known2;
2716     if (BitWidth > EltBitWidth)
2717       Known = Known.anyext(BitWidth);
2718     break;
2719   }
2720   case ISD::BITCAST: {
2721     if (VT.isScalableVector())
2722       return false;
2723     SDValue Src = Op.getOperand(0);
2724     EVT SrcVT = Src.getValueType();
2725     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2726 
2727     // If this is an FP->Int bitcast and if the sign bit is the only
2728     // thing demanded, turn this into a FGETSIGN.
2729     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2730         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2731         SrcVT.isFloatingPoint()) {
2732       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2733       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2734       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2735           SrcVT != MVT::f128) {
2736         // Cannot eliminate/lower SHL for f128 yet.
2737         EVT Ty = OpVTLegal ? VT : MVT::i32;
2738         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2739         // place.  We expect the SHL to be eliminated by other optimizations.
2740         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2741         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2742         if (!OpVTLegal && OpVTSizeInBits > 32)
2743           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2744         unsigned ShVal = Op.getValueSizeInBits() - 1;
2745         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2746         return TLO.CombineTo(Op,
2747                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2748       }
2749     }
2750 
2751     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2752     // Demand the elt/bit if any of the original elts/bits are demanded.
2753     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2754       unsigned Scale = BitWidth / NumSrcEltBits;
2755       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2756       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2757       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2758       for (unsigned i = 0; i != Scale; ++i) {
2759         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2760         unsigned BitOffset = EltOffset * NumSrcEltBits;
2761         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2762         if (!Sub.isZero()) {
2763           DemandedSrcBits |= Sub;
2764           for (unsigned j = 0; j != NumElts; ++j)
2765             if (DemandedElts[j])
2766               DemandedSrcElts.setBit((j * Scale) + i);
2767         }
2768       }
2769 
2770       APInt KnownSrcUndef, KnownSrcZero;
2771       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2772                                      KnownSrcZero, TLO, Depth + 1))
2773         return true;
2774 
2775       KnownBits KnownSrcBits;
2776       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2777                                KnownSrcBits, TLO, Depth + 1))
2778         return true;
2779     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2780       // TODO - bigendian once we have test coverage.
2781       unsigned Scale = NumSrcEltBits / BitWidth;
2782       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2783       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2784       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2785       for (unsigned i = 0; i != NumElts; ++i)
2786         if (DemandedElts[i]) {
2787           unsigned Offset = (i % Scale) * BitWidth;
2788           DemandedSrcBits.insertBits(DemandedBits, Offset);
2789           DemandedSrcElts.setBit(i / Scale);
2790         }
2791 
2792       if (SrcVT.isVector()) {
2793         APInt KnownSrcUndef, KnownSrcZero;
2794         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2795                                        KnownSrcZero, TLO, Depth + 1))
2796           return true;
2797       }
2798 
2799       KnownBits KnownSrcBits;
2800       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2801                                KnownSrcBits, TLO, Depth + 1))
2802         return true;
2803 
2804       // Attempt to avoid multi-use ops if we don't need anything from them.
2805       if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2806         if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2807                 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2808           SDValue NewOp = TLO.DAG.getBitcast(VT, DemandedSrc);
2809           return TLO.CombineTo(Op, NewOp);
2810         }
2811       }
2812     }
2813 
2814     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2815     // recursive call where Known may be useful to the caller.
2816     if (Depth > 0) {
2817       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2818       return false;
2819     }
2820     break;
2821   }
2822   case ISD::MUL:
2823     if (DemandedBits.isPowerOf2()) {
2824       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
2825       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
2826       // odd (has LSB set), then the left-shifted low bit of X is the answer.
2827       unsigned CTZ = DemandedBits.countr_zero();
2828       ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
2829       if (C && C->getAPIntValue().countr_zero() == CTZ) {
2830         SDValue AmtC = TLO.DAG.getShiftAmountConstant(CTZ, VT, dl);
2831         SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
2832         return TLO.CombineTo(Op, Shl);
2833       }
2834     }
2835     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
2836     // X * X is odd iff X is odd.
2837     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
2838     if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
2839       SDValue One = TLO.DAG.getConstant(1, dl, VT);
2840       SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
2841       return TLO.CombineTo(Op, And1);
2842     }
2843     [[fallthrough]];
2844   case ISD::ADD:
2845   case ISD::SUB: {
2846     // Add, Sub, and Mul don't demand any bits in positions beyond that
2847     // of the highest bit demanded of them.
2848     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2849     SDNodeFlags Flags = Op.getNode()->getFlags();
2850     unsigned DemandedBitsLZ = DemandedBits.countl_zero();
2851     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2852     KnownBits KnownOp0, KnownOp1;
2853     auto GetDemandedBitsLHSMask = [&](APInt Demanded,
2854                                       const KnownBits &KnownRHS) {
2855       if (Op.getOpcode() == ISD::MUL)
2856         Demanded.clearHighBits(KnownRHS.countMinTrailingZeros());
2857       return Demanded;
2858     };
2859     if (SimplifyDemandedBits(Op1, LoMask, DemandedElts, KnownOp1, TLO,
2860                              Depth + 1) ||
2861         SimplifyDemandedBits(Op0, GetDemandedBitsLHSMask(LoMask, KnownOp1),
2862                              DemandedElts, KnownOp0, TLO, Depth + 1) ||
2863         // See if the operation should be performed at a smaller bit width.
2864         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2865       // Disable the nsw and nuw flags. We can no longer guarantee that we
2866       // won't wrap after simplification.
2867       Op->dropFlags(SDNodeFlags::NoWrap);
2868       return true;
2869     }
2870 
2871     // neg x with only low bit demanded is simply x.
2872     if (Op.getOpcode() == ISD::SUB && DemandedBits.isOne() &&
2873         isNullConstant(Op0))
2874       return TLO.CombineTo(Op, Op1);
2875 
2876     // Attempt to avoid multi-use ops if we don't need anything from them.
2877     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2878       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2879           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2880       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2881           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2882       if (DemandedOp0 || DemandedOp1) {
2883         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2884         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2885         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1,
2886                                         Flags & ~SDNodeFlags::NoWrap);
2887         return TLO.CombineTo(Op, NewOp);
2888       }
2889     }
2890 
2891     // If we have a constant operand, we may be able to turn it into -1 if we
2892     // do not demand the high bits. This can make the constant smaller to
2893     // encode, allow more general folding, or match specialized instruction
2894     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2895     // is probably not useful (and could be detrimental).
2896     ConstantSDNode *C = isConstOrConstSplat(Op1);
2897     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2898     if (C && !C->isAllOnes() && !C->isOne() &&
2899         (C->getAPIntValue() | HighMask).isAllOnes()) {
2900       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2901       // Disable the nsw and nuw flags. We can no longer guarantee that we
2902       // won't wrap after simplification.
2903       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1,
2904                                       Flags & ~SDNodeFlags::NoWrap);
2905       return TLO.CombineTo(Op, NewOp);
2906     }
2907 
2908     // Match a multiply with a disguised negated-power-of-2 and convert to a
2909     // an equivalent shift-left amount.
2910     // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2911     auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
2912       if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
2913         return 0;
2914 
2915       // Don't touch opaque constants. Also, ignore zero and power-of-2
2916       // multiplies. Those will get folded later.
2917       ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
2918       if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
2919           !MulC->getAPIntValue().isPowerOf2()) {
2920         APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
2921         if (UnmaskedC.isNegatedPowerOf2())
2922           return (-UnmaskedC).logBase2();
2923       }
2924       return 0;
2925     };
2926 
2927     auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y,
2928                        unsigned ShlAmt) {
2929       SDValue ShlAmtC = TLO.DAG.getShiftAmountConstant(ShlAmt, VT, dl);
2930       SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
2931       SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl);
2932       return TLO.CombineTo(Op, Res);
2933     };
2934 
2935     if (isOperationLegalOrCustom(ISD::SHL, VT)) {
2936       if (Op.getOpcode() == ISD::ADD) {
2937         // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2938         if (unsigned ShAmt = getShiftLeftAmt(Op0))
2939           return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt);
2940         // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
2941         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2942           return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt);
2943       }
2944       if (Op.getOpcode() == ISD::SUB) {
2945         // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
2946         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2947           return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt);
2948       }
2949     }
2950 
2951     if (Op.getOpcode() == ISD::MUL) {
2952       Known = KnownBits::mul(KnownOp0, KnownOp1);
2953     } else { // Op.getOpcode() is either ISD::ADD or ISD::SUB.
2954       Known = KnownBits::computeForAddSub(
2955           Op.getOpcode() == ISD::ADD, Flags.hasNoSignedWrap(),
2956           Flags.hasNoUnsignedWrap(), KnownOp0, KnownOp1);
2957     }
2958     break;
2959   }
2960   default:
2961     // We also ask the target about intrinsics (which could be specific to it).
2962     if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2963         Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
2964       // TODO: Probably okay to remove after audit; here to reduce change size
2965       // in initial enablement patch for scalable vectors
2966       if (Op.getValueType().isScalableVector())
2967         break;
2968       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2969                                             Known, TLO, Depth))
2970         return true;
2971       break;
2972     }
2973 
2974     // Just use computeKnownBits to compute output bits.
2975     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2976     break;
2977   }
2978 
2979   // If we know the value of all of the demanded bits, return this as a
2980   // constant.
2981   if (!isTargetCanonicalConstantNode(Op) &&
2982       DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2983     // Avoid folding to a constant if any OpaqueConstant is involved.
2984     const SDNode *N = Op.getNode();
2985     for (SDNode *Op :
2986          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2987       if (auto *C = dyn_cast<ConstantSDNode>(Op))
2988         if (C->isOpaque())
2989           return false;
2990     }
2991     if (VT.isInteger())
2992       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2993     if (VT.isFloatingPoint())
2994       return TLO.CombineTo(
2995           Op, TLO.DAG.getConstantFP(APFloat(VT.getFltSemantics(), Known.One),
2996                                     dl, VT));
2997   }
2998 
2999   // A multi use 'all demanded elts' simplify failed to find any knownbits.
3000   // Try again just for the original demanded elts.
3001   // Ensure we do this AFTER constant folding above.
3002   if (HasMultiUse && Known.isUnknown() && !OriginalDemandedElts.isAllOnes())
3003     Known = TLO.DAG.computeKnownBits(Op, OriginalDemandedElts, Depth);
3004 
3005   return false;
3006 }
3007 
3008 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
3009                                                 const APInt &DemandedElts,
3010                                                 DAGCombinerInfo &DCI) const {
3011   SelectionDAG &DAG = DCI.DAG;
3012   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
3013                         !DCI.isBeforeLegalizeOps());
3014 
3015   APInt KnownUndef, KnownZero;
3016   bool Simplified =
3017       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
3018   if (Simplified) {
3019     DCI.AddToWorklist(Op.getNode());
3020     DCI.CommitTargetLoweringOpt(TLO);
3021   }
3022 
3023   return Simplified;
3024 }
3025 
3026 /// Given a vector binary operation and known undefined elements for each input
3027 /// operand, compute whether each element of the output is undefined.
3028 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
3029                                          const APInt &UndefOp0,
3030                                          const APInt &UndefOp1) {
3031   EVT VT = BO.getValueType();
3032   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
3033          "Vector binop only");
3034 
3035   EVT EltVT = VT.getVectorElementType();
3036   unsigned NumElts = VT.isFixedLengthVector() ? VT.getVectorNumElements() : 1;
3037   assert(UndefOp0.getBitWidth() == NumElts &&
3038          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
3039 
3040   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
3041                                    const APInt &UndefVals) {
3042     if (UndefVals[Index])
3043       return DAG.getUNDEF(EltVT);
3044 
3045     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
3046       // Try hard to make sure that the getNode() call is not creating temporary
3047       // nodes. Ignore opaque integers because they do not constant fold.
3048       SDValue Elt = BV->getOperand(Index);
3049       auto *C = dyn_cast<ConstantSDNode>(Elt);
3050       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
3051         return Elt;
3052     }
3053 
3054     return SDValue();
3055   };
3056 
3057   APInt KnownUndef = APInt::getZero(NumElts);
3058   for (unsigned i = 0; i != NumElts; ++i) {
3059     // If both inputs for this element are either constant or undef and match
3060     // the element type, compute the constant/undef result for this element of
3061     // the vector.
3062     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
3063     // not handle FP constants. The code within getNode() should be refactored
3064     // to avoid the danger of creating a bogus temporary node here.
3065     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
3066     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
3067     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
3068       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
3069         KnownUndef.setBit(i);
3070   }
3071   return KnownUndef;
3072 }
3073 
3074 bool TargetLowering::SimplifyDemandedVectorElts(
3075     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
3076     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
3077     bool AssumeSingleUse) const {
3078   EVT VT = Op.getValueType();
3079   unsigned Opcode = Op.getOpcode();
3080   APInt DemandedElts = OriginalDemandedElts;
3081   unsigned NumElts = DemandedElts.getBitWidth();
3082   assert(VT.isVector() && "Expected vector op");
3083 
3084   KnownUndef = KnownZero = APInt::getZero(NumElts);
3085 
3086   if (!shouldSimplifyDemandedVectorElts(Op, TLO))
3087     return false;
3088 
3089   // TODO: For now we assume we know nothing about scalable vectors.
3090   if (VT.isScalableVector())
3091     return false;
3092 
3093   assert(VT.getVectorNumElements() == NumElts &&
3094          "Mask size mismatches value type element count!");
3095 
3096   // Undef operand.
3097   if (Op.isUndef()) {
3098     KnownUndef.setAllBits();
3099     return false;
3100   }
3101 
3102   // If Op has other users, assume that all elements are needed.
3103   if (!AssumeSingleUse && !Op.getNode()->hasOneUse())
3104     DemandedElts.setAllBits();
3105 
3106   // Not demanding any elements from Op.
3107   if (DemandedElts == 0) {
3108     KnownUndef.setAllBits();
3109     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3110   }
3111 
3112   // Limit search depth.
3113   if (Depth >= SelectionDAG::MaxRecursionDepth)
3114     return false;
3115 
3116   SDLoc DL(Op);
3117   unsigned EltSizeInBits = VT.getScalarSizeInBits();
3118   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
3119 
3120   // Helper for demanding the specified elements and all the bits of both binary
3121   // operands.
3122   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
3123     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
3124                                                            TLO.DAG, Depth + 1);
3125     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
3126                                                            TLO.DAG, Depth + 1);
3127     if (NewOp0 || NewOp1) {
3128       SDValue NewOp =
3129           TLO.DAG.getNode(Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0,
3130                           NewOp1 ? NewOp1 : Op1, Op->getFlags());
3131       return TLO.CombineTo(Op, NewOp);
3132     }
3133     return false;
3134   };
3135 
3136   switch (Opcode) {
3137   case ISD::SCALAR_TO_VECTOR: {
3138     if (!DemandedElts[0]) {
3139       KnownUndef.setAllBits();
3140       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3141     }
3142     SDValue ScalarSrc = Op.getOperand(0);
3143     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
3144       SDValue Src = ScalarSrc.getOperand(0);
3145       SDValue Idx = ScalarSrc.getOperand(1);
3146       EVT SrcVT = Src.getValueType();
3147 
3148       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
3149 
3150       if (SrcEltCnt.isScalable())
3151         return false;
3152 
3153       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
3154       if (isNullConstant(Idx)) {
3155         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
3156         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
3157         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
3158         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3159                                        TLO, Depth + 1))
3160           return true;
3161       }
3162     }
3163     KnownUndef.setHighBits(NumElts - 1);
3164     break;
3165   }
3166   case ISD::BITCAST: {
3167     SDValue Src = Op.getOperand(0);
3168     EVT SrcVT = Src.getValueType();
3169 
3170     // We only handle vectors here.
3171     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
3172     if (!SrcVT.isVector())
3173       break;
3174 
3175     // Fast handling of 'identity' bitcasts.
3176     unsigned NumSrcElts = SrcVT.getVectorNumElements();
3177     if (NumSrcElts == NumElts)
3178       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
3179                                         KnownZero, TLO, Depth + 1);
3180 
3181     APInt SrcDemandedElts, SrcZero, SrcUndef;
3182 
3183     // Bitcast from 'large element' src vector to 'small element' vector, we
3184     // must demand a source element if any DemandedElt maps to it.
3185     if ((NumElts % NumSrcElts) == 0) {
3186       unsigned Scale = NumElts / NumSrcElts;
3187       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
3188       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3189                                      TLO, Depth + 1))
3190         return true;
3191 
3192       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
3193       // of the large element.
3194       // TODO - bigendian once we have test coverage.
3195       if (IsLE) {
3196         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
3197         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
3198         for (unsigned i = 0; i != NumElts; ++i)
3199           if (DemandedElts[i]) {
3200             unsigned Ofs = (i % Scale) * EltSizeInBits;
3201             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
3202           }
3203 
3204         KnownBits Known;
3205         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
3206                                  TLO, Depth + 1))
3207           return true;
3208 
3209         // The bitcast has split each wide element into a number of
3210         // narrow subelements. We have just computed the Known bits
3211         // for wide elements. See if element splitting results in
3212         // some subelements being zero. Only for demanded elements!
3213         for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
3214           if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits)
3215                    .isAllOnes())
3216             continue;
3217           for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
3218             unsigned Elt = Scale * SrcElt + SubElt;
3219             if (DemandedElts[Elt])
3220               KnownZero.setBit(Elt);
3221           }
3222         }
3223       }
3224 
3225       // If the src element is zero/undef then all the output elements will be -
3226       // only demanded elements are guaranteed to be correct.
3227       for (unsigned i = 0; i != NumSrcElts; ++i) {
3228         if (SrcDemandedElts[i]) {
3229           if (SrcZero[i])
3230             KnownZero.setBits(i * Scale, (i + 1) * Scale);
3231           if (SrcUndef[i])
3232             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
3233         }
3234       }
3235     }
3236 
3237     // Bitcast from 'small element' src vector to 'large element' vector, we
3238     // demand all smaller source elements covered by the larger demanded element
3239     // of this vector.
3240     if ((NumSrcElts % NumElts) == 0) {
3241       unsigned Scale = NumSrcElts / NumElts;
3242       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
3243       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3244                                      TLO, Depth + 1))
3245         return true;
3246 
3247       // If all the src elements covering an output element are zero/undef, then
3248       // the output element will be as well, assuming it was demanded.
3249       for (unsigned i = 0; i != NumElts; ++i) {
3250         if (DemandedElts[i]) {
3251           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
3252             KnownZero.setBit(i);
3253           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
3254             KnownUndef.setBit(i);
3255         }
3256       }
3257     }
3258     break;
3259   }
3260   case ISD::FREEZE: {
3261     SDValue N0 = Op.getOperand(0);
3262     if (TLO.DAG.isGuaranteedNotToBeUndefOrPoison(N0, DemandedElts,
3263                                                  /*PoisonOnly=*/false))
3264       return TLO.CombineTo(Op, N0);
3265 
3266     // TODO: Replace this with the general fold from DAGCombiner::visitFREEZE
3267     // freeze(op(x, ...)) -> op(freeze(x), ...).
3268     if (N0.getOpcode() == ISD::SCALAR_TO_VECTOR && DemandedElts == 1)
3269       return TLO.CombineTo(
3270           Op, TLO.DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT,
3271                               TLO.DAG.getFreeze(N0.getOperand(0))));
3272     break;
3273   }
3274   case ISD::BUILD_VECTOR: {
3275     // Check all elements and simplify any unused elements with UNDEF.
3276     if (!DemandedElts.isAllOnes()) {
3277       // Don't simplify BROADCASTS.
3278       if (llvm::any_of(Op->op_values(),
3279                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
3280         SmallVector<SDValue, 32> Ops(Op->ops());
3281         bool Updated = false;
3282         for (unsigned i = 0; i != NumElts; ++i) {
3283           if (!DemandedElts[i] && !Ops[i].isUndef()) {
3284             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
3285             KnownUndef.setBit(i);
3286             Updated = true;
3287           }
3288         }
3289         if (Updated)
3290           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
3291       }
3292     }
3293     for (unsigned i = 0; i != NumElts; ++i) {
3294       SDValue SrcOp = Op.getOperand(i);
3295       if (SrcOp.isUndef()) {
3296         KnownUndef.setBit(i);
3297       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
3298                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
3299         KnownZero.setBit(i);
3300       }
3301     }
3302     break;
3303   }
3304   case ISD::CONCAT_VECTORS: {
3305     EVT SubVT = Op.getOperand(0).getValueType();
3306     unsigned NumSubVecs = Op.getNumOperands();
3307     unsigned NumSubElts = SubVT.getVectorNumElements();
3308     for (unsigned i = 0; i != NumSubVecs; ++i) {
3309       SDValue SubOp = Op.getOperand(i);
3310       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
3311       APInt SubUndef, SubZero;
3312       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
3313                                      Depth + 1))
3314         return true;
3315       KnownUndef.insertBits(SubUndef, i * NumSubElts);
3316       KnownZero.insertBits(SubZero, i * NumSubElts);
3317     }
3318 
3319     // Attempt to avoid multi-use ops if we don't need anything from them.
3320     if (!DemandedElts.isAllOnes()) {
3321       bool FoundNewSub = false;
3322       SmallVector<SDValue, 2> DemandedSubOps;
3323       for (unsigned i = 0; i != NumSubVecs; ++i) {
3324         SDValue SubOp = Op.getOperand(i);
3325         APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
3326         SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts(
3327             SubOp, SubElts, TLO.DAG, Depth + 1);
3328         DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp);
3329         FoundNewSub = NewSubOp ? true : FoundNewSub;
3330       }
3331       if (FoundNewSub) {
3332         SDValue NewOp =
3333             TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps);
3334         return TLO.CombineTo(Op, NewOp);
3335       }
3336     }
3337     break;
3338   }
3339   case ISD::INSERT_SUBVECTOR: {
3340     // Demand any elements from the subvector and the remainder from the src its
3341     // inserted into.
3342     SDValue Src = Op.getOperand(0);
3343     SDValue Sub = Op.getOperand(1);
3344     uint64_t Idx = Op.getConstantOperandVal(2);
3345     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3346     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3347     APInt DemandedSrcElts = DemandedElts;
3348     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
3349 
3350     APInt SubUndef, SubZero;
3351     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
3352                                    Depth + 1))
3353       return true;
3354 
3355     // If none of the src operand elements are demanded, replace it with undef.
3356     if (!DemandedSrcElts && !Src.isUndef())
3357       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
3358                                                TLO.DAG.getUNDEF(VT), Sub,
3359                                                Op.getOperand(2)));
3360 
3361     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
3362                                    TLO, Depth + 1))
3363       return true;
3364     KnownUndef.insertBits(SubUndef, Idx);
3365     KnownZero.insertBits(SubZero, Idx);
3366 
3367     // Attempt to avoid multi-use ops if we don't need anything from them.
3368     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
3369       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3370           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3371       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
3372           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
3373       if (NewSrc || NewSub) {
3374         NewSrc = NewSrc ? NewSrc : Src;
3375         NewSub = NewSub ? NewSub : Sub;
3376         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3377                                         NewSub, Op.getOperand(2));
3378         return TLO.CombineTo(Op, NewOp);
3379       }
3380     }
3381     break;
3382   }
3383   case ISD::EXTRACT_SUBVECTOR: {
3384     // Offset the demanded elts by the subvector index.
3385     SDValue Src = Op.getOperand(0);
3386     if (Src.getValueType().isScalableVector())
3387       break;
3388     uint64_t Idx = Op.getConstantOperandVal(1);
3389     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3390     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3391 
3392     APInt SrcUndef, SrcZero;
3393     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3394                                    Depth + 1))
3395       return true;
3396     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
3397     KnownZero = SrcZero.extractBits(NumElts, Idx);
3398 
3399     // Attempt to avoid multi-use ops if we don't need anything from them.
3400     if (!DemandedElts.isAllOnes()) {
3401       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3402           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3403       if (NewSrc) {
3404         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3405                                         Op.getOperand(1));
3406         return TLO.CombineTo(Op, NewOp);
3407       }
3408     }
3409     break;
3410   }
3411   case ISD::INSERT_VECTOR_ELT: {
3412     SDValue Vec = Op.getOperand(0);
3413     SDValue Scl = Op.getOperand(1);
3414     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3415 
3416     // For a legal, constant insertion index, if we don't need this insertion
3417     // then strip it, else remove it from the demanded elts.
3418     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
3419       unsigned Idx = CIdx->getZExtValue();
3420       if (!DemandedElts[Idx])
3421         return TLO.CombineTo(Op, Vec);
3422 
3423       APInt DemandedVecElts(DemandedElts);
3424       DemandedVecElts.clearBit(Idx);
3425       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
3426                                      KnownZero, TLO, Depth + 1))
3427         return true;
3428 
3429       KnownUndef.setBitVal(Idx, Scl.isUndef());
3430 
3431       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
3432       break;
3433     }
3434 
3435     APInt VecUndef, VecZero;
3436     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
3437                                    Depth + 1))
3438       return true;
3439     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
3440     break;
3441   }
3442   case ISD::VSELECT: {
3443     SDValue Sel = Op.getOperand(0);
3444     SDValue LHS = Op.getOperand(1);
3445     SDValue RHS = Op.getOperand(2);
3446 
3447     // Try to transform the select condition based on the current demanded
3448     // elements.
3449     APInt UndefSel, ZeroSel;
3450     if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, ZeroSel, TLO,
3451                                    Depth + 1))
3452       return true;
3453 
3454     // See if we can simplify either vselect operand.
3455     APInt DemandedLHS(DemandedElts);
3456     APInt DemandedRHS(DemandedElts);
3457     APInt UndefLHS, ZeroLHS;
3458     APInt UndefRHS, ZeroRHS;
3459     if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3460                                    Depth + 1))
3461       return true;
3462     if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3463                                    Depth + 1))
3464       return true;
3465 
3466     KnownUndef = UndefLHS & UndefRHS;
3467     KnownZero = ZeroLHS & ZeroRHS;
3468 
3469     // If we know that the selected element is always zero, we don't need the
3470     // select value element.
3471     APInt DemandedSel = DemandedElts & ~KnownZero;
3472     if (DemandedSel != DemandedElts)
3473       if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, ZeroSel, TLO,
3474                                      Depth + 1))
3475         return true;
3476 
3477     break;
3478   }
3479   case ISD::VECTOR_SHUFFLE: {
3480     SDValue LHS = Op.getOperand(0);
3481     SDValue RHS = Op.getOperand(1);
3482     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
3483 
3484     // Collect demanded elements from shuffle operands..
3485     APInt DemandedLHS(NumElts, 0);
3486     APInt DemandedRHS(NumElts, 0);
3487     for (unsigned i = 0; i != NumElts; ++i) {
3488       int M = ShuffleMask[i];
3489       if (M < 0 || !DemandedElts[i])
3490         continue;
3491       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
3492       if (M < (int)NumElts)
3493         DemandedLHS.setBit(M);
3494       else
3495         DemandedRHS.setBit(M - NumElts);
3496     }
3497 
3498     // See if we can simplify either shuffle operand.
3499     APInt UndefLHS, ZeroLHS;
3500     APInt UndefRHS, ZeroRHS;
3501     if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3502                                    Depth + 1))
3503       return true;
3504     if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3505                                    Depth + 1))
3506       return true;
3507 
3508     // Simplify mask using undef elements from LHS/RHS.
3509     bool Updated = false;
3510     bool IdentityLHS = true, IdentityRHS = true;
3511     SmallVector<int, 32> NewMask(ShuffleMask);
3512     for (unsigned i = 0; i != NumElts; ++i) {
3513       int &M = NewMask[i];
3514       if (M < 0)
3515         continue;
3516       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
3517           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
3518         Updated = true;
3519         M = -1;
3520       }
3521       IdentityLHS &= (M < 0) || (M == (int)i);
3522       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3523     }
3524 
3525     // Update legal shuffle masks based on demanded elements if it won't reduce
3526     // to Identity which can cause premature removal of the shuffle mask.
3527     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
3528       SDValue LegalShuffle =
3529           buildLegalVectorShuffle(VT, DL, LHS, RHS, NewMask, TLO.DAG);
3530       if (LegalShuffle)
3531         return TLO.CombineTo(Op, LegalShuffle);
3532     }
3533 
3534     // Propagate undef/zero elements from LHS/RHS.
3535     for (unsigned i = 0; i != NumElts; ++i) {
3536       int M = ShuffleMask[i];
3537       if (M < 0) {
3538         KnownUndef.setBit(i);
3539       } else if (M < (int)NumElts) {
3540         if (UndefLHS[M])
3541           KnownUndef.setBit(i);
3542         if (ZeroLHS[M])
3543           KnownZero.setBit(i);
3544       } else {
3545         if (UndefRHS[M - NumElts])
3546           KnownUndef.setBit(i);
3547         if (ZeroRHS[M - NumElts])
3548           KnownZero.setBit(i);
3549       }
3550     }
3551     break;
3552   }
3553   case ISD::ANY_EXTEND_VECTOR_INREG:
3554   case ISD::SIGN_EXTEND_VECTOR_INREG:
3555   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3556     APInt SrcUndef, SrcZero;
3557     SDValue Src = Op.getOperand(0);
3558     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3559     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3560     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3561                                    Depth + 1))
3562       return true;
3563     KnownZero = SrcZero.zextOrTrunc(NumElts);
3564     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
3565 
3566     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
3567         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3568         DemandedSrcElts == 1) {
3569       // aext - if we just need the bottom element then we can bitcast.
3570       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
3571     }
3572 
3573     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
3574       // zext(undef) upper bits are guaranteed to be zero.
3575       if (DemandedElts.isSubsetOf(KnownUndef))
3576         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3577       KnownUndef.clearAllBits();
3578 
3579       // zext - if we just need the bottom element then we can mask:
3580       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
3581       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
3582           Op->isOnlyUserOf(Src.getNode()) &&
3583           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3584         SDLoc DL(Op);
3585         EVT SrcVT = Src.getValueType();
3586         EVT SrcSVT = SrcVT.getScalarType();
3587         SmallVector<SDValue> MaskElts;
3588         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
3589         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
3590         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
3591         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
3592                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
3593           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
3594           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
3595         }
3596       }
3597     }
3598     break;
3599   }
3600 
3601   // TODO: There are more binop opcodes that could be handled here - MIN,
3602   // MAX, saturated math, etc.
3603   case ISD::ADD: {
3604     SDValue Op0 = Op.getOperand(0);
3605     SDValue Op1 = Op.getOperand(1);
3606     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
3607       APInt UndefLHS, ZeroLHS;
3608       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3609                                      Depth + 1, /*AssumeSingleUse*/ true))
3610         return true;
3611     }
3612     [[fallthrough]];
3613   }
3614   case ISD::AVGCEILS:
3615   case ISD::AVGCEILU:
3616   case ISD::AVGFLOORS:
3617   case ISD::AVGFLOORU:
3618   case ISD::OR:
3619   case ISD::XOR:
3620   case ISD::SUB:
3621   case ISD::FADD:
3622   case ISD::FSUB:
3623   case ISD::FMUL:
3624   case ISD::FDIV:
3625   case ISD::FREM: {
3626     SDValue Op0 = Op.getOperand(0);
3627     SDValue Op1 = Op.getOperand(1);
3628 
3629     APInt UndefRHS, ZeroRHS;
3630     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3631                                    Depth + 1))
3632       return true;
3633     APInt UndefLHS, ZeroLHS;
3634     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3635                                    Depth + 1))
3636       return true;
3637 
3638     KnownZero = ZeroLHS & ZeroRHS;
3639     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
3640 
3641     // Attempt to avoid multi-use ops if we don't need anything from them.
3642     // TODO - use KnownUndef to relax the demandedelts?
3643     if (!DemandedElts.isAllOnes())
3644       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3645         return true;
3646     break;
3647   }
3648   case ISD::SHL:
3649   case ISD::SRL:
3650   case ISD::SRA:
3651   case ISD::ROTL:
3652   case ISD::ROTR: {
3653     SDValue Op0 = Op.getOperand(0);
3654     SDValue Op1 = Op.getOperand(1);
3655 
3656     APInt UndefRHS, ZeroRHS;
3657     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3658                                    Depth + 1))
3659       return true;
3660     APInt UndefLHS, ZeroLHS;
3661     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3662                                    Depth + 1))
3663       return true;
3664 
3665     KnownZero = ZeroLHS;
3666     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
3667 
3668     // Attempt to avoid multi-use ops if we don't need anything from them.
3669     // TODO - use KnownUndef to relax the demandedelts?
3670     if (!DemandedElts.isAllOnes())
3671       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3672         return true;
3673     break;
3674   }
3675   case ISD::MUL:
3676   case ISD::MULHU:
3677   case ISD::MULHS:
3678   case ISD::AND: {
3679     SDValue Op0 = Op.getOperand(0);
3680     SDValue Op1 = Op.getOperand(1);
3681 
3682     APInt SrcUndef, SrcZero;
3683     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3684                                    Depth + 1))
3685       return true;
3686     // If we know that a demanded element was zero in Op1 we don't need to
3687     // demand it in Op0 - its guaranteed to be zero.
3688     APInt DemandedElts0 = DemandedElts & ~SrcZero;
3689     if (SimplifyDemandedVectorElts(Op0, DemandedElts0, KnownUndef, KnownZero,
3690                                    TLO, Depth + 1))
3691       return true;
3692 
3693     KnownUndef &= DemandedElts0;
3694     KnownZero &= DemandedElts0;
3695 
3696     // If every element pair has a zero/undef then just fold to zero.
3697     // fold (and x, undef) -> 0  /  (and x, 0) -> 0
3698     // fold (mul x, undef) -> 0  /  (mul x, 0) -> 0
3699     if (DemandedElts.isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef))
3700       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3701 
3702     // If either side has a zero element, then the result element is zero, even
3703     // if the other is an UNDEF.
3704     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
3705     // and then handle 'and' nodes with the rest of the binop opcodes.
3706     KnownZero |= SrcZero;
3707     KnownUndef &= SrcUndef;
3708     KnownUndef &= ~KnownZero;
3709 
3710     // Attempt to avoid multi-use ops if we don't need anything from them.
3711     if (!DemandedElts.isAllOnes())
3712       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3713         return true;
3714     break;
3715   }
3716   case ISD::TRUNCATE:
3717   case ISD::SIGN_EXTEND:
3718   case ISD::ZERO_EXTEND:
3719     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3720                                    KnownZero, TLO, Depth + 1))
3721       return true;
3722 
3723     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
3724       // zext(undef) upper bits are guaranteed to be zero.
3725       if (DemandedElts.isSubsetOf(KnownUndef))
3726         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3727       KnownUndef.clearAllBits();
3728     }
3729     break;
3730   default: {
3731     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3732       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3733                                                   KnownZero, TLO, Depth))
3734         return true;
3735     } else {
3736       KnownBits Known;
3737       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3738       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3739                                TLO, Depth, AssumeSingleUse))
3740         return true;
3741     }
3742     break;
3743   }
3744   }
3745   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3746 
3747   // Constant fold all undef cases.
3748   // TODO: Handle zero cases as well.
3749   if (DemandedElts.isSubsetOf(KnownUndef))
3750     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3751 
3752   return false;
3753 }
3754 
3755 /// Determine which of the bits specified in Mask are known to be either zero or
3756 /// one and return them in the Known.
3757 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3758                                                    KnownBits &Known,
3759                                                    const APInt &DemandedElts,
3760                                                    const SelectionDAG &DAG,
3761                                                    unsigned Depth) const {
3762   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3763           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3764           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3765           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3766          "Should use MaskedValueIsZero if you don't know whether Op"
3767          " is a target node!");
3768   Known.resetAll();
3769 }
3770 
3771 void TargetLowering::computeKnownBitsForTargetInstr(
3772     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3773     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3774     unsigned Depth) const {
3775   Known.resetAll();
3776 }
3777 
3778 void TargetLowering::computeKnownBitsForFrameIndex(
3779   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3780   // The low bits are known zero if the pointer is aligned.
3781   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3782 }
3783 
3784 Align TargetLowering::computeKnownAlignForTargetInstr(
3785   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3786   unsigned Depth) const {
3787   return Align(1);
3788 }
3789 
3790 /// This method can be implemented by targets that want to expose additional
3791 /// information about sign bits to the DAG Combiner.
3792 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3793                                                          const APInt &,
3794                                                          const SelectionDAG &,
3795                                                          unsigned Depth) const {
3796   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3797           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3798           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3799           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3800          "Should use ComputeNumSignBits if you don't know whether Op"
3801          " is a target node!");
3802   return 1;
3803 }
3804 
3805 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3806   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3807   const MachineRegisterInfo &MRI, unsigned Depth) const {
3808   return 1;
3809 }
3810 
3811 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3812     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3813     TargetLoweringOpt &TLO, unsigned Depth) const {
3814   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3815           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3816           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3817           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3818          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3819          " is a target node!");
3820   return false;
3821 }
3822 
3823 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3824     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3825     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3826   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3827           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3828           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3829           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3830          "Should use SimplifyDemandedBits if you don't know whether Op"
3831          " is a target node!");
3832   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3833   return false;
3834 }
3835 
3836 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3837     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3838     SelectionDAG &DAG, unsigned Depth) const {
3839   assert(
3840       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3841        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3842        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3843        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3844       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3845       " is a target node!");
3846   return SDValue();
3847 }
3848 
3849 SDValue
3850 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3851                                         SDValue N1, MutableArrayRef<int> Mask,
3852                                         SelectionDAG &DAG) const {
3853   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3854   if (!LegalMask) {
3855     std::swap(N0, N1);
3856     ShuffleVectorSDNode::commuteMask(Mask);
3857     LegalMask = isShuffleMaskLegal(Mask, VT);
3858   }
3859 
3860   if (!LegalMask)
3861     return SDValue();
3862 
3863   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3864 }
3865 
3866 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3867   return nullptr;
3868 }
3869 
3870 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3871     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3872     bool PoisonOnly, unsigned Depth) const {
3873   assert(
3874       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3875        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3876        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3877        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3878       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3879       " is a target node!");
3880 
3881   // If Op can't create undef/poison and none of its operands are undef/poison
3882   // then Op is never undef/poison.
3883   return !canCreateUndefOrPoisonForTargetNode(Op, DemandedElts, DAG, PoisonOnly,
3884                                               /*ConsiderFlags*/ true, Depth) &&
3885          all_of(Op->ops(), [&](SDValue V) {
3886            return DAG.isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly,
3887                                                        Depth + 1);
3888          });
3889 }
3890 
3891 bool TargetLowering::canCreateUndefOrPoisonForTargetNode(
3892     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3893     bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const {
3894   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3895           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3896           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3897           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3898          "Should use canCreateUndefOrPoison if you don't know whether Op"
3899          " is a target node!");
3900   // Be conservative and return true.
3901   return true;
3902 }
3903 
3904 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3905                                                   const SelectionDAG &DAG,
3906                                                   bool SNaN,
3907                                                   unsigned Depth) const {
3908   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3909           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3910           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3911           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3912          "Should use isKnownNeverNaN if you don't know whether Op"
3913          " is a target node!");
3914   return false;
3915 }
3916 
3917 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3918                                                const APInt &DemandedElts,
3919                                                APInt &UndefElts,
3920                                                const SelectionDAG &DAG,
3921                                                unsigned Depth) const {
3922   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3923           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3924           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3925           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3926          "Should use isSplatValue if you don't know whether Op"
3927          " is a target node!");
3928   return false;
3929 }
3930 
3931 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3932 // work with truncating build vectors and vectors with elements of less than
3933 // 8 bits.
3934 bool TargetLowering::isConstTrueVal(SDValue N) const {
3935   if (!N)
3936     return false;
3937 
3938   unsigned EltWidth;
3939   APInt CVal;
3940   if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
3941                                                /*AllowTruncation=*/true)) {
3942     CVal = CN->getAPIntValue();
3943     EltWidth = N.getValueType().getScalarSizeInBits();
3944   } else
3945     return false;
3946 
3947   // If this is a truncating splat, truncate the splat value.
3948   // Otherwise, we may fail to match the expected values below.
3949   if (EltWidth < CVal.getBitWidth())
3950     CVal = CVal.trunc(EltWidth);
3951 
3952   switch (getBooleanContents(N.getValueType())) {
3953   case UndefinedBooleanContent:
3954     return CVal[0];
3955   case ZeroOrOneBooleanContent:
3956     return CVal.isOne();
3957   case ZeroOrNegativeOneBooleanContent:
3958     return CVal.isAllOnes();
3959   }
3960 
3961   llvm_unreachable("Invalid boolean contents");
3962 }
3963 
3964 bool TargetLowering::isConstFalseVal(SDValue N) const {
3965   if (!N)
3966     return false;
3967 
3968   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3969   if (!CN) {
3970     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3971     if (!BV)
3972       return false;
3973 
3974     // Only interested in constant splats, we don't care about undef
3975     // elements in identifying boolean constants and getConstantSplatNode
3976     // returns NULL if all ops are undef;
3977     CN = BV->getConstantSplatNode();
3978     if (!CN)
3979       return false;
3980   }
3981 
3982   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3983     return !CN->getAPIntValue()[0];
3984 
3985   return CN->isZero();
3986 }
3987 
3988 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3989                                        bool SExt) const {
3990   if (VT == MVT::i1)
3991     return N->isOne();
3992 
3993   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3994   switch (Cnt) {
3995   case TargetLowering::ZeroOrOneBooleanContent:
3996     // An extended value of 1 is always true, unless its original type is i1,
3997     // in which case it will be sign extended to -1.
3998     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3999   case TargetLowering::UndefinedBooleanContent:
4000   case TargetLowering::ZeroOrNegativeOneBooleanContent:
4001     return N->isAllOnes() && SExt;
4002   }
4003   llvm_unreachable("Unexpected enumeration.");
4004 }
4005 
4006 /// This helper function of SimplifySetCC tries to optimize the comparison when
4007 /// either operand of the SetCC node is a bitwise-and instruction.
4008 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
4009                                          ISD::CondCode Cond, const SDLoc &DL,
4010                                          DAGCombinerInfo &DCI) const {
4011   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
4012     std::swap(N0, N1);
4013 
4014   SelectionDAG &DAG = DCI.DAG;
4015   EVT OpVT = N0.getValueType();
4016   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
4017       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
4018     return SDValue();
4019 
4020   // (X & Y) != 0 --> zextOrTrunc(X & Y)
4021   // iff everything but LSB is known zero:
4022   if (Cond == ISD::SETNE && isNullConstant(N1) &&
4023       (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
4024        getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
4025     unsigned NumEltBits = OpVT.getScalarSizeInBits();
4026     APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
4027     if (DAG.MaskedValueIsZero(N0, UpperBits))
4028       return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
4029   }
4030 
4031   // Try to eliminate a power-of-2 mask constant by converting to a signbit
4032   // test in a narrow type that we can truncate to with no cost. Examples:
4033   // (i32 X & 32768) == 0 --> (trunc X to i16) >= 0
4034   // (i32 X & 32768) != 0 --> (trunc X to i16) < 0
4035   // TODO: This conservatively checks for type legality on the source and
4036   //       destination types. That may inhibit optimizations, but it also
4037   //       allows setcc->shift transforms that may be more beneficial.
4038   auto *AndC = dyn_cast<ConstantSDNode>(N0.getOperand(1));
4039   if (AndC && isNullConstant(N1) && AndC->getAPIntValue().isPowerOf2() &&
4040       isTypeLegal(OpVT) && N0.hasOneUse()) {
4041     EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(),
4042                                      AndC->getAPIntValue().getActiveBits());
4043     if (isTruncateFree(OpVT, NarrowVT) && isTypeLegal(NarrowVT)) {
4044       SDValue Trunc = DAG.getZExtOrTrunc(N0.getOperand(0), DL, NarrowVT);
4045       SDValue Zero = DAG.getConstant(0, DL, NarrowVT);
4046       return DAG.getSetCC(DL, VT, Trunc, Zero,
4047                           Cond == ISD::SETEQ ? ISD::SETGE : ISD::SETLT);
4048     }
4049   }
4050 
4051   // Match these patterns in any of their permutations:
4052   // (X & Y) == Y
4053   // (X & Y) != Y
4054   SDValue X, Y;
4055   if (N0.getOperand(0) == N1) {
4056     X = N0.getOperand(1);
4057     Y = N0.getOperand(0);
4058   } else if (N0.getOperand(1) == N1) {
4059     X = N0.getOperand(0);
4060     Y = N0.getOperand(1);
4061   } else {
4062     return SDValue();
4063   }
4064 
4065   // TODO: We should invert (X & Y) eq/ne 0 -> (X & Y) ne/eq Y if
4066   // `isXAndYEqZeroPreferableToXAndYEqY` is false. This is a bit difficult as
4067   // its liable to create and infinite loop.
4068   SDValue Zero = DAG.getConstant(0, DL, OpVT);
4069   if (isXAndYEqZeroPreferableToXAndYEqY(Cond, OpVT) &&
4070       DAG.isKnownToBeAPowerOfTwo(Y)) {
4071     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
4072     // Note that where Y is variable and is known to have at most one bit set
4073     // (for example, if it is Z & 1) we cannot do this; the expressions are not
4074     // equivalent when Y == 0.
4075     assert(OpVT.isInteger());
4076     Cond = ISD::getSetCCInverse(Cond, OpVT);
4077     if (DCI.isBeforeLegalizeOps() ||
4078         isCondCodeLegal(Cond, N0.getSimpleValueType()))
4079       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
4080   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
4081     // If the target supports an 'and-not' or 'and-complement' logic operation,
4082     // try to use that to make a comparison operation more efficient.
4083     // But don't do this transform if the mask is a single bit because there are
4084     // more efficient ways to deal with that case (for example, 'bt' on x86 or
4085     // 'rlwinm' on PPC).
4086 
4087     // Bail out if the compare operand that we want to turn into a zero is
4088     // already a zero (otherwise, infinite loop).
4089     if (isNullConstant(Y))
4090       return SDValue();
4091 
4092     // Transform this into: ~X & Y == 0.
4093     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
4094     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
4095     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
4096   }
4097 
4098   return SDValue();
4099 }
4100 
4101 /// There are multiple IR patterns that could be checking whether certain
4102 /// truncation of a signed number would be lossy or not. The pattern which is
4103 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
4104 /// We are looking for the following pattern: (KeptBits is a constant)
4105 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
4106 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
4107 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
4108 /// We will unfold it into the natural trunc+sext pattern:
4109 ///   ((%x << C) a>> C) dstcond %x
4110 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
4111 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
4112     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
4113     const SDLoc &DL) const {
4114   // We must be comparing with a constant.
4115   ConstantSDNode *C1;
4116   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
4117     return SDValue();
4118 
4119   // N0 should be:  add %x, (1 << (KeptBits-1))
4120   if (N0->getOpcode() != ISD::ADD)
4121     return SDValue();
4122 
4123   // And we must be 'add'ing a constant.
4124   ConstantSDNode *C01;
4125   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
4126     return SDValue();
4127 
4128   SDValue X = N0->getOperand(0);
4129   EVT XVT = X.getValueType();
4130 
4131   // Validate constants ...
4132 
4133   APInt I1 = C1->getAPIntValue();
4134 
4135   ISD::CondCode NewCond;
4136   if (Cond == ISD::CondCode::SETULT) {
4137     NewCond = ISD::CondCode::SETEQ;
4138   } else if (Cond == ISD::CondCode::SETULE) {
4139     NewCond = ISD::CondCode::SETEQ;
4140     // But need to 'canonicalize' the constant.
4141     I1 += 1;
4142   } else if (Cond == ISD::CondCode::SETUGT) {
4143     NewCond = ISD::CondCode::SETNE;
4144     // But need to 'canonicalize' the constant.
4145     I1 += 1;
4146   } else if (Cond == ISD::CondCode::SETUGE) {
4147     NewCond = ISD::CondCode::SETNE;
4148   } else
4149     return SDValue();
4150 
4151   APInt I01 = C01->getAPIntValue();
4152 
4153   auto checkConstants = [&I1, &I01]() -> bool {
4154     // Both of them must be power-of-two, and the constant from setcc is bigger.
4155     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
4156   };
4157 
4158   if (checkConstants()) {
4159     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
4160   } else {
4161     // What if we invert constants? (and the target predicate)
4162     I1.negate();
4163     I01.negate();
4164     assert(XVT.isInteger());
4165     NewCond = getSetCCInverse(NewCond, XVT);
4166     if (!checkConstants())
4167       return SDValue();
4168     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
4169   }
4170 
4171   // They are power-of-two, so which bit is set?
4172   const unsigned KeptBits = I1.logBase2();
4173   const unsigned KeptBitsMinusOne = I01.logBase2();
4174 
4175   // Magic!
4176   if (KeptBits != (KeptBitsMinusOne + 1))
4177     return SDValue();
4178   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
4179 
4180   // We don't want to do this in every single case.
4181   SelectionDAG &DAG = DCI.DAG;
4182   if (!shouldTransformSignedTruncationCheck(XVT, KeptBits))
4183     return SDValue();
4184 
4185   // Unfold into:  sext_inreg(%x) cond %x
4186   // Where 'cond' will be either 'eq' or 'ne'.
4187   SDValue SExtInReg = DAG.getNode(
4188       ISD::SIGN_EXTEND_INREG, DL, XVT, X,
4189       DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), KeptBits)));
4190   return DAG.getSetCC(DL, SCCVT, SExtInReg, X, NewCond);
4191 }
4192 
4193 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4194 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
4195     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
4196     DAGCombinerInfo &DCI, const SDLoc &DL) const {
4197   assert(isConstOrConstSplat(N1C) && isConstOrConstSplat(N1C)->isZero() &&
4198          "Should be a comparison with 0.");
4199   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4200          "Valid only for [in]equality comparisons.");
4201 
4202   unsigned NewShiftOpcode;
4203   SDValue X, C, Y;
4204 
4205   SelectionDAG &DAG = DCI.DAG;
4206 
4207   // Look for '(C l>>/<< Y)'.
4208   auto Match = [&NewShiftOpcode, &X, &C, &Y, &DAG, this](SDValue V) {
4209     // The shift should be one-use.
4210     if (!V.hasOneUse())
4211       return false;
4212     unsigned OldShiftOpcode = V.getOpcode();
4213     switch (OldShiftOpcode) {
4214     case ISD::SHL:
4215       NewShiftOpcode = ISD::SRL;
4216       break;
4217     case ISD::SRL:
4218       NewShiftOpcode = ISD::SHL;
4219       break;
4220     default:
4221       return false; // must be a logical shift.
4222     }
4223     // We should be shifting a constant.
4224     // FIXME: best to use isConstantOrConstantVector().
4225     C = V.getOperand(0);
4226     ConstantSDNode *CC =
4227         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
4228     if (!CC)
4229       return false;
4230     Y = V.getOperand(1);
4231 
4232     ConstantSDNode *XC =
4233         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
4234     return shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
4235         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
4236   };
4237 
4238   // LHS of comparison should be an one-use 'and'.
4239   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
4240     return SDValue();
4241 
4242   X = N0.getOperand(0);
4243   SDValue Mask = N0.getOperand(1);
4244 
4245   // 'and' is commutative!
4246   if (!Match(Mask)) {
4247     std::swap(X, Mask);
4248     if (!Match(Mask))
4249       return SDValue();
4250   }
4251 
4252   EVT VT = X.getValueType();
4253 
4254   // Produce:
4255   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
4256   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
4257   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
4258   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
4259   return T2;
4260 }
4261 
4262 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
4263 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
4264 /// handle the commuted versions of these patterns.
4265 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
4266                                            ISD::CondCode Cond, const SDLoc &DL,
4267                                            DAGCombinerInfo &DCI) const {
4268   unsigned BOpcode = N0.getOpcode();
4269   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
4270          "Unexpected binop");
4271   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
4272 
4273   // (X + Y) == X --> Y == 0
4274   // (X - Y) == X --> Y == 0
4275   // (X ^ Y) == X --> Y == 0
4276   SelectionDAG &DAG = DCI.DAG;
4277   EVT OpVT = N0.getValueType();
4278   SDValue X = N0.getOperand(0);
4279   SDValue Y = N0.getOperand(1);
4280   if (X == N1)
4281     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
4282 
4283   if (Y != N1)
4284     return SDValue();
4285 
4286   // (X + Y) == Y --> X == 0
4287   // (X ^ Y) == Y --> X == 0
4288   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
4289     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
4290 
4291   // The shift would not be valid if the operands are boolean (i1).
4292   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
4293     return SDValue();
4294 
4295   // (X - Y) == Y --> X == Y << 1
4296   SDValue One = DAG.getShiftAmountConstant(1, OpVT, DL);
4297   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
4298   if (!DCI.isCalledByLegalizer())
4299     DCI.AddToWorklist(YShl1.getNode());
4300   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
4301 }
4302 
4303 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
4304                                       SDValue N0, const APInt &C1,
4305                                       ISD::CondCode Cond, const SDLoc &dl,
4306                                       SelectionDAG &DAG) {
4307   // Look through truncs that don't change the value of a ctpop.
4308   // FIXME: Add vector support? Need to be careful with setcc result type below.
4309   SDValue CTPOP = N0;
4310   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
4311       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
4312     CTPOP = N0.getOperand(0);
4313 
4314   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
4315     return SDValue();
4316 
4317   EVT CTVT = CTPOP.getValueType();
4318   SDValue CTOp = CTPOP.getOperand(0);
4319 
4320   // Expand a power-of-2-or-zero comparison based on ctpop:
4321   // (ctpop x) u< 2 -> (x & x-1) == 0
4322   // (ctpop x) u> 1 -> (x & x-1) != 0
4323   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
4324     // Keep the CTPOP if it is a cheap vector op.
4325     if (CTVT.isVector() && TLI.isCtpopFast(CTVT))
4326       return SDValue();
4327 
4328     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
4329     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
4330       return SDValue();
4331     if (C1 == 0 && (Cond == ISD::SETULT))
4332       return SDValue(); // This is handled elsewhere.
4333 
4334     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
4335 
4336     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
4337     SDValue Result = CTOp;
4338     for (unsigned i = 0; i < Passes; i++) {
4339       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
4340       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
4341     }
4342     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
4343     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
4344   }
4345 
4346   // Expand a power-of-2 comparison based on ctpop
4347   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
4348     // Keep the CTPOP if it is cheap.
4349     if (TLI.isCtpopFast(CTVT))
4350       return SDValue();
4351 
4352     SDValue Zero = DAG.getConstant(0, dl, CTVT);
4353     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
4354     assert(CTVT.isInteger());
4355     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
4356 
4357     // Its not uncommon for known-never-zero X to exist in (ctpop X) eq/ne 1, so
4358     // check before emitting a potentially unnecessary op.
4359     if (DAG.isKnownNeverZero(CTOp)) {
4360       // (ctpop x) == 1 --> (x & x-1) == 0
4361       // (ctpop x) != 1 --> (x & x-1) != 0
4362       SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
4363       SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
4364       return RHS;
4365     }
4366 
4367     // (ctpop x) == 1 --> (x ^ x-1) >  x-1
4368     // (ctpop x) != 1 --> (x ^ x-1) <= x-1
4369     SDValue Xor = DAG.getNode(ISD::XOR, dl, CTVT, CTOp, Add);
4370     ISD::CondCode CmpCond = Cond == ISD::SETEQ ? ISD::SETUGT : ISD::SETULE;
4371     return DAG.getSetCC(dl, VT, Xor, Add, CmpCond);
4372   }
4373 
4374   return SDValue();
4375 }
4376 
4377 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1,
4378                                    ISD::CondCode Cond, const SDLoc &dl,
4379                                    SelectionDAG &DAG) {
4380   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
4381     return SDValue();
4382 
4383   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4384   if (!C1 || !(C1->isZero() || C1->isAllOnes()))
4385     return SDValue();
4386 
4387   auto getRotateSource = [](SDValue X) {
4388     if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR)
4389       return X.getOperand(0);
4390     return SDValue();
4391   };
4392 
4393   // Peek through a rotated value compared against 0 or -1:
4394   // (rot X, Y) == 0/-1 --> X == 0/-1
4395   // (rot X, Y) != 0/-1 --> X != 0/-1
4396   if (SDValue R = getRotateSource(N0))
4397     return DAG.getSetCC(dl, VT, R, N1, Cond);
4398 
4399   // Peek through an 'or' of a rotated value compared against 0:
4400   // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0
4401   // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0
4402   //
4403   // TODO: Add the 'and' with -1 sibling.
4404   // TODO: Recurse through a series of 'or' ops to find the rotate.
4405   EVT OpVT = N0.getValueType();
4406   if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) {
4407     if (SDValue R = getRotateSource(N0.getOperand(0))) {
4408       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1));
4409       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4410     }
4411     if (SDValue R = getRotateSource(N0.getOperand(1))) {
4412       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0));
4413       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4414     }
4415   }
4416 
4417   return SDValue();
4418 }
4419 
4420 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1,
4421                                         ISD::CondCode Cond, const SDLoc &dl,
4422                                         SelectionDAG &DAG) {
4423   // If we are testing for all-bits-clear, we might be able to do that with
4424   // less shifting since bit-order does not matter.
4425   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
4426     return SDValue();
4427 
4428   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4429   if (!C1 || !C1->isZero())
4430     return SDValue();
4431 
4432   if (!N0.hasOneUse() ||
4433       (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR))
4434     return SDValue();
4435 
4436   unsigned BitWidth = N0.getScalarValueSizeInBits();
4437   auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2));
4438   if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
4439     return SDValue();
4440 
4441   // Canonicalize fshr as fshl to reduce pattern-matching.
4442   unsigned ShAmt = ShAmtC->getZExtValue();
4443   if (N0.getOpcode() == ISD::FSHR)
4444     ShAmt = BitWidth - ShAmt;
4445 
4446   // Match an 'or' with a specific operand 'Other' in either commuted variant.
4447   SDValue X, Y;
4448   auto matchOr = [&X, &Y](SDValue Or, SDValue Other) {
4449     if (Or.getOpcode() != ISD::OR || !Or.hasOneUse())
4450       return false;
4451     if (Or.getOperand(0) == Other) {
4452       X = Or.getOperand(0);
4453       Y = Or.getOperand(1);
4454       return true;
4455     }
4456     if (Or.getOperand(1) == Other) {
4457       X = Or.getOperand(1);
4458       Y = Or.getOperand(0);
4459       return true;
4460     }
4461     return false;
4462   };
4463 
4464   EVT OpVT = N0.getValueType();
4465   EVT ShAmtVT = N0.getOperand(2).getValueType();
4466   SDValue F0 = N0.getOperand(0);
4467   SDValue F1 = N0.getOperand(1);
4468   if (matchOr(F0, F1)) {
4469     // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0
4470     SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT);
4471     SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt);
4472     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4473     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4474   }
4475   if (matchOr(F1, F0)) {
4476     // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0
4477     SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT);
4478     SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt);
4479     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4480     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4481   }
4482 
4483   return SDValue();
4484 }
4485 
4486 /// Try to simplify a setcc built with the specified operands and cc. If it is
4487 /// unable to simplify it, return a null SDValue.
4488 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
4489                                       ISD::CondCode Cond, bool foldBooleans,
4490                                       DAGCombinerInfo &DCI,
4491                                       const SDLoc &dl) const {
4492   SelectionDAG &DAG = DCI.DAG;
4493   const DataLayout &Layout = DAG.getDataLayout();
4494   EVT OpVT = N0.getValueType();
4495   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4496 
4497   // Constant fold or commute setcc.
4498   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
4499     return Fold;
4500 
4501   bool N0ConstOrSplat =
4502       isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4503   bool N1ConstOrSplat =
4504       isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4505 
4506   // Canonicalize toward having the constant on the RHS.
4507   // TODO: Handle non-splat vector constants. All undef causes trouble.
4508   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
4509   // infinite loop here when we encounter one.
4510   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
4511   if (N0ConstOrSplat && !N1ConstOrSplat &&
4512       (DCI.isBeforeLegalizeOps() ||
4513        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
4514     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4515 
4516   // If we have a subtract with the same 2 non-constant operands as this setcc
4517   // -- but in reverse order -- then try to commute the operands of this setcc
4518   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
4519   // instruction on some targets.
4520   if (!N0ConstOrSplat && !N1ConstOrSplat &&
4521       (DCI.isBeforeLegalizeOps() ||
4522        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
4523       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
4524       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
4525     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4526 
4527   if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG))
4528     return V;
4529 
4530   if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG))
4531     return V;
4532 
4533   if (auto *N1C = isConstOrConstSplat(N1)) {
4534     const APInt &C1 = N1C->getAPIntValue();
4535 
4536     // Optimize some CTPOP cases.
4537     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
4538       return V;
4539 
4540     // For equality to 0 of a no-wrap multiply, decompose and test each op:
4541     // X * Y == 0 --> (X == 0) || (Y == 0)
4542     // X * Y != 0 --> (X != 0) && (Y != 0)
4543     // TODO: This bails out if minsize is set, but if the target doesn't have a
4544     //       single instruction multiply for this type, it would likely be
4545     //       smaller to decompose.
4546     if (C1.isZero() && (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4547         N0.getOpcode() == ISD::MUL && N0.hasOneUse() &&
4548         (N0->getFlags().hasNoUnsignedWrap() ||
4549          N0->getFlags().hasNoSignedWrap()) &&
4550         !Attr.hasFnAttr(Attribute::MinSize)) {
4551       SDValue IsXZero = DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4552       SDValue IsYZero = DAG.getSetCC(dl, VT, N0.getOperand(1), N1, Cond);
4553       unsigned LogicOp = Cond == ISD::SETEQ ? ISD::OR : ISD::AND;
4554       return DAG.getNode(LogicOp, dl, VT, IsXZero, IsYZero);
4555     }
4556 
4557     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
4558     // equality comparison, then we're just comparing whether X itself is
4559     // zero.
4560     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
4561         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
4562         llvm::has_single_bit<uint32_t>(N0.getScalarValueSizeInBits())) {
4563       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
4564         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4565             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
4566           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
4567             // (srl (ctlz x), 5) == 0  -> X != 0
4568             // (srl (ctlz x), 5) != 1  -> X != 0
4569             Cond = ISD::SETNE;
4570           } else {
4571             // (srl (ctlz x), 5) != 0  -> X == 0
4572             // (srl (ctlz x), 5) == 1  -> X == 0
4573             Cond = ISD::SETEQ;
4574           }
4575           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
4576           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
4577                               Cond);
4578         }
4579       }
4580     }
4581   }
4582 
4583   // FIXME: Support vectors.
4584   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4585     const APInt &C1 = N1C->getAPIntValue();
4586 
4587     // (zext x) == C --> x == (trunc C)
4588     // (sext x) == C --> x == (trunc C)
4589     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4590         DCI.isBeforeLegalize() && N0->hasOneUse()) {
4591       unsigned MinBits = N0.getValueSizeInBits();
4592       SDValue PreExt;
4593       bool Signed = false;
4594       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
4595         // ZExt
4596         MinBits = N0->getOperand(0).getValueSizeInBits();
4597         PreExt = N0->getOperand(0);
4598       } else if (N0->getOpcode() == ISD::AND) {
4599         // DAGCombine turns costly ZExts into ANDs
4600         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
4601           if ((C->getAPIntValue()+1).isPowerOf2()) {
4602             MinBits = C->getAPIntValue().countr_one();
4603             PreExt = N0->getOperand(0);
4604           }
4605       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
4606         // SExt
4607         MinBits = N0->getOperand(0).getValueSizeInBits();
4608         PreExt = N0->getOperand(0);
4609         Signed = true;
4610       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
4611         // ZEXTLOAD / SEXTLOAD
4612         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
4613           MinBits = LN0->getMemoryVT().getSizeInBits();
4614           PreExt = N0;
4615         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
4616           Signed = true;
4617           MinBits = LN0->getMemoryVT().getSizeInBits();
4618           PreExt = N0;
4619         }
4620       }
4621 
4622       // Figure out how many bits we need to preserve this constant.
4623       unsigned ReqdBits = Signed ? C1.getSignificantBits() : C1.getActiveBits();
4624 
4625       // Make sure we're not losing bits from the constant.
4626       if (MinBits > 0 &&
4627           MinBits < C1.getBitWidth() &&
4628           MinBits >= ReqdBits) {
4629         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
4630         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
4631           // Will get folded away.
4632           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
4633           if (MinBits == 1 && C1 == 1)
4634             // Invert the condition.
4635             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
4636                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4637           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
4638           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
4639         }
4640 
4641         // If truncating the setcc operands is not desirable, we can still
4642         // simplify the expression in some cases:
4643         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
4644         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
4645         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
4646         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
4647         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
4648         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
4649         SDValue TopSetCC = N0->getOperand(0);
4650         unsigned N0Opc = N0->getOpcode();
4651         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
4652         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
4653             TopSetCC.getOpcode() == ISD::SETCC &&
4654             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
4655             (isConstFalseVal(N1) ||
4656              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
4657 
4658           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
4659                          (!N1C->isZero() && Cond == ISD::SETNE);
4660 
4661           if (!Inverse)
4662             return TopSetCC;
4663 
4664           ISD::CondCode InvCond = ISD::getSetCCInverse(
4665               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
4666               TopSetCC.getOperand(0).getValueType());
4667           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
4668                                       TopSetCC.getOperand(1),
4669                                       InvCond);
4670         }
4671       }
4672     }
4673 
4674     // If the LHS is '(and load, const)', the RHS is 0, the test is for
4675     // equality or unsigned, and all 1 bits of the const are in the same
4676     // partial word, see if we can shorten the load.
4677     if (DCI.isBeforeLegalize() &&
4678         !ISD::isSignedIntSetCC(Cond) &&
4679         N0.getOpcode() == ISD::AND && C1 == 0 &&
4680         N0.getNode()->hasOneUse() &&
4681         isa<LoadSDNode>(N0.getOperand(0)) &&
4682         N0.getOperand(0).getNode()->hasOneUse() &&
4683         isa<ConstantSDNode>(N0.getOperand(1))) {
4684       auto *Lod = cast<LoadSDNode>(N0.getOperand(0));
4685       APInt bestMask;
4686       unsigned bestWidth = 0, bestOffset = 0;
4687       if (Lod->isSimple() && Lod->isUnindexed() &&
4688           (Lod->getMemoryVT().isByteSized() ||
4689            isPaddedAtMostSignificantBitsWhenStored(Lod->getMemoryVT()))) {
4690         unsigned memWidth = Lod->getMemoryVT().getStoreSizeInBits();
4691         unsigned origWidth = N0.getValueSizeInBits();
4692         unsigned maskWidth = origWidth;
4693         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
4694         // 8 bits, but have to be careful...
4695         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
4696           origWidth = Lod->getMemoryVT().getSizeInBits();
4697         const APInt &Mask = N0.getConstantOperandAPInt(1);
4698         // Only consider power-of-2 widths (and at least one byte) as candiates
4699         // for the narrowed load.
4700         for (unsigned width = 8; width < origWidth; width *= 2) {
4701           EVT newVT = EVT::getIntegerVT(*DAG.getContext(), width);
4702           if (!shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT))
4703             continue;
4704           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
4705           // Avoid accessing any padding here for now (we could use memWidth
4706           // instead of origWidth here otherwise).
4707           unsigned maxOffset = origWidth - width;
4708           for (unsigned offset = 0; offset <= maxOffset; offset += 8) {
4709             if (Mask.isSubsetOf(newMask)) {
4710               unsigned ptrOffset =
4711                   Layout.isLittleEndian() ? offset : memWidth - width - offset;
4712               unsigned IsFast = 0;
4713               Align NewAlign = commonAlignment(Lod->getAlign(), ptrOffset / 8);
4714               if (allowsMemoryAccess(
4715                       *DAG.getContext(), Layout, newVT, Lod->getAddressSpace(),
4716                       NewAlign, Lod->getMemOperand()->getFlags(), &IsFast) &&
4717                   IsFast) {
4718                 bestOffset = ptrOffset / 8;
4719                 bestMask = Mask.lshr(offset);
4720                 bestWidth = width;
4721                 break;
4722               }
4723             }
4724             newMask <<= 8;
4725           }
4726           if (bestWidth)
4727             break;
4728         }
4729       }
4730       if (bestWidth) {
4731         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
4732         SDValue Ptr = Lod->getBasePtr();
4733         if (bestOffset != 0)
4734           Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(bestOffset));
4735         SDValue NewLoad =
4736             DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
4737                         Lod->getPointerInfo().getWithOffset(bestOffset),
4738                         Lod->getOriginalAlign());
4739         SDValue And =
4740             DAG.getNode(ISD::AND, dl, newVT, NewLoad,
4741                         DAG.getConstant(bestMask.trunc(bestWidth), dl, newVT));
4742         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0LL, dl, newVT), Cond);
4743       }
4744     }
4745 
4746     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
4747     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
4748       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
4749 
4750       // If the comparison constant has bits in the upper part, the
4751       // zero-extended value could never match.
4752       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
4753                                               C1.getBitWidth() - InSize))) {
4754         switch (Cond) {
4755         case ISD::SETUGT:
4756         case ISD::SETUGE:
4757         case ISD::SETEQ:
4758           return DAG.getConstant(0, dl, VT);
4759         case ISD::SETULT:
4760         case ISD::SETULE:
4761         case ISD::SETNE:
4762           return DAG.getConstant(1, dl, VT);
4763         case ISD::SETGT:
4764         case ISD::SETGE:
4765           // True if the sign bit of C1 is set.
4766           return DAG.getConstant(C1.isNegative(), dl, VT);
4767         case ISD::SETLT:
4768         case ISD::SETLE:
4769           // True if the sign bit of C1 isn't set.
4770           return DAG.getConstant(C1.isNonNegative(), dl, VT);
4771         default:
4772           break;
4773         }
4774       }
4775 
4776       // Otherwise, we can perform the comparison with the low bits.
4777       switch (Cond) {
4778       case ISD::SETEQ:
4779       case ISD::SETNE:
4780       case ISD::SETUGT:
4781       case ISD::SETUGE:
4782       case ISD::SETULT:
4783       case ISD::SETULE: {
4784         EVT newVT = N0.getOperand(0).getValueType();
4785         // FIXME: Should use isNarrowingProfitable.
4786         if (DCI.isBeforeLegalizeOps() ||
4787             (isOperationLegal(ISD::SETCC, newVT) &&
4788              isCondCodeLegal(Cond, newVT.getSimpleVT()) &&
4789              isTypeDesirableForOp(ISD::SETCC, newVT))) {
4790           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
4791           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
4792 
4793           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
4794                                           NewConst, Cond);
4795           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
4796         }
4797         break;
4798       }
4799       default:
4800         break; // todo, be more careful with signed comparisons
4801       }
4802     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4803                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4804                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
4805                                       OpVT)) {
4806       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
4807       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
4808       EVT ExtDstTy = N0.getValueType();
4809       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
4810 
4811       // If the constant doesn't fit into the number of bits for the source of
4812       // the sign extension, it is impossible for both sides to be equal.
4813       if (C1.getSignificantBits() > ExtSrcTyBits)
4814         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
4815 
4816       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
4817              ExtDstTy != ExtSrcTy && "Unexpected types!");
4818       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
4819       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
4820                                    DAG.getConstant(Imm, dl, ExtDstTy));
4821       if (!DCI.isCalledByLegalizer())
4822         DCI.AddToWorklist(ZextOp.getNode());
4823       // Otherwise, make this a use of a zext.
4824       return DAG.getSetCC(dl, VT, ZextOp,
4825                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
4826     } else if ((N1C->isZero() || N1C->isOne()) &&
4827                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4828       // SETCC (X), [0|1], [EQ|NE]  -> X if X is known 0/1. i1 types are
4829       // excluded as they are handled below whilst checking for foldBooleans.
4830       if ((N0.getOpcode() == ISD::SETCC || VT.getScalarType() != MVT::i1) &&
4831           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
4832           (N0.getValueType() == MVT::i1 ||
4833            getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4834           DAG.MaskedValueIsZero(
4835               N0, APInt::getBitsSetFrom(N0.getValueSizeInBits(), 1))) {
4836         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
4837         if (TrueWhenTrue)
4838           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
4839         // Invert the condition.
4840         if (N0.getOpcode() == ISD::SETCC) {
4841           ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4842           CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
4843           if (DCI.isBeforeLegalizeOps() ||
4844               isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
4845             return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
4846         }
4847       }
4848 
4849       if ((N0.getOpcode() == ISD::XOR ||
4850            (N0.getOpcode() == ISD::AND &&
4851             N0.getOperand(0).getOpcode() == ISD::XOR &&
4852             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
4853           isOneConstant(N0.getOperand(1))) {
4854         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
4855         // can only do this if the top bits are known zero.
4856         unsigned BitWidth = N0.getValueSizeInBits();
4857         if (DAG.MaskedValueIsZero(N0,
4858                                   APInt::getHighBitsSet(BitWidth,
4859                                                         BitWidth-1))) {
4860           // Okay, get the un-inverted input value.
4861           SDValue Val;
4862           if (N0.getOpcode() == ISD::XOR) {
4863             Val = N0.getOperand(0);
4864           } else {
4865             assert(N0.getOpcode() == ISD::AND &&
4866                     N0.getOperand(0).getOpcode() == ISD::XOR);
4867             // ((X^1)&1)^1 -> X & 1
4868             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
4869                               N0.getOperand(0).getOperand(0),
4870                               N0.getOperand(1));
4871           }
4872 
4873           return DAG.getSetCC(dl, VT, Val, N1,
4874                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4875         }
4876       } else if (N1C->isOne()) {
4877         SDValue Op0 = N0;
4878         if (Op0.getOpcode() == ISD::TRUNCATE)
4879           Op0 = Op0.getOperand(0);
4880 
4881         if ((Op0.getOpcode() == ISD::XOR) &&
4882             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
4883             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
4884           SDValue XorLHS = Op0.getOperand(0);
4885           SDValue XorRHS = Op0.getOperand(1);
4886           // Ensure that the input setccs return an i1 type or 0/1 value.
4887           if (Op0.getValueType() == MVT::i1 ||
4888               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
4889                       ZeroOrOneBooleanContent &&
4890                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
4891                         ZeroOrOneBooleanContent)) {
4892             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
4893             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
4894             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
4895           }
4896         }
4897         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
4898           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
4899           if (Op0.getValueType().bitsGT(VT))
4900             Op0 = DAG.getNode(ISD::AND, dl, VT,
4901                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
4902                           DAG.getConstant(1, dl, VT));
4903           else if (Op0.getValueType().bitsLT(VT))
4904             Op0 = DAG.getNode(ISD::AND, dl, VT,
4905                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
4906                         DAG.getConstant(1, dl, VT));
4907 
4908           return DAG.getSetCC(dl, VT, Op0,
4909                               DAG.getConstant(0, dl, Op0.getValueType()),
4910                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4911         }
4912         if (Op0.getOpcode() == ISD::AssertZext &&
4913             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
4914           return DAG.getSetCC(dl, VT, Op0,
4915                               DAG.getConstant(0, dl, Op0.getValueType()),
4916                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4917       }
4918     }
4919 
4920     // Given:
4921     //   icmp eq/ne (urem %x, %y), 0
4922     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
4923     //   icmp eq/ne %x, 0
4924     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
4925         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4926       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
4927       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
4928       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
4929         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4930     }
4931 
4932     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
4933     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
4934     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4935         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
4936         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
4937         N1C->isAllOnes()) {
4938       return DAG.getSetCC(dl, VT, N0.getOperand(0),
4939                           DAG.getConstant(0, dl, OpVT),
4940                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
4941     }
4942 
4943     if (SDValue V =
4944             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
4945       return V;
4946   }
4947 
4948   // These simplifications apply to splat vectors as well.
4949   // TODO: Handle more splat vector cases.
4950   if (auto *N1C = isConstOrConstSplat(N1)) {
4951     const APInt &C1 = N1C->getAPIntValue();
4952 
4953     APInt MinVal, MaxVal;
4954     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
4955     if (ISD::isSignedIntSetCC(Cond)) {
4956       MinVal = APInt::getSignedMinValue(OperandBitSize);
4957       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
4958     } else {
4959       MinVal = APInt::getMinValue(OperandBitSize);
4960       MaxVal = APInt::getMaxValue(OperandBitSize);
4961     }
4962 
4963     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4964     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4965       // X >= MIN --> true
4966       if (C1 == MinVal)
4967         return DAG.getBoolConstant(true, dl, VT, OpVT);
4968 
4969       if (!VT.isVector()) { // TODO: Support this for vectors.
4970         // X >= C0 --> X > (C0 - 1)
4971         APInt C = C1 - 1;
4972         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4973         if ((DCI.isBeforeLegalizeOps() ||
4974              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4975             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4976                                   isLegalICmpImmediate(C.getSExtValue())))) {
4977           return DAG.getSetCC(dl, VT, N0,
4978                               DAG.getConstant(C, dl, N1.getValueType()),
4979                               NewCC);
4980         }
4981       }
4982     }
4983 
4984     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4985       // X <= MAX --> true
4986       if (C1 == MaxVal)
4987         return DAG.getBoolConstant(true, dl, VT, OpVT);
4988 
4989       // X <= C0 --> X < (C0 + 1)
4990       if (!VT.isVector()) { // TODO: Support this for vectors.
4991         APInt C = C1 + 1;
4992         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4993         if ((DCI.isBeforeLegalizeOps() ||
4994              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4995             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4996                                   isLegalICmpImmediate(C.getSExtValue())))) {
4997           return DAG.getSetCC(dl, VT, N0,
4998                               DAG.getConstant(C, dl, N1.getValueType()),
4999                               NewCC);
5000         }
5001       }
5002     }
5003 
5004     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
5005       if (C1 == MinVal)
5006         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
5007 
5008       // TODO: Support this for vectors after legalize ops.
5009       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
5010         // Canonicalize setlt X, Max --> setne X, Max
5011         if (C1 == MaxVal)
5012           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
5013 
5014         // If we have setult X, 1, turn it into seteq X, 0
5015         if (C1 == MinVal+1)
5016           return DAG.getSetCC(dl, VT, N0,
5017                               DAG.getConstant(MinVal, dl, N0.getValueType()),
5018                               ISD::SETEQ);
5019       }
5020     }
5021 
5022     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
5023       if (C1 == MaxVal)
5024         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
5025 
5026       // TODO: Support this for vectors after legalize ops.
5027       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
5028         // Canonicalize setgt X, Min --> setne X, Min
5029         if (C1 == MinVal)
5030           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
5031 
5032         // If we have setugt X, Max-1, turn it into seteq X, Max
5033         if (C1 == MaxVal-1)
5034           return DAG.getSetCC(dl, VT, N0,
5035                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
5036                               ISD::SETEQ);
5037       }
5038     }
5039 
5040     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
5041       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
5042       if (C1.isZero())
5043         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
5044                 VT, N0, N1, Cond, DCI, dl))
5045           return CC;
5046 
5047       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
5048       // For example, when high 32-bits of i64 X are known clear:
5049       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
5050       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
5051       bool CmpZero = N1C->isZero();
5052       bool CmpNegOne = N1C->isAllOnes();
5053       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
5054         // Match or(lo,shl(hi,bw/2)) pattern.
5055         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
5056           unsigned EltBits = V.getScalarValueSizeInBits();
5057           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
5058             return false;
5059           SDValue LHS = V.getOperand(0);
5060           SDValue RHS = V.getOperand(1);
5061           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
5062           // Unshifted element must have zero upperbits.
5063           if (RHS.getOpcode() == ISD::SHL &&
5064               isa<ConstantSDNode>(RHS.getOperand(1)) &&
5065               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
5066               DAG.MaskedValueIsZero(LHS, HiBits)) {
5067             Lo = LHS;
5068             Hi = RHS.getOperand(0);
5069             return true;
5070           }
5071           if (LHS.getOpcode() == ISD::SHL &&
5072               isa<ConstantSDNode>(LHS.getOperand(1)) &&
5073               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
5074               DAG.MaskedValueIsZero(RHS, HiBits)) {
5075             Lo = RHS;
5076             Hi = LHS.getOperand(0);
5077             return true;
5078           }
5079           return false;
5080         };
5081 
5082         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
5083           unsigned EltBits = N0.getScalarValueSizeInBits();
5084           unsigned HalfBits = EltBits / 2;
5085           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
5086           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
5087           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
5088           SDValue NewN0 =
5089               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
5090           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
5091           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
5092         };
5093 
5094         SDValue Lo, Hi;
5095         if (IsConcat(N0, Lo, Hi))
5096           return MergeConcat(Lo, Hi);
5097 
5098         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
5099           SDValue Lo0, Lo1, Hi0, Hi1;
5100           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
5101               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
5102             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
5103                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
5104           }
5105         }
5106       }
5107     }
5108 
5109     // If we have "setcc X, C0", check to see if we can shrink the immediate
5110     // by changing cc.
5111     // TODO: Support this for vectors after legalize ops.
5112     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
5113       // SETUGT X, SINTMAX  -> SETLT X, 0
5114       // SETUGE X, SINTMIN -> SETLT X, 0
5115       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
5116           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
5117         return DAG.getSetCC(dl, VT, N0,
5118                             DAG.getConstant(0, dl, N1.getValueType()),
5119                             ISD::SETLT);
5120 
5121       // SETULT X, SINTMIN  -> SETGT X, -1
5122       // SETULE X, SINTMAX  -> SETGT X, -1
5123       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
5124           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
5125         return DAG.getSetCC(dl, VT, N0,
5126                             DAG.getAllOnesConstant(dl, N1.getValueType()),
5127                             ISD::SETGT);
5128     }
5129   }
5130 
5131   // Back to non-vector simplifications.
5132   // TODO: Can we do these for vector splats?
5133   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
5134     const APInt &C1 = N1C->getAPIntValue();
5135     EVT ShValTy = N0.getValueType();
5136 
5137     // Fold bit comparisons when we can. This will result in an
5138     // incorrect value when boolean false is negative one, unless
5139     // the bitsize is 1 in which case the false value is the same
5140     // in practice regardless of the representation.
5141     if ((VT.getSizeInBits() == 1 ||
5142          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
5143         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5144         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
5145         N0.getOpcode() == ISD::AND) {
5146       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5147         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
5148           // Perform the xform if the AND RHS is a single bit.
5149           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
5150           if (AndRHS->getAPIntValue().isPowerOf2() &&
5151               !shouldAvoidTransformToShift(ShValTy, ShCt)) {
5152             return DAG.getNode(
5153                 ISD::TRUNCATE, dl, VT,
5154                 DAG.getNode(ISD::SRL, dl, ShValTy, N0,
5155                             DAG.getShiftAmountConstant(ShCt, ShValTy, dl)));
5156           }
5157         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
5158           // (X & 8) == 8  -->  (X & 8) >> 3
5159           // Perform the xform if C1 is a single bit.
5160           unsigned ShCt = C1.logBase2();
5161           if (C1.isPowerOf2() && !shouldAvoidTransformToShift(ShValTy, ShCt)) {
5162             return DAG.getNode(
5163                 ISD::TRUNCATE, dl, VT,
5164                 DAG.getNode(ISD::SRL, dl, ShValTy, N0,
5165                             DAG.getShiftAmountConstant(ShCt, ShValTy, dl)));
5166           }
5167         }
5168       }
5169     }
5170 
5171     if (C1.getSignificantBits() <= 64 &&
5172         !isLegalICmpImmediate(C1.getSExtValue())) {
5173       // (X & -256) == 256 -> (X >> 8) == 1
5174       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5175           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
5176         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5177           const APInt &AndRHSC = AndRHS->getAPIntValue();
5178           if (AndRHSC.isNegatedPowerOf2() && C1.isSubsetOf(AndRHSC)) {
5179             unsigned ShiftBits = AndRHSC.countr_zero();
5180             if (!shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
5181               SDValue Shift = DAG.getNode(
5182                   ISD::SRL, dl, ShValTy, N0.getOperand(0),
5183                   DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl));
5184               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
5185               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
5186             }
5187           }
5188         }
5189       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
5190                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
5191         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
5192         // X <  0x100000000 -> (X >> 32) <  1
5193         // X >= 0x100000000 -> (X >> 32) >= 1
5194         // X <= 0x0ffffffff -> (X >> 32) <  1
5195         // X >  0x0ffffffff -> (X >> 32) >= 1
5196         unsigned ShiftBits;
5197         APInt NewC = C1;
5198         ISD::CondCode NewCond = Cond;
5199         if (AdjOne) {
5200           ShiftBits = C1.countr_one();
5201           NewC = NewC + 1;
5202           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
5203         } else {
5204           ShiftBits = C1.countr_zero();
5205         }
5206         NewC.lshrInPlace(ShiftBits);
5207         if (ShiftBits && NewC.getSignificantBits() <= 64 &&
5208             isLegalICmpImmediate(NewC.getSExtValue()) &&
5209             !shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
5210           SDValue Shift =
5211               DAG.getNode(ISD::SRL, dl, ShValTy, N0,
5212                           DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl));
5213           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
5214           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
5215         }
5216       }
5217     }
5218   }
5219 
5220   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
5221     auto *CFP = cast<ConstantFPSDNode>(N1);
5222     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
5223 
5224     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
5225     // constant if knowing that the operand is non-nan is enough.  We prefer to
5226     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
5227     // materialize 0.0.
5228     if (Cond == ISD::SETO || Cond == ISD::SETUO)
5229       return DAG.getSetCC(dl, VT, N0, N0, Cond);
5230 
5231     // setcc (fneg x), C -> setcc swap(pred) x, -C
5232     if (N0.getOpcode() == ISD::FNEG) {
5233       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
5234       if (DCI.isBeforeLegalizeOps() ||
5235           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
5236         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
5237         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
5238       }
5239     }
5240 
5241     // setueq/setoeq X, (fabs Inf) -> is_fpclass X, fcInf
5242     if (isOperationLegalOrCustom(ISD::IS_FPCLASS, N0.getValueType()) &&
5243         !isFPImmLegal(CFP->getValueAPF(), CFP->getValueType(0))) {
5244       bool IsFabs = N0.getOpcode() == ISD::FABS;
5245       SDValue Op = IsFabs ? N0.getOperand(0) : N0;
5246       if ((Cond == ISD::SETOEQ || Cond == ISD::SETUEQ) && CFP->isInfinity()) {
5247         FPClassTest Flag = CFP->isNegative() ? (IsFabs ? fcNone : fcNegInf)
5248                                              : (IsFabs ? fcInf : fcPosInf);
5249         if (Cond == ISD::SETUEQ)
5250           Flag |= fcNan;
5251         return DAG.getNode(ISD::IS_FPCLASS, dl, VT, Op,
5252                            DAG.getTargetConstant(Flag, dl, MVT::i32));
5253       }
5254     }
5255 
5256     // If the condition is not legal, see if we can find an equivalent one
5257     // which is legal.
5258     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
5259       // If the comparison was an awkward floating-point == or != and one of
5260       // the comparison operands is infinity or negative infinity, convert the
5261       // condition to a less-awkward <= or >=.
5262       if (CFP->getValueAPF().isInfinity()) {
5263         bool IsNegInf = CFP->getValueAPF().isNegative();
5264         ISD::CondCode NewCond = ISD::SETCC_INVALID;
5265         switch (Cond) {
5266         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
5267         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
5268         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
5269         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
5270         default: break;
5271         }
5272         if (NewCond != ISD::SETCC_INVALID &&
5273             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
5274           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
5275       }
5276     }
5277   }
5278 
5279   if (N0 == N1) {
5280     // The sext(setcc()) => setcc() optimization relies on the appropriate
5281     // constant being emitted.
5282     assert(!N0.getValueType().isInteger() &&
5283            "Integer types should be handled by FoldSetCC");
5284 
5285     bool EqTrue = ISD::isTrueWhenEqual(Cond);
5286     unsigned UOF = ISD::getUnorderedFlavor(Cond);
5287     if (UOF == 2) // FP operators that are undefined on NaNs.
5288       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
5289     if (UOF == unsigned(EqTrue))
5290       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
5291     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
5292     // if it is not already.
5293     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
5294     if (NewCond != Cond &&
5295         (DCI.isBeforeLegalizeOps() ||
5296                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
5297       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
5298   }
5299 
5300   // ~X > ~Y --> Y > X
5301   // ~X < ~Y --> Y < X
5302   // ~X < C --> X > ~C
5303   // ~X > C --> X < ~C
5304   if ((isSignedIntSetCC(Cond) || isUnsignedIntSetCC(Cond)) &&
5305       N0.getValueType().isInteger()) {
5306     if (isBitwiseNot(N0)) {
5307       if (isBitwiseNot(N1))
5308         return DAG.getSetCC(dl, VT, N1.getOperand(0), N0.getOperand(0), Cond);
5309 
5310       if (DAG.isConstantIntBuildVectorOrConstantInt(N1) &&
5311           !DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(0))) {
5312         SDValue Not = DAG.getNOT(dl, N1, OpVT);
5313         return DAG.getSetCC(dl, VT, Not, N0.getOperand(0), Cond);
5314       }
5315     }
5316   }
5317 
5318   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5319       N0.getValueType().isInteger()) {
5320     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
5321         N0.getOpcode() == ISD::XOR) {
5322       // Simplify (X+Y) == (X+Z) -->  Y == Z
5323       if (N0.getOpcode() == N1.getOpcode()) {
5324         if (N0.getOperand(0) == N1.getOperand(0))
5325           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
5326         if (N0.getOperand(1) == N1.getOperand(1))
5327           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
5328         if (isCommutativeBinOp(N0.getOpcode())) {
5329           // If X op Y == Y op X, try other combinations.
5330           if (N0.getOperand(0) == N1.getOperand(1))
5331             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
5332                                 Cond);
5333           if (N0.getOperand(1) == N1.getOperand(0))
5334             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
5335                                 Cond);
5336         }
5337       }
5338 
5339       // If RHS is a legal immediate value for a compare instruction, we need
5340       // to be careful about increasing register pressure needlessly.
5341       bool LegalRHSImm = false;
5342 
5343       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
5344         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5345           // Turn (X+C1) == C2 --> X == C2-C1
5346           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse())
5347             return DAG.getSetCC(
5348                 dl, VT, N0.getOperand(0),
5349                 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
5350                                 dl, N0.getValueType()),
5351                 Cond);
5352 
5353           // Turn (X^C1) == C2 --> X == C1^C2
5354           if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse())
5355             return DAG.getSetCC(
5356                 dl, VT, N0.getOperand(0),
5357                 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
5358                                 dl, N0.getValueType()),
5359                 Cond);
5360         }
5361 
5362         // Turn (C1-X) == C2 --> X == C1-C2
5363         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
5364           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse())
5365             return DAG.getSetCC(
5366                 dl, VT, N0.getOperand(1),
5367                 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
5368                                 dl, N0.getValueType()),
5369                 Cond);
5370 
5371         // Could RHSC fold directly into a compare?
5372         if (RHSC->getValueType(0).getSizeInBits() <= 64)
5373           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
5374       }
5375 
5376       // (X+Y) == X --> Y == 0 and similar folds.
5377       // Don't do this if X is an immediate that can fold into a cmp
5378       // instruction and X+Y has other uses. It could be an induction variable
5379       // chain, and the transform would increase register pressure.
5380       if (!LegalRHSImm || N0.hasOneUse())
5381         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
5382           return V;
5383     }
5384 
5385     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
5386         N1.getOpcode() == ISD::XOR)
5387       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
5388         return V;
5389 
5390     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
5391       return V;
5392   }
5393 
5394   // Fold remainder of division by a constant.
5395   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
5396       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
5397     // When division is cheap or optimizing for minimum size,
5398     // fall through to DIVREM creation by skipping this fold.
5399     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
5400       if (N0.getOpcode() == ISD::UREM) {
5401         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
5402           return Folded;
5403       } else if (N0.getOpcode() == ISD::SREM) {
5404         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
5405           return Folded;
5406       }
5407     }
5408   }
5409 
5410   // Fold away ALL boolean setcc's.
5411   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
5412     SDValue Temp;
5413     switch (Cond) {
5414     default: llvm_unreachable("Unknown integer setcc!");
5415     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
5416       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
5417       N0 = DAG.getNOT(dl, Temp, OpVT);
5418       if (!DCI.isCalledByLegalizer())
5419         DCI.AddToWorklist(Temp.getNode());
5420       break;
5421     case ISD::SETNE:  // X != Y   -->  (X^Y)
5422       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
5423       break;
5424     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
5425     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
5426       Temp = DAG.getNOT(dl, N0, OpVT);
5427       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
5428       if (!DCI.isCalledByLegalizer())
5429         DCI.AddToWorklist(Temp.getNode());
5430       break;
5431     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
5432     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
5433       Temp = DAG.getNOT(dl, N1, OpVT);
5434       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
5435       if (!DCI.isCalledByLegalizer())
5436         DCI.AddToWorklist(Temp.getNode());
5437       break;
5438     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
5439     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
5440       Temp = DAG.getNOT(dl, N0, OpVT);
5441       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
5442       if (!DCI.isCalledByLegalizer())
5443         DCI.AddToWorklist(Temp.getNode());
5444       break;
5445     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
5446     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
5447       Temp = DAG.getNOT(dl, N1, OpVT);
5448       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
5449       break;
5450     }
5451     if (VT.getScalarType() != MVT::i1) {
5452       if (!DCI.isCalledByLegalizer())
5453         DCI.AddToWorklist(N0.getNode());
5454       // FIXME: If running after legalize, we probably can't do this.
5455       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
5456       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
5457     }
5458     return N0;
5459   }
5460 
5461   // Could not fold it.
5462   return SDValue();
5463 }
5464 
5465 /// Returns true (and the GlobalValue and the offset) if the node is a
5466 /// GlobalAddress + offset.
5467 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
5468                                     int64_t &Offset) const {
5469 
5470   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
5471 
5472   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
5473     GA = GASD->getGlobal();
5474     Offset += GASD->getOffset();
5475     return true;
5476   }
5477 
5478   if (N->getOpcode() == ISD::ADD) {
5479     SDValue N1 = N->getOperand(0);
5480     SDValue N2 = N->getOperand(1);
5481     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
5482       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
5483         Offset += V->getSExtValue();
5484         return true;
5485       }
5486     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
5487       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
5488         Offset += V->getSExtValue();
5489         return true;
5490       }
5491     }
5492   }
5493 
5494   return false;
5495 }
5496 
5497 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
5498                                           DAGCombinerInfo &DCI) const {
5499   // Default implementation: no optimization.
5500   return SDValue();
5501 }
5502 
5503 //===----------------------------------------------------------------------===//
5504 //  Inline Assembler Implementation Methods
5505 //===----------------------------------------------------------------------===//
5506 
5507 TargetLowering::ConstraintType
5508 TargetLowering::getConstraintType(StringRef Constraint) const {
5509   unsigned S = Constraint.size();
5510 
5511   if (S == 1) {
5512     switch (Constraint[0]) {
5513     default: break;
5514     case 'r':
5515       return C_RegisterClass;
5516     case 'm': // memory
5517     case 'o': // offsetable
5518     case 'V': // not offsetable
5519       return C_Memory;
5520     case 'p': // Address.
5521       return C_Address;
5522     case 'n': // Simple Integer
5523     case 'E': // Floating Point Constant
5524     case 'F': // Floating Point Constant
5525       return C_Immediate;
5526     case 'i': // Simple Integer or Relocatable Constant
5527     case 's': // Relocatable Constant
5528     case 'X': // Allow ANY value.
5529     case 'I': // Target registers.
5530     case 'J':
5531     case 'K':
5532     case 'L':
5533     case 'M':
5534     case 'N':
5535     case 'O':
5536     case 'P':
5537     case '<':
5538     case '>':
5539       return C_Other;
5540     }
5541   }
5542 
5543   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
5544     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
5545       return C_Memory;
5546     return C_Register;
5547   }
5548   return C_Unknown;
5549 }
5550 
5551 /// Try to replace an X constraint, which matches anything, with another that
5552 /// has more specific requirements based on the type of the corresponding
5553 /// operand.
5554 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
5555   if (ConstraintVT.isInteger())
5556     return "r";
5557   if (ConstraintVT.isFloatingPoint())
5558     return "f"; // works for many targets
5559   return nullptr;
5560 }
5561 
5562 SDValue TargetLowering::LowerAsmOutputForConstraint(
5563     SDValue &Chain, SDValue &Glue, const SDLoc &DL,
5564     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
5565   return SDValue();
5566 }
5567 
5568 /// Lower the specified operand into the Ops vector.
5569 /// If it is invalid, don't add anything to Ops.
5570 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5571                                                   StringRef Constraint,
5572                                                   std::vector<SDValue> &Ops,
5573                                                   SelectionDAG &DAG) const {
5574 
5575   if (Constraint.size() > 1)
5576     return;
5577 
5578   char ConstraintLetter = Constraint[0];
5579   switch (ConstraintLetter) {
5580   default: break;
5581   case 'X':    // Allows any operand
5582   case 'i':    // Simple Integer or Relocatable Constant
5583   case 'n':    // Simple Integer
5584   case 's': {  // Relocatable Constant
5585 
5586     ConstantSDNode *C;
5587     uint64_t Offset = 0;
5588 
5589     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
5590     // etc., since getelementpointer is variadic. We can't use
5591     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
5592     // while in this case the GA may be furthest from the root node which is
5593     // likely an ISD::ADD.
5594     while (true) {
5595       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
5596         // gcc prints these as sign extended.  Sign extend value to 64 bits
5597         // now; without this it would get ZExt'd later in
5598         // ScheduleDAGSDNodes::EmitNode, which is very generic.
5599         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
5600         BooleanContent BCont = getBooleanContents(MVT::i64);
5601         ISD::NodeType ExtOpc =
5602             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
5603         int64_t ExtVal =
5604             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
5605         Ops.push_back(
5606             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
5607         return;
5608       }
5609       if (ConstraintLetter != 'n') {
5610         if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5611           Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
5612                                                    GA->getValueType(0),
5613                                                    Offset + GA->getOffset()));
5614           return;
5615         }
5616         if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
5617           Ops.push_back(DAG.getTargetBlockAddress(
5618               BA->getBlockAddress(), BA->getValueType(0),
5619               Offset + BA->getOffset(), BA->getTargetFlags()));
5620           return;
5621         }
5622         if (isa<BasicBlockSDNode>(Op)) {
5623           Ops.push_back(Op);
5624           return;
5625         }
5626       }
5627       const unsigned OpCode = Op.getOpcode();
5628       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
5629         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
5630           Op = Op.getOperand(1);
5631         // Subtraction is not commutative.
5632         else if (OpCode == ISD::ADD &&
5633                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
5634           Op = Op.getOperand(0);
5635         else
5636           return;
5637         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
5638         continue;
5639       }
5640       return;
5641     }
5642     break;
5643   }
5644   }
5645 }
5646 
5647 void TargetLowering::CollectTargetIntrinsicOperands(
5648     const CallInst &I, SmallVectorImpl<SDValue> &Ops, SelectionDAG &DAG) const {
5649 }
5650 
5651 std::pair<unsigned, const TargetRegisterClass *>
5652 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
5653                                              StringRef Constraint,
5654                                              MVT VT) const {
5655   if (!Constraint.starts_with("{"))
5656     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
5657   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
5658 
5659   // Remove the braces from around the name.
5660   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
5661 
5662   std::pair<unsigned, const TargetRegisterClass *> R =
5663       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
5664 
5665   // Figure out which register class contains this reg.
5666   for (const TargetRegisterClass *RC : RI->regclasses()) {
5667     // If none of the value types for this register class are valid, we
5668     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5669     if (!isLegalRC(*RI, *RC))
5670       continue;
5671 
5672     for (const MCPhysReg &PR : *RC) {
5673       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
5674         std::pair<unsigned, const TargetRegisterClass *> S =
5675             std::make_pair(PR, RC);
5676 
5677         // If this register class has the requested value type, return it,
5678         // otherwise keep searching and return the first class found
5679         // if no other is found which explicitly has the requested type.
5680         if (RI->isTypeLegalForClass(*RC, VT))
5681           return S;
5682         if (!R.second)
5683           R = S;
5684       }
5685     }
5686   }
5687 
5688   return R;
5689 }
5690 
5691 //===----------------------------------------------------------------------===//
5692 // Constraint Selection.
5693 
5694 /// Return true of this is an input operand that is a matching constraint like
5695 /// "4".
5696 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
5697   assert(!ConstraintCode.empty() && "No known constraint!");
5698   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
5699 }
5700 
5701 /// If this is an input matching constraint, this method returns the output
5702 /// operand it matches.
5703 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
5704   assert(!ConstraintCode.empty() && "No known constraint!");
5705   return atoi(ConstraintCode.c_str());
5706 }
5707 
5708 /// Split up the constraint string from the inline assembly value into the
5709 /// specific constraints and their prefixes, and also tie in the associated
5710 /// operand values.
5711 /// If this returns an empty vector, and if the constraint string itself
5712 /// isn't empty, there was an error parsing.
5713 TargetLowering::AsmOperandInfoVector
5714 TargetLowering::ParseConstraints(const DataLayout &DL,
5715                                  const TargetRegisterInfo *TRI,
5716                                  const CallBase &Call) const {
5717   /// Information about all of the constraints.
5718   AsmOperandInfoVector ConstraintOperands;
5719   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
5720   unsigned maCount = 0; // Largest number of multiple alternative constraints.
5721 
5722   // Do a prepass over the constraints, canonicalizing them, and building up the
5723   // ConstraintOperands list.
5724   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5725   unsigned ResNo = 0; // ResNo - The result number of the next output.
5726   unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number.
5727 
5728   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
5729     ConstraintOperands.emplace_back(std::move(CI));
5730     AsmOperandInfo &OpInfo = ConstraintOperands.back();
5731 
5732     // Update multiple alternative constraint count.
5733     if (OpInfo.multipleAlternatives.size() > maCount)
5734       maCount = OpInfo.multipleAlternatives.size();
5735 
5736     OpInfo.ConstraintVT = MVT::Other;
5737 
5738     // Compute the value type for each operand.
5739     switch (OpInfo.Type) {
5740     case InlineAsm::isOutput:
5741       // Indirect outputs just consume an argument.
5742       if (OpInfo.isIndirect) {
5743         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5744         break;
5745       }
5746 
5747       // The return value of the call is this value.  As such, there is no
5748       // corresponding argument.
5749       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
5750       if (auto *STy = dyn_cast<StructType>(Call.getType())) {
5751         OpInfo.ConstraintVT =
5752             getSimpleValueType(DL, STy->getElementType(ResNo));
5753       } else {
5754         assert(ResNo == 0 && "Asm only has one result!");
5755         OpInfo.ConstraintVT =
5756             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
5757       }
5758       ++ResNo;
5759       break;
5760     case InlineAsm::isInput:
5761       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5762       break;
5763     case InlineAsm::isLabel:
5764       OpInfo.CallOperandVal = cast<CallBrInst>(&Call)->getIndirectDest(LabelNo);
5765       ++LabelNo;
5766       continue;
5767     case InlineAsm::isClobber:
5768       // Nothing to do.
5769       break;
5770     }
5771 
5772     if (OpInfo.CallOperandVal) {
5773       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5774       if (OpInfo.isIndirect) {
5775         OpTy = Call.getParamElementType(ArgNo);
5776         assert(OpTy && "Indirect operand must have elementtype attribute");
5777       }
5778 
5779       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5780       if (StructType *STy = dyn_cast<StructType>(OpTy))
5781         if (STy->getNumElements() == 1)
5782           OpTy = STy->getElementType(0);
5783 
5784       // If OpTy is not a single value, it may be a struct/union that we
5785       // can tile with integers.
5786       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5787         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5788         switch (BitSize) {
5789         default: break;
5790         case 1:
5791         case 8:
5792         case 16:
5793         case 32:
5794         case 64:
5795         case 128:
5796           OpTy = IntegerType::get(OpTy->getContext(), BitSize);
5797           break;
5798         }
5799       }
5800 
5801       EVT VT = getAsmOperandValueType(DL, OpTy, true);
5802       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
5803       ArgNo++;
5804     }
5805   }
5806 
5807   // If we have multiple alternative constraints, select the best alternative.
5808   if (!ConstraintOperands.empty()) {
5809     if (maCount) {
5810       unsigned bestMAIndex = 0;
5811       int bestWeight = -1;
5812       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
5813       int weight = -1;
5814       unsigned maIndex;
5815       // Compute the sums of the weights for each alternative, keeping track
5816       // of the best (highest weight) one so far.
5817       for (maIndex = 0; maIndex < maCount; ++maIndex) {
5818         int weightSum = 0;
5819         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5820              cIndex != eIndex; ++cIndex) {
5821           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5822           if (OpInfo.Type == InlineAsm::isClobber)
5823             continue;
5824 
5825           // If this is an output operand with a matching input operand,
5826           // look up the matching input. If their types mismatch, e.g. one
5827           // is an integer, the other is floating point, or their sizes are
5828           // different, flag it as an maCantMatch.
5829           if (OpInfo.hasMatchingInput()) {
5830             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5831             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5832               if ((OpInfo.ConstraintVT.isInteger() !=
5833                    Input.ConstraintVT.isInteger()) ||
5834                   (OpInfo.ConstraintVT.getSizeInBits() !=
5835                    Input.ConstraintVT.getSizeInBits())) {
5836                 weightSum = -1; // Can't match.
5837                 break;
5838               }
5839             }
5840           }
5841           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
5842           if (weight == -1) {
5843             weightSum = -1;
5844             break;
5845           }
5846           weightSum += weight;
5847         }
5848         // Update best.
5849         if (weightSum > bestWeight) {
5850           bestWeight = weightSum;
5851           bestMAIndex = maIndex;
5852         }
5853       }
5854 
5855       // Now select chosen alternative in each constraint.
5856       for (AsmOperandInfo &cInfo : ConstraintOperands)
5857         if (cInfo.Type != InlineAsm::isClobber)
5858           cInfo.selectAlternative(bestMAIndex);
5859     }
5860   }
5861 
5862   // Check and hook up tied operands, choose constraint code to use.
5863   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5864        cIndex != eIndex; ++cIndex) {
5865     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5866 
5867     // If this is an output operand with a matching input operand, look up the
5868     // matching input. If their types mismatch, e.g. one is an integer, the
5869     // other is floating point, or their sizes are different, flag it as an
5870     // error.
5871     if (OpInfo.hasMatchingInput()) {
5872       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5873 
5874       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5875         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
5876             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
5877                                          OpInfo.ConstraintVT);
5878         std::pair<unsigned, const TargetRegisterClass *> InputRC =
5879             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
5880                                          Input.ConstraintVT);
5881         const bool OutOpIsIntOrFP = OpInfo.ConstraintVT.isInteger() ||
5882                                     OpInfo.ConstraintVT.isFloatingPoint();
5883         const bool InOpIsIntOrFP = Input.ConstraintVT.isInteger() ||
5884                                    Input.ConstraintVT.isFloatingPoint();
5885         if ((OutOpIsIntOrFP != InOpIsIntOrFP) ||
5886             (MatchRC.second != InputRC.second)) {
5887           report_fatal_error("Unsupported asm: input constraint"
5888                              " with a matching output constraint of"
5889                              " incompatible type!");
5890         }
5891       }
5892     }
5893   }
5894 
5895   return ConstraintOperands;
5896 }
5897 
5898 /// Return a number indicating our preference for chosing a type of constraint
5899 /// over another, for the purpose of sorting them. Immediates are almost always
5900 /// preferrable (when they can be emitted). A higher return value means a
5901 /// stronger preference for one constraint type relative to another.
5902 /// FIXME: We should prefer registers over memory but doing so may lead to
5903 /// unrecoverable register exhaustion later.
5904 /// https://github.com/llvm/llvm-project/issues/20571
5905 static unsigned getConstraintPiority(TargetLowering::ConstraintType CT) {
5906   switch (CT) {
5907   case TargetLowering::C_Immediate:
5908   case TargetLowering::C_Other:
5909     return 4;
5910   case TargetLowering::C_Memory:
5911   case TargetLowering::C_Address:
5912     return 3;
5913   case TargetLowering::C_RegisterClass:
5914     return 2;
5915   case TargetLowering::C_Register:
5916     return 1;
5917   case TargetLowering::C_Unknown:
5918     return 0;
5919   }
5920   llvm_unreachable("Invalid constraint type");
5921 }
5922 
5923 /// Examine constraint type and operand type and determine a weight value.
5924 /// This object must already have been set up with the operand type
5925 /// and the current alternative constraint selected.
5926 TargetLowering::ConstraintWeight
5927   TargetLowering::getMultipleConstraintMatchWeight(
5928     AsmOperandInfo &info, int maIndex) const {
5929   InlineAsm::ConstraintCodeVector *rCodes;
5930   if (maIndex >= (int)info.multipleAlternatives.size())
5931     rCodes = &info.Codes;
5932   else
5933     rCodes = &info.multipleAlternatives[maIndex].Codes;
5934   ConstraintWeight BestWeight = CW_Invalid;
5935 
5936   // Loop over the options, keeping track of the most general one.
5937   for (const std::string &rCode : *rCodes) {
5938     ConstraintWeight weight =
5939         getSingleConstraintMatchWeight(info, rCode.c_str());
5940     if (weight > BestWeight)
5941       BestWeight = weight;
5942   }
5943 
5944   return BestWeight;
5945 }
5946 
5947 /// Examine constraint type and operand type and determine a weight value.
5948 /// This object must already have been set up with the operand type
5949 /// and the current alternative constraint selected.
5950 TargetLowering::ConstraintWeight
5951   TargetLowering::getSingleConstraintMatchWeight(
5952     AsmOperandInfo &info, const char *constraint) const {
5953   ConstraintWeight weight = CW_Invalid;
5954   Value *CallOperandVal = info.CallOperandVal;
5955     // If we don't have a value, we can't do a match,
5956     // but allow it at the lowest weight.
5957   if (!CallOperandVal)
5958     return CW_Default;
5959   // Look at the constraint type.
5960   switch (*constraint) {
5961     case 'i': // immediate integer.
5962     case 'n': // immediate integer with a known value.
5963       if (isa<ConstantInt>(CallOperandVal))
5964         weight = CW_Constant;
5965       break;
5966     case 's': // non-explicit intregal immediate.
5967       if (isa<GlobalValue>(CallOperandVal))
5968         weight = CW_Constant;
5969       break;
5970     case 'E': // immediate float if host format.
5971     case 'F': // immediate float.
5972       if (isa<ConstantFP>(CallOperandVal))
5973         weight = CW_Constant;
5974       break;
5975     case '<': // memory operand with autodecrement.
5976     case '>': // memory operand with autoincrement.
5977     case 'm': // memory operand.
5978     case 'o': // offsettable memory operand
5979     case 'V': // non-offsettable memory operand
5980       weight = CW_Memory;
5981       break;
5982     case 'r': // general register.
5983     case 'g': // general register, memory operand or immediate integer.
5984               // note: Clang converts "g" to "imr".
5985       if (CallOperandVal->getType()->isIntegerTy())
5986         weight = CW_Register;
5987       break;
5988     case 'X': // any operand.
5989   default:
5990     weight = CW_Default;
5991     break;
5992   }
5993   return weight;
5994 }
5995 
5996 /// If there are multiple different constraints that we could pick for this
5997 /// operand (e.g. "imr") try to pick the 'best' one.
5998 /// This is somewhat tricky: constraints (TargetLowering::ConstraintType) fall
5999 /// into seven classes:
6000 ///    Register      -> one specific register
6001 ///    RegisterClass -> a group of regs
6002 ///    Memory        -> memory
6003 ///    Address       -> a symbolic memory reference
6004 ///    Immediate     -> immediate values
6005 ///    Other         -> magic values (such as "Flag Output Operands")
6006 ///    Unknown       -> something we don't recognize yet and can't handle
6007 /// Ideally, we would pick the most specific constraint possible: if we have
6008 /// something that fits into a register, we would pick it.  The problem here
6009 /// is that if we have something that could either be in a register or in
6010 /// memory that use of the register could cause selection of *other*
6011 /// operands to fail: they might only succeed if we pick memory.  Because of
6012 /// this the heuristic we use is:
6013 ///
6014 ///  1) If there is an 'other' constraint, and if the operand is valid for
6015 ///     that constraint, use it.  This makes us take advantage of 'i'
6016 ///     constraints when available.
6017 ///  2) Otherwise, pick the most general constraint present.  This prefers
6018 ///     'm' over 'r', for example.
6019 ///
6020 TargetLowering::ConstraintGroup TargetLowering::getConstraintPreferences(
6021     TargetLowering::AsmOperandInfo &OpInfo) const {
6022   ConstraintGroup Ret;
6023 
6024   Ret.reserve(OpInfo.Codes.size());
6025   for (StringRef Code : OpInfo.Codes) {
6026     TargetLowering::ConstraintType CType = getConstraintType(Code);
6027 
6028     // Indirect 'other' or 'immediate' constraints are not allowed.
6029     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
6030                                CType == TargetLowering::C_Register ||
6031                                CType == TargetLowering::C_RegisterClass))
6032       continue;
6033 
6034     // Things with matching constraints can only be registers, per gcc
6035     // documentation.  This mainly affects "g" constraints.
6036     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
6037       continue;
6038 
6039     Ret.emplace_back(Code, CType);
6040   }
6041 
6042   std::stable_sort(
6043       Ret.begin(), Ret.end(), [](ConstraintPair a, ConstraintPair b) {
6044         return getConstraintPiority(a.second) > getConstraintPiority(b.second);
6045       });
6046 
6047   return Ret;
6048 }
6049 
6050 /// If we have an immediate, see if we can lower it. Return true if we can,
6051 /// false otherwise.
6052 static bool lowerImmediateIfPossible(TargetLowering::ConstraintPair &P,
6053                                      SDValue Op, SelectionDAG *DAG,
6054                                      const TargetLowering &TLI) {
6055 
6056   assert((P.second == TargetLowering::C_Other ||
6057           P.second == TargetLowering::C_Immediate) &&
6058          "need immediate or other");
6059 
6060   if (!Op.getNode())
6061     return false;
6062 
6063   std::vector<SDValue> ResultOps;
6064   TLI.LowerAsmOperandForConstraint(Op, P.first, ResultOps, *DAG);
6065   return !ResultOps.empty();
6066 }
6067 
6068 /// Determines the constraint code and constraint type to use for the specific
6069 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
6070 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
6071                                             SDValue Op,
6072                                             SelectionDAG *DAG) const {
6073   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
6074 
6075   // Single-letter constraints ('r') are very common.
6076   if (OpInfo.Codes.size() == 1) {
6077     OpInfo.ConstraintCode = OpInfo.Codes[0];
6078     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
6079   } else {
6080     ConstraintGroup G = getConstraintPreferences(OpInfo);
6081     if (G.empty())
6082       return;
6083 
6084     unsigned BestIdx = 0;
6085     for (const unsigned E = G.size();
6086          BestIdx < E && (G[BestIdx].second == TargetLowering::C_Other ||
6087                          G[BestIdx].second == TargetLowering::C_Immediate);
6088          ++BestIdx) {
6089       if (lowerImmediateIfPossible(G[BestIdx], Op, DAG, *this))
6090         break;
6091       // If we're out of constraints, just pick the first one.
6092       if (BestIdx + 1 == E) {
6093         BestIdx = 0;
6094         break;
6095       }
6096     }
6097 
6098     OpInfo.ConstraintCode = G[BestIdx].first;
6099     OpInfo.ConstraintType = G[BestIdx].second;
6100   }
6101 
6102   // 'X' matches anything.
6103   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
6104     // Constants are handled elsewhere.  For Functions, the type here is the
6105     // type of the result, which is not what we want to look at; leave them
6106     // alone.
6107     Value *v = OpInfo.CallOperandVal;
6108     if (isa<ConstantInt>(v) || isa<Function>(v)) {
6109       return;
6110     }
6111 
6112     if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
6113       OpInfo.ConstraintCode = "i";
6114       return;
6115     }
6116 
6117     // Otherwise, try to resolve it to something we know about by looking at
6118     // the actual operand type.
6119     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
6120       OpInfo.ConstraintCode = Repl;
6121       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
6122     }
6123   }
6124 }
6125 
6126 /// Given an exact SDIV by a constant, create a multiplication
6127 /// with the multiplicative inverse of the constant.
6128 /// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242
6129 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
6130                               const SDLoc &dl, SelectionDAG &DAG,
6131                               SmallVectorImpl<SDNode *> &Created) {
6132   SDValue Op0 = N->getOperand(0);
6133   SDValue Op1 = N->getOperand(1);
6134   EVT VT = N->getValueType(0);
6135   EVT SVT = VT.getScalarType();
6136   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
6137   EVT ShSVT = ShVT.getScalarType();
6138 
6139   bool UseSRA = false;
6140   SmallVector<SDValue, 16> Shifts, Factors;
6141 
6142   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
6143     if (C->isZero())
6144       return false;
6145     APInt Divisor = C->getAPIntValue();
6146     unsigned Shift = Divisor.countr_zero();
6147     if (Shift) {
6148       Divisor.ashrInPlace(Shift);
6149       UseSRA = true;
6150     }
6151     APInt Factor = Divisor.multiplicativeInverse();
6152     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
6153     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
6154     return true;
6155   };
6156 
6157   // Collect all magic values from the build vector.
6158   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
6159     return SDValue();
6160 
6161   SDValue Shift, Factor;
6162   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
6163     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
6164     Factor = DAG.getBuildVector(VT, dl, Factors);
6165   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
6166     assert(Shifts.size() == 1 && Factors.size() == 1 &&
6167            "Expected matchUnaryPredicate to return one element for scalable "
6168            "vectors");
6169     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
6170     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
6171   } else {
6172     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
6173     Shift = Shifts[0];
6174     Factor = Factors[0];
6175   }
6176 
6177   SDValue Res = Op0;
6178   if (UseSRA) {
6179     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, SDNodeFlags::Exact);
6180     Created.push_back(Res.getNode());
6181   }
6182 
6183   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
6184 }
6185 
6186 /// Given an exact UDIV by a constant, create a multiplication
6187 /// with the multiplicative inverse of the constant.
6188 /// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242
6189 static SDValue BuildExactUDIV(const TargetLowering &TLI, SDNode *N,
6190                               const SDLoc &dl, SelectionDAG &DAG,
6191                               SmallVectorImpl<SDNode *> &Created) {
6192   EVT VT = N->getValueType(0);
6193   EVT SVT = VT.getScalarType();
6194   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
6195   EVT ShSVT = ShVT.getScalarType();
6196 
6197   bool UseSRL = false;
6198   SmallVector<SDValue, 16> Shifts, Factors;
6199 
6200   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
6201     if (C->isZero())
6202       return false;
6203     APInt Divisor = C->getAPIntValue();
6204     unsigned Shift = Divisor.countr_zero();
6205     if (Shift) {
6206       Divisor.lshrInPlace(Shift);
6207       UseSRL = true;
6208     }
6209     // Calculate the multiplicative inverse modulo BW.
6210     APInt Factor = Divisor.multiplicativeInverse();
6211     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
6212     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
6213     return true;
6214   };
6215 
6216   SDValue Op1 = N->getOperand(1);
6217 
6218   // Collect all magic values from the build vector.
6219   if (!ISD::matchUnaryPredicate(Op1, BuildUDIVPattern))
6220     return SDValue();
6221 
6222   SDValue Shift, Factor;
6223   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
6224     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
6225     Factor = DAG.getBuildVector(VT, dl, Factors);
6226   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
6227     assert(Shifts.size() == 1 && Factors.size() == 1 &&
6228            "Expected matchUnaryPredicate to return one element for scalable "
6229            "vectors");
6230     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
6231     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
6232   } else {
6233     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
6234     Shift = Shifts[0];
6235     Factor = Factors[0];
6236   }
6237 
6238   SDValue Res = N->getOperand(0);
6239   if (UseSRL) {
6240     Res = DAG.getNode(ISD::SRL, dl, VT, Res, Shift, SDNodeFlags::Exact);
6241     Created.push_back(Res.getNode());
6242   }
6243 
6244   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
6245 }
6246 
6247 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
6248                               SelectionDAG &DAG,
6249                               SmallVectorImpl<SDNode *> &Created) const {
6250   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
6251   if (isIntDivCheap(N->getValueType(0), Attr))
6252     return SDValue(N, 0); // Lower SDIV as SDIV
6253   return SDValue();
6254 }
6255 
6256 SDValue
6257 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor,
6258                               SelectionDAG &DAG,
6259                               SmallVectorImpl<SDNode *> &Created) const {
6260   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
6261   if (isIntDivCheap(N->getValueType(0), Attr))
6262     return SDValue(N, 0); // Lower SREM as SREM
6263   return SDValue();
6264 }
6265 
6266 /// Build sdiv by power-of-2 with conditional move instructions
6267 /// Ref: "Hacker's Delight" by Henry Warren 10-1
6268 /// If conditional move/branch is preferred, we lower sdiv x, +/-2**k into:
6269 ///   bgez x, label
6270 ///   add x, x, 2**k-1
6271 /// label:
6272 ///   sra res, x, k
6273 ///   neg res, res (when the divisor is negative)
6274 SDValue TargetLowering::buildSDIVPow2WithCMov(
6275     SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
6276     SmallVectorImpl<SDNode *> &Created) const {
6277   unsigned Lg2 = Divisor.countr_zero();
6278   EVT VT = N->getValueType(0);
6279 
6280   SDLoc DL(N);
6281   SDValue N0 = N->getOperand(0);
6282   SDValue Zero = DAG.getConstant(0, DL, VT);
6283   APInt Lg2Mask = APInt::getLowBitsSet(VT.getSizeInBits(), Lg2);
6284   SDValue Pow2MinusOne = DAG.getConstant(Lg2Mask, DL, VT);
6285 
6286   // If N0 is negative, we need to add (Pow2 - 1) to it before shifting right.
6287   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6288   SDValue Cmp = DAG.getSetCC(DL, CCVT, N0, Zero, ISD::SETLT);
6289   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
6290   SDValue CMov = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
6291 
6292   Created.push_back(Cmp.getNode());
6293   Created.push_back(Add.getNode());
6294   Created.push_back(CMov.getNode());
6295 
6296   // Divide by pow2.
6297   SDValue SRA =
6298       DAG.getNode(ISD::SRA, DL, VT, CMov, DAG.getConstant(Lg2, DL, VT));
6299 
6300   // If we're dividing by a positive value, we're done.  Otherwise, we must
6301   // negate the result.
6302   if (Divisor.isNonNegative())
6303     return SRA;
6304 
6305   Created.push_back(SRA.getNode());
6306   return DAG.getNode(ISD::SUB, DL, VT, Zero, SRA);
6307 }
6308 
6309 /// Given an ISD::SDIV node expressing a divide by constant,
6310 /// return a DAG expression to select that will generate the same value by
6311 /// multiplying by a magic number.
6312 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
6313 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
6314                                   bool IsAfterLegalization,
6315                                   bool IsAfterLegalTypes,
6316                                   SmallVectorImpl<SDNode *> &Created) const {
6317   SDLoc dl(N);
6318   EVT VT = N->getValueType(0);
6319   EVT SVT = VT.getScalarType();
6320   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6321   EVT ShSVT = ShVT.getScalarType();
6322   unsigned EltBits = VT.getScalarSizeInBits();
6323   EVT MulVT;
6324 
6325   // Check to see if we can do this.
6326   // FIXME: We should be more aggressive here.
6327   if (!isTypeLegal(VT)) {
6328     // Limit this to simple scalars for now.
6329     if (VT.isVector() || !VT.isSimple())
6330       return SDValue();
6331 
6332     // If this type will be promoted to a large enough type with a legal
6333     // multiply operation, we can go ahead and do this transform.
6334     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
6335       return SDValue();
6336 
6337     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
6338     if (MulVT.getSizeInBits() < (2 * EltBits) ||
6339         !isOperationLegal(ISD::MUL, MulVT))
6340       return SDValue();
6341   }
6342 
6343   // If the sdiv has an 'exact' bit we can use a simpler lowering.
6344   if (N->getFlags().hasExact())
6345     return BuildExactSDIV(*this, N, dl, DAG, Created);
6346 
6347   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
6348 
6349   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
6350     if (C->isZero())
6351       return false;
6352 
6353     const APInt &Divisor = C->getAPIntValue();
6354     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
6355     int NumeratorFactor = 0;
6356     int ShiftMask = -1;
6357 
6358     if (Divisor.isOne() || Divisor.isAllOnes()) {
6359       // If d is +1/-1, we just multiply the numerator by +1/-1.
6360       NumeratorFactor = Divisor.getSExtValue();
6361       magics.Magic = 0;
6362       magics.ShiftAmount = 0;
6363       ShiftMask = 0;
6364     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
6365       // If d > 0 and m < 0, add the numerator.
6366       NumeratorFactor = 1;
6367     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
6368       // If d < 0 and m > 0, subtract the numerator.
6369       NumeratorFactor = -1;
6370     }
6371 
6372     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
6373     Factors.push_back(DAG.getSignedConstant(NumeratorFactor, dl, SVT));
6374     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
6375     ShiftMasks.push_back(DAG.getSignedConstant(ShiftMask, dl, SVT));
6376     return true;
6377   };
6378 
6379   SDValue N0 = N->getOperand(0);
6380   SDValue N1 = N->getOperand(1);
6381 
6382   // Collect the shifts / magic values from each element.
6383   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
6384     return SDValue();
6385 
6386   SDValue MagicFactor, Factor, Shift, ShiftMask;
6387   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
6388     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
6389     Factor = DAG.getBuildVector(VT, dl, Factors);
6390     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
6391     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
6392   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
6393     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
6394            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
6395            "Expected matchUnaryPredicate to return one element for scalable "
6396            "vectors");
6397     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
6398     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
6399     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
6400     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
6401   } else {
6402     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
6403     MagicFactor = MagicFactors[0];
6404     Factor = Factors[0];
6405     Shift = Shifts[0];
6406     ShiftMask = ShiftMasks[0];
6407   }
6408 
6409   // Multiply the numerator (operand 0) by the magic value.
6410   // FIXME: We should support doing a MUL in a wider type.
6411   auto GetMULHS = [&](SDValue X, SDValue Y) {
6412     // If the type isn't legal, use a wider mul of the type calculated
6413     // earlier.
6414     if (!isTypeLegal(VT)) {
6415       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
6416       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
6417       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
6418       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
6419                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
6420       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6421     }
6422 
6423     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
6424       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
6425     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
6426       SDValue LoHi =
6427           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
6428       return SDValue(LoHi.getNode(), 1);
6429     }
6430     // If type twice as wide legal, widen and use a mul plus a shift.
6431     unsigned Size = VT.getScalarSizeInBits();
6432     EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2);
6433     if (VT.isVector())
6434       WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
6435                                 VT.getVectorElementCount());
6436     // Some targets like AMDGPU try to go from SDIV to SDIVREM which is then
6437     // custom lowered. This is very expensive so avoid it at all costs for
6438     // constant divisors.
6439     if ((!IsAfterLegalTypes && isOperationExpand(ISD::SDIV, VT) &&
6440          isOperationCustom(ISD::SDIVREM, VT.getScalarType())) ||
6441         isOperationLegalOrCustom(ISD::MUL, WideVT)) {
6442       X = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, X);
6443       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, Y);
6444       Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y);
6445       Y = DAG.getNode(ISD::SRL, dl, WideVT, Y,
6446                       DAG.getShiftAmountConstant(EltBits, WideVT, dl));
6447       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6448     }
6449     return SDValue();
6450   };
6451 
6452   SDValue Q = GetMULHS(N0, MagicFactor);
6453   if (!Q)
6454     return SDValue();
6455 
6456   Created.push_back(Q.getNode());
6457 
6458   // (Optionally) Add/subtract the numerator using Factor.
6459   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
6460   Created.push_back(Factor.getNode());
6461   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
6462   Created.push_back(Q.getNode());
6463 
6464   // Shift right algebraic by shift value.
6465   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
6466   Created.push_back(Q.getNode());
6467 
6468   // Extract the sign bit, mask it and add it to the quotient.
6469   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
6470   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
6471   Created.push_back(T.getNode());
6472   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
6473   Created.push_back(T.getNode());
6474   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
6475 }
6476 
6477 /// Given an ISD::UDIV node expressing a divide by constant,
6478 /// return a DAG expression to select that will generate the same value by
6479 /// multiplying by a magic number.
6480 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
6481 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
6482                                   bool IsAfterLegalization,
6483                                   bool IsAfterLegalTypes,
6484                                   SmallVectorImpl<SDNode *> &Created) const {
6485   SDLoc dl(N);
6486   EVT VT = N->getValueType(0);
6487   EVT SVT = VT.getScalarType();
6488   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6489   EVT ShSVT = ShVT.getScalarType();
6490   unsigned EltBits = VT.getScalarSizeInBits();
6491   EVT MulVT;
6492 
6493   // Check to see if we can do this.
6494   // FIXME: We should be more aggressive here.
6495   if (!isTypeLegal(VT)) {
6496     // Limit this to simple scalars for now.
6497     if (VT.isVector() || !VT.isSimple())
6498       return SDValue();
6499 
6500     // If this type will be promoted to a large enough type with a legal
6501     // multiply operation, we can go ahead and do this transform.
6502     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
6503       return SDValue();
6504 
6505     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
6506     if (MulVT.getSizeInBits() < (2 * EltBits) ||
6507         !isOperationLegal(ISD::MUL, MulVT))
6508       return SDValue();
6509   }
6510 
6511   // If the udiv has an 'exact' bit we can use a simpler lowering.
6512   if (N->getFlags().hasExact())
6513     return BuildExactUDIV(*this, N, dl, DAG, Created);
6514 
6515   SDValue N0 = N->getOperand(0);
6516   SDValue N1 = N->getOperand(1);
6517 
6518   // Try to use leading zeros of the dividend to reduce the multiplier and
6519   // avoid expensive fixups.
6520   unsigned KnownLeadingZeros = DAG.computeKnownBits(N0).countMinLeadingZeros();
6521 
6522   bool UseNPQ = false, UsePreShift = false, UsePostShift = false;
6523   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
6524 
6525   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
6526     if (C->isZero())
6527       return false;
6528     const APInt& Divisor = C->getAPIntValue();
6529 
6530     SDValue PreShift, MagicFactor, NPQFactor, PostShift;
6531 
6532     // Magic algorithm doesn't work for division by 1. We need to emit a select
6533     // at the end.
6534     if (Divisor.isOne()) {
6535       PreShift = PostShift = DAG.getUNDEF(ShSVT);
6536       MagicFactor = NPQFactor = DAG.getUNDEF(SVT);
6537     } else {
6538       UnsignedDivisionByConstantInfo magics =
6539           UnsignedDivisionByConstantInfo::get(
6540               Divisor, std::min(KnownLeadingZeros, Divisor.countl_zero()));
6541 
6542       MagicFactor = DAG.getConstant(magics.Magic, dl, SVT);
6543 
6544       assert(magics.PreShift < Divisor.getBitWidth() &&
6545              "We shouldn't generate an undefined shift!");
6546       assert(magics.PostShift < Divisor.getBitWidth() &&
6547              "We shouldn't generate an undefined shift!");
6548       assert((!magics.IsAdd || magics.PreShift == 0) &&
6549              "Unexpected pre-shift");
6550       PreShift = DAG.getConstant(magics.PreShift, dl, ShSVT);
6551       PostShift = DAG.getConstant(magics.PostShift, dl, ShSVT);
6552       NPQFactor = DAG.getConstant(
6553           magics.IsAdd ? APInt::getOneBitSet(EltBits, EltBits - 1)
6554                        : APInt::getZero(EltBits),
6555           dl, SVT);
6556       UseNPQ |= magics.IsAdd;
6557       UsePreShift |= magics.PreShift != 0;
6558       UsePostShift |= magics.PostShift != 0;
6559     }
6560 
6561     PreShifts.push_back(PreShift);
6562     MagicFactors.push_back(MagicFactor);
6563     NPQFactors.push_back(NPQFactor);
6564     PostShifts.push_back(PostShift);
6565     return true;
6566   };
6567 
6568   // Collect the shifts/magic values from each element.
6569   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
6570     return SDValue();
6571 
6572   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
6573   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
6574     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
6575     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
6576     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
6577     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
6578   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
6579     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
6580            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
6581            "Expected matchUnaryPredicate to return one for scalable vectors");
6582     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
6583     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
6584     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
6585     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
6586   } else {
6587     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
6588     PreShift = PreShifts[0];
6589     MagicFactor = MagicFactors[0];
6590     PostShift = PostShifts[0];
6591   }
6592 
6593   SDValue Q = N0;
6594   if (UsePreShift) {
6595     Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
6596     Created.push_back(Q.getNode());
6597   }
6598 
6599   // FIXME: We should support doing a MUL in a wider type.
6600   auto GetMULHU = [&](SDValue X, SDValue Y) {
6601     // If the type isn't legal, use a wider mul of the type calculated
6602     // earlier.
6603     if (!isTypeLegal(VT)) {
6604       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
6605       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
6606       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
6607       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
6608                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
6609       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6610     }
6611 
6612     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
6613       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
6614     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
6615       SDValue LoHi =
6616           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
6617       return SDValue(LoHi.getNode(), 1);
6618     }
6619     // If type twice as wide legal, widen and use a mul plus a shift.
6620     unsigned Size = VT.getScalarSizeInBits();
6621     EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2);
6622     if (VT.isVector())
6623       WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
6624                                 VT.getVectorElementCount());
6625     // Some targets like AMDGPU try to go from UDIV to UDIVREM which is then
6626     // custom lowered. This is very expensive so avoid it at all costs for
6627     // constant divisors.
6628     if ((!IsAfterLegalTypes && isOperationExpand(ISD::UDIV, VT) &&
6629          isOperationCustom(ISD::UDIVREM, VT.getScalarType())) ||
6630         isOperationLegalOrCustom(ISD::MUL, WideVT)) {
6631       X = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, X);
6632       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, Y);
6633       Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y);
6634       Y = DAG.getNode(ISD::SRL, dl, WideVT, Y,
6635                       DAG.getShiftAmountConstant(EltBits, WideVT, dl));
6636       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6637     }
6638     return SDValue(); // No mulhu or equivalent
6639   };
6640 
6641   // Multiply the numerator (operand 0) by the magic value.
6642   Q = GetMULHU(Q, MagicFactor);
6643   if (!Q)
6644     return SDValue();
6645 
6646   Created.push_back(Q.getNode());
6647 
6648   if (UseNPQ) {
6649     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
6650     Created.push_back(NPQ.getNode());
6651 
6652     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
6653     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
6654     if (VT.isVector())
6655       NPQ = GetMULHU(NPQ, NPQFactor);
6656     else
6657       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
6658 
6659     Created.push_back(NPQ.getNode());
6660 
6661     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
6662     Created.push_back(Q.getNode());
6663   }
6664 
6665   if (UsePostShift) {
6666     Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
6667     Created.push_back(Q.getNode());
6668   }
6669 
6670   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6671 
6672   SDValue One = DAG.getConstant(1, dl, VT);
6673   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
6674   return DAG.getSelect(dl, VT, IsOne, N0, Q);
6675 }
6676 
6677 /// If all values in Values that *don't* match the predicate are same 'splat'
6678 /// value, then replace all values with that splat value.
6679 /// Else, if AlternativeReplacement was provided, then replace all values that
6680 /// do match predicate with AlternativeReplacement value.
6681 static void
6682 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
6683                           std::function<bool(SDValue)> Predicate,
6684                           SDValue AlternativeReplacement = SDValue()) {
6685   SDValue Replacement;
6686   // Is there a value for which the Predicate does *NOT* match? What is it?
6687   auto SplatValue = llvm::find_if_not(Values, Predicate);
6688   if (SplatValue != Values.end()) {
6689     // Does Values consist only of SplatValue's and values matching Predicate?
6690     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
6691           return Value == *SplatValue || Predicate(Value);
6692         })) // Then we shall replace values matching predicate with SplatValue.
6693       Replacement = *SplatValue;
6694   }
6695   if (!Replacement) {
6696     // Oops, we did not find the "baseline" splat value.
6697     if (!AlternativeReplacement)
6698       return; // Nothing to do.
6699     // Let's replace with provided value then.
6700     Replacement = AlternativeReplacement;
6701   }
6702   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
6703 }
6704 
6705 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
6706 /// where the divisor is constant and the comparison target is zero,
6707 /// return a DAG expression that will generate the same comparison result
6708 /// using only multiplications, additions and shifts/rotations.
6709 /// Ref: "Hacker's Delight" 10-17.
6710 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
6711                                         SDValue CompTargetNode,
6712                                         ISD::CondCode Cond,
6713                                         DAGCombinerInfo &DCI,
6714                                         const SDLoc &DL) const {
6715   SmallVector<SDNode *, 5> Built;
6716   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6717                                          DCI, DL, Built)) {
6718     for (SDNode *N : Built)
6719       DCI.AddToWorklist(N);
6720     return Folded;
6721   }
6722 
6723   return SDValue();
6724 }
6725 
6726 SDValue
6727 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
6728                                   SDValue CompTargetNode, ISD::CondCode Cond,
6729                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6730                                   SmallVectorImpl<SDNode *> &Created) const {
6731   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
6732   // - D must be constant, with D = D0 * 2^K where D0 is odd
6733   // - P is the multiplicative inverse of D0 modulo 2^W
6734   // - Q = floor(((2^W) - 1) / D)
6735   // where W is the width of the common type of N and D.
6736   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6737          "Only applicable for (in)equality comparisons.");
6738 
6739   SelectionDAG &DAG = DCI.DAG;
6740 
6741   EVT VT = REMNode.getValueType();
6742   EVT SVT = VT.getScalarType();
6743   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6744   EVT ShSVT = ShVT.getScalarType();
6745 
6746   // If MUL is unavailable, we cannot proceed in any case.
6747   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6748     return SDValue();
6749 
6750   bool ComparingWithAllZeros = true;
6751   bool AllComparisonsWithNonZerosAreTautological = true;
6752   bool HadTautologicalLanes = false;
6753   bool AllLanesAreTautological = true;
6754   bool HadEvenDivisor = false;
6755   bool AllDivisorsArePowerOfTwo = true;
6756   bool HadTautologicalInvertedLanes = false;
6757   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
6758 
6759   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
6760     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6761     if (CDiv->isZero())
6762       return false;
6763 
6764     const APInt &D = CDiv->getAPIntValue();
6765     const APInt &Cmp = CCmp->getAPIntValue();
6766 
6767     ComparingWithAllZeros &= Cmp.isZero();
6768 
6769     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6770     // if C2 is not less than C1, the comparison is always false.
6771     // But we will only be able to produce the comparison that will give the
6772     // opposive tautological answer. So this lane would need to be fixed up.
6773     bool TautologicalInvertedLane = D.ule(Cmp);
6774     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
6775 
6776     // If all lanes are tautological (either all divisors are ones, or divisor
6777     // is not greater than the constant we are comparing with),
6778     // we will prefer to avoid the fold.
6779     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
6780     HadTautologicalLanes |= TautologicalLane;
6781     AllLanesAreTautological &= TautologicalLane;
6782 
6783     // If we are comparing with non-zero, we need'll need  to subtract said
6784     // comparison value from the LHS. But there is no point in doing that if
6785     // every lane where we are comparing with non-zero is tautological..
6786     if (!Cmp.isZero())
6787       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
6788 
6789     // Decompose D into D0 * 2^K
6790     unsigned K = D.countr_zero();
6791     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6792     APInt D0 = D.lshr(K);
6793 
6794     // D is even if it has trailing zeros.
6795     HadEvenDivisor |= (K != 0);
6796     // D is a power-of-two if D0 is one.
6797     // If all divisors are power-of-two, we will prefer to avoid the fold.
6798     AllDivisorsArePowerOfTwo &= D0.isOne();
6799 
6800     // P = inv(D0, 2^W)
6801     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6802     unsigned W = D.getBitWidth();
6803     APInt P = D0.multiplicativeInverse();
6804     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6805 
6806     // Q = floor((2^W - 1) u/ D)
6807     // R = ((2^W - 1) u% D)
6808     APInt Q, R;
6809     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
6810 
6811     // If we are comparing with zero, then that comparison constant is okay,
6812     // else it may need to be one less than that.
6813     if (Cmp.ugt(R))
6814       Q -= 1;
6815 
6816     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6817            "We are expecting that K is always less than all-ones for ShSVT");
6818 
6819     // If the lane is tautological the result can be constant-folded.
6820     if (TautologicalLane) {
6821       // Set P and K amount to a bogus values so we can try to splat them.
6822       P = 0;
6823       K = -1;
6824       // And ensure that comparison constant is tautological,
6825       // it will always compare true/false.
6826       Q = -1;
6827     }
6828 
6829     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6830     KAmts.push_back(
6831         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K, /*isSigned=*/false,
6832                               /*implicitTrunc=*/true),
6833                         DL, ShSVT));
6834     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6835     return true;
6836   };
6837 
6838   SDValue N = REMNode.getOperand(0);
6839   SDValue D = REMNode.getOperand(1);
6840 
6841   // Collect the values from each element.
6842   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
6843     return SDValue();
6844 
6845   // If all lanes are tautological, the result can be constant-folded.
6846   if (AllLanesAreTautological)
6847     return SDValue();
6848 
6849   // If this is a urem by a powers-of-two, avoid the fold since it can be
6850   // best implemented as a bit test.
6851   if (AllDivisorsArePowerOfTwo)
6852     return SDValue();
6853 
6854   SDValue PVal, KVal, QVal;
6855   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6856     if (HadTautologicalLanes) {
6857       // Try to turn PAmts into a splat, since we don't care about the values
6858       // that are currently '0'. If we can't, just keep '0'`s.
6859       turnVectorIntoSplatVector(PAmts, isNullConstant);
6860       // Try to turn KAmts into a splat, since we don't care about the values
6861       // that are currently '-1'. If we can't, change them to '0'`s.
6862       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6863                                 DAG.getConstant(0, DL, ShSVT));
6864     }
6865 
6866     PVal = DAG.getBuildVector(VT, DL, PAmts);
6867     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6868     QVal = DAG.getBuildVector(VT, DL, QAmts);
6869   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6870     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
6871            "Expected matchBinaryPredicate to return one element for "
6872            "SPLAT_VECTORs");
6873     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6874     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6875     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6876   } else {
6877     PVal = PAmts[0];
6878     KVal = KAmts[0];
6879     QVal = QAmts[0];
6880   }
6881 
6882   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
6883     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
6884       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
6885     assert(CompTargetNode.getValueType() == N.getValueType() &&
6886            "Expecting that the types on LHS and RHS of comparisons match.");
6887     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
6888   }
6889 
6890   // (mul N, P)
6891   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6892   Created.push_back(Op0.getNode());
6893 
6894   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6895   // divisors as a performance improvement, since rotating by 0 is a no-op.
6896   if (HadEvenDivisor) {
6897     // We need ROTR to do this.
6898     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6899       return SDValue();
6900     // UREM: (rotr (mul N, P), K)
6901     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6902     Created.push_back(Op0.getNode());
6903   }
6904 
6905   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
6906   SDValue NewCC =
6907       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6908                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6909   if (!HadTautologicalInvertedLanes)
6910     return NewCC;
6911 
6912   // If any lanes previously compared always-false, the NewCC will give
6913   // always-true result for them, so we need to fixup those lanes.
6914   // Or the other way around for inequality predicate.
6915   assert(VT.isVector() && "Can/should only get here for vectors.");
6916   Created.push_back(NewCC.getNode());
6917 
6918   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6919   // if C2 is not less than C1, the comparison is always false.
6920   // But we have produced the comparison that will give the
6921   // opposive tautological answer. So these lanes would need to be fixed up.
6922   SDValue TautologicalInvertedChannels =
6923       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
6924   Created.push_back(TautologicalInvertedChannels.getNode());
6925 
6926   // NOTE: we avoid letting illegal types through even if we're before legalize
6927   // ops – legalization has a hard time producing good code for this.
6928   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
6929     // If we have a vector select, let's replace the comparison results in the
6930     // affected lanes with the correct tautological result.
6931     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
6932                                               DL, SETCCVT, SETCCVT);
6933     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
6934                        Replacement, NewCC);
6935   }
6936 
6937   // Else, we can just invert the comparison result in the appropriate lanes.
6938   //
6939   // NOTE: see the note above VSELECT above.
6940   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
6941     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
6942                        TautologicalInvertedChannels);
6943 
6944   return SDValue(); // Don't know how to lower.
6945 }
6946 
6947 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
6948 /// where the divisor is constant and the comparison target is zero,
6949 /// return a DAG expression that will generate the same comparison result
6950 /// using only multiplications, additions and shifts/rotations.
6951 /// Ref: "Hacker's Delight" 10-17.
6952 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
6953                                         SDValue CompTargetNode,
6954                                         ISD::CondCode Cond,
6955                                         DAGCombinerInfo &DCI,
6956                                         const SDLoc &DL) const {
6957   SmallVector<SDNode *, 7> Built;
6958   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6959                                          DCI, DL, Built)) {
6960     assert(Built.size() <= 7 && "Max size prediction failed.");
6961     for (SDNode *N : Built)
6962       DCI.AddToWorklist(N);
6963     return Folded;
6964   }
6965 
6966   return SDValue();
6967 }
6968 
6969 SDValue
6970 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
6971                                   SDValue CompTargetNode, ISD::CondCode Cond,
6972                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6973                                   SmallVectorImpl<SDNode *> &Created) const {
6974   // Derived from Hacker's Delight, 2nd Edition, by Hank Warren. Section 10-17.
6975   // Fold:
6976   //   (seteq/ne (srem N, D), 0)
6977   // To:
6978   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
6979   //
6980   // - D must be constant, with D = D0 * 2^K where D0 is odd
6981   // - P is the multiplicative inverse of D0 modulo 2^W
6982   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
6983   // - Q = floor((2 * A) / (2^K))
6984   // where W is the width of the common type of N and D.
6985   //
6986   // When D is a power of two (and thus D0 is 1), the normal
6987   // formula for A and Q don't apply, because the derivation
6988   // depends on D not dividing 2^(W-1), and thus theorem ZRS
6989   // does not apply. This specifically fails when N = INT_MIN.
6990   //
6991   // Instead, for power-of-two D, we use:
6992   // - A = 2^(W-1)
6993   // |-> Order-preserving map from [-2^(W-1), 2^(W-1) - 1] to [0,2^W - 1])
6994   // - Q = 2^(W-K) - 1
6995   // |-> Test that the top K bits are zero after rotation
6996   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6997          "Only applicable for (in)equality comparisons.");
6998 
6999   SelectionDAG &DAG = DCI.DAG;
7000 
7001   EVT VT = REMNode.getValueType();
7002   EVT SVT = VT.getScalarType();
7003   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7004   EVT ShSVT = ShVT.getScalarType();
7005 
7006   // If we are after ops legalization, and MUL is unavailable, we can not
7007   // proceed.
7008   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
7009     return SDValue();
7010 
7011   // TODO: Could support comparing with non-zero too.
7012   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
7013   if (!CompTarget || !CompTarget->isZero())
7014     return SDValue();
7015 
7016   bool HadIntMinDivisor = false;
7017   bool HadOneDivisor = false;
7018   bool AllDivisorsAreOnes = true;
7019   bool HadEvenDivisor = false;
7020   bool NeedToApplyOffset = false;
7021   bool AllDivisorsArePowerOfTwo = true;
7022   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
7023 
7024   auto BuildSREMPattern = [&](ConstantSDNode *C) {
7025     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
7026     if (C->isZero())
7027       return false;
7028 
7029     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
7030 
7031     // WARNING: this fold is only valid for positive divisors!
7032     APInt D = C->getAPIntValue();
7033     if (D.isNegative())
7034       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
7035 
7036     HadIntMinDivisor |= D.isMinSignedValue();
7037 
7038     // If all divisors are ones, we will prefer to avoid the fold.
7039     HadOneDivisor |= D.isOne();
7040     AllDivisorsAreOnes &= D.isOne();
7041 
7042     // Decompose D into D0 * 2^K
7043     unsigned K = D.countr_zero();
7044     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
7045     APInt D0 = D.lshr(K);
7046 
7047     if (!D.isMinSignedValue()) {
7048       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
7049       // we don't care about this lane in this fold, we'll special-handle it.
7050       HadEvenDivisor |= (K != 0);
7051     }
7052 
7053     // D is a power-of-two if D0 is one. This includes INT_MIN.
7054     // If all divisors are power-of-two, we will prefer to avoid the fold.
7055     AllDivisorsArePowerOfTwo &= D0.isOne();
7056 
7057     // P = inv(D0, 2^W)
7058     // 2^W requires W + 1 bits, so we have to extend and then truncate.
7059     unsigned W = D.getBitWidth();
7060     APInt P = D0.multiplicativeInverse();
7061     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
7062 
7063     // A = floor((2^(W - 1) - 1) / D0) & -2^K
7064     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
7065     A.clearLowBits(K);
7066 
7067     if (!D.isMinSignedValue()) {
7068       // If divisor INT_MIN, then we don't care about this lane in this fold,
7069       // we'll special-handle it.
7070       NeedToApplyOffset |= A != 0;
7071     }
7072 
7073     // Q = floor((2 * A) / (2^K))
7074     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
7075 
7076     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
7077            "We are expecting that A is always less than all-ones for SVT");
7078     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
7079            "We are expecting that K is always less than all-ones for ShSVT");
7080 
7081     // If D was a power of two, apply the alternate constant derivation.
7082     if (D0.isOne()) {
7083       // A = 2^(W-1)
7084       A = APInt::getSignedMinValue(W);
7085       // - Q = 2^(W-K) - 1
7086       Q = APInt::getAllOnes(W - K).zext(W);
7087     }
7088 
7089     // If the divisor is 1 the result can be constant-folded. Likewise, we
7090     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
7091     if (D.isOne()) {
7092       // Set P, A and K to a bogus values so we can try to splat them.
7093       P = 0;
7094       A = -1;
7095       K = -1;
7096 
7097       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
7098       Q = -1;
7099     }
7100 
7101     PAmts.push_back(DAG.getConstant(P, DL, SVT));
7102     AAmts.push_back(DAG.getConstant(A, DL, SVT));
7103     KAmts.push_back(
7104         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K, /*isSigned=*/false,
7105                               /*implicitTrunc=*/true),
7106                         DL, ShSVT));
7107     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
7108     return true;
7109   };
7110 
7111   SDValue N = REMNode.getOperand(0);
7112   SDValue D = REMNode.getOperand(1);
7113 
7114   // Collect the values from each element.
7115   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
7116     return SDValue();
7117 
7118   // If this is a srem by a one, avoid the fold since it can be constant-folded.
7119   if (AllDivisorsAreOnes)
7120     return SDValue();
7121 
7122   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
7123   // since it can be best implemented as a bit test.
7124   if (AllDivisorsArePowerOfTwo)
7125     return SDValue();
7126 
7127   SDValue PVal, AVal, KVal, QVal;
7128   if (D.getOpcode() == ISD::BUILD_VECTOR) {
7129     if (HadOneDivisor) {
7130       // Try to turn PAmts into a splat, since we don't care about the values
7131       // that are currently '0'. If we can't, just keep '0'`s.
7132       turnVectorIntoSplatVector(PAmts, isNullConstant);
7133       // Try to turn AAmts into a splat, since we don't care about the
7134       // values that are currently '-1'. If we can't, change them to '0'`s.
7135       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
7136                                 DAG.getConstant(0, DL, SVT));
7137       // Try to turn KAmts into a splat, since we don't care about the values
7138       // that are currently '-1'. If we can't, change them to '0'`s.
7139       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
7140                                 DAG.getConstant(0, DL, ShSVT));
7141     }
7142 
7143     PVal = DAG.getBuildVector(VT, DL, PAmts);
7144     AVal = DAG.getBuildVector(VT, DL, AAmts);
7145     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
7146     QVal = DAG.getBuildVector(VT, DL, QAmts);
7147   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
7148     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
7149            QAmts.size() == 1 &&
7150            "Expected matchUnaryPredicate to return one element for scalable "
7151            "vectors");
7152     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
7153     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
7154     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
7155     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
7156   } else {
7157     assert(isa<ConstantSDNode>(D) && "Expected a constant");
7158     PVal = PAmts[0];
7159     AVal = AAmts[0];
7160     KVal = KAmts[0];
7161     QVal = QAmts[0];
7162   }
7163 
7164   // (mul N, P)
7165   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
7166   Created.push_back(Op0.getNode());
7167 
7168   if (NeedToApplyOffset) {
7169     // We need ADD to do this.
7170     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
7171       return SDValue();
7172 
7173     // (add (mul N, P), A)
7174     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
7175     Created.push_back(Op0.getNode());
7176   }
7177 
7178   // Rotate right only if any divisor was even. We avoid rotates for all-odd
7179   // divisors as a performance improvement, since rotating by 0 is a no-op.
7180   if (HadEvenDivisor) {
7181     // We need ROTR to do this.
7182     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
7183       return SDValue();
7184     // SREM: (rotr (add (mul N, P), A), K)
7185     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
7186     Created.push_back(Op0.getNode());
7187   }
7188 
7189   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
7190   SDValue Fold =
7191       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
7192                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
7193 
7194   // If we didn't have lanes with INT_MIN divisor, then we're done.
7195   if (!HadIntMinDivisor)
7196     return Fold;
7197 
7198   // That fold is only valid for positive divisors. Which effectively means,
7199   // it is invalid for INT_MIN divisors. So if we have such a lane,
7200   // we must fix-up results for said lanes.
7201   assert(VT.isVector() && "Can/should only get here for vectors.");
7202 
7203   // NOTE: we avoid letting illegal types through even if we're before legalize
7204   // ops – legalization has a hard time producing good code for the code that
7205   // follows.
7206   if (!isOperationLegalOrCustom(ISD::SETCC, SETCCVT) ||
7207       !isOperationLegalOrCustom(ISD::AND, VT) ||
7208       !isCondCodeLegalOrCustom(Cond, VT.getSimpleVT()) ||
7209       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
7210     return SDValue();
7211 
7212   Created.push_back(Fold.getNode());
7213 
7214   SDValue IntMin = DAG.getConstant(
7215       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
7216   SDValue IntMax = DAG.getConstant(
7217       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
7218   SDValue Zero =
7219       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
7220 
7221   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
7222   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
7223   Created.push_back(DivisorIsIntMin.getNode());
7224 
7225   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
7226   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
7227   Created.push_back(Masked.getNode());
7228   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
7229   Created.push_back(MaskedIsZero.getNode());
7230 
7231   // To produce final result we need to blend 2 vectors: 'SetCC' and
7232   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
7233   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
7234   // constant-folded, select can get lowered to a shuffle with constant mask.
7235   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
7236                                 MaskedIsZero, Fold);
7237 
7238   return Blended;
7239 }
7240 
7241 bool TargetLowering::
7242 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
7243   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
7244     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
7245                                 "be a constant integer");
7246     return true;
7247   }
7248 
7249   return false;
7250 }
7251 
7252 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
7253                                          const DenormalMode &Mode) const {
7254   SDLoc DL(Op);
7255   EVT VT = Op.getValueType();
7256   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7257   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
7258 
7259   // This is specifically a check for the handling of denormal inputs, not the
7260   // result.
7261   if (Mode.Input == DenormalMode::PreserveSign ||
7262       Mode.Input == DenormalMode::PositiveZero) {
7263     // Test = X == 0.0
7264     return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
7265   }
7266 
7267   // Testing it with denormal inputs to avoid wrong estimate.
7268   //
7269   // Test = fabs(X) < SmallestNormal
7270   const fltSemantics &FltSem = VT.getFltSemantics();
7271   APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
7272   SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
7273   SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
7274   return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
7275 }
7276 
7277 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
7278                                              bool LegalOps, bool OptForSize,
7279                                              NegatibleCost &Cost,
7280                                              unsigned Depth) const {
7281   // fneg is removable even if it has multiple uses.
7282   if (Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::VP_FNEG) {
7283     Cost = NegatibleCost::Cheaper;
7284     return Op.getOperand(0);
7285   }
7286 
7287   // Don't recurse exponentially.
7288   if (Depth > SelectionDAG::MaxRecursionDepth)
7289     return SDValue();
7290 
7291   // Pre-increment recursion depth for use in recursive calls.
7292   ++Depth;
7293   const SDNodeFlags Flags = Op->getFlags();
7294   const TargetOptions &Options = DAG.getTarget().Options;
7295   EVT VT = Op.getValueType();
7296   unsigned Opcode = Op.getOpcode();
7297 
7298   // Don't allow anything with multiple uses unless we know it is free.
7299   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
7300     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
7301                         isFPExtFree(VT, Op.getOperand(0).getValueType());
7302     if (!IsFreeExtend)
7303       return SDValue();
7304   }
7305 
7306   auto RemoveDeadNode = [&](SDValue N) {
7307     if (N && N.getNode()->use_empty())
7308       DAG.RemoveDeadNode(N.getNode());
7309   };
7310 
7311   SDLoc DL(Op);
7312 
7313   // Because getNegatedExpression can delete nodes we need a handle to keep
7314   // temporary nodes alive in case the recursion manages to create an identical
7315   // node.
7316   std::list<HandleSDNode> Handles;
7317 
7318   switch (Opcode) {
7319   case ISD::ConstantFP: {
7320     // Don't invert constant FP values after legalization unless the target says
7321     // the negated constant is legal.
7322     bool IsOpLegal =
7323         isOperationLegal(ISD::ConstantFP, VT) ||
7324         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
7325                      OptForSize);
7326 
7327     if (LegalOps && !IsOpLegal)
7328       break;
7329 
7330     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
7331     V.changeSign();
7332     SDValue CFP = DAG.getConstantFP(V, DL, VT);
7333 
7334     // If we already have the use of the negated floating constant, it is free
7335     // to negate it even it has multiple uses.
7336     if (!Op.hasOneUse() && CFP.use_empty())
7337       break;
7338     Cost = NegatibleCost::Neutral;
7339     return CFP;
7340   }
7341   case ISD::BUILD_VECTOR: {
7342     // Only permit BUILD_VECTOR of constants.
7343     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
7344           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
7345         }))
7346       break;
7347 
7348     bool IsOpLegal =
7349         (isOperationLegal(ISD::ConstantFP, VT) &&
7350          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
7351         llvm::all_of(Op->op_values(), [&](SDValue N) {
7352           return N.isUndef() ||
7353                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
7354                               OptForSize);
7355         });
7356 
7357     if (LegalOps && !IsOpLegal)
7358       break;
7359 
7360     SmallVector<SDValue, 4> Ops;
7361     for (SDValue C : Op->op_values()) {
7362       if (C.isUndef()) {
7363         Ops.push_back(C);
7364         continue;
7365       }
7366       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
7367       V.changeSign();
7368       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
7369     }
7370     Cost = NegatibleCost::Neutral;
7371     return DAG.getBuildVector(VT, DL, Ops);
7372   }
7373   case ISD::FADD: {
7374     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7375       break;
7376 
7377     // After operation legalization, it might not be legal to create new FSUBs.
7378     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
7379       break;
7380     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
7381 
7382     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
7383     NegatibleCost CostX = NegatibleCost::Expensive;
7384     SDValue NegX =
7385         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
7386     // Prevent this node from being deleted by the next call.
7387     if (NegX)
7388       Handles.emplace_back(NegX);
7389 
7390     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
7391     NegatibleCost CostY = NegatibleCost::Expensive;
7392     SDValue NegY =
7393         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
7394 
7395     // We're done with the handles.
7396     Handles.clear();
7397 
7398     // Negate the X if its cost is less or equal than Y.
7399     if (NegX && (CostX <= CostY)) {
7400       Cost = CostX;
7401       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
7402       if (NegY != N)
7403         RemoveDeadNode(NegY);
7404       return N;
7405     }
7406 
7407     // Negate the Y if it is not expensive.
7408     if (NegY) {
7409       Cost = CostY;
7410       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
7411       if (NegX != N)
7412         RemoveDeadNode(NegX);
7413       return N;
7414     }
7415     break;
7416   }
7417   case ISD::FSUB: {
7418     // We can't turn -(A-B) into B-A when we honor signed zeros.
7419     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7420       break;
7421 
7422     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
7423     // fold (fneg (fsub 0, Y)) -> Y
7424     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
7425       if (C->isZero()) {
7426         Cost = NegatibleCost::Cheaper;
7427         return Y;
7428       }
7429 
7430     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
7431     Cost = NegatibleCost::Neutral;
7432     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
7433   }
7434   case ISD::FMUL:
7435   case ISD::FDIV: {
7436     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
7437 
7438     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
7439     NegatibleCost CostX = NegatibleCost::Expensive;
7440     SDValue NegX =
7441         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
7442     // Prevent this node from being deleted by the next call.
7443     if (NegX)
7444       Handles.emplace_back(NegX);
7445 
7446     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
7447     NegatibleCost CostY = NegatibleCost::Expensive;
7448     SDValue NegY =
7449         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
7450 
7451     // We're done with the handles.
7452     Handles.clear();
7453 
7454     // Negate the X if its cost is less or equal than Y.
7455     if (NegX && (CostX <= CostY)) {
7456       Cost = CostX;
7457       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
7458       if (NegY != N)
7459         RemoveDeadNode(NegY);
7460       return N;
7461     }
7462 
7463     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
7464     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
7465       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
7466         break;
7467 
7468     // Negate the Y if it is not expensive.
7469     if (NegY) {
7470       Cost = CostY;
7471       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
7472       if (NegX != N)
7473         RemoveDeadNode(NegX);
7474       return N;
7475     }
7476     break;
7477   }
7478   case ISD::FMA:
7479   case ISD::FMAD: {
7480     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7481       break;
7482 
7483     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
7484     NegatibleCost CostZ = NegatibleCost::Expensive;
7485     SDValue NegZ =
7486         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
7487     // Give up if fail to negate the Z.
7488     if (!NegZ)
7489       break;
7490 
7491     // Prevent this node from being deleted by the next two calls.
7492     Handles.emplace_back(NegZ);
7493 
7494     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
7495     NegatibleCost CostX = NegatibleCost::Expensive;
7496     SDValue NegX =
7497         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
7498     // Prevent this node from being deleted by the next call.
7499     if (NegX)
7500       Handles.emplace_back(NegX);
7501 
7502     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
7503     NegatibleCost CostY = NegatibleCost::Expensive;
7504     SDValue NegY =
7505         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
7506 
7507     // We're done with the handles.
7508     Handles.clear();
7509 
7510     // Negate the X if its cost is less or equal than Y.
7511     if (NegX && (CostX <= CostY)) {
7512       Cost = std::min(CostX, CostZ);
7513       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
7514       if (NegY != N)
7515         RemoveDeadNode(NegY);
7516       return N;
7517     }
7518 
7519     // Negate the Y if it is not expensive.
7520     if (NegY) {
7521       Cost = std::min(CostY, CostZ);
7522       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
7523       if (NegX != N)
7524         RemoveDeadNode(NegX);
7525       return N;
7526     }
7527     break;
7528   }
7529 
7530   case ISD::FP_EXTEND:
7531   case ISD::FSIN:
7532     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
7533                                             OptForSize, Cost, Depth))
7534       return DAG.getNode(Opcode, DL, VT, NegV);
7535     break;
7536   case ISD::FP_ROUND:
7537     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
7538                                             OptForSize, Cost, Depth))
7539       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
7540     break;
7541   case ISD::SELECT:
7542   case ISD::VSELECT: {
7543     // fold (fneg (select C, LHS, RHS)) -> (select C, (fneg LHS), (fneg RHS))
7544     // iff at least one cost is cheaper and the other is neutral/cheaper
7545     SDValue LHS = Op.getOperand(1);
7546     NegatibleCost CostLHS = NegatibleCost::Expensive;
7547     SDValue NegLHS =
7548         getNegatedExpression(LHS, DAG, LegalOps, OptForSize, CostLHS, Depth);
7549     if (!NegLHS || CostLHS > NegatibleCost::Neutral) {
7550       RemoveDeadNode(NegLHS);
7551       break;
7552     }
7553 
7554     // Prevent this node from being deleted by the next call.
7555     Handles.emplace_back(NegLHS);
7556 
7557     SDValue RHS = Op.getOperand(2);
7558     NegatibleCost CostRHS = NegatibleCost::Expensive;
7559     SDValue NegRHS =
7560         getNegatedExpression(RHS, DAG, LegalOps, OptForSize, CostRHS, Depth);
7561 
7562     // We're done with the handles.
7563     Handles.clear();
7564 
7565     if (!NegRHS || CostRHS > NegatibleCost::Neutral ||
7566         (CostLHS != NegatibleCost::Cheaper &&
7567          CostRHS != NegatibleCost::Cheaper)) {
7568       RemoveDeadNode(NegLHS);
7569       RemoveDeadNode(NegRHS);
7570       break;
7571     }
7572 
7573     Cost = std::min(CostLHS, CostRHS);
7574     return DAG.getSelect(DL, VT, Op.getOperand(0), NegLHS, NegRHS);
7575   }
7576   }
7577 
7578   return SDValue();
7579 }
7580 
7581 //===----------------------------------------------------------------------===//
7582 // Legalization Utilities
7583 //===----------------------------------------------------------------------===//
7584 
7585 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
7586                                     SDValue LHS, SDValue RHS,
7587                                     SmallVectorImpl<SDValue> &Result,
7588                                     EVT HiLoVT, SelectionDAG &DAG,
7589                                     MulExpansionKind Kind, SDValue LL,
7590                                     SDValue LH, SDValue RL, SDValue RH) const {
7591   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
7592          Opcode == ISD::SMUL_LOHI);
7593 
7594   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
7595                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
7596   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
7597                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
7598   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
7599                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
7600   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
7601                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
7602 
7603   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
7604     return false;
7605 
7606   unsigned OuterBitSize = VT.getScalarSizeInBits();
7607   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
7608 
7609   // LL, LH, RL, and RH must be either all NULL or all set to a value.
7610   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
7611          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
7612 
7613   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
7614   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
7615                           bool Signed) -> bool {
7616     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
7617       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
7618       Hi = SDValue(Lo.getNode(), 1);
7619       return true;
7620     }
7621     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
7622       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
7623       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
7624       return true;
7625     }
7626     return false;
7627   };
7628 
7629   SDValue Lo, Hi;
7630 
7631   if (!LL.getNode() && !RL.getNode() &&
7632       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
7633     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
7634     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
7635   }
7636 
7637   if (!LL.getNode())
7638     return false;
7639 
7640   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
7641   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
7642       DAG.MaskedValueIsZero(RHS, HighMask)) {
7643     // The inputs are both zero-extended.
7644     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
7645       Result.push_back(Lo);
7646       Result.push_back(Hi);
7647       if (Opcode != ISD::MUL) {
7648         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
7649         Result.push_back(Zero);
7650         Result.push_back(Zero);
7651       }
7652       return true;
7653     }
7654   }
7655 
7656   if (!VT.isVector() && Opcode == ISD::MUL &&
7657       DAG.ComputeMaxSignificantBits(LHS) <= InnerBitSize &&
7658       DAG.ComputeMaxSignificantBits(RHS) <= InnerBitSize) {
7659     // The input values are both sign-extended.
7660     // TODO non-MUL case?
7661     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
7662       Result.push_back(Lo);
7663       Result.push_back(Hi);
7664       return true;
7665     }
7666   }
7667 
7668   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
7669   SDValue Shift = DAG.getShiftAmountConstant(ShiftAmount, VT, dl);
7670 
7671   if (!LH.getNode() && !RH.getNode() &&
7672       isOperationLegalOrCustom(ISD::SRL, VT) &&
7673       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
7674     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
7675     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
7676     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
7677     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
7678   }
7679 
7680   if (!LH.getNode())
7681     return false;
7682 
7683   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
7684     return false;
7685 
7686   Result.push_back(Lo);
7687 
7688   if (Opcode == ISD::MUL) {
7689     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
7690     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
7691     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
7692     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
7693     Result.push_back(Hi);
7694     return true;
7695   }
7696 
7697   // Compute the full width result.
7698   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
7699     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
7700     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7701     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
7702     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
7703   };
7704 
7705   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7706   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
7707     return false;
7708 
7709   // This is effectively the add part of a multiply-add of half-sized operands,
7710   // so it cannot overflow.
7711   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7712 
7713   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
7714     return false;
7715 
7716   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
7717   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7718 
7719   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
7720                   isOperationLegalOrCustom(ISD::ADDE, VT));
7721   if (UseGlue)
7722     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
7723                        Merge(Lo, Hi));
7724   else
7725     Next = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(VT, BoolType), Next,
7726                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
7727 
7728   SDValue Carry = Next.getValue(1);
7729   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7730   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7731 
7732   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
7733     return false;
7734 
7735   if (UseGlue)
7736     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
7737                      Carry);
7738   else
7739     Hi = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
7740                      Zero, Carry);
7741 
7742   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7743 
7744   if (Opcode == ISD::SMUL_LOHI) {
7745     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7746                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
7747     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
7748 
7749     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7750                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
7751     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
7752   }
7753 
7754   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7755   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7756   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7757   return true;
7758 }
7759 
7760 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
7761                                SelectionDAG &DAG, MulExpansionKind Kind,
7762                                SDValue LL, SDValue LH, SDValue RL,
7763                                SDValue RH) const {
7764   SmallVector<SDValue, 2> Result;
7765   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
7766                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
7767                            DAG, Kind, LL, LH, RL, RH);
7768   if (Ok) {
7769     assert(Result.size() == 2);
7770     Lo = Result[0];
7771     Hi = Result[1];
7772   }
7773   return Ok;
7774 }
7775 
7776 // Optimize unsigned division or remainder by constants for types twice as large
7777 // as a legal VT.
7778 //
7779 // If (1 << (BitWidth / 2)) % Constant == 1, then the remainder
7780 // can be computed
7781 // as:
7782 //   Sum += __builtin_uadd_overflow(Lo, High, &Sum);
7783 //   Remainder = Sum % Constant
7784 // This is based on "Remainder by Summing Digits" from Hacker's Delight.
7785 //
7786 // For division, we can compute the remainder using the algorithm described
7787 // above, subtract it from the dividend to get an exact multiple of Constant.
7788 // Then multiply that exact multiply by the multiplicative inverse modulo
7789 // (1 << (BitWidth / 2)) to get the quotient.
7790 
7791 // If Constant is even, we can shift right the dividend and the divisor by the
7792 // number of trailing zeros in Constant before applying the remainder algorithm.
7793 // If we're after the quotient, we can subtract this value from the shifted
7794 // dividend and multiply by the multiplicative inverse of the shifted divisor.
7795 // If we want the remainder, we shift the value left by the number of trailing
7796 // zeros and add the bits that were shifted out of the dividend.
7797 bool TargetLowering::expandDIVREMByConstant(SDNode *N,
7798                                             SmallVectorImpl<SDValue> &Result,
7799                                             EVT HiLoVT, SelectionDAG &DAG,
7800                                             SDValue LL, SDValue LH) const {
7801   unsigned Opcode = N->getOpcode();
7802   EVT VT = N->getValueType(0);
7803 
7804   // TODO: Support signed division/remainder.
7805   if (Opcode == ISD::SREM || Opcode == ISD::SDIV || Opcode == ISD::SDIVREM)
7806     return false;
7807   assert(
7808       (Opcode == ISD::UREM || Opcode == ISD::UDIV || Opcode == ISD::UDIVREM) &&
7809       "Unexpected opcode");
7810 
7811   auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(1));
7812   if (!CN)
7813     return false;
7814 
7815   APInt Divisor = CN->getAPIntValue();
7816   unsigned BitWidth = Divisor.getBitWidth();
7817   unsigned HBitWidth = BitWidth / 2;
7818   assert(VT.getScalarSizeInBits() == BitWidth &&
7819          HiLoVT.getScalarSizeInBits() == HBitWidth && "Unexpected VTs");
7820 
7821   // Divisor needs to less than (1 << HBitWidth).
7822   APInt HalfMaxPlus1 = APInt::getOneBitSet(BitWidth, HBitWidth);
7823   if (Divisor.uge(HalfMaxPlus1))
7824     return false;
7825 
7826   // We depend on the UREM by constant optimization in DAGCombiner that requires
7827   // high multiply.
7828   if (!isOperationLegalOrCustom(ISD::MULHU, HiLoVT) &&
7829       !isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT))
7830     return false;
7831 
7832   // Don't expand if optimizing for size.
7833   if (DAG.shouldOptForSize())
7834     return false;
7835 
7836   // Early out for 0 or 1 divisors.
7837   if (Divisor.ule(1))
7838     return false;
7839 
7840   // If the divisor is even, shift it until it becomes odd.
7841   unsigned TrailingZeros = 0;
7842   if (!Divisor[0]) {
7843     TrailingZeros = Divisor.countr_zero();
7844     Divisor.lshrInPlace(TrailingZeros);
7845   }
7846 
7847   SDLoc dl(N);
7848   SDValue Sum;
7849   SDValue PartialRem;
7850 
7851   // If (1 << HBitWidth) % divisor == 1, we can add the two halves together and
7852   // then add in the carry.
7853   // TODO: If we can't split it in half, we might be able to split into 3 or
7854   // more pieces using a smaller bit width.
7855   if (HalfMaxPlus1.urem(Divisor).isOne()) {
7856     assert(!LL == !LH && "Expected both input halves or no input halves!");
7857     if (!LL)
7858       std::tie(LL, LH) = DAG.SplitScalar(N->getOperand(0), dl, HiLoVT, HiLoVT);
7859 
7860     // Shift the input by the number of TrailingZeros in the divisor. The
7861     // shifted out bits will be added to the remainder later.
7862     if (TrailingZeros) {
7863       // Save the shifted off bits if we need the remainder.
7864       if (Opcode != ISD::UDIV) {
7865         APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros);
7866         PartialRem = DAG.getNode(ISD::AND, dl, HiLoVT, LL,
7867                                  DAG.getConstant(Mask, dl, HiLoVT));
7868       }
7869 
7870       LL = DAG.getNode(
7871           ISD::OR, dl, HiLoVT,
7872           DAG.getNode(ISD::SRL, dl, HiLoVT, LL,
7873                       DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)),
7874           DAG.getNode(ISD::SHL, dl, HiLoVT, LH,
7875                       DAG.getShiftAmountConstant(HBitWidth - TrailingZeros,
7876                                                  HiLoVT, dl)));
7877       LH = DAG.getNode(ISD::SRL, dl, HiLoVT, LH,
7878                        DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl));
7879     }
7880 
7881     // Use uaddo_carry if we can, otherwise use a compare to detect overflow.
7882     EVT SetCCType =
7883         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), HiLoVT);
7884     if (isOperationLegalOrCustom(ISD::UADDO_CARRY, HiLoVT)) {
7885       SDVTList VTList = DAG.getVTList(HiLoVT, SetCCType);
7886       Sum = DAG.getNode(ISD::UADDO, dl, VTList, LL, LH);
7887       Sum = DAG.getNode(ISD::UADDO_CARRY, dl, VTList, Sum,
7888                         DAG.getConstant(0, dl, HiLoVT), Sum.getValue(1));
7889     } else {
7890       Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, LL, LH);
7891       SDValue Carry = DAG.getSetCC(dl, SetCCType, Sum, LL, ISD::SETULT);
7892       // If the boolean for the target is 0 or 1, we can add the setcc result
7893       // directly.
7894       if (getBooleanContents(HiLoVT) ==
7895           TargetLoweringBase::ZeroOrOneBooleanContent)
7896         Carry = DAG.getZExtOrTrunc(Carry, dl, HiLoVT);
7897       else
7898         Carry = DAG.getSelect(dl, HiLoVT, Carry, DAG.getConstant(1, dl, HiLoVT),
7899                               DAG.getConstant(0, dl, HiLoVT));
7900       Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, Sum, Carry);
7901     }
7902   }
7903 
7904   // If we didn't find a sum, we can't do the expansion.
7905   if (!Sum)
7906     return false;
7907 
7908   // Perform a HiLoVT urem on the Sum using truncated divisor.
7909   SDValue RemL =
7910       DAG.getNode(ISD::UREM, dl, HiLoVT, Sum,
7911                   DAG.getConstant(Divisor.trunc(HBitWidth), dl, HiLoVT));
7912   SDValue RemH = DAG.getConstant(0, dl, HiLoVT);
7913 
7914   if (Opcode != ISD::UREM) {
7915     // Subtract the remainder from the shifted dividend.
7916     SDValue Dividend = DAG.getNode(ISD::BUILD_PAIR, dl, VT, LL, LH);
7917     SDValue Rem = DAG.getNode(ISD::BUILD_PAIR, dl, VT, RemL, RemH);
7918 
7919     Dividend = DAG.getNode(ISD::SUB, dl, VT, Dividend, Rem);
7920 
7921     // Multiply by the multiplicative inverse of the divisor modulo
7922     // (1 << BitWidth).
7923     APInt MulFactor = Divisor.multiplicativeInverse();
7924 
7925     SDValue Quotient = DAG.getNode(ISD::MUL, dl, VT, Dividend,
7926                                    DAG.getConstant(MulFactor, dl, VT));
7927 
7928     // Split the quotient into low and high parts.
7929     SDValue QuotL, QuotH;
7930     std::tie(QuotL, QuotH) = DAG.SplitScalar(Quotient, dl, HiLoVT, HiLoVT);
7931     Result.push_back(QuotL);
7932     Result.push_back(QuotH);
7933   }
7934 
7935   if (Opcode != ISD::UDIV) {
7936     // If we shifted the input, shift the remainder left and add the bits we
7937     // shifted off the input.
7938     if (TrailingZeros) {
7939       APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros);
7940       RemL = DAG.getNode(ISD::SHL, dl, HiLoVT, RemL,
7941                          DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl));
7942       RemL = DAG.getNode(ISD::ADD, dl, HiLoVT, RemL, PartialRem);
7943     }
7944     Result.push_back(RemL);
7945     Result.push_back(DAG.getConstant(0, dl, HiLoVT));
7946   }
7947 
7948   return true;
7949 }
7950 
7951 // Check that (every element of) Z is undef or not an exact multiple of BW.
7952 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
7953   return ISD::matchUnaryPredicate(
7954       Z,
7955       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
7956       true);
7957 }
7958 
7959 static SDValue expandVPFunnelShift(SDNode *Node, SelectionDAG &DAG) {
7960   EVT VT = Node->getValueType(0);
7961   SDValue ShX, ShY;
7962   SDValue ShAmt, InvShAmt;
7963   SDValue X = Node->getOperand(0);
7964   SDValue Y = Node->getOperand(1);
7965   SDValue Z = Node->getOperand(2);
7966   SDValue Mask = Node->getOperand(3);
7967   SDValue VL = Node->getOperand(4);
7968 
7969   unsigned BW = VT.getScalarSizeInBits();
7970   bool IsFSHL = Node->getOpcode() == ISD::VP_FSHL;
7971   SDLoc DL(SDValue(Node, 0));
7972 
7973   EVT ShVT = Z.getValueType();
7974   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7975     // fshl: X << C | Y >> (BW - C)
7976     // fshr: X << (BW - C) | Y >> C
7977     // where C = Z % BW is not zero
7978     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7979     ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL);
7980     InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitWidthC, ShAmt, Mask, VL);
7981     ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt, Mask,
7982                       VL);
7983     ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt, Mask,
7984                       VL);
7985   } else {
7986     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
7987     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
7988     SDValue BitMask = DAG.getConstant(BW - 1, DL, ShVT);
7989     if (isPowerOf2_32(BW)) {
7990       // Z % BW -> Z & (BW - 1)
7991       ShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, Z, BitMask, Mask, VL);
7992       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
7993       SDValue NotZ = DAG.getNode(ISD::VP_XOR, DL, ShVT, Z,
7994                                  DAG.getAllOnesConstant(DL, ShVT), Mask, VL);
7995       InvShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, NotZ, BitMask, Mask, VL);
7996     } else {
7997       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7998       ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL);
7999       InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitMask, ShAmt, Mask, VL);
8000     }
8001 
8002     SDValue One = DAG.getConstant(1, DL, ShVT);
8003     if (IsFSHL) {
8004       ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, ShAmt, Mask, VL);
8005       SDValue ShY1 = DAG.getNode(ISD::VP_SRL, DL, VT, Y, One, Mask, VL);
8006       ShY = DAG.getNode(ISD::VP_SRL, DL, VT, ShY1, InvShAmt, Mask, VL);
8007     } else {
8008       SDValue ShX1 = DAG.getNode(ISD::VP_SHL, DL, VT, X, One, Mask, VL);
8009       ShX = DAG.getNode(ISD::VP_SHL, DL, VT, ShX1, InvShAmt, Mask, VL);
8010       ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, ShAmt, Mask, VL);
8011     }
8012   }
8013   return DAG.getNode(ISD::VP_OR, DL, VT, ShX, ShY, Mask, VL);
8014 }
8015 
8016 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
8017                                           SelectionDAG &DAG) const {
8018   if (Node->isVPOpcode())
8019     return expandVPFunnelShift(Node, DAG);
8020 
8021   EVT VT = Node->getValueType(0);
8022 
8023   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
8024                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
8025                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
8026                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
8027     return SDValue();
8028 
8029   SDValue X = Node->getOperand(0);
8030   SDValue Y = Node->getOperand(1);
8031   SDValue Z = Node->getOperand(2);
8032 
8033   unsigned BW = VT.getScalarSizeInBits();
8034   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
8035   SDLoc DL(SDValue(Node, 0));
8036 
8037   EVT ShVT = Z.getValueType();
8038 
8039   // If a funnel shift in the other direction is more supported, use it.
8040   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
8041   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
8042       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
8043     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
8044       // fshl X, Y, Z -> fshr X, Y, -Z
8045       // fshr X, Y, Z -> fshl X, Y, -Z
8046       SDValue Zero = DAG.getConstant(0, DL, ShVT);
8047       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
8048     } else {
8049       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
8050       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
8051       SDValue One = DAG.getConstant(1, DL, ShVT);
8052       if (IsFSHL) {
8053         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
8054         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
8055       } else {
8056         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
8057         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
8058       }
8059       Z = DAG.getNOT(DL, Z, ShVT);
8060     }
8061     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
8062   }
8063 
8064   SDValue ShX, ShY;
8065   SDValue ShAmt, InvShAmt;
8066   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
8067     // fshl: X << C | Y >> (BW - C)
8068     // fshr: X << (BW - C) | Y >> C
8069     // where C = Z % BW is not zero
8070     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
8071     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
8072     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
8073     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
8074     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
8075   } else {
8076     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
8077     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
8078     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
8079     if (isPowerOf2_32(BW)) {
8080       // Z % BW -> Z & (BW - 1)
8081       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
8082       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
8083       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
8084     } else {
8085       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
8086       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
8087       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
8088     }
8089 
8090     SDValue One = DAG.getConstant(1, DL, ShVT);
8091     if (IsFSHL) {
8092       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
8093       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
8094       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
8095     } else {
8096       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
8097       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
8098       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
8099     }
8100   }
8101   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
8102 }
8103 
8104 // TODO: Merge with expandFunnelShift.
8105 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
8106                                   SelectionDAG &DAG) const {
8107   EVT VT = Node->getValueType(0);
8108   unsigned EltSizeInBits = VT.getScalarSizeInBits();
8109   bool IsLeft = Node->getOpcode() == ISD::ROTL;
8110   SDValue Op0 = Node->getOperand(0);
8111   SDValue Op1 = Node->getOperand(1);
8112   SDLoc DL(SDValue(Node, 0));
8113 
8114   EVT ShVT = Op1.getValueType();
8115   SDValue Zero = DAG.getConstant(0, DL, ShVT);
8116 
8117   // If a rotate in the other direction is more supported, use it.
8118   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
8119   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
8120       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
8121     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
8122     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
8123   }
8124 
8125   if (!AllowVectorOps && VT.isVector() &&
8126       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
8127        !isOperationLegalOrCustom(ISD::SRL, VT) ||
8128        !isOperationLegalOrCustom(ISD::SUB, VT) ||
8129        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
8130        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
8131     return SDValue();
8132 
8133   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
8134   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
8135   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
8136   SDValue ShVal;
8137   SDValue HsVal;
8138   if (isPowerOf2_32(EltSizeInBits)) {
8139     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
8140     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
8141     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
8142     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
8143     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
8144     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
8145     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
8146   } else {
8147     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
8148     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
8149     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
8150     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
8151     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
8152     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
8153     SDValue One = DAG.getConstant(1, DL, ShVT);
8154     HsVal =
8155         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
8156   }
8157   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
8158 }
8159 
8160 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
8161                                       SelectionDAG &DAG) const {
8162   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
8163   EVT VT = Node->getValueType(0);
8164   unsigned VTBits = VT.getScalarSizeInBits();
8165   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
8166 
8167   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
8168   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
8169   SDValue ShOpLo = Node->getOperand(0);
8170   SDValue ShOpHi = Node->getOperand(1);
8171   SDValue ShAmt = Node->getOperand(2);
8172   EVT ShAmtVT = ShAmt.getValueType();
8173   EVT ShAmtCCVT =
8174       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
8175   SDLoc dl(Node);
8176 
8177   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
8178   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
8179   // away during isel.
8180   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
8181                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
8182   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
8183                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
8184                        : DAG.getConstant(0, dl, VT);
8185 
8186   SDValue Tmp2, Tmp3;
8187   if (IsSHL) {
8188     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
8189     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
8190   } else {
8191     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
8192     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
8193   }
8194 
8195   // If the shift amount is larger or equal than the width of a part we don't
8196   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
8197   // values for large shift amounts.
8198   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
8199                                 DAG.getConstant(VTBits, dl, ShAmtVT));
8200   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
8201                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
8202 
8203   if (IsSHL) {
8204     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
8205     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
8206   } else {
8207     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
8208     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
8209   }
8210 }
8211 
8212 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
8213                                       SelectionDAG &DAG) const {
8214   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
8215   SDValue Src = Node->getOperand(OpNo);
8216   EVT SrcVT = Src.getValueType();
8217   EVT DstVT = Node->getValueType(0);
8218   SDLoc dl(SDValue(Node, 0));
8219 
8220   // FIXME: Only f32 to i64 conversions are supported.
8221   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
8222     return false;
8223 
8224   if (Node->isStrictFPOpcode())
8225     // When a NaN is converted to an integer a trap is allowed. We can't
8226     // use this expansion here because it would eliminate that trap. Other
8227     // traps are also allowed and cannot be eliminated. See
8228     // IEEE 754-2008 sec 5.8.
8229     return false;
8230 
8231   // Expand f32 -> i64 conversion
8232   // This algorithm comes from compiler-rt's implementation of fixsfdi:
8233   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
8234   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
8235   EVT IntVT = SrcVT.changeTypeToInteger();
8236   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
8237 
8238   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
8239   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
8240   SDValue Bias = DAG.getConstant(127, dl, IntVT);
8241   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
8242   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
8243   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
8244 
8245   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
8246 
8247   SDValue ExponentBits = DAG.getNode(
8248       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
8249       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
8250   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
8251 
8252   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
8253                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
8254                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
8255   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
8256 
8257   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
8258                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
8259                           DAG.getConstant(0x00800000, dl, IntVT));
8260 
8261   R = DAG.getZExtOrTrunc(R, dl, DstVT);
8262 
8263   R = DAG.getSelectCC(
8264       dl, Exponent, ExponentLoBit,
8265       DAG.getNode(ISD::SHL, dl, DstVT, R,
8266                   DAG.getZExtOrTrunc(
8267                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
8268                       dl, IntShVT)),
8269       DAG.getNode(ISD::SRL, dl, DstVT, R,
8270                   DAG.getZExtOrTrunc(
8271                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
8272                       dl, IntShVT)),
8273       ISD::SETGT);
8274 
8275   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
8276                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
8277 
8278   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
8279                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
8280   return true;
8281 }
8282 
8283 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
8284                                       SDValue &Chain,
8285                                       SelectionDAG &DAG) const {
8286   SDLoc dl(SDValue(Node, 0));
8287   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
8288   SDValue Src = Node->getOperand(OpNo);
8289 
8290   EVT SrcVT = Src.getValueType();
8291   EVT DstVT = Node->getValueType(0);
8292   EVT SetCCVT =
8293       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
8294   EVT DstSetCCVT =
8295       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
8296 
8297   // Only expand vector types if we have the appropriate vector bit operations.
8298   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
8299                                                    ISD::FP_TO_SINT;
8300   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
8301                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
8302     return false;
8303 
8304   // If the maximum float value is smaller then the signed integer range,
8305   // the destination signmask can't be represented by the float, so we can
8306   // just use FP_TO_SINT directly.
8307   const fltSemantics &APFSem = SrcVT.getFltSemantics();
8308   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
8309   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
8310   if (APFloat::opOverflow &
8311       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
8312     if (Node->isStrictFPOpcode()) {
8313       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
8314                            { Node->getOperand(0), Src });
8315       Chain = Result.getValue(1);
8316     } else
8317       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
8318     return true;
8319   }
8320 
8321   // Don't expand it if there isn't cheap fsub instruction.
8322   if (!isOperationLegalOrCustom(
8323           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
8324     return false;
8325 
8326   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
8327   SDValue Sel;
8328 
8329   if (Node->isStrictFPOpcode()) {
8330     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
8331                        Node->getOperand(0), /*IsSignaling*/ true);
8332     Chain = Sel.getValue(1);
8333   } else {
8334     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
8335   }
8336 
8337   bool Strict = Node->isStrictFPOpcode() ||
8338                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
8339 
8340   if (Strict) {
8341     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
8342     // signmask then offset (the result of which should be fully representable).
8343     // Sel = Src < 0x8000000000000000
8344     // FltOfs = select Sel, 0, 0x8000000000000000
8345     // IntOfs = select Sel, 0, 0x8000000000000000
8346     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
8347 
8348     // TODO: Should any fast-math-flags be set for the FSUB?
8349     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
8350                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
8351     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8352     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
8353                                    DAG.getConstant(0, dl, DstVT),
8354                                    DAG.getConstant(SignMask, dl, DstVT));
8355     SDValue SInt;
8356     if (Node->isStrictFPOpcode()) {
8357       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
8358                                 { Chain, Src, FltOfs });
8359       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
8360                          { Val.getValue(1), Val });
8361       Chain = SInt.getValue(1);
8362     } else {
8363       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
8364       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
8365     }
8366     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
8367   } else {
8368     // Expand based on maximum range of FP_TO_SINT:
8369     // True = fp_to_sint(Src)
8370     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
8371     // Result = select (Src < 0x8000000000000000), True, False
8372 
8373     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
8374     // TODO: Should any fast-math-flags be set for the FSUB?
8375     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
8376                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
8377     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
8378                         DAG.getConstant(SignMask, dl, DstVT));
8379     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8380     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
8381   }
8382   return true;
8383 }
8384 
8385 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
8386                                       SDValue &Chain, SelectionDAG &DAG) const {
8387   // This transform is not correct for converting 0 when rounding mode is set
8388   // to round toward negative infinity which will produce -0.0. So disable
8389   // under strictfp.
8390   if (Node->isStrictFPOpcode())
8391     return false;
8392 
8393   SDValue Src = Node->getOperand(0);
8394   EVT SrcVT = Src.getValueType();
8395   EVT DstVT = Node->getValueType(0);
8396 
8397   // If the input is known to be non-negative and SINT_TO_FP is legal then use
8398   // it.
8399   if (Node->getFlags().hasNonNeg() &&
8400       isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT)) {
8401     Result =
8402         DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), DstVT, Node->getOperand(0));
8403     return true;
8404   }
8405 
8406   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
8407     return false;
8408 
8409   // Only expand vector types if we have the appropriate vector bit
8410   // operations.
8411   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
8412                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
8413                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
8414                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
8415                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
8416     return false;
8417 
8418   SDLoc dl(SDValue(Node, 0));
8419   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
8420 
8421   // Implementation of unsigned i64 to f64 following the algorithm in
8422   // __floatundidf in compiler_rt.  This implementation performs rounding
8423   // correctly in all rounding modes with the exception of converting 0
8424   // when rounding toward negative infinity. In that case the fsub will
8425   // produce -0.0. This will be added to +0.0 and produce -0.0 which is
8426   // incorrect.
8427   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
8428   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
8429       llvm::bit_cast<double>(UINT64_C(0x4530000000100000)), dl, DstVT);
8430   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
8431   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
8432   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
8433 
8434   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
8435   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
8436   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
8437   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
8438   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
8439   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
8440   SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
8441   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
8442   return true;
8443 }
8444 
8445 SDValue
8446 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node,
8447                                                SelectionDAG &DAG) const {
8448   unsigned Opcode = Node->getOpcode();
8449   assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
8450           Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) &&
8451          "Wrong opcode");
8452 
8453   if (Node->getFlags().hasNoNaNs()) {
8454     ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
8455     EVT VT = Node->getValueType(0);
8456     if ((!isCondCodeLegal(Pred, VT.getSimpleVT()) ||
8457          !isOperationLegalOrCustom(ISD::VSELECT, VT)) &&
8458         VT.isVector())
8459       return SDValue();
8460     SDValue Op1 = Node->getOperand(0);
8461     SDValue Op2 = Node->getOperand(1);
8462     SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred);
8463     // Copy FMF flags, but always set the no-signed-zeros flag
8464     // as this is implied by the FMINNUM/FMAXNUM semantics.
8465     SelCC->setFlags(Node->getFlags() | SDNodeFlags::NoSignedZeros);
8466     return SelCC;
8467   }
8468 
8469   return SDValue();
8470 }
8471 
8472 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
8473                                               SelectionDAG &DAG) const {
8474   if (SDValue Expanded = expandVectorNaryOpBySplitting(Node, DAG))
8475     return Expanded;
8476 
8477   EVT VT = Node->getValueType(0);
8478   if (VT.isScalableVector())
8479     report_fatal_error(
8480         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
8481 
8482   SDLoc dl(Node);
8483   unsigned NewOp =
8484       Node->getOpcode() == ISD::FMINNUM ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
8485 
8486   if (isOperationLegalOrCustom(NewOp, VT)) {
8487     SDValue Quiet0 = Node->getOperand(0);
8488     SDValue Quiet1 = Node->getOperand(1);
8489 
8490     if (!Node->getFlags().hasNoNaNs()) {
8491       // Insert canonicalizes if it's possible we need to quiet to get correct
8492       // sNaN behavior.
8493       if (!DAG.isKnownNeverSNaN(Quiet0)) {
8494         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
8495                              Node->getFlags());
8496       }
8497       if (!DAG.isKnownNeverSNaN(Quiet1)) {
8498         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
8499                              Node->getFlags());
8500       }
8501     }
8502 
8503     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
8504   }
8505 
8506   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
8507   // instead if there are no NaNs and there can't be an incompatible zero
8508   // compare: at least one operand isn't +/-0, or there are no signed-zeros.
8509   if ((Node->getFlags().hasNoNaNs() ||
8510        (DAG.isKnownNeverNaN(Node->getOperand(0)) &&
8511         DAG.isKnownNeverNaN(Node->getOperand(1)))) &&
8512       (Node->getFlags().hasNoSignedZeros() ||
8513        DAG.isKnownNeverZeroFloat(Node->getOperand(0)) ||
8514        DAG.isKnownNeverZeroFloat(Node->getOperand(1)))) {
8515     unsigned IEEE2018Op =
8516         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
8517     if (isOperationLegalOrCustom(IEEE2018Op, VT))
8518       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
8519                          Node->getOperand(1), Node->getFlags());
8520   }
8521 
8522   if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG))
8523     return SelCC;
8524 
8525   return SDValue();
8526 }
8527 
8528 SDValue TargetLowering::expandFMINIMUM_FMAXIMUM(SDNode *N,
8529                                                 SelectionDAG &DAG) const {
8530   if (SDValue Expanded = expandVectorNaryOpBySplitting(N, DAG))
8531     return Expanded;
8532 
8533   SDLoc DL(N);
8534   SDValue LHS = N->getOperand(0);
8535   SDValue RHS = N->getOperand(1);
8536   unsigned Opc = N->getOpcode();
8537   EVT VT = N->getValueType(0);
8538   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8539   bool IsMax = Opc == ISD::FMAXIMUM;
8540   SDNodeFlags Flags = N->getFlags();
8541 
8542   // First, implement comparison not propagating NaN. If no native fmin or fmax
8543   // available, use plain select with setcc instead.
8544   SDValue MinMax;
8545   unsigned CompOpcIeee = IsMax ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE;
8546   unsigned CompOpc = IsMax ? ISD::FMAXNUM : ISD::FMINNUM;
8547 
8548   // FIXME: We should probably define fminnum/fmaxnum variants with correct
8549   // signed zero behavior.
8550   bool MinMaxMustRespectOrderedZero = false;
8551 
8552   if (isOperationLegalOrCustom(CompOpcIeee, VT)) {
8553     MinMax = DAG.getNode(CompOpcIeee, DL, VT, LHS, RHS, Flags);
8554     MinMaxMustRespectOrderedZero = true;
8555   } else if (isOperationLegalOrCustom(CompOpc, VT)) {
8556     MinMax = DAG.getNode(CompOpc, DL, VT, LHS, RHS, Flags);
8557   } else {
8558     if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8559       return DAG.UnrollVectorOp(N);
8560 
8561     // NaN (if exists) will be propagated later, so orderness doesn't matter.
8562     SDValue Compare =
8563         DAG.getSetCC(DL, CCVT, LHS, RHS, IsMax ? ISD::SETOGT : ISD::SETOLT);
8564     MinMax = DAG.getSelect(DL, VT, Compare, LHS, RHS, Flags);
8565   }
8566 
8567   // Propagate any NaN of both operands
8568   if (!N->getFlags().hasNoNaNs() &&
8569       (!DAG.isKnownNeverNaN(RHS) || !DAG.isKnownNeverNaN(LHS))) {
8570     ConstantFP *FPNaN = ConstantFP::get(*DAG.getContext(),
8571                                         APFloat::getNaN(VT.getFltSemantics()));
8572     MinMax = DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, LHS, RHS, ISD::SETUO),
8573                            DAG.getConstantFP(*FPNaN, DL, VT), MinMax, Flags);
8574   }
8575 
8576   // fminimum/fmaximum requires -0.0 less than +0.0
8577   if (!MinMaxMustRespectOrderedZero && !N->getFlags().hasNoSignedZeros() &&
8578       !DAG.isKnownNeverZeroFloat(RHS) && !DAG.isKnownNeverZeroFloat(LHS)) {
8579     SDValue IsZero = DAG.getSetCC(DL, CCVT, MinMax,
8580                                   DAG.getConstantFP(0.0, DL, VT), ISD::SETOEQ);
8581     SDValue TestZero =
8582         DAG.getTargetConstant(IsMax ? fcPosZero : fcNegZero, DL, MVT::i32);
8583     SDValue LCmp = DAG.getSelect(
8584         DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, LHS, TestZero), LHS,
8585         MinMax, Flags);
8586     SDValue RCmp = DAG.getSelect(
8587         DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, RHS, TestZero), RHS,
8588         LCmp, Flags);
8589     MinMax = DAG.getSelect(DL, VT, IsZero, RCmp, MinMax, Flags);
8590   }
8591 
8592   return MinMax;
8593 }
8594 
8595 SDValue TargetLowering::expandFMINIMUMNUM_FMAXIMUMNUM(SDNode *Node,
8596                                                       SelectionDAG &DAG) const {
8597   SDLoc DL(Node);
8598   SDValue LHS = Node->getOperand(0);
8599   SDValue RHS = Node->getOperand(1);
8600   unsigned Opc = Node->getOpcode();
8601   EVT VT = Node->getValueType(0);
8602   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8603   bool IsMax = Opc == ISD::FMAXIMUMNUM;
8604   const TargetOptions &Options = DAG.getTarget().Options;
8605   SDNodeFlags Flags = Node->getFlags();
8606 
8607   unsigned NewOp =
8608       Opc == ISD::FMINIMUMNUM ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
8609 
8610   if (isOperationLegalOrCustom(NewOp, VT)) {
8611     if (!Flags.hasNoNaNs()) {
8612       // Insert canonicalizes if it's possible we need to quiet to get correct
8613       // sNaN behavior.
8614       if (!DAG.isKnownNeverSNaN(LHS)) {
8615         LHS = DAG.getNode(ISD::FCANONICALIZE, DL, VT, LHS, Flags);
8616       }
8617       if (!DAG.isKnownNeverSNaN(RHS)) {
8618         RHS = DAG.getNode(ISD::FCANONICALIZE, DL, VT, RHS, Flags);
8619       }
8620     }
8621 
8622     return DAG.getNode(NewOp, DL, VT, LHS, RHS, Flags);
8623   }
8624 
8625   // We can use FMINIMUM/FMAXIMUM if there is no NaN, since it has
8626   // same behaviors for all of other cases: +0.0 vs -0.0 included.
8627   if (Flags.hasNoNaNs() ||
8628       (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS))) {
8629     unsigned IEEE2019Op =
8630         Opc == ISD::FMINIMUMNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
8631     if (isOperationLegalOrCustom(IEEE2019Op, VT))
8632       return DAG.getNode(IEEE2019Op, DL, VT, LHS, RHS, Flags);
8633   }
8634 
8635   // FMINNUM/FMAXMUM returns qNaN if either operand is sNaN, and it may return
8636   // either one for +0.0 vs -0.0.
8637   if ((Flags.hasNoNaNs() ||
8638        (DAG.isKnownNeverSNaN(LHS) && DAG.isKnownNeverSNaN(RHS))) &&
8639       (Flags.hasNoSignedZeros() || DAG.isKnownNeverZeroFloat(LHS) ||
8640        DAG.isKnownNeverZeroFloat(RHS))) {
8641     unsigned IEEE2008Op = Opc == ISD::FMINIMUMNUM ? ISD::FMINNUM : ISD::FMAXNUM;
8642     if (isOperationLegalOrCustom(IEEE2008Op, VT))
8643       return DAG.getNode(IEEE2008Op, DL, VT, LHS, RHS, Flags);
8644   }
8645 
8646   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8647     return DAG.UnrollVectorOp(Node);
8648 
8649   // If only one operand is NaN, override it with another operand.
8650   if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(LHS)) {
8651     LHS = DAG.getSelectCC(DL, LHS, LHS, RHS, LHS, ISD::SETUO);
8652   }
8653   if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(RHS)) {
8654     RHS = DAG.getSelectCC(DL, RHS, RHS, LHS, RHS, ISD::SETUO);
8655   }
8656 
8657   SDValue MinMax =
8658       DAG.getSelectCC(DL, LHS, RHS, LHS, RHS, IsMax ? ISD::SETGT : ISD::SETLT);
8659   // If MinMax is NaN, let's quiet it.
8660   if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(LHS) &&
8661       !DAG.isKnownNeverNaN(RHS)) {
8662     MinMax = DAG.getNode(ISD::FCANONICALIZE, DL, VT, MinMax, Flags);
8663   }
8664 
8665   // Fixup signed zero behavior.
8666   if (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros() ||
8667       DAG.isKnownNeverZeroFloat(LHS) || DAG.isKnownNeverZeroFloat(RHS)) {
8668     return MinMax;
8669   }
8670   SDValue TestZero =
8671       DAG.getTargetConstant(IsMax ? fcPosZero : fcNegZero, DL, MVT::i32);
8672   SDValue IsZero = DAG.getSetCC(DL, CCVT, MinMax,
8673                                 DAG.getConstantFP(0.0, DL, VT), ISD::SETEQ);
8674   SDValue LCmp = DAG.getSelect(
8675       DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, LHS, TestZero), LHS,
8676       MinMax, Flags);
8677   SDValue RCmp = DAG.getSelect(
8678       DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, RHS, TestZero), RHS, LCmp,
8679       Flags);
8680   return DAG.getSelect(DL, VT, IsZero, RCmp, MinMax, Flags);
8681 }
8682 
8683 /// Returns a true value if if this FPClassTest can be performed with an ordered
8684 /// fcmp to 0, and a false value if it's an unordered fcmp to 0. Returns
8685 /// std::nullopt if it cannot be performed as a compare with 0.
8686 static std::optional<bool> isFCmpEqualZero(FPClassTest Test,
8687                                            const fltSemantics &Semantics,
8688                                            const MachineFunction &MF) {
8689   FPClassTest OrderedMask = Test & ~fcNan;
8690   FPClassTest NanTest = Test & fcNan;
8691   bool IsOrdered = NanTest == fcNone;
8692   bool IsUnordered = NanTest == fcNan;
8693 
8694   // Skip cases that are testing for only a qnan or snan.
8695   if (!IsOrdered && !IsUnordered)
8696     return std::nullopt;
8697 
8698   if (OrderedMask == fcZero &&
8699       MF.getDenormalMode(Semantics).Input == DenormalMode::IEEE)
8700     return IsOrdered;
8701   if (OrderedMask == (fcZero | fcSubnormal) &&
8702       MF.getDenormalMode(Semantics).inputsAreZero())
8703     return IsOrdered;
8704   return std::nullopt;
8705 }
8706 
8707 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op,
8708                                          const FPClassTest OrigTestMask,
8709                                          SDNodeFlags Flags, const SDLoc &DL,
8710                                          SelectionDAG &DAG) const {
8711   EVT OperandVT = Op.getValueType();
8712   assert(OperandVT.isFloatingPoint());
8713   FPClassTest Test = OrigTestMask;
8714 
8715   // Degenerated cases.
8716   if (Test == fcNone)
8717     return DAG.getBoolConstant(false, DL, ResultVT, OperandVT);
8718   if (Test == fcAllFlags)
8719     return DAG.getBoolConstant(true, DL, ResultVT, OperandVT);
8720 
8721   // PPC double double is a pair of doubles, of which the higher part determines
8722   // the value class.
8723   if (OperandVT == MVT::ppcf128) {
8724     Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op,
8725                      DAG.getConstant(1, DL, MVT::i32));
8726     OperandVT = MVT::f64;
8727   }
8728 
8729   // Floating-point type properties.
8730   EVT ScalarFloatVT = OperandVT.getScalarType();
8731   const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext());
8732   const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics();
8733   bool IsF80 = (ScalarFloatVT == MVT::f80);
8734 
8735   // Some checks can be implemented using float comparisons, if floating point
8736   // exceptions are ignored.
8737   if (Flags.hasNoFPExcept() &&
8738       isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) {
8739     FPClassTest FPTestMask = Test;
8740     bool IsInvertedFP = false;
8741 
8742     if (FPClassTest InvertedFPCheck =
8743             invertFPClassTestIfSimpler(FPTestMask, true)) {
8744       FPTestMask = InvertedFPCheck;
8745       IsInvertedFP = true;
8746     }
8747 
8748     ISD::CondCode OrderedCmpOpcode = IsInvertedFP ? ISD::SETUNE : ISD::SETOEQ;
8749     ISD::CondCode UnorderedCmpOpcode = IsInvertedFP ? ISD::SETONE : ISD::SETUEQ;
8750 
8751     // See if we can fold an | fcNan into an unordered compare.
8752     FPClassTest OrderedFPTestMask = FPTestMask & ~fcNan;
8753 
8754     // Can't fold the ordered check if we're only testing for snan or qnan
8755     // individually.
8756     if ((FPTestMask & fcNan) != fcNan)
8757       OrderedFPTestMask = FPTestMask;
8758 
8759     const bool IsOrdered = FPTestMask == OrderedFPTestMask;
8760 
8761     if (std::optional<bool> IsCmp0 =
8762             isFCmpEqualZero(FPTestMask, Semantics, DAG.getMachineFunction());
8763         IsCmp0 && (isCondCodeLegalOrCustom(
8764                       *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode,
8765                       OperandVT.getScalarType().getSimpleVT()))) {
8766 
8767       // If denormals could be implicitly treated as 0, this is not equivalent
8768       // to a compare with 0 since it will also be true for denormals.
8769       return DAG.getSetCC(DL, ResultVT, Op,
8770                           DAG.getConstantFP(0.0, DL, OperandVT),
8771                           *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode);
8772     }
8773 
8774     if (FPTestMask == fcNan &&
8775         isCondCodeLegalOrCustom(IsInvertedFP ? ISD::SETO : ISD::SETUO,
8776                                 OperandVT.getScalarType().getSimpleVT()))
8777       return DAG.getSetCC(DL, ResultVT, Op, Op,
8778                           IsInvertedFP ? ISD::SETO : ISD::SETUO);
8779 
8780     bool IsOrderedInf = FPTestMask == fcInf;
8781     if ((FPTestMask == fcInf || FPTestMask == (fcInf | fcNan)) &&
8782         isCondCodeLegalOrCustom(IsOrderedInf ? OrderedCmpOpcode
8783                                              : UnorderedCmpOpcode,
8784                                 OperandVT.getScalarType().getSimpleVT()) &&
8785         isOperationLegalOrCustom(ISD::FABS, OperandVT.getScalarType()) &&
8786         (isOperationLegal(ISD::ConstantFP, OperandVT.getScalarType()) ||
8787          (OperandVT.isVector() &&
8788           isOperationLegalOrCustom(ISD::BUILD_VECTOR, OperandVT)))) {
8789       // isinf(x) --> fabs(x) == inf
8790       SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op);
8791       SDValue Inf =
8792           DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT);
8793       return DAG.getSetCC(DL, ResultVT, Abs, Inf,
8794                           IsOrderedInf ? OrderedCmpOpcode : UnorderedCmpOpcode);
8795     }
8796 
8797     if ((OrderedFPTestMask == fcPosInf || OrderedFPTestMask == fcNegInf) &&
8798         isCondCodeLegalOrCustom(IsOrdered ? OrderedCmpOpcode
8799                                           : UnorderedCmpOpcode,
8800                                 OperandVT.getSimpleVT())) {
8801       // isposinf(x) --> x == inf
8802       // isneginf(x) --> x == -inf
8803       // isposinf(x) || nan --> x u== inf
8804       // isneginf(x) || nan --> x u== -inf
8805 
8806       SDValue Inf = DAG.getConstantFP(
8807           APFloat::getInf(Semantics, OrderedFPTestMask == fcNegInf), DL,
8808           OperandVT);
8809       return DAG.getSetCC(DL, ResultVT, Op, Inf,
8810                           IsOrdered ? OrderedCmpOpcode : UnorderedCmpOpcode);
8811     }
8812 
8813     if (OrderedFPTestMask == (fcSubnormal | fcZero) && !IsOrdered) {
8814       // TODO: Could handle ordered case, but it produces worse code for
8815       // x86. Maybe handle ordered if fabs is free?
8816 
8817       ISD::CondCode OrderedOp = IsInvertedFP ? ISD::SETUGE : ISD::SETOLT;
8818       ISD::CondCode UnorderedOp = IsInvertedFP ? ISD::SETOGE : ISD::SETULT;
8819 
8820       if (isCondCodeLegalOrCustom(IsOrdered ? OrderedOp : UnorderedOp,
8821                                   OperandVT.getScalarType().getSimpleVT())) {
8822         // (issubnormal(x) || iszero(x)) --> fabs(x) < smallest_normal
8823 
8824         // TODO: Maybe only makes sense if fabs is free. Integer test of
8825         // exponent bits seems better for x86.
8826         SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op);
8827         SDValue SmallestNormal = DAG.getConstantFP(
8828             APFloat::getSmallestNormalized(Semantics), DL, OperandVT);
8829         return DAG.getSetCC(DL, ResultVT, Abs, SmallestNormal,
8830                             IsOrdered ? OrderedOp : UnorderedOp);
8831       }
8832     }
8833 
8834     if (FPTestMask == fcNormal) {
8835       // TODO: Handle unordered
8836       ISD::CondCode IsFiniteOp = IsInvertedFP ? ISD::SETUGE : ISD::SETOLT;
8837       ISD::CondCode IsNormalOp = IsInvertedFP ? ISD::SETOLT : ISD::SETUGE;
8838 
8839       if (isCondCodeLegalOrCustom(IsFiniteOp,
8840                                   OperandVT.getScalarType().getSimpleVT()) &&
8841           isCondCodeLegalOrCustom(IsNormalOp,
8842                                   OperandVT.getScalarType().getSimpleVT()) &&
8843           isFAbsFree(OperandVT)) {
8844         // isnormal(x) --> fabs(x) < infinity && !(fabs(x) < smallest_normal)
8845         SDValue Inf =
8846             DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT);
8847         SDValue SmallestNormal = DAG.getConstantFP(
8848             APFloat::getSmallestNormalized(Semantics), DL, OperandVT);
8849 
8850         SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op);
8851         SDValue IsFinite = DAG.getSetCC(DL, ResultVT, Abs, Inf, IsFiniteOp);
8852         SDValue IsNormal =
8853             DAG.getSetCC(DL, ResultVT, Abs, SmallestNormal, IsNormalOp);
8854         unsigned LogicOp = IsInvertedFP ? ISD::OR : ISD::AND;
8855         return DAG.getNode(LogicOp, DL, ResultVT, IsFinite, IsNormal);
8856       }
8857     }
8858   }
8859 
8860   // Some checks may be represented as inversion of simpler check, for example
8861   // "inf|normal|subnormal|zero" => !"nan".
8862   bool IsInverted = false;
8863 
8864   if (FPClassTest InvertedCheck = invertFPClassTestIfSimpler(Test, false)) {
8865     Test = InvertedCheck;
8866     IsInverted = true;
8867   }
8868 
8869   // In the general case use integer operations.
8870   unsigned BitSize = OperandVT.getScalarSizeInBits();
8871   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize);
8872   if (OperandVT.isVector())
8873     IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT,
8874                              OperandVT.getVectorElementCount());
8875   SDValue OpAsInt = DAG.getBitcast(IntVT, Op);
8876 
8877   // Various masks.
8878   APInt SignBit = APInt::getSignMask(BitSize);
8879   APInt ValueMask = APInt::getSignedMaxValue(BitSize);     // All bits but sign.
8880   APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit.
8881   const unsigned ExplicitIntBitInF80 = 63;
8882   APInt ExpMask = Inf;
8883   if (IsF80)
8884     ExpMask.clearBit(ExplicitIntBitInF80);
8885   APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf;
8886   APInt QNaNBitMask =
8887       APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1);
8888   APInt InvertionMask = APInt::getAllOnes(ResultVT.getScalarSizeInBits());
8889 
8890   SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT);
8891   SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT);
8892   SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT);
8893   SDValue ZeroV = DAG.getConstant(0, DL, IntVT);
8894   SDValue InfV = DAG.getConstant(Inf, DL, IntVT);
8895   SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT);
8896 
8897   SDValue Res;
8898   const auto appendResult = [&](SDValue PartialRes) {
8899     if (PartialRes) {
8900       if (Res)
8901         Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes);
8902       else
8903         Res = PartialRes;
8904     }
8905   };
8906 
8907   SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set.
8908   const auto getIntBitIsSet = [&]() -> SDValue {
8909     if (!IntBitIsSetV) {
8910       APInt IntBitMask(BitSize, 0);
8911       IntBitMask.setBit(ExplicitIntBitInF80);
8912       SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT);
8913       SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV);
8914       IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE);
8915     }
8916     return IntBitIsSetV;
8917   };
8918 
8919   // Split the value into sign bit and absolute value.
8920   SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV);
8921   SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt,
8922                                DAG.getConstant(0, DL, IntVT), ISD::SETLT);
8923 
8924   // Tests that involve more than one class should be processed first.
8925   SDValue PartialRes;
8926 
8927   if (IsF80)
8928     ; // Detect finite numbers of f80 by checking individual classes because
8929       // they have different settings of the explicit integer bit.
8930   else if ((Test & fcFinite) == fcFinite) {
8931     // finite(V) ==> abs(V) < exp_mask
8932     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
8933     Test &= ~fcFinite;
8934   } else if ((Test & fcFinite) == fcPosFinite) {
8935     // finite(V) && V > 0 ==> V < exp_mask
8936     PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT);
8937     Test &= ~fcPosFinite;
8938   } else if ((Test & fcFinite) == fcNegFinite) {
8939     // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1
8940     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
8941     PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
8942     Test &= ~fcNegFinite;
8943   }
8944   appendResult(PartialRes);
8945 
8946   if (FPClassTest PartialCheck = Test & (fcZero | fcSubnormal)) {
8947     // fcZero | fcSubnormal => test all exponent bits are 0
8948     // TODO: Handle sign bit specific cases
8949     if (PartialCheck == (fcZero | fcSubnormal)) {
8950       SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ExpMaskV);
8951       SDValue ExpIsZero =
8952           DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
8953       appendResult(ExpIsZero);
8954       Test &= ~PartialCheck & fcAllFlags;
8955     }
8956   }
8957 
8958   // Check for individual classes.
8959 
8960   if (unsigned PartialCheck = Test & fcZero) {
8961     if (PartialCheck == fcPosZero)
8962       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ);
8963     else if (PartialCheck == fcZero)
8964       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ);
8965     else // ISD::fcNegZero
8966       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ);
8967     appendResult(PartialRes);
8968   }
8969 
8970   if (unsigned PartialCheck = Test & fcSubnormal) {
8971     // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set)
8972     // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set)
8973     SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV;
8974     SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT);
8975     SDValue VMinusOneV =
8976         DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT));
8977     PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT);
8978     if (PartialCheck == fcNegSubnormal)
8979       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
8980     appendResult(PartialRes);
8981   }
8982 
8983   if (unsigned PartialCheck = Test & fcInf) {
8984     if (PartialCheck == fcPosInf)
8985       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ);
8986     else if (PartialCheck == fcInf)
8987       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ);
8988     else { // ISD::fcNegInf
8989       APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt();
8990       SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT);
8991       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ);
8992     }
8993     appendResult(PartialRes);
8994   }
8995 
8996   if (unsigned PartialCheck = Test & fcNan) {
8997     APInt InfWithQnanBit = Inf | QNaNBitMask;
8998     SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT);
8999     if (PartialCheck == fcNan) {
9000       // isnan(V) ==> abs(V) > int(inf)
9001       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
9002       if (IsF80) {
9003         // Recognize unsupported values as NaNs for compatibility with glibc.
9004         // In them (exp(V)==0) == int_bit.
9005         SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV);
9006         SDValue ExpIsZero =
9007             DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
9008         SDValue IsPseudo =
9009             DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ);
9010         PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo);
9011       }
9012     } else if (PartialCheck == fcQNan) {
9013       // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit)
9014       PartialRes =
9015           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE);
9016     } else { // ISD::fcSNan
9017       // issignaling(V) ==> abs(V) > unsigned(Inf) &&
9018       //                    abs(V) < (unsigned(Inf) | quiet_bit)
9019       SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
9020       SDValue IsNotQnan =
9021           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT);
9022       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan);
9023     }
9024     appendResult(PartialRes);
9025   }
9026 
9027   if (unsigned PartialCheck = Test & fcNormal) {
9028     // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1))
9029     APInt ExpLSB = ExpMask & ~(ExpMask.shl(1));
9030     SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT);
9031     SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV);
9032     APInt ExpLimit = ExpMask - ExpLSB;
9033     SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT);
9034     PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT);
9035     if (PartialCheck == fcNegNormal)
9036       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
9037     else if (PartialCheck == fcPosNormal) {
9038       SDValue PosSignV =
9039           DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask);
9040       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV);
9041     }
9042     if (IsF80)
9043       PartialRes =
9044           DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet());
9045     appendResult(PartialRes);
9046   }
9047 
9048   if (!Res)
9049     return DAG.getConstant(IsInverted, DL, ResultVT);
9050   if (IsInverted)
9051     Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask);
9052   return Res;
9053 }
9054 
9055 // Only expand vector types if we have the appropriate vector bit operations.
9056 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
9057   assert(VT.isVector() && "Expected vector type");
9058   unsigned Len = VT.getScalarSizeInBits();
9059   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
9060          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
9061          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
9062          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
9063          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
9064 }
9065 
9066 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
9067   SDLoc dl(Node);
9068   EVT VT = Node->getValueType(0);
9069   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9070   SDValue Op = Node->getOperand(0);
9071   unsigned Len = VT.getScalarSizeInBits();
9072   assert(VT.isInteger() && "CTPOP not implemented for this type.");
9073 
9074   // TODO: Add support for irregular type lengths.
9075   if (!(Len <= 128 && Len % 8 == 0))
9076     return SDValue();
9077 
9078   // Only expand vector types if we have the appropriate vector bit operations.
9079   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
9080     return SDValue();
9081 
9082   // This is the "best" algorithm from
9083   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
9084   SDValue Mask55 =
9085       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
9086   SDValue Mask33 =
9087       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
9088   SDValue Mask0F =
9089       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
9090 
9091   // v = v - ((v >> 1) & 0x55555555...)
9092   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
9093                    DAG.getNode(ISD::AND, dl, VT,
9094                                DAG.getNode(ISD::SRL, dl, VT, Op,
9095                                            DAG.getConstant(1, dl, ShVT)),
9096                                Mask55));
9097   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
9098   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
9099                    DAG.getNode(ISD::AND, dl, VT,
9100                                DAG.getNode(ISD::SRL, dl, VT, Op,
9101                                            DAG.getConstant(2, dl, ShVT)),
9102                                Mask33));
9103   // v = (v + (v >> 4)) & 0x0F0F0F0F...
9104   Op = DAG.getNode(ISD::AND, dl, VT,
9105                    DAG.getNode(ISD::ADD, dl, VT, Op,
9106                                DAG.getNode(ISD::SRL, dl, VT, Op,
9107                                            DAG.getConstant(4, dl, ShVT))),
9108                    Mask0F);
9109 
9110   if (Len <= 8)
9111     return Op;
9112 
9113   // Avoid the multiply if we only have 2 bytes to add.
9114   // TODO: Only doing this for scalars because vectors weren't as obviously
9115   // improved.
9116   if (Len == 16 && !VT.isVector()) {
9117     // v = (v + (v >> 8)) & 0x00FF;
9118     return DAG.getNode(ISD::AND, dl, VT,
9119                      DAG.getNode(ISD::ADD, dl, VT, Op,
9120                                  DAG.getNode(ISD::SRL, dl, VT, Op,
9121                                              DAG.getConstant(8, dl, ShVT))),
9122                      DAG.getConstant(0xFF, dl, VT));
9123   }
9124 
9125   // v = (v * 0x01010101...) >> (Len - 8)
9126   SDValue V;
9127   if (isOperationLegalOrCustomOrPromote(
9128           ISD::MUL, getTypeToTransformTo(*DAG.getContext(), VT))) {
9129     SDValue Mask01 =
9130         DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
9131     V = DAG.getNode(ISD::MUL, dl, VT, Op, Mask01);
9132   } else {
9133     V = Op;
9134     for (unsigned Shift = 8; Shift < Len; Shift *= 2) {
9135       SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl);
9136       V = DAG.getNode(ISD::ADD, dl, VT, V,
9137                       DAG.getNode(ISD::SHL, dl, VT, V, ShiftC));
9138     }
9139   }
9140   return DAG.getNode(ISD::SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT));
9141 }
9142 
9143 SDValue TargetLowering::expandVPCTPOP(SDNode *Node, SelectionDAG &DAG) const {
9144   SDLoc dl(Node);
9145   EVT VT = Node->getValueType(0);
9146   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9147   SDValue Op = Node->getOperand(0);
9148   SDValue Mask = Node->getOperand(1);
9149   SDValue VL = Node->getOperand(2);
9150   unsigned Len = VT.getScalarSizeInBits();
9151   assert(VT.isInteger() && "VP_CTPOP not implemented for this type.");
9152 
9153   // TODO: Add support for irregular type lengths.
9154   if (!(Len <= 128 && Len % 8 == 0))
9155     return SDValue();
9156 
9157   // This is same algorithm of expandCTPOP from
9158   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
9159   SDValue Mask55 =
9160       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
9161   SDValue Mask33 =
9162       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
9163   SDValue Mask0F =
9164       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
9165 
9166   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5;
9167 
9168   // v = v - ((v >> 1) & 0x55555555...)
9169   Tmp1 = DAG.getNode(ISD::VP_AND, dl, VT,
9170                      DAG.getNode(ISD::VP_SRL, dl, VT, Op,
9171                                  DAG.getConstant(1, dl, ShVT), Mask, VL),
9172                      Mask55, Mask, VL);
9173   Op = DAG.getNode(ISD::VP_SUB, dl, VT, Op, Tmp1, Mask, VL);
9174 
9175   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
9176   Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Op, Mask33, Mask, VL);
9177   Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT,
9178                      DAG.getNode(ISD::VP_SRL, dl, VT, Op,
9179                                  DAG.getConstant(2, dl, ShVT), Mask, VL),
9180                      Mask33, Mask, VL);
9181   Op = DAG.getNode(ISD::VP_ADD, dl, VT, Tmp2, Tmp3, Mask, VL);
9182 
9183   // v = (v + (v >> 4)) & 0x0F0F0F0F...
9184   Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(4, dl, ShVT),
9185                      Mask, VL),
9186   Tmp5 = DAG.getNode(ISD::VP_ADD, dl, VT, Op, Tmp4, Mask, VL);
9187   Op = DAG.getNode(ISD::VP_AND, dl, VT, Tmp5, Mask0F, Mask, VL);
9188 
9189   if (Len <= 8)
9190     return Op;
9191 
9192   // v = (v * 0x01010101...) >> (Len - 8)
9193   SDValue V;
9194   if (isOperationLegalOrCustomOrPromote(
9195           ISD::VP_MUL, getTypeToTransformTo(*DAG.getContext(), VT))) {
9196     SDValue Mask01 =
9197         DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
9198     V = DAG.getNode(ISD::VP_MUL, dl, VT, Op, Mask01, Mask, VL);
9199   } else {
9200     V = Op;
9201     for (unsigned Shift = 8; Shift < Len; Shift *= 2) {
9202       SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl);
9203       V = DAG.getNode(ISD::VP_ADD, dl, VT, V,
9204                       DAG.getNode(ISD::VP_SHL, dl, VT, V, ShiftC, Mask, VL),
9205                       Mask, VL);
9206     }
9207   }
9208   return DAG.getNode(ISD::VP_SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT),
9209                      Mask, VL);
9210 }
9211 
9212 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
9213   SDLoc dl(Node);
9214   EVT VT = Node->getValueType(0);
9215   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9216   SDValue Op = Node->getOperand(0);
9217   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
9218 
9219   // If the non-ZERO_UNDEF version is supported we can use that instead.
9220   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
9221       isOperationLegalOrCustom(ISD::CTLZ, VT))
9222     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
9223 
9224   // If the ZERO_UNDEF version is supported use that and handle the zero case.
9225   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
9226     EVT SetCCVT =
9227         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9228     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
9229     SDValue Zero = DAG.getConstant(0, dl, VT);
9230     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
9231     return DAG.getSelect(dl, VT, SrcIsZero,
9232                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
9233   }
9234 
9235   // Only expand vector types if we have the appropriate vector bit operations.
9236   // This includes the operations needed to expand CTPOP if it isn't supported.
9237   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
9238                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
9239                          !canExpandVectorCTPOP(*this, VT)) ||
9240                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
9241                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
9242     return SDValue();
9243 
9244   // for now, we do this:
9245   // x = x | (x >> 1);
9246   // x = x | (x >> 2);
9247   // ...
9248   // x = x | (x >>16);
9249   // x = x | (x >>32); // for 64-bit input
9250   // return popcount(~x);
9251   //
9252   // Ref: "Hacker's Delight" by Henry Warren
9253   for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
9254     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
9255     Op = DAG.getNode(ISD::OR, dl, VT, Op,
9256                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
9257   }
9258   Op = DAG.getNOT(dl, Op, VT);
9259   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
9260 }
9261 
9262 SDValue TargetLowering::expandVPCTLZ(SDNode *Node, SelectionDAG &DAG) const {
9263   SDLoc dl(Node);
9264   EVT VT = Node->getValueType(0);
9265   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9266   SDValue Op = Node->getOperand(0);
9267   SDValue Mask = Node->getOperand(1);
9268   SDValue VL = Node->getOperand(2);
9269   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
9270 
9271   // do this:
9272   // x = x | (x >> 1);
9273   // x = x | (x >> 2);
9274   // ...
9275   // x = x | (x >>16);
9276   // x = x | (x >>32); // for 64-bit input
9277   // return popcount(~x);
9278   for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
9279     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
9280     Op = DAG.getNode(ISD::VP_OR, dl, VT, Op,
9281                      DAG.getNode(ISD::VP_SRL, dl, VT, Op, Tmp, Mask, VL), Mask,
9282                      VL);
9283   }
9284   Op = DAG.getNode(ISD::VP_XOR, dl, VT, Op, DAG.getAllOnesConstant(dl, VT),
9285                    Mask, VL);
9286   return DAG.getNode(ISD::VP_CTPOP, dl, VT, Op, Mask, VL);
9287 }
9288 
9289 SDValue TargetLowering::CTTZTableLookup(SDNode *Node, SelectionDAG &DAG,
9290                                         const SDLoc &DL, EVT VT, SDValue Op,
9291                                         unsigned BitWidth) const {
9292   if (BitWidth != 32 && BitWidth != 64)
9293     return SDValue();
9294   APInt DeBruijn = BitWidth == 32 ? APInt(32, 0x077CB531U)
9295                                   : APInt(64, 0x0218A392CD3D5DBFULL);
9296   const DataLayout &TD = DAG.getDataLayout();
9297   MachinePointerInfo PtrInfo =
9298       MachinePointerInfo::getConstantPool(DAG.getMachineFunction());
9299   unsigned ShiftAmt = BitWidth - Log2_32(BitWidth);
9300   SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
9301   SDValue Lookup = DAG.getNode(
9302       ISD::SRL, DL, VT,
9303       DAG.getNode(ISD::MUL, DL, VT, DAG.getNode(ISD::AND, DL, VT, Op, Neg),
9304                   DAG.getConstant(DeBruijn, DL, VT)),
9305       DAG.getConstant(ShiftAmt, DL, VT));
9306   Lookup = DAG.getSExtOrTrunc(Lookup, DL, getPointerTy(TD));
9307 
9308   SmallVector<uint8_t> Table(BitWidth, 0);
9309   for (unsigned i = 0; i < BitWidth; i++) {
9310     APInt Shl = DeBruijn.shl(i);
9311     APInt Lshr = Shl.lshr(ShiftAmt);
9312     Table[Lshr.getZExtValue()] = i;
9313   }
9314 
9315   // Create a ConstantArray in Constant Pool
9316   auto *CA = ConstantDataArray::get(*DAG.getContext(), Table);
9317   SDValue CPIdx = DAG.getConstantPool(CA, getPointerTy(TD),
9318                                       TD.getPrefTypeAlign(CA->getType()));
9319   SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, VT, DAG.getEntryNode(),
9320                                    DAG.getMemBasePlusOffset(CPIdx, Lookup, DL),
9321                                    PtrInfo, MVT::i8);
9322   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF)
9323     return ExtLoad;
9324 
9325   EVT SetCCVT =
9326       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9327   SDValue Zero = DAG.getConstant(0, DL, VT);
9328   SDValue SrcIsZero = DAG.getSetCC(DL, SetCCVT, Op, Zero, ISD::SETEQ);
9329   return DAG.getSelect(DL, VT, SrcIsZero,
9330                        DAG.getConstant(BitWidth, DL, VT), ExtLoad);
9331 }
9332 
9333 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
9334   SDLoc dl(Node);
9335   EVT VT = Node->getValueType(0);
9336   SDValue Op = Node->getOperand(0);
9337   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
9338 
9339   // If the non-ZERO_UNDEF version is supported we can use that instead.
9340   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
9341       isOperationLegalOrCustom(ISD::CTTZ, VT))
9342     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
9343 
9344   // If the ZERO_UNDEF version is supported use that and handle the zero case.
9345   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
9346     EVT SetCCVT =
9347         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9348     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
9349     SDValue Zero = DAG.getConstant(0, dl, VT);
9350     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
9351     return DAG.getSelect(dl, VT, SrcIsZero,
9352                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
9353   }
9354 
9355   // Only expand vector types if we have the appropriate vector bit operations.
9356   // This includes the operations needed to expand CTPOP if it isn't supported.
9357   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
9358                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
9359                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
9360                          !canExpandVectorCTPOP(*this, VT)) ||
9361                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
9362                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
9363                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
9364     return SDValue();
9365 
9366   // Emit Table Lookup if ISD::CTLZ and ISD::CTPOP are not legal.
9367   if (!VT.isVector() && isOperationExpand(ISD::CTPOP, VT) &&
9368       !isOperationLegal(ISD::CTLZ, VT))
9369     if (SDValue V = CTTZTableLookup(Node, DAG, dl, VT, Op, NumBitsPerElt))
9370       return V;
9371 
9372   // for now, we use: { return popcount(~x & (x - 1)); }
9373   // unless the target has ctlz but not ctpop, in which case we use:
9374   // { return 32 - nlz(~x & (x-1)); }
9375   // Ref: "Hacker's Delight" by Henry Warren
9376   SDValue Tmp = DAG.getNode(
9377       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
9378       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
9379 
9380   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
9381   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
9382     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
9383                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
9384   }
9385 
9386   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
9387 }
9388 
9389 SDValue TargetLowering::expandVPCTTZ(SDNode *Node, SelectionDAG &DAG) const {
9390   SDValue Op = Node->getOperand(0);
9391   SDValue Mask = Node->getOperand(1);
9392   SDValue VL = Node->getOperand(2);
9393   SDLoc dl(Node);
9394   EVT VT = Node->getValueType(0);
9395 
9396   // Same as the vector part of expandCTTZ, use: popcount(~x & (x - 1))
9397   SDValue Not = DAG.getNode(ISD::VP_XOR, dl, VT, Op,
9398                             DAG.getAllOnesConstant(dl, VT), Mask, VL);
9399   SDValue MinusOne = DAG.getNode(ISD::VP_SUB, dl, VT, Op,
9400                                  DAG.getConstant(1, dl, VT), Mask, VL);
9401   SDValue Tmp = DAG.getNode(ISD::VP_AND, dl, VT, Not, MinusOne, Mask, VL);
9402   return DAG.getNode(ISD::VP_CTPOP, dl, VT, Tmp, Mask, VL);
9403 }
9404 
9405 SDValue TargetLowering::expandVPCTTZElements(SDNode *N,
9406                                              SelectionDAG &DAG) const {
9407   // %cond = to_bool_vec %source
9408   // %splat = splat /*val=*/VL
9409   // %tz = step_vector
9410   // %v = vp.select %cond, /*true=*/tz, /*false=*/%splat
9411   // %r = vp.reduce.umin %v
9412   SDLoc DL(N);
9413   SDValue Source = N->getOperand(0);
9414   SDValue Mask = N->getOperand(1);
9415   SDValue EVL = N->getOperand(2);
9416   EVT SrcVT = Source.getValueType();
9417   EVT ResVT = N->getValueType(0);
9418   EVT ResVecVT =
9419       EVT::getVectorVT(*DAG.getContext(), ResVT, SrcVT.getVectorElementCount());
9420 
9421   // Convert to boolean vector.
9422   if (SrcVT.getScalarType() != MVT::i1) {
9423     SDValue AllZero = DAG.getConstant(0, DL, SrcVT);
9424     SrcVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
9425                              SrcVT.getVectorElementCount());
9426     Source = DAG.getNode(ISD::VP_SETCC, DL, SrcVT, Source, AllZero,
9427                          DAG.getCondCode(ISD::SETNE), Mask, EVL);
9428   }
9429 
9430   SDValue ExtEVL = DAG.getZExtOrTrunc(EVL, DL, ResVT);
9431   SDValue Splat = DAG.getSplat(ResVecVT, DL, ExtEVL);
9432   SDValue StepVec = DAG.getStepVector(DL, ResVecVT);
9433   SDValue Select =
9434       DAG.getNode(ISD::VP_SELECT, DL, ResVecVT, Source, StepVec, Splat, EVL);
9435   return DAG.getNode(ISD::VP_REDUCE_UMIN, DL, ResVT, ExtEVL, Select, Mask, EVL);
9436 }
9437 
9438 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
9439                                   bool IsNegative) const {
9440   SDLoc dl(N);
9441   EVT VT = N->getValueType(0);
9442   SDValue Op = N->getOperand(0);
9443 
9444   // abs(x) -> smax(x,sub(0,x))
9445   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
9446       isOperationLegal(ISD::SMAX, VT)) {
9447     SDValue Zero = DAG.getConstant(0, dl, VT);
9448     Op = DAG.getFreeze(Op);
9449     return DAG.getNode(ISD::SMAX, dl, VT, Op,
9450                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
9451   }
9452 
9453   // abs(x) -> umin(x,sub(0,x))
9454   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
9455       isOperationLegal(ISD::UMIN, VT)) {
9456     SDValue Zero = DAG.getConstant(0, dl, VT);
9457     Op = DAG.getFreeze(Op);
9458     return DAG.getNode(ISD::UMIN, dl, VT, Op,
9459                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
9460   }
9461 
9462   // 0 - abs(x) -> smin(x, sub(0,x))
9463   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
9464       isOperationLegal(ISD::SMIN, VT)) {
9465     SDValue Zero = DAG.getConstant(0, dl, VT);
9466     Op = DAG.getFreeze(Op);
9467     return DAG.getNode(ISD::SMIN, dl, VT, Op,
9468                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
9469   }
9470 
9471   // Only expand vector types if we have the appropriate vector operations.
9472   if (VT.isVector() &&
9473       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
9474        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
9475        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
9476        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
9477     return SDValue();
9478 
9479   Op = DAG.getFreeze(Op);
9480   SDValue Shift = DAG.getNode(
9481       ISD::SRA, dl, VT, Op,
9482       DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, dl));
9483   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
9484 
9485   // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
9486   if (!IsNegative)
9487     return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
9488 
9489   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
9490   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
9491 }
9492 
9493 SDValue TargetLowering::expandABD(SDNode *N, SelectionDAG &DAG) const {
9494   SDLoc dl(N);
9495   EVT VT = N->getValueType(0);
9496   SDValue LHS = DAG.getFreeze(N->getOperand(0));
9497   SDValue RHS = DAG.getFreeze(N->getOperand(1));
9498   bool IsSigned = N->getOpcode() == ISD::ABDS;
9499 
9500   // abds(lhs, rhs) -> sub(smax(lhs,rhs), smin(lhs,rhs))
9501   // abdu(lhs, rhs) -> sub(umax(lhs,rhs), umin(lhs,rhs))
9502   unsigned MaxOpc = IsSigned ? ISD::SMAX : ISD::UMAX;
9503   unsigned MinOpc = IsSigned ? ISD::SMIN : ISD::UMIN;
9504   if (isOperationLegal(MaxOpc, VT) && isOperationLegal(MinOpc, VT)) {
9505     SDValue Max = DAG.getNode(MaxOpc, dl, VT, LHS, RHS);
9506     SDValue Min = DAG.getNode(MinOpc, dl, VT, LHS, RHS);
9507     return DAG.getNode(ISD::SUB, dl, VT, Max, Min);
9508   }
9509 
9510   // abdu(lhs, rhs) -> or(usubsat(lhs,rhs), usubsat(rhs,lhs))
9511   if (!IsSigned && isOperationLegal(ISD::USUBSAT, VT))
9512     return DAG.getNode(ISD::OR, dl, VT,
9513                        DAG.getNode(ISD::USUBSAT, dl, VT, LHS, RHS),
9514                        DAG.getNode(ISD::USUBSAT, dl, VT, RHS, LHS));
9515 
9516   // If the subtract doesn't overflow then just use abs(sub())
9517   // NOTE: don't use frozen operands for value tracking.
9518   bool IsNonNegative = DAG.SignBitIsZero(N->getOperand(1)) &&
9519                        DAG.SignBitIsZero(N->getOperand(0));
9520 
9521   if (DAG.willNotOverflowSub(IsSigned || IsNonNegative, N->getOperand(0),
9522                              N->getOperand(1)))
9523     return DAG.getNode(ISD::ABS, dl, VT,
9524                        DAG.getNode(ISD::SUB, dl, VT, LHS, RHS));
9525 
9526   if (DAG.willNotOverflowSub(IsSigned || IsNonNegative, N->getOperand(1),
9527                              N->getOperand(0)))
9528     return DAG.getNode(ISD::ABS, dl, VT,
9529                        DAG.getNode(ISD::SUB, dl, VT, RHS, LHS));
9530 
9531   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9532   ISD::CondCode CC = IsSigned ? ISD::CondCode::SETGT : ISD::CondCode::SETUGT;
9533   SDValue Cmp = DAG.getSetCC(dl, CCVT, LHS, RHS, CC);
9534 
9535   // Branchless expansion iff cmp result is allbits:
9536   // abds(lhs, rhs) -> sub(sgt(lhs, rhs), xor(sgt(lhs, rhs), sub(lhs, rhs)))
9537   // abdu(lhs, rhs) -> sub(ugt(lhs, rhs), xor(ugt(lhs, rhs), sub(lhs, rhs)))
9538   if (CCVT == VT && getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
9539     SDValue Diff = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
9540     SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Diff, Cmp);
9541     return DAG.getNode(ISD::SUB, dl, VT, Cmp, Xor);
9542   }
9543 
9544   // Similar to the branchless expansion, use the (sign-extended) usubo overflow
9545   // flag if the (scalar) type is illegal as this is more likely to legalize
9546   // cleanly:
9547   // abdu(lhs, rhs) -> sub(xor(sub(lhs, rhs), uof(lhs, rhs)), uof(lhs, rhs))
9548   if (!IsSigned && VT.isScalarInteger() && !isTypeLegal(VT)) {
9549     SDValue USubO =
9550         DAG.getNode(ISD::USUBO, dl, DAG.getVTList(VT, MVT::i1), {LHS, RHS});
9551     SDValue Cmp = DAG.getNode(ISD::SIGN_EXTEND, dl, VT, USubO.getValue(1));
9552     SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, USubO.getValue(0), Cmp);
9553     return DAG.getNode(ISD::SUB, dl, VT, Xor, Cmp);
9554   }
9555 
9556   // FIXME: Should really try to split the vector in case it's legal on a
9557   // subvector.
9558   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
9559     return DAG.UnrollVectorOp(N);
9560 
9561   // abds(lhs, rhs) -> select(sgt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs))
9562   // abdu(lhs, rhs) -> select(ugt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs))
9563   return DAG.getSelect(dl, VT, Cmp, DAG.getNode(ISD::SUB, dl, VT, LHS, RHS),
9564                        DAG.getNode(ISD::SUB, dl, VT, RHS, LHS));
9565 }
9566 
9567 SDValue TargetLowering::expandAVG(SDNode *N, SelectionDAG &DAG) const {
9568   SDLoc dl(N);
9569   EVT VT = N->getValueType(0);
9570   SDValue LHS = N->getOperand(0);
9571   SDValue RHS = N->getOperand(1);
9572 
9573   unsigned Opc = N->getOpcode();
9574   bool IsFloor = Opc == ISD::AVGFLOORS || Opc == ISD::AVGFLOORU;
9575   bool IsSigned = Opc == ISD::AVGCEILS || Opc == ISD::AVGFLOORS;
9576   unsigned SumOpc = IsFloor ? ISD::ADD : ISD::SUB;
9577   unsigned SignOpc = IsFloor ? ISD::AND : ISD::OR;
9578   unsigned ShiftOpc = IsSigned ? ISD::SRA : ISD::SRL;
9579   unsigned ExtOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
9580   assert((Opc == ISD::AVGFLOORS || Opc == ISD::AVGCEILS ||
9581           Opc == ISD::AVGFLOORU || Opc == ISD::AVGCEILU) &&
9582          "Unknown AVG node");
9583 
9584   // If the operands are already extended, we can add+shift.
9585   bool IsExt =
9586       (IsSigned && DAG.ComputeNumSignBits(LHS) >= 2 &&
9587        DAG.ComputeNumSignBits(RHS) >= 2) ||
9588       (!IsSigned && DAG.computeKnownBits(LHS).countMinLeadingZeros() >= 1 &&
9589        DAG.computeKnownBits(RHS).countMinLeadingZeros() >= 1);
9590   if (IsExt) {
9591     SDValue Sum = DAG.getNode(ISD::ADD, dl, VT, LHS, RHS);
9592     if (!IsFloor)
9593       Sum = DAG.getNode(ISD::ADD, dl, VT, Sum, DAG.getConstant(1, dl, VT));
9594     return DAG.getNode(ShiftOpc, dl, VT, Sum,
9595                        DAG.getShiftAmountConstant(1, VT, dl));
9596   }
9597 
9598   // For scalars, see if we can efficiently extend/truncate to use add+shift.
9599   if (VT.isScalarInteger()) {
9600     unsigned BW = VT.getScalarSizeInBits();
9601     EVT ExtVT = VT.getIntegerVT(*DAG.getContext(), 2 * BW);
9602     if (isTypeLegal(ExtVT) && isTruncateFree(ExtVT, VT)) {
9603       LHS = DAG.getNode(ExtOpc, dl, ExtVT, LHS);
9604       RHS = DAG.getNode(ExtOpc, dl, ExtVT, RHS);
9605       SDValue Avg = DAG.getNode(ISD::ADD, dl, ExtVT, LHS, RHS);
9606       if (!IsFloor)
9607         Avg = DAG.getNode(ISD::ADD, dl, ExtVT, Avg,
9608                           DAG.getConstant(1, dl, ExtVT));
9609       // Just use SRL as we will be truncating away the extended sign bits.
9610       Avg = DAG.getNode(ISD::SRL, dl, ExtVT, Avg,
9611                         DAG.getShiftAmountConstant(1, ExtVT, dl));
9612       return DAG.getNode(ISD::TRUNCATE, dl, VT, Avg);
9613     }
9614   }
9615 
9616   // avgflooru(lhs, rhs) -> or(lshr(add(lhs, rhs),1),shl(overflow, typesize-1))
9617   if (Opc == ISD::AVGFLOORU && VT.isScalarInteger() && !isTypeLegal(VT)) {
9618     SDValue UAddWithOverflow =
9619         DAG.getNode(ISD::UADDO, dl, DAG.getVTList(VT, MVT::i1), {RHS, LHS});
9620 
9621     SDValue Sum = UAddWithOverflow.getValue(0);
9622     SDValue Overflow = UAddWithOverflow.getValue(1);
9623 
9624     // Right shift the sum by 1
9625     SDValue LShrVal = DAG.getNode(ISD::SRL, dl, VT, Sum,
9626                                   DAG.getShiftAmountConstant(1, VT, dl));
9627 
9628     SDValue ZeroExtOverflow = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Overflow);
9629     SDValue OverflowShl = DAG.getNode(
9630         ISD::SHL, dl, VT, ZeroExtOverflow,
9631         DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, dl));
9632 
9633     return DAG.getNode(ISD::OR, dl, VT, LShrVal, OverflowShl);
9634   }
9635 
9636   // avgceils(lhs, rhs) -> sub(or(lhs,rhs),ashr(xor(lhs,rhs),1))
9637   // avgceilu(lhs, rhs) -> sub(or(lhs,rhs),lshr(xor(lhs,rhs),1))
9638   // avgfloors(lhs, rhs) -> add(and(lhs,rhs),ashr(xor(lhs,rhs),1))
9639   // avgflooru(lhs, rhs) -> add(and(lhs,rhs),lshr(xor(lhs,rhs),1))
9640   LHS = DAG.getFreeze(LHS);
9641   RHS = DAG.getFreeze(RHS);
9642   SDValue Sign = DAG.getNode(SignOpc, dl, VT, LHS, RHS);
9643   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
9644   SDValue Shift =
9645       DAG.getNode(ShiftOpc, dl, VT, Xor, DAG.getShiftAmountConstant(1, VT, dl));
9646   return DAG.getNode(SumOpc, dl, VT, Sign, Shift);
9647 }
9648 
9649 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
9650   SDLoc dl(N);
9651   EVT VT = N->getValueType(0);
9652   SDValue Op = N->getOperand(0);
9653 
9654   if (!VT.isSimple())
9655     return SDValue();
9656 
9657   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
9658   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
9659   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
9660   default:
9661     return SDValue();
9662   case MVT::i16:
9663     // Use a rotate by 8. This can be further expanded if necessary.
9664     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
9665   case MVT::i32:
9666     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
9667     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Op,
9668                        DAG.getConstant(0xFF00, dl, VT));
9669     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT));
9670     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
9671     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
9672     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
9673     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
9674     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
9675     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
9676   case MVT::i64:
9677     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
9678     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Op,
9679                        DAG.getConstant(255ULL<<8, dl, VT));
9680     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT));
9681     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Op,
9682                        DAG.getConstant(255ULL<<16, dl, VT));
9683     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT));
9684     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Op,
9685                        DAG.getConstant(255ULL<<24, dl, VT));
9686     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT));
9687     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
9688     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
9689                        DAG.getConstant(255ULL<<24, dl, VT));
9690     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
9691     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
9692                        DAG.getConstant(255ULL<<16, dl, VT));
9693     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
9694     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
9695                        DAG.getConstant(255ULL<<8, dl, VT));
9696     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
9697     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
9698     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
9699     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
9700     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
9701     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
9702     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
9703     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
9704   }
9705 }
9706 
9707 SDValue TargetLowering::expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const {
9708   SDLoc dl(N);
9709   EVT VT = N->getValueType(0);
9710   SDValue Op = N->getOperand(0);
9711   SDValue Mask = N->getOperand(1);
9712   SDValue EVL = N->getOperand(2);
9713 
9714   if (!VT.isSimple())
9715     return SDValue();
9716 
9717   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
9718   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
9719   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
9720   default:
9721     return SDValue();
9722   case MVT::i16:
9723     Tmp1 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
9724                        Mask, EVL);
9725     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
9726                        Mask, EVL);
9727     return DAG.getNode(ISD::VP_OR, dl, VT, Tmp1, Tmp2, Mask, EVL);
9728   case MVT::i32:
9729     Tmp4 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
9730                        Mask, EVL);
9731     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Op, DAG.getConstant(0xFF00, dl, VT),
9732                        Mask, EVL);
9733     Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT),
9734                        Mask, EVL);
9735     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
9736                        Mask, EVL);
9737     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9738                        DAG.getConstant(0xFF00, dl, VT), Mask, EVL);
9739     Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
9740                        Mask, EVL);
9741     Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
9742     Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
9743     return DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
9744   case MVT::i64:
9745     Tmp8 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT),
9746                        Mask, EVL);
9747     Tmp7 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
9748                        DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL);
9749     Tmp7 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT),
9750                        Mask, EVL);
9751     Tmp6 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
9752                        DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL);
9753     Tmp6 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT),
9754                        Mask, EVL);
9755     Tmp5 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
9756                        DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL);
9757     Tmp5 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT),
9758                        Mask, EVL);
9759     Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
9760                        Mask, EVL);
9761     Tmp4 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp4,
9762                        DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL);
9763     Tmp3 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
9764                        Mask, EVL);
9765     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp3,
9766                        DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL);
9767     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT),
9768                        Mask, EVL);
9769     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9770                        DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL);
9771     Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT),
9772                        Mask, EVL);
9773     Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp7, Mask, EVL);
9774     Tmp6 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp6, Tmp5, Mask, EVL);
9775     Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
9776     Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
9777     Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp6, Mask, EVL);
9778     Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
9779     return DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp4, Mask, EVL);
9780   }
9781 }
9782 
9783 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
9784   SDLoc dl(N);
9785   EVT VT = N->getValueType(0);
9786   SDValue Op = N->getOperand(0);
9787   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
9788   unsigned Sz = VT.getScalarSizeInBits();
9789 
9790   SDValue Tmp, Tmp2, Tmp3;
9791 
9792   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
9793   // and finally the i1 pairs.
9794   // TODO: We can easily support i4/i2 legal types if any target ever does.
9795   if (Sz >= 8 && isPowerOf2_32(Sz)) {
9796     // Create the masks - repeating the pattern every byte.
9797     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
9798     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
9799     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
9800 
9801     // BSWAP if the type is wider than a single byte.
9802     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
9803 
9804     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
9805     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
9806     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
9807     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
9808     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
9809     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
9810 
9811     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
9812     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
9813     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
9814     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
9815     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
9816     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
9817 
9818     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
9819     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
9820     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
9821     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
9822     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
9823     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
9824     return Tmp;
9825   }
9826 
9827   Tmp = DAG.getConstant(0, dl, VT);
9828   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
9829     if (I < J)
9830       Tmp2 =
9831           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
9832     else
9833       Tmp2 =
9834           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
9835 
9836     APInt Shift = APInt::getOneBitSet(Sz, J);
9837     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
9838     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
9839   }
9840 
9841   return Tmp;
9842 }
9843 
9844 SDValue TargetLowering::expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
9845   assert(N->getOpcode() == ISD::VP_BITREVERSE);
9846 
9847   SDLoc dl(N);
9848   EVT VT = N->getValueType(0);
9849   SDValue Op = N->getOperand(0);
9850   SDValue Mask = N->getOperand(1);
9851   SDValue EVL = N->getOperand(2);
9852   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
9853   unsigned Sz = VT.getScalarSizeInBits();
9854 
9855   SDValue Tmp, Tmp2, Tmp3;
9856 
9857   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
9858   // and finally the i1 pairs.
9859   // TODO: We can easily support i4/i2 legal types if any target ever does.
9860   if (Sz >= 8 && isPowerOf2_32(Sz)) {
9861     // Create the masks - repeating the pattern every byte.
9862     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
9863     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
9864     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
9865 
9866     // BSWAP if the type is wider than a single byte.
9867     Tmp = (Sz > 8 ? DAG.getNode(ISD::VP_BSWAP, dl, VT, Op, Mask, EVL) : Op);
9868 
9869     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
9870     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT),
9871                        Mask, EVL);
9872     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9873                        DAG.getConstant(Mask4, dl, VT), Mask, EVL);
9874     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT),
9875                        Mask, EVL);
9876     Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT),
9877                        Mask, EVL);
9878     Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
9879 
9880     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
9881     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT),
9882                        Mask, EVL);
9883     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9884                        DAG.getConstant(Mask2, dl, VT), Mask, EVL);
9885     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT),
9886                        Mask, EVL);
9887     Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT),
9888                        Mask, EVL);
9889     Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
9890 
9891     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
9892     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT),
9893                        Mask, EVL);
9894     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9895                        DAG.getConstant(Mask1, dl, VT), Mask, EVL);
9896     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT),
9897                        Mask, EVL);
9898     Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT),
9899                        Mask, EVL);
9900     Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
9901     return Tmp;
9902   }
9903   return SDValue();
9904 }
9905 
9906 std::pair<SDValue, SDValue>
9907 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
9908                                     SelectionDAG &DAG) const {
9909   SDLoc SL(LD);
9910   SDValue Chain = LD->getChain();
9911   SDValue BasePTR = LD->getBasePtr();
9912   EVT SrcVT = LD->getMemoryVT();
9913   EVT DstVT = LD->getValueType(0);
9914   ISD::LoadExtType ExtType = LD->getExtensionType();
9915 
9916   if (SrcVT.isScalableVector())
9917     report_fatal_error("Cannot scalarize scalable vector loads");
9918 
9919   unsigned NumElem = SrcVT.getVectorNumElements();
9920 
9921   EVT SrcEltVT = SrcVT.getScalarType();
9922   EVT DstEltVT = DstVT.getScalarType();
9923 
9924   // A vector must always be stored in memory as-is, i.e. without any padding
9925   // between the elements, since various code depend on it, e.g. in the
9926   // handling of a bitcast of a vector type to int, which may be done with a
9927   // vector store followed by an integer load. A vector that does not have
9928   // elements that are byte-sized must therefore be stored as an integer
9929   // built out of the extracted vector elements.
9930   if (!SrcEltVT.isByteSized()) {
9931     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
9932     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
9933 
9934     unsigned NumSrcBits = SrcVT.getSizeInBits();
9935     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
9936 
9937     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
9938     SDValue SrcEltBitMask = DAG.getConstant(
9939         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
9940 
9941     // Load the whole vector and avoid masking off the top bits as it makes
9942     // the codegen worse.
9943     SDValue Load =
9944         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
9945                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
9946                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
9947 
9948     SmallVector<SDValue, 8> Vals;
9949     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
9950       unsigned ShiftIntoIdx =
9951           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
9952       SDValue ShiftAmount = DAG.getShiftAmountConstant(
9953           ShiftIntoIdx * SrcEltVT.getSizeInBits(), LoadVT, SL);
9954       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
9955       SDValue Elt =
9956           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
9957       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
9958 
9959       if (ExtType != ISD::NON_EXTLOAD) {
9960         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
9961         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
9962       }
9963 
9964       Vals.push_back(Scalar);
9965     }
9966 
9967     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
9968     return std::make_pair(Value, Load.getValue(1));
9969   }
9970 
9971   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
9972   assert(SrcEltVT.isByteSized());
9973 
9974   SmallVector<SDValue, 8> Vals;
9975   SmallVector<SDValue, 8> LoadChains;
9976 
9977   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
9978     SDValue ScalarLoad =
9979         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
9980                        LD->getPointerInfo().getWithOffset(Idx * Stride),
9981                        SrcEltVT, LD->getOriginalAlign(),
9982                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
9983 
9984     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::getFixed(Stride));
9985 
9986     Vals.push_back(ScalarLoad.getValue(0));
9987     LoadChains.push_back(ScalarLoad.getValue(1));
9988   }
9989 
9990   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
9991   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
9992 
9993   return std::make_pair(Value, NewChain);
9994 }
9995 
9996 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
9997                                              SelectionDAG &DAG) const {
9998   SDLoc SL(ST);
9999 
10000   SDValue Chain = ST->getChain();
10001   SDValue BasePtr = ST->getBasePtr();
10002   SDValue Value = ST->getValue();
10003   EVT StVT = ST->getMemoryVT();
10004 
10005   if (StVT.isScalableVector())
10006     report_fatal_error("Cannot scalarize scalable vector stores");
10007 
10008   // The type of the data we want to save
10009   EVT RegVT = Value.getValueType();
10010   EVT RegSclVT = RegVT.getScalarType();
10011 
10012   // The type of data as saved in memory.
10013   EVT MemSclVT = StVT.getScalarType();
10014 
10015   unsigned NumElem = StVT.getVectorNumElements();
10016 
10017   // A vector must always be stored in memory as-is, i.e. without any padding
10018   // between the elements, since various code depend on it, e.g. in the
10019   // handling of a bitcast of a vector type to int, which may be done with a
10020   // vector store followed by an integer load. A vector that does not have
10021   // elements that are byte-sized must therefore be stored as an integer
10022   // built out of the extracted vector elements.
10023   if (!MemSclVT.isByteSized()) {
10024     unsigned NumBits = StVT.getSizeInBits();
10025     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
10026 
10027     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
10028 
10029     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
10030       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
10031                                 DAG.getVectorIdxConstant(Idx, SL));
10032       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
10033       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
10034       unsigned ShiftIntoIdx =
10035           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
10036       SDValue ShiftAmount =
10037           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
10038       SDValue ShiftedElt =
10039           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
10040       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
10041     }
10042 
10043     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
10044                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
10045                         ST->getAAInfo());
10046   }
10047 
10048   // Store Stride in bytes
10049   unsigned Stride = MemSclVT.getSizeInBits() / 8;
10050   assert(Stride && "Zero stride!");
10051   // Extract each of the elements from the original vector and save them into
10052   // memory individually.
10053   SmallVector<SDValue, 8> Stores;
10054   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
10055     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
10056                               DAG.getVectorIdxConstant(Idx, SL));
10057 
10058     SDValue Ptr =
10059         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::getFixed(Idx * Stride));
10060 
10061     // This scalar TruncStore may be illegal, but we legalize it later.
10062     SDValue Store = DAG.getTruncStore(
10063         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
10064         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
10065         ST->getAAInfo());
10066 
10067     Stores.push_back(Store);
10068   }
10069 
10070   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
10071 }
10072 
10073 std::pair<SDValue, SDValue>
10074 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
10075   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
10076          "unaligned indexed loads not implemented!");
10077   SDValue Chain = LD->getChain();
10078   SDValue Ptr = LD->getBasePtr();
10079   EVT VT = LD->getValueType(0);
10080   EVT LoadedVT = LD->getMemoryVT();
10081   SDLoc dl(LD);
10082   auto &MF = DAG.getMachineFunction();
10083 
10084   if (VT.isFloatingPoint() || VT.isVector()) {
10085     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
10086     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
10087       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
10088           LoadedVT.isVector()) {
10089         // Scalarize the load and let the individual components be handled.
10090         return scalarizeVectorLoad(LD, DAG);
10091       }
10092 
10093       // Expand to a (misaligned) integer load of the same size,
10094       // then bitconvert to floating point or vector.
10095       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
10096                                     LD->getMemOperand());
10097       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
10098       if (LoadedVT != VT)
10099         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
10100                              ISD::ANY_EXTEND, dl, VT, Result);
10101 
10102       return std::make_pair(Result, newLoad.getValue(1));
10103     }
10104 
10105     // Copy the value to a (aligned) stack slot using (unaligned) integer
10106     // loads and stores, then do a (aligned) load from the stack slot.
10107     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
10108     unsigned LoadedBytes = LoadedVT.getStoreSize();
10109     unsigned RegBytes = RegVT.getSizeInBits() / 8;
10110     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
10111 
10112     // Make sure the stack slot is also aligned for the register type.
10113     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
10114     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
10115     SmallVector<SDValue, 8> Stores;
10116     SDValue StackPtr = StackBase;
10117     unsigned Offset = 0;
10118 
10119     EVT PtrVT = Ptr.getValueType();
10120     EVT StackPtrVT = StackPtr.getValueType();
10121 
10122     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
10123     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
10124 
10125     // Do all but one copies using the full register width.
10126     for (unsigned i = 1; i < NumRegs; i++) {
10127       // Load one integer register's worth from the original location.
10128       SDValue Load = DAG.getLoad(
10129           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
10130           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
10131           LD->getAAInfo());
10132       // Follow the load with a store to the stack slot.  Remember the store.
10133       Stores.push_back(DAG.getStore(
10134           Load.getValue(1), dl, Load, StackPtr,
10135           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
10136       // Increment the pointers.
10137       Offset += RegBytes;
10138 
10139       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
10140       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
10141     }
10142 
10143     // The last copy may be partial.  Do an extending load.
10144     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
10145                                   8 * (LoadedBytes - Offset));
10146     SDValue Load =
10147         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
10148                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
10149                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
10150                        LD->getAAInfo());
10151     // Follow the load with a store to the stack slot.  Remember the store.
10152     // On big-endian machines this requires a truncating store to ensure
10153     // that the bits end up in the right place.
10154     Stores.push_back(DAG.getTruncStore(
10155         Load.getValue(1), dl, Load, StackPtr,
10156         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
10157 
10158     // The order of the stores doesn't matter - say it with a TokenFactor.
10159     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10160 
10161     // Finally, perform the original load only redirected to the stack slot.
10162     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
10163                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
10164                           LoadedVT);
10165 
10166     // Callers expect a MERGE_VALUES node.
10167     return std::make_pair(Load, TF);
10168   }
10169 
10170   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
10171          "Unaligned load of unsupported type.");
10172 
10173   // Compute the new VT that is half the size of the old one.  This is an
10174   // integer MVT.
10175   unsigned NumBits = LoadedVT.getSizeInBits();
10176   EVT NewLoadedVT;
10177   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
10178   NumBits >>= 1;
10179 
10180   Align Alignment = LD->getOriginalAlign();
10181   unsigned IncrementSize = NumBits / 8;
10182   ISD::LoadExtType HiExtType = LD->getExtensionType();
10183 
10184   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
10185   if (HiExtType == ISD::NON_EXTLOAD)
10186     HiExtType = ISD::ZEXTLOAD;
10187 
10188   // Load the value in two parts
10189   SDValue Lo, Hi;
10190   if (DAG.getDataLayout().isLittleEndian()) {
10191     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
10192                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10193                         LD->getAAInfo());
10194 
10195     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize));
10196     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
10197                         LD->getPointerInfo().getWithOffset(IncrementSize),
10198                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10199                         LD->getAAInfo());
10200   } else {
10201     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
10202                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10203                         LD->getAAInfo());
10204 
10205     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize));
10206     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
10207                         LD->getPointerInfo().getWithOffset(IncrementSize),
10208                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10209                         LD->getAAInfo());
10210   }
10211 
10212   // aggregate the two parts
10213   SDValue ShiftAmount = DAG.getShiftAmountConstant(NumBits, VT, dl);
10214   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
10215   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
10216 
10217   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
10218                              Hi.getValue(1));
10219 
10220   return std::make_pair(Result, TF);
10221 }
10222 
10223 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
10224                                              SelectionDAG &DAG) const {
10225   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
10226          "unaligned indexed stores not implemented!");
10227   SDValue Chain = ST->getChain();
10228   SDValue Ptr = ST->getBasePtr();
10229   SDValue Val = ST->getValue();
10230   EVT VT = Val.getValueType();
10231   Align Alignment = ST->getOriginalAlign();
10232   auto &MF = DAG.getMachineFunction();
10233   EVT StoreMemVT = ST->getMemoryVT();
10234 
10235   SDLoc dl(ST);
10236   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
10237     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
10238     if (isTypeLegal(intVT)) {
10239       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
10240           StoreMemVT.isVector()) {
10241         // Scalarize the store and let the individual components be handled.
10242         SDValue Result = scalarizeVectorStore(ST, DAG);
10243         return Result;
10244       }
10245       // Expand to a bitconvert of the value to the integer type of the
10246       // same size, then a (misaligned) int store.
10247       // FIXME: Does not handle truncating floating point stores!
10248       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
10249       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
10250                             Alignment, ST->getMemOperand()->getFlags());
10251       return Result;
10252     }
10253     // Do a (aligned) store to a stack slot, then copy from the stack slot
10254     // to the final destination using (unaligned) integer loads and stores.
10255     MVT RegVT = getRegisterType(
10256         *DAG.getContext(),
10257         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
10258     EVT PtrVT = Ptr.getValueType();
10259     unsigned StoredBytes = StoreMemVT.getStoreSize();
10260     unsigned RegBytes = RegVT.getSizeInBits() / 8;
10261     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
10262 
10263     // Make sure the stack slot is also aligned for the register type.
10264     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
10265     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
10266 
10267     // Perform the original store, only redirected to the stack slot.
10268     SDValue Store = DAG.getTruncStore(
10269         Chain, dl, Val, StackPtr,
10270         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
10271 
10272     EVT StackPtrVT = StackPtr.getValueType();
10273 
10274     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
10275     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
10276     SmallVector<SDValue, 8> Stores;
10277     unsigned Offset = 0;
10278 
10279     // Do all but one copies using the full register width.
10280     for (unsigned i = 1; i < NumRegs; i++) {
10281       // Load one integer register's worth from the stack slot.
10282       SDValue Load = DAG.getLoad(
10283           RegVT, dl, Store, StackPtr,
10284           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
10285       // Store it to the final location.  Remember the store.
10286       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
10287                                     ST->getPointerInfo().getWithOffset(Offset),
10288                                     ST->getOriginalAlign(),
10289                                     ST->getMemOperand()->getFlags()));
10290       // Increment the pointers.
10291       Offset += RegBytes;
10292       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
10293       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
10294     }
10295 
10296     // The last store may be partial.  Do a truncating store.  On big-endian
10297     // machines this requires an extending load from the stack slot to ensure
10298     // that the bits are in the right place.
10299     EVT LoadMemVT =
10300         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
10301 
10302     // Load from the stack slot.
10303     SDValue Load = DAG.getExtLoad(
10304         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
10305         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
10306 
10307     Stores.push_back(
10308         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
10309                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
10310                           ST->getOriginalAlign(),
10311                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
10312     // The order of the stores doesn't matter - say it with a TokenFactor.
10313     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10314     return Result;
10315   }
10316 
10317   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
10318          "Unaligned store of unknown type.");
10319   // Get the half-size VT
10320   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
10321   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
10322   unsigned IncrementSize = NumBits / 8;
10323 
10324   // Divide the stored value in two parts.
10325   SDValue ShiftAmount =
10326       DAG.getShiftAmountConstant(NumBits, Val.getValueType(), dl);
10327   SDValue Lo = Val;
10328   // If Val is a constant, replace the upper bits with 0. The SRL will constant
10329   // fold and not use the upper bits. A smaller constant may be easier to
10330   // materialize.
10331   if (auto *C = dyn_cast<ConstantSDNode>(Lo); C && !C->isOpaque())
10332     Lo = DAG.getNode(
10333         ISD::AND, dl, VT, Lo,
10334         DAG.getConstant(APInt::getLowBitsSet(VT.getSizeInBits(), NumBits), dl,
10335                         VT));
10336   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
10337 
10338   // Store the two parts
10339   SDValue Store1, Store2;
10340   Store1 = DAG.getTruncStore(Chain, dl,
10341                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
10342                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
10343                              ST->getMemOperand()->getFlags());
10344 
10345   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize));
10346   Store2 = DAG.getTruncStore(
10347       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
10348       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
10349       ST->getMemOperand()->getFlags(), ST->getAAInfo());
10350 
10351   SDValue Result =
10352       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
10353   return Result;
10354 }
10355 
10356 SDValue
10357 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
10358                                        const SDLoc &DL, EVT DataVT,
10359                                        SelectionDAG &DAG,
10360                                        bool IsCompressedMemory) const {
10361   SDValue Increment;
10362   EVT AddrVT = Addr.getValueType();
10363   EVT MaskVT = Mask.getValueType();
10364   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
10365          "Incompatible types of Data and Mask");
10366   if (IsCompressedMemory) {
10367     if (DataVT.isScalableVector())
10368       report_fatal_error(
10369           "Cannot currently handle compressed memory with scalable vectors");
10370     // Incrementing the pointer according to number of '1's in the mask.
10371     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
10372     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
10373     if (MaskIntVT.getSizeInBits() < 32) {
10374       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
10375       MaskIntVT = MVT::i32;
10376     }
10377 
10378     // Count '1's with POPCNT.
10379     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
10380     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
10381     // Scale is an element size in bytes.
10382     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
10383                                     AddrVT);
10384     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
10385   } else if (DataVT.isScalableVector()) {
10386     Increment = DAG.getVScale(DL, AddrVT,
10387                               APInt(AddrVT.getFixedSizeInBits(),
10388                                     DataVT.getStoreSize().getKnownMinValue()));
10389   } else
10390     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
10391 
10392   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
10393 }
10394 
10395 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
10396                                        EVT VecVT, const SDLoc &dl,
10397                                        ElementCount SubEC) {
10398   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
10399          "Cannot index a scalable vector within a fixed-width vector");
10400 
10401   unsigned NElts = VecVT.getVectorMinNumElements();
10402   unsigned NumSubElts = SubEC.getKnownMinValue();
10403   EVT IdxVT = Idx.getValueType();
10404 
10405   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
10406     // If this is a constant index and we know the value plus the number of the
10407     // elements in the subvector minus one is less than the minimum number of
10408     // elements then it's safe to return Idx.
10409     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
10410       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
10411         return Idx;
10412     SDValue VS =
10413         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
10414     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
10415     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
10416                               DAG.getConstant(NumSubElts, dl, IdxVT));
10417     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
10418   }
10419   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
10420     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
10421     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
10422                        DAG.getConstant(Imm, dl, IdxVT));
10423   }
10424   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
10425   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
10426                      DAG.getConstant(MaxIndex, dl, IdxVT));
10427 }
10428 
10429 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
10430                                                 SDValue VecPtr, EVT VecVT,
10431                                                 SDValue Index) const {
10432   return getVectorSubVecPointer(
10433       DAG, VecPtr, VecVT,
10434       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
10435       Index);
10436 }
10437 
10438 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
10439                                                SDValue VecPtr, EVT VecVT,
10440                                                EVT SubVecVT,
10441                                                SDValue Index) const {
10442   SDLoc dl(Index);
10443   // Make sure the index type is big enough to compute in.
10444   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
10445 
10446   EVT EltVT = VecVT.getVectorElementType();
10447 
10448   // Calculate the element offset and add it to the pointer.
10449   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
10450   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
10451          "Converting bits to bytes lost precision");
10452   assert(SubVecVT.getVectorElementType() == EltVT &&
10453          "Sub-vector must be a vector with matching element type");
10454   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
10455                                   SubVecVT.getVectorElementCount());
10456 
10457   EVT IdxVT = Index.getValueType();
10458   if (SubVecVT.isScalableVector())
10459     Index =
10460         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
10461                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
10462 
10463   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
10464                       DAG.getConstant(EltSize, dl, IdxVT));
10465   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
10466 }
10467 
10468 //===----------------------------------------------------------------------===//
10469 // Implementation of Emulated TLS Model
10470 //===----------------------------------------------------------------------===//
10471 
10472 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
10473                                                 SelectionDAG &DAG) const {
10474   // Access to address of TLS varialbe xyz is lowered to a function call:
10475   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
10476   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10477   PointerType *VoidPtrType = PointerType::get(*DAG.getContext(), 0);
10478   SDLoc dl(GA);
10479 
10480   ArgListTy Args;
10481   ArgListEntry Entry;
10482   const GlobalValue *GV =
10483       cast<GlobalValue>(GA->getGlobal()->stripPointerCastsAndAliases());
10484   SmallString<32> NameString("__emutls_v.");
10485   NameString += GV->getName();
10486   StringRef EmuTlsVarName(NameString);
10487   const GlobalVariable *EmuTlsVar =
10488       GV->getParent()->getNamedGlobal(EmuTlsVarName);
10489   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
10490   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
10491   Entry.Ty = VoidPtrType;
10492   Args.push_back(Entry);
10493 
10494   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
10495 
10496   TargetLowering::CallLoweringInfo CLI(DAG);
10497   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
10498   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
10499   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
10500 
10501   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
10502   // At last for X86 targets, maybe good for other targets too?
10503   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10504   MFI.setAdjustsStack(true); // Is this only for X86 target?
10505   MFI.setHasCalls(true);
10506 
10507   assert((GA->getOffset() == 0) &&
10508          "Emulated TLS must have zero offset in GlobalAddressSDNode");
10509   return CallResult.first;
10510 }
10511 
10512 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
10513                                                 SelectionDAG &DAG) const {
10514   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
10515   if (!isCtlzFast())
10516     return SDValue();
10517   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
10518   SDLoc dl(Op);
10519   if (isNullConstant(Op.getOperand(1)) && CC == ISD::SETEQ) {
10520     EVT VT = Op.getOperand(0).getValueType();
10521     SDValue Zext = Op.getOperand(0);
10522     if (VT.bitsLT(MVT::i32)) {
10523       VT = MVT::i32;
10524       Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
10525     }
10526     unsigned Log2b = Log2_32(VT.getSizeInBits());
10527     SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
10528     SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
10529                               DAG.getConstant(Log2b, dl, MVT::i32));
10530     return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
10531   }
10532   return SDValue();
10533 }
10534 
10535 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
10536   SDValue Op0 = Node->getOperand(0);
10537   SDValue Op1 = Node->getOperand(1);
10538   EVT VT = Op0.getValueType();
10539   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10540   unsigned Opcode = Node->getOpcode();
10541   SDLoc DL(Node);
10542 
10543   // umax(x,1) --> sub(x,cmpeq(x,0)) iff cmp result is allbits
10544   if (Opcode == ISD::UMAX && llvm::isOneOrOneSplat(Op1, true) && BoolVT == VT &&
10545       getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
10546     Op0 = DAG.getFreeze(Op0);
10547     SDValue Zero = DAG.getConstant(0, DL, VT);
10548     return DAG.getNode(ISD::SUB, DL, VT, Op0,
10549                        DAG.getSetCC(DL, VT, Op0, Zero, ISD::SETEQ));
10550   }
10551 
10552   // umin(x,y) -> sub(x,usubsat(x,y))
10553   // TODO: Missing freeze(Op0)?
10554   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
10555       isOperationLegal(ISD::USUBSAT, VT)) {
10556     return DAG.getNode(ISD::SUB, DL, VT, Op0,
10557                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
10558   }
10559 
10560   // umax(x,y) -> add(x,usubsat(y,x))
10561   // TODO: Missing freeze(Op0)?
10562   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
10563       isOperationLegal(ISD::USUBSAT, VT)) {
10564     return DAG.getNode(ISD::ADD, DL, VT, Op0,
10565                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
10566   }
10567 
10568   // FIXME: Should really try to split the vector in case it's legal on a
10569   // subvector.
10570   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
10571     return DAG.UnrollVectorOp(Node);
10572 
10573   // Attempt to find an existing SETCC node that we can reuse.
10574   // TODO: Do we need a generic doesSETCCNodeExist?
10575   // TODO: Missing freeze(Op0)/freeze(Op1)?
10576   auto buildMinMax = [&](ISD::CondCode PrefCC, ISD::CondCode AltCC,
10577                          ISD::CondCode PrefCommuteCC,
10578                          ISD::CondCode AltCommuteCC) {
10579     SDVTList BoolVTList = DAG.getVTList(BoolVT);
10580     for (ISD::CondCode CC : {PrefCC, AltCC}) {
10581       if (DAG.doesNodeExist(ISD::SETCC, BoolVTList,
10582                             {Op0, Op1, DAG.getCondCode(CC)})) {
10583         SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
10584         return DAG.getSelect(DL, VT, Cond, Op0, Op1);
10585       }
10586     }
10587     for (ISD::CondCode CC : {PrefCommuteCC, AltCommuteCC}) {
10588       if (DAG.doesNodeExist(ISD::SETCC, BoolVTList,
10589                             {Op0, Op1, DAG.getCondCode(CC)})) {
10590         SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
10591         return DAG.getSelect(DL, VT, Cond, Op1, Op0);
10592       }
10593     }
10594     SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, PrefCC);
10595     return DAG.getSelect(DL, VT, Cond, Op0, Op1);
10596   };
10597 
10598   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
10599   //                      -> Y = (A < B) ? B : A
10600   //                      -> Y = (A >= B) ? A : B
10601   //                      -> Y = (A <= B) ? B : A
10602   switch (Opcode) {
10603   case ISD::SMAX:
10604     return buildMinMax(ISD::SETGT, ISD::SETGE, ISD::SETLT, ISD::SETLE);
10605   case ISD::SMIN:
10606     return buildMinMax(ISD::SETLT, ISD::SETLE, ISD::SETGT, ISD::SETGE);
10607   case ISD::UMAX:
10608     return buildMinMax(ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE);
10609   case ISD::UMIN:
10610     return buildMinMax(ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE);
10611   }
10612 
10613   llvm_unreachable("How did we get here?");
10614 }
10615 
10616 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
10617   unsigned Opcode = Node->getOpcode();
10618   SDValue LHS = Node->getOperand(0);
10619   SDValue RHS = Node->getOperand(1);
10620   EVT VT = LHS.getValueType();
10621   SDLoc dl(Node);
10622 
10623   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
10624   assert(VT.isInteger() && "Expected operands to be integers");
10625 
10626   // usub.sat(a, b) -> umax(a, b) - b
10627   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
10628     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
10629     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
10630   }
10631 
10632   // uadd.sat(a, b) -> umin(a, ~b) + b
10633   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
10634     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
10635     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
10636     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
10637   }
10638 
10639   unsigned OverflowOp;
10640   switch (Opcode) {
10641   case ISD::SADDSAT:
10642     OverflowOp = ISD::SADDO;
10643     break;
10644   case ISD::UADDSAT:
10645     OverflowOp = ISD::UADDO;
10646     break;
10647   case ISD::SSUBSAT:
10648     OverflowOp = ISD::SSUBO;
10649     break;
10650   case ISD::USUBSAT:
10651     OverflowOp = ISD::USUBO;
10652     break;
10653   default:
10654     llvm_unreachable("Expected method to receive signed or unsigned saturation "
10655                      "addition or subtraction node.");
10656   }
10657 
10658   // FIXME: Should really try to split the vector in case it's legal on a
10659   // subvector.
10660   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
10661     return DAG.UnrollVectorOp(Node);
10662 
10663   unsigned BitWidth = LHS.getScalarValueSizeInBits();
10664   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10665   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
10666   SDValue SumDiff = Result.getValue(0);
10667   SDValue Overflow = Result.getValue(1);
10668   SDValue Zero = DAG.getConstant(0, dl, VT);
10669   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
10670 
10671   if (Opcode == ISD::UADDSAT) {
10672     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
10673       // (LHS + RHS) | OverflowMask
10674       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
10675       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
10676     }
10677     // Overflow ? 0xffff.... : (LHS + RHS)
10678     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
10679   }
10680 
10681   if (Opcode == ISD::USUBSAT) {
10682     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
10683       // (LHS - RHS) & ~OverflowMask
10684       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
10685       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
10686       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
10687     }
10688     // Overflow ? 0 : (LHS - RHS)
10689     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
10690   }
10691 
10692   if (Opcode == ISD::SADDSAT || Opcode == ISD::SSUBSAT) {
10693     APInt MinVal = APInt::getSignedMinValue(BitWidth);
10694     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
10695 
10696     KnownBits KnownLHS = DAG.computeKnownBits(LHS);
10697     KnownBits KnownRHS = DAG.computeKnownBits(RHS);
10698 
10699     // If either of the operand signs are known, then they are guaranteed to
10700     // only saturate in one direction. If non-negative they will saturate
10701     // towards SIGNED_MAX, if negative they will saturate towards SIGNED_MIN.
10702     //
10703     // In the case of ISD::SSUBSAT, 'x - y' is equivalent to 'x + (-y)', so the
10704     // sign of 'y' has to be flipped.
10705 
10706     bool LHSIsNonNegative = KnownLHS.isNonNegative();
10707     bool RHSIsNonNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNonNegative()
10708                                                    : KnownRHS.isNegative();
10709     if (LHSIsNonNegative || RHSIsNonNegative) {
10710       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
10711       return DAG.getSelect(dl, VT, Overflow, SatMax, SumDiff);
10712     }
10713 
10714     bool LHSIsNegative = KnownLHS.isNegative();
10715     bool RHSIsNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNegative()
10716                                                 : KnownRHS.isNonNegative();
10717     if (LHSIsNegative || RHSIsNegative) {
10718       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
10719       return DAG.getSelect(dl, VT, Overflow, SatMin, SumDiff);
10720     }
10721   }
10722 
10723   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
10724   APInt MinVal = APInt::getSignedMinValue(BitWidth);
10725   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
10726   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
10727                               DAG.getConstant(BitWidth - 1, dl, VT));
10728   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
10729   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
10730 }
10731 
10732 SDValue TargetLowering::expandCMP(SDNode *Node, SelectionDAG &DAG) const {
10733   unsigned Opcode = Node->getOpcode();
10734   SDValue LHS = Node->getOperand(0);
10735   SDValue RHS = Node->getOperand(1);
10736   EVT VT = LHS.getValueType();
10737   EVT ResVT = Node->getValueType(0);
10738   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10739   SDLoc dl(Node);
10740 
10741   auto LTPredicate = (Opcode == ISD::UCMP ? ISD::SETULT : ISD::SETLT);
10742   auto GTPredicate = (Opcode == ISD::UCMP ? ISD::SETUGT : ISD::SETGT);
10743   SDValue IsLT = DAG.getSetCC(dl, BoolVT, LHS, RHS, LTPredicate);
10744   SDValue IsGT = DAG.getSetCC(dl, BoolVT, LHS, RHS, GTPredicate);
10745 
10746   // We can't perform arithmetic on i1 values. Extending them would
10747   // probably result in worse codegen, so let's just use two selects instead.
10748   // Some targets are also just better off using selects rather than subtraction
10749   // because one of the conditions can be merged with one of the selects.
10750   // And finally, if we don't know the contents of high bits of a boolean value
10751   // we can't perform any arithmetic either.
10752   if (shouldExpandCmpUsingSelects(VT) || BoolVT.getScalarSizeInBits() == 1 ||
10753       getBooleanContents(BoolVT) == UndefinedBooleanContent) {
10754     SDValue SelectZeroOrOne =
10755         DAG.getSelect(dl, ResVT, IsGT, DAG.getConstant(1, dl, ResVT),
10756                       DAG.getConstant(0, dl, ResVT));
10757     return DAG.getSelect(dl, ResVT, IsLT, DAG.getAllOnesConstant(dl, ResVT),
10758                          SelectZeroOrOne);
10759   }
10760 
10761   if (getBooleanContents(BoolVT) == ZeroOrNegativeOneBooleanContent)
10762     std::swap(IsGT, IsLT);
10763   return DAG.getSExtOrTrunc(DAG.getNode(ISD::SUB, dl, BoolVT, IsGT, IsLT), dl,
10764                             ResVT);
10765 }
10766 
10767 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
10768   unsigned Opcode = Node->getOpcode();
10769   bool IsSigned = Opcode == ISD::SSHLSAT;
10770   SDValue LHS = Node->getOperand(0);
10771   SDValue RHS = Node->getOperand(1);
10772   EVT VT = LHS.getValueType();
10773   SDLoc dl(Node);
10774 
10775   assert((Node->getOpcode() == ISD::SSHLSAT ||
10776           Node->getOpcode() == ISD::USHLSAT) &&
10777           "Expected a SHLSAT opcode");
10778   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
10779   assert(VT.isInteger() && "Expected operands to be integers");
10780 
10781   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
10782     return DAG.UnrollVectorOp(Node);
10783 
10784   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
10785 
10786   unsigned BW = VT.getScalarSizeInBits();
10787   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10788   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
10789   SDValue Orig =
10790       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
10791 
10792   SDValue SatVal;
10793   if (IsSigned) {
10794     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
10795     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
10796     SDValue Cond =
10797         DAG.getSetCC(dl, BoolVT, LHS, DAG.getConstant(0, dl, VT), ISD::SETLT);
10798     SatVal = DAG.getSelect(dl, VT, Cond, SatMin, SatMax);
10799   } else {
10800     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
10801   }
10802   SDValue Cond = DAG.getSetCC(dl, BoolVT, LHS, Orig, ISD::SETNE);
10803   return DAG.getSelect(dl, VT, Cond, SatVal, Result);
10804 }
10805 
10806 void TargetLowering::forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl,
10807                                         bool Signed, EVT WideVT,
10808                                         const SDValue LL, const SDValue LH,
10809                                         const SDValue RL, const SDValue RH,
10810                                         SDValue &Lo, SDValue &Hi) const {
10811   // We can fall back to a libcall with an illegal type for the MUL if we
10812   // have a libcall big enough.
10813   // Also, we can fall back to a division in some cases, but that's a big
10814   // performance hit in the general case.
10815   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
10816   if (WideVT == MVT::i16)
10817     LC = RTLIB::MUL_I16;
10818   else if (WideVT == MVT::i32)
10819     LC = RTLIB::MUL_I32;
10820   else if (WideVT == MVT::i64)
10821     LC = RTLIB::MUL_I64;
10822   else if (WideVT == MVT::i128)
10823     LC = RTLIB::MUL_I128;
10824 
10825   if (LC == RTLIB::UNKNOWN_LIBCALL || !getLibcallName(LC)) {
10826     // We'll expand the multiplication by brute force because we have no other
10827     // options. This is a trivially-generalized version of the code from
10828     // Hacker's Delight (itself derived from Knuth's Algorithm M from section
10829     // 4.3.1).
10830     EVT VT = LL.getValueType();
10831     unsigned Bits = VT.getSizeInBits();
10832     unsigned HalfBits = Bits >> 1;
10833     SDValue Mask =
10834         DAG.getConstant(APInt::getLowBitsSet(Bits, HalfBits), dl, VT);
10835     SDValue LLL = DAG.getNode(ISD::AND, dl, VT, LL, Mask);
10836     SDValue RLL = DAG.getNode(ISD::AND, dl, VT, RL, Mask);
10837 
10838     SDValue T = DAG.getNode(ISD::MUL, dl, VT, LLL, RLL);
10839     SDValue TL = DAG.getNode(ISD::AND, dl, VT, T, Mask);
10840 
10841     SDValue Shift = DAG.getShiftAmountConstant(HalfBits, VT, dl);
10842     SDValue TH = DAG.getNode(ISD::SRL, dl, VT, T, Shift);
10843     SDValue LLH = DAG.getNode(ISD::SRL, dl, VT, LL, Shift);
10844     SDValue RLH = DAG.getNode(ISD::SRL, dl, VT, RL, Shift);
10845 
10846     SDValue U = DAG.getNode(ISD::ADD, dl, VT,
10847                             DAG.getNode(ISD::MUL, dl, VT, LLH, RLL), TH);
10848     SDValue UL = DAG.getNode(ISD::AND, dl, VT, U, Mask);
10849     SDValue UH = DAG.getNode(ISD::SRL, dl, VT, U, Shift);
10850 
10851     SDValue V = DAG.getNode(ISD::ADD, dl, VT,
10852                             DAG.getNode(ISD::MUL, dl, VT, LLL, RLH), UL);
10853     SDValue VH = DAG.getNode(ISD::SRL, dl, VT, V, Shift);
10854 
10855     SDValue W =
10856         DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::MUL, dl, VT, LLH, RLH),
10857                     DAG.getNode(ISD::ADD, dl, VT, UH, VH));
10858     Lo = DAG.getNode(ISD::ADD, dl, VT, TL,
10859                      DAG.getNode(ISD::SHL, dl, VT, V, Shift));
10860 
10861     Hi = DAG.getNode(ISD::ADD, dl, VT, W,
10862                      DAG.getNode(ISD::ADD, dl, VT,
10863                                  DAG.getNode(ISD::MUL, dl, VT, RH, LL),
10864                                  DAG.getNode(ISD::MUL, dl, VT, RL, LH)));
10865   } else {
10866     // Attempt a libcall.
10867     SDValue Ret;
10868     TargetLowering::MakeLibCallOptions CallOptions;
10869     CallOptions.setSExt(Signed);
10870     CallOptions.setIsPostTypeLegalization(true);
10871     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
10872       // Halves of WideVT are packed into registers in different order
10873       // depending on platform endianness. This is usually handled by
10874       // the C calling convention, but we can't defer to it in
10875       // the legalizer.
10876       SDValue Args[] = {LL, LH, RL, RH};
10877       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
10878     } else {
10879       SDValue Args[] = {LH, LL, RH, RL};
10880       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
10881     }
10882     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
10883            "Ret value is a collection of constituent nodes holding result.");
10884     if (DAG.getDataLayout().isLittleEndian()) {
10885       // Same as above.
10886       Lo = Ret.getOperand(0);
10887       Hi = Ret.getOperand(1);
10888     } else {
10889       Lo = Ret.getOperand(1);
10890       Hi = Ret.getOperand(0);
10891     }
10892   }
10893 }
10894 
10895 void TargetLowering::forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl,
10896                                         bool Signed, const SDValue LHS,
10897                                         const SDValue RHS, SDValue &Lo,
10898                                         SDValue &Hi) const {
10899   EVT VT = LHS.getValueType();
10900   assert(RHS.getValueType() == VT && "Mismatching operand types");
10901 
10902   SDValue HiLHS;
10903   SDValue HiRHS;
10904   if (Signed) {
10905     // The high part is obtained by SRA'ing all but one of the bits of low
10906     // part.
10907     unsigned LoSize = VT.getFixedSizeInBits();
10908     HiLHS = DAG.getNode(
10909         ISD::SRA, dl, VT, LHS,
10910         DAG.getConstant(LoSize - 1, dl, getPointerTy(DAG.getDataLayout())));
10911     HiRHS = DAG.getNode(
10912         ISD::SRA, dl, VT, RHS,
10913         DAG.getConstant(LoSize - 1, dl, getPointerTy(DAG.getDataLayout())));
10914   } else {
10915     HiLHS = DAG.getConstant(0, dl, VT);
10916     HiRHS = DAG.getConstant(0, dl, VT);
10917   }
10918   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
10919   forceExpandWideMUL(DAG, dl, Signed, WideVT, LHS, HiLHS, RHS, HiRHS, Lo, Hi);
10920 }
10921 
10922 SDValue
10923 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
10924   assert((Node->getOpcode() == ISD::SMULFIX ||
10925           Node->getOpcode() == ISD::UMULFIX ||
10926           Node->getOpcode() == ISD::SMULFIXSAT ||
10927           Node->getOpcode() == ISD::UMULFIXSAT) &&
10928          "Expected a fixed point multiplication opcode");
10929 
10930   SDLoc dl(Node);
10931   SDValue LHS = Node->getOperand(0);
10932   SDValue RHS = Node->getOperand(1);
10933   EVT VT = LHS.getValueType();
10934   unsigned Scale = Node->getConstantOperandVal(2);
10935   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
10936                      Node->getOpcode() == ISD::UMULFIXSAT);
10937   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
10938                  Node->getOpcode() == ISD::SMULFIXSAT);
10939   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10940   unsigned VTSize = VT.getScalarSizeInBits();
10941 
10942   if (!Scale) {
10943     // [us]mul.fix(a, b, 0) -> mul(a, b)
10944     if (!Saturating) {
10945       if (isOperationLegalOrCustom(ISD::MUL, VT))
10946         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
10947     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
10948       SDValue Result =
10949           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
10950       SDValue Product = Result.getValue(0);
10951       SDValue Overflow = Result.getValue(1);
10952       SDValue Zero = DAG.getConstant(0, dl, VT);
10953 
10954       APInt MinVal = APInt::getSignedMinValue(VTSize);
10955       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
10956       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
10957       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
10958       // Xor the inputs, if resulting sign bit is 0 the product will be
10959       // positive, else negative.
10960       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
10961       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
10962       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
10963       return DAG.getSelect(dl, VT, Overflow, Result, Product);
10964     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
10965       SDValue Result =
10966           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
10967       SDValue Product = Result.getValue(0);
10968       SDValue Overflow = Result.getValue(1);
10969 
10970       APInt MaxVal = APInt::getMaxValue(VTSize);
10971       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
10972       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
10973     }
10974   }
10975 
10976   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
10977          "Expected scale to be less than the number of bits if signed or at "
10978          "most the number of bits if unsigned.");
10979   assert(LHS.getValueType() == RHS.getValueType() &&
10980          "Expected both operands to be the same type");
10981 
10982   // Get the upper and lower bits of the result.
10983   SDValue Lo, Hi;
10984   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
10985   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
10986   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VTSize * 2);
10987   if (VT.isVector())
10988     WideVT =
10989         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
10990   if (isOperationLegalOrCustom(LoHiOp, VT)) {
10991     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
10992     Lo = Result.getValue(0);
10993     Hi = Result.getValue(1);
10994   } else if (isOperationLegalOrCustom(HiOp, VT)) {
10995     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
10996     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
10997   } else if (isOperationLegalOrCustom(ISD::MUL, WideVT)) {
10998     // Try for a multiplication using a wider type.
10999     unsigned Ext = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
11000     SDValue LHSExt = DAG.getNode(Ext, dl, WideVT, LHS);
11001     SDValue RHSExt = DAG.getNode(Ext, dl, WideVT, RHS);
11002     SDValue Res = DAG.getNode(ISD::MUL, dl, WideVT, LHSExt, RHSExt);
11003     Lo = DAG.getNode(ISD::TRUNCATE, dl, VT, Res);
11004     SDValue Shifted =
11005         DAG.getNode(ISD::SRA, dl, WideVT, Res,
11006                     DAG.getShiftAmountConstant(VTSize, WideVT, dl));
11007     Hi = DAG.getNode(ISD::TRUNCATE, dl, VT, Shifted);
11008   } else if (VT.isVector()) {
11009     return SDValue();
11010   } else {
11011     forceExpandWideMUL(DAG, dl, Signed, LHS, RHS, Lo, Hi);
11012   }
11013 
11014   if (Scale == VTSize)
11015     // Result is just the top half since we'd be shifting by the width of the
11016     // operand. Overflow impossible so this works for both UMULFIX and
11017     // UMULFIXSAT.
11018     return Hi;
11019 
11020   // The result will need to be shifted right by the scale since both operands
11021   // are scaled. The result is given to us in 2 halves, so we only want part of
11022   // both in the result.
11023   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
11024                                DAG.getShiftAmountConstant(Scale, VT, dl));
11025   if (!Saturating)
11026     return Result;
11027 
11028   if (!Signed) {
11029     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
11030     // widened multiplication) aren't all zeroes.
11031 
11032     // Saturate to max if ((Hi >> Scale) != 0),
11033     // which is the same as if (Hi > ((1 << Scale) - 1))
11034     APInt MaxVal = APInt::getMaxValue(VTSize);
11035     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
11036                                       dl, VT);
11037     Result = DAG.getSelectCC(dl, Hi, LowMask,
11038                              DAG.getConstant(MaxVal, dl, VT), Result,
11039                              ISD::SETUGT);
11040 
11041     return Result;
11042   }
11043 
11044   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
11045   // widened multiplication) aren't all ones or all zeroes.
11046 
11047   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
11048   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
11049 
11050   if (Scale == 0) {
11051     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
11052                                DAG.getShiftAmountConstant(VTSize - 1, VT, dl));
11053     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
11054     // Saturated to SatMin if wide product is negative, and SatMax if wide
11055     // product is positive ...
11056     SDValue Zero = DAG.getConstant(0, dl, VT);
11057     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
11058                                                ISD::SETLT);
11059     // ... but only if we overflowed.
11060     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
11061   }
11062 
11063   //  We handled Scale==0 above so all the bits to examine is in Hi.
11064 
11065   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
11066   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
11067   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
11068                                     dl, VT);
11069   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
11070   // Saturate to min if (Hi >> (Scale - 1)) < -1),
11071   // which is the same as if (HI < (-1 << (Scale - 1))
11072   SDValue HighMask =
11073       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
11074                       dl, VT);
11075   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
11076   return Result;
11077 }
11078 
11079 SDValue
11080 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
11081                                     SDValue LHS, SDValue RHS,
11082                                     unsigned Scale, SelectionDAG &DAG) const {
11083   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
11084           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
11085          "Expected a fixed point division opcode");
11086 
11087   EVT VT = LHS.getValueType();
11088   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
11089   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
11090   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
11091 
11092   // If there is enough room in the type to upscale the LHS or downscale the
11093   // RHS before the division, we can perform it in this type without having to
11094   // resize. For signed operations, the LHS headroom is the number of
11095   // redundant sign bits, and for unsigned ones it is the number of zeroes.
11096   // The headroom for the RHS is the number of trailing zeroes.
11097   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
11098                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
11099   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
11100 
11101   // For signed saturating operations, we need to be able to detect true integer
11102   // division overflow; that is, when you have MIN / -EPS. However, this
11103   // is undefined behavior and if we emit divisions that could take such
11104   // values it may cause undesired behavior (arithmetic exceptions on x86, for
11105   // example).
11106   // Avoid this by requiring an extra bit so that we never get this case.
11107   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
11108   // signed saturating division, we need to emit a whopping 32-bit division.
11109   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
11110     return SDValue();
11111 
11112   unsigned LHSShift = std::min(LHSLead, Scale);
11113   unsigned RHSShift = Scale - LHSShift;
11114 
11115   // At this point, we know that if we shift the LHS up by LHSShift and the
11116   // RHS down by RHSShift, we can emit a regular division with a final scaling
11117   // factor of Scale.
11118 
11119   if (LHSShift)
11120     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
11121                       DAG.getShiftAmountConstant(LHSShift, VT, dl));
11122   if (RHSShift)
11123     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
11124                       DAG.getShiftAmountConstant(RHSShift, VT, dl));
11125 
11126   SDValue Quot;
11127   if (Signed) {
11128     // For signed operations, if the resulting quotient is negative and the
11129     // remainder is nonzero, subtract 1 from the quotient to round towards
11130     // negative infinity.
11131     SDValue Rem;
11132     // FIXME: Ideally we would always produce an SDIVREM here, but if the
11133     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
11134     // we couldn't just form a libcall, but the type legalizer doesn't do it.
11135     if (isTypeLegal(VT) &&
11136         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
11137       Quot = DAG.getNode(ISD::SDIVREM, dl,
11138                          DAG.getVTList(VT, VT),
11139                          LHS, RHS);
11140       Rem = Quot.getValue(1);
11141       Quot = Quot.getValue(0);
11142     } else {
11143       Quot = DAG.getNode(ISD::SDIV, dl, VT,
11144                          LHS, RHS);
11145       Rem = DAG.getNode(ISD::SREM, dl, VT,
11146                         LHS, RHS);
11147     }
11148     SDValue Zero = DAG.getConstant(0, dl, VT);
11149     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
11150     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
11151     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
11152     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
11153     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
11154                                DAG.getConstant(1, dl, VT));
11155     Quot = DAG.getSelect(dl, VT,
11156                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
11157                          Sub1, Quot);
11158   } else
11159     Quot = DAG.getNode(ISD::UDIV, dl, VT,
11160                        LHS, RHS);
11161 
11162   return Quot;
11163 }
11164 
11165 void TargetLowering::expandUADDSUBO(
11166     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
11167   SDLoc dl(Node);
11168   SDValue LHS = Node->getOperand(0);
11169   SDValue RHS = Node->getOperand(1);
11170   bool IsAdd = Node->getOpcode() == ISD::UADDO;
11171 
11172   // If UADDO_CARRY/SUBO_CARRY is legal, use that instead.
11173   unsigned OpcCarry = IsAdd ? ISD::UADDO_CARRY : ISD::USUBO_CARRY;
11174   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
11175     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
11176     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
11177                                     { LHS, RHS, CarryIn });
11178     Result = SDValue(NodeCarry.getNode(), 0);
11179     Overflow = SDValue(NodeCarry.getNode(), 1);
11180     return;
11181   }
11182 
11183   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
11184                             LHS.getValueType(), LHS, RHS);
11185 
11186   EVT ResultType = Node->getValueType(1);
11187   EVT SetCCType = getSetCCResultType(
11188       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
11189   SDValue SetCC;
11190   if (IsAdd && isOneConstant(RHS)) {
11191     // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces
11192     // the live range of X. We assume comparing with 0 is cheap.
11193     // The general case (X + C) < C is not necessarily beneficial. Although we
11194     // reduce the live range of X, we may introduce the materialization of
11195     // constant C.
11196     SetCC =
11197         DAG.getSetCC(dl, SetCCType, Result,
11198                      DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ);
11199   } else if (IsAdd && isAllOnesConstant(RHS)) {
11200     // Special case: uaddo X, -1 overflows if X != 0.
11201     SetCC =
11202         DAG.getSetCC(dl, SetCCType, LHS,
11203                      DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETNE);
11204   } else {
11205     ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
11206     SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
11207   }
11208   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
11209 }
11210 
11211 void TargetLowering::expandSADDSUBO(
11212     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
11213   SDLoc dl(Node);
11214   SDValue LHS = Node->getOperand(0);
11215   SDValue RHS = Node->getOperand(1);
11216   bool IsAdd = Node->getOpcode() == ISD::SADDO;
11217 
11218   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
11219                             LHS.getValueType(), LHS, RHS);
11220 
11221   EVT ResultType = Node->getValueType(1);
11222   EVT OType = getSetCCResultType(
11223       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
11224 
11225   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
11226   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
11227   if (isOperationLegal(OpcSat, LHS.getValueType())) {
11228     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
11229     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
11230     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
11231     return;
11232   }
11233 
11234   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
11235 
11236   // For an addition, the result should be less than one of the operands (LHS)
11237   // if and only if the other operand (RHS) is negative, otherwise there will
11238   // be overflow.
11239   // For a subtraction, the result should be less than one of the operands
11240   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
11241   // otherwise there will be overflow.
11242   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
11243   SDValue ConditionRHS =
11244       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
11245 
11246   Overflow = DAG.getBoolExtOrTrunc(
11247       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
11248       ResultType, ResultType);
11249 }
11250 
11251 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
11252                                 SDValue &Overflow, SelectionDAG &DAG) const {
11253   SDLoc dl(Node);
11254   EVT VT = Node->getValueType(0);
11255   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
11256   SDValue LHS = Node->getOperand(0);
11257   SDValue RHS = Node->getOperand(1);
11258   bool isSigned = Node->getOpcode() == ISD::SMULO;
11259 
11260   // For power-of-two multiplications we can use a simpler shift expansion.
11261   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
11262     const APInt &C = RHSC->getAPIntValue();
11263     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
11264     if (C.isPowerOf2()) {
11265       // smulo(x, signed_min) is same as umulo(x, signed_min).
11266       bool UseArithShift = isSigned && !C.isMinSignedValue();
11267       SDValue ShiftAmt = DAG.getShiftAmountConstant(C.logBase2(), VT, dl);
11268       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
11269       Overflow = DAG.getSetCC(dl, SetCCVT,
11270           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
11271                       dl, VT, Result, ShiftAmt),
11272           LHS, ISD::SETNE);
11273       return true;
11274     }
11275   }
11276 
11277   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
11278   if (VT.isVector())
11279     WideVT =
11280         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
11281 
11282   SDValue BottomHalf;
11283   SDValue TopHalf;
11284   static const unsigned Ops[2][3] =
11285       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
11286         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
11287   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
11288     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
11289     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
11290   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
11291     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
11292                              RHS);
11293     TopHalf = BottomHalf.getValue(1);
11294   } else if (isTypeLegal(WideVT)) {
11295     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
11296     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
11297     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
11298     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
11299     SDValue ShiftAmt =
11300         DAG.getShiftAmountConstant(VT.getScalarSizeInBits(), WideVT, dl);
11301     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
11302                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
11303   } else {
11304     if (VT.isVector())
11305       return false;
11306 
11307     forceExpandWideMUL(DAG, dl, isSigned, LHS, RHS, BottomHalf, TopHalf);
11308   }
11309 
11310   Result = BottomHalf;
11311   if (isSigned) {
11312     SDValue ShiftAmt = DAG.getShiftAmountConstant(
11313         VT.getScalarSizeInBits() - 1, BottomHalf.getValueType(), dl);
11314     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
11315     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
11316   } else {
11317     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
11318                             DAG.getConstant(0, dl, VT), ISD::SETNE);
11319   }
11320 
11321   // Truncate the result if SetCC returns a larger type than needed.
11322   EVT RType = Node->getValueType(1);
11323   if (RType.bitsLT(Overflow.getValueType()))
11324     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
11325 
11326   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
11327          "Unexpected result type for S/UMULO legalization");
11328   return true;
11329 }
11330 
11331 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
11332   SDLoc dl(Node);
11333   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
11334   SDValue Op = Node->getOperand(0);
11335   EVT VT = Op.getValueType();
11336 
11337   if (VT.isScalableVector())
11338     report_fatal_error(
11339         "Expanding reductions for scalable vectors is undefined.");
11340 
11341   // Try to use a shuffle reduction for power of two vectors.
11342   if (VT.isPow2VectorType()) {
11343     while (VT.getVectorNumElements() > 1) {
11344       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
11345       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
11346         break;
11347 
11348       SDValue Lo, Hi;
11349       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
11350       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi, Node->getFlags());
11351       VT = HalfVT;
11352     }
11353   }
11354 
11355   EVT EltVT = VT.getVectorElementType();
11356   unsigned NumElts = VT.getVectorNumElements();
11357 
11358   SmallVector<SDValue, 8> Ops;
11359   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
11360 
11361   SDValue Res = Ops[0];
11362   for (unsigned i = 1; i < NumElts; i++)
11363     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
11364 
11365   // Result type may be wider than element type.
11366   if (EltVT != Node->getValueType(0))
11367     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
11368   return Res;
11369 }
11370 
11371 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
11372   SDLoc dl(Node);
11373   SDValue AccOp = Node->getOperand(0);
11374   SDValue VecOp = Node->getOperand(1);
11375   SDNodeFlags Flags = Node->getFlags();
11376 
11377   EVT VT = VecOp.getValueType();
11378   EVT EltVT = VT.getVectorElementType();
11379 
11380   if (VT.isScalableVector())
11381     report_fatal_error(
11382         "Expanding reductions for scalable vectors is undefined.");
11383 
11384   unsigned NumElts = VT.getVectorNumElements();
11385 
11386   SmallVector<SDValue, 8> Ops;
11387   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
11388 
11389   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
11390 
11391   SDValue Res = AccOp;
11392   for (unsigned i = 0; i < NumElts; i++)
11393     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
11394 
11395   return Res;
11396 }
11397 
11398 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
11399                                SelectionDAG &DAG) const {
11400   EVT VT = Node->getValueType(0);
11401   SDLoc dl(Node);
11402   bool isSigned = Node->getOpcode() == ISD::SREM;
11403   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
11404   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
11405   SDValue Dividend = Node->getOperand(0);
11406   SDValue Divisor = Node->getOperand(1);
11407   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
11408     SDVTList VTs = DAG.getVTList(VT, VT);
11409     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
11410     return true;
11411   }
11412   if (isOperationLegalOrCustom(DivOpc, VT)) {
11413     // X % Y -> X-X/Y*Y
11414     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
11415     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
11416     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
11417     return true;
11418   }
11419   return false;
11420 }
11421 
11422 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
11423                                             SelectionDAG &DAG) const {
11424   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
11425   SDLoc dl(SDValue(Node, 0));
11426   SDValue Src = Node->getOperand(0);
11427 
11428   // DstVT is the result type, while SatVT is the size to which we saturate
11429   EVT SrcVT = Src.getValueType();
11430   EVT DstVT = Node->getValueType(0);
11431 
11432   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
11433   unsigned SatWidth = SatVT.getScalarSizeInBits();
11434   unsigned DstWidth = DstVT.getScalarSizeInBits();
11435   assert(SatWidth <= DstWidth &&
11436          "Expected saturation width smaller than result width");
11437 
11438   // Determine minimum and maximum integer values and their corresponding
11439   // floating-point values.
11440   APInt MinInt, MaxInt;
11441   if (IsSigned) {
11442     MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth);
11443     MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth);
11444   } else {
11445     MinInt = APInt::getMinValue(SatWidth).zext(DstWidth);
11446     MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth);
11447   }
11448 
11449   // We cannot risk emitting FP_TO_XINT nodes with a source VT of [b]f16, as
11450   // libcall emission cannot handle this. Large result types will fail.
11451   if (SrcVT == MVT::f16 || SrcVT == MVT::bf16) {
11452     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
11453     SrcVT = Src.getValueType();
11454   }
11455 
11456   const fltSemantics &Sem = SrcVT.getFltSemantics();
11457   APFloat MinFloat(Sem);
11458   APFloat MaxFloat(Sem);
11459 
11460   APFloat::opStatus MinStatus =
11461       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
11462   APFloat::opStatus MaxStatus =
11463       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
11464   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
11465                              !(MaxStatus & APFloat::opStatus::opInexact);
11466 
11467   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
11468   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
11469 
11470   // If the integer bounds are exactly representable as floats and min/max are
11471   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
11472   // of comparisons and selects.
11473   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
11474                      isOperationLegal(ISD::FMAXNUM, SrcVT);
11475   if (AreExactFloatBounds && MinMaxLegal) {
11476     SDValue Clamped = Src;
11477 
11478     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
11479     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
11480     // Clamp by MaxFloat from above. NaN cannot occur.
11481     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
11482     // Convert clamped value to integer.
11483     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
11484                                   dl, DstVT, Clamped);
11485 
11486     // In the unsigned case we're done, because we mapped NaN to MinFloat,
11487     // which will cast to zero.
11488     if (!IsSigned)
11489       return FpToInt;
11490 
11491     // Otherwise, select 0 if Src is NaN.
11492     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
11493     EVT SetCCVT =
11494         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
11495     SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO);
11496     return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, FpToInt);
11497   }
11498 
11499   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
11500   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
11501 
11502   // Result of direct conversion. The assumption here is that the operation is
11503   // non-trapping and it's fine to apply it to an out-of-range value if we
11504   // select it away later.
11505   SDValue FpToInt =
11506       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
11507 
11508   SDValue Select = FpToInt;
11509 
11510   EVT SetCCVT =
11511       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
11512 
11513   // If Src ULT MinFloat, select MinInt. In particular, this also selects
11514   // MinInt if Src is NaN.
11515   SDValue ULT = DAG.getSetCC(dl, SetCCVT, Src, MinFloatNode, ISD::SETULT);
11516   Select = DAG.getSelect(dl, DstVT, ULT, MinIntNode, Select);
11517   // If Src OGT MaxFloat, select MaxInt.
11518   SDValue OGT = DAG.getSetCC(dl, SetCCVT, Src, MaxFloatNode, ISD::SETOGT);
11519   Select = DAG.getSelect(dl, DstVT, OGT, MaxIntNode, Select);
11520 
11521   // In the unsigned case we are done, because we mapped NaN to MinInt, which
11522   // is already zero.
11523   if (!IsSigned)
11524     return Select;
11525 
11526   // Otherwise, select 0 if Src is NaN.
11527   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
11528   SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO);
11529   return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, Select);
11530 }
11531 
11532 SDValue TargetLowering::expandRoundInexactToOdd(EVT ResultVT, SDValue Op,
11533                                                 const SDLoc &dl,
11534                                                 SelectionDAG &DAG) const {
11535   EVT OperandVT = Op.getValueType();
11536   if (OperandVT.getScalarType() == ResultVT.getScalarType())
11537     return Op;
11538   EVT ResultIntVT = ResultVT.changeTypeToInteger();
11539   // We are rounding binary64/binary128 -> binary32 -> bfloat16. This
11540   // can induce double-rounding which may alter the results. We can
11541   // correct for this using a trick explained in: Boldo, Sylvie, and
11542   // Guillaume Melquiond. "When double rounding is odd." 17th IMACS
11543   // World Congress. 2005.
11544   unsigned BitSize = OperandVT.getScalarSizeInBits();
11545   EVT WideIntVT = OperandVT.changeTypeToInteger();
11546   SDValue OpAsInt = DAG.getBitcast(WideIntVT, Op);
11547   SDValue SignBit =
11548       DAG.getNode(ISD::AND, dl, WideIntVT, OpAsInt,
11549                   DAG.getConstant(APInt::getSignMask(BitSize), dl, WideIntVT));
11550   SDValue AbsWide;
11551   if (isOperationLegalOrCustom(ISD::FABS, OperandVT)) {
11552     AbsWide = DAG.getNode(ISD::FABS, dl, OperandVT, Op);
11553   } else {
11554     SDValue ClearedSign = DAG.getNode(
11555         ISD::AND, dl, WideIntVT, OpAsInt,
11556         DAG.getConstant(APInt::getSignedMaxValue(BitSize), dl, WideIntVT));
11557     AbsWide = DAG.getBitcast(OperandVT, ClearedSign);
11558   }
11559   SDValue AbsNarrow = DAG.getFPExtendOrRound(AbsWide, dl, ResultVT);
11560   SDValue AbsNarrowAsWide = DAG.getFPExtendOrRound(AbsNarrow, dl, OperandVT);
11561 
11562   // We can keep the narrow value as-is if narrowing was exact (no
11563   // rounding error), the wide value was NaN (the narrow value is also
11564   // NaN and should be preserved) or if we rounded to the odd value.
11565   SDValue NarrowBits = DAG.getNode(ISD::BITCAST, dl, ResultIntVT, AbsNarrow);
11566   SDValue One = DAG.getConstant(1, dl, ResultIntVT);
11567   SDValue NegativeOne = DAG.getAllOnesConstant(dl, ResultIntVT);
11568   SDValue And = DAG.getNode(ISD::AND, dl, ResultIntVT, NarrowBits, One);
11569   EVT ResultIntVTCCVT = getSetCCResultType(
11570       DAG.getDataLayout(), *DAG.getContext(), And.getValueType());
11571   SDValue Zero = DAG.getConstant(0, dl, ResultIntVT);
11572   // The result is already odd so we don't need to do anything.
11573   SDValue AlreadyOdd = DAG.getSetCC(dl, ResultIntVTCCVT, And, Zero, ISD::SETNE);
11574 
11575   EVT WideSetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
11576                                        AbsWide.getValueType());
11577   // We keep results which are exact, odd or NaN.
11578   SDValue KeepNarrow =
11579       DAG.getSetCC(dl, WideSetCCVT, AbsWide, AbsNarrowAsWide, ISD::SETUEQ);
11580   KeepNarrow = DAG.getNode(ISD::OR, dl, WideSetCCVT, KeepNarrow, AlreadyOdd);
11581   // We morally performed a round-down if AbsNarrow is smaller than
11582   // AbsWide.
11583   SDValue NarrowIsRd =
11584       DAG.getSetCC(dl, WideSetCCVT, AbsWide, AbsNarrowAsWide, ISD::SETOGT);
11585   // If the narrow value is odd or exact, pick it.
11586   // Otherwise, narrow is even and corresponds to either the rounded-up
11587   // or rounded-down value. If narrow is the rounded-down value, we want
11588   // the rounded-up value as it will be odd.
11589   SDValue Adjust = DAG.getSelect(dl, ResultIntVT, NarrowIsRd, One, NegativeOne);
11590   SDValue Adjusted = DAG.getNode(ISD::ADD, dl, ResultIntVT, NarrowBits, Adjust);
11591   Op = DAG.getSelect(dl, ResultIntVT, KeepNarrow, NarrowBits, Adjusted);
11592   int ShiftAmount = BitSize - ResultVT.getScalarSizeInBits();
11593   SDValue ShiftCnst = DAG.getShiftAmountConstant(ShiftAmount, WideIntVT, dl);
11594   SignBit = DAG.getNode(ISD::SRL, dl, WideIntVT, SignBit, ShiftCnst);
11595   SignBit = DAG.getNode(ISD::TRUNCATE, dl, ResultIntVT, SignBit);
11596   Op = DAG.getNode(ISD::OR, dl, ResultIntVT, Op, SignBit);
11597   return DAG.getNode(ISD::BITCAST, dl, ResultVT, Op);
11598 }
11599 
11600 SDValue TargetLowering::expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const {
11601   assert(Node->getOpcode() == ISD::FP_ROUND && "Unexpected opcode!");
11602   SDValue Op = Node->getOperand(0);
11603   EVT VT = Node->getValueType(0);
11604   SDLoc dl(Node);
11605   if (VT.getScalarType() == MVT::bf16) {
11606     if (Node->getConstantOperandVal(1) == 1) {
11607       return DAG.getNode(ISD::FP_TO_BF16, dl, VT, Node->getOperand(0));
11608     }
11609     EVT OperandVT = Op.getValueType();
11610     SDValue IsNaN = DAG.getSetCC(
11611         dl,
11612         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), OperandVT),
11613         Op, Op, ISD::SETUO);
11614 
11615     // We are rounding binary64/binary128 -> binary32 -> bfloat16. This
11616     // can induce double-rounding which may alter the results. We can
11617     // correct for this using a trick explained in: Boldo, Sylvie, and
11618     // Guillaume Melquiond. "When double rounding is odd." 17th IMACS
11619     // World Congress. 2005.
11620     EVT F32 = VT.isVector() ? VT.changeVectorElementType(MVT::f32) : MVT::f32;
11621     EVT I32 = F32.changeTypeToInteger();
11622     Op = expandRoundInexactToOdd(F32, Op, dl, DAG);
11623     Op = DAG.getNode(ISD::BITCAST, dl, I32, Op);
11624 
11625     // Conversions should set NaN's quiet bit. This also prevents NaNs from
11626     // turning into infinities.
11627     SDValue NaN =
11628         DAG.getNode(ISD::OR, dl, I32, Op, DAG.getConstant(0x400000, dl, I32));
11629 
11630     // Factor in the contribution of the low 16 bits.
11631     SDValue One = DAG.getConstant(1, dl, I32);
11632     SDValue Lsb = DAG.getNode(ISD::SRL, dl, I32, Op,
11633                               DAG.getShiftAmountConstant(16, I32, dl));
11634     Lsb = DAG.getNode(ISD::AND, dl, I32, Lsb, One);
11635     SDValue RoundingBias =
11636         DAG.getNode(ISD::ADD, dl, I32, DAG.getConstant(0x7fff, dl, I32), Lsb);
11637     SDValue Add = DAG.getNode(ISD::ADD, dl, I32, Op, RoundingBias);
11638 
11639     // Don't round if we had a NaN, we don't want to turn 0x7fffffff into
11640     // 0x80000000.
11641     Op = DAG.getSelect(dl, I32, IsNaN, NaN, Add);
11642 
11643     // Now that we have rounded, shift the bits into position.
11644     Op = DAG.getNode(ISD::SRL, dl, I32, Op,
11645                      DAG.getShiftAmountConstant(16, I32, dl));
11646     Op = DAG.getNode(ISD::BITCAST, dl, I32, Op);
11647     EVT I16 = I32.isVector() ? I32.changeVectorElementType(MVT::i16) : MVT::i16;
11648     Op = DAG.getNode(ISD::TRUNCATE, dl, I16, Op);
11649     return DAG.getNode(ISD::BITCAST, dl, VT, Op);
11650   }
11651   return SDValue();
11652 }
11653 
11654 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
11655                                            SelectionDAG &DAG) const {
11656   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
11657   assert(Node->getValueType(0).isScalableVector() &&
11658          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
11659 
11660   EVT VT = Node->getValueType(0);
11661   SDValue V1 = Node->getOperand(0);
11662   SDValue V2 = Node->getOperand(1);
11663   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
11664   SDLoc DL(Node);
11665 
11666   // Expand through memory thusly:
11667   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
11668   //  Store V1, Ptr
11669   //  Store V2, Ptr + sizeof(V1)
11670   //  If (Imm < 0)
11671   //    TrailingElts = -Imm
11672   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
11673   //  else
11674   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
11675   //  Res = Load Ptr
11676 
11677   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
11678 
11679   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
11680                                VT.getVectorElementCount() * 2);
11681   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
11682   EVT PtrVT = StackPtr.getValueType();
11683   auto &MF = DAG.getMachineFunction();
11684   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
11685   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
11686 
11687   // Store the lo part of CONCAT_VECTORS(V1, V2)
11688   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
11689   // Store the hi part of CONCAT_VECTORS(V1, V2)
11690   SDValue OffsetToV2 = DAG.getVScale(
11691       DL, PtrVT,
11692       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinValue()));
11693   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
11694   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
11695 
11696   if (Imm >= 0) {
11697     // Load back the required element. getVectorElementPointer takes care of
11698     // clamping the index if it's out-of-bounds.
11699     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
11700     // Load the spliced result
11701     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
11702                        MachinePointerInfo::getUnknownStack(MF));
11703   }
11704 
11705   uint64_t TrailingElts = -Imm;
11706 
11707   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
11708   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
11709   SDValue TrailingBytes =
11710       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
11711 
11712   if (TrailingElts > VT.getVectorMinNumElements()) {
11713     SDValue VLBytes =
11714         DAG.getVScale(DL, PtrVT,
11715                       APInt(PtrVT.getFixedSizeInBits(),
11716                             VT.getStoreSize().getKnownMinValue()));
11717     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
11718   }
11719 
11720   // Calculate the start address of the spliced result.
11721   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
11722 
11723   // Load the spliced result
11724   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
11725                      MachinePointerInfo::getUnknownStack(MF));
11726 }
11727 
11728 SDValue TargetLowering::expandVECTOR_COMPRESS(SDNode *Node,
11729                                               SelectionDAG &DAG) const {
11730   SDLoc DL(Node);
11731   SDValue Vec = Node->getOperand(0);
11732   SDValue Mask = Node->getOperand(1);
11733   SDValue Passthru = Node->getOperand(2);
11734 
11735   EVT VecVT = Vec.getValueType();
11736   EVT ScalarVT = VecVT.getScalarType();
11737   EVT MaskVT = Mask.getValueType();
11738   EVT MaskScalarVT = MaskVT.getScalarType();
11739 
11740   // Needs to be handled by targets that have scalable vector types.
11741   if (VecVT.isScalableVector())
11742     report_fatal_error("Cannot expand masked_compress for scalable vectors.");
11743 
11744   SDValue StackPtr = DAG.CreateStackTemporary(
11745       VecVT.getStoreSize(), DAG.getReducedAlign(VecVT, /*UseABI=*/false));
11746   int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
11747   MachinePointerInfo PtrInfo =
11748       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
11749 
11750   MVT PositionVT = getVectorIdxTy(DAG.getDataLayout());
11751   SDValue Chain = DAG.getEntryNode();
11752   SDValue OutPos = DAG.getConstant(0, DL, PositionVT);
11753 
11754   bool HasPassthru = !Passthru.isUndef();
11755 
11756   // If we have a passthru vector, store it on the stack, overwrite the matching
11757   // positions and then re-write the last element that was potentially
11758   // overwritten even though mask[i] = false.
11759   if (HasPassthru)
11760     Chain = DAG.getStore(Chain, DL, Passthru, StackPtr, PtrInfo);
11761 
11762   SDValue LastWriteVal;
11763   APInt PassthruSplatVal;
11764   bool IsSplatPassthru =
11765       ISD::isConstantSplatVector(Passthru.getNode(), PassthruSplatVal);
11766 
11767   if (IsSplatPassthru) {
11768     // As we do not know which position we wrote to last, we cannot simply
11769     // access that index from the passthru vector. So we first check if passthru
11770     // is a splat vector, to use any element ...
11771     LastWriteVal = DAG.getConstant(PassthruSplatVal, DL, ScalarVT);
11772   } else if (HasPassthru) {
11773     // ... if it is not a splat vector, we need to get the passthru value at
11774     // position = popcount(mask) and re-load it from the stack before it is
11775     // overwritten in the loop below.
11776     EVT PopcountVT = ScalarVT.changeTypeToInteger();
11777     SDValue Popcount = DAG.getNode(
11778         ISD::TRUNCATE, DL, MaskVT.changeVectorElementType(MVT::i1), Mask);
11779     Popcount =
11780         DAG.getNode(ISD::ZERO_EXTEND, DL,
11781                     MaskVT.changeVectorElementType(PopcountVT), Popcount);
11782     Popcount = DAG.getNode(ISD::VECREDUCE_ADD, DL, PopcountVT, Popcount);
11783     SDValue LastElmtPtr =
11784         getVectorElementPointer(DAG, StackPtr, VecVT, Popcount);
11785     LastWriteVal = DAG.getLoad(
11786         ScalarVT, DL, Chain, LastElmtPtr,
11787         MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
11788     Chain = LastWriteVal.getValue(1);
11789   }
11790 
11791   unsigned NumElms = VecVT.getVectorNumElements();
11792   for (unsigned I = 0; I < NumElms; I++) {
11793     SDValue Idx = DAG.getVectorIdxConstant(I, DL);
11794 
11795     SDValue ValI = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, Vec, Idx);
11796     SDValue OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos);
11797     Chain = DAG.getStore(
11798         Chain, DL, ValI, OutPtr,
11799         MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
11800 
11801     // Get the mask value and add it to the current output position. This
11802     // either increments by 1 if MaskI is true or adds 0 otherwise.
11803     // Freeze in case we have poison/undef mask entries.
11804     SDValue MaskI = DAG.getFreeze(
11805         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskScalarVT, Mask, Idx));
11806     MaskI = DAG.getFreeze(MaskI);
11807     MaskI = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, MaskI);
11808     MaskI = DAG.getNode(ISD::ZERO_EXTEND, DL, PositionVT, MaskI);
11809     OutPos = DAG.getNode(ISD::ADD, DL, PositionVT, OutPos, MaskI);
11810 
11811     if (HasPassthru && I == NumElms - 1) {
11812       SDValue EndOfVector =
11813           DAG.getConstant(VecVT.getVectorNumElements() - 1, DL, PositionVT);
11814       SDValue AllLanesSelected =
11815           DAG.getSetCC(DL, MVT::i1, OutPos, EndOfVector, ISD::CondCode::SETUGT);
11816       OutPos = DAG.getNode(ISD::UMIN, DL, PositionVT, OutPos, EndOfVector);
11817       OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos);
11818 
11819       // Re-write the last ValI if all lanes were selected. Otherwise,
11820       // overwrite the last write it with the passthru value.
11821       LastWriteVal = DAG.getSelect(DL, ScalarVT, AllLanesSelected, ValI,
11822                                    LastWriteVal, SDNodeFlags::Unpredictable);
11823       Chain = DAG.getStore(
11824           Chain, DL, LastWriteVal, OutPtr,
11825           MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
11826     }
11827   }
11828 
11829   return DAG.getLoad(VecVT, DL, Chain, StackPtr, PtrInfo);
11830 }
11831 
11832 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
11833                                            SDValue &LHS, SDValue &RHS,
11834                                            SDValue &CC, SDValue Mask,
11835                                            SDValue EVL, bool &NeedInvert,
11836                                            const SDLoc &dl, SDValue &Chain,
11837                                            bool IsSignaling) const {
11838   MVT OpVT = LHS.getSimpleValueType();
11839   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
11840   NeedInvert = false;
11841   assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset");
11842   bool IsNonVP = !EVL;
11843   switch (getCondCodeAction(CCCode, OpVT)) {
11844   default:
11845     llvm_unreachable("Unknown condition code action!");
11846   case TargetLowering::Legal:
11847     // Nothing to do.
11848     break;
11849   case TargetLowering::Expand: {
11850     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
11851     if (isCondCodeLegalOrCustom(InvCC, OpVT)) {
11852       std::swap(LHS, RHS);
11853       CC = DAG.getCondCode(InvCC);
11854       return true;
11855     }
11856     // Swapping operands didn't work. Try inverting the condition.
11857     bool NeedSwap = false;
11858     InvCC = getSetCCInverse(CCCode, OpVT);
11859     if (!isCondCodeLegalOrCustom(InvCC, OpVT)) {
11860       // If inverting the condition is not enough, try swapping operands
11861       // on top of it.
11862       InvCC = ISD::getSetCCSwappedOperands(InvCC);
11863       NeedSwap = true;
11864     }
11865     if (isCondCodeLegalOrCustom(InvCC, OpVT)) {
11866       CC = DAG.getCondCode(InvCC);
11867       NeedInvert = true;
11868       if (NeedSwap)
11869         std::swap(LHS, RHS);
11870       return true;
11871     }
11872 
11873     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
11874     unsigned Opc = 0;
11875     switch (CCCode) {
11876     default:
11877       llvm_unreachable("Don't know how to expand this condition!");
11878     case ISD::SETUO:
11879       if (isCondCodeLegal(ISD::SETUNE, OpVT)) {
11880         CC1 = ISD::SETUNE;
11881         CC2 = ISD::SETUNE;
11882         Opc = ISD::OR;
11883         break;
11884       }
11885       assert(isCondCodeLegal(ISD::SETOEQ, OpVT) &&
11886              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
11887       NeedInvert = true;
11888       [[fallthrough]];
11889     case ISD::SETO:
11890       assert(isCondCodeLegal(ISD::SETOEQ, OpVT) &&
11891              "If SETO is expanded, SETOEQ must be legal!");
11892       CC1 = ISD::SETOEQ;
11893       CC2 = ISD::SETOEQ;
11894       Opc = ISD::AND;
11895       break;
11896     case ISD::SETONE:
11897     case ISD::SETUEQ:
11898       // If the SETUO or SETO CC isn't legal, we might be able to use
11899       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
11900       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
11901       // the operands.
11902       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
11903       if (!isCondCodeLegal(CC2, OpVT) && (isCondCodeLegal(ISD::SETOGT, OpVT) ||
11904                                           isCondCodeLegal(ISD::SETOLT, OpVT))) {
11905         CC1 = ISD::SETOGT;
11906         CC2 = ISD::SETOLT;
11907         Opc = ISD::OR;
11908         NeedInvert = ((unsigned)CCCode & 0x8U);
11909         break;
11910       }
11911       [[fallthrough]];
11912     case ISD::SETOEQ:
11913     case ISD::SETOGT:
11914     case ISD::SETOGE:
11915     case ISD::SETOLT:
11916     case ISD::SETOLE:
11917     case ISD::SETUNE:
11918     case ISD::SETUGT:
11919     case ISD::SETUGE:
11920     case ISD::SETULT:
11921     case ISD::SETULE:
11922       // If we are floating point, assign and break, otherwise fall through.
11923       if (!OpVT.isInteger()) {
11924         // We can use the 4th bit to tell if we are the unordered
11925         // or ordered version of the opcode.
11926         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
11927         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
11928         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
11929         break;
11930       }
11931       // Fallthrough if we are unsigned integer.
11932       [[fallthrough]];
11933     case ISD::SETLE:
11934     case ISD::SETGT:
11935     case ISD::SETGE:
11936     case ISD::SETLT:
11937     case ISD::SETNE:
11938     case ISD::SETEQ:
11939       // If all combinations of inverting the condition and swapping operands
11940       // didn't work then we have no means to expand the condition.
11941       llvm_unreachable("Don't know how to expand this condition!");
11942     }
11943 
11944     SDValue SetCC1, SetCC2;
11945     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
11946       // If we aren't the ordered or unorder operation,
11947       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
11948       if (IsNonVP) {
11949         SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
11950         SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
11951       } else {
11952         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
11953         SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
11954       }
11955     } else {
11956       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
11957       if (IsNonVP) {
11958         SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
11959         SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
11960       } else {
11961         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
11962         SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
11963       }
11964     }
11965     if (Chain)
11966       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
11967                           SetCC2.getValue(1));
11968     if (IsNonVP)
11969       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
11970     else {
11971       // Transform the binary opcode to the VP equivalent.
11972       assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode");
11973       Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND;
11974       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
11975     }
11976     RHS = SDValue();
11977     CC = SDValue();
11978     return true;
11979   }
11980   }
11981   return false;
11982 }
11983 
11984 SDValue TargetLowering::expandVectorNaryOpBySplitting(SDNode *Node,
11985                                                       SelectionDAG &DAG) const {
11986   EVT VT = Node->getValueType(0);
11987   // Despite its documentation, GetSplitDestVTs will assert if VT cannot be
11988   // split into two equal parts.
11989   if (!VT.isVector() || !VT.getVectorElementCount().isKnownMultipleOf(2))
11990     return SDValue();
11991 
11992   // Restrict expansion to cases where both parts can be concatenated.
11993   auto [LoVT, HiVT] = DAG.GetSplitDestVTs(VT);
11994   if (LoVT != HiVT || !isTypeLegal(LoVT))
11995     return SDValue();
11996 
11997   SDLoc DL(Node);
11998   unsigned Opcode = Node->getOpcode();
11999 
12000   // Don't expand if the result is likely to be unrolled anyway.
12001   if (!isOperationLegalOrCustomOrPromote(Opcode, LoVT))
12002     return SDValue();
12003 
12004   SmallVector<SDValue, 4> LoOps, HiOps;
12005   for (const SDValue &V : Node->op_values()) {
12006     auto [Lo, Hi] = DAG.SplitVector(V, DL, LoVT, HiVT);
12007     LoOps.push_back(Lo);
12008     HiOps.push_back(Hi);
12009   }
12010 
12011   SDValue SplitOpLo = DAG.getNode(Opcode, DL, LoVT, LoOps);
12012   SDValue SplitOpHi = DAG.getNode(Opcode, DL, HiVT, HiOps);
12013   return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, SplitOpLo, SplitOpHi);
12014 }
12015