xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp (revision 6927a434ba774a578d6d0f28f74cca13452afc84)
1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/Analysis/VectorUtils.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/CodeGenCommonISel.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/TargetRegisterInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCExpr.h"
30 #include "llvm/Support/DivisionByConstantInfo.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/KnownBits.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40     : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function &F = DAG.getMachineFunction().getFunction();
55 
56   // First, check if tail calls have been disabled in this function.
57   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
58     return false;
59 
60   // Conservatively require the attributes of the call to match those of
61   // the return. Ignore following attributes because they don't affect the
62   // call sequence.
63   AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
64   for (const auto &Attr :
65        {Attribute::Alignment, Attribute::Dereferenceable,
66         Attribute::DereferenceableOrNull, Attribute::NoAlias,
67         Attribute::NonNull, Attribute::NoUndef, Attribute::Range})
68     CallerAttrs.removeAttribute(Attr);
69 
70   if (CallerAttrs.hasAttributes())
71     return false;
72 
73   // It's not safe to eliminate the sign / zero extension of the return value.
74   if (CallerAttrs.contains(Attribute::ZExt) ||
75       CallerAttrs.contains(Attribute::SExt))
76     return false;
77 
78   // Check if the only use is a function return node.
79   return isUsedByReturnOnly(Node, Chain);
80 }
81 
82 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
83     const uint32_t *CallerPreservedMask,
84     const SmallVectorImpl<CCValAssign> &ArgLocs,
85     const SmallVectorImpl<SDValue> &OutVals) const {
86   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
87     const CCValAssign &ArgLoc = ArgLocs[I];
88     if (!ArgLoc.isRegLoc())
89       continue;
90     MCRegister Reg = ArgLoc.getLocReg();
91     // Only look at callee saved registers.
92     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
93       continue;
94     // Check that we pass the value used for the caller.
95     // (We look for a CopyFromReg reading a virtual register that is used
96     //  for the function live-in value of register Reg)
97     SDValue Value = OutVals[I];
98     if (Value->getOpcode() == ISD::AssertZext)
99       Value = Value.getOperand(0);
100     if (Value->getOpcode() != ISD::CopyFromReg)
101       return false;
102     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
103     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
104       return false;
105   }
106   return true;
107 }
108 
109 /// Set CallLoweringInfo attribute flags based on a call instruction
110 /// and called function attributes.
111 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
112                                                      unsigned ArgIdx) {
113   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
114   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
115   IsNoExt = Call->paramHasAttr(ArgIdx, Attribute::NoExt);
116   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
117   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
118   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
119   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
120   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
121   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
122   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
123   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
124   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
125   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
126   Alignment = Call->getParamStackAlign(ArgIdx);
127   IndirectType = nullptr;
128   assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 &&
129          "multiple ABI attributes?");
130   if (IsByVal) {
131     IndirectType = Call->getParamByValType(ArgIdx);
132     if (!Alignment)
133       Alignment = Call->getParamAlign(ArgIdx);
134   }
135   if (IsPreallocated)
136     IndirectType = Call->getParamPreallocatedType(ArgIdx);
137   if (IsInAlloca)
138     IndirectType = Call->getParamInAllocaType(ArgIdx);
139   if (IsSRet)
140     IndirectType = Call->getParamStructRetType(ArgIdx);
141 }
142 
143 /// Generate a libcall taking the given operands as arguments and returning a
144 /// result of type RetVT.
145 std::pair<SDValue, SDValue>
146 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
147                             ArrayRef<SDValue> Ops,
148                             MakeLibCallOptions CallOptions,
149                             const SDLoc &dl,
150                             SDValue InChain) const {
151   if (!InChain)
152     InChain = DAG.getEntryNode();
153 
154   TargetLowering::ArgListTy Args;
155   Args.reserve(Ops.size());
156 
157   TargetLowering::ArgListEntry Entry;
158   for (unsigned i = 0; i < Ops.size(); ++i) {
159     SDValue NewOp = Ops[i];
160     Entry.Node = NewOp;
161     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
162     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
163                                                  CallOptions.IsSExt);
164     Entry.IsZExt = !Entry.IsSExt;
165 
166     if (CallOptions.IsSoften &&
167         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
168       Entry.IsSExt = Entry.IsZExt = false;
169     }
170     Args.push_back(Entry);
171   }
172 
173   if (LC == RTLIB::UNKNOWN_LIBCALL)
174     report_fatal_error("Unsupported library call operation!");
175   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
176                                          getPointerTy(DAG.getDataLayout()));
177 
178   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
179   TargetLowering::CallLoweringInfo CLI(DAG);
180   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
181   bool zeroExtend = !signExtend;
182 
183   if (CallOptions.IsSoften &&
184       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
185     signExtend = zeroExtend = false;
186   }
187 
188   CLI.setDebugLoc(dl)
189       .setChain(InChain)
190       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
191       .setNoReturn(CallOptions.DoesNotReturn)
192       .setDiscardResult(!CallOptions.IsReturnValueUsed)
193       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
194       .setSExtResult(signExtend)
195       .setZExtResult(zeroExtend);
196   return LowerCallTo(CLI);
197 }
198 
199 bool TargetLowering::findOptimalMemOpLowering(
200     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
201     unsigned SrcAS, const AttributeList &FuncAttributes) const {
202   if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() &&
203       Op.getSrcAlign() < Op.getDstAlign())
204     return false;
205 
206   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
207 
208   if (VT == MVT::Other) {
209     // Use the largest integer type whose alignment constraints are satisfied.
210     // We only need to check DstAlign here as SrcAlign is always greater or
211     // equal to DstAlign (or zero).
212     VT = MVT::LAST_INTEGER_VALUETYPE;
213     if (Op.isFixedDstAlign())
214       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
215              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
216         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
217     assert(VT.isInteger());
218 
219     // Find the largest legal integer type.
220     MVT LVT = MVT::LAST_INTEGER_VALUETYPE;
221     while (!isTypeLegal(LVT))
222       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
223     assert(LVT.isInteger());
224 
225     // If the type we've chosen is larger than the largest legal integer type
226     // then use that instead.
227     if (VT.bitsGT(LVT))
228       VT = LVT;
229   }
230 
231   unsigned NumMemOps = 0;
232   uint64_t Size = Op.size();
233   while (Size) {
234     unsigned VTSize = VT.getSizeInBits() / 8;
235     while (VTSize > Size) {
236       // For now, only use non-vector load / store's for the left-over pieces.
237       EVT NewVT = VT;
238       unsigned NewVTSize;
239 
240       bool Found = false;
241       if (VT.isVector() || VT.isFloatingPoint()) {
242         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
243         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
244             isSafeMemOpType(NewVT.getSimpleVT()))
245           Found = true;
246         else if (NewVT == MVT::i64 &&
247                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
248                  isSafeMemOpType(MVT::f64)) {
249           // i64 is usually not legal on 32-bit targets, but f64 may be.
250           NewVT = MVT::f64;
251           Found = true;
252         }
253       }
254 
255       if (!Found) {
256         do {
257           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
258           if (NewVT == MVT::i8)
259             break;
260         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
261       }
262       NewVTSize = NewVT.getSizeInBits() / 8;
263 
264       // If the new VT cannot cover all of the remaining bits, then consider
265       // issuing a (or a pair of) unaligned and overlapping load / store.
266       unsigned Fast;
267       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
268           allowsMisalignedMemoryAccesses(
269               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
270               MachineMemOperand::MONone, &Fast) &&
271           Fast)
272         VTSize = Size;
273       else {
274         VT = NewVT;
275         VTSize = NewVTSize;
276       }
277     }
278 
279     if (++NumMemOps > Limit)
280       return false;
281 
282     MemOps.push_back(VT);
283     Size -= VTSize;
284   }
285 
286   return true;
287 }
288 
289 /// Soften the operands of a comparison. This code is shared among BR_CC,
290 /// SELECT_CC, and SETCC handlers.
291 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
292                                          SDValue &NewLHS, SDValue &NewRHS,
293                                          ISD::CondCode &CCCode,
294                                          const SDLoc &dl, const SDValue OldLHS,
295                                          const SDValue OldRHS) const {
296   SDValue Chain;
297   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
298                              OldRHS, Chain);
299 }
300 
301 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
302                                          SDValue &NewLHS, SDValue &NewRHS,
303                                          ISD::CondCode &CCCode,
304                                          const SDLoc &dl, const SDValue OldLHS,
305                                          const SDValue OldRHS,
306                                          SDValue &Chain,
307                                          bool IsSignaling) const {
308   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
309   // not supporting it. We can update this code when libgcc provides such
310   // functions.
311 
312   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
313          && "Unsupported setcc type!");
314 
315   // Expand into one or more soft-fp libcall(s).
316   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
317   bool ShouldInvertCC = false;
318   switch (CCCode) {
319   case ISD::SETEQ:
320   case ISD::SETOEQ:
321     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
322           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
323           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
324     break;
325   case ISD::SETNE:
326   case ISD::SETUNE:
327     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
328           (VT == MVT::f64) ? RTLIB::UNE_F64 :
329           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
330     break;
331   case ISD::SETGE:
332   case ISD::SETOGE:
333     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
334           (VT == MVT::f64) ? RTLIB::OGE_F64 :
335           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
336     break;
337   case ISD::SETLT:
338   case ISD::SETOLT:
339     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
340           (VT == MVT::f64) ? RTLIB::OLT_F64 :
341           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
342     break;
343   case ISD::SETLE:
344   case ISD::SETOLE:
345     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
346           (VT == MVT::f64) ? RTLIB::OLE_F64 :
347           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
348     break;
349   case ISD::SETGT:
350   case ISD::SETOGT:
351     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
352           (VT == MVT::f64) ? RTLIB::OGT_F64 :
353           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
354     break;
355   case ISD::SETO:
356     ShouldInvertCC = true;
357     [[fallthrough]];
358   case ISD::SETUO:
359     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
360           (VT == MVT::f64) ? RTLIB::UO_F64 :
361           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
362     break;
363   case ISD::SETONE:
364     // SETONE = O && UNE
365     ShouldInvertCC = true;
366     [[fallthrough]];
367   case ISD::SETUEQ:
368     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
369           (VT == MVT::f64) ? RTLIB::UO_F64 :
370           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
371     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
372           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
373           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
374     break;
375   default:
376     // Invert CC for unordered comparisons
377     ShouldInvertCC = true;
378     switch (CCCode) {
379     case ISD::SETULT:
380       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
381             (VT == MVT::f64) ? RTLIB::OGE_F64 :
382             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
383       break;
384     case ISD::SETULE:
385       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
386             (VT == MVT::f64) ? RTLIB::OGT_F64 :
387             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
388       break;
389     case ISD::SETUGT:
390       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
391             (VT == MVT::f64) ? RTLIB::OLE_F64 :
392             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
393       break;
394     case ISD::SETUGE:
395       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
396             (VT == MVT::f64) ? RTLIB::OLT_F64 :
397             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
398       break;
399     default: llvm_unreachable("Do not know how to soften this setcc!");
400     }
401   }
402 
403   // Use the target specific return value for comparison lib calls.
404   EVT RetVT = getCmpLibcallReturnType();
405   SDValue Ops[2] = {NewLHS, NewRHS};
406   TargetLowering::MakeLibCallOptions CallOptions;
407   EVT OpsVT[2] = { OldLHS.getValueType(),
408                    OldRHS.getValueType() };
409   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
410   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
411   NewLHS = Call.first;
412   NewRHS = DAG.getConstant(0, dl, RetVT);
413 
414   CCCode = getCmpLibcallCC(LC1);
415   if (ShouldInvertCC) {
416     assert(RetVT.isInteger());
417     CCCode = getSetCCInverse(CCCode, RetVT);
418   }
419 
420   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
421     // Update Chain.
422     Chain = Call.second;
423   } else {
424     EVT SetCCVT =
425         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
426     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
427     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
428     CCCode = getCmpLibcallCC(LC2);
429     if (ShouldInvertCC)
430       CCCode = getSetCCInverse(CCCode, RetVT);
431     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
432     if (Chain)
433       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
434                           Call2.second);
435     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
436                          Tmp.getValueType(), Tmp, NewLHS);
437     NewRHS = SDValue();
438   }
439 }
440 
441 /// Return the entry encoding for a jump table in the current function. The
442 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
443 unsigned TargetLowering::getJumpTableEncoding() const {
444   // In non-pic modes, just use the address of a block.
445   if (!isPositionIndependent())
446     return MachineJumpTableInfo::EK_BlockAddress;
447 
448   // In PIC mode, if the target supports a GPRel32 directive, use it.
449   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
450     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
451 
452   // Otherwise, use a label difference.
453   return MachineJumpTableInfo::EK_LabelDifference32;
454 }
455 
456 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
457                                                  SelectionDAG &DAG) const {
458   // If our PIC model is GP relative, use the global offset table as the base.
459   unsigned JTEncoding = getJumpTableEncoding();
460 
461   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
462       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
463     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
464 
465   return Table;
466 }
467 
468 /// This returns the relocation base for the given PIC jumptable, the same as
469 /// getPICJumpTableRelocBase, but as an MCExpr.
470 const MCExpr *
471 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
472                                              unsigned JTI,MCContext &Ctx) const{
473   // The normal PIC reloc base is the label at the start of the jump table.
474   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
475 }
476 
477 SDValue TargetLowering::expandIndirectJTBranch(const SDLoc &dl, SDValue Value,
478                                                SDValue Addr, int JTI,
479                                                SelectionDAG &DAG) const {
480   SDValue Chain = Value;
481   // Jump table debug info is only needed if CodeView is enabled.
482   if (DAG.getTarget().getTargetTriple().isOSBinFormatCOFF()) {
483     Chain = DAG.getJumpTableDebugInfo(JTI, Chain, dl);
484   }
485   return DAG.getNode(ISD::BRIND, dl, MVT::Other, Chain, Addr);
486 }
487 
488 bool
489 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
490   const TargetMachine &TM = getTargetMachine();
491   const GlobalValue *GV = GA->getGlobal();
492 
493   // If the address is not even local to this DSO we will have to load it from
494   // a got and then add the offset.
495   if (!TM.shouldAssumeDSOLocal(GV))
496     return false;
497 
498   // If the code is position independent we will have to add a base register.
499   if (isPositionIndependent())
500     return false;
501 
502   // Otherwise we can do it.
503   return true;
504 }
505 
506 //===----------------------------------------------------------------------===//
507 //  Optimization Methods
508 //===----------------------------------------------------------------------===//
509 
510 /// If the specified instruction has a constant integer operand and there are
511 /// bits set in that constant that are not demanded, then clear those bits and
512 /// return true.
513 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
514                                             const APInt &DemandedBits,
515                                             const APInt &DemandedElts,
516                                             TargetLoweringOpt &TLO) const {
517   SDLoc DL(Op);
518   unsigned Opcode = Op.getOpcode();
519 
520   // Early-out if we've ended up calling an undemanded node, leave this to
521   // constant folding.
522   if (DemandedBits.isZero() || DemandedElts.isZero())
523     return false;
524 
525   // Do target-specific constant optimization.
526   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
527     return TLO.New.getNode();
528 
529   // FIXME: ISD::SELECT, ISD::SELECT_CC
530   switch (Opcode) {
531   default:
532     break;
533   case ISD::XOR:
534   case ISD::AND:
535   case ISD::OR: {
536     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
537     if (!Op1C || Op1C->isOpaque())
538       return false;
539 
540     // If this is a 'not' op, don't touch it because that's a canonical form.
541     const APInt &C = Op1C->getAPIntValue();
542     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
543       return false;
544 
545     if (!C.isSubsetOf(DemandedBits)) {
546       EVT VT = Op.getValueType();
547       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
548       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC,
549                                       Op->getFlags());
550       return TLO.CombineTo(Op, NewOp);
551     }
552 
553     break;
554   }
555   }
556 
557   return false;
558 }
559 
560 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
561                                             const APInt &DemandedBits,
562                                             TargetLoweringOpt &TLO) const {
563   EVT VT = Op.getValueType();
564   APInt DemandedElts = VT.isVector()
565                            ? APInt::getAllOnes(VT.getVectorNumElements())
566                            : APInt(1, 1);
567   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
568 }
569 
570 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
571 /// This uses isTruncateFree/isZExtFree and ANY_EXTEND for the widening cast,
572 /// but it could be generalized for targets with other types of implicit
573 /// widening casts.
574 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
575                                       const APInt &DemandedBits,
576                                       TargetLoweringOpt &TLO) const {
577   assert(Op.getNumOperands() == 2 &&
578          "ShrinkDemandedOp only supports binary operators!");
579   assert(Op.getNode()->getNumValues() == 1 &&
580          "ShrinkDemandedOp only supports nodes with one result!");
581 
582   EVT VT = Op.getValueType();
583   SelectionDAG &DAG = TLO.DAG;
584   SDLoc dl(Op);
585 
586   // Early return, as this function cannot handle vector types.
587   if (VT.isVector())
588     return false;
589 
590   assert(Op.getOperand(0).getValueType().getScalarSizeInBits() == BitWidth &&
591          Op.getOperand(1).getValueType().getScalarSizeInBits() == BitWidth &&
592          "ShrinkDemandedOp only supports operands that have the same size!");
593 
594   // Don't do this if the node has another user, which may require the
595   // full value.
596   if (!Op.getNode()->hasOneUse())
597     return false;
598 
599   // Search for the smallest integer type with free casts to and from
600   // Op's type. For expedience, just check power-of-2 integer types.
601   unsigned DemandedSize = DemandedBits.getActiveBits();
602   for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize);
603        SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
604     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
605     if (isTruncateFree(VT, SmallVT) && isZExtFree(SmallVT, VT)) {
606       // We found a type with free casts.
607       SDValue X = DAG.getNode(
608           Op.getOpcode(), dl, SmallVT,
609           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
610           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
611       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
612       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, VT, X);
613       return TLO.CombineTo(Op, Z);
614     }
615   }
616   return false;
617 }
618 
619 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
620                                           DAGCombinerInfo &DCI) const {
621   SelectionDAG &DAG = DCI.DAG;
622   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
623                         !DCI.isBeforeLegalizeOps());
624   KnownBits Known;
625 
626   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
627   if (Simplified) {
628     DCI.AddToWorklist(Op.getNode());
629     DCI.CommitTargetLoweringOpt(TLO);
630   }
631   return Simplified;
632 }
633 
634 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
635                                           const APInt &DemandedElts,
636                                           DAGCombinerInfo &DCI) const {
637   SelectionDAG &DAG = DCI.DAG;
638   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
639                         !DCI.isBeforeLegalizeOps());
640   KnownBits Known;
641 
642   bool Simplified =
643       SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
644   if (Simplified) {
645     DCI.AddToWorklist(Op.getNode());
646     DCI.CommitTargetLoweringOpt(TLO);
647   }
648   return Simplified;
649 }
650 
651 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
652                                           KnownBits &Known,
653                                           TargetLoweringOpt &TLO,
654                                           unsigned Depth,
655                                           bool AssumeSingleUse) const {
656   EVT VT = Op.getValueType();
657 
658   // Since the number of lanes in a scalable vector is unknown at compile time,
659   // we track one bit which is implicitly broadcast to all lanes.  This means
660   // that all lanes in a scalable vector are considered demanded.
661   APInt DemandedElts = VT.isFixedLengthVector()
662                            ? APInt::getAllOnes(VT.getVectorNumElements())
663                            : APInt(1, 1);
664   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
665                               AssumeSingleUse);
666 }
667 
668 // TODO: Under what circumstances can we create nodes? Constant folding?
669 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
670     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
671     SelectionDAG &DAG, unsigned Depth) const {
672   EVT VT = Op.getValueType();
673 
674   // Limit search depth.
675   if (Depth >= SelectionDAG::MaxRecursionDepth)
676     return SDValue();
677 
678   // Ignore UNDEFs.
679   if (Op.isUndef())
680     return SDValue();
681 
682   // Not demanding any bits/elts from Op.
683   if (DemandedBits == 0 || DemandedElts == 0)
684     return DAG.getUNDEF(VT);
685 
686   bool IsLE = DAG.getDataLayout().isLittleEndian();
687   unsigned NumElts = DemandedElts.getBitWidth();
688   unsigned BitWidth = DemandedBits.getBitWidth();
689   KnownBits LHSKnown, RHSKnown;
690   switch (Op.getOpcode()) {
691   case ISD::BITCAST: {
692     if (VT.isScalableVector())
693       return SDValue();
694 
695     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
696     EVT SrcVT = Src.getValueType();
697     EVT DstVT = Op.getValueType();
698     if (SrcVT == DstVT)
699       return Src;
700 
701     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
702     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
703     if (NumSrcEltBits == NumDstEltBits)
704       if (SDValue V = SimplifyMultipleUseDemandedBits(
705               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
706         return DAG.getBitcast(DstVT, V);
707 
708     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
709       unsigned Scale = NumDstEltBits / NumSrcEltBits;
710       unsigned NumSrcElts = SrcVT.getVectorNumElements();
711       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
712       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
713       for (unsigned i = 0; i != Scale; ++i) {
714         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
715         unsigned BitOffset = EltOffset * NumSrcEltBits;
716         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
717         if (!Sub.isZero()) {
718           DemandedSrcBits |= Sub;
719           for (unsigned j = 0; j != NumElts; ++j)
720             if (DemandedElts[j])
721               DemandedSrcElts.setBit((j * Scale) + i);
722         }
723       }
724 
725       if (SDValue V = SimplifyMultipleUseDemandedBits(
726               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
727         return DAG.getBitcast(DstVT, V);
728     }
729 
730     // TODO - bigendian once we have test coverage.
731     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
732       unsigned Scale = NumSrcEltBits / NumDstEltBits;
733       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
734       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
735       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
736       for (unsigned i = 0; i != NumElts; ++i)
737         if (DemandedElts[i]) {
738           unsigned Offset = (i % Scale) * NumDstEltBits;
739           DemandedSrcBits.insertBits(DemandedBits, Offset);
740           DemandedSrcElts.setBit(i / Scale);
741         }
742 
743       if (SDValue V = SimplifyMultipleUseDemandedBits(
744               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
745         return DAG.getBitcast(DstVT, V);
746     }
747 
748     break;
749   }
750   case ISD::FREEZE: {
751     SDValue N0 = Op.getOperand(0);
752     if (DAG.isGuaranteedNotToBeUndefOrPoison(N0, DemandedElts,
753                                              /*PoisonOnly=*/false))
754       return N0;
755     break;
756   }
757   case ISD::AND: {
758     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
759     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
760 
761     // If all of the demanded bits are known 1 on one side, return the other.
762     // These bits cannot contribute to the result of the 'and' in this
763     // context.
764     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
765       return Op.getOperand(0);
766     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
767       return Op.getOperand(1);
768     break;
769   }
770   case ISD::OR: {
771     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
772     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
773 
774     // If all of the demanded bits are known zero on one side, return the
775     // other.  These bits cannot contribute to the result of the 'or' in this
776     // context.
777     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
778       return Op.getOperand(0);
779     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
780       return Op.getOperand(1);
781     break;
782   }
783   case ISD::XOR: {
784     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
785     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
786 
787     // If all of the demanded bits are known zero on one side, return the
788     // other.
789     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
790       return Op.getOperand(0);
791     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
792       return Op.getOperand(1);
793     break;
794   }
795   case ISD::SHL: {
796     // If we are only demanding sign bits then we can use the shift source
797     // directly.
798     if (std::optional<uint64_t> MaxSA =
799             DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
800       SDValue Op0 = Op.getOperand(0);
801       unsigned ShAmt = *MaxSA;
802       unsigned NumSignBits =
803           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
804       unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero();
805       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
806         return Op0;
807     }
808     break;
809   }
810   case ISD::SRL: {
811     // If we are only demanding sign bits then we can use the shift source
812     // directly.
813     if (std::optional<uint64_t> MaxSA =
814             DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
815       SDValue Op0 = Op.getOperand(0);
816       unsigned ShAmt = *MaxSA;
817       // Must already be signbits in DemandedBits bounds, and can't demand any
818       // shifted in zeroes.
819       if (DemandedBits.countl_zero() >= ShAmt) {
820         unsigned NumSignBits =
821             DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
822         if (DemandedBits.countr_zero() >= (BitWidth - NumSignBits))
823           return Op0;
824       }
825     }
826     break;
827   }
828   case ISD::SETCC: {
829     SDValue Op0 = Op.getOperand(0);
830     SDValue Op1 = Op.getOperand(1);
831     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
832     // If (1) we only need the sign-bit, (2) the setcc operands are the same
833     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
834     // -1, we may be able to bypass the setcc.
835     if (DemandedBits.isSignMask() &&
836         Op0.getScalarValueSizeInBits() == BitWidth &&
837         getBooleanContents(Op0.getValueType()) ==
838             BooleanContent::ZeroOrNegativeOneBooleanContent) {
839       // If we're testing X < 0, then this compare isn't needed - just use X!
840       // FIXME: We're limiting to integer types here, but this should also work
841       // if we don't care about FP signed-zero. The use of SETLT with FP means
842       // that we don't care about NaNs.
843       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
844           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
845         return Op0;
846     }
847     break;
848   }
849   case ISD::SIGN_EXTEND_INREG: {
850     // If none of the extended bits are demanded, eliminate the sextinreg.
851     SDValue Op0 = Op.getOperand(0);
852     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
853     unsigned ExBits = ExVT.getScalarSizeInBits();
854     if (DemandedBits.getActiveBits() <= ExBits &&
855         shouldRemoveRedundantExtend(Op))
856       return Op0;
857     // If the input is already sign extended, just drop the extension.
858     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
859     if (NumSignBits >= (BitWidth - ExBits + 1))
860       return Op0;
861     break;
862   }
863   case ISD::ANY_EXTEND_VECTOR_INREG:
864   case ISD::SIGN_EXTEND_VECTOR_INREG:
865   case ISD::ZERO_EXTEND_VECTOR_INREG: {
866     if (VT.isScalableVector())
867       return SDValue();
868 
869     // If we only want the lowest element and none of extended bits, then we can
870     // return the bitcasted source vector.
871     SDValue Src = Op.getOperand(0);
872     EVT SrcVT = Src.getValueType();
873     EVT DstVT = Op.getValueType();
874     if (IsLE && DemandedElts == 1 &&
875         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
876         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
877       return DAG.getBitcast(DstVT, Src);
878     }
879     break;
880   }
881   case ISD::INSERT_VECTOR_ELT: {
882     if (VT.isScalableVector())
883       return SDValue();
884 
885     // If we don't demand the inserted element, return the base vector.
886     SDValue Vec = Op.getOperand(0);
887     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
888     EVT VecVT = Vec.getValueType();
889     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
890         !DemandedElts[CIdx->getZExtValue()])
891       return Vec;
892     break;
893   }
894   case ISD::INSERT_SUBVECTOR: {
895     if (VT.isScalableVector())
896       return SDValue();
897 
898     SDValue Vec = Op.getOperand(0);
899     SDValue Sub = Op.getOperand(1);
900     uint64_t Idx = Op.getConstantOperandVal(2);
901     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
902     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
903     // If we don't demand the inserted subvector, return the base vector.
904     if (DemandedSubElts == 0)
905       return Vec;
906     break;
907   }
908   case ISD::VECTOR_SHUFFLE: {
909     assert(!VT.isScalableVector());
910     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
911 
912     // If all the demanded elts are from one operand and are inline,
913     // then we can use the operand directly.
914     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
915     for (unsigned i = 0; i != NumElts; ++i) {
916       int M = ShuffleMask[i];
917       if (M < 0 || !DemandedElts[i])
918         continue;
919       AllUndef = false;
920       IdentityLHS &= (M == (int)i);
921       IdentityRHS &= ((M - NumElts) == i);
922     }
923 
924     if (AllUndef)
925       return DAG.getUNDEF(Op.getValueType());
926     if (IdentityLHS)
927       return Op.getOperand(0);
928     if (IdentityRHS)
929       return Op.getOperand(1);
930     break;
931   }
932   default:
933     // TODO: Probably okay to remove after audit; here to reduce change size
934     // in initial enablement patch for scalable vectors
935     if (VT.isScalableVector())
936       return SDValue();
937 
938     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
939       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
940               Op, DemandedBits, DemandedElts, DAG, Depth))
941         return V;
942     break;
943   }
944   return SDValue();
945 }
946 
947 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
948     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
949     unsigned Depth) const {
950   EVT VT = Op.getValueType();
951   // Since the number of lanes in a scalable vector is unknown at compile time,
952   // we track one bit which is implicitly broadcast to all lanes.  This means
953   // that all lanes in a scalable vector are considered demanded.
954   APInt DemandedElts = VT.isFixedLengthVector()
955                            ? APInt::getAllOnes(VT.getVectorNumElements())
956                            : APInt(1, 1);
957   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
958                                          Depth);
959 }
960 
961 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
962     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
963     unsigned Depth) const {
964   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
965   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
966                                          Depth);
967 }
968 
969 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
970 //      or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
971 static SDValue combineShiftToAVG(SDValue Op,
972                                  TargetLowering::TargetLoweringOpt &TLO,
973                                  const TargetLowering &TLI,
974                                  const APInt &DemandedBits,
975                                  const APInt &DemandedElts, unsigned Depth) {
976   assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
977          "SRL or SRA node is required here!");
978   // Is the right shift using an immediate value of 1?
979   ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
980   if (!N1C || !N1C->isOne())
981     return SDValue();
982 
983   // We are looking for an avgfloor
984   // add(ext, ext)
985   // or one of these as a avgceil
986   // add(add(ext, ext), 1)
987   // add(add(ext, 1), ext)
988   // add(ext, add(ext, 1))
989   SDValue Add = Op.getOperand(0);
990   if (Add.getOpcode() != ISD::ADD)
991     return SDValue();
992 
993   SDValue ExtOpA = Add.getOperand(0);
994   SDValue ExtOpB = Add.getOperand(1);
995   SDValue Add2;
996   auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3, SDValue A) {
997     ConstantSDNode *ConstOp;
998     if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
999         ConstOp->isOne()) {
1000       ExtOpA = Op1;
1001       ExtOpB = Op3;
1002       Add2 = A;
1003       return true;
1004     }
1005     if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
1006         ConstOp->isOne()) {
1007       ExtOpA = Op1;
1008       ExtOpB = Op2;
1009       Add2 = A;
1010       return true;
1011     }
1012     return false;
1013   };
1014   bool IsCeil =
1015       (ExtOpA.getOpcode() == ISD::ADD &&
1016        MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB, ExtOpA)) ||
1017       (ExtOpB.getOpcode() == ISD::ADD &&
1018        MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA, ExtOpB));
1019 
1020   // If the shift is signed (sra):
1021   //  - Needs >= 2 sign bit for both operands.
1022   //  - Needs >= 2 zero bits.
1023   // If the shift is unsigned (srl):
1024   //  - Needs >= 1 zero bit for both operands.
1025   //  - Needs 1 demanded bit zero and >= 2 sign bits.
1026   SelectionDAG &DAG = TLO.DAG;
1027   unsigned ShiftOpc = Op.getOpcode();
1028   bool IsSigned = false;
1029   unsigned KnownBits;
1030   unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
1031   unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
1032   unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
1033   unsigned NumZeroA =
1034       DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
1035   unsigned NumZeroB =
1036       DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
1037   unsigned NumZero = std::min(NumZeroA, NumZeroB);
1038 
1039   switch (ShiftOpc) {
1040   default:
1041     llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
1042   case ISD::SRA: {
1043     if (NumZero >= 2 && NumSigned < NumZero) {
1044       IsSigned = false;
1045       KnownBits = NumZero;
1046       break;
1047     }
1048     if (NumSigned >= 1) {
1049       IsSigned = true;
1050       KnownBits = NumSigned;
1051       break;
1052     }
1053     return SDValue();
1054   }
1055   case ISD::SRL: {
1056     if (NumZero >= 1 && NumSigned < NumZero) {
1057       IsSigned = false;
1058       KnownBits = NumZero;
1059       break;
1060     }
1061     if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
1062       IsSigned = true;
1063       KnownBits = NumSigned;
1064       break;
1065     }
1066     return SDValue();
1067   }
1068   }
1069 
1070   unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
1071                            : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
1072 
1073   // Find the smallest power-2 type that is legal for this vector size and
1074   // operation, given the original type size and the number of known sign/zero
1075   // bits.
1076   EVT VT = Op.getValueType();
1077   unsigned MinWidth =
1078       std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
1079   EVT NVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_ceil(MinWidth));
1080   if (NVT.getScalarSizeInBits() > VT.getScalarSizeInBits())
1081     return SDValue();
1082   if (VT.isVector())
1083     NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
1084   if (TLO.LegalTypes() && !TLI.isOperationLegal(AVGOpc, NVT)) {
1085     // If we could not transform, and (both) adds are nuw/nsw, we can use the
1086     // larger type size to do the transform.
1087     if (TLO.LegalOperations() && !TLI.isOperationLegal(AVGOpc, VT))
1088       return SDValue();
1089     if (DAG.willNotOverflowAdd(IsSigned, Add.getOperand(0),
1090                                Add.getOperand(1)) &&
1091         (!Add2 || DAG.willNotOverflowAdd(IsSigned, Add2.getOperand(0),
1092                                          Add2.getOperand(1))))
1093       NVT = VT;
1094     else
1095       return SDValue();
1096   }
1097 
1098   // Don't create a AVGFLOOR node with a scalar constant unless its legal as
1099   // this is likely to stop other folds (reassociation, value tracking etc.)
1100   if (!IsCeil && !TLI.isOperationLegal(AVGOpc, NVT) &&
1101       (isa<ConstantSDNode>(ExtOpA) || isa<ConstantSDNode>(ExtOpB)))
1102     return SDValue();
1103 
1104   SDLoc DL(Op);
1105   SDValue ResultAVG =
1106       DAG.getNode(AVGOpc, DL, NVT, DAG.getExtOrTrunc(IsSigned, ExtOpA, DL, NVT),
1107                   DAG.getExtOrTrunc(IsSigned, ExtOpB, DL, NVT));
1108   return DAG.getExtOrTrunc(IsSigned, ResultAVG, DL, VT);
1109 }
1110 
1111 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
1112 /// result of Op are ever used downstream. If we can use this information to
1113 /// simplify Op, create a new simplified DAG node and return true, returning the
1114 /// original and new nodes in Old and New. Otherwise, analyze the expression and
1115 /// return a mask of Known bits for the expression (used to simplify the
1116 /// caller).  The Known bits may only be accurate for those bits in the
1117 /// OriginalDemandedBits and OriginalDemandedElts.
1118 bool TargetLowering::SimplifyDemandedBits(
1119     SDValue Op, const APInt &OriginalDemandedBits,
1120     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
1121     unsigned Depth, bool AssumeSingleUse) const {
1122   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
1123   assert(Op.getScalarValueSizeInBits() == BitWidth &&
1124          "Mask size mismatches value type size!");
1125 
1126   // Don't know anything.
1127   Known = KnownBits(BitWidth);
1128 
1129   EVT VT = Op.getValueType();
1130   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
1131   unsigned NumElts = OriginalDemandedElts.getBitWidth();
1132   assert((!VT.isFixedLengthVector() || NumElts == VT.getVectorNumElements()) &&
1133          "Unexpected vector size");
1134 
1135   APInt DemandedBits = OriginalDemandedBits;
1136   APInt DemandedElts = OriginalDemandedElts;
1137   SDLoc dl(Op);
1138 
1139   // Undef operand.
1140   if (Op.isUndef())
1141     return false;
1142 
1143   // We can't simplify target constants.
1144   if (Op.getOpcode() == ISD::TargetConstant)
1145     return false;
1146 
1147   if (Op.getOpcode() == ISD::Constant) {
1148     // We know all of the bits for a constant!
1149     Known = KnownBits::makeConstant(Op->getAsAPIntVal());
1150     return false;
1151   }
1152 
1153   if (Op.getOpcode() == ISD::ConstantFP) {
1154     // We know all of the bits for a floating point constant!
1155     Known = KnownBits::makeConstant(
1156         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
1157     return false;
1158   }
1159 
1160   // Other users may use these bits.
1161   bool HasMultiUse = false;
1162   if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) {
1163     if (Depth >= SelectionDAG::MaxRecursionDepth) {
1164       // Limit search depth.
1165       return false;
1166     }
1167     // Allow multiple uses, just set the DemandedBits/Elts to all bits.
1168     DemandedBits = APInt::getAllOnes(BitWidth);
1169     DemandedElts = APInt::getAllOnes(NumElts);
1170     HasMultiUse = true;
1171   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1172     // Not demanding any bits/elts from Op.
1173     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1174   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
1175     // Limit search depth.
1176     return false;
1177   }
1178 
1179   KnownBits Known2;
1180   switch (Op.getOpcode()) {
1181   case ISD::SCALAR_TO_VECTOR: {
1182     if (VT.isScalableVector())
1183       return false;
1184     if (!DemandedElts[0])
1185       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1186 
1187     KnownBits SrcKnown;
1188     SDValue Src = Op.getOperand(0);
1189     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1190     APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth);
1191     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
1192       return true;
1193 
1194     // Upper elements are undef, so only get the knownbits if we just demand
1195     // the bottom element.
1196     if (DemandedElts == 1)
1197       Known = SrcKnown.anyextOrTrunc(BitWidth);
1198     break;
1199   }
1200   case ISD::BUILD_VECTOR:
1201     // Collect the known bits that are shared by every demanded element.
1202     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
1203     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1204     return false; // Don't fall through, will infinitely loop.
1205   case ISD::SPLAT_VECTOR: {
1206     SDValue Scl = Op.getOperand(0);
1207     APInt DemandedSclBits = DemandedBits.zextOrTrunc(Scl.getValueSizeInBits());
1208     KnownBits KnownScl;
1209     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1210       return true;
1211 
1212     // Implicitly truncate the bits to match the official semantics of
1213     // SPLAT_VECTOR.
1214     Known = KnownScl.trunc(BitWidth);
1215     break;
1216   }
1217   case ISD::LOAD: {
1218     auto *LD = cast<LoadSDNode>(Op);
1219     if (getTargetConstantFromLoad(LD)) {
1220       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1221       return false; // Don't fall through, will infinitely loop.
1222     }
1223     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1224       // If this is a ZEXTLoad and we are looking at the loaded value.
1225       EVT MemVT = LD->getMemoryVT();
1226       unsigned MemBits = MemVT.getScalarSizeInBits();
1227       Known.Zero.setBitsFrom(MemBits);
1228       return false; // Don't fall through, will infinitely loop.
1229     }
1230     break;
1231   }
1232   case ISD::INSERT_VECTOR_ELT: {
1233     if (VT.isScalableVector())
1234       return false;
1235     SDValue Vec = Op.getOperand(0);
1236     SDValue Scl = Op.getOperand(1);
1237     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1238     EVT VecVT = Vec.getValueType();
1239 
1240     // If index isn't constant, assume we need all vector elements AND the
1241     // inserted element.
1242     APInt DemandedVecElts(DemandedElts);
1243     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1244       unsigned Idx = CIdx->getZExtValue();
1245       DemandedVecElts.clearBit(Idx);
1246 
1247       // Inserted element is not required.
1248       if (!DemandedElts[Idx])
1249         return TLO.CombineTo(Op, Vec);
1250     }
1251 
1252     KnownBits KnownScl;
1253     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1254     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1255     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1256       return true;
1257 
1258     Known = KnownScl.anyextOrTrunc(BitWidth);
1259 
1260     KnownBits KnownVec;
1261     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1262                              Depth + 1))
1263       return true;
1264 
1265     if (!!DemandedVecElts)
1266       Known = Known.intersectWith(KnownVec);
1267 
1268     return false;
1269   }
1270   case ISD::INSERT_SUBVECTOR: {
1271     if (VT.isScalableVector())
1272       return false;
1273     // Demand any elements from the subvector and the remainder from the src its
1274     // inserted into.
1275     SDValue Src = Op.getOperand(0);
1276     SDValue Sub = Op.getOperand(1);
1277     uint64_t Idx = Op.getConstantOperandVal(2);
1278     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1279     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1280     APInt DemandedSrcElts = DemandedElts;
1281     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1282 
1283     KnownBits KnownSub, KnownSrc;
1284     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1285                              Depth + 1))
1286       return true;
1287     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1288                              Depth + 1))
1289       return true;
1290 
1291     Known.Zero.setAllBits();
1292     Known.One.setAllBits();
1293     if (!!DemandedSubElts)
1294       Known = Known.intersectWith(KnownSub);
1295     if (!!DemandedSrcElts)
1296       Known = Known.intersectWith(KnownSrc);
1297 
1298     // Attempt to avoid multi-use src if we don't need anything from it.
1299     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1300         !DemandedSrcElts.isAllOnes()) {
1301       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1302           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1303       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1304           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1305       if (NewSub || NewSrc) {
1306         NewSub = NewSub ? NewSub : Sub;
1307         NewSrc = NewSrc ? NewSrc : Src;
1308         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1309                                         Op.getOperand(2));
1310         return TLO.CombineTo(Op, NewOp);
1311       }
1312     }
1313     break;
1314   }
1315   case ISD::EXTRACT_SUBVECTOR: {
1316     if (VT.isScalableVector())
1317       return false;
1318     // Offset the demanded elts by the subvector index.
1319     SDValue Src = Op.getOperand(0);
1320     if (Src.getValueType().isScalableVector())
1321       break;
1322     uint64_t Idx = Op.getConstantOperandVal(1);
1323     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1324     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
1325 
1326     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1327                              Depth + 1))
1328       return true;
1329 
1330     // Attempt to avoid multi-use src if we don't need anything from it.
1331     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1332       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1333           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1334       if (DemandedSrc) {
1335         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1336                                         Op.getOperand(1));
1337         return TLO.CombineTo(Op, NewOp);
1338       }
1339     }
1340     break;
1341   }
1342   case ISD::CONCAT_VECTORS: {
1343     if (VT.isScalableVector())
1344       return false;
1345     Known.Zero.setAllBits();
1346     Known.One.setAllBits();
1347     EVT SubVT = Op.getOperand(0).getValueType();
1348     unsigned NumSubVecs = Op.getNumOperands();
1349     unsigned NumSubElts = SubVT.getVectorNumElements();
1350     for (unsigned i = 0; i != NumSubVecs; ++i) {
1351       APInt DemandedSubElts =
1352           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1353       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1354                                Known2, TLO, Depth + 1))
1355         return true;
1356       // Known bits are shared by every demanded subvector element.
1357       if (!!DemandedSubElts)
1358         Known = Known.intersectWith(Known2);
1359     }
1360     break;
1361   }
1362   case ISD::VECTOR_SHUFFLE: {
1363     assert(!VT.isScalableVector());
1364     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1365 
1366     // Collect demanded elements from shuffle operands..
1367     APInt DemandedLHS, DemandedRHS;
1368     if (!getShuffleDemandedElts(NumElts, ShuffleMask, DemandedElts, DemandedLHS,
1369                                 DemandedRHS))
1370       break;
1371 
1372     if (!!DemandedLHS || !!DemandedRHS) {
1373       SDValue Op0 = Op.getOperand(0);
1374       SDValue Op1 = Op.getOperand(1);
1375 
1376       Known.Zero.setAllBits();
1377       Known.One.setAllBits();
1378       if (!!DemandedLHS) {
1379         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1380                                  Depth + 1))
1381           return true;
1382         Known = Known.intersectWith(Known2);
1383       }
1384       if (!!DemandedRHS) {
1385         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1386                                  Depth + 1))
1387           return true;
1388         Known = Known.intersectWith(Known2);
1389       }
1390 
1391       // Attempt to avoid multi-use ops if we don't need anything from them.
1392       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1393           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1394       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1395           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1396       if (DemandedOp0 || DemandedOp1) {
1397         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1398         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1399         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1400         return TLO.CombineTo(Op, NewOp);
1401       }
1402     }
1403     break;
1404   }
1405   case ISD::AND: {
1406     SDValue Op0 = Op.getOperand(0);
1407     SDValue Op1 = Op.getOperand(1);
1408 
1409     // If the RHS is a constant, check to see if the LHS would be zero without
1410     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1411     // simplify the LHS, here we're using information from the LHS to simplify
1412     // the RHS.
1413     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1, DemandedElts)) {
1414       // Do not increment Depth here; that can cause an infinite loop.
1415       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1416       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1417       if ((LHSKnown.Zero & DemandedBits) ==
1418           (~RHSC->getAPIntValue() & DemandedBits))
1419         return TLO.CombineTo(Op, Op0);
1420 
1421       // If any of the set bits in the RHS are known zero on the LHS, shrink
1422       // the constant.
1423       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1424                                  DemandedElts, TLO))
1425         return true;
1426 
1427       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1428       // constant, but if this 'and' is only clearing bits that were just set by
1429       // the xor, then this 'and' can be eliminated by shrinking the mask of
1430       // the xor. For example, for a 32-bit X:
1431       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1432       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1433           LHSKnown.One == ~RHSC->getAPIntValue()) {
1434         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1435         return TLO.CombineTo(Op, Xor);
1436       }
1437     }
1438 
1439     // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I)
1440     // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits).
1441     if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR && !VT.isScalableVector() &&
1442         (Op0.getOperand(0).isUndef() ||
1443          ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) &&
1444         Op0->hasOneUse()) {
1445       unsigned NumSubElts =
1446           Op0.getOperand(1).getValueType().getVectorNumElements();
1447       unsigned SubIdx = Op0.getConstantOperandVal(2);
1448       APInt DemandedSub =
1449           APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts);
1450       KnownBits KnownSubMask =
1451           TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1);
1452       if (DemandedBits.isSubsetOf(KnownSubMask.One)) {
1453         SDValue NewAnd =
1454             TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1);
1455         SDValue NewInsert =
1456             TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd,
1457                             Op0.getOperand(1), Op0.getOperand(2));
1458         return TLO.CombineTo(Op, NewInsert);
1459       }
1460     }
1461 
1462     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1463                              Depth + 1))
1464       return true;
1465     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1466                              Known2, TLO, Depth + 1))
1467       return true;
1468 
1469     // If all of the demanded bits are known one on one side, return the other.
1470     // These bits cannot contribute to the result of the 'and'.
1471     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1472       return TLO.CombineTo(Op, Op0);
1473     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1474       return TLO.CombineTo(Op, Op1);
1475     // If all of the demanded bits in the inputs are known zeros, return zero.
1476     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1477       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1478     // If the RHS is a constant, see if we can simplify it.
1479     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1480                                TLO))
1481       return true;
1482     // If the operation can be done in a smaller type, do so.
1483     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1484       return true;
1485 
1486     // Attempt to avoid multi-use ops if we don't need anything from them.
1487     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1488       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1489           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1490       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1491           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1492       if (DemandedOp0 || DemandedOp1) {
1493         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1494         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1495         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1496         return TLO.CombineTo(Op, NewOp);
1497       }
1498     }
1499 
1500     Known &= Known2;
1501     break;
1502   }
1503   case ISD::OR: {
1504     SDValue Op0 = Op.getOperand(0);
1505     SDValue Op1 = Op.getOperand(1);
1506     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1507                              Depth + 1)) {
1508       Op->dropFlags(SDNodeFlags::Disjoint);
1509       return true;
1510     }
1511 
1512     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1513                              Known2, TLO, Depth + 1)) {
1514       Op->dropFlags(SDNodeFlags::Disjoint);
1515       return true;
1516     }
1517 
1518     // If all of the demanded bits are known zero on one side, return the other.
1519     // These bits cannot contribute to the result of the 'or'.
1520     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1521       return TLO.CombineTo(Op, Op0);
1522     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1523       return TLO.CombineTo(Op, Op1);
1524     // If the RHS is a constant, see if we can simplify it.
1525     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1526       return true;
1527     // If the operation can be done in a smaller type, do so.
1528     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1529       return true;
1530 
1531     // Attempt to avoid multi-use ops if we don't need anything from them.
1532     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1533       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1534           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1535       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1536           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1537       if (DemandedOp0 || DemandedOp1) {
1538         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1539         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1540         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1541         return TLO.CombineTo(Op, NewOp);
1542       }
1543     }
1544 
1545     // (or (and X, C1), (and (or X, Y), C2)) -> (or (and X, C1|C2), (and Y, C2))
1546     // TODO: Use SimplifyMultipleUseDemandedBits to peek through masks.
1547     if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::AND &&
1548         Op0->hasOneUse() && Op1->hasOneUse()) {
1549       // Attempt to match all commutations - m_c_Or would've been useful!
1550       for (int I = 0; I != 2; ++I) {
1551         SDValue X = Op.getOperand(I).getOperand(0);
1552         SDValue C1 = Op.getOperand(I).getOperand(1);
1553         SDValue Alt = Op.getOperand(1 - I).getOperand(0);
1554         SDValue C2 = Op.getOperand(1 - I).getOperand(1);
1555         if (Alt.getOpcode() == ISD::OR) {
1556           for (int J = 0; J != 2; ++J) {
1557             if (X == Alt.getOperand(J)) {
1558               SDValue Y = Alt.getOperand(1 - J);
1559               if (SDValue C12 = TLO.DAG.FoldConstantArithmetic(ISD::OR, dl, VT,
1560                                                                {C1, C2})) {
1561                 SDValue MaskX = TLO.DAG.getNode(ISD::AND, dl, VT, X, C12);
1562                 SDValue MaskY = TLO.DAG.getNode(ISD::AND, dl, VT, Y, C2);
1563                 return TLO.CombineTo(
1564                     Op, TLO.DAG.getNode(ISD::OR, dl, VT, MaskX, MaskY));
1565               }
1566             }
1567           }
1568         }
1569       }
1570     }
1571 
1572     Known |= Known2;
1573     break;
1574   }
1575   case ISD::XOR: {
1576     SDValue Op0 = Op.getOperand(0);
1577     SDValue Op1 = Op.getOperand(1);
1578 
1579     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1580                              Depth + 1))
1581       return true;
1582     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1583                              Depth + 1))
1584       return true;
1585 
1586     // If all of the demanded bits are known zero on one side, return the other.
1587     // These bits cannot contribute to the result of the 'xor'.
1588     if (DemandedBits.isSubsetOf(Known.Zero))
1589       return TLO.CombineTo(Op, Op0);
1590     if (DemandedBits.isSubsetOf(Known2.Zero))
1591       return TLO.CombineTo(Op, Op1);
1592     // If the operation can be done in a smaller type, do so.
1593     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1594       return true;
1595 
1596     // If all of the unknown bits are known to be zero on one side or the other
1597     // turn this into an *inclusive* or.
1598     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1599     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1600       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1601 
1602     ConstantSDNode *C = isConstOrConstSplat(Op1, DemandedElts);
1603     if (C) {
1604       // If one side is a constant, and all of the set bits in the constant are
1605       // also known set on the other side, turn this into an AND, as we know
1606       // the bits will be cleared.
1607       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1608       // NB: it is okay if more bits are known than are requested
1609       if (C->getAPIntValue() == Known2.One) {
1610         SDValue ANDC =
1611             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1612         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1613       }
1614 
1615       // If the RHS is a constant, see if we can change it. Don't alter a -1
1616       // constant because that's a 'not' op, and that is better for combining
1617       // and codegen.
1618       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1619         // We're flipping all demanded bits. Flip the undemanded bits too.
1620         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1621         return TLO.CombineTo(Op, New);
1622       }
1623 
1624       unsigned Op0Opcode = Op0.getOpcode();
1625       if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) {
1626         if (ConstantSDNode *ShiftC =
1627                 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1628           // Don't crash on an oversized shift. We can not guarantee that a
1629           // bogus shift has been simplified to undef.
1630           if (ShiftC->getAPIntValue().ult(BitWidth)) {
1631             uint64_t ShiftAmt = ShiftC->getZExtValue();
1632             APInt Ones = APInt::getAllOnes(BitWidth);
1633             Ones = Op0Opcode == ISD::SHL ? Ones.shl(ShiftAmt)
1634                                          : Ones.lshr(ShiftAmt);
1635             if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) &&
1636                 isDesirableToCommuteXorWithShift(Op.getNode())) {
1637               // If the xor constant is a demanded mask, do a 'not' before the
1638               // shift:
1639               // xor (X << ShiftC), XorC --> (not X) << ShiftC
1640               // xor (X >> ShiftC), XorC --> (not X) >> ShiftC
1641               SDValue Not = TLO.DAG.getNOT(dl, Op0.getOperand(0), VT);
1642               return TLO.CombineTo(Op, TLO.DAG.getNode(Op0Opcode, dl, VT, Not,
1643                                                        Op0.getOperand(1)));
1644             }
1645           }
1646         }
1647       }
1648     }
1649 
1650     // If we can't turn this into a 'not', try to shrink the constant.
1651     if (!C || !C->isAllOnes())
1652       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1653         return true;
1654 
1655     // Attempt to avoid multi-use ops if we don't need anything from them.
1656     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1657       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1658           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1659       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1660           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1661       if (DemandedOp0 || DemandedOp1) {
1662         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1663         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1664         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1665         return TLO.CombineTo(Op, NewOp);
1666       }
1667     }
1668 
1669     Known ^= Known2;
1670     break;
1671   }
1672   case ISD::SELECT:
1673     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1674                              Known, TLO, Depth + 1))
1675       return true;
1676     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
1677                              Known2, TLO, Depth + 1))
1678       return true;
1679 
1680     // If the operands are constants, see if we can simplify them.
1681     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1682       return true;
1683 
1684     // Only known if known in both the LHS and RHS.
1685     Known = Known.intersectWith(Known2);
1686     break;
1687   case ISD::VSELECT:
1688     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1689                              Known, TLO, Depth + 1))
1690       return true;
1691     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
1692                              Known2, TLO, Depth + 1))
1693       return true;
1694 
1695     // Only known if known in both the LHS and RHS.
1696     Known = Known.intersectWith(Known2);
1697     break;
1698   case ISD::SELECT_CC:
1699     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, DemandedElts,
1700                              Known, TLO, Depth + 1))
1701       return true;
1702     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1703                              Known2, TLO, Depth + 1))
1704       return true;
1705 
1706     // If the operands are constants, see if we can simplify them.
1707     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1708       return true;
1709 
1710     // Only known if known in both the LHS and RHS.
1711     Known = Known.intersectWith(Known2);
1712     break;
1713   case ISD::SETCC: {
1714     SDValue Op0 = Op.getOperand(0);
1715     SDValue Op1 = Op.getOperand(1);
1716     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1717     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1718     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1719     // -1, we may be able to bypass the setcc.
1720     if (DemandedBits.isSignMask() &&
1721         Op0.getScalarValueSizeInBits() == BitWidth &&
1722         getBooleanContents(Op0.getValueType()) ==
1723             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1724       // If we're testing X < 0, then this compare isn't needed - just use X!
1725       // FIXME: We're limiting to integer types here, but this should also work
1726       // if we don't care about FP signed-zero. The use of SETLT with FP means
1727       // that we don't care about NaNs.
1728       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1729           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1730         return TLO.CombineTo(Op, Op0);
1731 
1732       // TODO: Should we check for other forms of sign-bit comparisons?
1733       // Examples: X <= -1, X >= 0
1734     }
1735     if (getBooleanContents(Op0.getValueType()) ==
1736             TargetLowering::ZeroOrOneBooleanContent &&
1737         BitWidth > 1)
1738       Known.Zero.setBitsFrom(1);
1739     break;
1740   }
1741   case ISD::SHL: {
1742     SDValue Op0 = Op.getOperand(0);
1743     SDValue Op1 = Op.getOperand(1);
1744     EVT ShiftVT = Op1.getValueType();
1745 
1746     if (std::optional<uint64_t> KnownSA =
1747             TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) {
1748       unsigned ShAmt = *KnownSA;
1749       if (ShAmt == 0)
1750         return TLO.CombineTo(Op, Op0);
1751 
1752       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1753       // single shift.  We can do this if the bottom bits (which are shifted
1754       // out) are never demanded.
1755       // TODO - support non-uniform vector amounts.
1756       if (Op0.getOpcode() == ISD::SRL) {
1757         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1758           if (std::optional<uint64_t> InnerSA =
1759                   TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
1760             unsigned C1 = *InnerSA;
1761             unsigned Opc = ISD::SHL;
1762             int Diff = ShAmt - C1;
1763             if (Diff < 0) {
1764               Diff = -Diff;
1765               Opc = ISD::SRL;
1766             }
1767             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1768             return TLO.CombineTo(
1769                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1770           }
1771         }
1772       }
1773 
1774       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1775       // are not demanded. This will likely allow the anyext to be folded away.
1776       // TODO - support non-uniform vector amounts.
1777       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1778         SDValue InnerOp = Op0.getOperand(0);
1779         EVT InnerVT = InnerOp.getValueType();
1780         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1781         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1782             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1783           SDValue NarrowShl = TLO.DAG.getNode(
1784               ISD::SHL, dl, InnerVT, InnerOp,
1785               TLO.DAG.getShiftAmountConstant(ShAmt, InnerVT, dl));
1786           return TLO.CombineTo(
1787               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1788         }
1789 
1790         // Repeat the SHL optimization above in cases where an extension
1791         // intervenes: (shl (anyext (shr x, c1)), c2) to
1792         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1793         // aren't demanded (as above) and that the shifted upper c1 bits of
1794         // x aren't demanded.
1795         // TODO - support non-uniform vector amounts.
1796         if (InnerOp.getOpcode() == ISD::SRL && Op0.hasOneUse() &&
1797             InnerOp.hasOneUse()) {
1798           if (std::optional<uint64_t> SA2 = TLO.DAG.getValidShiftAmount(
1799                   InnerOp, DemandedElts, Depth + 2)) {
1800             unsigned InnerShAmt = *SA2;
1801             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1802                 DemandedBits.getActiveBits() <=
1803                     (InnerBits - InnerShAmt + ShAmt) &&
1804                 DemandedBits.countr_zero() >= ShAmt) {
1805               SDValue NewSA =
1806                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1807               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1808                                                InnerOp.getOperand(0));
1809               return TLO.CombineTo(
1810                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1811             }
1812           }
1813         }
1814       }
1815 
1816       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1817       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1818                                Depth + 1)) {
1819         // Disable the nsw and nuw flags. We can no longer guarantee that we
1820         // won't wrap after simplification.
1821         Op->dropFlags(SDNodeFlags::NoWrap);
1822         return true;
1823       }
1824       Known.Zero <<= ShAmt;
1825       Known.One <<= ShAmt;
1826       // low bits known zero.
1827       Known.Zero.setLowBits(ShAmt);
1828 
1829       // Attempt to avoid multi-use ops if we don't need anything from them.
1830       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1831         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1832             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1833         if (DemandedOp0) {
1834           SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1);
1835           return TLO.CombineTo(Op, NewOp);
1836         }
1837       }
1838 
1839       // TODO: Can we merge this fold with the one below?
1840       // Try shrinking the operation as long as the shift amount will still be
1841       // in range.
1842       if (ShAmt < DemandedBits.getActiveBits() && !VT.isVector() &&
1843           Op.getNode()->hasOneUse()) {
1844         // Search for the smallest integer type with free casts to and from
1845         // Op's type. For expedience, just check power-of-2 integer types.
1846         unsigned DemandedSize = DemandedBits.getActiveBits();
1847         for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize);
1848              SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1849           EVT SmallVT = EVT::getIntegerVT(*TLO.DAG.getContext(), SmallVTBits);
1850           if (isNarrowingProfitable(Op.getNode(), VT, SmallVT) &&
1851               isTypeDesirableForOp(ISD::SHL, SmallVT) &&
1852               isTruncateFree(VT, SmallVT) && isZExtFree(SmallVT, VT) &&
1853               (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, SmallVT))) {
1854             assert(DemandedSize <= SmallVTBits &&
1855                    "Narrowed below demanded bits?");
1856             // We found a type with free casts.
1857             SDValue NarrowShl = TLO.DAG.getNode(
1858                 ISD::SHL, dl, SmallVT,
1859                 TLO.DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
1860                 TLO.DAG.getShiftAmountConstant(ShAmt, SmallVT, dl));
1861             return TLO.CombineTo(
1862                 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1863           }
1864         }
1865       }
1866 
1867       // Narrow shift to lower half - similar to ShrinkDemandedOp.
1868       // (shl i64:x, K) -> (i64 zero_extend (shl (i32 (trunc i64:x)), K))
1869       // Only do this if we demand the upper half so the knownbits are correct.
1870       unsigned HalfWidth = BitWidth / 2;
1871       if ((BitWidth % 2) == 0 && !VT.isVector() && ShAmt < HalfWidth &&
1872           DemandedBits.countLeadingOnes() >= HalfWidth) {
1873         EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), HalfWidth);
1874         if (isNarrowingProfitable(Op.getNode(), VT, HalfVT) &&
1875             isTypeDesirableForOp(ISD::SHL, HalfVT) &&
1876             isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) &&
1877             (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, HalfVT))) {
1878           // If we're demanding the upper bits at all, we must ensure
1879           // that the upper bits of the shift result are known to be zero,
1880           // which is equivalent to the narrow shift being NUW.
1881           if (bool IsNUW = (Known.countMinLeadingZeros() >= HalfWidth)) {
1882             bool IsNSW = Known.countMinSignBits() > HalfWidth;
1883             SDNodeFlags Flags;
1884             Flags.setNoSignedWrap(IsNSW);
1885             Flags.setNoUnsignedWrap(IsNUW);
1886             SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0);
1887             SDValue NewShiftAmt =
1888                 TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl);
1889             SDValue NewShift = TLO.DAG.getNode(ISD::SHL, dl, HalfVT, NewOp,
1890                                                NewShiftAmt, Flags);
1891             SDValue NewExt =
1892                 TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift);
1893             return TLO.CombineTo(Op, NewExt);
1894           }
1895         }
1896       }
1897     } else {
1898       // This is a variable shift, so we can't shift the demand mask by a known
1899       // amount. But if we are not demanding high bits, then we are not
1900       // demanding those bits from the pre-shifted operand either.
1901       if (unsigned CTLZ = DemandedBits.countl_zero()) {
1902         APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ));
1903         if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO,
1904                                  Depth + 1)) {
1905           // Disable the nsw and nuw flags. We can no longer guarantee that we
1906           // won't wrap after simplification.
1907           Op->dropFlags(SDNodeFlags::NoWrap);
1908           return true;
1909         }
1910         Known.resetAll();
1911       }
1912     }
1913 
1914     // If we are only demanding sign bits then we can use the shift source
1915     // directly.
1916     if (std::optional<uint64_t> MaxSA =
1917             TLO.DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
1918       unsigned ShAmt = *MaxSA;
1919       unsigned NumSignBits =
1920           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1921       unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero();
1922       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1923         return TLO.CombineTo(Op, Op0);
1924     }
1925     break;
1926   }
1927   case ISD::SRL: {
1928     SDValue Op0 = Op.getOperand(0);
1929     SDValue Op1 = Op.getOperand(1);
1930     EVT ShiftVT = Op1.getValueType();
1931 
1932     if (std::optional<uint64_t> KnownSA =
1933             TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) {
1934       unsigned ShAmt = *KnownSA;
1935       if (ShAmt == 0)
1936         return TLO.CombineTo(Op, Op0);
1937 
1938       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1939       // single shift.  We can do this if the top bits (which are shifted out)
1940       // are never demanded.
1941       // TODO - support non-uniform vector amounts.
1942       if (Op0.getOpcode() == ISD::SHL) {
1943         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1944           if (std::optional<uint64_t> InnerSA =
1945                   TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
1946             unsigned C1 = *InnerSA;
1947             unsigned Opc = ISD::SRL;
1948             int Diff = ShAmt - C1;
1949             if (Diff < 0) {
1950               Diff = -Diff;
1951               Opc = ISD::SHL;
1952             }
1953             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1954             return TLO.CombineTo(
1955                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1956           }
1957         }
1958       }
1959 
1960       // If this is (srl (sra X, C1), ShAmt), see if we can combine this into a
1961       // single sra. We can do this if the top bits are never demanded.
1962       if (Op0.getOpcode() == ISD::SRA && Op0.hasOneUse()) {
1963         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1964           if (std::optional<uint64_t> InnerSA =
1965                   TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
1966             unsigned C1 = *InnerSA;
1967             // Clamp the combined shift amount if it exceeds the bit width.
1968             unsigned Combined = std::min(C1 + ShAmt, BitWidth - 1);
1969             SDValue NewSA = TLO.DAG.getConstant(Combined, dl, ShiftVT);
1970             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRA, dl, VT,
1971                                                      Op0.getOperand(0), NewSA));
1972           }
1973         }
1974       }
1975 
1976       APInt InDemandedMask = (DemandedBits << ShAmt);
1977 
1978       // If the shift is exact, then it does demand the low bits (and knows that
1979       // they are zero).
1980       if (Op->getFlags().hasExact())
1981         InDemandedMask.setLowBits(ShAmt);
1982 
1983       // Narrow shift to lower half - similar to ShrinkDemandedOp.
1984       // (srl i64:x, K) -> (i64 zero_extend (srl (i32 (trunc i64:x)), K))
1985       if ((BitWidth % 2) == 0 && !VT.isVector()) {
1986         APInt HiBits = APInt::getHighBitsSet(BitWidth, BitWidth / 2);
1987         EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), BitWidth / 2);
1988         if (isNarrowingProfitable(Op.getNode(), VT, HalfVT) &&
1989             isTypeDesirableForOp(ISD::SRL, HalfVT) &&
1990             isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) &&
1991             (!TLO.LegalOperations() || isOperationLegal(ISD::SRL, HalfVT)) &&
1992             ((InDemandedMask.countLeadingZeros() >= (BitWidth / 2)) ||
1993              TLO.DAG.MaskedValueIsZero(Op0, HiBits))) {
1994           SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0);
1995           SDValue NewShiftAmt =
1996               TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl);
1997           SDValue NewShift =
1998               TLO.DAG.getNode(ISD::SRL, dl, HalfVT, NewOp, NewShiftAmt);
1999           return TLO.CombineTo(
2000               Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift));
2001         }
2002       }
2003 
2004       // Compute the new bits that are at the top now.
2005       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
2006                                Depth + 1))
2007         return true;
2008       Known.Zero.lshrInPlace(ShAmt);
2009       Known.One.lshrInPlace(ShAmt);
2010       // High bits known zero.
2011       Known.Zero.setHighBits(ShAmt);
2012 
2013       // Attempt to avoid multi-use ops if we don't need anything from them.
2014       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2015         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2016             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
2017         if (DemandedOp0) {
2018           SDValue NewOp = TLO.DAG.getNode(ISD::SRL, dl, VT, DemandedOp0, Op1);
2019           return TLO.CombineTo(Op, NewOp);
2020         }
2021       }
2022     } else {
2023       // Use generic knownbits computation as it has support for non-uniform
2024       // shift amounts.
2025       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2026     }
2027 
2028     // Try to match AVG patterns (after shift simplification).
2029     if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits,
2030                                         DemandedElts, Depth + 1))
2031       return TLO.CombineTo(Op, AVG);
2032 
2033     break;
2034   }
2035   case ISD::SRA: {
2036     SDValue Op0 = Op.getOperand(0);
2037     SDValue Op1 = Op.getOperand(1);
2038     EVT ShiftVT = Op1.getValueType();
2039 
2040     // If we only want bits that already match the signbit then we don't need
2041     // to shift.
2042     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countr_zero();
2043     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
2044         NumHiDemandedBits)
2045       return TLO.CombineTo(Op, Op0);
2046 
2047     // If this is an arithmetic shift right and only the low-bit is set, we can
2048     // always convert this into a logical shr, even if the shift amount is
2049     // variable.  The low bit of the shift cannot be an input sign bit unless
2050     // the shift amount is >= the size of the datatype, which is undefined.
2051     if (DemandedBits.isOne())
2052       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
2053 
2054     if (std::optional<uint64_t> KnownSA =
2055             TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) {
2056       unsigned ShAmt = *KnownSA;
2057       if (ShAmt == 0)
2058         return TLO.CombineTo(Op, Op0);
2059 
2060       // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target
2061       // supports sext_inreg.
2062       if (Op0.getOpcode() == ISD::SHL) {
2063         if (std::optional<uint64_t> InnerSA =
2064                 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
2065           unsigned LowBits = BitWidth - ShAmt;
2066           EVT ExtVT = EVT::getIntegerVT(*TLO.DAG.getContext(), LowBits);
2067           if (VT.isVector())
2068             ExtVT = EVT::getVectorVT(*TLO.DAG.getContext(), ExtVT,
2069                                      VT.getVectorElementCount());
2070 
2071           if (*InnerSA == ShAmt) {
2072             if (!TLO.LegalOperations() ||
2073                 getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) == Legal)
2074               return TLO.CombineTo(
2075                   Op, TLO.DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT,
2076                                       Op0.getOperand(0),
2077                                       TLO.DAG.getValueType(ExtVT)));
2078 
2079             // Even if we can't convert to sext_inreg, we might be able to
2080             // remove this shift pair if the input is already sign extended.
2081             unsigned NumSignBits =
2082                 TLO.DAG.ComputeNumSignBits(Op0.getOperand(0), DemandedElts);
2083             if (NumSignBits > ShAmt)
2084               return TLO.CombineTo(Op, Op0.getOperand(0));
2085           }
2086         }
2087       }
2088 
2089       APInt InDemandedMask = (DemandedBits << ShAmt);
2090 
2091       // If the shift is exact, then it does demand the low bits (and knows that
2092       // they are zero).
2093       if (Op->getFlags().hasExact())
2094         InDemandedMask.setLowBits(ShAmt);
2095 
2096       // If any of the demanded bits are produced by the sign extension, we also
2097       // demand the input sign bit.
2098       if (DemandedBits.countl_zero() < ShAmt)
2099         InDemandedMask.setSignBit();
2100 
2101       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
2102                                Depth + 1))
2103         return true;
2104       Known.Zero.lshrInPlace(ShAmt);
2105       Known.One.lshrInPlace(ShAmt);
2106 
2107       // If the input sign bit is known to be zero, or if none of the top bits
2108       // are demanded, turn this into an unsigned shift right.
2109       if (Known.Zero[BitWidth - ShAmt - 1] ||
2110           DemandedBits.countl_zero() >= ShAmt) {
2111         SDNodeFlags Flags;
2112         Flags.setExact(Op->getFlags().hasExact());
2113         return TLO.CombineTo(
2114             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
2115       }
2116 
2117       int Log2 = DemandedBits.exactLogBase2();
2118       if (Log2 >= 0) {
2119         // The bit must come from the sign.
2120         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
2121         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
2122       }
2123 
2124       if (Known.One[BitWidth - ShAmt - 1])
2125         // New bits are known one.
2126         Known.One.setHighBits(ShAmt);
2127 
2128       // Attempt to avoid multi-use ops if we don't need anything from them.
2129       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2130         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2131             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
2132         if (DemandedOp0) {
2133           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
2134           return TLO.CombineTo(Op, NewOp);
2135         }
2136       }
2137     }
2138 
2139     // Try to match AVG patterns (after shift simplification).
2140     if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits,
2141                                         DemandedElts, Depth + 1))
2142       return TLO.CombineTo(Op, AVG);
2143 
2144     break;
2145   }
2146   case ISD::FSHL:
2147   case ISD::FSHR: {
2148     SDValue Op0 = Op.getOperand(0);
2149     SDValue Op1 = Op.getOperand(1);
2150     SDValue Op2 = Op.getOperand(2);
2151     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
2152 
2153     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
2154       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
2155 
2156       // For fshl, 0-shift returns the 1st arg.
2157       // For fshr, 0-shift returns the 2nd arg.
2158       if (Amt == 0) {
2159         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
2160                                  Known, TLO, Depth + 1))
2161           return true;
2162         break;
2163       }
2164 
2165       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
2166       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
2167       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
2168       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
2169       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
2170                                Depth + 1))
2171         return true;
2172       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
2173                                Depth + 1))
2174         return true;
2175 
2176       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
2177       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
2178       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
2179       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
2180       Known = Known.unionWith(Known2);
2181 
2182       // Attempt to avoid multi-use ops if we don't need anything from them.
2183       if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() ||
2184           !DemandedElts.isAllOnes()) {
2185         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2186             Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1);
2187         SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2188             Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1);
2189         if (DemandedOp0 || DemandedOp1) {
2190           DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
2191           DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
2192           SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0,
2193                                           DemandedOp1, Op2);
2194           return TLO.CombineTo(Op, NewOp);
2195         }
2196       }
2197     }
2198 
2199     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2200     if (isPowerOf2_32(BitWidth)) {
2201       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
2202       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
2203                                Known2, TLO, Depth + 1))
2204         return true;
2205     }
2206     break;
2207   }
2208   case ISD::ROTL:
2209   case ISD::ROTR: {
2210     SDValue Op0 = Op.getOperand(0);
2211     SDValue Op1 = Op.getOperand(1);
2212     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
2213 
2214     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
2215     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
2216       return TLO.CombineTo(Op, Op0);
2217 
2218     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
2219       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
2220       unsigned RevAmt = BitWidth - Amt;
2221 
2222       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
2223       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
2224       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
2225       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
2226                                Depth + 1))
2227         return true;
2228 
2229       // rot*(x, 0) --> x
2230       if (Amt == 0)
2231         return TLO.CombineTo(Op, Op0);
2232 
2233       // See if we don't demand either half of the rotated bits.
2234       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
2235           DemandedBits.countr_zero() >= (IsROTL ? Amt : RevAmt)) {
2236         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
2237         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
2238       }
2239       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
2240           DemandedBits.countl_zero() >= (IsROTL ? RevAmt : Amt)) {
2241         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
2242         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
2243       }
2244     }
2245 
2246     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2247     if (isPowerOf2_32(BitWidth)) {
2248       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
2249       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
2250                                Depth + 1))
2251         return true;
2252     }
2253     break;
2254   }
2255   case ISD::SMIN:
2256   case ISD::SMAX:
2257   case ISD::UMIN:
2258   case ISD::UMAX: {
2259     unsigned Opc = Op.getOpcode();
2260     SDValue Op0 = Op.getOperand(0);
2261     SDValue Op1 = Op.getOperand(1);
2262 
2263     // If we're only demanding signbits, then we can simplify to OR/AND node.
2264     unsigned BitOp =
2265         (Opc == ISD::SMIN || Opc == ISD::UMAX) ? ISD::OR : ISD::AND;
2266     unsigned NumSignBits =
2267         std::min(TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1),
2268                  TLO.DAG.ComputeNumSignBits(Op1, DemandedElts, Depth + 1));
2269     unsigned NumDemandedUpperBits = BitWidth - DemandedBits.countr_zero();
2270     if (NumSignBits >= NumDemandedUpperBits)
2271       return TLO.CombineTo(Op, TLO.DAG.getNode(BitOp, SDLoc(Op), VT, Op0, Op1));
2272 
2273     // Check if one arg is always less/greater than (or equal) to the other arg.
2274     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
2275     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
2276     switch (Opc) {
2277     case ISD::SMIN:
2278       if (std::optional<bool> IsSLE = KnownBits::sle(Known0, Known1))
2279         return TLO.CombineTo(Op, *IsSLE ? Op0 : Op1);
2280       if (std::optional<bool> IsSLT = KnownBits::slt(Known0, Known1))
2281         return TLO.CombineTo(Op, *IsSLT ? Op0 : Op1);
2282       Known = KnownBits::smin(Known0, Known1);
2283       break;
2284     case ISD::SMAX:
2285       if (std::optional<bool> IsSGE = KnownBits::sge(Known0, Known1))
2286         return TLO.CombineTo(Op, *IsSGE ? Op0 : Op1);
2287       if (std::optional<bool> IsSGT = KnownBits::sgt(Known0, Known1))
2288         return TLO.CombineTo(Op, *IsSGT ? Op0 : Op1);
2289       Known = KnownBits::smax(Known0, Known1);
2290       break;
2291     case ISD::UMIN:
2292       if (std::optional<bool> IsULE = KnownBits::ule(Known0, Known1))
2293         return TLO.CombineTo(Op, *IsULE ? Op0 : Op1);
2294       if (std::optional<bool> IsULT = KnownBits::ult(Known0, Known1))
2295         return TLO.CombineTo(Op, *IsULT ? Op0 : Op1);
2296       Known = KnownBits::umin(Known0, Known1);
2297       break;
2298     case ISD::UMAX:
2299       if (std::optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
2300         return TLO.CombineTo(Op, *IsUGE ? Op0 : Op1);
2301       if (std::optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
2302         return TLO.CombineTo(Op, *IsUGT ? Op0 : Op1);
2303       Known = KnownBits::umax(Known0, Known1);
2304       break;
2305     }
2306     break;
2307   }
2308   case ISD::BITREVERSE: {
2309     SDValue Src = Op.getOperand(0);
2310     APInt DemandedSrcBits = DemandedBits.reverseBits();
2311     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2312                              Depth + 1))
2313       return true;
2314     Known.One = Known2.One.reverseBits();
2315     Known.Zero = Known2.Zero.reverseBits();
2316     break;
2317   }
2318   case ISD::BSWAP: {
2319     SDValue Src = Op.getOperand(0);
2320 
2321     // If the only bits demanded come from one byte of the bswap result,
2322     // just shift the input byte into position to eliminate the bswap.
2323     unsigned NLZ = DemandedBits.countl_zero();
2324     unsigned NTZ = DemandedBits.countr_zero();
2325 
2326     // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
2327     // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
2328     // have 14 leading zeros, round to 8.
2329     NLZ = alignDown(NLZ, 8);
2330     NTZ = alignDown(NTZ, 8);
2331     // If we need exactly one byte, we can do this transformation.
2332     if (BitWidth - NLZ - NTZ == 8) {
2333       // Replace this with either a left or right shift to get the byte into
2334       // the right place.
2335       unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
2336       if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
2337         unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
2338         SDValue ShAmt = TLO.DAG.getShiftAmountConstant(ShiftAmount, VT, dl);
2339         SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
2340         return TLO.CombineTo(Op, NewOp);
2341       }
2342     }
2343 
2344     APInt DemandedSrcBits = DemandedBits.byteSwap();
2345     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2346                              Depth + 1))
2347       return true;
2348     Known.One = Known2.One.byteSwap();
2349     Known.Zero = Known2.Zero.byteSwap();
2350     break;
2351   }
2352   case ISD::CTPOP: {
2353     // If only 1 bit is demanded, replace with PARITY as long as we're before
2354     // op legalization.
2355     // FIXME: Limit to scalars for now.
2356     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
2357       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
2358                                                Op.getOperand(0)));
2359 
2360     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2361     break;
2362   }
2363   case ISD::SIGN_EXTEND_INREG: {
2364     SDValue Op0 = Op.getOperand(0);
2365     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2366     unsigned ExVTBits = ExVT.getScalarSizeInBits();
2367 
2368     // If we only care about the highest bit, don't bother shifting right.
2369     if (DemandedBits.isSignMask()) {
2370       unsigned MinSignedBits =
2371           TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
2372       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2373       // However if the input is already sign extended we expect the sign
2374       // extension to be dropped altogether later and do not simplify.
2375       if (!AlreadySignExtended) {
2376         // Compute the correct shift amount type, which must be getShiftAmountTy
2377         // for scalar types after legalization.
2378         SDValue ShiftAmt =
2379             TLO.DAG.getShiftAmountConstant(BitWidth - ExVTBits, VT, dl);
2380         return TLO.CombineTo(Op,
2381                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
2382       }
2383     }
2384 
2385     // If none of the extended bits are demanded, eliminate the sextinreg.
2386     if (DemandedBits.getActiveBits() <= ExVTBits)
2387       return TLO.CombineTo(Op, Op0);
2388 
2389     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
2390 
2391     // Since the sign extended bits are demanded, we know that the sign
2392     // bit is demanded.
2393     InputDemandedBits.setBit(ExVTBits - 1);
2394 
2395     if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO,
2396                              Depth + 1))
2397       return true;
2398 
2399     // If the sign bit of the input is known set or clear, then we know the
2400     // top bits of the result.
2401 
2402     // If the input sign bit is known zero, convert this into a zero extension.
2403     if (Known.Zero[ExVTBits - 1])
2404       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
2405 
2406     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
2407     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
2408       Known.One.setBitsFrom(ExVTBits);
2409       Known.Zero &= Mask;
2410     } else { // Input sign bit unknown
2411       Known.Zero &= Mask;
2412       Known.One &= Mask;
2413     }
2414     break;
2415   }
2416   case ISD::BUILD_PAIR: {
2417     EVT HalfVT = Op.getOperand(0).getValueType();
2418     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
2419 
2420     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
2421     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
2422 
2423     KnownBits KnownLo, KnownHi;
2424 
2425     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
2426       return true;
2427 
2428     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
2429       return true;
2430 
2431     Known = KnownHi.concat(KnownLo);
2432     break;
2433   }
2434   case ISD::ZERO_EXTEND_VECTOR_INREG:
2435     if (VT.isScalableVector())
2436       return false;
2437     [[fallthrough]];
2438   case ISD::ZERO_EXTEND: {
2439     SDValue Src = Op.getOperand(0);
2440     EVT SrcVT = Src.getValueType();
2441     unsigned InBits = SrcVT.getScalarSizeInBits();
2442     unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2443     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
2444 
2445     // If none of the top bits are demanded, convert this into an any_extend.
2446     if (DemandedBits.getActiveBits() <= InBits) {
2447       // If we only need the non-extended bits of the bottom element
2448       // then we can just bitcast to the result.
2449       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2450           VT.getSizeInBits() == SrcVT.getSizeInBits())
2451         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2452 
2453       unsigned Opc =
2454           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2455       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2456         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2457     }
2458 
2459     APInt InDemandedBits = DemandedBits.trunc(InBits);
2460     APInt InDemandedElts = DemandedElts.zext(InElts);
2461     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2462                              Depth + 1)) {
2463       Op->dropFlags(SDNodeFlags::NonNeg);
2464       return true;
2465     }
2466     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2467     Known = Known.zext(BitWidth);
2468 
2469     // Attempt to avoid multi-use ops if we don't need anything from them.
2470     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2471             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2472       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2473     break;
2474   }
2475   case ISD::SIGN_EXTEND_VECTOR_INREG:
2476     if (VT.isScalableVector())
2477       return false;
2478     [[fallthrough]];
2479   case ISD::SIGN_EXTEND: {
2480     SDValue Src = Op.getOperand(0);
2481     EVT SrcVT = Src.getValueType();
2482     unsigned InBits = SrcVT.getScalarSizeInBits();
2483     unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2484     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
2485 
2486     APInt InDemandedElts = DemandedElts.zext(InElts);
2487     APInt InDemandedBits = DemandedBits.trunc(InBits);
2488 
2489     // Since some of the sign extended bits are demanded, we know that the sign
2490     // bit is demanded.
2491     InDemandedBits.setBit(InBits - 1);
2492 
2493     // If none of the top bits are demanded, convert this into an any_extend.
2494     if (DemandedBits.getActiveBits() <= InBits) {
2495       // If we only need the non-extended bits of the bottom element
2496       // then we can just bitcast to the result.
2497       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2498           VT.getSizeInBits() == SrcVT.getSizeInBits())
2499         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2500 
2501       // Don't lose an all signbits 0/-1 splat on targets with 0/-1 booleans.
2502       if (getBooleanContents(VT) != ZeroOrNegativeOneBooleanContent ||
2503           TLO.DAG.ComputeNumSignBits(Src, InDemandedElts, Depth + 1) !=
2504               InBits) {
2505         unsigned Opc =
2506             IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2507         if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2508           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2509       }
2510     }
2511 
2512     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2513                              Depth + 1))
2514       return true;
2515     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2516 
2517     // If the sign bit is known one, the top bits match.
2518     Known = Known.sext(BitWidth);
2519 
2520     // If the sign bit is known zero, convert this to a zero extend.
2521     if (Known.isNonNegative()) {
2522       unsigned Opc =
2523           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
2524       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) {
2525         SDNodeFlags Flags;
2526         if (!IsVecInReg)
2527           Flags |= SDNodeFlags::NonNeg;
2528         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src, Flags));
2529       }
2530     }
2531 
2532     // Attempt to avoid multi-use ops if we don't need anything from them.
2533     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2534             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2535       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2536     break;
2537   }
2538   case ISD::ANY_EXTEND_VECTOR_INREG:
2539     if (VT.isScalableVector())
2540       return false;
2541     [[fallthrough]];
2542   case ISD::ANY_EXTEND: {
2543     SDValue Src = Op.getOperand(0);
2544     EVT SrcVT = Src.getValueType();
2545     unsigned InBits = SrcVT.getScalarSizeInBits();
2546     unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2547     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2548 
2549     // If we only need the bottom element then we can just bitcast.
2550     // TODO: Handle ANY_EXTEND?
2551     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2552         VT.getSizeInBits() == SrcVT.getSizeInBits())
2553       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2554 
2555     APInt InDemandedBits = DemandedBits.trunc(InBits);
2556     APInt InDemandedElts = DemandedElts.zext(InElts);
2557     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2558                              Depth + 1))
2559       return true;
2560     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2561     Known = Known.anyext(BitWidth);
2562 
2563     // Attempt to avoid multi-use ops if we don't need anything from them.
2564     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2565             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2566       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2567     break;
2568   }
2569   case ISD::TRUNCATE: {
2570     SDValue Src = Op.getOperand(0);
2571 
2572     // Simplify the input, using demanded bit information, and compute the known
2573     // zero/one bits live out.
2574     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2575     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2576     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2577                              Depth + 1))
2578       return true;
2579     Known = Known.trunc(BitWidth);
2580 
2581     // Attempt to avoid multi-use ops if we don't need anything from them.
2582     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2583             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2584       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2585 
2586     // If the input is only used by this truncate, see if we can shrink it based
2587     // on the known demanded bits.
2588     switch (Src.getOpcode()) {
2589     default:
2590       break;
2591     case ISD::SRL:
2592       // Shrink SRL by a constant if none of the high bits shifted in are
2593       // demanded.
2594       if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2595         // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2596         // undesirable.
2597         break;
2598 
2599       if (Src.getNode()->hasOneUse()) {
2600         if (isTruncateFree(Src, VT) &&
2601             !isTruncateFree(Src.getValueType(), VT)) {
2602           // If truncate is only free at trunc(srl), do not turn it into
2603           // srl(trunc). The check is done by first check the truncate is free
2604           // at Src's opcode(srl), then check the truncate is not done by
2605           // referencing sub-register. In test, if both trunc(srl) and
2606           // srl(trunc)'s trunc are free, srl(trunc) performs better. If only
2607           // trunc(srl)'s trunc is free, trunc(srl) is better.
2608           break;
2609         }
2610 
2611         std::optional<uint64_t> ShAmtC =
2612             TLO.DAG.getValidShiftAmount(Src, DemandedElts, Depth + 2);
2613         if (!ShAmtC || *ShAmtC >= BitWidth)
2614           break;
2615         uint64_t ShVal = *ShAmtC;
2616 
2617         APInt HighBits =
2618             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2619         HighBits.lshrInPlace(ShVal);
2620         HighBits = HighBits.trunc(BitWidth);
2621         if (!(HighBits & DemandedBits)) {
2622           // None of the shifted in bits are needed.  Add a truncate of the
2623           // shift input, then shift it.
2624           SDValue NewShAmt = TLO.DAG.getShiftAmountConstant(ShVal, VT, dl);
2625           SDValue NewTrunc =
2626               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2627           return TLO.CombineTo(
2628               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2629         }
2630       }
2631       break;
2632     }
2633 
2634     break;
2635   }
2636   case ISD::AssertZext: {
2637     // AssertZext demands all of the high bits, plus any of the low bits
2638     // demanded by its users.
2639     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2640     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2641     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2642                              TLO, Depth + 1))
2643       return true;
2644 
2645     Known.Zero |= ~InMask;
2646     Known.One &= (~Known.Zero);
2647     break;
2648   }
2649   case ISD::EXTRACT_VECTOR_ELT: {
2650     SDValue Src = Op.getOperand(0);
2651     SDValue Idx = Op.getOperand(1);
2652     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2653     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2654 
2655     if (SrcEltCnt.isScalable())
2656       return false;
2657 
2658     // Demand the bits from every vector element without a constant index.
2659     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2660     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2661     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2662       if (CIdx->getAPIntValue().ult(NumSrcElts))
2663         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2664 
2665     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2666     // anything about the extended bits.
2667     APInt DemandedSrcBits = DemandedBits;
2668     if (BitWidth > EltBitWidth)
2669       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2670 
2671     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2672                              Depth + 1))
2673       return true;
2674 
2675     // Attempt to avoid multi-use ops if we don't need anything from them.
2676     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2677       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2678               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2679         SDValue NewOp =
2680             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2681         return TLO.CombineTo(Op, NewOp);
2682       }
2683     }
2684 
2685     Known = Known2;
2686     if (BitWidth > EltBitWidth)
2687       Known = Known.anyext(BitWidth);
2688     break;
2689   }
2690   case ISD::BITCAST: {
2691     if (VT.isScalableVector())
2692       return false;
2693     SDValue Src = Op.getOperand(0);
2694     EVT SrcVT = Src.getValueType();
2695     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2696 
2697     // If this is an FP->Int bitcast and if the sign bit is the only
2698     // thing demanded, turn this into a FGETSIGN.
2699     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2700         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2701         SrcVT.isFloatingPoint()) {
2702       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2703       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2704       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2705           SrcVT != MVT::f128) {
2706         // Cannot eliminate/lower SHL for f128 yet.
2707         EVT Ty = OpVTLegal ? VT : MVT::i32;
2708         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2709         // place.  We expect the SHL to be eliminated by other optimizations.
2710         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2711         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2712         if (!OpVTLegal && OpVTSizeInBits > 32)
2713           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2714         unsigned ShVal = Op.getValueSizeInBits() - 1;
2715         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2716         return TLO.CombineTo(Op,
2717                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2718       }
2719     }
2720 
2721     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2722     // Demand the elt/bit if any of the original elts/bits are demanded.
2723     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2724       unsigned Scale = BitWidth / NumSrcEltBits;
2725       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2726       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2727       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2728       for (unsigned i = 0; i != Scale; ++i) {
2729         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2730         unsigned BitOffset = EltOffset * NumSrcEltBits;
2731         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2732         if (!Sub.isZero()) {
2733           DemandedSrcBits |= Sub;
2734           for (unsigned j = 0; j != NumElts; ++j)
2735             if (DemandedElts[j])
2736               DemandedSrcElts.setBit((j * Scale) + i);
2737         }
2738       }
2739 
2740       APInt KnownSrcUndef, KnownSrcZero;
2741       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2742                                      KnownSrcZero, TLO, Depth + 1))
2743         return true;
2744 
2745       KnownBits KnownSrcBits;
2746       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2747                                KnownSrcBits, TLO, Depth + 1))
2748         return true;
2749     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2750       // TODO - bigendian once we have test coverage.
2751       unsigned Scale = NumSrcEltBits / BitWidth;
2752       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2753       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2754       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2755       for (unsigned i = 0; i != NumElts; ++i)
2756         if (DemandedElts[i]) {
2757           unsigned Offset = (i % Scale) * BitWidth;
2758           DemandedSrcBits.insertBits(DemandedBits, Offset);
2759           DemandedSrcElts.setBit(i / Scale);
2760         }
2761 
2762       if (SrcVT.isVector()) {
2763         APInt KnownSrcUndef, KnownSrcZero;
2764         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2765                                        KnownSrcZero, TLO, Depth + 1))
2766           return true;
2767       }
2768 
2769       KnownBits KnownSrcBits;
2770       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2771                                KnownSrcBits, TLO, Depth + 1))
2772         return true;
2773 
2774       // Attempt to avoid multi-use ops if we don't need anything from them.
2775       if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2776         if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2777                 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2778           SDValue NewOp = TLO.DAG.getBitcast(VT, DemandedSrc);
2779           return TLO.CombineTo(Op, NewOp);
2780         }
2781       }
2782     }
2783 
2784     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2785     // recursive call where Known may be useful to the caller.
2786     if (Depth > 0) {
2787       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2788       return false;
2789     }
2790     break;
2791   }
2792   case ISD::MUL:
2793     if (DemandedBits.isPowerOf2()) {
2794       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
2795       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
2796       // odd (has LSB set), then the left-shifted low bit of X is the answer.
2797       unsigned CTZ = DemandedBits.countr_zero();
2798       ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
2799       if (C && C->getAPIntValue().countr_zero() == CTZ) {
2800         SDValue AmtC = TLO.DAG.getShiftAmountConstant(CTZ, VT, dl);
2801         SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
2802         return TLO.CombineTo(Op, Shl);
2803       }
2804     }
2805     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
2806     // X * X is odd iff X is odd.
2807     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
2808     if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
2809       SDValue One = TLO.DAG.getConstant(1, dl, VT);
2810       SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
2811       return TLO.CombineTo(Op, And1);
2812     }
2813     [[fallthrough]];
2814   case ISD::ADD:
2815   case ISD::SUB: {
2816     // Add, Sub, and Mul don't demand any bits in positions beyond that
2817     // of the highest bit demanded of them.
2818     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2819     SDNodeFlags Flags = Op.getNode()->getFlags();
2820     unsigned DemandedBitsLZ = DemandedBits.countl_zero();
2821     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2822     KnownBits KnownOp0, KnownOp1;
2823     auto GetDemandedBitsLHSMask = [&](APInt Demanded,
2824                                       const KnownBits &KnownRHS) {
2825       if (Op.getOpcode() == ISD::MUL)
2826         Demanded.clearHighBits(KnownRHS.countMinTrailingZeros());
2827       return Demanded;
2828     };
2829     if (SimplifyDemandedBits(Op1, LoMask, DemandedElts, KnownOp1, TLO,
2830                              Depth + 1) ||
2831         SimplifyDemandedBits(Op0, GetDemandedBitsLHSMask(LoMask, KnownOp1),
2832                              DemandedElts, KnownOp0, TLO, Depth + 1) ||
2833         // See if the operation should be performed at a smaller bit width.
2834         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2835       // Disable the nsw and nuw flags. We can no longer guarantee that we
2836       // won't wrap after simplification.
2837       Op->dropFlags(SDNodeFlags::NoWrap);
2838       return true;
2839     }
2840 
2841     // neg x with only low bit demanded is simply x.
2842     if (Op.getOpcode() == ISD::SUB && DemandedBits.isOne() &&
2843         isNullConstant(Op0))
2844       return TLO.CombineTo(Op, Op1);
2845 
2846     // Attempt to avoid multi-use ops if we don't need anything from them.
2847     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2848       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2849           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2850       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2851           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2852       if (DemandedOp0 || DemandedOp1) {
2853         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2854         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2855         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1,
2856                                         Flags & ~SDNodeFlags::NoWrap);
2857         return TLO.CombineTo(Op, NewOp);
2858       }
2859     }
2860 
2861     // If we have a constant operand, we may be able to turn it into -1 if we
2862     // do not demand the high bits. This can make the constant smaller to
2863     // encode, allow more general folding, or match specialized instruction
2864     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2865     // is probably not useful (and could be detrimental).
2866     ConstantSDNode *C = isConstOrConstSplat(Op1);
2867     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2868     if (C && !C->isAllOnes() && !C->isOne() &&
2869         (C->getAPIntValue() | HighMask).isAllOnes()) {
2870       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2871       // Disable the nsw and nuw flags. We can no longer guarantee that we
2872       // won't wrap after simplification.
2873       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1,
2874                                       Flags & ~SDNodeFlags::NoWrap);
2875       return TLO.CombineTo(Op, NewOp);
2876     }
2877 
2878     // Match a multiply with a disguised negated-power-of-2 and convert to a
2879     // an equivalent shift-left amount.
2880     // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2881     auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
2882       if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
2883         return 0;
2884 
2885       // Don't touch opaque constants. Also, ignore zero and power-of-2
2886       // multiplies. Those will get folded later.
2887       ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
2888       if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
2889           !MulC->getAPIntValue().isPowerOf2()) {
2890         APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
2891         if (UnmaskedC.isNegatedPowerOf2())
2892           return (-UnmaskedC).logBase2();
2893       }
2894       return 0;
2895     };
2896 
2897     auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y,
2898                        unsigned ShlAmt) {
2899       SDValue ShlAmtC = TLO.DAG.getShiftAmountConstant(ShlAmt, VT, dl);
2900       SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
2901       SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl);
2902       return TLO.CombineTo(Op, Res);
2903     };
2904 
2905     if (isOperationLegalOrCustom(ISD::SHL, VT)) {
2906       if (Op.getOpcode() == ISD::ADD) {
2907         // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2908         if (unsigned ShAmt = getShiftLeftAmt(Op0))
2909           return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt);
2910         // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
2911         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2912           return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt);
2913       }
2914       if (Op.getOpcode() == ISD::SUB) {
2915         // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
2916         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2917           return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt);
2918       }
2919     }
2920 
2921     if (Op.getOpcode() == ISD::MUL) {
2922       Known = KnownBits::mul(KnownOp0, KnownOp1);
2923     } else { // Op.getOpcode() is either ISD::ADD or ISD::SUB.
2924       Known = KnownBits::computeForAddSub(
2925           Op.getOpcode() == ISD::ADD, Flags.hasNoSignedWrap(),
2926           Flags.hasNoUnsignedWrap(), KnownOp0, KnownOp1);
2927     }
2928     break;
2929   }
2930   default:
2931     // We also ask the target about intrinsics (which could be specific to it).
2932     if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2933         Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
2934       // TODO: Probably okay to remove after audit; here to reduce change size
2935       // in initial enablement patch for scalable vectors
2936       if (Op.getValueType().isScalableVector())
2937         break;
2938       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2939                                             Known, TLO, Depth))
2940         return true;
2941       break;
2942     }
2943 
2944     // Just use computeKnownBits to compute output bits.
2945     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2946     break;
2947   }
2948 
2949   // If we know the value of all of the demanded bits, return this as a
2950   // constant.
2951   if (!isTargetCanonicalConstantNode(Op) &&
2952       DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2953     // Avoid folding to a constant if any OpaqueConstant is involved.
2954     const SDNode *N = Op.getNode();
2955     for (SDNode *Op :
2956          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2957       if (auto *C = dyn_cast<ConstantSDNode>(Op))
2958         if (C->isOpaque())
2959           return false;
2960     }
2961     if (VT.isInteger())
2962       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2963     if (VT.isFloatingPoint())
2964       return TLO.CombineTo(
2965           Op, TLO.DAG.getConstantFP(APFloat(VT.getFltSemantics(), Known.One),
2966                                     dl, VT));
2967   }
2968 
2969   // A multi use 'all demanded elts' simplify failed to find any knownbits.
2970   // Try again just for the original demanded elts.
2971   // Ensure we do this AFTER constant folding above.
2972   if (HasMultiUse && Known.isUnknown() && !OriginalDemandedElts.isAllOnes())
2973     Known = TLO.DAG.computeKnownBits(Op, OriginalDemandedElts, Depth);
2974 
2975   return false;
2976 }
2977 
2978 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2979                                                 const APInt &DemandedElts,
2980                                                 DAGCombinerInfo &DCI) const {
2981   SelectionDAG &DAG = DCI.DAG;
2982   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2983                         !DCI.isBeforeLegalizeOps());
2984 
2985   APInt KnownUndef, KnownZero;
2986   bool Simplified =
2987       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2988   if (Simplified) {
2989     DCI.AddToWorklist(Op.getNode());
2990     DCI.CommitTargetLoweringOpt(TLO);
2991   }
2992 
2993   return Simplified;
2994 }
2995 
2996 /// Given a vector binary operation and known undefined elements for each input
2997 /// operand, compute whether each element of the output is undefined.
2998 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2999                                          const APInt &UndefOp0,
3000                                          const APInt &UndefOp1) {
3001   EVT VT = BO.getValueType();
3002   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
3003          "Vector binop only");
3004 
3005   EVT EltVT = VT.getVectorElementType();
3006   unsigned NumElts = VT.isFixedLengthVector() ? VT.getVectorNumElements() : 1;
3007   assert(UndefOp0.getBitWidth() == NumElts &&
3008          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
3009 
3010   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
3011                                    const APInt &UndefVals) {
3012     if (UndefVals[Index])
3013       return DAG.getUNDEF(EltVT);
3014 
3015     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
3016       // Try hard to make sure that the getNode() call is not creating temporary
3017       // nodes. Ignore opaque integers because they do not constant fold.
3018       SDValue Elt = BV->getOperand(Index);
3019       auto *C = dyn_cast<ConstantSDNode>(Elt);
3020       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
3021         return Elt;
3022     }
3023 
3024     return SDValue();
3025   };
3026 
3027   APInt KnownUndef = APInt::getZero(NumElts);
3028   for (unsigned i = 0; i != NumElts; ++i) {
3029     // If both inputs for this element are either constant or undef and match
3030     // the element type, compute the constant/undef result for this element of
3031     // the vector.
3032     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
3033     // not handle FP constants. The code within getNode() should be refactored
3034     // to avoid the danger of creating a bogus temporary node here.
3035     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
3036     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
3037     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
3038       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
3039         KnownUndef.setBit(i);
3040   }
3041   return KnownUndef;
3042 }
3043 
3044 bool TargetLowering::SimplifyDemandedVectorElts(
3045     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
3046     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
3047     bool AssumeSingleUse) const {
3048   EVT VT = Op.getValueType();
3049   unsigned Opcode = Op.getOpcode();
3050   APInt DemandedElts = OriginalDemandedElts;
3051   unsigned NumElts = DemandedElts.getBitWidth();
3052   assert(VT.isVector() && "Expected vector op");
3053 
3054   KnownUndef = KnownZero = APInt::getZero(NumElts);
3055 
3056   if (!shouldSimplifyDemandedVectorElts(Op, TLO))
3057     return false;
3058 
3059   // TODO: For now we assume we know nothing about scalable vectors.
3060   if (VT.isScalableVector())
3061     return false;
3062 
3063   assert(VT.getVectorNumElements() == NumElts &&
3064          "Mask size mismatches value type element count!");
3065 
3066   // Undef operand.
3067   if (Op.isUndef()) {
3068     KnownUndef.setAllBits();
3069     return false;
3070   }
3071 
3072   // If Op has other users, assume that all elements are needed.
3073   if (!AssumeSingleUse && !Op.getNode()->hasOneUse())
3074     DemandedElts.setAllBits();
3075 
3076   // Not demanding any elements from Op.
3077   if (DemandedElts == 0) {
3078     KnownUndef.setAllBits();
3079     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3080   }
3081 
3082   // Limit search depth.
3083   if (Depth >= SelectionDAG::MaxRecursionDepth)
3084     return false;
3085 
3086   SDLoc DL(Op);
3087   unsigned EltSizeInBits = VT.getScalarSizeInBits();
3088   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
3089 
3090   // Helper for demanding the specified elements and all the bits of both binary
3091   // operands.
3092   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
3093     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
3094                                                            TLO.DAG, Depth + 1);
3095     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
3096                                                            TLO.DAG, Depth + 1);
3097     if (NewOp0 || NewOp1) {
3098       SDValue NewOp =
3099           TLO.DAG.getNode(Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0,
3100                           NewOp1 ? NewOp1 : Op1, Op->getFlags());
3101       return TLO.CombineTo(Op, NewOp);
3102     }
3103     return false;
3104   };
3105 
3106   switch (Opcode) {
3107   case ISD::SCALAR_TO_VECTOR: {
3108     if (!DemandedElts[0]) {
3109       KnownUndef.setAllBits();
3110       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3111     }
3112     SDValue ScalarSrc = Op.getOperand(0);
3113     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
3114       SDValue Src = ScalarSrc.getOperand(0);
3115       SDValue Idx = ScalarSrc.getOperand(1);
3116       EVT SrcVT = Src.getValueType();
3117 
3118       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
3119 
3120       if (SrcEltCnt.isScalable())
3121         return false;
3122 
3123       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
3124       if (isNullConstant(Idx)) {
3125         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
3126         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
3127         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
3128         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3129                                        TLO, Depth + 1))
3130           return true;
3131       }
3132     }
3133     KnownUndef.setHighBits(NumElts - 1);
3134     break;
3135   }
3136   case ISD::BITCAST: {
3137     SDValue Src = Op.getOperand(0);
3138     EVT SrcVT = Src.getValueType();
3139 
3140     // We only handle vectors here.
3141     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
3142     if (!SrcVT.isVector())
3143       break;
3144 
3145     // Fast handling of 'identity' bitcasts.
3146     unsigned NumSrcElts = SrcVT.getVectorNumElements();
3147     if (NumSrcElts == NumElts)
3148       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
3149                                         KnownZero, TLO, Depth + 1);
3150 
3151     APInt SrcDemandedElts, SrcZero, SrcUndef;
3152 
3153     // Bitcast from 'large element' src vector to 'small element' vector, we
3154     // must demand a source element if any DemandedElt maps to it.
3155     if ((NumElts % NumSrcElts) == 0) {
3156       unsigned Scale = NumElts / NumSrcElts;
3157       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
3158       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3159                                      TLO, Depth + 1))
3160         return true;
3161 
3162       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
3163       // of the large element.
3164       // TODO - bigendian once we have test coverage.
3165       if (IsLE) {
3166         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
3167         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
3168         for (unsigned i = 0; i != NumElts; ++i)
3169           if (DemandedElts[i]) {
3170             unsigned Ofs = (i % Scale) * EltSizeInBits;
3171             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
3172           }
3173 
3174         KnownBits Known;
3175         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
3176                                  TLO, Depth + 1))
3177           return true;
3178 
3179         // The bitcast has split each wide element into a number of
3180         // narrow subelements. We have just computed the Known bits
3181         // for wide elements. See if element splitting results in
3182         // some subelements being zero. Only for demanded elements!
3183         for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
3184           if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits)
3185                    .isAllOnes())
3186             continue;
3187           for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
3188             unsigned Elt = Scale * SrcElt + SubElt;
3189             if (DemandedElts[Elt])
3190               KnownZero.setBit(Elt);
3191           }
3192         }
3193       }
3194 
3195       // If the src element is zero/undef then all the output elements will be -
3196       // only demanded elements are guaranteed to be correct.
3197       for (unsigned i = 0; i != NumSrcElts; ++i) {
3198         if (SrcDemandedElts[i]) {
3199           if (SrcZero[i])
3200             KnownZero.setBits(i * Scale, (i + 1) * Scale);
3201           if (SrcUndef[i])
3202             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
3203         }
3204       }
3205     }
3206 
3207     // Bitcast from 'small element' src vector to 'large element' vector, we
3208     // demand all smaller source elements covered by the larger demanded element
3209     // of this vector.
3210     if ((NumSrcElts % NumElts) == 0) {
3211       unsigned Scale = NumSrcElts / NumElts;
3212       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
3213       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3214                                      TLO, Depth + 1))
3215         return true;
3216 
3217       // If all the src elements covering an output element are zero/undef, then
3218       // the output element will be as well, assuming it was demanded.
3219       for (unsigned i = 0; i != NumElts; ++i) {
3220         if (DemandedElts[i]) {
3221           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
3222             KnownZero.setBit(i);
3223           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
3224             KnownUndef.setBit(i);
3225         }
3226       }
3227     }
3228     break;
3229   }
3230   case ISD::FREEZE: {
3231     SDValue N0 = Op.getOperand(0);
3232     if (TLO.DAG.isGuaranteedNotToBeUndefOrPoison(N0, DemandedElts,
3233                                                  /*PoisonOnly=*/false))
3234       return TLO.CombineTo(Op, N0);
3235 
3236     // TODO: Replace this with the general fold from DAGCombiner::visitFREEZE
3237     // freeze(op(x, ...)) -> op(freeze(x), ...).
3238     if (N0.getOpcode() == ISD::SCALAR_TO_VECTOR && DemandedElts == 1)
3239       return TLO.CombineTo(
3240           Op, TLO.DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT,
3241                               TLO.DAG.getFreeze(N0.getOperand(0))));
3242     break;
3243   }
3244   case ISD::BUILD_VECTOR: {
3245     // Check all elements and simplify any unused elements with UNDEF.
3246     if (!DemandedElts.isAllOnes()) {
3247       // Don't simplify BROADCASTS.
3248       if (llvm::any_of(Op->op_values(),
3249                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
3250         SmallVector<SDValue, 32> Ops(Op->ops());
3251         bool Updated = false;
3252         for (unsigned i = 0; i != NumElts; ++i) {
3253           if (!DemandedElts[i] && !Ops[i].isUndef()) {
3254             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
3255             KnownUndef.setBit(i);
3256             Updated = true;
3257           }
3258         }
3259         if (Updated)
3260           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
3261       }
3262     }
3263     for (unsigned i = 0; i != NumElts; ++i) {
3264       SDValue SrcOp = Op.getOperand(i);
3265       if (SrcOp.isUndef()) {
3266         KnownUndef.setBit(i);
3267       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
3268                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
3269         KnownZero.setBit(i);
3270       }
3271     }
3272     break;
3273   }
3274   case ISD::CONCAT_VECTORS: {
3275     EVT SubVT = Op.getOperand(0).getValueType();
3276     unsigned NumSubVecs = Op.getNumOperands();
3277     unsigned NumSubElts = SubVT.getVectorNumElements();
3278     for (unsigned i = 0; i != NumSubVecs; ++i) {
3279       SDValue SubOp = Op.getOperand(i);
3280       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
3281       APInt SubUndef, SubZero;
3282       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
3283                                      Depth + 1))
3284         return true;
3285       KnownUndef.insertBits(SubUndef, i * NumSubElts);
3286       KnownZero.insertBits(SubZero, i * NumSubElts);
3287     }
3288 
3289     // Attempt to avoid multi-use ops if we don't need anything from them.
3290     if (!DemandedElts.isAllOnes()) {
3291       bool FoundNewSub = false;
3292       SmallVector<SDValue, 2> DemandedSubOps;
3293       for (unsigned i = 0; i != NumSubVecs; ++i) {
3294         SDValue SubOp = Op.getOperand(i);
3295         APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
3296         SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts(
3297             SubOp, SubElts, TLO.DAG, Depth + 1);
3298         DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp);
3299         FoundNewSub = NewSubOp ? true : FoundNewSub;
3300       }
3301       if (FoundNewSub) {
3302         SDValue NewOp =
3303             TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps);
3304         return TLO.CombineTo(Op, NewOp);
3305       }
3306     }
3307     break;
3308   }
3309   case ISD::INSERT_SUBVECTOR: {
3310     // Demand any elements from the subvector and the remainder from the src its
3311     // inserted into.
3312     SDValue Src = Op.getOperand(0);
3313     SDValue Sub = Op.getOperand(1);
3314     uint64_t Idx = Op.getConstantOperandVal(2);
3315     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3316     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3317     APInt DemandedSrcElts = DemandedElts;
3318     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
3319 
3320     APInt SubUndef, SubZero;
3321     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
3322                                    Depth + 1))
3323       return true;
3324 
3325     // If none of the src operand elements are demanded, replace it with undef.
3326     if (!DemandedSrcElts && !Src.isUndef())
3327       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
3328                                                TLO.DAG.getUNDEF(VT), Sub,
3329                                                Op.getOperand(2)));
3330 
3331     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
3332                                    TLO, Depth + 1))
3333       return true;
3334     KnownUndef.insertBits(SubUndef, Idx);
3335     KnownZero.insertBits(SubZero, Idx);
3336 
3337     // Attempt to avoid multi-use ops if we don't need anything from them.
3338     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
3339       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3340           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3341       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
3342           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
3343       if (NewSrc || NewSub) {
3344         NewSrc = NewSrc ? NewSrc : Src;
3345         NewSub = NewSub ? NewSub : Sub;
3346         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3347                                         NewSub, Op.getOperand(2));
3348         return TLO.CombineTo(Op, NewOp);
3349       }
3350     }
3351     break;
3352   }
3353   case ISD::EXTRACT_SUBVECTOR: {
3354     // Offset the demanded elts by the subvector index.
3355     SDValue Src = Op.getOperand(0);
3356     if (Src.getValueType().isScalableVector())
3357       break;
3358     uint64_t Idx = Op.getConstantOperandVal(1);
3359     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3360     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3361 
3362     APInt SrcUndef, SrcZero;
3363     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3364                                    Depth + 1))
3365       return true;
3366     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
3367     KnownZero = SrcZero.extractBits(NumElts, Idx);
3368 
3369     // Attempt to avoid multi-use ops if we don't need anything from them.
3370     if (!DemandedElts.isAllOnes()) {
3371       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3372           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3373       if (NewSrc) {
3374         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3375                                         Op.getOperand(1));
3376         return TLO.CombineTo(Op, NewOp);
3377       }
3378     }
3379     break;
3380   }
3381   case ISD::INSERT_VECTOR_ELT: {
3382     SDValue Vec = Op.getOperand(0);
3383     SDValue Scl = Op.getOperand(1);
3384     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3385 
3386     // For a legal, constant insertion index, if we don't need this insertion
3387     // then strip it, else remove it from the demanded elts.
3388     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
3389       unsigned Idx = CIdx->getZExtValue();
3390       if (!DemandedElts[Idx])
3391         return TLO.CombineTo(Op, Vec);
3392 
3393       APInt DemandedVecElts(DemandedElts);
3394       DemandedVecElts.clearBit(Idx);
3395       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
3396                                      KnownZero, TLO, Depth + 1))
3397         return true;
3398 
3399       KnownUndef.setBitVal(Idx, Scl.isUndef());
3400 
3401       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
3402       break;
3403     }
3404 
3405     APInt VecUndef, VecZero;
3406     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
3407                                    Depth + 1))
3408       return true;
3409     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
3410     break;
3411   }
3412   case ISD::VSELECT: {
3413     SDValue Sel = Op.getOperand(0);
3414     SDValue LHS = Op.getOperand(1);
3415     SDValue RHS = Op.getOperand(2);
3416 
3417     // Try to transform the select condition based on the current demanded
3418     // elements.
3419     APInt UndefSel, ZeroSel;
3420     if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, ZeroSel, TLO,
3421                                    Depth + 1))
3422       return true;
3423 
3424     // See if we can simplify either vselect operand.
3425     APInt DemandedLHS(DemandedElts);
3426     APInt DemandedRHS(DemandedElts);
3427     APInt UndefLHS, ZeroLHS;
3428     APInt UndefRHS, ZeroRHS;
3429     if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3430                                    Depth + 1))
3431       return true;
3432     if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3433                                    Depth + 1))
3434       return true;
3435 
3436     KnownUndef = UndefLHS & UndefRHS;
3437     KnownZero = ZeroLHS & ZeroRHS;
3438 
3439     // If we know that the selected element is always zero, we don't need the
3440     // select value element.
3441     APInt DemandedSel = DemandedElts & ~KnownZero;
3442     if (DemandedSel != DemandedElts)
3443       if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, ZeroSel, TLO,
3444                                      Depth + 1))
3445         return true;
3446 
3447     break;
3448   }
3449   case ISD::VECTOR_SHUFFLE: {
3450     SDValue LHS = Op.getOperand(0);
3451     SDValue RHS = Op.getOperand(1);
3452     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
3453 
3454     // Collect demanded elements from shuffle operands..
3455     APInt DemandedLHS(NumElts, 0);
3456     APInt DemandedRHS(NumElts, 0);
3457     for (unsigned i = 0; i != NumElts; ++i) {
3458       int M = ShuffleMask[i];
3459       if (M < 0 || !DemandedElts[i])
3460         continue;
3461       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
3462       if (M < (int)NumElts)
3463         DemandedLHS.setBit(M);
3464       else
3465         DemandedRHS.setBit(M - NumElts);
3466     }
3467 
3468     // See if we can simplify either shuffle operand.
3469     APInt UndefLHS, ZeroLHS;
3470     APInt UndefRHS, ZeroRHS;
3471     if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3472                                    Depth + 1))
3473       return true;
3474     if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3475                                    Depth + 1))
3476       return true;
3477 
3478     // Simplify mask using undef elements from LHS/RHS.
3479     bool Updated = false;
3480     bool IdentityLHS = true, IdentityRHS = true;
3481     SmallVector<int, 32> NewMask(ShuffleMask);
3482     for (unsigned i = 0; i != NumElts; ++i) {
3483       int &M = NewMask[i];
3484       if (M < 0)
3485         continue;
3486       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
3487           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
3488         Updated = true;
3489         M = -1;
3490       }
3491       IdentityLHS &= (M < 0) || (M == (int)i);
3492       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3493     }
3494 
3495     // Update legal shuffle masks based on demanded elements if it won't reduce
3496     // to Identity which can cause premature removal of the shuffle mask.
3497     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
3498       SDValue LegalShuffle =
3499           buildLegalVectorShuffle(VT, DL, LHS, RHS, NewMask, TLO.DAG);
3500       if (LegalShuffle)
3501         return TLO.CombineTo(Op, LegalShuffle);
3502     }
3503 
3504     // Propagate undef/zero elements from LHS/RHS.
3505     for (unsigned i = 0; i != NumElts; ++i) {
3506       int M = ShuffleMask[i];
3507       if (M < 0) {
3508         KnownUndef.setBit(i);
3509       } else if (M < (int)NumElts) {
3510         if (UndefLHS[M])
3511           KnownUndef.setBit(i);
3512         if (ZeroLHS[M])
3513           KnownZero.setBit(i);
3514       } else {
3515         if (UndefRHS[M - NumElts])
3516           KnownUndef.setBit(i);
3517         if (ZeroRHS[M - NumElts])
3518           KnownZero.setBit(i);
3519       }
3520     }
3521     break;
3522   }
3523   case ISD::ANY_EXTEND_VECTOR_INREG:
3524   case ISD::SIGN_EXTEND_VECTOR_INREG:
3525   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3526     APInt SrcUndef, SrcZero;
3527     SDValue Src = Op.getOperand(0);
3528     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3529     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3530     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3531                                    Depth + 1))
3532       return true;
3533     KnownZero = SrcZero.zextOrTrunc(NumElts);
3534     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
3535 
3536     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
3537         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3538         DemandedSrcElts == 1) {
3539       // aext - if we just need the bottom element then we can bitcast.
3540       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
3541     }
3542 
3543     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
3544       // zext(undef) upper bits are guaranteed to be zero.
3545       if (DemandedElts.isSubsetOf(KnownUndef))
3546         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3547       KnownUndef.clearAllBits();
3548 
3549       // zext - if we just need the bottom element then we can mask:
3550       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
3551       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
3552           Op->isOnlyUserOf(Src.getNode()) &&
3553           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3554         SDLoc DL(Op);
3555         EVT SrcVT = Src.getValueType();
3556         EVT SrcSVT = SrcVT.getScalarType();
3557         SmallVector<SDValue> MaskElts;
3558         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
3559         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
3560         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
3561         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
3562                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
3563           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
3564           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
3565         }
3566       }
3567     }
3568     break;
3569   }
3570 
3571   // TODO: There are more binop opcodes that could be handled here - MIN,
3572   // MAX, saturated math, etc.
3573   case ISD::ADD: {
3574     SDValue Op0 = Op.getOperand(0);
3575     SDValue Op1 = Op.getOperand(1);
3576     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
3577       APInt UndefLHS, ZeroLHS;
3578       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3579                                      Depth + 1, /*AssumeSingleUse*/ true))
3580         return true;
3581     }
3582     [[fallthrough]];
3583   }
3584   case ISD::AVGCEILS:
3585   case ISD::AVGCEILU:
3586   case ISD::AVGFLOORS:
3587   case ISD::AVGFLOORU:
3588   case ISD::OR:
3589   case ISD::XOR:
3590   case ISD::SUB:
3591   case ISD::FADD:
3592   case ISD::FSUB:
3593   case ISD::FMUL:
3594   case ISD::FDIV:
3595   case ISD::FREM: {
3596     SDValue Op0 = Op.getOperand(0);
3597     SDValue Op1 = Op.getOperand(1);
3598 
3599     APInt UndefRHS, ZeroRHS;
3600     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3601                                    Depth + 1))
3602       return true;
3603     APInt UndefLHS, ZeroLHS;
3604     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3605                                    Depth + 1))
3606       return true;
3607 
3608     KnownZero = ZeroLHS & ZeroRHS;
3609     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
3610 
3611     // Attempt to avoid multi-use ops if we don't need anything from them.
3612     // TODO - use KnownUndef to relax the demandedelts?
3613     if (!DemandedElts.isAllOnes())
3614       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3615         return true;
3616     break;
3617   }
3618   case ISD::SHL:
3619   case ISD::SRL:
3620   case ISD::SRA:
3621   case ISD::ROTL:
3622   case ISD::ROTR: {
3623     SDValue Op0 = Op.getOperand(0);
3624     SDValue Op1 = Op.getOperand(1);
3625 
3626     APInt UndefRHS, ZeroRHS;
3627     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3628                                    Depth + 1))
3629       return true;
3630     APInt UndefLHS, ZeroLHS;
3631     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3632                                    Depth + 1))
3633       return true;
3634 
3635     KnownZero = ZeroLHS;
3636     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
3637 
3638     // Attempt to avoid multi-use ops if we don't need anything from them.
3639     // TODO - use KnownUndef to relax the demandedelts?
3640     if (!DemandedElts.isAllOnes())
3641       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3642         return true;
3643     break;
3644   }
3645   case ISD::MUL:
3646   case ISD::MULHU:
3647   case ISD::MULHS:
3648   case ISD::AND: {
3649     SDValue Op0 = Op.getOperand(0);
3650     SDValue Op1 = Op.getOperand(1);
3651 
3652     APInt SrcUndef, SrcZero;
3653     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3654                                    Depth + 1))
3655       return true;
3656     // If we know that a demanded element was zero in Op1 we don't need to
3657     // demand it in Op0 - its guaranteed to be zero.
3658     APInt DemandedElts0 = DemandedElts & ~SrcZero;
3659     if (SimplifyDemandedVectorElts(Op0, DemandedElts0, KnownUndef, KnownZero,
3660                                    TLO, Depth + 1))
3661       return true;
3662 
3663     KnownUndef &= DemandedElts0;
3664     KnownZero &= DemandedElts0;
3665 
3666     // If every element pair has a zero/undef then just fold to zero.
3667     // fold (and x, undef) -> 0  /  (and x, 0) -> 0
3668     // fold (mul x, undef) -> 0  /  (mul x, 0) -> 0
3669     if (DemandedElts.isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef))
3670       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3671 
3672     // If either side has a zero element, then the result element is zero, even
3673     // if the other is an UNDEF.
3674     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
3675     // and then handle 'and' nodes with the rest of the binop opcodes.
3676     KnownZero |= SrcZero;
3677     KnownUndef &= SrcUndef;
3678     KnownUndef &= ~KnownZero;
3679 
3680     // Attempt to avoid multi-use ops if we don't need anything from them.
3681     if (!DemandedElts.isAllOnes())
3682       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3683         return true;
3684     break;
3685   }
3686   case ISD::TRUNCATE:
3687   case ISD::SIGN_EXTEND:
3688   case ISD::ZERO_EXTEND:
3689     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3690                                    KnownZero, TLO, Depth + 1))
3691       return true;
3692 
3693     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
3694       // zext(undef) upper bits are guaranteed to be zero.
3695       if (DemandedElts.isSubsetOf(KnownUndef))
3696         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3697       KnownUndef.clearAllBits();
3698     }
3699     break;
3700   default: {
3701     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3702       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3703                                                   KnownZero, TLO, Depth))
3704         return true;
3705     } else {
3706       KnownBits Known;
3707       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3708       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3709                                TLO, Depth, AssumeSingleUse))
3710         return true;
3711     }
3712     break;
3713   }
3714   }
3715   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3716 
3717   // Constant fold all undef cases.
3718   // TODO: Handle zero cases as well.
3719   if (DemandedElts.isSubsetOf(KnownUndef))
3720     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3721 
3722   return false;
3723 }
3724 
3725 /// Determine which of the bits specified in Mask are known to be either zero or
3726 /// one and return them in the Known.
3727 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3728                                                    KnownBits &Known,
3729                                                    const APInt &DemandedElts,
3730                                                    const SelectionDAG &DAG,
3731                                                    unsigned Depth) const {
3732   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3733           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3734           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3735           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3736          "Should use MaskedValueIsZero if you don't know whether Op"
3737          " is a target node!");
3738   Known.resetAll();
3739 }
3740 
3741 void TargetLowering::computeKnownBitsForTargetInstr(
3742     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3743     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3744     unsigned Depth) const {
3745   Known.resetAll();
3746 }
3747 
3748 void TargetLowering::computeKnownBitsForFrameIndex(
3749   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3750   // The low bits are known zero if the pointer is aligned.
3751   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3752 }
3753 
3754 Align TargetLowering::computeKnownAlignForTargetInstr(
3755   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3756   unsigned Depth) const {
3757   return Align(1);
3758 }
3759 
3760 /// This method can be implemented by targets that want to expose additional
3761 /// information about sign bits to the DAG Combiner.
3762 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3763                                                          const APInt &,
3764                                                          const SelectionDAG &,
3765                                                          unsigned Depth) const {
3766   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3767           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3768           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3769           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3770          "Should use ComputeNumSignBits if you don't know whether Op"
3771          " is a target node!");
3772   return 1;
3773 }
3774 
3775 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3776   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3777   const MachineRegisterInfo &MRI, unsigned Depth) const {
3778   return 1;
3779 }
3780 
3781 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3782     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3783     TargetLoweringOpt &TLO, unsigned Depth) const {
3784   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3785           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3786           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3787           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3788          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3789          " is a target node!");
3790   return false;
3791 }
3792 
3793 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3794     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3795     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3796   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3797           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3798           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3799           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3800          "Should use SimplifyDemandedBits if you don't know whether Op"
3801          " is a target node!");
3802   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3803   return false;
3804 }
3805 
3806 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3807     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3808     SelectionDAG &DAG, unsigned Depth) const {
3809   assert(
3810       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3811        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3812        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3813        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3814       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3815       " is a target node!");
3816   return SDValue();
3817 }
3818 
3819 SDValue
3820 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3821                                         SDValue N1, MutableArrayRef<int> Mask,
3822                                         SelectionDAG &DAG) const {
3823   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3824   if (!LegalMask) {
3825     std::swap(N0, N1);
3826     ShuffleVectorSDNode::commuteMask(Mask);
3827     LegalMask = isShuffleMaskLegal(Mask, VT);
3828   }
3829 
3830   if (!LegalMask)
3831     return SDValue();
3832 
3833   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3834 }
3835 
3836 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3837   return nullptr;
3838 }
3839 
3840 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3841     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3842     bool PoisonOnly, unsigned Depth) const {
3843   assert(
3844       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3845        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3846        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3847        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3848       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3849       " is a target node!");
3850 
3851   // If Op can't create undef/poison and none of its operands are undef/poison
3852   // then Op is never undef/poison.
3853   return !canCreateUndefOrPoisonForTargetNode(Op, DemandedElts, DAG, PoisonOnly,
3854                                               /*ConsiderFlags*/ true, Depth) &&
3855          all_of(Op->ops(), [&](SDValue V) {
3856            return DAG.isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly,
3857                                                        Depth + 1);
3858          });
3859 }
3860 
3861 bool TargetLowering::canCreateUndefOrPoisonForTargetNode(
3862     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3863     bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const {
3864   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3865           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3866           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3867           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3868          "Should use canCreateUndefOrPoison if you don't know whether Op"
3869          " is a target node!");
3870   // Be conservative and return true.
3871   return true;
3872 }
3873 
3874 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3875                                                   const SelectionDAG &DAG,
3876                                                   bool SNaN,
3877                                                   unsigned Depth) const {
3878   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3879           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3880           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3881           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3882          "Should use isKnownNeverNaN if you don't know whether Op"
3883          " is a target node!");
3884   return false;
3885 }
3886 
3887 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3888                                                const APInt &DemandedElts,
3889                                                APInt &UndefElts,
3890                                                const SelectionDAG &DAG,
3891                                                unsigned Depth) const {
3892   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3893           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3894           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3895           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3896          "Should use isSplatValue if you don't know whether Op"
3897          " is a target node!");
3898   return false;
3899 }
3900 
3901 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3902 // work with truncating build vectors and vectors with elements of less than
3903 // 8 bits.
3904 bool TargetLowering::isConstTrueVal(SDValue N) const {
3905   if (!N)
3906     return false;
3907 
3908   unsigned EltWidth;
3909   APInt CVal;
3910   if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
3911                                                /*AllowTruncation=*/true)) {
3912     CVal = CN->getAPIntValue();
3913     EltWidth = N.getValueType().getScalarSizeInBits();
3914   } else
3915     return false;
3916 
3917   // If this is a truncating splat, truncate the splat value.
3918   // Otherwise, we may fail to match the expected values below.
3919   if (EltWidth < CVal.getBitWidth())
3920     CVal = CVal.trunc(EltWidth);
3921 
3922   switch (getBooleanContents(N.getValueType())) {
3923   case UndefinedBooleanContent:
3924     return CVal[0];
3925   case ZeroOrOneBooleanContent:
3926     return CVal.isOne();
3927   case ZeroOrNegativeOneBooleanContent:
3928     return CVal.isAllOnes();
3929   }
3930 
3931   llvm_unreachable("Invalid boolean contents");
3932 }
3933 
3934 bool TargetLowering::isConstFalseVal(SDValue N) const {
3935   if (!N)
3936     return false;
3937 
3938   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3939   if (!CN) {
3940     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3941     if (!BV)
3942       return false;
3943 
3944     // Only interested in constant splats, we don't care about undef
3945     // elements in identifying boolean constants and getConstantSplatNode
3946     // returns NULL if all ops are undef;
3947     CN = BV->getConstantSplatNode();
3948     if (!CN)
3949       return false;
3950   }
3951 
3952   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3953     return !CN->getAPIntValue()[0];
3954 
3955   return CN->isZero();
3956 }
3957 
3958 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3959                                        bool SExt) const {
3960   if (VT == MVT::i1)
3961     return N->isOne();
3962 
3963   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3964   switch (Cnt) {
3965   case TargetLowering::ZeroOrOneBooleanContent:
3966     // An extended value of 1 is always true, unless its original type is i1,
3967     // in which case it will be sign extended to -1.
3968     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3969   case TargetLowering::UndefinedBooleanContent:
3970   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3971     return N->isAllOnes() && SExt;
3972   }
3973   llvm_unreachable("Unexpected enumeration.");
3974 }
3975 
3976 /// This helper function of SimplifySetCC tries to optimize the comparison when
3977 /// either operand of the SetCC node is a bitwise-and instruction.
3978 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3979                                          ISD::CondCode Cond, const SDLoc &DL,
3980                                          DAGCombinerInfo &DCI) const {
3981   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3982     std::swap(N0, N1);
3983 
3984   SelectionDAG &DAG = DCI.DAG;
3985   EVT OpVT = N0.getValueType();
3986   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3987       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3988     return SDValue();
3989 
3990   // (X & Y) != 0 --> zextOrTrunc(X & Y)
3991   // iff everything but LSB is known zero:
3992   if (Cond == ISD::SETNE && isNullConstant(N1) &&
3993       (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
3994        getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
3995     unsigned NumEltBits = OpVT.getScalarSizeInBits();
3996     APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
3997     if (DAG.MaskedValueIsZero(N0, UpperBits))
3998       return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
3999   }
4000 
4001   // Try to eliminate a power-of-2 mask constant by converting to a signbit
4002   // test in a narrow type that we can truncate to with no cost. Examples:
4003   // (i32 X & 32768) == 0 --> (trunc X to i16) >= 0
4004   // (i32 X & 32768) != 0 --> (trunc X to i16) < 0
4005   // TODO: This conservatively checks for type legality on the source and
4006   //       destination types. That may inhibit optimizations, but it also
4007   //       allows setcc->shift transforms that may be more beneficial.
4008   auto *AndC = dyn_cast<ConstantSDNode>(N0.getOperand(1));
4009   if (AndC && isNullConstant(N1) && AndC->getAPIntValue().isPowerOf2() &&
4010       isTypeLegal(OpVT) && N0.hasOneUse()) {
4011     EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(),
4012                                      AndC->getAPIntValue().getActiveBits());
4013     if (isTruncateFree(OpVT, NarrowVT) && isTypeLegal(NarrowVT)) {
4014       SDValue Trunc = DAG.getZExtOrTrunc(N0.getOperand(0), DL, NarrowVT);
4015       SDValue Zero = DAG.getConstant(0, DL, NarrowVT);
4016       return DAG.getSetCC(DL, VT, Trunc, Zero,
4017                           Cond == ISD::SETEQ ? ISD::SETGE : ISD::SETLT);
4018     }
4019   }
4020 
4021   // Match these patterns in any of their permutations:
4022   // (X & Y) == Y
4023   // (X & Y) != Y
4024   SDValue X, Y;
4025   if (N0.getOperand(0) == N1) {
4026     X = N0.getOperand(1);
4027     Y = N0.getOperand(0);
4028   } else if (N0.getOperand(1) == N1) {
4029     X = N0.getOperand(0);
4030     Y = N0.getOperand(1);
4031   } else {
4032     return SDValue();
4033   }
4034 
4035   // TODO: We should invert (X & Y) eq/ne 0 -> (X & Y) ne/eq Y if
4036   // `isXAndYEqZeroPreferableToXAndYEqY` is false. This is a bit difficult as
4037   // its liable to create and infinite loop.
4038   SDValue Zero = DAG.getConstant(0, DL, OpVT);
4039   if (isXAndYEqZeroPreferableToXAndYEqY(Cond, OpVT) &&
4040       DAG.isKnownToBeAPowerOfTwo(Y)) {
4041     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
4042     // Note that where Y is variable and is known to have at most one bit set
4043     // (for example, if it is Z & 1) we cannot do this; the expressions are not
4044     // equivalent when Y == 0.
4045     assert(OpVT.isInteger());
4046     Cond = ISD::getSetCCInverse(Cond, OpVT);
4047     if (DCI.isBeforeLegalizeOps() ||
4048         isCondCodeLegal(Cond, N0.getSimpleValueType()))
4049       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
4050   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
4051     // If the target supports an 'and-not' or 'and-complement' logic operation,
4052     // try to use that to make a comparison operation more efficient.
4053     // But don't do this transform if the mask is a single bit because there are
4054     // more efficient ways to deal with that case (for example, 'bt' on x86 or
4055     // 'rlwinm' on PPC).
4056 
4057     // Bail out if the compare operand that we want to turn into a zero is
4058     // already a zero (otherwise, infinite loop).
4059     if (isNullConstant(Y))
4060       return SDValue();
4061 
4062     // Transform this into: ~X & Y == 0.
4063     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
4064     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
4065     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
4066   }
4067 
4068   return SDValue();
4069 }
4070 
4071 /// There are multiple IR patterns that could be checking whether certain
4072 /// truncation of a signed number would be lossy or not. The pattern which is
4073 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
4074 /// We are looking for the following pattern: (KeptBits is a constant)
4075 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
4076 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
4077 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
4078 /// We will unfold it into the natural trunc+sext pattern:
4079 ///   ((%x << C) a>> C) dstcond %x
4080 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
4081 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
4082     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
4083     const SDLoc &DL) const {
4084   // We must be comparing with a constant.
4085   ConstantSDNode *C1;
4086   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
4087     return SDValue();
4088 
4089   // N0 should be:  add %x, (1 << (KeptBits-1))
4090   if (N0->getOpcode() != ISD::ADD)
4091     return SDValue();
4092 
4093   // And we must be 'add'ing a constant.
4094   ConstantSDNode *C01;
4095   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
4096     return SDValue();
4097 
4098   SDValue X = N0->getOperand(0);
4099   EVT XVT = X.getValueType();
4100 
4101   // Validate constants ...
4102 
4103   APInt I1 = C1->getAPIntValue();
4104 
4105   ISD::CondCode NewCond;
4106   if (Cond == ISD::CondCode::SETULT) {
4107     NewCond = ISD::CondCode::SETEQ;
4108   } else if (Cond == ISD::CondCode::SETULE) {
4109     NewCond = ISD::CondCode::SETEQ;
4110     // But need to 'canonicalize' the constant.
4111     I1 += 1;
4112   } else if (Cond == ISD::CondCode::SETUGT) {
4113     NewCond = ISD::CondCode::SETNE;
4114     // But need to 'canonicalize' the constant.
4115     I1 += 1;
4116   } else if (Cond == ISD::CondCode::SETUGE) {
4117     NewCond = ISD::CondCode::SETNE;
4118   } else
4119     return SDValue();
4120 
4121   APInt I01 = C01->getAPIntValue();
4122 
4123   auto checkConstants = [&I1, &I01]() -> bool {
4124     // Both of them must be power-of-two, and the constant from setcc is bigger.
4125     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
4126   };
4127 
4128   if (checkConstants()) {
4129     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
4130   } else {
4131     // What if we invert constants? (and the target predicate)
4132     I1.negate();
4133     I01.negate();
4134     assert(XVT.isInteger());
4135     NewCond = getSetCCInverse(NewCond, XVT);
4136     if (!checkConstants())
4137       return SDValue();
4138     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
4139   }
4140 
4141   // They are power-of-two, so which bit is set?
4142   const unsigned KeptBits = I1.logBase2();
4143   const unsigned KeptBitsMinusOne = I01.logBase2();
4144 
4145   // Magic!
4146   if (KeptBits != (KeptBitsMinusOne + 1))
4147     return SDValue();
4148   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
4149 
4150   // We don't want to do this in every single case.
4151   SelectionDAG &DAG = DCI.DAG;
4152   if (!shouldTransformSignedTruncationCheck(XVT, KeptBits))
4153     return SDValue();
4154 
4155   // Unfold into:  sext_inreg(%x) cond %x
4156   // Where 'cond' will be either 'eq' or 'ne'.
4157   SDValue SExtInReg = DAG.getNode(
4158       ISD::SIGN_EXTEND_INREG, DL, XVT, X,
4159       DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), KeptBits)));
4160   return DAG.getSetCC(DL, SCCVT, SExtInReg, X, NewCond);
4161 }
4162 
4163 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4164 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
4165     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
4166     DAGCombinerInfo &DCI, const SDLoc &DL) const {
4167   assert(isConstOrConstSplat(N1C) && isConstOrConstSplat(N1C)->isZero() &&
4168          "Should be a comparison with 0.");
4169   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4170          "Valid only for [in]equality comparisons.");
4171 
4172   unsigned NewShiftOpcode;
4173   SDValue X, C, Y;
4174 
4175   SelectionDAG &DAG = DCI.DAG;
4176 
4177   // Look for '(C l>>/<< Y)'.
4178   auto Match = [&NewShiftOpcode, &X, &C, &Y, &DAG, this](SDValue V) {
4179     // The shift should be one-use.
4180     if (!V.hasOneUse())
4181       return false;
4182     unsigned OldShiftOpcode = V.getOpcode();
4183     switch (OldShiftOpcode) {
4184     case ISD::SHL:
4185       NewShiftOpcode = ISD::SRL;
4186       break;
4187     case ISD::SRL:
4188       NewShiftOpcode = ISD::SHL;
4189       break;
4190     default:
4191       return false; // must be a logical shift.
4192     }
4193     // We should be shifting a constant.
4194     // FIXME: best to use isConstantOrConstantVector().
4195     C = V.getOperand(0);
4196     ConstantSDNode *CC =
4197         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
4198     if (!CC)
4199       return false;
4200     Y = V.getOperand(1);
4201 
4202     ConstantSDNode *XC =
4203         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
4204     return shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
4205         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
4206   };
4207 
4208   // LHS of comparison should be an one-use 'and'.
4209   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
4210     return SDValue();
4211 
4212   X = N0.getOperand(0);
4213   SDValue Mask = N0.getOperand(1);
4214 
4215   // 'and' is commutative!
4216   if (!Match(Mask)) {
4217     std::swap(X, Mask);
4218     if (!Match(Mask))
4219       return SDValue();
4220   }
4221 
4222   EVT VT = X.getValueType();
4223 
4224   // Produce:
4225   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
4226   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
4227   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
4228   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
4229   return T2;
4230 }
4231 
4232 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
4233 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
4234 /// handle the commuted versions of these patterns.
4235 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
4236                                            ISD::CondCode Cond, const SDLoc &DL,
4237                                            DAGCombinerInfo &DCI) const {
4238   unsigned BOpcode = N0.getOpcode();
4239   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
4240          "Unexpected binop");
4241   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
4242 
4243   // (X + Y) == X --> Y == 0
4244   // (X - Y) == X --> Y == 0
4245   // (X ^ Y) == X --> Y == 0
4246   SelectionDAG &DAG = DCI.DAG;
4247   EVT OpVT = N0.getValueType();
4248   SDValue X = N0.getOperand(0);
4249   SDValue Y = N0.getOperand(1);
4250   if (X == N1)
4251     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
4252 
4253   if (Y != N1)
4254     return SDValue();
4255 
4256   // (X + Y) == Y --> X == 0
4257   // (X ^ Y) == Y --> X == 0
4258   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
4259     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
4260 
4261   // The shift would not be valid if the operands are boolean (i1).
4262   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
4263     return SDValue();
4264 
4265   // (X - Y) == Y --> X == Y << 1
4266   SDValue One = DAG.getShiftAmountConstant(1, OpVT, DL);
4267   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
4268   if (!DCI.isCalledByLegalizer())
4269     DCI.AddToWorklist(YShl1.getNode());
4270   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
4271 }
4272 
4273 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
4274                                       SDValue N0, const APInt &C1,
4275                                       ISD::CondCode Cond, const SDLoc &dl,
4276                                       SelectionDAG &DAG) {
4277   // Look through truncs that don't change the value of a ctpop.
4278   // FIXME: Add vector support? Need to be careful with setcc result type below.
4279   SDValue CTPOP = N0;
4280   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
4281       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
4282     CTPOP = N0.getOperand(0);
4283 
4284   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
4285     return SDValue();
4286 
4287   EVT CTVT = CTPOP.getValueType();
4288   SDValue CTOp = CTPOP.getOperand(0);
4289 
4290   // Expand a power-of-2-or-zero comparison based on ctpop:
4291   // (ctpop x) u< 2 -> (x & x-1) == 0
4292   // (ctpop x) u> 1 -> (x & x-1) != 0
4293   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
4294     // Keep the CTPOP if it is a cheap vector op.
4295     if (CTVT.isVector() && TLI.isCtpopFast(CTVT))
4296       return SDValue();
4297 
4298     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
4299     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
4300       return SDValue();
4301     if (C1 == 0 && (Cond == ISD::SETULT))
4302       return SDValue(); // This is handled elsewhere.
4303 
4304     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
4305 
4306     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
4307     SDValue Result = CTOp;
4308     for (unsigned i = 0; i < Passes; i++) {
4309       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
4310       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
4311     }
4312     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
4313     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
4314   }
4315 
4316   // Expand a power-of-2 comparison based on ctpop
4317   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
4318     // Keep the CTPOP if it is cheap.
4319     if (TLI.isCtpopFast(CTVT))
4320       return SDValue();
4321 
4322     SDValue Zero = DAG.getConstant(0, dl, CTVT);
4323     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
4324     assert(CTVT.isInteger());
4325     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
4326 
4327     // Its not uncommon for known-never-zero X to exist in (ctpop X) eq/ne 1, so
4328     // check before emitting a potentially unnecessary op.
4329     if (DAG.isKnownNeverZero(CTOp)) {
4330       // (ctpop x) == 1 --> (x & x-1) == 0
4331       // (ctpop x) != 1 --> (x & x-1) != 0
4332       SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
4333       SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
4334       return RHS;
4335     }
4336 
4337     // (ctpop x) == 1 --> (x ^ x-1) >  x-1
4338     // (ctpop x) != 1 --> (x ^ x-1) <= x-1
4339     SDValue Xor = DAG.getNode(ISD::XOR, dl, CTVT, CTOp, Add);
4340     ISD::CondCode CmpCond = Cond == ISD::SETEQ ? ISD::SETUGT : ISD::SETULE;
4341     return DAG.getSetCC(dl, VT, Xor, Add, CmpCond);
4342   }
4343 
4344   return SDValue();
4345 }
4346 
4347 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1,
4348                                    ISD::CondCode Cond, const SDLoc &dl,
4349                                    SelectionDAG &DAG) {
4350   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
4351     return SDValue();
4352 
4353   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4354   if (!C1 || !(C1->isZero() || C1->isAllOnes()))
4355     return SDValue();
4356 
4357   auto getRotateSource = [](SDValue X) {
4358     if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR)
4359       return X.getOperand(0);
4360     return SDValue();
4361   };
4362 
4363   // Peek through a rotated value compared against 0 or -1:
4364   // (rot X, Y) == 0/-1 --> X == 0/-1
4365   // (rot X, Y) != 0/-1 --> X != 0/-1
4366   if (SDValue R = getRotateSource(N0))
4367     return DAG.getSetCC(dl, VT, R, N1, Cond);
4368 
4369   // Peek through an 'or' of a rotated value compared against 0:
4370   // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0
4371   // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0
4372   //
4373   // TODO: Add the 'and' with -1 sibling.
4374   // TODO: Recurse through a series of 'or' ops to find the rotate.
4375   EVT OpVT = N0.getValueType();
4376   if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) {
4377     if (SDValue R = getRotateSource(N0.getOperand(0))) {
4378       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1));
4379       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4380     }
4381     if (SDValue R = getRotateSource(N0.getOperand(1))) {
4382       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0));
4383       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4384     }
4385   }
4386 
4387   return SDValue();
4388 }
4389 
4390 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1,
4391                                         ISD::CondCode Cond, const SDLoc &dl,
4392                                         SelectionDAG &DAG) {
4393   // If we are testing for all-bits-clear, we might be able to do that with
4394   // less shifting since bit-order does not matter.
4395   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
4396     return SDValue();
4397 
4398   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4399   if (!C1 || !C1->isZero())
4400     return SDValue();
4401 
4402   if (!N0.hasOneUse() ||
4403       (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR))
4404     return SDValue();
4405 
4406   unsigned BitWidth = N0.getScalarValueSizeInBits();
4407   auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2));
4408   if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
4409     return SDValue();
4410 
4411   // Canonicalize fshr as fshl to reduce pattern-matching.
4412   unsigned ShAmt = ShAmtC->getZExtValue();
4413   if (N0.getOpcode() == ISD::FSHR)
4414     ShAmt = BitWidth - ShAmt;
4415 
4416   // Match an 'or' with a specific operand 'Other' in either commuted variant.
4417   SDValue X, Y;
4418   auto matchOr = [&X, &Y](SDValue Or, SDValue Other) {
4419     if (Or.getOpcode() != ISD::OR || !Or.hasOneUse())
4420       return false;
4421     if (Or.getOperand(0) == Other) {
4422       X = Or.getOperand(0);
4423       Y = Or.getOperand(1);
4424       return true;
4425     }
4426     if (Or.getOperand(1) == Other) {
4427       X = Or.getOperand(1);
4428       Y = Or.getOperand(0);
4429       return true;
4430     }
4431     return false;
4432   };
4433 
4434   EVT OpVT = N0.getValueType();
4435   EVT ShAmtVT = N0.getOperand(2).getValueType();
4436   SDValue F0 = N0.getOperand(0);
4437   SDValue F1 = N0.getOperand(1);
4438   if (matchOr(F0, F1)) {
4439     // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0
4440     SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT);
4441     SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt);
4442     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4443     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4444   }
4445   if (matchOr(F1, F0)) {
4446     // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0
4447     SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT);
4448     SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt);
4449     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4450     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4451   }
4452 
4453   return SDValue();
4454 }
4455 
4456 /// Try to simplify a setcc built with the specified operands and cc. If it is
4457 /// unable to simplify it, return a null SDValue.
4458 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
4459                                       ISD::CondCode Cond, bool foldBooleans,
4460                                       DAGCombinerInfo &DCI,
4461                                       const SDLoc &dl) const {
4462   SelectionDAG &DAG = DCI.DAG;
4463   const DataLayout &Layout = DAG.getDataLayout();
4464   EVT OpVT = N0.getValueType();
4465   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4466 
4467   // Constant fold or commute setcc.
4468   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
4469     return Fold;
4470 
4471   bool N0ConstOrSplat =
4472       isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4473   bool N1ConstOrSplat =
4474       isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4475 
4476   // Canonicalize toward having the constant on the RHS.
4477   // TODO: Handle non-splat vector constants. All undef causes trouble.
4478   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
4479   // infinite loop here when we encounter one.
4480   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
4481   if (N0ConstOrSplat && !N1ConstOrSplat &&
4482       (DCI.isBeforeLegalizeOps() ||
4483        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
4484     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4485 
4486   // If we have a subtract with the same 2 non-constant operands as this setcc
4487   // -- but in reverse order -- then try to commute the operands of this setcc
4488   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
4489   // instruction on some targets.
4490   if (!N0ConstOrSplat && !N1ConstOrSplat &&
4491       (DCI.isBeforeLegalizeOps() ||
4492        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
4493       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
4494       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
4495     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4496 
4497   if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG))
4498     return V;
4499 
4500   if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG))
4501     return V;
4502 
4503   if (auto *N1C = isConstOrConstSplat(N1)) {
4504     const APInt &C1 = N1C->getAPIntValue();
4505 
4506     // Optimize some CTPOP cases.
4507     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
4508       return V;
4509 
4510     // For equality to 0 of a no-wrap multiply, decompose and test each op:
4511     // X * Y == 0 --> (X == 0) || (Y == 0)
4512     // X * Y != 0 --> (X != 0) && (Y != 0)
4513     // TODO: This bails out if minsize is set, but if the target doesn't have a
4514     //       single instruction multiply for this type, it would likely be
4515     //       smaller to decompose.
4516     if (C1.isZero() && (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4517         N0.getOpcode() == ISD::MUL && N0.hasOneUse() &&
4518         (N0->getFlags().hasNoUnsignedWrap() ||
4519          N0->getFlags().hasNoSignedWrap()) &&
4520         !Attr.hasFnAttr(Attribute::MinSize)) {
4521       SDValue IsXZero = DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4522       SDValue IsYZero = DAG.getSetCC(dl, VT, N0.getOperand(1), N1, Cond);
4523       unsigned LogicOp = Cond == ISD::SETEQ ? ISD::OR : ISD::AND;
4524       return DAG.getNode(LogicOp, dl, VT, IsXZero, IsYZero);
4525     }
4526 
4527     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
4528     // equality comparison, then we're just comparing whether X itself is
4529     // zero.
4530     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
4531         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
4532         llvm::has_single_bit<uint32_t>(N0.getScalarValueSizeInBits())) {
4533       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
4534         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4535             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
4536           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
4537             // (srl (ctlz x), 5) == 0  -> X != 0
4538             // (srl (ctlz x), 5) != 1  -> X != 0
4539             Cond = ISD::SETNE;
4540           } else {
4541             // (srl (ctlz x), 5) != 0  -> X == 0
4542             // (srl (ctlz x), 5) == 1  -> X == 0
4543             Cond = ISD::SETEQ;
4544           }
4545           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
4546           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
4547                               Cond);
4548         }
4549       }
4550     }
4551   }
4552 
4553   // FIXME: Support vectors.
4554   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4555     const APInt &C1 = N1C->getAPIntValue();
4556 
4557     // (zext x) == C --> x == (trunc C)
4558     // (sext x) == C --> x == (trunc C)
4559     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4560         DCI.isBeforeLegalize() && N0->hasOneUse()) {
4561       unsigned MinBits = N0.getValueSizeInBits();
4562       SDValue PreExt;
4563       bool Signed = false;
4564       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
4565         // ZExt
4566         MinBits = N0->getOperand(0).getValueSizeInBits();
4567         PreExt = N0->getOperand(0);
4568       } else if (N0->getOpcode() == ISD::AND) {
4569         // DAGCombine turns costly ZExts into ANDs
4570         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
4571           if ((C->getAPIntValue()+1).isPowerOf2()) {
4572             MinBits = C->getAPIntValue().countr_one();
4573             PreExt = N0->getOperand(0);
4574           }
4575       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
4576         // SExt
4577         MinBits = N0->getOperand(0).getValueSizeInBits();
4578         PreExt = N0->getOperand(0);
4579         Signed = true;
4580       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
4581         // ZEXTLOAD / SEXTLOAD
4582         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
4583           MinBits = LN0->getMemoryVT().getSizeInBits();
4584           PreExt = N0;
4585         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
4586           Signed = true;
4587           MinBits = LN0->getMemoryVT().getSizeInBits();
4588           PreExt = N0;
4589         }
4590       }
4591 
4592       // Figure out how many bits we need to preserve this constant.
4593       unsigned ReqdBits = Signed ? C1.getSignificantBits() : C1.getActiveBits();
4594 
4595       // Make sure we're not losing bits from the constant.
4596       if (MinBits > 0 &&
4597           MinBits < C1.getBitWidth() &&
4598           MinBits >= ReqdBits) {
4599         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
4600         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
4601           // Will get folded away.
4602           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
4603           if (MinBits == 1 && C1 == 1)
4604             // Invert the condition.
4605             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
4606                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4607           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
4608           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
4609         }
4610 
4611         // If truncating the setcc operands is not desirable, we can still
4612         // simplify the expression in some cases:
4613         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
4614         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
4615         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
4616         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
4617         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
4618         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
4619         SDValue TopSetCC = N0->getOperand(0);
4620         unsigned N0Opc = N0->getOpcode();
4621         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
4622         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
4623             TopSetCC.getOpcode() == ISD::SETCC &&
4624             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
4625             (isConstFalseVal(N1) ||
4626              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
4627 
4628           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
4629                          (!N1C->isZero() && Cond == ISD::SETNE);
4630 
4631           if (!Inverse)
4632             return TopSetCC;
4633 
4634           ISD::CondCode InvCond = ISD::getSetCCInverse(
4635               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
4636               TopSetCC.getOperand(0).getValueType());
4637           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
4638                                       TopSetCC.getOperand(1),
4639                                       InvCond);
4640         }
4641       }
4642     }
4643 
4644     // If the LHS is '(and load, const)', the RHS is 0, the test is for
4645     // equality or unsigned, and all 1 bits of the const are in the same
4646     // partial word, see if we can shorten the load.
4647     if (DCI.isBeforeLegalize() &&
4648         !ISD::isSignedIntSetCC(Cond) &&
4649         N0.getOpcode() == ISD::AND && C1 == 0 &&
4650         N0.getNode()->hasOneUse() &&
4651         isa<LoadSDNode>(N0.getOperand(0)) &&
4652         N0.getOperand(0).getNode()->hasOneUse() &&
4653         isa<ConstantSDNode>(N0.getOperand(1))) {
4654       auto *Lod = cast<LoadSDNode>(N0.getOperand(0));
4655       APInt bestMask;
4656       unsigned bestWidth = 0, bestOffset = 0;
4657       if (Lod->isSimple() && Lod->isUnindexed() &&
4658           (Lod->getMemoryVT().isByteSized() ||
4659            isPaddedAtMostSignificantBitsWhenStored(Lod->getMemoryVT()))) {
4660         unsigned memWidth = Lod->getMemoryVT().getStoreSizeInBits();
4661         unsigned origWidth = N0.getValueSizeInBits();
4662         unsigned maskWidth = origWidth;
4663         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
4664         // 8 bits, but have to be careful...
4665         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
4666           origWidth = Lod->getMemoryVT().getSizeInBits();
4667         const APInt &Mask = N0.getConstantOperandAPInt(1);
4668         // Only consider power-of-2 widths (and at least one byte) as candiates
4669         // for the narrowed load.
4670         for (unsigned width = 8; width < origWidth; width *= 2) {
4671           EVT newVT = EVT::getIntegerVT(*DAG.getContext(), width);
4672           if (!shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT))
4673             continue;
4674           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
4675           // Avoid accessing any padding here for now (we could use memWidth
4676           // instead of origWidth here otherwise).
4677           unsigned maxOffset = origWidth - width;
4678           for (unsigned offset = 0; offset <= maxOffset; offset += 8) {
4679             if (Mask.isSubsetOf(newMask)) {
4680               unsigned ptrOffset =
4681                   Layout.isLittleEndian() ? offset : memWidth - width - offset;
4682               unsigned IsFast = 0;
4683               Align NewAlign = commonAlignment(Lod->getAlign(), ptrOffset / 8);
4684               if (allowsMemoryAccess(
4685                       *DAG.getContext(), Layout, newVT, Lod->getAddressSpace(),
4686                       NewAlign, Lod->getMemOperand()->getFlags(), &IsFast) &&
4687                   IsFast) {
4688                 bestOffset = ptrOffset / 8;
4689                 bestMask = Mask.lshr(offset);
4690                 bestWidth = width;
4691                 break;
4692               }
4693             }
4694             newMask <<= 8;
4695           }
4696           if (bestWidth)
4697             break;
4698         }
4699       }
4700       if (bestWidth) {
4701         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
4702         SDValue Ptr = Lod->getBasePtr();
4703         if (bestOffset != 0)
4704           Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(bestOffset));
4705         SDValue NewLoad =
4706             DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
4707                         Lod->getPointerInfo().getWithOffset(bestOffset),
4708                         Lod->getOriginalAlign());
4709         SDValue And =
4710             DAG.getNode(ISD::AND, dl, newVT, NewLoad,
4711                         DAG.getConstant(bestMask.trunc(bestWidth), dl, newVT));
4712         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0LL, dl, newVT), Cond);
4713       }
4714     }
4715 
4716     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
4717     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
4718       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
4719 
4720       // If the comparison constant has bits in the upper part, the
4721       // zero-extended value could never match.
4722       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
4723                                               C1.getBitWidth() - InSize))) {
4724         switch (Cond) {
4725         case ISD::SETUGT:
4726         case ISD::SETUGE:
4727         case ISD::SETEQ:
4728           return DAG.getConstant(0, dl, VT);
4729         case ISD::SETULT:
4730         case ISD::SETULE:
4731         case ISD::SETNE:
4732           return DAG.getConstant(1, dl, VT);
4733         case ISD::SETGT:
4734         case ISD::SETGE:
4735           // True if the sign bit of C1 is set.
4736           return DAG.getConstant(C1.isNegative(), dl, VT);
4737         case ISD::SETLT:
4738         case ISD::SETLE:
4739           // True if the sign bit of C1 isn't set.
4740           return DAG.getConstant(C1.isNonNegative(), dl, VT);
4741         default:
4742           break;
4743         }
4744       }
4745 
4746       // Otherwise, we can perform the comparison with the low bits.
4747       switch (Cond) {
4748       case ISD::SETEQ:
4749       case ISD::SETNE:
4750       case ISD::SETUGT:
4751       case ISD::SETUGE:
4752       case ISD::SETULT:
4753       case ISD::SETULE: {
4754         EVT newVT = N0.getOperand(0).getValueType();
4755         // FIXME: Should use isNarrowingProfitable.
4756         if (DCI.isBeforeLegalizeOps() ||
4757             (isOperationLegal(ISD::SETCC, newVT) &&
4758              isCondCodeLegal(Cond, newVT.getSimpleVT()) &&
4759              isTypeDesirableForOp(ISD::SETCC, newVT))) {
4760           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
4761           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
4762 
4763           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
4764                                           NewConst, Cond);
4765           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
4766         }
4767         break;
4768       }
4769       default:
4770         break; // todo, be more careful with signed comparisons
4771       }
4772     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4773                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4774                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
4775                                       OpVT)) {
4776       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
4777       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
4778       EVT ExtDstTy = N0.getValueType();
4779       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
4780 
4781       // If the constant doesn't fit into the number of bits for the source of
4782       // the sign extension, it is impossible for both sides to be equal.
4783       if (C1.getSignificantBits() > ExtSrcTyBits)
4784         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
4785 
4786       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
4787              ExtDstTy != ExtSrcTy && "Unexpected types!");
4788       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
4789       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
4790                                    DAG.getConstant(Imm, dl, ExtDstTy));
4791       if (!DCI.isCalledByLegalizer())
4792         DCI.AddToWorklist(ZextOp.getNode());
4793       // Otherwise, make this a use of a zext.
4794       return DAG.getSetCC(dl, VT, ZextOp,
4795                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
4796     } else if ((N1C->isZero() || N1C->isOne()) &&
4797                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4798       // SETCC (X), [0|1], [EQ|NE]  -> X if X is known 0/1. i1 types are
4799       // excluded as they are handled below whilst checking for foldBooleans.
4800       if ((N0.getOpcode() == ISD::SETCC || VT.getScalarType() != MVT::i1) &&
4801           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
4802           (N0.getValueType() == MVT::i1 ||
4803            getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4804           DAG.MaskedValueIsZero(
4805               N0, APInt::getBitsSetFrom(N0.getValueSizeInBits(), 1))) {
4806         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
4807         if (TrueWhenTrue)
4808           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
4809         // Invert the condition.
4810         if (N0.getOpcode() == ISD::SETCC) {
4811           ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4812           CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
4813           if (DCI.isBeforeLegalizeOps() ||
4814               isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
4815             return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
4816         }
4817       }
4818 
4819       if ((N0.getOpcode() == ISD::XOR ||
4820            (N0.getOpcode() == ISD::AND &&
4821             N0.getOperand(0).getOpcode() == ISD::XOR &&
4822             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
4823           isOneConstant(N0.getOperand(1))) {
4824         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
4825         // can only do this if the top bits are known zero.
4826         unsigned BitWidth = N0.getValueSizeInBits();
4827         if (DAG.MaskedValueIsZero(N0,
4828                                   APInt::getHighBitsSet(BitWidth,
4829                                                         BitWidth-1))) {
4830           // Okay, get the un-inverted input value.
4831           SDValue Val;
4832           if (N0.getOpcode() == ISD::XOR) {
4833             Val = N0.getOperand(0);
4834           } else {
4835             assert(N0.getOpcode() == ISD::AND &&
4836                     N0.getOperand(0).getOpcode() == ISD::XOR);
4837             // ((X^1)&1)^1 -> X & 1
4838             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
4839                               N0.getOperand(0).getOperand(0),
4840                               N0.getOperand(1));
4841           }
4842 
4843           return DAG.getSetCC(dl, VT, Val, N1,
4844                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4845         }
4846       } else if (N1C->isOne()) {
4847         SDValue Op0 = N0;
4848         if (Op0.getOpcode() == ISD::TRUNCATE)
4849           Op0 = Op0.getOperand(0);
4850 
4851         if ((Op0.getOpcode() == ISD::XOR) &&
4852             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
4853             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
4854           SDValue XorLHS = Op0.getOperand(0);
4855           SDValue XorRHS = Op0.getOperand(1);
4856           // Ensure that the input setccs return an i1 type or 0/1 value.
4857           if (Op0.getValueType() == MVT::i1 ||
4858               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
4859                       ZeroOrOneBooleanContent &&
4860                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
4861                         ZeroOrOneBooleanContent)) {
4862             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
4863             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
4864             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
4865           }
4866         }
4867         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
4868           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
4869           if (Op0.getValueType().bitsGT(VT))
4870             Op0 = DAG.getNode(ISD::AND, dl, VT,
4871                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
4872                           DAG.getConstant(1, dl, VT));
4873           else if (Op0.getValueType().bitsLT(VT))
4874             Op0 = DAG.getNode(ISD::AND, dl, VT,
4875                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
4876                         DAG.getConstant(1, dl, VT));
4877 
4878           return DAG.getSetCC(dl, VT, Op0,
4879                               DAG.getConstant(0, dl, Op0.getValueType()),
4880                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4881         }
4882         if (Op0.getOpcode() == ISD::AssertZext &&
4883             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
4884           return DAG.getSetCC(dl, VT, Op0,
4885                               DAG.getConstant(0, dl, Op0.getValueType()),
4886                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4887       }
4888     }
4889 
4890     // Given:
4891     //   icmp eq/ne (urem %x, %y), 0
4892     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
4893     //   icmp eq/ne %x, 0
4894     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
4895         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4896       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
4897       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
4898       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
4899         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4900     }
4901 
4902     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
4903     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
4904     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4905         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
4906         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
4907         N1C->isAllOnes()) {
4908       return DAG.getSetCC(dl, VT, N0.getOperand(0),
4909                           DAG.getConstant(0, dl, OpVT),
4910                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
4911     }
4912 
4913     if (SDValue V =
4914             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
4915       return V;
4916   }
4917 
4918   // These simplifications apply to splat vectors as well.
4919   // TODO: Handle more splat vector cases.
4920   if (auto *N1C = isConstOrConstSplat(N1)) {
4921     const APInt &C1 = N1C->getAPIntValue();
4922 
4923     APInt MinVal, MaxVal;
4924     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
4925     if (ISD::isSignedIntSetCC(Cond)) {
4926       MinVal = APInt::getSignedMinValue(OperandBitSize);
4927       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
4928     } else {
4929       MinVal = APInt::getMinValue(OperandBitSize);
4930       MaxVal = APInt::getMaxValue(OperandBitSize);
4931     }
4932 
4933     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4934     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4935       // X >= MIN --> true
4936       if (C1 == MinVal)
4937         return DAG.getBoolConstant(true, dl, VT, OpVT);
4938 
4939       if (!VT.isVector()) { // TODO: Support this for vectors.
4940         // X >= C0 --> X > (C0 - 1)
4941         APInt C = C1 - 1;
4942         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4943         if ((DCI.isBeforeLegalizeOps() ||
4944              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4945             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4946                                   isLegalICmpImmediate(C.getSExtValue())))) {
4947           return DAG.getSetCC(dl, VT, N0,
4948                               DAG.getConstant(C, dl, N1.getValueType()),
4949                               NewCC);
4950         }
4951       }
4952     }
4953 
4954     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4955       // X <= MAX --> true
4956       if (C1 == MaxVal)
4957         return DAG.getBoolConstant(true, dl, VT, OpVT);
4958 
4959       // X <= C0 --> X < (C0 + 1)
4960       if (!VT.isVector()) { // TODO: Support this for vectors.
4961         APInt C = C1 + 1;
4962         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4963         if ((DCI.isBeforeLegalizeOps() ||
4964              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4965             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4966                                   isLegalICmpImmediate(C.getSExtValue())))) {
4967           return DAG.getSetCC(dl, VT, N0,
4968                               DAG.getConstant(C, dl, N1.getValueType()),
4969                               NewCC);
4970         }
4971       }
4972     }
4973 
4974     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4975       if (C1 == MinVal)
4976         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4977 
4978       // TODO: Support this for vectors after legalize ops.
4979       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4980         // Canonicalize setlt X, Max --> setne X, Max
4981         if (C1 == MaxVal)
4982           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4983 
4984         // If we have setult X, 1, turn it into seteq X, 0
4985         if (C1 == MinVal+1)
4986           return DAG.getSetCC(dl, VT, N0,
4987                               DAG.getConstant(MinVal, dl, N0.getValueType()),
4988                               ISD::SETEQ);
4989       }
4990     }
4991 
4992     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4993       if (C1 == MaxVal)
4994         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4995 
4996       // TODO: Support this for vectors after legalize ops.
4997       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4998         // Canonicalize setgt X, Min --> setne X, Min
4999         if (C1 == MinVal)
5000           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
5001 
5002         // If we have setugt X, Max-1, turn it into seteq X, Max
5003         if (C1 == MaxVal-1)
5004           return DAG.getSetCC(dl, VT, N0,
5005                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
5006                               ISD::SETEQ);
5007       }
5008     }
5009 
5010     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
5011       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
5012       if (C1.isZero())
5013         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
5014                 VT, N0, N1, Cond, DCI, dl))
5015           return CC;
5016 
5017       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
5018       // For example, when high 32-bits of i64 X are known clear:
5019       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
5020       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
5021       bool CmpZero = N1C->isZero();
5022       bool CmpNegOne = N1C->isAllOnes();
5023       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
5024         // Match or(lo,shl(hi,bw/2)) pattern.
5025         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
5026           unsigned EltBits = V.getScalarValueSizeInBits();
5027           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
5028             return false;
5029           SDValue LHS = V.getOperand(0);
5030           SDValue RHS = V.getOperand(1);
5031           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
5032           // Unshifted element must have zero upperbits.
5033           if (RHS.getOpcode() == ISD::SHL &&
5034               isa<ConstantSDNode>(RHS.getOperand(1)) &&
5035               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
5036               DAG.MaskedValueIsZero(LHS, HiBits)) {
5037             Lo = LHS;
5038             Hi = RHS.getOperand(0);
5039             return true;
5040           }
5041           if (LHS.getOpcode() == ISD::SHL &&
5042               isa<ConstantSDNode>(LHS.getOperand(1)) &&
5043               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
5044               DAG.MaskedValueIsZero(RHS, HiBits)) {
5045             Lo = RHS;
5046             Hi = LHS.getOperand(0);
5047             return true;
5048           }
5049           return false;
5050         };
5051 
5052         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
5053           unsigned EltBits = N0.getScalarValueSizeInBits();
5054           unsigned HalfBits = EltBits / 2;
5055           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
5056           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
5057           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
5058           SDValue NewN0 =
5059               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
5060           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
5061           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
5062         };
5063 
5064         SDValue Lo, Hi;
5065         if (IsConcat(N0, Lo, Hi))
5066           return MergeConcat(Lo, Hi);
5067 
5068         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
5069           SDValue Lo0, Lo1, Hi0, Hi1;
5070           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
5071               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
5072             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
5073                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
5074           }
5075         }
5076       }
5077     }
5078 
5079     // If we have "setcc X, C0", check to see if we can shrink the immediate
5080     // by changing cc.
5081     // TODO: Support this for vectors after legalize ops.
5082     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
5083       // SETUGT X, SINTMAX  -> SETLT X, 0
5084       // SETUGE X, SINTMIN -> SETLT X, 0
5085       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
5086           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
5087         return DAG.getSetCC(dl, VT, N0,
5088                             DAG.getConstant(0, dl, N1.getValueType()),
5089                             ISD::SETLT);
5090 
5091       // SETULT X, SINTMIN  -> SETGT X, -1
5092       // SETULE X, SINTMAX  -> SETGT X, -1
5093       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
5094           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
5095         return DAG.getSetCC(dl, VT, N0,
5096                             DAG.getAllOnesConstant(dl, N1.getValueType()),
5097                             ISD::SETGT);
5098     }
5099   }
5100 
5101   // Back to non-vector simplifications.
5102   // TODO: Can we do these for vector splats?
5103   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
5104     const APInt &C1 = N1C->getAPIntValue();
5105     EVT ShValTy = N0.getValueType();
5106 
5107     // Fold bit comparisons when we can. This will result in an
5108     // incorrect value when boolean false is negative one, unless
5109     // the bitsize is 1 in which case the false value is the same
5110     // in practice regardless of the representation.
5111     if ((VT.getSizeInBits() == 1 ||
5112          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
5113         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5114         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
5115         N0.getOpcode() == ISD::AND) {
5116       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5117         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
5118           // Perform the xform if the AND RHS is a single bit.
5119           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
5120           if (AndRHS->getAPIntValue().isPowerOf2() &&
5121               !shouldAvoidTransformToShift(ShValTy, ShCt)) {
5122             return DAG.getNode(
5123                 ISD::TRUNCATE, dl, VT,
5124                 DAG.getNode(ISD::SRL, dl, ShValTy, N0,
5125                             DAG.getShiftAmountConstant(ShCt, ShValTy, dl)));
5126           }
5127         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
5128           // (X & 8) == 8  -->  (X & 8) >> 3
5129           // Perform the xform if C1 is a single bit.
5130           unsigned ShCt = C1.logBase2();
5131           if (C1.isPowerOf2() && !shouldAvoidTransformToShift(ShValTy, ShCt)) {
5132             return DAG.getNode(
5133                 ISD::TRUNCATE, dl, VT,
5134                 DAG.getNode(ISD::SRL, dl, ShValTy, N0,
5135                             DAG.getShiftAmountConstant(ShCt, ShValTy, dl)));
5136           }
5137         }
5138       }
5139     }
5140 
5141     if (C1.getSignificantBits() <= 64 &&
5142         !isLegalICmpImmediate(C1.getSExtValue())) {
5143       // (X & -256) == 256 -> (X >> 8) == 1
5144       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5145           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
5146         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5147           const APInt &AndRHSC = AndRHS->getAPIntValue();
5148           if (AndRHSC.isNegatedPowerOf2() && C1.isSubsetOf(AndRHSC)) {
5149             unsigned ShiftBits = AndRHSC.countr_zero();
5150             if (!shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
5151               SDValue Shift = DAG.getNode(
5152                   ISD::SRL, dl, ShValTy, N0.getOperand(0),
5153                   DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl));
5154               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
5155               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
5156             }
5157           }
5158         }
5159       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
5160                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
5161         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
5162         // X <  0x100000000 -> (X >> 32) <  1
5163         // X >= 0x100000000 -> (X >> 32) >= 1
5164         // X <= 0x0ffffffff -> (X >> 32) <  1
5165         // X >  0x0ffffffff -> (X >> 32) >= 1
5166         unsigned ShiftBits;
5167         APInt NewC = C1;
5168         ISD::CondCode NewCond = Cond;
5169         if (AdjOne) {
5170           ShiftBits = C1.countr_one();
5171           NewC = NewC + 1;
5172           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
5173         } else {
5174           ShiftBits = C1.countr_zero();
5175         }
5176         NewC.lshrInPlace(ShiftBits);
5177         if (ShiftBits && NewC.getSignificantBits() <= 64 &&
5178             isLegalICmpImmediate(NewC.getSExtValue()) &&
5179             !shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
5180           SDValue Shift =
5181               DAG.getNode(ISD::SRL, dl, ShValTy, N0,
5182                           DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl));
5183           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
5184           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
5185         }
5186       }
5187     }
5188   }
5189 
5190   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
5191     auto *CFP = cast<ConstantFPSDNode>(N1);
5192     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
5193 
5194     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
5195     // constant if knowing that the operand is non-nan is enough.  We prefer to
5196     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
5197     // materialize 0.0.
5198     if (Cond == ISD::SETO || Cond == ISD::SETUO)
5199       return DAG.getSetCC(dl, VT, N0, N0, Cond);
5200 
5201     // setcc (fneg x), C -> setcc swap(pred) x, -C
5202     if (N0.getOpcode() == ISD::FNEG) {
5203       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
5204       if (DCI.isBeforeLegalizeOps() ||
5205           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
5206         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
5207         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
5208       }
5209     }
5210 
5211     // setueq/setoeq X, (fabs Inf) -> is_fpclass X, fcInf
5212     if (isOperationLegalOrCustom(ISD::IS_FPCLASS, N0.getValueType()) &&
5213         !isFPImmLegal(CFP->getValueAPF(), CFP->getValueType(0))) {
5214       bool IsFabs = N0.getOpcode() == ISD::FABS;
5215       SDValue Op = IsFabs ? N0.getOperand(0) : N0;
5216       if ((Cond == ISD::SETOEQ || Cond == ISD::SETUEQ) && CFP->isInfinity()) {
5217         FPClassTest Flag = CFP->isNegative() ? (IsFabs ? fcNone : fcNegInf)
5218                                              : (IsFabs ? fcInf : fcPosInf);
5219         if (Cond == ISD::SETUEQ)
5220           Flag |= fcNan;
5221         return DAG.getNode(ISD::IS_FPCLASS, dl, VT, Op,
5222                            DAG.getTargetConstant(Flag, dl, MVT::i32));
5223       }
5224     }
5225 
5226     // If the condition is not legal, see if we can find an equivalent one
5227     // which is legal.
5228     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
5229       // If the comparison was an awkward floating-point == or != and one of
5230       // the comparison operands is infinity or negative infinity, convert the
5231       // condition to a less-awkward <= or >=.
5232       if (CFP->getValueAPF().isInfinity()) {
5233         bool IsNegInf = CFP->getValueAPF().isNegative();
5234         ISD::CondCode NewCond = ISD::SETCC_INVALID;
5235         switch (Cond) {
5236         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
5237         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
5238         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
5239         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
5240         default: break;
5241         }
5242         if (NewCond != ISD::SETCC_INVALID &&
5243             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
5244           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
5245       }
5246     }
5247   }
5248 
5249   if (N0 == N1) {
5250     // The sext(setcc()) => setcc() optimization relies on the appropriate
5251     // constant being emitted.
5252     assert(!N0.getValueType().isInteger() &&
5253            "Integer types should be handled by FoldSetCC");
5254 
5255     bool EqTrue = ISD::isTrueWhenEqual(Cond);
5256     unsigned UOF = ISD::getUnorderedFlavor(Cond);
5257     if (UOF == 2) // FP operators that are undefined on NaNs.
5258       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
5259     if (UOF == unsigned(EqTrue))
5260       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
5261     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
5262     // if it is not already.
5263     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
5264     if (NewCond != Cond &&
5265         (DCI.isBeforeLegalizeOps() ||
5266                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
5267       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
5268   }
5269 
5270   // ~X > ~Y --> Y > X
5271   // ~X < ~Y --> Y < X
5272   // ~X < C --> X > ~C
5273   // ~X > C --> X < ~C
5274   if ((isSignedIntSetCC(Cond) || isUnsignedIntSetCC(Cond)) &&
5275       N0.getValueType().isInteger()) {
5276     if (isBitwiseNot(N0)) {
5277       if (isBitwiseNot(N1))
5278         return DAG.getSetCC(dl, VT, N1.getOperand(0), N0.getOperand(0), Cond);
5279 
5280       if (DAG.isConstantIntBuildVectorOrConstantInt(N1) &&
5281           !DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(0))) {
5282         SDValue Not = DAG.getNOT(dl, N1, OpVT);
5283         return DAG.getSetCC(dl, VT, Not, N0.getOperand(0), Cond);
5284       }
5285     }
5286   }
5287 
5288   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5289       N0.getValueType().isInteger()) {
5290     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
5291         N0.getOpcode() == ISD::XOR) {
5292       // Simplify (X+Y) == (X+Z) -->  Y == Z
5293       if (N0.getOpcode() == N1.getOpcode()) {
5294         if (N0.getOperand(0) == N1.getOperand(0))
5295           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
5296         if (N0.getOperand(1) == N1.getOperand(1))
5297           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
5298         if (isCommutativeBinOp(N0.getOpcode())) {
5299           // If X op Y == Y op X, try other combinations.
5300           if (N0.getOperand(0) == N1.getOperand(1))
5301             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
5302                                 Cond);
5303           if (N0.getOperand(1) == N1.getOperand(0))
5304             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
5305                                 Cond);
5306         }
5307       }
5308 
5309       // If RHS is a legal immediate value for a compare instruction, we need
5310       // to be careful about increasing register pressure needlessly.
5311       bool LegalRHSImm = false;
5312 
5313       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
5314         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5315           // Turn (X+C1) == C2 --> X == C2-C1
5316           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse())
5317             return DAG.getSetCC(
5318                 dl, VT, N0.getOperand(0),
5319                 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
5320                                 dl, N0.getValueType()),
5321                 Cond);
5322 
5323           // Turn (X^C1) == C2 --> X == C1^C2
5324           if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse())
5325             return DAG.getSetCC(
5326                 dl, VT, N0.getOperand(0),
5327                 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
5328                                 dl, N0.getValueType()),
5329                 Cond);
5330         }
5331 
5332         // Turn (C1-X) == C2 --> X == C1-C2
5333         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
5334           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse())
5335             return DAG.getSetCC(
5336                 dl, VT, N0.getOperand(1),
5337                 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
5338                                 dl, N0.getValueType()),
5339                 Cond);
5340 
5341         // Could RHSC fold directly into a compare?
5342         if (RHSC->getValueType(0).getSizeInBits() <= 64)
5343           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
5344       }
5345 
5346       // (X+Y) == X --> Y == 0 and similar folds.
5347       // Don't do this if X is an immediate that can fold into a cmp
5348       // instruction and X+Y has other uses. It could be an induction variable
5349       // chain, and the transform would increase register pressure.
5350       if (!LegalRHSImm || N0.hasOneUse())
5351         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
5352           return V;
5353     }
5354 
5355     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
5356         N1.getOpcode() == ISD::XOR)
5357       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
5358         return V;
5359 
5360     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
5361       return V;
5362   }
5363 
5364   // Fold remainder of division by a constant.
5365   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
5366       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
5367     // When division is cheap or optimizing for minimum size,
5368     // fall through to DIVREM creation by skipping this fold.
5369     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
5370       if (N0.getOpcode() == ISD::UREM) {
5371         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
5372           return Folded;
5373       } else if (N0.getOpcode() == ISD::SREM) {
5374         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
5375           return Folded;
5376       }
5377     }
5378   }
5379 
5380   // Fold away ALL boolean setcc's.
5381   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
5382     SDValue Temp;
5383     switch (Cond) {
5384     default: llvm_unreachable("Unknown integer setcc!");
5385     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
5386       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
5387       N0 = DAG.getNOT(dl, Temp, OpVT);
5388       if (!DCI.isCalledByLegalizer())
5389         DCI.AddToWorklist(Temp.getNode());
5390       break;
5391     case ISD::SETNE:  // X != Y   -->  (X^Y)
5392       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
5393       break;
5394     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
5395     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
5396       Temp = DAG.getNOT(dl, N0, OpVT);
5397       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
5398       if (!DCI.isCalledByLegalizer())
5399         DCI.AddToWorklist(Temp.getNode());
5400       break;
5401     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
5402     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
5403       Temp = DAG.getNOT(dl, N1, OpVT);
5404       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
5405       if (!DCI.isCalledByLegalizer())
5406         DCI.AddToWorklist(Temp.getNode());
5407       break;
5408     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
5409     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
5410       Temp = DAG.getNOT(dl, N0, OpVT);
5411       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
5412       if (!DCI.isCalledByLegalizer())
5413         DCI.AddToWorklist(Temp.getNode());
5414       break;
5415     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
5416     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
5417       Temp = DAG.getNOT(dl, N1, OpVT);
5418       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
5419       break;
5420     }
5421     if (VT.getScalarType() != MVT::i1) {
5422       if (!DCI.isCalledByLegalizer())
5423         DCI.AddToWorklist(N0.getNode());
5424       // FIXME: If running after legalize, we probably can't do this.
5425       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
5426       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
5427     }
5428     return N0;
5429   }
5430 
5431   // Could not fold it.
5432   return SDValue();
5433 }
5434 
5435 /// Returns true (and the GlobalValue and the offset) if the node is a
5436 /// GlobalAddress + offset.
5437 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
5438                                     int64_t &Offset) const {
5439 
5440   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
5441 
5442   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
5443     GA = GASD->getGlobal();
5444     Offset += GASD->getOffset();
5445     return true;
5446   }
5447 
5448   if (N->getOpcode() == ISD::ADD) {
5449     SDValue N1 = N->getOperand(0);
5450     SDValue N2 = N->getOperand(1);
5451     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
5452       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
5453         Offset += V->getSExtValue();
5454         return true;
5455       }
5456     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
5457       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
5458         Offset += V->getSExtValue();
5459         return true;
5460       }
5461     }
5462   }
5463 
5464   return false;
5465 }
5466 
5467 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
5468                                           DAGCombinerInfo &DCI) const {
5469   // Default implementation: no optimization.
5470   return SDValue();
5471 }
5472 
5473 //===----------------------------------------------------------------------===//
5474 //  Inline Assembler Implementation Methods
5475 //===----------------------------------------------------------------------===//
5476 
5477 TargetLowering::ConstraintType
5478 TargetLowering::getConstraintType(StringRef Constraint) const {
5479   unsigned S = Constraint.size();
5480 
5481   if (S == 1) {
5482     switch (Constraint[0]) {
5483     default: break;
5484     case 'r':
5485       return C_RegisterClass;
5486     case 'm': // memory
5487     case 'o': // offsetable
5488     case 'V': // not offsetable
5489       return C_Memory;
5490     case 'p': // Address.
5491       return C_Address;
5492     case 'n': // Simple Integer
5493     case 'E': // Floating Point Constant
5494     case 'F': // Floating Point Constant
5495       return C_Immediate;
5496     case 'i': // Simple Integer or Relocatable Constant
5497     case 's': // Relocatable Constant
5498     case 'X': // Allow ANY value.
5499     case 'I': // Target registers.
5500     case 'J':
5501     case 'K':
5502     case 'L':
5503     case 'M':
5504     case 'N':
5505     case 'O':
5506     case 'P':
5507     case '<':
5508     case '>':
5509       return C_Other;
5510     }
5511   }
5512 
5513   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
5514     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
5515       return C_Memory;
5516     return C_Register;
5517   }
5518   return C_Unknown;
5519 }
5520 
5521 /// Try to replace an X constraint, which matches anything, with another that
5522 /// has more specific requirements based on the type of the corresponding
5523 /// operand.
5524 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
5525   if (ConstraintVT.isInteger())
5526     return "r";
5527   if (ConstraintVT.isFloatingPoint())
5528     return "f"; // works for many targets
5529   return nullptr;
5530 }
5531 
5532 SDValue TargetLowering::LowerAsmOutputForConstraint(
5533     SDValue &Chain, SDValue &Glue, const SDLoc &DL,
5534     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
5535   return SDValue();
5536 }
5537 
5538 /// Lower the specified operand into the Ops vector.
5539 /// If it is invalid, don't add anything to Ops.
5540 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5541                                                   StringRef Constraint,
5542                                                   std::vector<SDValue> &Ops,
5543                                                   SelectionDAG &DAG) const {
5544 
5545   if (Constraint.size() > 1)
5546     return;
5547 
5548   char ConstraintLetter = Constraint[0];
5549   switch (ConstraintLetter) {
5550   default: break;
5551   case 'X':    // Allows any operand
5552   case 'i':    // Simple Integer or Relocatable Constant
5553   case 'n':    // Simple Integer
5554   case 's': {  // Relocatable Constant
5555 
5556     ConstantSDNode *C;
5557     uint64_t Offset = 0;
5558 
5559     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
5560     // etc., since getelementpointer is variadic. We can't use
5561     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
5562     // while in this case the GA may be furthest from the root node which is
5563     // likely an ISD::ADD.
5564     while (true) {
5565       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
5566         // gcc prints these as sign extended.  Sign extend value to 64 bits
5567         // now; without this it would get ZExt'd later in
5568         // ScheduleDAGSDNodes::EmitNode, which is very generic.
5569         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
5570         BooleanContent BCont = getBooleanContents(MVT::i64);
5571         ISD::NodeType ExtOpc =
5572             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
5573         int64_t ExtVal =
5574             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
5575         Ops.push_back(
5576             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
5577         return;
5578       }
5579       if (ConstraintLetter != 'n') {
5580         if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5581           Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
5582                                                    GA->getValueType(0),
5583                                                    Offset + GA->getOffset()));
5584           return;
5585         }
5586         if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
5587           Ops.push_back(DAG.getTargetBlockAddress(
5588               BA->getBlockAddress(), BA->getValueType(0),
5589               Offset + BA->getOffset(), BA->getTargetFlags()));
5590           return;
5591         }
5592         if (isa<BasicBlockSDNode>(Op)) {
5593           Ops.push_back(Op);
5594           return;
5595         }
5596       }
5597       const unsigned OpCode = Op.getOpcode();
5598       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
5599         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
5600           Op = Op.getOperand(1);
5601         // Subtraction is not commutative.
5602         else if (OpCode == ISD::ADD &&
5603                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
5604           Op = Op.getOperand(0);
5605         else
5606           return;
5607         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
5608         continue;
5609       }
5610       return;
5611     }
5612     break;
5613   }
5614   }
5615 }
5616 
5617 void TargetLowering::CollectTargetIntrinsicOperands(
5618     const CallInst &I, SmallVectorImpl<SDValue> &Ops, SelectionDAG &DAG) const {
5619 }
5620 
5621 std::pair<unsigned, const TargetRegisterClass *>
5622 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
5623                                              StringRef Constraint,
5624                                              MVT VT) const {
5625   if (!Constraint.starts_with("{"))
5626     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
5627   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
5628 
5629   // Remove the braces from around the name.
5630   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
5631 
5632   std::pair<unsigned, const TargetRegisterClass *> R =
5633       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
5634 
5635   // Figure out which register class contains this reg.
5636   for (const TargetRegisterClass *RC : RI->regclasses()) {
5637     // If none of the value types for this register class are valid, we
5638     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5639     if (!isLegalRC(*RI, *RC))
5640       continue;
5641 
5642     for (const MCPhysReg &PR : *RC) {
5643       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
5644         std::pair<unsigned, const TargetRegisterClass *> S =
5645             std::make_pair(PR, RC);
5646 
5647         // If this register class has the requested value type, return it,
5648         // otherwise keep searching and return the first class found
5649         // if no other is found which explicitly has the requested type.
5650         if (RI->isTypeLegalForClass(*RC, VT))
5651           return S;
5652         if (!R.second)
5653           R = S;
5654       }
5655     }
5656   }
5657 
5658   return R;
5659 }
5660 
5661 //===----------------------------------------------------------------------===//
5662 // Constraint Selection.
5663 
5664 /// Return true of this is an input operand that is a matching constraint like
5665 /// "4".
5666 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
5667   assert(!ConstraintCode.empty() && "No known constraint!");
5668   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
5669 }
5670 
5671 /// If this is an input matching constraint, this method returns the output
5672 /// operand it matches.
5673 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
5674   assert(!ConstraintCode.empty() && "No known constraint!");
5675   return atoi(ConstraintCode.c_str());
5676 }
5677 
5678 /// Split up the constraint string from the inline assembly value into the
5679 /// specific constraints and their prefixes, and also tie in the associated
5680 /// operand values.
5681 /// If this returns an empty vector, and if the constraint string itself
5682 /// isn't empty, there was an error parsing.
5683 TargetLowering::AsmOperandInfoVector
5684 TargetLowering::ParseConstraints(const DataLayout &DL,
5685                                  const TargetRegisterInfo *TRI,
5686                                  const CallBase &Call) const {
5687   /// Information about all of the constraints.
5688   AsmOperandInfoVector ConstraintOperands;
5689   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
5690   unsigned maCount = 0; // Largest number of multiple alternative constraints.
5691 
5692   // Do a prepass over the constraints, canonicalizing them, and building up the
5693   // ConstraintOperands list.
5694   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5695   unsigned ResNo = 0; // ResNo - The result number of the next output.
5696   unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number.
5697 
5698   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
5699     ConstraintOperands.emplace_back(std::move(CI));
5700     AsmOperandInfo &OpInfo = ConstraintOperands.back();
5701 
5702     // Update multiple alternative constraint count.
5703     if (OpInfo.multipleAlternatives.size() > maCount)
5704       maCount = OpInfo.multipleAlternatives.size();
5705 
5706     OpInfo.ConstraintVT = MVT::Other;
5707 
5708     // Compute the value type for each operand.
5709     switch (OpInfo.Type) {
5710     case InlineAsm::isOutput:
5711       // Indirect outputs just consume an argument.
5712       if (OpInfo.isIndirect) {
5713         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5714         break;
5715       }
5716 
5717       // The return value of the call is this value.  As such, there is no
5718       // corresponding argument.
5719       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
5720       if (auto *STy = dyn_cast<StructType>(Call.getType())) {
5721         OpInfo.ConstraintVT =
5722             getSimpleValueType(DL, STy->getElementType(ResNo));
5723       } else {
5724         assert(ResNo == 0 && "Asm only has one result!");
5725         OpInfo.ConstraintVT =
5726             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
5727       }
5728       ++ResNo;
5729       break;
5730     case InlineAsm::isInput:
5731       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5732       break;
5733     case InlineAsm::isLabel:
5734       OpInfo.CallOperandVal = cast<CallBrInst>(&Call)->getIndirectDest(LabelNo);
5735       ++LabelNo;
5736       continue;
5737     case InlineAsm::isClobber:
5738       // Nothing to do.
5739       break;
5740     }
5741 
5742     if (OpInfo.CallOperandVal) {
5743       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5744       if (OpInfo.isIndirect) {
5745         OpTy = Call.getParamElementType(ArgNo);
5746         assert(OpTy && "Indirect operand must have elementtype attribute");
5747       }
5748 
5749       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5750       if (StructType *STy = dyn_cast<StructType>(OpTy))
5751         if (STy->getNumElements() == 1)
5752           OpTy = STy->getElementType(0);
5753 
5754       // If OpTy is not a single value, it may be a struct/union that we
5755       // can tile with integers.
5756       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5757         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5758         switch (BitSize) {
5759         default: break;
5760         case 1:
5761         case 8:
5762         case 16:
5763         case 32:
5764         case 64:
5765         case 128:
5766           OpTy = IntegerType::get(OpTy->getContext(), BitSize);
5767           break;
5768         }
5769       }
5770 
5771       EVT VT = getAsmOperandValueType(DL, OpTy, true);
5772       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
5773       ArgNo++;
5774     }
5775   }
5776 
5777   // If we have multiple alternative constraints, select the best alternative.
5778   if (!ConstraintOperands.empty()) {
5779     if (maCount) {
5780       unsigned bestMAIndex = 0;
5781       int bestWeight = -1;
5782       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
5783       int weight = -1;
5784       unsigned maIndex;
5785       // Compute the sums of the weights for each alternative, keeping track
5786       // of the best (highest weight) one so far.
5787       for (maIndex = 0; maIndex < maCount; ++maIndex) {
5788         int weightSum = 0;
5789         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5790              cIndex != eIndex; ++cIndex) {
5791           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5792           if (OpInfo.Type == InlineAsm::isClobber)
5793             continue;
5794 
5795           // If this is an output operand with a matching input operand,
5796           // look up the matching input. If their types mismatch, e.g. one
5797           // is an integer, the other is floating point, or their sizes are
5798           // different, flag it as an maCantMatch.
5799           if (OpInfo.hasMatchingInput()) {
5800             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5801             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5802               if ((OpInfo.ConstraintVT.isInteger() !=
5803                    Input.ConstraintVT.isInteger()) ||
5804                   (OpInfo.ConstraintVT.getSizeInBits() !=
5805                    Input.ConstraintVT.getSizeInBits())) {
5806                 weightSum = -1; // Can't match.
5807                 break;
5808               }
5809             }
5810           }
5811           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
5812           if (weight == -1) {
5813             weightSum = -1;
5814             break;
5815           }
5816           weightSum += weight;
5817         }
5818         // Update best.
5819         if (weightSum > bestWeight) {
5820           bestWeight = weightSum;
5821           bestMAIndex = maIndex;
5822         }
5823       }
5824 
5825       // Now select chosen alternative in each constraint.
5826       for (AsmOperandInfo &cInfo : ConstraintOperands)
5827         if (cInfo.Type != InlineAsm::isClobber)
5828           cInfo.selectAlternative(bestMAIndex);
5829     }
5830   }
5831 
5832   // Check and hook up tied operands, choose constraint code to use.
5833   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5834        cIndex != eIndex; ++cIndex) {
5835     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5836 
5837     // If this is an output operand with a matching input operand, look up the
5838     // matching input. If their types mismatch, e.g. one is an integer, the
5839     // other is floating point, or their sizes are different, flag it as an
5840     // error.
5841     if (OpInfo.hasMatchingInput()) {
5842       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5843 
5844       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5845         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
5846             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
5847                                          OpInfo.ConstraintVT);
5848         std::pair<unsigned, const TargetRegisterClass *> InputRC =
5849             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
5850                                          Input.ConstraintVT);
5851         const bool OutOpIsIntOrFP = OpInfo.ConstraintVT.isInteger() ||
5852                                     OpInfo.ConstraintVT.isFloatingPoint();
5853         const bool InOpIsIntOrFP = Input.ConstraintVT.isInteger() ||
5854                                    Input.ConstraintVT.isFloatingPoint();
5855         if ((OutOpIsIntOrFP != InOpIsIntOrFP) ||
5856             (MatchRC.second != InputRC.second)) {
5857           report_fatal_error("Unsupported asm: input constraint"
5858                              " with a matching output constraint of"
5859                              " incompatible type!");
5860         }
5861       }
5862     }
5863   }
5864 
5865   return ConstraintOperands;
5866 }
5867 
5868 /// Return a number indicating our preference for chosing a type of constraint
5869 /// over another, for the purpose of sorting them. Immediates are almost always
5870 /// preferrable (when they can be emitted). A higher return value means a
5871 /// stronger preference for one constraint type relative to another.
5872 /// FIXME: We should prefer registers over memory but doing so may lead to
5873 /// unrecoverable register exhaustion later.
5874 /// https://github.com/llvm/llvm-project/issues/20571
5875 static unsigned getConstraintPiority(TargetLowering::ConstraintType CT) {
5876   switch (CT) {
5877   case TargetLowering::C_Immediate:
5878   case TargetLowering::C_Other:
5879     return 4;
5880   case TargetLowering::C_Memory:
5881   case TargetLowering::C_Address:
5882     return 3;
5883   case TargetLowering::C_RegisterClass:
5884     return 2;
5885   case TargetLowering::C_Register:
5886     return 1;
5887   case TargetLowering::C_Unknown:
5888     return 0;
5889   }
5890   llvm_unreachable("Invalid constraint type");
5891 }
5892 
5893 /// Examine constraint type and operand type and determine a weight value.
5894 /// This object must already have been set up with the operand type
5895 /// and the current alternative constraint selected.
5896 TargetLowering::ConstraintWeight
5897   TargetLowering::getMultipleConstraintMatchWeight(
5898     AsmOperandInfo &info, int maIndex) const {
5899   InlineAsm::ConstraintCodeVector *rCodes;
5900   if (maIndex >= (int)info.multipleAlternatives.size())
5901     rCodes = &info.Codes;
5902   else
5903     rCodes = &info.multipleAlternatives[maIndex].Codes;
5904   ConstraintWeight BestWeight = CW_Invalid;
5905 
5906   // Loop over the options, keeping track of the most general one.
5907   for (const std::string &rCode : *rCodes) {
5908     ConstraintWeight weight =
5909         getSingleConstraintMatchWeight(info, rCode.c_str());
5910     if (weight > BestWeight)
5911       BestWeight = weight;
5912   }
5913 
5914   return BestWeight;
5915 }
5916 
5917 /// Examine constraint type and operand type and determine a weight value.
5918 /// This object must already have been set up with the operand type
5919 /// and the current alternative constraint selected.
5920 TargetLowering::ConstraintWeight
5921   TargetLowering::getSingleConstraintMatchWeight(
5922     AsmOperandInfo &info, const char *constraint) const {
5923   ConstraintWeight weight = CW_Invalid;
5924   Value *CallOperandVal = info.CallOperandVal;
5925     // If we don't have a value, we can't do a match,
5926     // but allow it at the lowest weight.
5927   if (!CallOperandVal)
5928     return CW_Default;
5929   // Look at the constraint type.
5930   switch (*constraint) {
5931     case 'i': // immediate integer.
5932     case 'n': // immediate integer with a known value.
5933       if (isa<ConstantInt>(CallOperandVal))
5934         weight = CW_Constant;
5935       break;
5936     case 's': // non-explicit intregal immediate.
5937       if (isa<GlobalValue>(CallOperandVal))
5938         weight = CW_Constant;
5939       break;
5940     case 'E': // immediate float if host format.
5941     case 'F': // immediate float.
5942       if (isa<ConstantFP>(CallOperandVal))
5943         weight = CW_Constant;
5944       break;
5945     case '<': // memory operand with autodecrement.
5946     case '>': // memory operand with autoincrement.
5947     case 'm': // memory operand.
5948     case 'o': // offsettable memory operand
5949     case 'V': // non-offsettable memory operand
5950       weight = CW_Memory;
5951       break;
5952     case 'r': // general register.
5953     case 'g': // general register, memory operand or immediate integer.
5954               // note: Clang converts "g" to "imr".
5955       if (CallOperandVal->getType()->isIntegerTy())
5956         weight = CW_Register;
5957       break;
5958     case 'X': // any operand.
5959   default:
5960     weight = CW_Default;
5961     break;
5962   }
5963   return weight;
5964 }
5965 
5966 /// If there are multiple different constraints that we could pick for this
5967 /// operand (e.g. "imr") try to pick the 'best' one.
5968 /// This is somewhat tricky: constraints (TargetLowering::ConstraintType) fall
5969 /// into seven classes:
5970 ///    Register      -> one specific register
5971 ///    RegisterClass -> a group of regs
5972 ///    Memory        -> memory
5973 ///    Address       -> a symbolic memory reference
5974 ///    Immediate     -> immediate values
5975 ///    Other         -> magic values (such as "Flag Output Operands")
5976 ///    Unknown       -> something we don't recognize yet and can't handle
5977 /// Ideally, we would pick the most specific constraint possible: if we have
5978 /// something that fits into a register, we would pick it.  The problem here
5979 /// is that if we have something that could either be in a register or in
5980 /// memory that use of the register could cause selection of *other*
5981 /// operands to fail: they might only succeed if we pick memory.  Because of
5982 /// this the heuristic we use is:
5983 ///
5984 ///  1) If there is an 'other' constraint, and if the operand is valid for
5985 ///     that constraint, use it.  This makes us take advantage of 'i'
5986 ///     constraints when available.
5987 ///  2) Otherwise, pick the most general constraint present.  This prefers
5988 ///     'm' over 'r', for example.
5989 ///
5990 TargetLowering::ConstraintGroup TargetLowering::getConstraintPreferences(
5991     TargetLowering::AsmOperandInfo &OpInfo) const {
5992   ConstraintGroup Ret;
5993 
5994   Ret.reserve(OpInfo.Codes.size());
5995   for (StringRef Code : OpInfo.Codes) {
5996     TargetLowering::ConstraintType CType = getConstraintType(Code);
5997 
5998     // Indirect 'other' or 'immediate' constraints are not allowed.
5999     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
6000                                CType == TargetLowering::C_Register ||
6001                                CType == TargetLowering::C_RegisterClass))
6002       continue;
6003 
6004     // Things with matching constraints can only be registers, per gcc
6005     // documentation.  This mainly affects "g" constraints.
6006     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
6007       continue;
6008 
6009     Ret.emplace_back(Code, CType);
6010   }
6011 
6012   std::stable_sort(
6013       Ret.begin(), Ret.end(), [](ConstraintPair a, ConstraintPair b) {
6014         return getConstraintPiority(a.second) > getConstraintPiority(b.second);
6015       });
6016 
6017   return Ret;
6018 }
6019 
6020 /// If we have an immediate, see if we can lower it. Return true if we can,
6021 /// false otherwise.
6022 static bool lowerImmediateIfPossible(TargetLowering::ConstraintPair &P,
6023                                      SDValue Op, SelectionDAG *DAG,
6024                                      const TargetLowering &TLI) {
6025 
6026   assert((P.second == TargetLowering::C_Other ||
6027           P.second == TargetLowering::C_Immediate) &&
6028          "need immediate or other");
6029 
6030   if (!Op.getNode())
6031     return false;
6032 
6033   std::vector<SDValue> ResultOps;
6034   TLI.LowerAsmOperandForConstraint(Op, P.first, ResultOps, *DAG);
6035   return !ResultOps.empty();
6036 }
6037 
6038 /// Determines the constraint code and constraint type to use for the specific
6039 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
6040 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
6041                                             SDValue Op,
6042                                             SelectionDAG *DAG) const {
6043   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
6044 
6045   // Single-letter constraints ('r') are very common.
6046   if (OpInfo.Codes.size() == 1) {
6047     OpInfo.ConstraintCode = OpInfo.Codes[0];
6048     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
6049   } else {
6050     ConstraintGroup G = getConstraintPreferences(OpInfo);
6051     if (G.empty())
6052       return;
6053 
6054     unsigned BestIdx = 0;
6055     for (const unsigned E = G.size();
6056          BestIdx < E && (G[BestIdx].second == TargetLowering::C_Other ||
6057                          G[BestIdx].second == TargetLowering::C_Immediate);
6058          ++BestIdx) {
6059       if (lowerImmediateIfPossible(G[BestIdx], Op, DAG, *this))
6060         break;
6061       // If we're out of constraints, just pick the first one.
6062       if (BestIdx + 1 == E) {
6063         BestIdx = 0;
6064         break;
6065       }
6066     }
6067 
6068     OpInfo.ConstraintCode = G[BestIdx].first;
6069     OpInfo.ConstraintType = G[BestIdx].second;
6070   }
6071 
6072   // 'X' matches anything.
6073   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
6074     // Constants are handled elsewhere.  For Functions, the type here is the
6075     // type of the result, which is not what we want to look at; leave them
6076     // alone.
6077     Value *v = OpInfo.CallOperandVal;
6078     if (isa<ConstantInt>(v) || isa<Function>(v)) {
6079       return;
6080     }
6081 
6082     if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
6083       OpInfo.ConstraintCode = "i";
6084       return;
6085     }
6086 
6087     // Otherwise, try to resolve it to something we know about by looking at
6088     // the actual operand type.
6089     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
6090       OpInfo.ConstraintCode = Repl;
6091       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
6092     }
6093   }
6094 }
6095 
6096 /// Given an exact SDIV by a constant, create a multiplication
6097 /// with the multiplicative inverse of the constant.
6098 /// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242
6099 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
6100                               const SDLoc &dl, SelectionDAG &DAG,
6101                               SmallVectorImpl<SDNode *> &Created) {
6102   SDValue Op0 = N->getOperand(0);
6103   SDValue Op1 = N->getOperand(1);
6104   EVT VT = N->getValueType(0);
6105   EVT SVT = VT.getScalarType();
6106   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
6107   EVT ShSVT = ShVT.getScalarType();
6108 
6109   bool UseSRA = false;
6110   SmallVector<SDValue, 16> Shifts, Factors;
6111 
6112   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
6113     if (C->isZero())
6114       return false;
6115     APInt Divisor = C->getAPIntValue();
6116     unsigned Shift = Divisor.countr_zero();
6117     if (Shift) {
6118       Divisor.ashrInPlace(Shift);
6119       UseSRA = true;
6120     }
6121     APInt Factor = Divisor.multiplicativeInverse();
6122     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
6123     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
6124     return true;
6125   };
6126 
6127   // Collect all magic values from the build vector.
6128   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
6129     return SDValue();
6130 
6131   SDValue Shift, Factor;
6132   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
6133     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
6134     Factor = DAG.getBuildVector(VT, dl, Factors);
6135   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
6136     assert(Shifts.size() == 1 && Factors.size() == 1 &&
6137            "Expected matchUnaryPredicate to return one element for scalable "
6138            "vectors");
6139     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
6140     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
6141   } else {
6142     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
6143     Shift = Shifts[0];
6144     Factor = Factors[0];
6145   }
6146 
6147   SDValue Res = Op0;
6148   if (UseSRA) {
6149     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, SDNodeFlags::Exact);
6150     Created.push_back(Res.getNode());
6151   }
6152 
6153   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
6154 }
6155 
6156 /// Given an exact UDIV by a constant, create a multiplication
6157 /// with the multiplicative inverse of the constant.
6158 /// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242
6159 static SDValue BuildExactUDIV(const TargetLowering &TLI, SDNode *N,
6160                               const SDLoc &dl, SelectionDAG &DAG,
6161                               SmallVectorImpl<SDNode *> &Created) {
6162   EVT VT = N->getValueType(0);
6163   EVT SVT = VT.getScalarType();
6164   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
6165   EVT ShSVT = ShVT.getScalarType();
6166 
6167   bool UseSRL = false;
6168   SmallVector<SDValue, 16> Shifts, Factors;
6169 
6170   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
6171     if (C->isZero())
6172       return false;
6173     APInt Divisor = C->getAPIntValue();
6174     unsigned Shift = Divisor.countr_zero();
6175     if (Shift) {
6176       Divisor.lshrInPlace(Shift);
6177       UseSRL = true;
6178     }
6179     // Calculate the multiplicative inverse modulo BW.
6180     APInt Factor = Divisor.multiplicativeInverse();
6181     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
6182     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
6183     return true;
6184   };
6185 
6186   SDValue Op1 = N->getOperand(1);
6187 
6188   // Collect all magic values from the build vector.
6189   if (!ISD::matchUnaryPredicate(Op1, BuildUDIVPattern))
6190     return SDValue();
6191 
6192   SDValue Shift, Factor;
6193   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
6194     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
6195     Factor = DAG.getBuildVector(VT, dl, Factors);
6196   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
6197     assert(Shifts.size() == 1 && Factors.size() == 1 &&
6198            "Expected matchUnaryPredicate to return one element for scalable "
6199            "vectors");
6200     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
6201     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
6202   } else {
6203     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
6204     Shift = Shifts[0];
6205     Factor = Factors[0];
6206   }
6207 
6208   SDValue Res = N->getOperand(0);
6209   if (UseSRL) {
6210     Res = DAG.getNode(ISD::SRL, dl, VT, Res, Shift, SDNodeFlags::Exact);
6211     Created.push_back(Res.getNode());
6212   }
6213 
6214   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
6215 }
6216 
6217 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
6218                               SelectionDAG &DAG,
6219                               SmallVectorImpl<SDNode *> &Created) const {
6220   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
6221   if (isIntDivCheap(N->getValueType(0), Attr))
6222     return SDValue(N, 0); // Lower SDIV as SDIV
6223   return SDValue();
6224 }
6225 
6226 SDValue
6227 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor,
6228                               SelectionDAG &DAG,
6229                               SmallVectorImpl<SDNode *> &Created) const {
6230   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
6231   if (isIntDivCheap(N->getValueType(0), Attr))
6232     return SDValue(N, 0); // Lower SREM as SREM
6233   return SDValue();
6234 }
6235 
6236 /// Build sdiv by power-of-2 with conditional move instructions
6237 /// Ref: "Hacker's Delight" by Henry Warren 10-1
6238 /// If conditional move/branch is preferred, we lower sdiv x, +/-2**k into:
6239 ///   bgez x, label
6240 ///   add x, x, 2**k-1
6241 /// label:
6242 ///   sra res, x, k
6243 ///   neg res, res (when the divisor is negative)
6244 SDValue TargetLowering::buildSDIVPow2WithCMov(
6245     SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
6246     SmallVectorImpl<SDNode *> &Created) const {
6247   unsigned Lg2 = Divisor.countr_zero();
6248   EVT VT = N->getValueType(0);
6249 
6250   SDLoc DL(N);
6251   SDValue N0 = N->getOperand(0);
6252   SDValue Zero = DAG.getConstant(0, DL, VT);
6253   APInt Lg2Mask = APInt::getLowBitsSet(VT.getSizeInBits(), Lg2);
6254   SDValue Pow2MinusOne = DAG.getConstant(Lg2Mask, DL, VT);
6255 
6256   // If N0 is negative, we need to add (Pow2 - 1) to it before shifting right.
6257   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6258   SDValue Cmp = DAG.getSetCC(DL, CCVT, N0, Zero, ISD::SETLT);
6259   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
6260   SDValue CMov = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
6261 
6262   Created.push_back(Cmp.getNode());
6263   Created.push_back(Add.getNode());
6264   Created.push_back(CMov.getNode());
6265 
6266   // Divide by pow2.
6267   SDValue SRA =
6268       DAG.getNode(ISD::SRA, DL, VT, CMov, DAG.getConstant(Lg2, DL, VT));
6269 
6270   // If we're dividing by a positive value, we're done.  Otherwise, we must
6271   // negate the result.
6272   if (Divisor.isNonNegative())
6273     return SRA;
6274 
6275   Created.push_back(SRA.getNode());
6276   return DAG.getNode(ISD::SUB, DL, VT, Zero, SRA);
6277 }
6278 
6279 /// Given an ISD::SDIV node expressing a divide by constant,
6280 /// return a DAG expression to select that will generate the same value by
6281 /// multiplying by a magic number.
6282 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
6283 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
6284                                   bool IsAfterLegalization,
6285                                   bool IsAfterLegalTypes,
6286                                   SmallVectorImpl<SDNode *> &Created) const {
6287   SDLoc dl(N);
6288   EVT VT = N->getValueType(0);
6289   EVT SVT = VT.getScalarType();
6290   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6291   EVT ShSVT = ShVT.getScalarType();
6292   unsigned EltBits = VT.getScalarSizeInBits();
6293   EVT MulVT;
6294 
6295   // Check to see if we can do this.
6296   // FIXME: We should be more aggressive here.
6297   if (!isTypeLegal(VT)) {
6298     // Limit this to simple scalars for now.
6299     if (VT.isVector() || !VT.isSimple())
6300       return SDValue();
6301 
6302     // If this type will be promoted to a large enough type with a legal
6303     // multiply operation, we can go ahead and do this transform.
6304     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
6305       return SDValue();
6306 
6307     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
6308     if (MulVT.getSizeInBits() < (2 * EltBits) ||
6309         !isOperationLegal(ISD::MUL, MulVT))
6310       return SDValue();
6311   }
6312 
6313   // If the sdiv has an 'exact' bit we can use a simpler lowering.
6314   if (N->getFlags().hasExact())
6315     return BuildExactSDIV(*this, N, dl, DAG, Created);
6316 
6317   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
6318 
6319   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
6320     if (C->isZero())
6321       return false;
6322 
6323     const APInt &Divisor = C->getAPIntValue();
6324     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
6325     int NumeratorFactor = 0;
6326     int ShiftMask = -1;
6327 
6328     if (Divisor.isOne() || Divisor.isAllOnes()) {
6329       // If d is +1/-1, we just multiply the numerator by +1/-1.
6330       NumeratorFactor = Divisor.getSExtValue();
6331       magics.Magic = 0;
6332       magics.ShiftAmount = 0;
6333       ShiftMask = 0;
6334     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
6335       // If d > 0 and m < 0, add the numerator.
6336       NumeratorFactor = 1;
6337     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
6338       // If d < 0 and m > 0, subtract the numerator.
6339       NumeratorFactor = -1;
6340     }
6341 
6342     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
6343     Factors.push_back(DAG.getSignedConstant(NumeratorFactor, dl, SVT));
6344     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
6345     ShiftMasks.push_back(DAG.getSignedConstant(ShiftMask, dl, SVT));
6346     return true;
6347   };
6348 
6349   SDValue N0 = N->getOperand(0);
6350   SDValue N1 = N->getOperand(1);
6351 
6352   // Collect the shifts / magic values from each element.
6353   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
6354     return SDValue();
6355 
6356   SDValue MagicFactor, Factor, Shift, ShiftMask;
6357   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
6358     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
6359     Factor = DAG.getBuildVector(VT, dl, Factors);
6360     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
6361     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
6362   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
6363     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
6364            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
6365            "Expected matchUnaryPredicate to return one element for scalable "
6366            "vectors");
6367     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
6368     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
6369     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
6370     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
6371   } else {
6372     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
6373     MagicFactor = MagicFactors[0];
6374     Factor = Factors[0];
6375     Shift = Shifts[0];
6376     ShiftMask = ShiftMasks[0];
6377   }
6378 
6379   // Multiply the numerator (operand 0) by the magic value.
6380   // FIXME: We should support doing a MUL in a wider type.
6381   auto GetMULHS = [&](SDValue X, SDValue Y) {
6382     // If the type isn't legal, use a wider mul of the type calculated
6383     // earlier.
6384     if (!isTypeLegal(VT)) {
6385       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
6386       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
6387       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
6388       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
6389                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
6390       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6391     }
6392 
6393     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
6394       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
6395     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
6396       SDValue LoHi =
6397           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
6398       return SDValue(LoHi.getNode(), 1);
6399     }
6400     // If type twice as wide legal, widen and use a mul plus a shift.
6401     unsigned Size = VT.getScalarSizeInBits();
6402     EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2);
6403     if (VT.isVector())
6404       WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
6405                                 VT.getVectorElementCount());
6406     // Some targets like AMDGPU try to go from SDIV to SDIVREM which is then
6407     // custom lowered. This is very expensive so avoid it at all costs for
6408     // constant divisors.
6409     if ((!IsAfterLegalTypes && isOperationExpand(ISD::SDIV, VT) &&
6410          isOperationCustom(ISD::SDIVREM, VT.getScalarType())) ||
6411         isOperationLegalOrCustom(ISD::MUL, WideVT)) {
6412       X = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, X);
6413       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, Y);
6414       Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y);
6415       Y = DAG.getNode(ISD::SRL, dl, WideVT, Y,
6416                       DAG.getShiftAmountConstant(EltBits, WideVT, dl));
6417       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6418     }
6419     return SDValue();
6420   };
6421 
6422   SDValue Q = GetMULHS(N0, MagicFactor);
6423   if (!Q)
6424     return SDValue();
6425 
6426   Created.push_back(Q.getNode());
6427 
6428   // (Optionally) Add/subtract the numerator using Factor.
6429   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
6430   Created.push_back(Factor.getNode());
6431   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
6432   Created.push_back(Q.getNode());
6433 
6434   // Shift right algebraic by shift value.
6435   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
6436   Created.push_back(Q.getNode());
6437 
6438   // Extract the sign bit, mask it and add it to the quotient.
6439   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
6440   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
6441   Created.push_back(T.getNode());
6442   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
6443   Created.push_back(T.getNode());
6444   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
6445 }
6446 
6447 /// Given an ISD::UDIV node expressing a divide by constant,
6448 /// return a DAG expression to select that will generate the same value by
6449 /// multiplying by a magic number.
6450 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
6451 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
6452                                   bool IsAfterLegalization,
6453                                   bool IsAfterLegalTypes,
6454                                   SmallVectorImpl<SDNode *> &Created) const {
6455   SDLoc dl(N);
6456   EVT VT = N->getValueType(0);
6457   EVT SVT = VT.getScalarType();
6458   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6459   EVT ShSVT = ShVT.getScalarType();
6460   unsigned EltBits = VT.getScalarSizeInBits();
6461   EVT MulVT;
6462 
6463   // Check to see if we can do this.
6464   // FIXME: We should be more aggressive here.
6465   if (!isTypeLegal(VT)) {
6466     // Limit this to simple scalars for now.
6467     if (VT.isVector() || !VT.isSimple())
6468       return SDValue();
6469 
6470     // If this type will be promoted to a large enough type with a legal
6471     // multiply operation, we can go ahead and do this transform.
6472     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
6473       return SDValue();
6474 
6475     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
6476     if (MulVT.getSizeInBits() < (2 * EltBits) ||
6477         !isOperationLegal(ISD::MUL, MulVT))
6478       return SDValue();
6479   }
6480 
6481   // If the udiv has an 'exact' bit we can use a simpler lowering.
6482   if (N->getFlags().hasExact())
6483     return BuildExactUDIV(*this, N, dl, DAG, Created);
6484 
6485   SDValue N0 = N->getOperand(0);
6486   SDValue N1 = N->getOperand(1);
6487 
6488   // Try to use leading zeros of the dividend to reduce the multiplier and
6489   // avoid expensive fixups.
6490   unsigned KnownLeadingZeros = DAG.computeKnownBits(N0).countMinLeadingZeros();
6491 
6492   bool UseNPQ = false, UsePreShift = false, UsePostShift = false;
6493   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
6494 
6495   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
6496     if (C->isZero())
6497       return false;
6498     const APInt& Divisor = C->getAPIntValue();
6499 
6500     SDValue PreShift, MagicFactor, NPQFactor, PostShift;
6501 
6502     // Magic algorithm doesn't work for division by 1. We need to emit a select
6503     // at the end.
6504     if (Divisor.isOne()) {
6505       PreShift = PostShift = DAG.getUNDEF(ShSVT);
6506       MagicFactor = NPQFactor = DAG.getUNDEF(SVT);
6507     } else {
6508       UnsignedDivisionByConstantInfo magics =
6509           UnsignedDivisionByConstantInfo::get(
6510               Divisor, std::min(KnownLeadingZeros, Divisor.countl_zero()));
6511 
6512       MagicFactor = DAG.getConstant(magics.Magic, dl, SVT);
6513 
6514       assert(magics.PreShift < Divisor.getBitWidth() &&
6515              "We shouldn't generate an undefined shift!");
6516       assert(magics.PostShift < Divisor.getBitWidth() &&
6517              "We shouldn't generate an undefined shift!");
6518       assert((!magics.IsAdd || magics.PreShift == 0) &&
6519              "Unexpected pre-shift");
6520       PreShift = DAG.getConstant(magics.PreShift, dl, ShSVT);
6521       PostShift = DAG.getConstant(magics.PostShift, dl, ShSVT);
6522       NPQFactor = DAG.getConstant(
6523           magics.IsAdd ? APInt::getOneBitSet(EltBits, EltBits - 1)
6524                        : APInt::getZero(EltBits),
6525           dl, SVT);
6526       UseNPQ |= magics.IsAdd;
6527       UsePreShift |= magics.PreShift != 0;
6528       UsePostShift |= magics.PostShift != 0;
6529     }
6530 
6531     PreShifts.push_back(PreShift);
6532     MagicFactors.push_back(MagicFactor);
6533     NPQFactors.push_back(NPQFactor);
6534     PostShifts.push_back(PostShift);
6535     return true;
6536   };
6537 
6538   // Collect the shifts/magic values from each element.
6539   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
6540     return SDValue();
6541 
6542   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
6543   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
6544     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
6545     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
6546     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
6547     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
6548   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
6549     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
6550            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
6551            "Expected matchUnaryPredicate to return one for scalable vectors");
6552     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
6553     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
6554     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
6555     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
6556   } else {
6557     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
6558     PreShift = PreShifts[0];
6559     MagicFactor = MagicFactors[0];
6560     PostShift = PostShifts[0];
6561   }
6562 
6563   SDValue Q = N0;
6564   if (UsePreShift) {
6565     Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
6566     Created.push_back(Q.getNode());
6567   }
6568 
6569   // FIXME: We should support doing a MUL in a wider type.
6570   auto GetMULHU = [&](SDValue X, SDValue Y) {
6571     // If the type isn't legal, use a wider mul of the type calculated
6572     // earlier.
6573     if (!isTypeLegal(VT)) {
6574       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
6575       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
6576       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
6577       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
6578                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
6579       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6580     }
6581 
6582     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
6583       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
6584     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
6585       SDValue LoHi =
6586           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
6587       return SDValue(LoHi.getNode(), 1);
6588     }
6589     // If type twice as wide legal, widen and use a mul plus a shift.
6590     unsigned Size = VT.getScalarSizeInBits();
6591     EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2);
6592     if (VT.isVector())
6593       WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
6594                                 VT.getVectorElementCount());
6595     // Some targets like AMDGPU try to go from UDIV to UDIVREM which is then
6596     // custom lowered. This is very expensive so avoid it at all costs for
6597     // constant divisors.
6598     if ((!IsAfterLegalTypes && isOperationExpand(ISD::UDIV, VT) &&
6599          isOperationCustom(ISD::UDIVREM, VT.getScalarType())) ||
6600         isOperationLegalOrCustom(ISD::MUL, WideVT)) {
6601       X = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, X);
6602       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, Y);
6603       Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y);
6604       Y = DAG.getNode(ISD::SRL, dl, WideVT, Y,
6605                       DAG.getShiftAmountConstant(EltBits, WideVT, dl));
6606       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6607     }
6608     return SDValue(); // No mulhu or equivalent
6609   };
6610 
6611   // Multiply the numerator (operand 0) by the magic value.
6612   Q = GetMULHU(Q, MagicFactor);
6613   if (!Q)
6614     return SDValue();
6615 
6616   Created.push_back(Q.getNode());
6617 
6618   if (UseNPQ) {
6619     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
6620     Created.push_back(NPQ.getNode());
6621 
6622     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
6623     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
6624     if (VT.isVector())
6625       NPQ = GetMULHU(NPQ, NPQFactor);
6626     else
6627       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
6628 
6629     Created.push_back(NPQ.getNode());
6630 
6631     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
6632     Created.push_back(Q.getNode());
6633   }
6634 
6635   if (UsePostShift) {
6636     Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
6637     Created.push_back(Q.getNode());
6638   }
6639 
6640   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6641 
6642   SDValue One = DAG.getConstant(1, dl, VT);
6643   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
6644   return DAG.getSelect(dl, VT, IsOne, N0, Q);
6645 }
6646 
6647 /// If all values in Values that *don't* match the predicate are same 'splat'
6648 /// value, then replace all values with that splat value.
6649 /// Else, if AlternativeReplacement was provided, then replace all values that
6650 /// do match predicate with AlternativeReplacement value.
6651 static void
6652 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
6653                           std::function<bool(SDValue)> Predicate,
6654                           SDValue AlternativeReplacement = SDValue()) {
6655   SDValue Replacement;
6656   // Is there a value for which the Predicate does *NOT* match? What is it?
6657   auto SplatValue = llvm::find_if_not(Values, Predicate);
6658   if (SplatValue != Values.end()) {
6659     // Does Values consist only of SplatValue's and values matching Predicate?
6660     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
6661           return Value == *SplatValue || Predicate(Value);
6662         })) // Then we shall replace values matching predicate with SplatValue.
6663       Replacement = *SplatValue;
6664   }
6665   if (!Replacement) {
6666     // Oops, we did not find the "baseline" splat value.
6667     if (!AlternativeReplacement)
6668       return; // Nothing to do.
6669     // Let's replace with provided value then.
6670     Replacement = AlternativeReplacement;
6671   }
6672   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
6673 }
6674 
6675 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
6676 /// where the divisor is constant and the comparison target is zero,
6677 /// return a DAG expression that will generate the same comparison result
6678 /// using only multiplications, additions and shifts/rotations.
6679 /// Ref: "Hacker's Delight" 10-17.
6680 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
6681                                         SDValue CompTargetNode,
6682                                         ISD::CondCode Cond,
6683                                         DAGCombinerInfo &DCI,
6684                                         const SDLoc &DL) const {
6685   SmallVector<SDNode *, 5> Built;
6686   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6687                                          DCI, DL, Built)) {
6688     for (SDNode *N : Built)
6689       DCI.AddToWorklist(N);
6690     return Folded;
6691   }
6692 
6693   return SDValue();
6694 }
6695 
6696 SDValue
6697 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
6698                                   SDValue CompTargetNode, ISD::CondCode Cond,
6699                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6700                                   SmallVectorImpl<SDNode *> &Created) const {
6701   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
6702   // - D must be constant, with D = D0 * 2^K where D0 is odd
6703   // - P is the multiplicative inverse of D0 modulo 2^W
6704   // - Q = floor(((2^W) - 1) / D)
6705   // where W is the width of the common type of N and D.
6706   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6707          "Only applicable for (in)equality comparisons.");
6708 
6709   SelectionDAG &DAG = DCI.DAG;
6710 
6711   EVT VT = REMNode.getValueType();
6712   EVT SVT = VT.getScalarType();
6713   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6714   EVT ShSVT = ShVT.getScalarType();
6715 
6716   // If MUL is unavailable, we cannot proceed in any case.
6717   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6718     return SDValue();
6719 
6720   bool ComparingWithAllZeros = true;
6721   bool AllComparisonsWithNonZerosAreTautological = true;
6722   bool HadTautologicalLanes = false;
6723   bool AllLanesAreTautological = true;
6724   bool HadEvenDivisor = false;
6725   bool AllDivisorsArePowerOfTwo = true;
6726   bool HadTautologicalInvertedLanes = false;
6727   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
6728 
6729   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
6730     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6731     if (CDiv->isZero())
6732       return false;
6733 
6734     const APInt &D = CDiv->getAPIntValue();
6735     const APInt &Cmp = CCmp->getAPIntValue();
6736 
6737     ComparingWithAllZeros &= Cmp.isZero();
6738 
6739     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6740     // if C2 is not less than C1, the comparison is always false.
6741     // But we will only be able to produce the comparison that will give the
6742     // opposive tautological answer. So this lane would need to be fixed up.
6743     bool TautologicalInvertedLane = D.ule(Cmp);
6744     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
6745 
6746     // If all lanes are tautological (either all divisors are ones, or divisor
6747     // is not greater than the constant we are comparing with),
6748     // we will prefer to avoid the fold.
6749     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
6750     HadTautologicalLanes |= TautologicalLane;
6751     AllLanesAreTautological &= TautologicalLane;
6752 
6753     // If we are comparing with non-zero, we need'll need  to subtract said
6754     // comparison value from the LHS. But there is no point in doing that if
6755     // every lane where we are comparing with non-zero is tautological..
6756     if (!Cmp.isZero())
6757       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
6758 
6759     // Decompose D into D0 * 2^K
6760     unsigned K = D.countr_zero();
6761     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6762     APInt D0 = D.lshr(K);
6763 
6764     // D is even if it has trailing zeros.
6765     HadEvenDivisor |= (K != 0);
6766     // D is a power-of-two if D0 is one.
6767     // If all divisors are power-of-two, we will prefer to avoid the fold.
6768     AllDivisorsArePowerOfTwo &= D0.isOne();
6769 
6770     // P = inv(D0, 2^W)
6771     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6772     unsigned W = D.getBitWidth();
6773     APInt P = D0.multiplicativeInverse();
6774     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6775 
6776     // Q = floor((2^W - 1) u/ D)
6777     // R = ((2^W - 1) u% D)
6778     APInt Q, R;
6779     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
6780 
6781     // If we are comparing with zero, then that comparison constant is okay,
6782     // else it may need to be one less than that.
6783     if (Cmp.ugt(R))
6784       Q -= 1;
6785 
6786     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6787            "We are expecting that K is always less than all-ones for ShSVT");
6788 
6789     // If the lane is tautological the result can be constant-folded.
6790     if (TautologicalLane) {
6791       // Set P and K amount to a bogus values so we can try to splat them.
6792       P = 0;
6793       K = -1;
6794       // And ensure that comparison constant is tautological,
6795       // it will always compare true/false.
6796       Q = -1;
6797     }
6798 
6799     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6800     KAmts.push_back(
6801         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K, /*isSigned=*/false,
6802                               /*implicitTrunc=*/true),
6803                         DL, ShSVT));
6804     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6805     return true;
6806   };
6807 
6808   SDValue N = REMNode.getOperand(0);
6809   SDValue D = REMNode.getOperand(1);
6810 
6811   // Collect the values from each element.
6812   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
6813     return SDValue();
6814 
6815   // If all lanes are tautological, the result can be constant-folded.
6816   if (AllLanesAreTautological)
6817     return SDValue();
6818 
6819   // If this is a urem by a powers-of-two, avoid the fold since it can be
6820   // best implemented as a bit test.
6821   if (AllDivisorsArePowerOfTwo)
6822     return SDValue();
6823 
6824   SDValue PVal, KVal, QVal;
6825   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6826     if (HadTautologicalLanes) {
6827       // Try to turn PAmts into a splat, since we don't care about the values
6828       // that are currently '0'. If we can't, just keep '0'`s.
6829       turnVectorIntoSplatVector(PAmts, isNullConstant);
6830       // Try to turn KAmts into a splat, since we don't care about the values
6831       // that are currently '-1'. If we can't, change them to '0'`s.
6832       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6833                                 DAG.getConstant(0, DL, ShSVT));
6834     }
6835 
6836     PVal = DAG.getBuildVector(VT, DL, PAmts);
6837     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6838     QVal = DAG.getBuildVector(VT, DL, QAmts);
6839   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6840     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
6841            "Expected matchBinaryPredicate to return one element for "
6842            "SPLAT_VECTORs");
6843     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6844     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6845     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6846   } else {
6847     PVal = PAmts[0];
6848     KVal = KAmts[0];
6849     QVal = QAmts[0];
6850   }
6851 
6852   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
6853     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
6854       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
6855     assert(CompTargetNode.getValueType() == N.getValueType() &&
6856            "Expecting that the types on LHS and RHS of comparisons match.");
6857     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
6858   }
6859 
6860   // (mul N, P)
6861   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6862   Created.push_back(Op0.getNode());
6863 
6864   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6865   // divisors as a performance improvement, since rotating by 0 is a no-op.
6866   if (HadEvenDivisor) {
6867     // We need ROTR to do this.
6868     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6869       return SDValue();
6870     // UREM: (rotr (mul N, P), K)
6871     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6872     Created.push_back(Op0.getNode());
6873   }
6874 
6875   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
6876   SDValue NewCC =
6877       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6878                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6879   if (!HadTautologicalInvertedLanes)
6880     return NewCC;
6881 
6882   // If any lanes previously compared always-false, the NewCC will give
6883   // always-true result for them, so we need to fixup those lanes.
6884   // Or the other way around for inequality predicate.
6885   assert(VT.isVector() && "Can/should only get here for vectors.");
6886   Created.push_back(NewCC.getNode());
6887 
6888   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6889   // if C2 is not less than C1, the comparison is always false.
6890   // But we have produced the comparison that will give the
6891   // opposive tautological answer. So these lanes would need to be fixed up.
6892   SDValue TautologicalInvertedChannels =
6893       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
6894   Created.push_back(TautologicalInvertedChannels.getNode());
6895 
6896   // NOTE: we avoid letting illegal types through even if we're before legalize
6897   // ops – legalization has a hard time producing good code for this.
6898   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
6899     // If we have a vector select, let's replace the comparison results in the
6900     // affected lanes with the correct tautological result.
6901     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
6902                                               DL, SETCCVT, SETCCVT);
6903     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
6904                        Replacement, NewCC);
6905   }
6906 
6907   // Else, we can just invert the comparison result in the appropriate lanes.
6908   //
6909   // NOTE: see the note above VSELECT above.
6910   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
6911     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
6912                        TautologicalInvertedChannels);
6913 
6914   return SDValue(); // Don't know how to lower.
6915 }
6916 
6917 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
6918 /// where the divisor is constant and the comparison target is zero,
6919 /// return a DAG expression that will generate the same comparison result
6920 /// using only multiplications, additions and shifts/rotations.
6921 /// Ref: "Hacker's Delight" 10-17.
6922 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
6923                                         SDValue CompTargetNode,
6924                                         ISD::CondCode Cond,
6925                                         DAGCombinerInfo &DCI,
6926                                         const SDLoc &DL) const {
6927   SmallVector<SDNode *, 7> Built;
6928   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6929                                          DCI, DL, Built)) {
6930     assert(Built.size() <= 7 && "Max size prediction failed.");
6931     for (SDNode *N : Built)
6932       DCI.AddToWorklist(N);
6933     return Folded;
6934   }
6935 
6936   return SDValue();
6937 }
6938 
6939 SDValue
6940 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
6941                                   SDValue CompTargetNode, ISD::CondCode Cond,
6942                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6943                                   SmallVectorImpl<SDNode *> &Created) const {
6944   // Derived from Hacker's Delight, 2nd Edition, by Hank Warren. Section 10-17.
6945   // Fold:
6946   //   (seteq/ne (srem N, D), 0)
6947   // To:
6948   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
6949   //
6950   // - D must be constant, with D = D0 * 2^K where D0 is odd
6951   // - P is the multiplicative inverse of D0 modulo 2^W
6952   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
6953   // - Q = floor((2 * A) / (2^K))
6954   // where W is the width of the common type of N and D.
6955   //
6956   // When D is a power of two (and thus D0 is 1), the normal
6957   // formula for A and Q don't apply, because the derivation
6958   // depends on D not dividing 2^(W-1), and thus theorem ZRS
6959   // does not apply. This specifically fails when N = INT_MIN.
6960   //
6961   // Instead, for power-of-two D, we use:
6962   // - A = 2^(W-1)
6963   // |-> Order-preserving map from [-2^(W-1), 2^(W-1) - 1] to [0,2^W - 1])
6964   // - Q = 2^(W-K) - 1
6965   // |-> Test that the top K bits are zero after rotation
6966   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6967          "Only applicable for (in)equality comparisons.");
6968 
6969   SelectionDAG &DAG = DCI.DAG;
6970 
6971   EVT VT = REMNode.getValueType();
6972   EVT SVT = VT.getScalarType();
6973   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6974   EVT ShSVT = ShVT.getScalarType();
6975 
6976   // If we are after ops legalization, and MUL is unavailable, we can not
6977   // proceed.
6978   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6979     return SDValue();
6980 
6981   // TODO: Could support comparing with non-zero too.
6982   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
6983   if (!CompTarget || !CompTarget->isZero())
6984     return SDValue();
6985 
6986   bool HadIntMinDivisor = false;
6987   bool HadOneDivisor = false;
6988   bool AllDivisorsAreOnes = true;
6989   bool HadEvenDivisor = false;
6990   bool NeedToApplyOffset = false;
6991   bool AllDivisorsArePowerOfTwo = true;
6992   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
6993 
6994   auto BuildSREMPattern = [&](ConstantSDNode *C) {
6995     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6996     if (C->isZero())
6997       return false;
6998 
6999     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
7000 
7001     // WARNING: this fold is only valid for positive divisors!
7002     APInt D = C->getAPIntValue();
7003     if (D.isNegative())
7004       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
7005 
7006     HadIntMinDivisor |= D.isMinSignedValue();
7007 
7008     // If all divisors are ones, we will prefer to avoid the fold.
7009     HadOneDivisor |= D.isOne();
7010     AllDivisorsAreOnes &= D.isOne();
7011 
7012     // Decompose D into D0 * 2^K
7013     unsigned K = D.countr_zero();
7014     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
7015     APInt D0 = D.lshr(K);
7016 
7017     if (!D.isMinSignedValue()) {
7018       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
7019       // we don't care about this lane in this fold, we'll special-handle it.
7020       HadEvenDivisor |= (K != 0);
7021     }
7022 
7023     // D is a power-of-two if D0 is one. This includes INT_MIN.
7024     // If all divisors are power-of-two, we will prefer to avoid the fold.
7025     AllDivisorsArePowerOfTwo &= D0.isOne();
7026 
7027     // P = inv(D0, 2^W)
7028     // 2^W requires W + 1 bits, so we have to extend and then truncate.
7029     unsigned W = D.getBitWidth();
7030     APInt P = D0.multiplicativeInverse();
7031     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
7032 
7033     // A = floor((2^(W - 1) - 1) / D0) & -2^K
7034     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
7035     A.clearLowBits(K);
7036 
7037     if (!D.isMinSignedValue()) {
7038       // If divisor INT_MIN, then we don't care about this lane in this fold,
7039       // we'll special-handle it.
7040       NeedToApplyOffset |= A != 0;
7041     }
7042 
7043     // Q = floor((2 * A) / (2^K))
7044     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
7045 
7046     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
7047            "We are expecting that A is always less than all-ones for SVT");
7048     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
7049            "We are expecting that K is always less than all-ones for ShSVT");
7050 
7051     // If D was a power of two, apply the alternate constant derivation.
7052     if (D0.isOne()) {
7053       // A = 2^(W-1)
7054       A = APInt::getSignedMinValue(W);
7055       // - Q = 2^(W-K) - 1
7056       Q = APInt::getAllOnes(W - K).zext(W);
7057     }
7058 
7059     // If the divisor is 1 the result can be constant-folded. Likewise, we
7060     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
7061     if (D.isOne()) {
7062       // Set P, A and K to a bogus values so we can try to splat them.
7063       P = 0;
7064       A = -1;
7065       K = -1;
7066 
7067       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
7068       Q = -1;
7069     }
7070 
7071     PAmts.push_back(DAG.getConstant(P, DL, SVT));
7072     AAmts.push_back(DAG.getConstant(A, DL, SVT));
7073     KAmts.push_back(
7074         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K, /*isSigned=*/false,
7075                               /*implicitTrunc=*/true),
7076                         DL, ShSVT));
7077     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
7078     return true;
7079   };
7080 
7081   SDValue N = REMNode.getOperand(0);
7082   SDValue D = REMNode.getOperand(1);
7083 
7084   // Collect the values from each element.
7085   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
7086     return SDValue();
7087 
7088   // If this is a srem by a one, avoid the fold since it can be constant-folded.
7089   if (AllDivisorsAreOnes)
7090     return SDValue();
7091 
7092   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
7093   // since it can be best implemented as a bit test.
7094   if (AllDivisorsArePowerOfTwo)
7095     return SDValue();
7096 
7097   SDValue PVal, AVal, KVal, QVal;
7098   if (D.getOpcode() == ISD::BUILD_VECTOR) {
7099     if (HadOneDivisor) {
7100       // Try to turn PAmts into a splat, since we don't care about the values
7101       // that are currently '0'. If we can't, just keep '0'`s.
7102       turnVectorIntoSplatVector(PAmts, isNullConstant);
7103       // Try to turn AAmts into a splat, since we don't care about the
7104       // values that are currently '-1'. If we can't, change them to '0'`s.
7105       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
7106                                 DAG.getConstant(0, DL, SVT));
7107       // Try to turn KAmts into a splat, since we don't care about the values
7108       // that are currently '-1'. If we can't, change them to '0'`s.
7109       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
7110                                 DAG.getConstant(0, DL, ShSVT));
7111     }
7112 
7113     PVal = DAG.getBuildVector(VT, DL, PAmts);
7114     AVal = DAG.getBuildVector(VT, DL, AAmts);
7115     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
7116     QVal = DAG.getBuildVector(VT, DL, QAmts);
7117   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
7118     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
7119            QAmts.size() == 1 &&
7120            "Expected matchUnaryPredicate to return one element for scalable "
7121            "vectors");
7122     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
7123     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
7124     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
7125     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
7126   } else {
7127     assert(isa<ConstantSDNode>(D) && "Expected a constant");
7128     PVal = PAmts[0];
7129     AVal = AAmts[0];
7130     KVal = KAmts[0];
7131     QVal = QAmts[0];
7132   }
7133 
7134   // (mul N, P)
7135   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
7136   Created.push_back(Op0.getNode());
7137 
7138   if (NeedToApplyOffset) {
7139     // We need ADD to do this.
7140     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
7141       return SDValue();
7142 
7143     // (add (mul N, P), A)
7144     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
7145     Created.push_back(Op0.getNode());
7146   }
7147 
7148   // Rotate right only if any divisor was even. We avoid rotates for all-odd
7149   // divisors as a performance improvement, since rotating by 0 is a no-op.
7150   if (HadEvenDivisor) {
7151     // We need ROTR to do this.
7152     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
7153       return SDValue();
7154     // SREM: (rotr (add (mul N, P), A), K)
7155     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
7156     Created.push_back(Op0.getNode());
7157   }
7158 
7159   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
7160   SDValue Fold =
7161       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
7162                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
7163 
7164   // If we didn't have lanes with INT_MIN divisor, then we're done.
7165   if (!HadIntMinDivisor)
7166     return Fold;
7167 
7168   // That fold is only valid for positive divisors. Which effectively means,
7169   // it is invalid for INT_MIN divisors. So if we have such a lane,
7170   // we must fix-up results for said lanes.
7171   assert(VT.isVector() && "Can/should only get here for vectors.");
7172 
7173   // NOTE: we avoid letting illegal types through even if we're before legalize
7174   // ops – legalization has a hard time producing good code for the code that
7175   // follows.
7176   if (!isOperationLegalOrCustom(ISD::SETCC, SETCCVT) ||
7177       !isOperationLegalOrCustom(ISD::AND, VT) ||
7178       !isCondCodeLegalOrCustom(Cond, VT.getSimpleVT()) ||
7179       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
7180     return SDValue();
7181 
7182   Created.push_back(Fold.getNode());
7183 
7184   SDValue IntMin = DAG.getConstant(
7185       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
7186   SDValue IntMax = DAG.getConstant(
7187       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
7188   SDValue Zero =
7189       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
7190 
7191   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
7192   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
7193   Created.push_back(DivisorIsIntMin.getNode());
7194 
7195   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
7196   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
7197   Created.push_back(Masked.getNode());
7198   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
7199   Created.push_back(MaskedIsZero.getNode());
7200 
7201   // To produce final result we need to blend 2 vectors: 'SetCC' and
7202   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
7203   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
7204   // constant-folded, select can get lowered to a shuffle with constant mask.
7205   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
7206                                 MaskedIsZero, Fold);
7207 
7208   return Blended;
7209 }
7210 
7211 bool TargetLowering::
7212 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
7213   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
7214     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
7215                                 "be a constant integer");
7216     return true;
7217   }
7218 
7219   return false;
7220 }
7221 
7222 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
7223                                          const DenormalMode &Mode) const {
7224   SDLoc DL(Op);
7225   EVT VT = Op.getValueType();
7226   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7227   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
7228 
7229   // This is specifically a check for the handling of denormal inputs, not the
7230   // result.
7231   if (Mode.Input == DenormalMode::PreserveSign ||
7232       Mode.Input == DenormalMode::PositiveZero) {
7233     // Test = X == 0.0
7234     return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
7235   }
7236 
7237   // Testing it with denormal inputs to avoid wrong estimate.
7238   //
7239   // Test = fabs(X) < SmallestNormal
7240   const fltSemantics &FltSem = VT.getFltSemantics();
7241   APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
7242   SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
7243   SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
7244   return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
7245 }
7246 
7247 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
7248                                              bool LegalOps, bool OptForSize,
7249                                              NegatibleCost &Cost,
7250                                              unsigned Depth) const {
7251   // fneg is removable even if it has multiple uses.
7252   if (Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::VP_FNEG) {
7253     Cost = NegatibleCost::Cheaper;
7254     return Op.getOperand(0);
7255   }
7256 
7257   // Don't recurse exponentially.
7258   if (Depth > SelectionDAG::MaxRecursionDepth)
7259     return SDValue();
7260 
7261   // Pre-increment recursion depth for use in recursive calls.
7262   ++Depth;
7263   const SDNodeFlags Flags = Op->getFlags();
7264   const TargetOptions &Options = DAG.getTarget().Options;
7265   EVT VT = Op.getValueType();
7266   unsigned Opcode = Op.getOpcode();
7267 
7268   // Don't allow anything with multiple uses unless we know it is free.
7269   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
7270     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
7271                         isFPExtFree(VT, Op.getOperand(0).getValueType());
7272     if (!IsFreeExtend)
7273       return SDValue();
7274   }
7275 
7276   auto RemoveDeadNode = [&](SDValue N) {
7277     if (N && N.getNode()->use_empty())
7278       DAG.RemoveDeadNode(N.getNode());
7279   };
7280 
7281   SDLoc DL(Op);
7282 
7283   // Because getNegatedExpression can delete nodes we need a handle to keep
7284   // temporary nodes alive in case the recursion manages to create an identical
7285   // node.
7286   std::list<HandleSDNode> Handles;
7287 
7288   switch (Opcode) {
7289   case ISD::ConstantFP: {
7290     // Don't invert constant FP values after legalization unless the target says
7291     // the negated constant is legal.
7292     bool IsOpLegal =
7293         isOperationLegal(ISD::ConstantFP, VT) ||
7294         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
7295                      OptForSize);
7296 
7297     if (LegalOps && !IsOpLegal)
7298       break;
7299 
7300     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
7301     V.changeSign();
7302     SDValue CFP = DAG.getConstantFP(V, DL, VT);
7303 
7304     // If we already have the use of the negated floating constant, it is free
7305     // to negate it even it has multiple uses.
7306     if (!Op.hasOneUse() && CFP.use_empty())
7307       break;
7308     Cost = NegatibleCost::Neutral;
7309     return CFP;
7310   }
7311   case ISD::BUILD_VECTOR: {
7312     // Only permit BUILD_VECTOR of constants.
7313     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
7314           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
7315         }))
7316       break;
7317 
7318     bool IsOpLegal =
7319         (isOperationLegal(ISD::ConstantFP, VT) &&
7320          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
7321         llvm::all_of(Op->op_values(), [&](SDValue N) {
7322           return N.isUndef() ||
7323                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
7324                               OptForSize);
7325         });
7326 
7327     if (LegalOps && !IsOpLegal)
7328       break;
7329 
7330     SmallVector<SDValue, 4> Ops;
7331     for (SDValue C : Op->op_values()) {
7332       if (C.isUndef()) {
7333         Ops.push_back(C);
7334         continue;
7335       }
7336       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
7337       V.changeSign();
7338       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
7339     }
7340     Cost = NegatibleCost::Neutral;
7341     return DAG.getBuildVector(VT, DL, Ops);
7342   }
7343   case ISD::FADD: {
7344     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7345       break;
7346 
7347     // After operation legalization, it might not be legal to create new FSUBs.
7348     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
7349       break;
7350     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
7351 
7352     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
7353     NegatibleCost CostX = NegatibleCost::Expensive;
7354     SDValue NegX =
7355         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
7356     // Prevent this node from being deleted by the next call.
7357     if (NegX)
7358       Handles.emplace_back(NegX);
7359 
7360     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
7361     NegatibleCost CostY = NegatibleCost::Expensive;
7362     SDValue NegY =
7363         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
7364 
7365     // We're done with the handles.
7366     Handles.clear();
7367 
7368     // Negate the X if its cost is less or equal than Y.
7369     if (NegX && (CostX <= CostY)) {
7370       Cost = CostX;
7371       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
7372       if (NegY != N)
7373         RemoveDeadNode(NegY);
7374       return N;
7375     }
7376 
7377     // Negate the Y if it is not expensive.
7378     if (NegY) {
7379       Cost = CostY;
7380       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
7381       if (NegX != N)
7382         RemoveDeadNode(NegX);
7383       return N;
7384     }
7385     break;
7386   }
7387   case ISD::FSUB: {
7388     // We can't turn -(A-B) into B-A when we honor signed zeros.
7389     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7390       break;
7391 
7392     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
7393     // fold (fneg (fsub 0, Y)) -> Y
7394     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
7395       if (C->isZero()) {
7396         Cost = NegatibleCost::Cheaper;
7397         return Y;
7398       }
7399 
7400     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
7401     Cost = NegatibleCost::Neutral;
7402     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
7403   }
7404   case ISD::FMUL:
7405   case ISD::FDIV: {
7406     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
7407 
7408     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
7409     NegatibleCost CostX = NegatibleCost::Expensive;
7410     SDValue NegX =
7411         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
7412     // Prevent this node from being deleted by the next call.
7413     if (NegX)
7414       Handles.emplace_back(NegX);
7415 
7416     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
7417     NegatibleCost CostY = NegatibleCost::Expensive;
7418     SDValue NegY =
7419         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
7420 
7421     // We're done with the handles.
7422     Handles.clear();
7423 
7424     // Negate the X if its cost is less or equal than Y.
7425     if (NegX && (CostX <= CostY)) {
7426       Cost = CostX;
7427       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
7428       if (NegY != N)
7429         RemoveDeadNode(NegY);
7430       return N;
7431     }
7432 
7433     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
7434     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
7435       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
7436         break;
7437 
7438     // Negate the Y if it is not expensive.
7439     if (NegY) {
7440       Cost = CostY;
7441       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
7442       if (NegX != N)
7443         RemoveDeadNode(NegX);
7444       return N;
7445     }
7446     break;
7447   }
7448   case ISD::FMA:
7449   case ISD::FMAD: {
7450     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7451       break;
7452 
7453     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
7454     NegatibleCost CostZ = NegatibleCost::Expensive;
7455     SDValue NegZ =
7456         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
7457     // Give up if fail to negate the Z.
7458     if (!NegZ)
7459       break;
7460 
7461     // Prevent this node from being deleted by the next two calls.
7462     Handles.emplace_back(NegZ);
7463 
7464     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
7465     NegatibleCost CostX = NegatibleCost::Expensive;
7466     SDValue NegX =
7467         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
7468     // Prevent this node from being deleted by the next call.
7469     if (NegX)
7470       Handles.emplace_back(NegX);
7471 
7472     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
7473     NegatibleCost CostY = NegatibleCost::Expensive;
7474     SDValue NegY =
7475         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
7476 
7477     // We're done with the handles.
7478     Handles.clear();
7479 
7480     // Negate the X if its cost is less or equal than Y.
7481     if (NegX && (CostX <= CostY)) {
7482       Cost = std::min(CostX, CostZ);
7483       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
7484       if (NegY != N)
7485         RemoveDeadNode(NegY);
7486       return N;
7487     }
7488 
7489     // Negate the Y if it is not expensive.
7490     if (NegY) {
7491       Cost = std::min(CostY, CostZ);
7492       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
7493       if (NegX != N)
7494         RemoveDeadNode(NegX);
7495       return N;
7496     }
7497     break;
7498   }
7499 
7500   case ISD::FP_EXTEND:
7501   case ISD::FSIN:
7502     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
7503                                             OptForSize, Cost, Depth))
7504       return DAG.getNode(Opcode, DL, VT, NegV);
7505     break;
7506   case ISD::FP_ROUND:
7507     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
7508                                             OptForSize, Cost, Depth))
7509       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
7510     break;
7511   case ISD::SELECT:
7512   case ISD::VSELECT: {
7513     // fold (fneg (select C, LHS, RHS)) -> (select C, (fneg LHS), (fneg RHS))
7514     // iff at least one cost is cheaper and the other is neutral/cheaper
7515     SDValue LHS = Op.getOperand(1);
7516     NegatibleCost CostLHS = NegatibleCost::Expensive;
7517     SDValue NegLHS =
7518         getNegatedExpression(LHS, DAG, LegalOps, OptForSize, CostLHS, Depth);
7519     if (!NegLHS || CostLHS > NegatibleCost::Neutral) {
7520       RemoveDeadNode(NegLHS);
7521       break;
7522     }
7523 
7524     // Prevent this node from being deleted by the next call.
7525     Handles.emplace_back(NegLHS);
7526 
7527     SDValue RHS = Op.getOperand(2);
7528     NegatibleCost CostRHS = NegatibleCost::Expensive;
7529     SDValue NegRHS =
7530         getNegatedExpression(RHS, DAG, LegalOps, OptForSize, CostRHS, Depth);
7531 
7532     // We're done with the handles.
7533     Handles.clear();
7534 
7535     if (!NegRHS || CostRHS > NegatibleCost::Neutral ||
7536         (CostLHS != NegatibleCost::Cheaper &&
7537          CostRHS != NegatibleCost::Cheaper)) {
7538       RemoveDeadNode(NegLHS);
7539       RemoveDeadNode(NegRHS);
7540       break;
7541     }
7542 
7543     Cost = std::min(CostLHS, CostRHS);
7544     return DAG.getSelect(DL, VT, Op.getOperand(0), NegLHS, NegRHS);
7545   }
7546   }
7547 
7548   return SDValue();
7549 }
7550 
7551 //===----------------------------------------------------------------------===//
7552 // Legalization Utilities
7553 //===----------------------------------------------------------------------===//
7554 
7555 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
7556                                     SDValue LHS, SDValue RHS,
7557                                     SmallVectorImpl<SDValue> &Result,
7558                                     EVT HiLoVT, SelectionDAG &DAG,
7559                                     MulExpansionKind Kind, SDValue LL,
7560                                     SDValue LH, SDValue RL, SDValue RH) const {
7561   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
7562          Opcode == ISD::SMUL_LOHI);
7563 
7564   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
7565                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
7566   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
7567                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
7568   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
7569                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
7570   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
7571                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
7572 
7573   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
7574     return false;
7575 
7576   unsigned OuterBitSize = VT.getScalarSizeInBits();
7577   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
7578 
7579   // LL, LH, RL, and RH must be either all NULL or all set to a value.
7580   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
7581          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
7582 
7583   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
7584   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
7585                           bool Signed) -> bool {
7586     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
7587       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
7588       Hi = SDValue(Lo.getNode(), 1);
7589       return true;
7590     }
7591     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
7592       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
7593       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
7594       return true;
7595     }
7596     return false;
7597   };
7598 
7599   SDValue Lo, Hi;
7600 
7601   if (!LL.getNode() && !RL.getNode() &&
7602       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
7603     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
7604     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
7605   }
7606 
7607   if (!LL.getNode())
7608     return false;
7609 
7610   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
7611   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
7612       DAG.MaskedValueIsZero(RHS, HighMask)) {
7613     // The inputs are both zero-extended.
7614     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
7615       Result.push_back(Lo);
7616       Result.push_back(Hi);
7617       if (Opcode != ISD::MUL) {
7618         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
7619         Result.push_back(Zero);
7620         Result.push_back(Zero);
7621       }
7622       return true;
7623     }
7624   }
7625 
7626   if (!VT.isVector() && Opcode == ISD::MUL &&
7627       DAG.ComputeMaxSignificantBits(LHS) <= InnerBitSize &&
7628       DAG.ComputeMaxSignificantBits(RHS) <= InnerBitSize) {
7629     // The input values are both sign-extended.
7630     // TODO non-MUL case?
7631     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
7632       Result.push_back(Lo);
7633       Result.push_back(Hi);
7634       return true;
7635     }
7636   }
7637 
7638   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
7639   SDValue Shift = DAG.getShiftAmountConstant(ShiftAmount, VT, dl);
7640 
7641   if (!LH.getNode() && !RH.getNode() &&
7642       isOperationLegalOrCustom(ISD::SRL, VT) &&
7643       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
7644     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
7645     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
7646     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
7647     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
7648   }
7649 
7650   if (!LH.getNode())
7651     return false;
7652 
7653   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
7654     return false;
7655 
7656   Result.push_back(Lo);
7657 
7658   if (Opcode == ISD::MUL) {
7659     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
7660     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
7661     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
7662     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
7663     Result.push_back(Hi);
7664     return true;
7665   }
7666 
7667   // Compute the full width result.
7668   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
7669     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
7670     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7671     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
7672     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
7673   };
7674 
7675   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7676   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
7677     return false;
7678 
7679   // This is effectively the add part of a multiply-add of half-sized operands,
7680   // so it cannot overflow.
7681   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7682 
7683   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
7684     return false;
7685 
7686   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
7687   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7688 
7689   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
7690                   isOperationLegalOrCustom(ISD::ADDE, VT));
7691   if (UseGlue)
7692     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
7693                        Merge(Lo, Hi));
7694   else
7695     Next = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(VT, BoolType), Next,
7696                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
7697 
7698   SDValue Carry = Next.getValue(1);
7699   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7700   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7701 
7702   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
7703     return false;
7704 
7705   if (UseGlue)
7706     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
7707                      Carry);
7708   else
7709     Hi = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
7710                      Zero, Carry);
7711 
7712   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7713 
7714   if (Opcode == ISD::SMUL_LOHI) {
7715     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7716                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
7717     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
7718 
7719     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7720                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
7721     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
7722   }
7723 
7724   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7725   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7726   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7727   return true;
7728 }
7729 
7730 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
7731                                SelectionDAG &DAG, MulExpansionKind Kind,
7732                                SDValue LL, SDValue LH, SDValue RL,
7733                                SDValue RH) const {
7734   SmallVector<SDValue, 2> Result;
7735   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
7736                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
7737                            DAG, Kind, LL, LH, RL, RH);
7738   if (Ok) {
7739     assert(Result.size() == 2);
7740     Lo = Result[0];
7741     Hi = Result[1];
7742   }
7743   return Ok;
7744 }
7745 
7746 // Optimize unsigned division or remainder by constants for types twice as large
7747 // as a legal VT.
7748 //
7749 // If (1 << (BitWidth / 2)) % Constant == 1, then the remainder
7750 // can be computed
7751 // as:
7752 //   Sum += __builtin_uadd_overflow(Lo, High, &Sum);
7753 //   Remainder = Sum % Constant
7754 // This is based on "Remainder by Summing Digits" from Hacker's Delight.
7755 //
7756 // For division, we can compute the remainder using the algorithm described
7757 // above, subtract it from the dividend to get an exact multiple of Constant.
7758 // Then multiply that exact multiply by the multiplicative inverse modulo
7759 // (1 << (BitWidth / 2)) to get the quotient.
7760 
7761 // If Constant is even, we can shift right the dividend and the divisor by the
7762 // number of trailing zeros in Constant before applying the remainder algorithm.
7763 // If we're after the quotient, we can subtract this value from the shifted
7764 // dividend and multiply by the multiplicative inverse of the shifted divisor.
7765 // If we want the remainder, we shift the value left by the number of trailing
7766 // zeros and add the bits that were shifted out of the dividend.
7767 bool TargetLowering::expandDIVREMByConstant(SDNode *N,
7768                                             SmallVectorImpl<SDValue> &Result,
7769                                             EVT HiLoVT, SelectionDAG &DAG,
7770                                             SDValue LL, SDValue LH) const {
7771   unsigned Opcode = N->getOpcode();
7772   EVT VT = N->getValueType(0);
7773 
7774   // TODO: Support signed division/remainder.
7775   if (Opcode == ISD::SREM || Opcode == ISD::SDIV || Opcode == ISD::SDIVREM)
7776     return false;
7777   assert(
7778       (Opcode == ISD::UREM || Opcode == ISD::UDIV || Opcode == ISD::UDIVREM) &&
7779       "Unexpected opcode");
7780 
7781   auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(1));
7782   if (!CN)
7783     return false;
7784 
7785   APInt Divisor = CN->getAPIntValue();
7786   unsigned BitWidth = Divisor.getBitWidth();
7787   unsigned HBitWidth = BitWidth / 2;
7788   assert(VT.getScalarSizeInBits() == BitWidth &&
7789          HiLoVT.getScalarSizeInBits() == HBitWidth && "Unexpected VTs");
7790 
7791   // Divisor needs to less than (1 << HBitWidth).
7792   APInt HalfMaxPlus1 = APInt::getOneBitSet(BitWidth, HBitWidth);
7793   if (Divisor.uge(HalfMaxPlus1))
7794     return false;
7795 
7796   // We depend on the UREM by constant optimization in DAGCombiner that requires
7797   // high multiply.
7798   if (!isOperationLegalOrCustom(ISD::MULHU, HiLoVT) &&
7799       !isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT))
7800     return false;
7801 
7802   // Don't expand if optimizing for size.
7803   if (DAG.shouldOptForSize())
7804     return false;
7805 
7806   // Early out for 0 or 1 divisors.
7807   if (Divisor.ule(1))
7808     return false;
7809 
7810   // If the divisor is even, shift it until it becomes odd.
7811   unsigned TrailingZeros = 0;
7812   if (!Divisor[0]) {
7813     TrailingZeros = Divisor.countr_zero();
7814     Divisor.lshrInPlace(TrailingZeros);
7815   }
7816 
7817   SDLoc dl(N);
7818   SDValue Sum;
7819   SDValue PartialRem;
7820 
7821   // If (1 << HBitWidth) % divisor == 1, we can add the two halves together and
7822   // then add in the carry.
7823   // TODO: If we can't split it in half, we might be able to split into 3 or
7824   // more pieces using a smaller bit width.
7825   if (HalfMaxPlus1.urem(Divisor).isOne()) {
7826     assert(!LL == !LH && "Expected both input halves or no input halves!");
7827     if (!LL)
7828       std::tie(LL, LH) = DAG.SplitScalar(N->getOperand(0), dl, HiLoVT, HiLoVT);
7829 
7830     // Shift the input by the number of TrailingZeros in the divisor. The
7831     // shifted out bits will be added to the remainder later.
7832     if (TrailingZeros) {
7833       // Save the shifted off bits if we need the remainder.
7834       if (Opcode != ISD::UDIV) {
7835         APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros);
7836         PartialRem = DAG.getNode(ISD::AND, dl, HiLoVT, LL,
7837                                  DAG.getConstant(Mask, dl, HiLoVT));
7838       }
7839 
7840       LL = DAG.getNode(
7841           ISD::OR, dl, HiLoVT,
7842           DAG.getNode(ISD::SRL, dl, HiLoVT, LL,
7843                       DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)),
7844           DAG.getNode(ISD::SHL, dl, HiLoVT, LH,
7845                       DAG.getShiftAmountConstant(HBitWidth - TrailingZeros,
7846                                                  HiLoVT, dl)));
7847       LH = DAG.getNode(ISD::SRL, dl, HiLoVT, LH,
7848                        DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl));
7849     }
7850 
7851     // Use uaddo_carry if we can, otherwise use a compare to detect overflow.
7852     EVT SetCCType =
7853         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), HiLoVT);
7854     if (isOperationLegalOrCustom(ISD::UADDO_CARRY, HiLoVT)) {
7855       SDVTList VTList = DAG.getVTList(HiLoVT, SetCCType);
7856       Sum = DAG.getNode(ISD::UADDO, dl, VTList, LL, LH);
7857       Sum = DAG.getNode(ISD::UADDO_CARRY, dl, VTList, Sum,
7858                         DAG.getConstant(0, dl, HiLoVT), Sum.getValue(1));
7859     } else {
7860       Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, LL, LH);
7861       SDValue Carry = DAG.getSetCC(dl, SetCCType, Sum, LL, ISD::SETULT);
7862       // If the boolean for the target is 0 or 1, we can add the setcc result
7863       // directly.
7864       if (getBooleanContents(HiLoVT) ==
7865           TargetLoweringBase::ZeroOrOneBooleanContent)
7866         Carry = DAG.getZExtOrTrunc(Carry, dl, HiLoVT);
7867       else
7868         Carry = DAG.getSelect(dl, HiLoVT, Carry, DAG.getConstant(1, dl, HiLoVT),
7869                               DAG.getConstant(0, dl, HiLoVT));
7870       Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, Sum, Carry);
7871     }
7872   }
7873 
7874   // If we didn't find a sum, we can't do the expansion.
7875   if (!Sum)
7876     return false;
7877 
7878   // Perform a HiLoVT urem on the Sum using truncated divisor.
7879   SDValue RemL =
7880       DAG.getNode(ISD::UREM, dl, HiLoVT, Sum,
7881                   DAG.getConstant(Divisor.trunc(HBitWidth), dl, HiLoVT));
7882   SDValue RemH = DAG.getConstant(0, dl, HiLoVT);
7883 
7884   if (Opcode != ISD::UREM) {
7885     // Subtract the remainder from the shifted dividend.
7886     SDValue Dividend = DAG.getNode(ISD::BUILD_PAIR, dl, VT, LL, LH);
7887     SDValue Rem = DAG.getNode(ISD::BUILD_PAIR, dl, VT, RemL, RemH);
7888 
7889     Dividend = DAG.getNode(ISD::SUB, dl, VT, Dividend, Rem);
7890 
7891     // Multiply by the multiplicative inverse of the divisor modulo
7892     // (1 << BitWidth).
7893     APInt MulFactor = Divisor.multiplicativeInverse();
7894 
7895     SDValue Quotient = DAG.getNode(ISD::MUL, dl, VT, Dividend,
7896                                    DAG.getConstant(MulFactor, dl, VT));
7897 
7898     // Split the quotient into low and high parts.
7899     SDValue QuotL, QuotH;
7900     std::tie(QuotL, QuotH) = DAG.SplitScalar(Quotient, dl, HiLoVT, HiLoVT);
7901     Result.push_back(QuotL);
7902     Result.push_back(QuotH);
7903   }
7904 
7905   if (Opcode != ISD::UDIV) {
7906     // If we shifted the input, shift the remainder left and add the bits we
7907     // shifted off the input.
7908     if (TrailingZeros) {
7909       APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros);
7910       RemL = DAG.getNode(ISD::SHL, dl, HiLoVT, RemL,
7911                          DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl));
7912       RemL = DAG.getNode(ISD::ADD, dl, HiLoVT, RemL, PartialRem);
7913     }
7914     Result.push_back(RemL);
7915     Result.push_back(DAG.getConstant(0, dl, HiLoVT));
7916   }
7917 
7918   return true;
7919 }
7920 
7921 // Check that (every element of) Z is undef or not an exact multiple of BW.
7922 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
7923   return ISD::matchUnaryPredicate(
7924       Z,
7925       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
7926       true);
7927 }
7928 
7929 static SDValue expandVPFunnelShift(SDNode *Node, SelectionDAG &DAG) {
7930   EVT VT = Node->getValueType(0);
7931   SDValue ShX, ShY;
7932   SDValue ShAmt, InvShAmt;
7933   SDValue X = Node->getOperand(0);
7934   SDValue Y = Node->getOperand(1);
7935   SDValue Z = Node->getOperand(2);
7936   SDValue Mask = Node->getOperand(3);
7937   SDValue VL = Node->getOperand(4);
7938 
7939   unsigned BW = VT.getScalarSizeInBits();
7940   bool IsFSHL = Node->getOpcode() == ISD::VP_FSHL;
7941   SDLoc DL(SDValue(Node, 0));
7942 
7943   EVT ShVT = Z.getValueType();
7944   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7945     // fshl: X << C | Y >> (BW - C)
7946     // fshr: X << (BW - C) | Y >> C
7947     // where C = Z % BW is not zero
7948     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7949     ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL);
7950     InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitWidthC, ShAmt, Mask, VL);
7951     ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt, Mask,
7952                       VL);
7953     ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt, Mask,
7954                       VL);
7955   } else {
7956     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
7957     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
7958     SDValue BitMask = DAG.getConstant(BW - 1, DL, ShVT);
7959     if (isPowerOf2_32(BW)) {
7960       // Z % BW -> Z & (BW - 1)
7961       ShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, Z, BitMask, Mask, VL);
7962       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
7963       SDValue NotZ = DAG.getNode(ISD::VP_XOR, DL, ShVT, Z,
7964                                  DAG.getAllOnesConstant(DL, ShVT), Mask, VL);
7965       InvShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, NotZ, BitMask, Mask, VL);
7966     } else {
7967       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7968       ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL);
7969       InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitMask, ShAmt, Mask, VL);
7970     }
7971 
7972     SDValue One = DAG.getConstant(1, DL, ShVT);
7973     if (IsFSHL) {
7974       ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, ShAmt, Mask, VL);
7975       SDValue ShY1 = DAG.getNode(ISD::VP_SRL, DL, VT, Y, One, Mask, VL);
7976       ShY = DAG.getNode(ISD::VP_SRL, DL, VT, ShY1, InvShAmt, Mask, VL);
7977     } else {
7978       SDValue ShX1 = DAG.getNode(ISD::VP_SHL, DL, VT, X, One, Mask, VL);
7979       ShX = DAG.getNode(ISD::VP_SHL, DL, VT, ShX1, InvShAmt, Mask, VL);
7980       ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, ShAmt, Mask, VL);
7981     }
7982   }
7983   return DAG.getNode(ISD::VP_OR, DL, VT, ShX, ShY, Mask, VL);
7984 }
7985 
7986 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
7987                                           SelectionDAG &DAG) const {
7988   if (Node->isVPOpcode())
7989     return expandVPFunnelShift(Node, DAG);
7990 
7991   EVT VT = Node->getValueType(0);
7992 
7993   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7994                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7995                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7996                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7997     return SDValue();
7998 
7999   SDValue X = Node->getOperand(0);
8000   SDValue Y = Node->getOperand(1);
8001   SDValue Z = Node->getOperand(2);
8002 
8003   unsigned BW = VT.getScalarSizeInBits();
8004   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
8005   SDLoc DL(SDValue(Node, 0));
8006 
8007   EVT ShVT = Z.getValueType();
8008 
8009   // If a funnel shift in the other direction is more supported, use it.
8010   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
8011   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
8012       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
8013     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
8014       // fshl X, Y, Z -> fshr X, Y, -Z
8015       // fshr X, Y, Z -> fshl X, Y, -Z
8016       SDValue Zero = DAG.getConstant(0, DL, ShVT);
8017       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
8018     } else {
8019       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
8020       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
8021       SDValue One = DAG.getConstant(1, DL, ShVT);
8022       if (IsFSHL) {
8023         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
8024         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
8025       } else {
8026         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
8027         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
8028       }
8029       Z = DAG.getNOT(DL, Z, ShVT);
8030     }
8031     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
8032   }
8033 
8034   SDValue ShX, ShY;
8035   SDValue ShAmt, InvShAmt;
8036   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
8037     // fshl: X << C | Y >> (BW - C)
8038     // fshr: X << (BW - C) | Y >> C
8039     // where C = Z % BW is not zero
8040     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
8041     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
8042     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
8043     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
8044     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
8045   } else {
8046     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
8047     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
8048     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
8049     if (isPowerOf2_32(BW)) {
8050       // Z % BW -> Z & (BW - 1)
8051       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
8052       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
8053       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
8054     } else {
8055       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
8056       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
8057       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
8058     }
8059 
8060     SDValue One = DAG.getConstant(1, DL, ShVT);
8061     if (IsFSHL) {
8062       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
8063       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
8064       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
8065     } else {
8066       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
8067       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
8068       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
8069     }
8070   }
8071   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
8072 }
8073 
8074 // TODO: Merge with expandFunnelShift.
8075 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
8076                                   SelectionDAG &DAG) const {
8077   EVT VT = Node->getValueType(0);
8078   unsigned EltSizeInBits = VT.getScalarSizeInBits();
8079   bool IsLeft = Node->getOpcode() == ISD::ROTL;
8080   SDValue Op0 = Node->getOperand(0);
8081   SDValue Op1 = Node->getOperand(1);
8082   SDLoc DL(SDValue(Node, 0));
8083 
8084   EVT ShVT = Op1.getValueType();
8085   SDValue Zero = DAG.getConstant(0, DL, ShVT);
8086 
8087   // If a rotate in the other direction is more supported, use it.
8088   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
8089   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
8090       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
8091     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
8092     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
8093   }
8094 
8095   if (!AllowVectorOps && VT.isVector() &&
8096       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
8097        !isOperationLegalOrCustom(ISD::SRL, VT) ||
8098        !isOperationLegalOrCustom(ISD::SUB, VT) ||
8099        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
8100        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
8101     return SDValue();
8102 
8103   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
8104   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
8105   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
8106   SDValue ShVal;
8107   SDValue HsVal;
8108   if (isPowerOf2_32(EltSizeInBits)) {
8109     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
8110     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
8111     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
8112     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
8113     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
8114     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
8115     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
8116   } else {
8117     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
8118     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
8119     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
8120     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
8121     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
8122     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
8123     SDValue One = DAG.getConstant(1, DL, ShVT);
8124     HsVal =
8125         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
8126   }
8127   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
8128 }
8129 
8130 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
8131                                       SelectionDAG &DAG) const {
8132   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
8133   EVT VT = Node->getValueType(0);
8134   unsigned VTBits = VT.getScalarSizeInBits();
8135   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
8136 
8137   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
8138   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
8139   SDValue ShOpLo = Node->getOperand(0);
8140   SDValue ShOpHi = Node->getOperand(1);
8141   SDValue ShAmt = Node->getOperand(2);
8142   EVT ShAmtVT = ShAmt.getValueType();
8143   EVT ShAmtCCVT =
8144       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
8145   SDLoc dl(Node);
8146 
8147   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
8148   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
8149   // away during isel.
8150   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
8151                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
8152   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
8153                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
8154                        : DAG.getConstant(0, dl, VT);
8155 
8156   SDValue Tmp2, Tmp3;
8157   if (IsSHL) {
8158     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
8159     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
8160   } else {
8161     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
8162     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
8163   }
8164 
8165   // If the shift amount is larger or equal than the width of a part we don't
8166   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
8167   // values for large shift amounts.
8168   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
8169                                 DAG.getConstant(VTBits, dl, ShAmtVT));
8170   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
8171                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
8172 
8173   if (IsSHL) {
8174     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
8175     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
8176   } else {
8177     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
8178     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
8179   }
8180 }
8181 
8182 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
8183                                       SelectionDAG &DAG) const {
8184   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
8185   SDValue Src = Node->getOperand(OpNo);
8186   EVT SrcVT = Src.getValueType();
8187   EVT DstVT = Node->getValueType(0);
8188   SDLoc dl(SDValue(Node, 0));
8189 
8190   // FIXME: Only f32 to i64 conversions are supported.
8191   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
8192     return false;
8193 
8194   if (Node->isStrictFPOpcode())
8195     // When a NaN is converted to an integer a trap is allowed. We can't
8196     // use this expansion here because it would eliminate that trap. Other
8197     // traps are also allowed and cannot be eliminated. See
8198     // IEEE 754-2008 sec 5.8.
8199     return false;
8200 
8201   // Expand f32 -> i64 conversion
8202   // This algorithm comes from compiler-rt's implementation of fixsfdi:
8203   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
8204   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
8205   EVT IntVT = SrcVT.changeTypeToInteger();
8206   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
8207 
8208   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
8209   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
8210   SDValue Bias = DAG.getConstant(127, dl, IntVT);
8211   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
8212   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
8213   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
8214 
8215   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
8216 
8217   SDValue ExponentBits = DAG.getNode(
8218       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
8219       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
8220   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
8221 
8222   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
8223                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
8224                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
8225   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
8226 
8227   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
8228                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
8229                           DAG.getConstant(0x00800000, dl, IntVT));
8230 
8231   R = DAG.getZExtOrTrunc(R, dl, DstVT);
8232 
8233   R = DAG.getSelectCC(
8234       dl, Exponent, ExponentLoBit,
8235       DAG.getNode(ISD::SHL, dl, DstVT, R,
8236                   DAG.getZExtOrTrunc(
8237                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
8238                       dl, IntShVT)),
8239       DAG.getNode(ISD::SRL, dl, DstVT, R,
8240                   DAG.getZExtOrTrunc(
8241                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
8242                       dl, IntShVT)),
8243       ISD::SETGT);
8244 
8245   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
8246                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
8247 
8248   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
8249                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
8250   return true;
8251 }
8252 
8253 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
8254                                       SDValue &Chain,
8255                                       SelectionDAG &DAG) const {
8256   SDLoc dl(SDValue(Node, 0));
8257   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
8258   SDValue Src = Node->getOperand(OpNo);
8259 
8260   EVT SrcVT = Src.getValueType();
8261   EVT DstVT = Node->getValueType(0);
8262   EVT SetCCVT =
8263       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
8264   EVT DstSetCCVT =
8265       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
8266 
8267   // Only expand vector types if we have the appropriate vector bit operations.
8268   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
8269                                                    ISD::FP_TO_SINT;
8270   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
8271                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
8272     return false;
8273 
8274   // If the maximum float value is smaller then the signed integer range,
8275   // the destination signmask can't be represented by the float, so we can
8276   // just use FP_TO_SINT directly.
8277   const fltSemantics &APFSem = SrcVT.getFltSemantics();
8278   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
8279   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
8280   if (APFloat::opOverflow &
8281       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
8282     if (Node->isStrictFPOpcode()) {
8283       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
8284                            { Node->getOperand(0), Src });
8285       Chain = Result.getValue(1);
8286     } else
8287       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
8288     return true;
8289   }
8290 
8291   // Don't expand it if there isn't cheap fsub instruction.
8292   if (!isOperationLegalOrCustom(
8293           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
8294     return false;
8295 
8296   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
8297   SDValue Sel;
8298 
8299   if (Node->isStrictFPOpcode()) {
8300     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
8301                        Node->getOperand(0), /*IsSignaling*/ true);
8302     Chain = Sel.getValue(1);
8303   } else {
8304     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
8305   }
8306 
8307   bool Strict = Node->isStrictFPOpcode() ||
8308                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
8309 
8310   if (Strict) {
8311     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
8312     // signmask then offset (the result of which should be fully representable).
8313     // Sel = Src < 0x8000000000000000
8314     // FltOfs = select Sel, 0, 0x8000000000000000
8315     // IntOfs = select Sel, 0, 0x8000000000000000
8316     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
8317 
8318     // TODO: Should any fast-math-flags be set for the FSUB?
8319     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
8320                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
8321     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8322     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
8323                                    DAG.getConstant(0, dl, DstVT),
8324                                    DAG.getConstant(SignMask, dl, DstVT));
8325     SDValue SInt;
8326     if (Node->isStrictFPOpcode()) {
8327       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
8328                                 { Chain, Src, FltOfs });
8329       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
8330                          { Val.getValue(1), Val });
8331       Chain = SInt.getValue(1);
8332     } else {
8333       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
8334       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
8335     }
8336     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
8337   } else {
8338     // Expand based on maximum range of FP_TO_SINT:
8339     // True = fp_to_sint(Src)
8340     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
8341     // Result = select (Src < 0x8000000000000000), True, False
8342 
8343     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
8344     // TODO: Should any fast-math-flags be set for the FSUB?
8345     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
8346                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
8347     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
8348                         DAG.getConstant(SignMask, dl, DstVT));
8349     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8350     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
8351   }
8352   return true;
8353 }
8354 
8355 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
8356                                       SDValue &Chain, SelectionDAG &DAG) const {
8357   // This transform is not correct for converting 0 when rounding mode is set
8358   // to round toward negative infinity which will produce -0.0. So disable
8359   // under strictfp.
8360   if (Node->isStrictFPOpcode())
8361     return false;
8362 
8363   SDValue Src = Node->getOperand(0);
8364   EVT SrcVT = Src.getValueType();
8365   EVT DstVT = Node->getValueType(0);
8366 
8367   // If the input is known to be non-negative and SINT_TO_FP is legal then use
8368   // it.
8369   if (Node->getFlags().hasNonNeg() &&
8370       isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT)) {
8371     Result =
8372         DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), DstVT, Node->getOperand(0));
8373     return true;
8374   }
8375 
8376   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
8377     return false;
8378 
8379   // Only expand vector types if we have the appropriate vector bit
8380   // operations.
8381   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
8382                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
8383                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
8384                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
8385                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
8386     return false;
8387 
8388   SDLoc dl(SDValue(Node, 0));
8389   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
8390 
8391   // Implementation of unsigned i64 to f64 following the algorithm in
8392   // __floatundidf in compiler_rt.  This implementation performs rounding
8393   // correctly in all rounding modes with the exception of converting 0
8394   // when rounding toward negative infinity. In that case the fsub will
8395   // produce -0.0. This will be added to +0.0 and produce -0.0 which is
8396   // incorrect.
8397   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
8398   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
8399       llvm::bit_cast<double>(UINT64_C(0x4530000000100000)), dl, DstVT);
8400   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
8401   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
8402   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
8403 
8404   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
8405   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
8406   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
8407   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
8408   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
8409   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
8410   SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
8411   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
8412   return true;
8413 }
8414 
8415 SDValue
8416 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node,
8417                                                SelectionDAG &DAG) const {
8418   unsigned Opcode = Node->getOpcode();
8419   assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
8420           Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) &&
8421          "Wrong opcode");
8422 
8423   if (Node->getFlags().hasNoNaNs()) {
8424     ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
8425     EVT VT = Node->getValueType(0);
8426     if ((!isCondCodeLegal(Pred, VT.getSimpleVT()) ||
8427          !isOperationLegalOrCustom(ISD::VSELECT, VT)) &&
8428         VT.isVector())
8429       return SDValue();
8430     SDValue Op1 = Node->getOperand(0);
8431     SDValue Op2 = Node->getOperand(1);
8432     SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred);
8433     // Copy FMF flags, but always set the no-signed-zeros flag
8434     // as this is implied by the FMINNUM/FMAXNUM semantics.
8435     SelCC->setFlags(Node->getFlags() | SDNodeFlags::NoSignedZeros);
8436     return SelCC;
8437   }
8438 
8439   return SDValue();
8440 }
8441 
8442 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
8443                                               SelectionDAG &DAG) const {
8444   if (SDValue Expanded = expandVectorNaryOpBySplitting(Node, DAG))
8445     return Expanded;
8446 
8447   EVT VT = Node->getValueType(0);
8448   if (VT.isScalableVector())
8449     report_fatal_error(
8450         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
8451 
8452   SDLoc dl(Node);
8453   unsigned NewOp =
8454       Node->getOpcode() == ISD::FMINNUM ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
8455 
8456   if (isOperationLegalOrCustom(NewOp, VT)) {
8457     SDValue Quiet0 = Node->getOperand(0);
8458     SDValue Quiet1 = Node->getOperand(1);
8459 
8460     if (!Node->getFlags().hasNoNaNs()) {
8461       // Insert canonicalizes if it's possible we need to quiet to get correct
8462       // sNaN behavior.
8463       if (!DAG.isKnownNeverSNaN(Quiet0)) {
8464         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
8465                              Node->getFlags());
8466       }
8467       if (!DAG.isKnownNeverSNaN(Quiet1)) {
8468         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
8469                              Node->getFlags());
8470       }
8471     }
8472 
8473     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
8474   }
8475 
8476   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
8477   // instead if there are no NaNs and there can't be an incompatible zero
8478   // compare: at least one operand isn't +/-0, or there are no signed-zeros.
8479   if ((Node->getFlags().hasNoNaNs() ||
8480        (DAG.isKnownNeverNaN(Node->getOperand(0)) &&
8481         DAG.isKnownNeverNaN(Node->getOperand(1)))) &&
8482       (Node->getFlags().hasNoSignedZeros() ||
8483        DAG.isKnownNeverZeroFloat(Node->getOperand(0)) ||
8484        DAG.isKnownNeverZeroFloat(Node->getOperand(1)))) {
8485     unsigned IEEE2018Op =
8486         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
8487     if (isOperationLegalOrCustom(IEEE2018Op, VT))
8488       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
8489                          Node->getOperand(1), Node->getFlags());
8490   }
8491 
8492   if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG))
8493     return SelCC;
8494 
8495   return SDValue();
8496 }
8497 
8498 SDValue TargetLowering::expandFMINIMUM_FMAXIMUM(SDNode *N,
8499                                                 SelectionDAG &DAG) const {
8500   if (SDValue Expanded = expandVectorNaryOpBySplitting(N, DAG))
8501     return Expanded;
8502 
8503   SDLoc DL(N);
8504   SDValue LHS = N->getOperand(0);
8505   SDValue RHS = N->getOperand(1);
8506   unsigned Opc = N->getOpcode();
8507   EVT VT = N->getValueType(0);
8508   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8509   bool IsMax = Opc == ISD::FMAXIMUM;
8510   SDNodeFlags Flags = N->getFlags();
8511 
8512   // First, implement comparison not propagating NaN. If no native fmin or fmax
8513   // available, use plain select with setcc instead.
8514   SDValue MinMax;
8515   unsigned CompOpcIeee = IsMax ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE;
8516   unsigned CompOpc = IsMax ? ISD::FMAXNUM : ISD::FMINNUM;
8517 
8518   // FIXME: We should probably define fminnum/fmaxnum variants with correct
8519   // signed zero behavior.
8520   bool MinMaxMustRespectOrderedZero = false;
8521 
8522   if (isOperationLegalOrCustom(CompOpcIeee, VT)) {
8523     MinMax = DAG.getNode(CompOpcIeee, DL, VT, LHS, RHS, Flags);
8524     MinMaxMustRespectOrderedZero = true;
8525   } else if (isOperationLegalOrCustom(CompOpc, VT)) {
8526     MinMax = DAG.getNode(CompOpc, DL, VT, LHS, RHS, Flags);
8527   } else {
8528     if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8529       return DAG.UnrollVectorOp(N);
8530 
8531     // NaN (if exists) will be propagated later, so orderness doesn't matter.
8532     SDValue Compare =
8533         DAG.getSetCC(DL, CCVT, LHS, RHS, IsMax ? ISD::SETOGT : ISD::SETOLT);
8534     MinMax = DAG.getSelect(DL, VT, Compare, LHS, RHS, Flags);
8535   }
8536 
8537   // Propagate any NaN of both operands
8538   if (!N->getFlags().hasNoNaNs() &&
8539       (!DAG.isKnownNeverNaN(RHS) || !DAG.isKnownNeverNaN(LHS))) {
8540     ConstantFP *FPNaN = ConstantFP::get(*DAG.getContext(),
8541                                         APFloat::getNaN(VT.getFltSemantics()));
8542     MinMax = DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, LHS, RHS, ISD::SETUO),
8543                            DAG.getConstantFP(*FPNaN, DL, VT), MinMax, Flags);
8544   }
8545 
8546   // fminimum/fmaximum requires -0.0 less than +0.0
8547   if (!MinMaxMustRespectOrderedZero && !N->getFlags().hasNoSignedZeros() &&
8548       !DAG.isKnownNeverZeroFloat(RHS) && !DAG.isKnownNeverZeroFloat(LHS)) {
8549     SDValue IsZero = DAG.getSetCC(DL, CCVT, MinMax,
8550                                   DAG.getConstantFP(0.0, DL, VT), ISD::SETOEQ);
8551     SDValue TestZero =
8552         DAG.getTargetConstant(IsMax ? fcPosZero : fcNegZero, DL, MVT::i32);
8553     SDValue LCmp = DAG.getSelect(
8554         DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, LHS, TestZero), LHS,
8555         MinMax, Flags);
8556     SDValue RCmp = DAG.getSelect(
8557         DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, RHS, TestZero), RHS,
8558         LCmp, Flags);
8559     MinMax = DAG.getSelect(DL, VT, IsZero, RCmp, MinMax, Flags);
8560   }
8561 
8562   return MinMax;
8563 }
8564 
8565 SDValue TargetLowering::expandFMINIMUMNUM_FMAXIMUMNUM(SDNode *Node,
8566                                                       SelectionDAG &DAG) const {
8567   SDLoc DL(Node);
8568   SDValue LHS = Node->getOperand(0);
8569   SDValue RHS = Node->getOperand(1);
8570   unsigned Opc = Node->getOpcode();
8571   EVT VT = Node->getValueType(0);
8572   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8573   bool IsMax = Opc == ISD::FMAXIMUMNUM;
8574   const TargetOptions &Options = DAG.getTarget().Options;
8575   SDNodeFlags Flags = Node->getFlags();
8576 
8577   unsigned NewOp =
8578       Opc == ISD::FMINIMUMNUM ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
8579 
8580   if (isOperationLegalOrCustom(NewOp, VT)) {
8581     if (!Flags.hasNoNaNs()) {
8582       // Insert canonicalizes if it's possible we need to quiet to get correct
8583       // sNaN behavior.
8584       if (!DAG.isKnownNeverSNaN(LHS)) {
8585         LHS = DAG.getNode(ISD::FCANONICALIZE, DL, VT, LHS, Flags);
8586       }
8587       if (!DAG.isKnownNeverSNaN(RHS)) {
8588         RHS = DAG.getNode(ISD::FCANONICALIZE, DL, VT, RHS, Flags);
8589       }
8590     }
8591 
8592     return DAG.getNode(NewOp, DL, VT, LHS, RHS, Flags);
8593   }
8594 
8595   // We can use FMINIMUM/FMAXIMUM if there is no NaN, since it has
8596   // same behaviors for all of other cases: +0.0 vs -0.0 included.
8597   if (Flags.hasNoNaNs() ||
8598       (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS))) {
8599     unsigned IEEE2019Op =
8600         Opc == ISD::FMINIMUMNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
8601     if (isOperationLegalOrCustom(IEEE2019Op, VT))
8602       return DAG.getNode(IEEE2019Op, DL, VT, LHS, RHS, Flags);
8603   }
8604 
8605   // FMINNUM/FMAXMUM returns qNaN if either operand is sNaN, and it may return
8606   // either one for +0.0 vs -0.0.
8607   if ((Flags.hasNoNaNs() ||
8608        (DAG.isKnownNeverSNaN(LHS) && DAG.isKnownNeverSNaN(RHS))) &&
8609       (Flags.hasNoSignedZeros() || DAG.isKnownNeverZeroFloat(LHS) ||
8610        DAG.isKnownNeverZeroFloat(RHS))) {
8611     unsigned IEEE2008Op = Opc == ISD::FMINIMUMNUM ? ISD::FMINNUM : ISD::FMAXNUM;
8612     if (isOperationLegalOrCustom(IEEE2008Op, VT))
8613       return DAG.getNode(IEEE2008Op, DL, VT, LHS, RHS, Flags);
8614   }
8615 
8616   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8617     return DAG.UnrollVectorOp(Node);
8618 
8619   // If only one operand is NaN, override it with another operand.
8620   if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(LHS)) {
8621     LHS = DAG.getSelectCC(DL, LHS, LHS, RHS, LHS, ISD::SETUO);
8622   }
8623   if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(RHS)) {
8624     RHS = DAG.getSelectCC(DL, RHS, RHS, LHS, RHS, ISD::SETUO);
8625   }
8626 
8627   SDValue MinMax =
8628       DAG.getSelectCC(DL, LHS, RHS, LHS, RHS, IsMax ? ISD::SETGT : ISD::SETLT);
8629   // If MinMax is NaN, let's quiet it.
8630   if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(LHS) &&
8631       !DAG.isKnownNeverNaN(RHS)) {
8632     MinMax = DAG.getNode(ISD::FCANONICALIZE, DL, VT, MinMax, Flags);
8633   }
8634 
8635   // Fixup signed zero behavior.
8636   if (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros() ||
8637       DAG.isKnownNeverZeroFloat(LHS) || DAG.isKnownNeverZeroFloat(RHS)) {
8638     return MinMax;
8639   }
8640   SDValue TestZero =
8641       DAG.getTargetConstant(IsMax ? fcPosZero : fcNegZero, DL, MVT::i32);
8642   SDValue IsZero = DAG.getSetCC(DL, CCVT, MinMax,
8643                                 DAG.getConstantFP(0.0, DL, VT), ISD::SETEQ);
8644   SDValue LCmp = DAG.getSelect(
8645       DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, LHS, TestZero), LHS,
8646       MinMax, Flags);
8647   SDValue RCmp = DAG.getSelect(
8648       DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, RHS, TestZero), RHS, LCmp,
8649       Flags);
8650   return DAG.getSelect(DL, VT, IsZero, RCmp, MinMax, Flags);
8651 }
8652 
8653 /// Returns a true value if if this FPClassTest can be performed with an ordered
8654 /// fcmp to 0, and a false value if it's an unordered fcmp to 0. Returns
8655 /// std::nullopt if it cannot be performed as a compare with 0.
8656 static std::optional<bool> isFCmpEqualZero(FPClassTest Test,
8657                                            const fltSemantics &Semantics,
8658                                            const MachineFunction &MF) {
8659   FPClassTest OrderedMask = Test & ~fcNan;
8660   FPClassTest NanTest = Test & fcNan;
8661   bool IsOrdered = NanTest == fcNone;
8662   bool IsUnordered = NanTest == fcNan;
8663 
8664   // Skip cases that are testing for only a qnan or snan.
8665   if (!IsOrdered && !IsUnordered)
8666     return std::nullopt;
8667 
8668   if (OrderedMask == fcZero &&
8669       MF.getDenormalMode(Semantics).Input == DenormalMode::IEEE)
8670     return IsOrdered;
8671   if (OrderedMask == (fcZero | fcSubnormal) &&
8672       MF.getDenormalMode(Semantics).inputsAreZero())
8673     return IsOrdered;
8674   return std::nullopt;
8675 }
8676 
8677 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op,
8678                                          const FPClassTest OrigTestMask,
8679                                          SDNodeFlags Flags, const SDLoc &DL,
8680                                          SelectionDAG &DAG) const {
8681   EVT OperandVT = Op.getValueType();
8682   assert(OperandVT.isFloatingPoint());
8683   FPClassTest Test = OrigTestMask;
8684 
8685   // Degenerated cases.
8686   if (Test == fcNone)
8687     return DAG.getBoolConstant(false, DL, ResultVT, OperandVT);
8688   if (Test == fcAllFlags)
8689     return DAG.getBoolConstant(true, DL, ResultVT, OperandVT);
8690 
8691   // PPC double double is a pair of doubles, of which the higher part determines
8692   // the value class.
8693   if (OperandVT == MVT::ppcf128) {
8694     Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op,
8695                      DAG.getConstant(1, DL, MVT::i32));
8696     OperandVT = MVT::f64;
8697   }
8698 
8699   // Floating-point type properties.
8700   EVT ScalarFloatVT = OperandVT.getScalarType();
8701   const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext());
8702   const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics();
8703   bool IsF80 = (ScalarFloatVT == MVT::f80);
8704 
8705   // Some checks can be implemented using float comparisons, if floating point
8706   // exceptions are ignored.
8707   if (Flags.hasNoFPExcept() &&
8708       isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) {
8709     FPClassTest FPTestMask = Test;
8710     bool IsInvertedFP = false;
8711 
8712     if (FPClassTest InvertedFPCheck =
8713             invertFPClassTestIfSimpler(FPTestMask, true)) {
8714       FPTestMask = InvertedFPCheck;
8715       IsInvertedFP = true;
8716     }
8717 
8718     ISD::CondCode OrderedCmpOpcode = IsInvertedFP ? ISD::SETUNE : ISD::SETOEQ;
8719     ISD::CondCode UnorderedCmpOpcode = IsInvertedFP ? ISD::SETONE : ISD::SETUEQ;
8720 
8721     // See if we can fold an | fcNan into an unordered compare.
8722     FPClassTest OrderedFPTestMask = FPTestMask & ~fcNan;
8723 
8724     // Can't fold the ordered check if we're only testing for snan or qnan
8725     // individually.
8726     if ((FPTestMask & fcNan) != fcNan)
8727       OrderedFPTestMask = FPTestMask;
8728 
8729     const bool IsOrdered = FPTestMask == OrderedFPTestMask;
8730 
8731     if (std::optional<bool> IsCmp0 =
8732             isFCmpEqualZero(FPTestMask, Semantics, DAG.getMachineFunction());
8733         IsCmp0 && (isCondCodeLegalOrCustom(
8734                       *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode,
8735                       OperandVT.getScalarType().getSimpleVT()))) {
8736 
8737       // If denormals could be implicitly treated as 0, this is not equivalent
8738       // to a compare with 0 since it will also be true for denormals.
8739       return DAG.getSetCC(DL, ResultVT, Op,
8740                           DAG.getConstantFP(0.0, DL, OperandVT),
8741                           *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode);
8742     }
8743 
8744     if (FPTestMask == fcNan &&
8745         isCondCodeLegalOrCustom(IsInvertedFP ? ISD::SETO : ISD::SETUO,
8746                                 OperandVT.getScalarType().getSimpleVT()))
8747       return DAG.getSetCC(DL, ResultVT, Op, Op,
8748                           IsInvertedFP ? ISD::SETO : ISD::SETUO);
8749 
8750     bool IsOrderedInf = FPTestMask == fcInf;
8751     if ((FPTestMask == fcInf || FPTestMask == (fcInf | fcNan)) &&
8752         isCondCodeLegalOrCustom(IsOrderedInf ? OrderedCmpOpcode
8753                                              : UnorderedCmpOpcode,
8754                                 OperandVT.getScalarType().getSimpleVT()) &&
8755         isOperationLegalOrCustom(ISD::FABS, OperandVT.getScalarType()) &&
8756         (isOperationLegal(ISD::ConstantFP, OperandVT.getScalarType()) ||
8757          (OperandVT.isVector() &&
8758           isOperationLegalOrCustom(ISD::BUILD_VECTOR, OperandVT)))) {
8759       // isinf(x) --> fabs(x) == inf
8760       SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op);
8761       SDValue Inf =
8762           DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT);
8763       return DAG.getSetCC(DL, ResultVT, Abs, Inf,
8764                           IsOrderedInf ? OrderedCmpOpcode : UnorderedCmpOpcode);
8765     }
8766 
8767     if ((OrderedFPTestMask == fcPosInf || OrderedFPTestMask == fcNegInf) &&
8768         isCondCodeLegalOrCustom(IsOrdered ? OrderedCmpOpcode
8769                                           : UnorderedCmpOpcode,
8770                                 OperandVT.getSimpleVT())) {
8771       // isposinf(x) --> x == inf
8772       // isneginf(x) --> x == -inf
8773       // isposinf(x) || nan --> x u== inf
8774       // isneginf(x) || nan --> x u== -inf
8775 
8776       SDValue Inf = DAG.getConstantFP(
8777           APFloat::getInf(Semantics, OrderedFPTestMask == fcNegInf), DL,
8778           OperandVT);
8779       return DAG.getSetCC(DL, ResultVT, Op, Inf,
8780                           IsOrdered ? OrderedCmpOpcode : UnorderedCmpOpcode);
8781     }
8782 
8783     if (OrderedFPTestMask == (fcSubnormal | fcZero) && !IsOrdered) {
8784       // TODO: Could handle ordered case, but it produces worse code for
8785       // x86. Maybe handle ordered if fabs is free?
8786 
8787       ISD::CondCode OrderedOp = IsInvertedFP ? ISD::SETUGE : ISD::SETOLT;
8788       ISD::CondCode UnorderedOp = IsInvertedFP ? ISD::SETOGE : ISD::SETULT;
8789 
8790       if (isCondCodeLegalOrCustom(IsOrdered ? OrderedOp : UnorderedOp,
8791                                   OperandVT.getScalarType().getSimpleVT())) {
8792         // (issubnormal(x) || iszero(x)) --> fabs(x) < smallest_normal
8793 
8794         // TODO: Maybe only makes sense if fabs is free. Integer test of
8795         // exponent bits seems better for x86.
8796         SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op);
8797         SDValue SmallestNormal = DAG.getConstantFP(
8798             APFloat::getSmallestNormalized(Semantics), DL, OperandVT);
8799         return DAG.getSetCC(DL, ResultVT, Abs, SmallestNormal,
8800                             IsOrdered ? OrderedOp : UnorderedOp);
8801       }
8802     }
8803 
8804     if (FPTestMask == fcNormal) {
8805       // TODO: Handle unordered
8806       ISD::CondCode IsFiniteOp = IsInvertedFP ? ISD::SETUGE : ISD::SETOLT;
8807       ISD::CondCode IsNormalOp = IsInvertedFP ? ISD::SETOLT : ISD::SETUGE;
8808 
8809       if (isCondCodeLegalOrCustom(IsFiniteOp,
8810                                   OperandVT.getScalarType().getSimpleVT()) &&
8811           isCondCodeLegalOrCustom(IsNormalOp,
8812                                   OperandVT.getScalarType().getSimpleVT()) &&
8813           isFAbsFree(OperandVT)) {
8814         // isnormal(x) --> fabs(x) < infinity && !(fabs(x) < smallest_normal)
8815         SDValue Inf =
8816             DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT);
8817         SDValue SmallestNormal = DAG.getConstantFP(
8818             APFloat::getSmallestNormalized(Semantics), DL, OperandVT);
8819 
8820         SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op);
8821         SDValue IsFinite = DAG.getSetCC(DL, ResultVT, Abs, Inf, IsFiniteOp);
8822         SDValue IsNormal =
8823             DAG.getSetCC(DL, ResultVT, Abs, SmallestNormal, IsNormalOp);
8824         unsigned LogicOp = IsInvertedFP ? ISD::OR : ISD::AND;
8825         return DAG.getNode(LogicOp, DL, ResultVT, IsFinite, IsNormal);
8826       }
8827     }
8828   }
8829 
8830   // Some checks may be represented as inversion of simpler check, for example
8831   // "inf|normal|subnormal|zero" => !"nan".
8832   bool IsInverted = false;
8833 
8834   if (FPClassTest InvertedCheck = invertFPClassTestIfSimpler(Test, false)) {
8835     Test = InvertedCheck;
8836     IsInverted = true;
8837   }
8838 
8839   // In the general case use integer operations.
8840   unsigned BitSize = OperandVT.getScalarSizeInBits();
8841   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize);
8842   if (OperandVT.isVector())
8843     IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT,
8844                              OperandVT.getVectorElementCount());
8845   SDValue OpAsInt = DAG.getBitcast(IntVT, Op);
8846 
8847   // Various masks.
8848   APInt SignBit = APInt::getSignMask(BitSize);
8849   APInt ValueMask = APInt::getSignedMaxValue(BitSize);     // All bits but sign.
8850   APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit.
8851   const unsigned ExplicitIntBitInF80 = 63;
8852   APInt ExpMask = Inf;
8853   if (IsF80)
8854     ExpMask.clearBit(ExplicitIntBitInF80);
8855   APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf;
8856   APInt QNaNBitMask =
8857       APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1);
8858   APInt InvertionMask = APInt::getAllOnes(ResultVT.getScalarSizeInBits());
8859 
8860   SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT);
8861   SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT);
8862   SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT);
8863   SDValue ZeroV = DAG.getConstant(0, DL, IntVT);
8864   SDValue InfV = DAG.getConstant(Inf, DL, IntVT);
8865   SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT);
8866 
8867   SDValue Res;
8868   const auto appendResult = [&](SDValue PartialRes) {
8869     if (PartialRes) {
8870       if (Res)
8871         Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes);
8872       else
8873         Res = PartialRes;
8874     }
8875   };
8876 
8877   SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set.
8878   const auto getIntBitIsSet = [&]() -> SDValue {
8879     if (!IntBitIsSetV) {
8880       APInt IntBitMask(BitSize, 0);
8881       IntBitMask.setBit(ExplicitIntBitInF80);
8882       SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT);
8883       SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV);
8884       IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE);
8885     }
8886     return IntBitIsSetV;
8887   };
8888 
8889   // Split the value into sign bit and absolute value.
8890   SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV);
8891   SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt,
8892                                DAG.getConstant(0, DL, IntVT), ISD::SETLT);
8893 
8894   // Tests that involve more than one class should be processed first.
8895   SDValue PartialRes;
8896 
8897   if (IsF80)
8898     ; // Detect finite numbers of f80 by checking individual classes because
8899       // they have different settings of the explicit integer bit.
8900   else if ((Test & fcFinite) == fcFinite) {
8901     // finite(V) ==> abs(V) < exp_mask
8902     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
8903     Test &= ~fcFinite;
8904   } else if ((Test & fcFinite) == fcPosFinite) {
8905     // finite(V) && V > 0 ==> V < exp_mask
8906     PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT);
8907     Test &= ~fcPosFinite;
8908   } else if ((Test & fcFinite) == fcNegFinite) {
8909     // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1
8910     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
8911     PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
8912     Test &= ~fcNegFinite;
8913   }
8914   appendResult(PartialRes);
8915 
8916   if (FPClassTest PartialCheck = Test & (fcZero | fcSubnormal)) {
8917     // fcZero | fcSubnormal => test all exponent bits are 0
8918     // TODO: Handle sign bit specific cases
8919     if (PartialCheck == (fcZero | fcSubnormal)) {
8920       SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ExpMaskV);
8921       SDValue ExpIsZero =
8922           DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
8923       appendResult(ExpIsZero);
8924       Test &= ~PartialCheck & fcAllFlags;
8925     }
8926   }
8927 
8928   // Check for individual classes.
8929 
8930   if (unsigned PartialCheck = Test & fcZero) {
8931     if (PartialCheck == fcPosZero)
8932       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ);
8933     else if (PartialCheck == fcZero)
8934       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ);
8935     else // ISD::fcNegZero
8936       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ);
8937     appendResult(PartialRes);
8938   }
8939 
8940   if (unsigned PartialCheck = Test & fcSubnormal) {
8941     // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set)
8942     // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set)
8943     SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV;
8944     SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT);
8945     SDValue VMinusOneV =
8946         DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT));
8947     PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT);
8948     if (PartialCheck == fcNegSubnormal)
8949       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
8950     appendResult(PartialRes);
8951   }
8952 
8953   if (unsigned PartialCheck = Test & fcInf) {
8954     if (PartialCheck == fcPosInf)
8955       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ);
8956     else if (PartialCheck == fcInf)
8957       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ);
8958     else { // ISD::fcNegInf
8959       APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt();
8960       SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT);
8961       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ);
8962     }
8963     appendResult(PartialRes);
8964   }
8965 
8966   if (unsigned PartialCheck = Test & fcNan) {
8967     APInt InfWithQnanBit = Inf | QNaNBitMask;
8968     SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT);
8969     if (PartialCheck == fcNan) {
8970       // isnan(V) ==> abs(V) > int(inf)
8971       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
8972       if (IsF80) {
8973         // Recognize unsupported values as NaNs for compatibility with glibc.
8974         // In them (exp(V)==0) == int_bit.
8975         SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV);
8976         SDValue ExpIsZero =
8977             DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
8978         SDValue IsPseudo =
8979             DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ);
8980         PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo);
8981       }
8982     } else if (PartialCheck == fcQNan) {
8983       // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit)
8984       PartialRes =
8985           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE);
8986     } else { // ISD::fcSNan
8987       // issignaling(V) ==> abs(V) > unsigned(Inf) &&
8988       //                    abs(V) < (unsigned(Inf) | quiet_bit)
8989       SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
8990       SDValue IsNotQnan =
8991           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT);
8992       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan);
8993     }
8994     appendResult(PartialRes);
8995   }
8996 
8997   if (unsigned PartialCheck = Test & fcNormal) {
8998     // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1))
8999     APInt ExpLSB = ExpMask & ~(ExpMask.shl(1));
9000     SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT);
9001     SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV);
9002     APInt ExpLimit = ExpMask - ExpLSB;
9003     SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT);
9004     PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT);
9005     if (PartialCheck == fcNegNormal)
9006       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
9007     else if (PartialCheck == fcPosNormal) {
9008       SDValue PosSignV =
9009           DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask);
9010       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV);
9011     }
9012     if (IsF80)
9013       PartialRes =
9014           DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet());
9015     appendResult(PartialRes);
9016   }
9017 
9018   if (!Res)
9019     return DAG.getConstant(IsInverted, DL, ResultVT);
9020   if (IsInverted)
9021     Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask);
9022   return Res;
9023 }
9024 
9025 // Only expand vector types if we have the appropriate vector bit operations.
9026 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
9027   assert(VT.isVector() && "Expected vector type");
9028   unsigned Len = VT.getScalarSizeInBits();
9029   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
9030          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
9031          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
9032          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
9033          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
9034 }
9035 
9036 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
9037   SDLoc dl(Node);
9038   EVT VT = Node->getValueType(0);
9039   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9040   SDValue Op = Node->getOperand(0);
9041   unsigned Len = VT.getScalarSizeInBits();
9042   assert(VT.isInteger() && "CTPOP not implemented for this type.");
9043 
9044   // TODO: Add support for irregular type lengths.
9045   if (!(Len <= 128 && Len % 8 == 0))
9046     return SDValue();
9047 
9048   // Only expand vector types if we have the appropriate vector bit operations.
9049   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
9050     return SDValue();
9051 
9052   // This is the "best" algorithm from
9053   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
9054   SDValue Mask55 =
9055       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
9056   SDValue Mask33 =
9057       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
9058   SDValue Mask0F =
9059       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
9060 
9061   // v = v - ((v >> 1) & 0x55555555...)
9062   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
9063                    DAG.getNode(ISD::AND, dl, VT,
9064                                DAG.getNode(ISD::SRL, dl, VT, Op,
9065                                            DAG.getConstant(1, dl, ShVT)),
9066                                Mask55));
9067   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
9068   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
9069                    DAG.getNode(ISD::AND, dl, VT,
9070                                DAG.getNode(ISD::SRL, dl, VT, Op,
9071                                            DAG.getConstant(2, dl, ShVT)),
9072                                Mask33));
9073   // v = (v + (v >> 4)) & 0x0F0F0F0F...
9074   Op = DAG.getNode(ISD::AND, dl, VT,
9075                    DAG.getNode(ISD::ADD, dl, VT, Op,
9076                                DAG.getNode(ISD::SRL, dl, VT, Op,
9077                                            DAG.getConstant(4, dl, ShVT))),
9078                    Mask0F);
9079 
9080   if (Len <= 8)
9081     return Op;
9082 
9083   // Avoid the multiply if we only have 2 bytes to add.
9084   // TODO: Only doing this for scalars because vectors weren't as obviously
9085   // improved.
9086   if (Len == 16 && !VT.isVector()) {
9087     // v = (v + (v >> 8)) & 0x00FF;
9088     return DAG.getNode(ISD::AND, dl, VT,
9089                      DAG.getNode(ISD::ADD, dl, VT, Op,
9090                                  DAG.getNode(ISD::SRL, dl, VT, Op,
9091                                              DAG.getConstant(8, dl, ShVT))),
9092                      DAG.getConstant(0xFF, dl, VT));
9093   }
9094 
9095   // v = (v * 0x01010101...) >> (Len - 8)
9096   SDValue V;
9097   if (isOperationLegalOrCustomOrPromote(
9098           ISD::MUL, getTypeToTransformTo(*DAG.getContext(), VT))) {
9099     SDValue Mask01 =
9100         DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
9101     V = DAG.getNode(ISD::MUL, dl, VT, Op, Mask01);
9102   } else {
9103     V = Op;
9104     for (unsigned Shift = 8; Shift < Len; Shift *= 2) {
9105       SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl);
9106       V = DAG.getNode(ISD::ADD, dl, VT, V,
9107                       DAG.getNode(ISD::SHL, dl, VT, V, ShiftC));
9108     }
9109   }
9110   return DAG.getNode(ISD::SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT));
9111 }
9112 
9113 SDValue TargetLowering::expandVPCTPOP(SDNode *Node, SelectionDAG &DAG) const {
9114   SDLoc dl(Node);
9115   EVT VT = Node->getValueType(0);
9116   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9117   SDValue Op = Node->getOperand(0);
9118   SDValue Mask = Node->getOperand(1);
9119   SDValue VL = Node->getOperand(2);
9120   unsigned Len = VT.getScalarSizeInBits();
9121   assert(VT.isInteger() && "VP_CTPOP not implemented for this type.");
9122 
9123   // TODO: Add support for irregular type lengths.
9124   if (!(Len <= 128 && Len % 8 == 0))
9125     return SDValue();
9126 
9127   // This is same algorithm of expandCTPOP from
9128   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
9129   SDValue Mask55 =
9130       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
9131   SDValue Mask33 =
9132       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
9133   SDValue Mask0F =
9134       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
9135 
9136   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5;
9137 
9138   // v = v - ((v >> 1) & 0x55555555...)
9139   Tmp1 = DAG.getNode(ISD::VP_AND, dl, VT,
9140                      DAG.getNode(ISD::VP_SRL, dl, VT, Op,
9141                                  DAG.getConstant(1, dl, ShVT), Mask, VL),
9142                      Mask55, Mask, VL);
9143   Op = DAG.getNode(ISD::VP_SUB, dl, VT, Op, Tmp1, Mask, VL);
9144 
9145   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
9146   Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Op, Mask33, Mask, VL);
9147   Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT,
9148                      DAG.getNode(ISD::VP_SRL, dl, VT, Op,
9149                                  DAG.getConstant(2, dl, ShVT), Mask, VL),
9150                      Mask33, Mask, VL);
9151   Op = DAG.getNode(ISD::VP_ADD, dl, VT, Tmp2, Tmp3, Mask, VL);
9152 
9153   // v = (v + (v >> 4)) & 0x0F0F0F0F...
9154   Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(4, dl, ShVT),
9155                      Mask, VL),
9156   Tmp5 = DAG.getNode(ISD::VP_ADD, dl, VT, Op, Tmp4, Mask, VL);
9157   Op = DAG.getNode(ISD::VP_AND, dl, VT, Tmp5, Mask0F, Mask, VL);
9158 
9159   if (Len <= 8)
9160     return Op;
9161 
9162   // v = (v * 0x01010101...) >> (Len - 8)
9163   SDValue V;
9164   if (isOperationLegalOrCustomOrPromote(
9165           ISD::VP_MUL, getTypeToTransformTo(*DAG.getContext(), VT))) {
9166     SDValue Mask01 =
9167         DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
9168     V = DAG.getNode(ISD::VP_MUL, dl, VT, Op, Mask01, Mask, VL);
9169   } else {
9170     V = Op;
9171     for (unsigned Shift = 8; Shift < Len; Shift *= 2) {
9172       SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl);
9173       V = DAG.getNode(ISD::VP_ADD, dl, VT, V,
9174                       DAG.getNode(ISD::VP_SHL, dl, VT, V, ShiftC, Mask, VL),
9175                       Mask, VL);
9176     }
9177   }
9178   return DAG.getNode(ISD::VP_SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT),
9179                      Mask, VL);
9180 }
9181 
9182 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
9183   SDLoc dl(Node);
9184   EVT VT = Node->getValueType(0);
9185   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9186   SDValue Op = Node->getOperand(0);
9187   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
9188 
9189   // If the non-ZERO_UNDEF version is supported we can use that instead.
9190   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
9191       isOperationLegalOrCustom(ISD::CTLZ, VT))
9192     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
9193 
9194   // If the ZERO_UNDEF version is supported use that and handle the zero case.
9195   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
9196     EVT SetCCVT =
9197         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9198     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
9199     SDValue Zero = DAG.getConstant(0, dl, VT);
9200     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
9201     return DAG.getSelect(dl, VT, SrcIsZero,
9202                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
9203   }
9204 
9205   // Only expand vector types if we have the appropriate vector bit operations.
9206   // This includes the operations needed to expand CTPOP if it isn't supported.
9207   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
9208                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
9209                          !canExpandVectorCTPOP(*this, VT)) ||
9210                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
9211                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
9212     return SDValue();
9213 
9214   // for now, we do this:
9215   // x = x | (x >> 1);
9216   // x = x | (x >> 2);
9217   // ...
9218   // x = x | (x >>16);
9219   // x = x | (x >>32); // for 64-bit input
9220   // return popcount(~x);
9221   //
9222   // Ref: "Hacker's Delight" by Henry Warren
9223   for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
9224     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
9225     Op = DAG.getNode(ISD::OR, dl, VT, Op,
9226                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
9227   }
9228   Op = DAG.getNOT(dl, Op, VT);
9229   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
9230 }
9231 
9232 SDValue TargetLowering::expandVPCTLZ(SDNode *Node, SelectionDAG &DAG) const {
9233   SDLoc dl(Node);
9234   EVT VT = Node->getValueType(0);
9235   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9236   SDValue Op = Node->getOperand(0);
9237   SDValue Mask = Node->getOperand(1);
9238   SDValue VL = Node->getOperand(2);
9239   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
9240 
9241   // do this:
9242   // x = x | (x >> 1);
9243   // x = x | (x >> 2);
9244   // ...
9245   // x = x | (x >>16);
9246   // x = x | (x >>32); // for 64-bit input
9247   // return popcount(~x);
9248   for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
9249     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
9250     Op = DAG.getNode(ISD::VP_OR, dl, VT, Op,
9251                      DAG.getNode(ISD::VP_SRL, dl, VT, Op, Tmp, Mask, VL), Mask,
9252                      VL);
9253   }
9254   Op = DAG.getNode(ISD::VP_XOR, dl, VT, Op, DAG.getAllOnesConstant(dl, VT),
9255                    Mask, VL);
9256   return DAG.getNode(ISD::VP_CTPOP, dl, VT, Op, Mask, VL);
9257 }
9258 
9259 SDValue TargetLowering::CTTZTableLookup(SDNode *Node, SelectionDAG &DAG,
9260                                         const SDLoc &DL, EVT VT, SDValue Op,
9261                                         unsigned BitWidth) const {
9262   if (BitWidth != 32 && BitWidth != 64)
9263     return SDValue();
9264   APInt DeBruijn = BitWidth == 32 ? APInt(32, 0x077CB531U)
9265                                   : APInt(64, 0x0218A392CD3D5DBFULL);
9266   const DataLayout &TD = DAG.getDataLayout();
9267   MachinePointerInfo PtrInfo =
9268       MachinePointerInfo::getConstantPool(DAG.getMachineFunction());
9269   unsigned ShiftAmt = BitWidth - Log2_32(BitWidth);
9270   SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
9271   SDValue Lookup = DAG.getNode(
9272       ISD::SRL, DL, VT,
9273       DAG.getNode(ISD::MUL, DL, VT, DAG.getNode(ISD::AND, DL, VT, Op, Neg),
9274                   DAG.getConstant(DeBruijn, DL, VT)),
9275       DAG.getConstant(ShiftAmt, DL, VT));
9276   Lookup = DAG.getSExtOrTrunc(Lookup, DL, getPointerTy(TD));
9277 
9278   SmallVector<uint8_t> Table(BitWidth, 0);
9279   for (unsigned i = 0; i < BitWidth; i++) {
9280     APInt Shl = DeBruijn.shl(i);
9281     APInt Lshr = Shl.lshr(ShiftAmt);
9282     Table[Lshr.getZExtValue()] = i;
9283   }
9284 
9285   // Create a ConstantArray in Constant Pool
9286   auto *CA = ConstantDataArray::get(*DAG.getContext(), Table);
9287   SDValue CPIdx = DAG.getConstantPool(CA, getPointerTy(TD),
9288                                       TD.getPrefTypeAlign(CA->getType()));
9289   SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, VT, DAG.getEntryNode(),
9290                                    DAG.getMemBasePlusOffset(CPIdx, Lookup, DL),
9291                                    PtrInfo, MVT::i8);
9292   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF)
9293     return ExtLoad;
9294 
9295   EVT SetCCVT =
9296       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9297   SDValue Zero = DAG.getConstant(0, DL, VT);
9298   SDValue SrcIsZero = DAG.getSetCC(DL, SetCCVT, Op, Zero, ISD::SETEQ);
9299   return DAG.getSelect(DL, VT, SrcIsZero,
9300                        DAG.getConstant(BitWidth, DL, VT), ExtLoad);
9301 }
9302 
9303 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
9304   SDLoc dl(Node);
9305   EVT VT = Node->getValueType(0);
9306   SDValue Op = Node->getOperand(0);
9307   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
9308 
9309   // If the non-ZERO_UNDEF version is supported we can use that instead.
9310   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
9311       isOperationLegalOrCustom(ISD::CTTZ, VT))
9312     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
9313 
9314   // If the ZERO_UNDEF version is supported use that and handle the zero case.
9315   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
9316     EVT SetCCVT =
9317         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9318     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
9319     SDValue Zero = DAG.getConstant(0, dl, VT);
9320     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
9321     return DAG.getSelect(dl, VT, SrcIsZero,
9322                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
9323   }
9324 
9325   // Only expand vector types if we have the appropriate vector bit operations.
9326   // This includes the operations needed to expand CTPOP if it isn't supported.
9327   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
9328                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
9329                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
9330                          !canExpandVectorCTPOP(*this, VT)) ||
9331                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
9332                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
9333                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
9334     return SDValue();
9335 
9336   // Emit Table Lookup if ISD::CTLZ and ISD::CTPOP are not legal.
9337   if (!VT.isVector() && isOperationExpand(ISD::CTPOP, VT) &&
9338       !isOperationLegal(ISD::CTLZ, VT))
9339     if (SDValue V = CTTZTableLookup(Node, DAG, dl, VT, Op, NumBitsPerElt))
9340       return V;
9341 
9342   // for now, we use: { return popcount(~x & (x - 1)); }
9343   // unless the target has ctlz but not ctpop, in which case we use:
9344   // { return 32 - nlz(~x & (x-1)); }
9345   // Ref: "Hacker's Delight" by Henry Warren
9346   SDValue Tmp = DAG.getNode(
9347       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
9348       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
9349 
9350   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
9351   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
9352     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
9353                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
9354   }
9355 
9356   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
9357 }
9358 
9359 SDValue TargetLowering::expandVPCTTZ(SDNode *Node, SelectionDAG &DAG) const {
9360   SDValue Op = Node->getOperand(0);
9361   SDValue Mask = Node->getOperand(1);
9362   SDValue VL = Node->getOperand(2);
9363   SDLoc dl(Node);
9364   EVT VT = Node->getValueType(0);
9365 
9366   // Same as the vector part of expandCTTZ, use: popcount(~x & (x - 1))
9367   SDValue Not = DAG.getNode(ISD::VP_XOR, dl, VT, Op,
9368                             DAG.getAllOnesConstant(dl, VT), Mask, VL);
9369   SDValue MinusOne = DAG.getNode(ISD::VP_SUB, dl, VT, Op,
9370                                  DAG.getConstant(1, dl, VT), Mask, VL);
9371   SDValue Tmp = DAG.getNode(ISD::VP_AND, dl, VT, Not, MinusOne, Mask, VL);
9372   return DAG.getNode(ISD::VP_CTPOP, dl, VT, Tmp, Mask, VL);
9373 }
9374 
9375 SDValue TargetLowering::expandVPCTTZElements(SDNode *N,
9376                                              SelectionDAG &DAG) const {
9377   // %cond = to_bool_vec %source
9378   // %splat = splat /*val=*/VL
9379   // %tz = step_vector
9380   // %v = vp.select %cond, /*true=*/tz, /*false=*/%splat
9381   // %r = vp.reduce.umin %v
9382   SDLoc DL(N);
9383   SDValue Source = N->getOperand(0);
9384   SDValue Mask = N->getOperand(1);
9385   SDValue EVL = N->getOperand(2);
9386   EVT SrcVT = Source.getValueType();
9387   EVT ResVT = N->getValueType(0);
9388   EVT ResVecVT =
9389       EVT::getVectorVT(*DAG.getContext(), ResVT, SrcVT.getVectorElementCount());
9390 
9391   // Convert to boolean vector.
9392   if (SrcVT.getScalarType() != MVT::i1) {
9393     SDValue AllZero = DAG.getConstant(0, DL, SrcVT);
9394     SrcVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
9395                              SrcVT.getVectorElementCount());
9396     Source = DAG.getNode(ISD::VP_SETCC, DL, SrcVT, Source, AllZero,
9397                          DAG.getCondCode(ISD::SETNE), Mask, EVL);
9398   }
9399 
9400   SDValue ExtEVL = DAG.getZExtOrTrunc(EVL, DL, ResVT);
9401   SDValue Splat = DAG.getSplat(ResVecVT, DL, ExtEVL);
9402   SDValue StepVec = DAG.getStepVector(DL, ResVecVT);
9403   SDValue Select =
9404       DAG.getNode(ISD::VP_SELECT, DL, ResVecVT, Source, StepVec, Splat, EVL);
9405   return DAG.getNode(ISD::VP_REDUCE_UMIN, DL, ResVT, ExtEVL, Select, Mask, EVL);
9406 }
9407 
9408 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
9409                                   bool IsNegative) const {
9410   SDLoc dl(N);
9411   EVT VT = N->getValueType(0);
9412   SDValue Op = N->getOperand(0);
9413 
9414   // abs(x) -> smax(x,sub(0,x))
9415   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
9416       isOperationLegal(ISD::SMAX, VT)) {
9417     SDValue Zero = DAG.getConstant(0, dl, VT);
9418     Op = DAG.getFreeze(Op);
9419     return DAG.getNode(ISD::SMAX, dl, VT, Op,
9420                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
9421   }
9422 
9423   // abs(x) -> umin(x,sub(0,x))
9424   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
9425       isOperationLegal(ISD::UMIN, VT)) {
9426     SDValue Zero = DAG.getConstant(0, dl, VT);
9427     Op = DAG.getFreeze(Op);
9428     return DAG.getNode(ISD::UMIN, dl, VT, Op,
9429                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
9430   }
9431 
9432   // 0 - abs(x) -> smin(x, sub(0,x))
9433   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
9434       isOperationLegal(ISD::SMIN, VT)) {
9435     SDValue Zero = DAG.getConstant(0, dl, VT);
9436     Op = DAG.getFreeze(Op);
9437     return DAG.getNode(ISD::SMIN, dl, VT, Op,
9438                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
9439   }
9440 
9441   // Only expand vector types if we have the appropriate vector operations.
9442   if (VT.isVector() &&
9443       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
9444        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
9445        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
9446        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
9447     return SDValue();
9448 
9449   Op = DAG.getFreeze(Op);
9450   SDValue Shift = DAG.getNode(
9451       ISD::SRA, dl, VT, Op,
9452       DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, dl));
9453   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
9454 
9455   // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
9456   if (!IsNegative)
9457     return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
9458 
9459   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
9460   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
9461 }
9462 
9463 SDValue TargetLowering::expandABD(SDNode *N, SelectionDAG &DAG) const {
9464   SDLoc dl(N);
9465   EVT VT = N->getValueType(0);
9466   SDValue LHS = DAG.getFreeze(N->getOperand(0));
9467   SDValue RHS = DAG.getFreeze(N->getOperand(1));
9468   bool IsSigned = N->getOpcode() == ISD::ABDS;
9469 
9470   // abds(lhs, rhs) -> sub(smax(lhs,rhs), smin(lhs,rhs))
9471   // abdu(lhs, rhs) -> sub(umax(lhs,rhs), umin(lhs,rhs))
9472   unsigned MaxOpc = IsSigned ? ISD::SMAX : ISD::UMAX;
9473   unsigned MinOpc = IsSigned ? ISD::SMIN : ISD::UMIN;
9474   if (isOperationLegal(MaxOpc, VT) && isOperationLegal(MinOpc, VT)) {
9475     SDValue Max = DAG.getNode(MaxOpc, dl, VT, LHS, RHS);
9476     SDValue Min = DAG.getNode(MinOpc, dl, VT, LHS, RHS);
9477     return DAG.getNode(ISD::SUB, dl, VT, Max, Min);
9478   }
9479 
9480   // abdu(lhs, rhs) -> or(usubsat(lhs,rhs), usubsat(rhs,lhs))
9481   if (!IsSigned && isOperationLegal(ISD::USUBSAT, VT))
9482     return DAG.getNode(ISD::OR, dl, VT,
9483                        DAG.getNode(ISD::USUBSAT, dl, VT, LHS, RHS),
9484                        DAG.getNode(ISD::USUBSAT, dl, VT, RHS, LHS));
9485 
9486   // If the subtract doesn't overflow then just use abs(sub())
9487   // NOTE: don't use frozen operands for value tracking.
9488   bool IsNonNegative = DAG.SignBitIsZero(N->getOperand(1)) &&
9489                        DAG.SignBitIsZero(N->getOperand(0));
9490 
9491   if (DAG.willNotOverflowSub(IsSigned || IsNonNegative, N->getOperand(0),
9492                              N->getOperand(1)))
9493     return DAG.getNode(ISD::ABS, dl, VT,
9494                        DAG.getNode(ISD::SUB, dl, VT, LHS, RHS));
9495 
9496   if (DAG.willNotOverflowSub(IsSigned || IsNonNegative, N->getOperand(1),
9497                              N->getOperand(0)))
9498     return DAG.getNode(ISD::ABS, dl, VT,
9499                        DAG.getNode(ISD::SUB, dl, VT, RHS, LHS));
9500 
9501   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9502   ISD::CondCode CC = IsSigned ? ISD::CondCode::SETGT : ISD::CondCode::SETUGT;
9503   SDValue Cmp = DAG.getSetCC(dl, CCVT, LHS, RHS, CC);
9504 
9505   // Branchless expansion iff cmp result is allbits:
9506   // abds(lhs, rhs) -> sub(sgt(lhs, rhs), xor(sgt(lhs, rhs), sub(lhs, rhs)))
9507   // abdu(lhs, rhs) -> sub(ugt(lhs, rhs), xor(ugt(lhs, rhs), sub(lhs, rhs)))
9508   if (CCVT == VT && getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
9509     SDValue Diff = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
9510     SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Diff, Cmp);
9511     return DAG.getNode(ISD::SUB, dl, VT, Cmp, Xor);
9512   }
9513 
9514   // Similar to the branchless expansion, use the (sign-extended) usubo overflow
9515   // flag if the (scalar) type is illegal as this is more likely to legalize
9516   // cleanly:
9517   // abdu(lhs, rhs) -> sub(xor(sub(lhs, rhs), uof(lhs, rhs)), uof(lhs, rhs))
9518   if (!IsSigned && VT.isScalarInteger() && !isTypeLegal(VT)) {
9519     SDValue USubO =
9520         DAG.getNode(ISD::USUBO, dl, DAG.getVTList(VT, MVT::i1), {LHS, RHS});
9521     SDValue Cmp = DAG.getNode(ISD::SIGN_EXTEND, dl, VT, USubO.getValue(1));
9522     SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, USubO.getValue(0), Cmp);
9523     return DAG.getNode(ISD::SUB, dl, VT, Xor, Cmp);
9524   }
9525 
9526   // FIXME: Should really try to split the vector in case it's legal on a
9527   // subvector.
9528   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
9529     return DAG.UnrollVectorOp(N);
9530 
9531   // abds(lhs, rhs) -> select(sgt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs))
9532   // abdu(lhs, rhs) -> select(ugt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs))
9533   return DAG.getSelect(dl, VT, Cmp, DAG.getNode(ISD::SUB, dl, VT, LHS, RHS),
9534                        DAG.getNode(ISD::SUB, dl, VT, RHS, LHS));
9535 }
9536 
9537 SDValue TargetLowering::expandAVG(SDNode *N, SelectionDAG &DAG) const {
9538   SDLoc dl(N);
9539   EVT VT = N->getValueType(0);
9540   SDValue LHS = N->getOperand(0);
9541   SDValue RHS = N->getOperand(1);
9542 
9543   unsigned Opc = N->getOpcode();
9544   bool IsFloor = Opc == ISD::AVGFLOORS || Opc == ISD::AVGFLOORU;
9545   bool IsSigned = Opc == ISD::AVGCEILS || Opc == ISD::AVGFLOORS;
9546   unsigned SumOpc = IsFloor ? ISD::ADD : ISD::SUB;
9547   unsigned SignOpc = IsFloor ? ISD::AND : ISD::OR;
9548   unsigned ShiftOpc = IsSigned ? ISD::SRA : ISD::SRL;
9549   unsigned ExtOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
9550   assert((Opc == ISD::AVGFLOORS || Opc == ISD::AVGCEILS ||
9551           Opc == ISD::AVGFLOORU || Opc == ISD::AVGCEILU) &&
9552          "Unknown AVG node");
9553 
9554   // If the operands are already extended, we can add+shift.
9555   bool IsExt =
9556       (IsSigned && DAG.ComputeNumSignBits(LHS) >= 2 &&
9557        DAG.ComputeNumSignBits(RHS) >= 2) ||
9558       (!IsSigned && DAG.computeKnownBits(LHS).countMinLeadingZeros() >= 1 &&
9559        DAG.computeKnownBits(RHS).countMinLeadingZeros() >= 1);
9560   if (IsExt) {
9561     SDValue Sum = DAG.getNode(ISD::ADD, dl, VT, LHS, RHS);
9562     if (!IsFloor)
9563       Sum = DAG.getNode(ISD::ADD, dl, VT, Sum, DAG.getConstant(1, dl, VT));
9564     return DAG.getNode(ShiftOpc, dl, VT, Sum,
9565                        DAG.getShiftAmountConstant(1, VT, dl));
9566   }
9567 
9568   // For scalars, see if we can efficiently extend/truncate to use add+shift.
9569   if (VT.isScalarInteger()) {
9570     unsigned BW = VT.getScalarSizeInBits();
9571     EVT ExtVT = VT.getIntegerVT(*DAG.getContext(), 2 * BW);
9572     if (isTypeLegal(ExtVT) && isTruncateFree(ExtVT, VT)) {
9573       LHS = DAG.getNode(ExtOpc, dl, ExtVT, LHS);
9574       RHS = DAG.getNode(ExtOpc, dl, ExtVT, RHS);
9575       SDValue Avg = DAG.getNode(ISD::ADD, dl, ExtVT, LHS, RHS);
9576       if (!IsFloor)
9577         Avg = DAG.getNode(ISD::ADD, dl, ExtVT, Avg,
9578                           DAG.getConstant(1, dl, ExtVT));
9579       // Just use SRL as we will be truncating away the extended sign bits.
9580       Avg = DAG.getNode(ISD::SRL, dl, ExtVT, Avg,
9581                         DAG.getShiftAmountConstant(1, ExtVT, dl));
9582       return DAG.getNode(ISD::TRUNCATE, dl, VT, Avg);
9583     }
9584   }
9585 
9586   // avgflooru(lhs, rhs) -> or(lshr(add(lhs, rhs),1),shl(overflow, typesize-1))
9587   if (Opc == ISD::AVGFLOORU && VT.isScalarInteger() && !isTypeLegal(VT)) {
9588     SDValue UAddWithOverflow =
9589         DAG.getNode(ISD::UADDO, dl, DAG.getVTList(VT, MVT::i1), {RHS, LHS});
9590 
9591     SDValue Sum = UAddWithOverflow.getValue(0);
9592     SDValue Overflow = UAddWithOverflow.getValue(1);
9593 
9594     // Right shift the sum by 1
9595     SDValue LShrVal = DAG.getNode(ISD::SRL, dl, VT, Sum,
9596                                   DAG.getShiftAmountConstant(1, VT, dl));
9597 
9598     SDValue ZeroExtOverflow = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Overflow);
9599     SDValue OverflowShl = DAG.getNode(
9600         ISD::SHL, dl, VT, ZeroExtOverflow,
9601         DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, dl));
9602 
9603     return DAG.getNode(ISD::OR, dl, VT, LShrVal, OverflowShl);
9604   }
9605 
9606   // avgceils(lhs, rhs) -> sub(or(lhs,rhs),ashr(xor(lhs,rhs),1))
9607   // avgceilu(lhs, rhs) -> sub(or(lhs,rhs),lshr(xor(lhs,rhs),1))
9608   // avgfloors(lhs, rhs) -> add(and(lhs,rhs),ashr(xor(lhs,rhs),1))
9609   // avgflooru(lhs, rhs) -> add(and(lhs,rhs),lshr(xor(lhs,rhs),1))
9610   LHS = DAG.getFreeze(LHS);
9611   RHS = DAG.getFreeze(RHS);
9612   SDValue Sign = DAG.getNode(SignOpc, dl, VT, LHS, RHS);
9613   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
9614   SDValue Shift =
9615       DAG.getNode(ShiftOpc, dl, VT, Xor, DAG.getShiftAmountConstant(1, VT, dl));
9616   return DAG.getNode(SumOpc, dl, VT, Sign, Shift);
9617 }
9618 
9619 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
9620   SDLoc dl(N);
9621   EVT VT = N->getValueType(0);
9622   SDValue Op = N->getOperand(0);
9623 
9624   if (!VT.isSimple())
9625     return SDValue();
9626 
9627   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
9628   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
9629   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
9630   default:
9631     return SDValue();
9632   case MVT::i16:
9633     // Use a rotate by 8. This can be further expanded if necessary.
9634     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
9635   case MVT::i32:
9636     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
9637     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Op,
9638                        DAG.getConstant(0xFF00, dl, VT));
9639     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT));
9640     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
9641     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
9642     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
9643     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
9644     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
9645     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
9646   case MVT::i64:
9647     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
9648     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Op,
9649                        DAG.getConstant(255ULL<<8, dl, VT));
9650     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT));
9651     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Op,
9652                        DAG.getConstant(255ULL<<16, dl, VT));
9653     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT));
9654     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Op,
9655                        DAG.getConstant(255ULL<<24, dl, VT));
9656     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT));
9657     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
9658     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
9659                        DAG.getConstant(255ULL<<24, dl, VT));
9660     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
9661     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
9662                        DAG.getConstant(255ULL<<16, dl, VT));
9663     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
9664     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
9665                        DAG.getConstant(255ULL<<8, dl, VT));
9666     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
9667     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
9668     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
9669     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
9670     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
9671     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
9672     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
9673     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
9674   }
9675 }
9676 
9677 SDValue TargetLowering::expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const {
9678   SDLoc dl(N);
9679   EVT VT = N->getValueType(0);
9680   SDValue Op = N->getOperand(0);
9681   SDValue Mask = N->getOperand(1);
9682   SDValue EVL = N->getOperand(2);
9683 
9684   if (!VT.isSimple())
9685     return SDValue();
9686 
9687   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
9688   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
9689   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
9690   default:
9691     return SDValue();
9692   case MVT::i16:
9693     Tmp1 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
9694                        Mask, EVL);
9695     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
9696                        Mask, EVL);
9697     return DAG.getNode(ISD::VP_OR, dl, VT, Tmp1, Tmp2, Mask, EVL);
9698   case MVT::i32:
9699     Tmp4 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
9700                        Mask, EVL);
9701     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Op, DAG.getConstant(0xFF00, dl, VT),
9702                        Mask, EVL);
9703     Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT),
9704                        Mask, EVL);
9705     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
9706                        Mask, EVL);
9707     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9708                        DAG.getConstant(0xFF00, dl, VT), Mask, EVL);
9709     Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
9710                        Mask, EVL);
9711     Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
9712     Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
9713     return DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
9714   case MVT::i64:
9715     Tmp8 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT),
9716                        Mask, EVL);
9717     Tmp7 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
9718                        DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL);
9719     Tmp7 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT),
9720                        Mask, EVL);
9721     Tmp6 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
9722                        DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL);
9723     Tmp6 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT),
9724                        Mask, EVL);
9725     Tmp5 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
9726                        DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL);
9727     Tmp5 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT),
9728                        Mask, EVL);
9729     Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
9730                        Mask, EVL);
9731     Tmp4 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp4,
9732                        DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL);
9733     Tmp3 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
9734                        Mask, EVL);
9735     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp3,
9736                        DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL);
9737     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT),
9738                        Mask, EVL);
9739     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9740                        DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL);
9741     Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT),
9742                        Mask, EVL);
9743     Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp7, Mask, EVL);
9744     Tmp6 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp6, Tmp5, Mask, EVL);
9745     Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
9746     Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
9747     Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp6, Mask, EVL);
9748     Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
9749     return DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp4, Mask, EVL);
9750   }
9751 }
9752 
9753 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
9754   SDLoc dl(N);
9755   EVT VT = N->getValueType(0);
9756   SDValue Op = N->getOperand(0);
9757   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
9758   unsigned Sz = VT.getScalarSizeInBits();
9759 
9760   SDValue Tmp, Tmp2, Tmp3;
9761 
9762   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
9763   // and finally the i1 pairs.
9764   // TODO: We can easily support i4/i2 legal types if any target ever does.
9765   if (Sz >= 8 && isPowerOf2_32(Sz)) {
9766     // Create the masks - repeating the pattern every byte.
9767     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
9768     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
9769     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
9770 
9771     // BSWAP if the type is wider than a single byte.
9772     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
9773 
9774     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
9775     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
9776     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
9777     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
9778     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
9779     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
9780 
9781     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
9782     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
9783     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
9784     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
9785     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
9786     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
9787 
9788     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
9789     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
9790     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
9791     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
9792     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
9793     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
9794     return Tmp;
9795   }
9796 
9797   Tmp = DAG.getConstant(0, dl, VT);
9798   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
9799     if (I < J)
9800       Tmp2 =
9801           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
9802     else
9803       Tmp2 =
9804           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
9805 
9806     APInt Shift = APInt::getOneBitSet(Sz, J);
9807     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
9808     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
9809   }
9810 
9811   return Tmp;
9812 }
9813 
9814 SDValue TargetLowering::expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
9815   assert(N->getOpcode() == ISD::VP_BITREVERSE);
9816 
9817   SDLoc dl(N);
9818   EVT VT = N->getValueType(0);
9819   SDValue Op = N->getOperand(0);
9820   SDValue Mask = N->getOperand(1);
9821   SDValue EVL = N->getOperand(2);
9822   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
9823   unsigned Sz = VT.getScalarSizeInBits();
9824 
9825   SDValue Tmp, Tmp2, Tmp3;
9826 
9827   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
9828   // and finally the i1 pairs.
9829   // TODO: We can easily support i4/i2 legal types if any target ever does.
9830   if (Sz >= 8 && isPowerOf2_32(Sz)) {
9831     // Create the masks - repeating the pattern every byte.
9832     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
9833     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
9834     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
9835 
9836     // BSWAP if the type is wider than a single byte.
9837     Tmp = (Sz > 8 ? DAG.getNode(ISD::VP_BSWAP, dl, VT, Op, Mask, EVL) : Op);
9838 
9839     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
9840     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT),
9841                        Mask, EVL);
9842     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9843                        DAG.getConstant(Mask4, dl, VT), Mask, EVL);
9844     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT),
9845                        Mask, EVL);
9846     Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT),
9847                        Mask, EVL);
9848     Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
9849 
9850     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
9851     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT),
9852                        Mask, EVL);
9853     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9854                        DAG.getConstant(Mask2, dl, VT), Mask, EVL);
9855     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT),
9856                        Mask, EVL);
9857     Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT),
9858                        Mask, EVL);
9859     Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
9860 
9861     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
9862     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT),
9863                        Mask, EVL);
9864     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9865                        DAG.getConstant(Mask1, dl, VT), Mask, EVL);
9866     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT),
9867                        Mask, EVL);
9868     Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT),
9869                        Mask, EVL);
9870     Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
9871     return Tmp;
9872   }
9873   return SDValue();
9874 }
9875 
9876 std::pair<SDValue, SDValue>
9877 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
9878                                     SelectionDAG &DAG) const {
9879   SDLoc SL(LD);
9880   SDValue Chain = LD->getChain();
9881   SDValue BasePTR = LD->getBasePtr();
9882   EVT SrcVT = LD->getMemoryVT();
9883   EVT DstVT = LD->getValueType(0);
9884   ISD::LoadExtType ExtType = LD->getExtensionType();
9885 
9886   if (SrcVT.isScalableVector())
9887     report_fatal_error("Cannot scalarize scalable vector loads");
9888 
9889   unsigned NumElem = SrcVT.getVectorNumElements();
9890 
9891   EVT SrcEltVT = SrcVT.getScalarType();
9892   EVT DstEltVT = DstVT.getScalarType();
9893 
9894   // A vector must always be stored in memory as-is, i.e. without any padding
9895   // between the elements, since various code depend on it, e.g. in the
9896   // handling of a bitcast of a vector type to int, which may be done with a
9897   // vector store followed by an integer load. A vector that does not have
9898   // elements that are byte-sized must therefore be stored as an integer
9899   // built out of the extracted vector elements.
9900   if (!SrcEltVT.isByteSized()) {
9901     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
9902     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
9903 
9904     unsigned NumSrcBits = SrcVT.getSizeInBits();
9905     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
9906 
9907     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
9908     SDValue SrcEltBitMask = DAG.getConstant(
9909         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
9910 
9911     // Load the whole vector and avoid masking off the top bits as it makes
9912     // the codegen worse.
9913     SDValue Load =
9914         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
9915                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
9916                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
9917 
9918     SmallVector<SDValue, 8> Vals;
9919     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
9920       unsigned ShiftIntoIdx =
9921           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
9922       SDValue ShiftAmount = DAG.getShiftAmountConstant(
9923           ShiftIntoIdx * SrcEltVT.getSizeInBits(), LoadVT, SL);
9924       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
9925       SDValue Elt =
9926           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
9927       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
9928 
9929       if (ExtType != ISD::NON_EXTLOAD) {
9930         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
9931         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
9932       }
9933 
9934       Vals.push_back(Scalar);
9935     }
9936 
9937     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
9938     return std::make_pair(Value, Load.getValue(1));
9939   }
9940 
9941   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
9942   assert(SrcEltVT.isByteSized());
9943 
9944   SmallVector<SDValue, 8> Vals;
9945   SmallVector<SDValue, 8> LoadChains;
9946 
9947   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
9948     SDValue ScalarLoad =
9949         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
9950                        LD->getPointerInfo().getWithOffset(Idx * Stride),
9951                        SrcEltVT, LD->getOriginalAlign(),
9952                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
9953 
9954     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::getFixed(Stride));
9955 
9956     Vals.push_back(ScalarLoad.getValue(0));
9957     LoadChains.push_back(ScalarLoad.getValue(1));
9958   }
9959 
9960   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
9961   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
9962 
9963   return std::make_pair(Value, NewChain);
9964 }
9965 
9966 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
9967                                              SelectionDAG &DAG) const {
9968   SDLoc SL(ST);
9969 
9970   SDValue Chain = ST->getChain();
9971   SDValue BasePtr = ST->getBasePtr();
9972   SDValue Value = ST->getValue();
9973   EVT StVT = ST->getMemoryVT();
9974 
9975   if (StVT.isScalableVector())
9976     report_fatal_error("Cannot scalarize scalable vector stores");
9977 
9978   // The type of the data we want to save
9979   EVT RegVT = Value.getValueType();
9980   EVT RegSclVT = RegVT.getScalarType();
9981 
9982   // The type of data as saved in memory.
9983   EVT MemSclVT = StVT.getScalarType();
9984 
9985   unsigned NumElem = StVT.getVectorNumElements();
9986 
9987   // A vector must always be stored in memory as-is, i.e. without any padding
9988   // between the elements, since various code depend on it, e.g. in the
9989   // handling of a bitcast of a vector type to int, which may be done with a
9990   // vector store followed by an integer load. A vector that does not have
9991   // elements that are byte-sized must therefore be stored as an integer
9992   // built out of the extracted vector elements.
9993   if (!MemSclVT.isByteSized()) {
9994     unsigned NumBits = StVT.getSizeInBits();
9995     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
9996 
9997     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
9998 
9999     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
10000       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
10001                                 DAG.getVectorIdxConstant(Idx, SL));
10002       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
10003       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
10004       unsigned ShiftIntoIdx =
10005           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
10006       SDValue ShiftAmount =
10007           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
10008       SDValue ShiftedElt =
10009           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
10010       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
10011     }
10012 
10013     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
10014                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
10015                         ST->getAAInfo());
10016   }
10017 
10018   // Store Stride in bytes
10019   unsigned Stride = MemSclVT.getSizeInBits() / 8;
10020   assert(Stride && "Zero stride!");
10021   // Extract each of the elements from the original vector and save them into
10022   // memory individually.
10023   SmallVector<SDValue, 8> Stores;
10024   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
10025     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
10026                               DAG.getVectorIdxConstant(Idx, SL));
10027 
10028     SDValue Ptr =
10029         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::getFixed(Idx * Stride));
10030 
10031     // This scalar TruncStore may be illegal, but we legalize it later.
10032     SDValue Store = DAG.getTruncStore(
10033         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
10034         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
10035         ST->getAAInfo());
10036 
10037     Stores.push_back(Store);
10038   }
10039 
10040   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
10041 }
10042 
10043 std::pair<SDValue, SDValue>
10044 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
10045   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
10046          "unaligned indexed loads not implemented!");
10047   SDValue Chain = LD->getChain();
10048   SDValue Ptr = LD->getBasePtr();
10049   EVT VT = LD->getValueType(0);
10050   EVT LoadedVT = LD->getMemoryVT();
10051   SDLoc dl(LD);
10052   auto &MF = DAG.getMachineFunction();
10053 
10054   if (VT.isFloatingPoint() || VT.isVector()) {
10055     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
10056     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
10057       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
10058           LoadedVT.isVector()) {
10059         // Scalarize the load and let the individual components be handled.
10060         return scalarizeVectorLoad(LD, DAG);
10061       }
10062 
10063       // Expand to a (misaligned) integer load of the same size,
10064       // then bitconvert to floating point or vector.
10065       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
10066                                     LD->getMemOperand());
10067       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
10068       if (LoadedVT != VT)
10069         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
10070                              ISD::ANY_EXTEND, dl, VT, Result);
10071 
10072       return std::make_pair(Result, newLoad.getValue(1));
10073     }
10074 
10075     // Copy the value to a (aligned) stack slot using (unaligned) integer
10076     // loads and stores, then do a (aligned) load from the stack slot.
10077     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
10078     unsigned LoadedBytes = LoadedVT.getStoreSize();
10079     unsigned RegBytes = RegVT.getSizeInBits() / 8;
10080     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
10081 
10082     // Make sure the stack slot is also aligned for the register type.
10083     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
10084     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
10085     SmallVector<SDValue, 8> Stores;
10086     SDValue StackPtr = StackBase;
10087     unsigned Offset = 0;
10088 
10089     EVT PtrVT = Ptr.getValueType();
10090     EVT StackPtrVT = StackPtr.getValueType();
10091 
10092     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
10093     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
10094 
10095     // Do all but one copies using the full register width.
10096     for (unsigned i = 1; i < NumRegs; i++) {
10097       // Load one integer register's worth from the original location.
10098       SDValue Load = DAG.getLoad(
10099           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
10100           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
10101           LD->getAAInfo());
10102       // Follow the load with a store to the stack slot.  Remember the store.
10103       Stores.push_back(DAG.getStore(
10104           Load.getValue(1), dl, Load, StackPtr,
10105           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
10106       // Increment the pointers.
10107       Offset += RegBytes;
10108 
10109       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
10110       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
10111     }
10112 
10113     // The last copy may be partial.  Do an extending load.
10114     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
10115                                   8 * (LoadedBytes - Offset));
10116     SDValue Load =
10117         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
10118                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
10119                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
10120                        LD->getAAInfo());
10121     // Follow the load with a store to the stack slot.  Remember the store.
10122     // On big-endian machines this requires a truncating store to ensure
10123     // that the bits end up in the right place.
10124     Stores.push_back(DAG.getTruncStore(
10125         Load.getValue(1), dl, Load, StackPtr,
10126         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
10127 
10128     // The order of the stores doesn't matter - say it with a TokenFactor.
10129     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10130 
10131     // Finally, perform the original load only redirected to the stack slot.
10132     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
10133                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
10134                           LoadedVT);
10135 
10136     // Callers expect a MERGE_VALUES node.
10137     return std::make_pair(Load, TF);
10138   }
10139 
10140   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
10141          "Unaligned load of unsupported type.");
10142 
10143   // Compute the new VT that is half the size of the old one.  This is an
10144   // integer MVT.
10145   unsigned NumBits = LoadedVT.getSizeInBits();
10146   EVT NewLoadedVT;
10147   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
10148   NumBits >>= 1;
10149 
10150   Align Alignment = LD->getOriginalAlign();
10151   unsigned IncrementSize = NumBits / 8;
10152   ISD::LoadExtType HiExtType = LD->getExtensionType();
10153 
10154   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
10155   if (HiExtType == ISD::NON_EXTLOAD)
10156     HiExtType = ISD::ZEXTLOAD;
10157 
10158   // Load the value in two parts
10159   SDValue Lo, Hi;
10160   if (DAG.getDataLayout().isLittleEndian()) {
10161     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
10162                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10163                         LD->getAAInfo());
10164 
10165     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize));
10166     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
10167                         LD->getPointerInfo().getWithOffset(IncrementSize),
10168                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10169                         LD->getAAInfo());
10170   } else {
10171     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
10172                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10173                         LD->getAAInfo());
10174 
10175     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize));
10176     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
10177                         LD->getPointerInfo().getWithOffset(IncrementSize),
10178                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10179                         LD->getAAInfo());
10180   }
10181 
10182   // aggregate the two parts
10183   SDValue ShiftAmount = DAG.getShiftAmountConstant(NumBits, VT, dl);
10184   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
10185   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
10186 
10187   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
10188                              Hi.getValue(1));
10189 
10190   return std::make_pair(Result, TF);
10191 }
10192 
10193 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
10194                                              SelectionDAG &DAG) const {
10195   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
10196          "unaligned indexed stores not implemented!");
10197   SDValue Chain = ST->getChain();
10198   SDValue Ptr = ST->getBasePtr();
10199   SDValue Val = ST->getValue();
10200   EVT VT = Val.getValueType();
10201   Align Alignment = ST->getOriginalAlign();
10202   auto &MF = DAG.getMachineFunction();
10203   EVT StoreMemVT = ST->getMemoryVT();
10204 
10205   SDLoc dl(ST);
10206   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
10207     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
10208     if (isTypeLegal(intVT)) {
10209       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
10210           StoreMemVT.isVector()) {
10211         // Scalarize the store and let the individual components be handled.
10212         SDValue Result = scalarizeVectorStore(ST, DAG);
10213         return Result;
10214       }
10215       // Expand to a bitconvert of the value to the integer type of the
10216       // same size, then a (misaligned) int store.
10217       // FIXME: Does not handle truncating floating point stores!
10218       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
10219       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
10220                             Alignment, ST->getMemOperand()->getFlags());
10221       return Result;
10222     }
10223     // Do a (aligned) store to a stack slot, then copy from the stack slot
10224     // to the final destination using (unaligned) integer loads and stores.
10225     MVT RegVT = getRegisterType(
10226         *DAG.getContext(),
10227         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
10228     EVT PtrVT = Ptr.getValueType();
10229     unsigned StoredBytes = StoreMemVT.getStoreSize();
10230     unsigned RegBytes = RegVT.getSizeInBits() / 8;
10231     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
10232 
10233     // Make sure the stack slot is also aligned for the register type.
10234     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
10235     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
10236 
10237     // Perform the original store, only redirected to the stack slot.
10238     SDValue Store = DAG.getTruncStore(
10239         Chain, dl, Val, StackPtr,
10240         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
10241 
10242     EVT StackPtrVT = StackPtr.getValueType();
10243 
10244     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
10245     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
10246     SmallVector<SDValue, 8> Stores;
10247     unsigned Offset = 0;
10248 
10249     // Do all but one copies using the full register width.
10250     for (unsigned i = 1; i < NumRegs; i++) {
10251       // Load one integer register's worth from the stack slot.
10252       SDValue Load = DAG.getLoad(
10253           RegVT, dl, Store, StackPtr,
10254           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
10255       // Store it to the final location.  Remember the store.
10256       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
10257                                     ST->getPointerInfo().getWithOffset(Offset),
10258                                     ST->getOriginalAlign(),
10259                                     ST->getMemOperand()->getFlags()));
10260       // Increment the pointers.
10261       Offset += RegBytes;
10262       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
10263       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
10264     }
10265 
10266     // The last store may be partial.  Do a truncating store.  On big-endian
10267     // machines this requires an extending load from the stack slot to ensure
10268     // that the bits are in the right place.
10269     EVT LoadMemVT =
10270         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
10271 
10272     // Load from the stack slot.
10273     SDValue Load = DAG.getExtLoad(
10274         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
10275         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
10276 
10277     Stores.push_back(
10278         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
10279                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
10280                           ST->getOriginalAlign(),
10281                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
10282     // The order of the stores doesn't matter - say it with a TokenFactor.
10283     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10284     return Result;
10285   }
10286 
10287   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
10288          "Unaligned store of unknown type.");
10289   // Get the half-size VT
10290   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
10291   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
10292   unsigned IncrementSize = NumBits / 8;
10293 
10294   // Divide the stored value in two parts.
10295   SDValue ShiftAmount =
10296       DAG.getShiftAmountConstant(NumBits, Val.getValueType(), dl);
10297   SDValue Lo = Val;
10298   // If Val is a constant, replace the upper bits with 0. The SRL will constant
10299   // fold and not use the upper bits. A smaller constant may be easier to
10300   // materialize.
10301   if (auto *C = dyn_cast<ConstantSDNode>(Lo); C && !C->isOpaque())
10302     Lo = DAG.getNode(
10303         ISD::AND, dl, VT, Lo,
10304         DAG.getConstant(APInt::getLowBitsSet(VT.getSizeInBits(), NumBits), dl,
10305                         VT));
10306   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
10307 
10308   // Store the two parts
10309   SDValue Store1, Store2;
10310   Store1 = DAG.getTruncStore(Chain, dl,
10311                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
10312                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
10313                              ST->getMemOperand()->getFlags());
10314 
10315   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize));
10316   Store2 = DAG.getTruncStore(
10317       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
10318       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
10319       ST->getMemOperand()->getFlags(), ST->getAAInfo());
10320 
10321   SDValue Result =
10322       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
10323   return Result;
10324 }
10325 
10326 SDValue
10327 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
10328                                        const SDLoc &DL, EVT DataVT,
10329                                        SelectionDAG &DAG,
10330                                        bool IsCompressedMemory) const {
10331   SDValue Increment;
10332   EVT AddrVT = Addr.getValueType();
10333   EVT MaskVT = Mask.getValueType();
10334   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
10335          "Incompatible types of Data and Mask");
10336   if (IsCompressedMemory) {
10337     if (DataVT.isScalableVector())
10338       report_fatal_error(
10339           "Cannot currently handle compressed memory with scalable vectors");
10340     // Incrementing the pointer according to number of '1's in the mask.
10341     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
10342     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
10343     if (MaskIntVT.getSizeInBits() < 32) {
10344       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
10345       MaskIntVT = MVT::i32;
10346     }
10347 
10348     // Count '1's with POPCNT.
10349     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
10350     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
10351     // Scale is an element size in bytes.
10352     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
10353                                     AddrVT);
10354     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
10355   } else if (DataVT.isScalableVector()) {
10356     Increment = DAG.getVScale(DL, AddrVT,
10357                               APInt(AddrVT.getFixedSizeInBits(),
10358                                     DataVT.getStoreSize().getKnownMinValue()));
10359   } else
10360     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
10361 
10362   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
10363 }
10364 
10365 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
10366                                        EVT VecVT, const SDLoc &dl,
10367                                        ElementCount SubEC) {
10368   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
10369          "Cannot index a scalable vector within a fixed-width vector");
10370 
10371   unsigned NElts = VecVT.getVectorMinNumElements();
10372   unsigned NumSubElts = SubEC.getKnownMinValue();
10373   EVT IdxVT = Idx.getValueType();
10374 
10375   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
10376     // If this is a constant index and we know the value plus the number of the
10377     // elements in the subvector minus one is less than the minimum number of
10378     // elements then it's safe to return Idx.
10379     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
10380       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
10381         return Idx;
10382     SDValue VS =
10383         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
10384     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
10385     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
10386                               DAG.getConstant(NumSubElts, dl, IdxVT));
10387     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
10388   }
10389   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
10390     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
10391     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
10392                        DAG.getConstant(Imm, dl, IdxVT));
10393   }
10394   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
10395   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
10396                      DAG.getConstant(MaxIndex, dl, IdxVT));
10397 }
10398 
10399 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
10400                                                 SDValue VecPtr, EVT VecVT,
10401                                                 SDValue Index) const {
10402   return getVectorSubVecPointer(
10403       DAG, VecPtr, VecVT,
10404       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
10405       Index);
10406 }
10407 
10408 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
10409                                                SDValue VecPtr, EVT VecVT,
10410                                                EVT SubVecVT,
10411                                                SDValue Index) const {
10412   SDLoc dl(Index);
10413   // Make sure the index type is big enough to compute in.
10414   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
10415 
10416   EVT EltVT = VecVT.getVectorElementType();
10417 
10418   // Calculate the element offset and add it to the pointer.
10419   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
10420   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
10421          "Converting bits to bytes lost precision");
10422   assert(SubVecVT.getVectorElementType() == EltVT &&
10423          "Sub-vector must be a vector with matching element type");
10424   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
10425                                   SubVecVT.getVectorElementCount());
10426 
10427   EVT IdxVT = Index.getValueType();
10428   if (SubVecVT.isScalableVector())
10429     Index =
10430         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
10431                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
10432 
10433   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
10434                       DAG.getConstant(EltSize, dl, IdxVT));
10435   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
10436 }
10437 
10438 //===----------------------------------------------------------------------===//
10439 // Implementation of Emulated TLS Model
10440 //===----------------------------------------------------------------------===//
10441 
10442 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
10443                                                 SelectionDAG &DAG) const {
10444   // Access to address of TLS varialbe xyz is lowered to a function call:
10445   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
10446   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10447   PointerType *VoidPtrType = PointerType::get(*DAG.getContext(), 0);
10448   SDLoc dl(GA);
10449 
10450   ArgListTy Args;
10451   ArgListEntry Entry;
10452   const GlobalValue *GV =
10453       cast<GlobalValue>(GA->getGlobal()->stripPointerCastsAndAliases());
10454   SmallString<32> NameString("__emutls_v.");
10455   NameString += GV->getName();
10456   StringRef EmuTlsVarName(NameString);
10457   const GlobalVariable *EmuTlsVar =
10458       GV->getParent()->getNamedGlobal(EmuTlsVarName);
10459   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
10460   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
10461   Entry.Ty = VoidPtrType;
10462   Args.push_back(Entry);
10463 
10464   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
10465 
10466   TargetLowering::CallLoweringInfo CLI(DAG);
10467   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
10468   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
10469   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
10470 
10471   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
10472   // At last for X86 targets, maybe good for other targets too?
10473   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10474   MFI.setAdjustsStack(true); // Is this only for X86 target?
10475   MFI.setHasCalls(true);
10476 
10477   assert((GA->getOffset() == 0) &&
10478          "Emulated TLS must have zero offset in GlobalAddressSDNode");
10479   return CallResult.first;
10480 }
10481 
10482 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
10483                                                 SelectionDAG &DAG) const {
10484   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
10485   if (!isCtlzFast())
10486     return SDValue();
10487   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
10488   SDLoc dl(Op);
10489   if (isNullConstant(Op.getOperand(1)) && CC == ISD::SETEQ) {
10490     EVT VT = Op.getOperand(0).getValueType();
10491     SDValue Zext = Op.getOperand(0);
10492     if (VT.bitsLT(MVT::i32)) {
10493       VT = MVT::i32;
10494       Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
10495     }
10496     unsigned Log2b = Log2_32(VT.getSizeInBits());
10497     SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
10498     SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
10499                               DAG.getConstant(Log2b, dl, MVT::i32));
10500     return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
10501   }
10502   return SDValue();
10503 }
10504 
10505 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
10506   SDValue Op0 = Node->getOperand(0);
10507   SDValue Op1 = Node->getOperand(1);
10508   EVT VT = Op0.getValueType();
10509   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10510   unsigned Opcode = Node->getOpcode();
10511   SDLoc DL(Node);
10512 
10513   // umax(x,1) --> sub(x,cmpeq(x,0)) iff cmp result is allbits
10514   if (Opcode == ISD::UMAX && llvm::isOneOrOneSplat(Op1, true) && BoolVT == VT &&
10515       getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
10516     Op0 = DAG.getFreeze(Op0);
10517     SDValue Zero = DAG.getConstant(0, DL, VT);
10518     return DAG.getNode(ISD::SUB, DL, VT, Op0,
10519                        DAG.getSetCC(DL, VT, Op0, Zero, ISD::SETEQ));
10520   }
10521 
10522   // umin(x,y) -> sub(x,usubsat(x,y))
10523   // TODO: Missing freeze(Op0)?
10524   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
10525       isOperationLegal(ISD::USUBSAT, VT)) {
10526     return DAG.getNode(ISD::SUB, DL, VT, Op0,
10527                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
10528   }
10529 
10530   // umax(x,y) -> add(x,usubsat(y,x))
10531   // TODO: Missing freeze(Op0)?
10532   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
10533       isOperationLegal(ISD::USUBSAT, VT)) {
10534     return DAG.getNode(ISD::ADD, DL, VT, Op0,
10535                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
10536   }
10537 
10538   // FIXME: Should really try to split the vector in case it's legal on a
10539   // subvector.
10540   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
10541     return DAG.UnrollVectorOp(Node);
10542 
10543   // Attempt to find an existing SETCC node that we can reuse.
10544   // TODO: Do we need a generic doesSETCCNodeExist?
10545   // TODO: Missing freeze(Op0)/freeze(Op1)?
10546   auto buildMinMax = [&](ISD::CondCode PrefCC, ISD::CondCode AltCC,
10547                          ISD::CondCode PrefCommuteCC,
10548                          ISD::CondCode AltCommuteCC) {
10549     SDVTList BoolVTList = DAG.getVTList(BoolVT);
10550     for (ISD::CondCode CC : {PrefCC, AltCC}) {
10551       if (DAG.doesNodeExist(ISD::SETCC, BoolVTList,
10552                             {Op0, Op1, DAG.getCondCode(CC)})) {
10553         SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
10554         return DAG.getSelect(DL, VT, Cond, Op0, Op1);
10555       }
10556     }
10557     for (ISD::CondCode CC : {PrefCommuteCC, AltCommuteCC}) {
10558       if (DAG.doesNodeExist(ISD::SETCC, BoolVTList,
10559                             {Op0, Op1, DAG.getCondCode(CC)})) {
10560         SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
10561         return DAG.getSelect(DL, VT, Cond, Op1, Op0);
10562       }
10563     }
10564     SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, PrefCC);
10565     return DAG.getSelect(DL, VT, Cond, Op0, Op1);
10566   };
10567 
10568   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
10569   //                      -> Y = (A < B) ? B : A
10570   //                      -> Y = (A >= B) ? A : B
10571   //                      -> Y = (A <= B) ? B : A
10572   switch (Opcode) {
10573   case ISD::SMAX:
10574     return buildMinMax(ISD::SETGT, ISD::SETGE, ISD::SETLT, ISD::SETLE);
10575   case ISD::SMIN:
10576     return buildMinMax(ISD::SETLT, ISD::SETLE, ISD::SETGT, ISD::SETGE);
10577   case ISD::UMAX:
10578     return buildMinMax(ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE);
10579   case ISD::UMIN:
10580     return buildMinMax(ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE);
10581   }
10582 
10583   llvm_unreachable("How did we get here?");
10584 }
10585 
10586 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
10587   unsigned Opcode = Node->getOpcode();
10588   SDValue LHS = Node->getOperand(0);
10589   SDValue RHS = Node->getOperand(1);
10590   EVT VT = LHS.getValueType();
10591   SDLoc dl(Node);
10592 
10593   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
10594   assert(VT.isInteger() && "Expected operands to be integers");
10595 
10596   // usub.sat(a, b) -> umax(a, b) - b
10597   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
10598     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
10599     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
10600   }
10601 
10602   // uadd.sat(a, b) -> umin(a, ~b) + b
10603   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
10604     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
10605     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
10606     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
10607   }
10608 
10609   unsigned OverflowOp;
10610   switch (Opcode) {
10611   case ISD::SADDSAT:
10612     OverflowOp = ISD::SADDO;
10613     break;
10614   case ISD::UADDSAT:
10615     OverflowOp = ISD::UADDO;
10616     break;
10617   case ISD::SSUBSAT:
10618     OverflowOp = ISD::SSUBO;
10619     break;
10620   case ISD::USUBSAT:
10621     OverflowOp = ISD::USUBO;
10622     break;
10623   default:
10624     llvm_unreachable("Expected method to receive signed or unsigned saturation "
10625                      "addition or subtraction node.");
10626   }
10627 
10628   // FIXME: Should really try to split the vector in case it's legal on a
10629   // subvector.
10630   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
10631     return DAG.UnrollVectorOp(Node);
10632 
10633   unsigned BitWidth = LHS.getScalarValueSizeInBits();
10634   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10635   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
10636   SDValue SumDiff = Result.getValue(0);
10637   SDValue Overflow = Result.getValue(1);
10638   SDValue Zero = DAG.getConstant(0, dl, VT);
10639   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
10640 
10641   if (Opcode == ISD::UADDSAT) {
10642     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
10643       // (LHS + RHS) | OverflowMask
10644       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
10645       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
10646     }
10647     // Overflow ? 0xffff.... : (LHS + RHS)
10648     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
10649   }
10650 
10651   if (Opcode == ISD::USUBSAT) {
10652     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
10653       // (LHS - RHS) & ~OverflowMask
10654       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
10655       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
10656       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
10657     }
10658     // Overflow ? 0 : (LHS - RHS)
10659     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
10660   }
10661 
10662   if (Opcode == ISD::SADDSAT || Opcode == ISD::SSUBSAT) {
10663     APInt MinVal = APInt::getSignedMinValue(BitWidth);
10664     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
10665 
10666     KnownBits KnownLHS = DAG.computeKnownBits(LHS);
10667     KnownBits KnownRHS = DAG.computeKnownBits(RHS);
10668 
10669     // If either of the operand signs are known, then they are guaranteed to
10670     // only saturate in one direction. If non-negative they will saturate
10671     // towards SIGNED_MAX, if negative they will saturate towards SIGNED_MIN.
10672     //
10673     // In the case of ISD::SSUBSAT, 'x - y' is equivalent to 'x + (-y)', so the
10674     // sign of 'y' has to be flipped.
10675 
10676     bool LHSIsNonNegative = KnownLHS.isNonNegative();
10677     bool RHSIsNonNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNonNegative()
10678                                                    : KnownRHS.isNegative();
10679     if (LHSIsNonNegative || RHSIsNonNegative) {
10680       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
10681       return DAG.getSelect(dl, VT, Overflow, SatMax, SumDiff);
10682     }
10683 
10684     bool LHSIsNegative = KnownLHS.isNegative();
10685     bool RHSIsNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNegative()
10686                                                 : KnownRHS.isNonNegative();
10687     if (LHSIsNegative || RHSIsNegative) {
10688       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
10689       return DAG.getSelect(dl, VT, Overflow, SatMin, SumDiff);
10690     }
10691   }
10692 
10693   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
10694   APInt MinVal = APInt::getSignedMinValue(BitWidth);
10695   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
10696   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
10697                               DAG.getConstant(BitWidth - 1, dl, VT));
10698   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
10699   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
10700 }
10701 
10702 SDValue TargetLowering::expandCMP(SDNode *Node, SelectionDAG &DAG) const {
10703   unsigned Opcode = Node->getOpcode();
10704   SDValue LHS = Node->getOperand(0);
10705   SDValue RHS = Node->getOperand(1);
10706   EVT VT = LHS.getValueType();
10707   EVT ResVT = Node->getValueType(0);
10708   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10709   SDLoc dl(Node);
10710 
10711   auto LTPredicate = (Opcode == ISD::UCMP ? ISD::SETULT : ISD::SETLT);
10712   auto GTPredicate = (Opcode == ISD::UCMP ? ISD::SETUGT : ISD::SETGT);
10713   SDValue IsLT = DAG.getSetCC(dl, BoolVT, LHS, RHS, LTPredicate);
10714   SDValue IsGT = DAG.getSetCC(dl, BoolVT, LHS, RHS, GTPredicate);
10715 
10716   // We can't perform arithmetic on i1 values. Extending them would
10717   // probably result in worse codegen, so let's just use two selects instead.
10718   // Some targets are also just better off using selects rather than subtraction
10719   // because one of the conditions can be merged with one of the selects.
10720   // And finally, if we don't know the contents of high bits of a boolean value
10721   // we can't perform any arithmetic either.
10722   if (shouldExpandCmpUsingSelects(VT) || BoolVT.getScalarSizeInBits() == 1 ||
10723       getBooleanContents(BoolVT) == UndefinedBooleanContent) {
10724     SDValue SelectZeroOrOne =
10725         DAG.getSelect(dl, ResVT, IsGT, DAG.getConstant(1, dl, ResVT),
10726                       DAG.getConstant(0, dl, ResVT));
10727     return DAG.getSelect(dl, ResVT, IsLT, DAG.getAllOnesConstant(dl, ResVT),
10728                          SelectZeroOrOne);
10729   }
10730 
10731   if (getBooleanContents(BoolVT) == ZeroOrNegativeOneBooleanContent)
10732     std::swap(IsGT, IsLT);
10733   return DAG.getSExtOrTrunc(DAG.getNode(ISD::SUB, dl, BoolVT, IsGT, IsLT), dl,
10734                             ResVT);
10735 }
10736 
10737 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
10738   unsigned Opcode = Node->getOpcode();
10739   bool IsSigned = Opcode == ISD::SSHLSAT;
10740   SDValue LHS = Node->getOperand(0);
10741   SDValue RHS = Node->getOperand(1);
10742   EVT VT = LHS.getValueType();
10743   SDLoc dl(Node);
10744 
10745   assert((Node->getOpcode() == ISD::SSHLSAT ||
10746           Node->getOpcode() == ISD::USHLSAT) &&
10747           "Expected a SHLSAT opcode");
10748   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
10749   assert(VT.isInteger() && "Expected operands to be integers");
10750 
10751   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
10752     return DAG.UnrollVectorOp(Node);
10753 
10754   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
10755 
10756   unsigned BW = VT.getScalarSizeInBits();
10757   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10758   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
10759   SDValue Orig =
10760       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
10761 
10762   SDValue SatVal;
10763   if (IsSigned) {
10764     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
10765     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
10766     SDValue Cond =
10767         DAG.getSetCC(dl, BoolVT, LHS, DAG.getConstant(0, dl, VT), ISD::SETLT);
10768     SatVal = DAG.getSelect(dl, VT, Cond, SatMin, SatMax);
10769   } else {
10770     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
10771   }
10772   SDValue Cond = DAG.getSetCC(dl, BoolVT, LHS, Orig, ISD::SETNE);
10773   return DAG.getSelect(dl, VT, Cond, SatVal, Result);
10774 }
10775 
10776 void TargetLowering::forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl,
10777                                         bool Signed, EVT WideVT,
10778                                         const SDValue LL, const SDValue LH,
10779                                         const SDValue RL, const SDValue RH,
10780                                         SDValue &Lo, SDValue &Hi) const {
10781   // We can fall back to a libcall with an illegal type for the MUL if we
10782   // have a libcall big enough.
10783   // Also, we can fall back to a division in some cases, but that's a big
10784   // performance hit in the general case.
10785   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
10786   if (WideVT == MVT::i16)
10787     LC = RTLIB::MUL_I16;
10788   else if (WideVT == MVT::i32)
10789     LC = RTLIB::MUL_I32;
10790   else if (WideVT == MVT::i64)
10791     LC = RTLIB::MUL_I64;
10792   else if (WideVT == MVT::i128)
10793     LC = RTLIB::MUL_I128;
10794 
10795   if (LC == RTLIB::UNKNOWN_LIBCALL || !getLibcallName(LC)) {
10796     // We'll expand the multiplication by brute force because we have no other
10797     // options. This is a trivially-generalized version of the code from
10798     // Hacker's Delight (itself derived from Knuth's Algorithm M from section
10799     // 4.3.1).
10800     EVT VT = LL.getValueType();
10801     unsigned Bits = VT.getSizeInBits();
10802     unsigned HalfBits = Bits >> 1;
10803     SDValue Mask =
10804         DAG.getConstant(APInt::getLowBitsSet(Bits, HalfBits), dl, VT);
10805     SDValue LLL = DAG.getNode(ISD::AND, dl, VT, LL, Mask);
10806     SDValue RLL = DAG.getNode(ISD::AND, dl, VT, RL, Mask);
10807 
10808     SDValue T = DAG.getNode(ISD::MUL, dl, VT, LLL, RLL);
10809     SDValue TL = DAG.getNode(ISD::AND, dl, VT, T, Mask);
10810 
10811     SDValue Shift = DAG.getShiftAmountConstant(HalfBits, VT, dl);
10812     SDValue TH = DAG.getNode(ISD::SRL, dl, VT, T, Shift);
10813     SDValue LLH = DAG.getNode(ISD::SRL, dl, VT, LL, Shift);
10814     SDValue RLH = DAG.getNode(ISD::SRL, dl, VT, RL, Shift);
10815 
10816     SDValue U = DAG.getNode(ISD::ADD, dl, VT,
10817                             DAG.getNode(ISD::MUL, dl, VT, LLH, RLL), TH);
10818     SDValue UL = DAG.getNode(ISD::AND, dl, VT, U, Mask);
10819     SDValue UH = DAG.getNode(ISD::SRL, dl, VT, U, Shift);
10820 
10821     SDValue V = DAG.getNode(ISD::ADD, dl, VT,
10822                             DAG.getNode(ISD::MUL, dl, VT, LLL, RLH), UL);
10823     SDValue VH = DAG.getNode(ISD::SRL, dl, VT, V, Shift);
10824 
10825     SDValue W =
10826         DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::MUL, dl, VT, LLH, RLH),
10827                     DAG.getNode(ISD::ADD, dl, VT, UH, VH));
10828     Lo = DAG.getNode(ISD::ADD, dl, VT, TL,
10829                      DAG.getNode(ISD::SHL, dl, VT, V, Shift));
10830 
10831     Hi = DAG.getNode(ISD::ADD, dl, VT, W,
10832                      DAG.getNode(ISD::ADD, dl, VT,
10833                                  DAG.getNode(ISD::MUL, dl, VT, RH, LL),
10834                                  DAG.getNode(ISD::MUL, dl, VT, RL, LH)));
10835   } else {
10836     // Attempt a libcall.
10837     SDValue Ret;
10838     TargetLowering::MakeLibCallOptions CallOptions;
10839     CallOptions.setSExt(Signed);
10840     CallOptions.setIsPostTypeLegalization(true);
10841     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
10842       // Halves of WideVT are packed into registers in different order
10843       // depending on platform endianness. This is usually handled by
10844       // the C calling convention, but we can't defer to it in
10845       // the legalizer.
10846       SDValue Args[] = {LL, LH, RL, RH};
10847       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
10848     } else {
10849       SDValue Args[] = {LH, LL, RH, RL};
10850       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
10851     }
10852     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
10853            "Ret value is a collection of constituent nodes holding result.");
10854     if (DAG.getDataLayout().isLittleEndian()) {
10855       // Same as above.
10856       Lo = Ret.getOperand(0);
10857       Hi = Ret.getOperand(1);
10858     } else {
10859       Lo = Ret.getOperand(1);
10860       Hi = Ret.getOperand(0);
10861     }
10862   }
10863 }
10864 
10865 void TargetLowering::forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl,
10866                                         bool Signed, const SDValue LHS,
10867                                         const SDValue RHS, SDValue &Lo,
10868                                         SDValue &Hi) const {
10869   EVT VT = LHS.getValueType();
10870   assert(RHS.getValueType() == VT && "Mismatching operand types");
10871 
10872   SDValue HiLHS;
10873   SDValue HiRHS;
10874   if (Signed) {
10875     // The high part is obtained by SRA'ing all but one of the bits of low
10876     // part.
10877     unsigned LoSize = VT.getFixedSizeInBits();
10878     HiLHS = DAG.getNode(
10879         ISD::SRA, dl, VT, LHS,
10880         DAG.getConstant(LoSize - 1, dl, getPointerTy(DAG.getDataLayout())));
10881     HiRHS = DAG.getNode(
10882         ISD::SRA, dl, VT, RHS,
10883         DAG.getConstant(LoSize - 1, dl, getPointerTy(DAG.getDataLayout())));
10884   } else {
10885     HiLHS = DAG.getConstant(0, dl, VT);
10886     HiRHS = DAG.getConstant(0, dl, VT);
10887   }
10888   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
10889   forceExpandWideMUL(DAG, dl, Signed, WideVT, LHS, HiLHS, RHS, HiRHS, Lo, Hi);
10890 }
10891 
10892 SDValue
10893 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
10894   assert((Node->getOpcode() == ISD::SMULFIX ||
10895           Node->getOpcode() == ISD::UMULFIX ||
10896           Node->getOpcode() == ISD::SMULFIXSAT ||
10897           Node->getOpcode() == ISD::UMULFIXSAT) &&
10898          "Expected a fixed point multiplication opcode");
10899 
10900   SDLoc dl(Node);
10901   SDValue LHS = Node->getOperand(0);
10902   SDValue RHS = Node->getOperand(1);
10903   EVT VT = LHS.getValueType();
10904   unsigned Scale = Node->getConstantOperandVal(2);
10905   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
10906                      Node->getOpcode() == ISD::UMULFIXSAT);
10907   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
10908                  Node->getOpcode() == ISD::SMULFIXSAT);
10909   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10910   unsigned VTSize = VT.getScalarSizeInBits();
10911 
10912   if (!Scale) {
10913     // [us]mul.fix(a, b, 0) -> mul(a, b)
10914     if (!Saturating) {
10915       if (isOperationLegalOrCustom(ISD::MUL, VT))
10916         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
10917     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
10918       SDValue Result =
10919           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
10920       SDValue Product = Result.getValue(0);
10921       SDValue Overflow = Result.getValue(1);
10922       SDValue Zero = DAG.getConstant(0, dl, VT);
10923 
10924       APInt MinVal = APInt::getSignedMinValue(VTSize);
10925       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
10926       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
10927       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
10928       // Xor the inputs, if resulting sign bit is 0 the product will be
10929       // positive, else negative.
10930       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
10931       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
10932       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
10933       return DAG.getSelect(dl, VT, Overflow, Result, Product);
10934     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
10935       SDValue Result =
10936           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
10937       SDValue Product = Result.getValue(0);
10938       SDValue Overflow = Result.getValue(1);
10939 
10940       APInt MaxVal = APInt::getMaxValue(VTSize);
10941       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
10942       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
10943     }
10944   }
10945 
10946   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
10947          "Expected scale to be less than the number of bits if signed or at "
10948          "most the number of bits if unsigned.");
10949   assert(LHS.getValueType() == RHS.getValueType() &&
10950          "Expected both operands to be the same type");
10951 
10952   // Get the upper and lower bits of the result.
10953   SDValue Lo, Hi;
10954   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
10955   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
10956   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VTSize * 2);
10957   if (VT.isVector())
10958     WideVT =
10959         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
10960   if (isOperationLegalOrCustom(LoHiOp, VT)) {
10961     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
10962     Lo = Result.getValue(0);
10963     Hi = Result.getValue(1);
10964   } else if (isOperationLegalOrCustom(HiOp, VT)) {
10965     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
10966     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
10967   } else if (isOperationLegalOrCustom(ISD::MUL, WideVT)) {
10968     // Try for a multiplication using a wider type.
10969     unsigned Ext = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
10970     SDValue LHSExt = DAG.getNode(Ext, dl, WideVT, LHS);
10971     SDValue RHSExt = DAG.getNode(Ext, dl, WideVT, RHS);
10972     SDValue Res = DAG.getNode(ISD::MUL, dl, WideVT, LHSExt, RHSExt);
10973     Lo = DAG.getNode(ISD::TRUNCATE, dl, VT, Res);
10974     SDValue Shifted =
10975         DAG.getNode(ISD::SRA, dl, WideVT, Res,
10976                     DAG.getShiftAmountConstant(VTSize, WideVT, dl));
10977     Hi = DAG.getNode(ISD::TRUNCATE, dl, VT, Shifted);
10978   } else if (VT.isVector()) {
10979     return SDValue();
10980   } else {
10981     forceExpandWideMUL(DAG, dl, Signed, LHS, RHS, Lo, Hi);
10982   }
10983 
10984   if (Scale == VTSize)
10985     // Result is just the top half since we'd be shifting by the width of the
10986     // operand. Overflow impossible so this works for both UMULFIX and
10987     // UMULFIXSAT.
10988     return Hi;
10989 
10990   // The result will need to be shifted right by the scale since both operands
10991   // are scaled. The result is given to us in 2 halves, so we only want part of
10992   // both in the result.
10993   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
10994                                DAG.getShiftAmountConstant(Scale, VT, dl));
10995   if (!Saturating)
10996     return Result;
10997 
10998   if (!Signed) {
10999     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
11000     // widened multiplication) aren't all zeroes.
11001 
11002     // Saturate to max if ((Hi >> Scale) != 0),
11003     // which is the same as if (Hi > ((1 << Scale) - 1))
11004     APInt MaxVal = APInt::getMaxValue(VTSize);
11005     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
11006                                       dl, VT);
11007     Result = DAG.getSelectCC(dl, Hi, LowMask,
11008                              DAG.getConstant(MaxVal, dl, VT), Result,
11009                              ISD::SETUGT);
11010 
11011     return Result;
11012   }
11013 
11014   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
11015   // widened multiplication) aren't all ones or all zeroes.
11016 
11017   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
11018   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
11019 
11020   if (Scale == 0) {
11021     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
11022                                DAG.getShiftAmountConstant(VTSize - 1, VT, dl));
11023     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
11024     // Saturated to SatMin if wide product is negative, and SatMax if wide
11025     // product is positive ...
11026     SDValue Zero = DAG.getConstant(0, dl, VT);
11027     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
11028                                                ISD::SETLT);
11029     // ... but only if we overflowed.
11030     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
11031   }
11032 
11033   //  We handled Scale==0 above so all the bits to examine is in Hi.
11034 
11035   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
11036   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
11037   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
11038                                     dl, VT);
11039   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
11040   // Saturate to min if (Hi >> (Scale - 1)) < -1),
11041   // which is the same as if (HI < (-1 << (Scale - 1))
11042   SDValue HighMask =
11043       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
11044                       dl, VT);
11045   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
11046   return Result;
11047 }
11048 
11049 SDValue
11050 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
11051                                     SDValue LHS, SDValue RHS,
11052                                     unsigned Scale, SelectionDAG &DAG) const {
11053   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
11054           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
11055          "Expected a fixed point division opcode");
11056 
11057   EVT VT = LHS.getValueType();
11058   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
11059   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
11060   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
11061 
11062   // If there is enough room in the type to upscale the LHS or downscale the
11063   // RHS before the division, we can perform it in this type without having to
11064   // resize. For signed operations, the LHS headroom is the number of
11065   // redundant sign bits, and for unsigned ones it is the number of zeroes.
11066   // The headroom for the RHS is the number of trailing zeroes.
11067   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
11068                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
11069   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
11070 
11071   // For signed saturating operations, we need to be able to detect true integer
11072   // division overflow; that is, when you have MIN / -EPS. However, this
11073   // is undefined behavior and if we emit divisions that could take such
11074   // values it may cause undesired behavior (arithmetic exceptions on x86, for
11075   // example).
11076   // Avoid this by requiring an extra bit so that we never get this case.
11077   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
11078   // signed saturating division, we need to emit a whopping 32-bit division.
11079   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
11080     return SDValue();
11081 
11082   unsigned LHSShift = std::min(LHSLead, Scale);
11083   unsigned RHSShift = Scale - LHSShift;
11084 
11085   // At this point, we know that if we shift the LHS up by LHSShift and the
11086   // RHS down by RHSShift, we can emit a regular division with a final scaling
11087   // factor of Scale.
11088 
11089   if (LHSShift)
11090     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
11091                       DAG.getShiftAmountConstant(LHSShift, VT, dl));
11092   if (RHSShift)
11093     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
11094                       DAG.getShiftAmountConstant(RHSShift, VT, dl));
11095 
11096   SDValue Quot;
11097   if (Signed) {
11098     // For signed operations, if the resulting quotient is negative and the
11099     // remainder is nonzero, subtract 1 from the quotient to round towards
11100     // negative infinity.
11101     SDValue Rem;
11102     // FIXME: Ideally we would always produce an SDIVREM here, but if the
11103     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
11104     // we couldn't just form a libcall, but the type legalizer doesn't do it.
11105     if (isTypeLegal(VT) &&
11106         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
11107       Quot = DAG.getNode(ISD::SDIVREM, dl,
11108                          DAG.getVTList(VT, VT),
11109                          LHS, RHS);
11110       Rem = Quot.getValue(1);
11111       Quot = Quot.getValue(0);
11112     } else {
11113       Quot = DAG.getNode(ISD::SDIV, dl, VT,
11114                          LHS, RHS);
11115       Rem = DAG.getNode(ISD::SREM, dl, VT,
11116                         LHS, RHS);
11117     }
11118     SDValue Zero = DAG.getConstant(0, dl, VT);
11119     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
11120     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
11121     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
11122     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
11123     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
11124                                DAG.getConstant(1, dl, VT));
11125     Quot = DAG.getSelect(dl, VT,
11126                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
11127                          Sub1, Quot);
11128   } else
11129     Quot = DAG.getNode(ISD::UDIV, dl, VT,
11130                        LHS, RHS);
11131 
11132   return Quot;
11133 }
11134 
11135 void TargetLowering::expandUADDSUBO(
11136     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
11137   SDLoc dl(Node);
11138   SDValue LHS = Node->getOperand(0);
11139   SDValue RHS = Node->getOperand(1);
11140   bool IsAdd = Node->getOpcode() == ISD::UADDO;
11141 
11142   // If UADDO_CARRY/SUBO_CARRY is legal, use that instead.
11143   unsigned OpcCarry = IsAdd ? ISD::UADDO_CARRY : ISD::USUBO_CARRY;
11144   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
11145     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
11146     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
11147                                     { LHS, RHS, CarryIn });
11148     Result = SDValue(NodeCarry.getNode(), 0);
11149     Overflow = SDValue(NodeCarry.getNode(), 1);
11150     return;
11151   }
11152 
11153   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
11154                             LHS.getValueType(), LHS, RHS);
11155 
11156   EVT ResultType = Node->getValueType(1);
11157   EVT SetCCType = getSetCCResultType(
11158       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
11159   SDValue SetCC;
11160   if (IsAdd && isOneConstant(RHS)) {
11161     // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces
11162     // the live range of X. We assume comparing with 0 is cheap.
11163     // The general case (X + C) < C is not necessarily beneficial. Although we
11164     // reduce the live range of X, we may introduce the materialization of
11165     // constant C.
11166     SetCC =
11167         DAG.getSetCC(dl, SetCCType, Result,
11168                      DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ);
11169   } else if (IsAdd && isAllOnesConstant(RHS)) {
11170     // Special case: uaddo X, -1 overflows if X != 0.
11171     SetCC =
11172         DAG.getSetCC(dl, SetCCType, LHS,
11173                      DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETNE);
11174   } else {
11175     ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
11176     SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
11177   }
11178   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
11179 }
11180 
11181 void TargetLowering::expandSADDSUBO(
11182     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
11183   SDLoc dl(Node);
11184   SDValue LHS = Node->getOperand(0);
11185   SDValue RHS = Node->getOperand(1);
11186   bool IsAdd = Node->getOpcode() == ISD::SADDO;
11187 
11188   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
11189                             LHS.getValueType(), LHS, RHS);
11190 
11191   EVT ResultType = Node->getValueType(1);
11192   EVT OType = getSetCCResultType(
11193       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
11194 
11195   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
11196   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
11197   if (isOperationLegal(OpcSat, LHS.getValueType())) {
11198     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
11199     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
11200     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
11201     return;
11202   }
11203 
11204   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
11205 
11206   // For an addition, the result should be less than one of the operands (LHS)
11207   // if and only if the other operand (RHS) is negative, otherwise there will
11208   // be overflow.
11209   // For a subtraction, the result should be less than one of the operands
11210   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
11211   // otherwise there will be overflow.
11212   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
11213   SDValue ConditionRHS =
11214       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
11215 
11216   Overflow = DAG.getBoolExtOrTrunc(
11217       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
11218       ResultType, ResultType);
11219 }
11220 
11221 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
11222                                 SDValue &Overflow, SelectionDAG &DAG) const {
11223   SDLoc dl(Node);
11224   EVT VT = Node->getValueType(0);
11225   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
11226   SDValue LHS = Node->getOperand(0);
11227   SDValue RHS = Node->getOperand(1);
11228   bool isSigned = Node->getOpcode() == ISD::SMULO;
11229 
11230   // For power-of-two multiplications we can use a simpler shift expansion.
11231   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
11232     const APInt &C = RHSC->getAPIntValue();
11233     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
11234     if (C.isPowerOf2()) {
11235       // smulo(x, signed_min) is same as umulo(x, signed_min).
11236       bool UseArithShift = isSigned && !C.isMinSignedValue();
11237       SDValue ShiftAmt = DAG.getShiftAmountConstant(C.logBase2(), VT, dl);
11238       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
11239       Overflow = DAG.getSetCC(dl, SetCCVT,
11240           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
11241                       dl, VT, Result, ShiftAmt),
11242           LHS, ISD::SETNE);
11243       return true;
11244     }
11245   }
11246 
11247   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
11248   if (VT.isVector())
11249     WideVT =
11250         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
11251 
11252   SDValue BottomHalf;
11253   SDValue TopHalf;
11254   static const unsigned Ops[2][3] =
11255       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
11256         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
11257   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
11258     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
11259     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
11260   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
11261     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
11262                              RHS);
11263     TopHalf = BottomHalf.getValue(1);
11264   } else if (isTypeLegal(WideVT)) {
11265     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
11266     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
11267     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
11268     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
11269     SDValue ShiftAmt =
11270         DAG.getShiftAmountConstant(VT.getScalarSizeInBits(), WideVT, dl);
11271     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
11272                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
11273   } else {
11274     if (VT.isVector())
11275       return false;
11276 
11277     forceExpandWideMUL(DAG, dl, isSigned, LHS, RHS, BottomHalf, TopHalf);
11278   }
11279 
11280   Result = BottomHalf;
11281   if (isSigned) {
11282     SDValue ShiftAmt = DAG.getShiftAmountConstant(
11283         VT.getScalarSizeInBits() - 1, BottomHalf.getValueType(), dl);
11284     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
11285     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
11286   } else {
11287     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
11288                             DAG.getConstant(0, dl, VT), ISD::SETNE);
11289   }
11290 
11291   // Truncate the result if SetCC returns a larger type than needed.
11292   EVT RType = Node->getValueType(1);
11293   if (RType.bitsLT(Overflow.getValueType()))
11294     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
11295 
11296   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
11297          "Unexpected result type for S/UMULO legalization");
11298   return true;
11299 }
11300 
11301 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
11302   SDLoc dl(Node);
11303   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
11304   SDValue Op = Node->getOperand(0);
11305   EVT VT = Op.getValueType();
11306 
11307   if (VT.isScalableVector())
11308     report_fatal_error(
11309         "Expanding reductions for scalable vectors is undefined.");
11310 
11311   // Try to use a shuffle reduction for power of two vectors.
11312   if (VT.isPow2VectorType()) {
11313     while (VT.getVectorNumElements() > 1) {
11314       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
11315       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
11316         break;
11317 
11318       SDValue Lo, Hi;
11319       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
11320       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi, Node->getFlags());
11321       VT = HalfVT;
11322     }
11323   }
11324 
11325   EVT EltVT = VT.getVectorElementType();
11326   unsigned NumElts = VT.getVectorNumElements();
11327 
11328   SmallVector<SDValue, 8> Ops;
11329   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
11330 
11331   SDValue Res = Ops[0];
11332   for (unsigned i = 1; i < NumElts; i++)
11333     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
11334 
11335   // Result type may be wider than element type.
11336   if (EltVT != Node->getValueType(0))
11337     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
11338   return Res;
11339 }
11340 
11341 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
11342   SDLoc dl(Node);
11343   SDValue AccOp = Node->getOperand(0);
11344   SDValue VecOp = Node->getOperand(1);
11345   SDNodeFlags Flags = Node->getFlags();
11346 
11347   EVT VT = VecOp.getValueType();
11348   EVT EltVT = VT.getVectorElementType();
11349 
11350   if (VT.isScalableVector())
11351     report_fatal_error(
11352         "Expanding reductions for scalable vectors is undefined.");
11353 
11354   unsigned NumElts = VT.getVectorNumElements();
11355 
11356   SmallVector<SDValue, 8> Ops;
11357   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
11358 
11359   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
11360 
11361   SDValue Res = AccOp;
11362   for (unsigned i = 0; i < NumElts; i++)
11363     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
11364 
11365   return Res;
11366 }
11367 
11368 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
11369                                SelectionDAG &DAG) const {
11370   EVT VT = Node->getValueType(0);
11371   SDLoc dl(Node);
11372   bool isSigned = Node->getOpcode() == ISD::SREM;
11373   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
11374   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
11375   SDValue Dividend = Node->getOperand(0);
11376   SDValue Divisor = Node->getOperand(1);
11377   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
11378     SDVTList VTs = DAG.getVTList(VT, VT);
11379     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
11380     return true;
11381   }
11382   if (isOperationLegalOrCustom(DivOpc, VT)) {
11383     // X % Y -> X-X/Y*Y
11384     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
11385     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
11386     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
11387     return true;
11388   }
11389   return false;
11390 }
11391 
11392 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
11393                                             SelectionDAG &DAG) const {
11394   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
11395   SDLoc dl(SDValue(Node, 0));
11396   SDValue Src = Node->getOperand(0);
11397 
11398   // DstVT is the result type, while SatVT is the size to which we saturate
11399   EVT SrcVT = Src.getValueType();
11400   EVT DstVT = Node->getValueType(0);
11401 
11402   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
11403   unsigned SatWidth = SatVT.getScalarSizeInBits();
11404   unsigned DstWidth = DstVT.getScalarSizeInBits();
11405   assert(SatWidth <= DstWidth &&
11406          "Expected saturation width smaller than result width");
11407 
11408   // Determine minimum and maximum integer values and their corresponding
11409   // floating-point values.
11410   APInt MinInt, MaxInt;
11411   if (IsSigned) {
11412     MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth);
11413     MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth);
11414   } else {
11415     MinInt = APInt::getMinValue(SatWidth).zext(DstWidth);
11416     MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth);
11417   }
11418 
11419   // We cannot risk emitting FP_TO_XINT nodes with a source VT of [b]f16, as
11420   // libcall emission cannot handle this. Large result types will fail.
11421   if (SrcVT == MVT::f16 || SrcVT == MVT::bf16) {
11422     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
11423     SrcVT = Src.getValueType();
11424   }
11425 
11426   const fltSemantics &Sem = SrcVT.getFltSemantics();
11427   APFloat MinFloat(Sem);
11428   APFloat MaxFloat(Sem);
11429 
11430   APFloat::opStatus MinStatus =
11431       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
11432   APFloat::opStatus MaxStatus =
11433       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
11434   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
11435                              !(MaxStatus & APFloat::opStatus::opInexact);
11436 
11437   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
11438   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
11439 
11440   // If the integer bounds are exactly representable as floats and min/max are
11441   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
11442   // of comparisons and selects.
11443   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
11444                      isOperationLegal(ISD::FMAXNUM, SrcVT);
11445   if (AreExactFloatBounds && MinMaxLegal) {
11446     SDValue Clamped = Src;
11447 
11448     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
11449     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
11450     // Clamp by MaxFloat from above. NaN cannot occur.
11451     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
11452     // Convert clamped value to integer.
11453     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
11454                                   dl, DstVT, Clamped);
11455 
11456     // In the unsigned case we're done, because we mapped NaN to MinFloat,
11457     // which will cast to zero.
11458     if (!IsSigned)
11459       return FpToInt;
11460 
11461     // Otherwise, select 0 if Src is NaN.
11462     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
11463     EVT SetCCVT =
11464         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
11465     SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO);
11466     return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, FpToInt);
11467   }
11468 
11469   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
11470   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
11471 
11472   // Result of direct conversion. The assumption here is that the operation is
11473   // non-trapping and it's fine to apply it to an out-of-range value if we
11474   // select it away later.
11475   SDValue FpToInt =
11476       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
11477 
11478   SDValue Select = FpToInt;
11479 
11480   EVT SetCCVT =
11481       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
11482 
11483   // If Src ULT MinFloat, select MinInt. In particular, this also selects
11484   // MinInt if Src is NaN.
11485   SDValue ULT = DAG.getSetCC(dl, SetCCVT, Src, MinFloatNode, ISD::SETULT);
11486   Select = DAG.getSelect(dl, DstVT, ULT, MinIntNode, Select);
11487   // If Src OGT MaxFloat, select MaxInt.
11488   SDValue OGT = DAG.getSetCC(dl, SetCCVT, Src, MaxFloatNode, ISD::SETOGT);
11489   Select = DAG.getSelect(dl, DstVT, OGT, MaxIntNode, Select);
11490 
11491   // In the unsigned case we are done, because we mapped NaN to MinInt, which
11492   // is already zero.
11493   if (!IsSigned)
11494     return Select;
11495 
11496   // Otherwise, select 0 if Src is NaN.
11497   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
11498   SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO);
11499   return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, Select);
11500 }
11501 
11502 SDValue TargetLowering::expandRoundInexactToOdd(EVT ResultVT, SDValue Op,
11503                                                 const SDLoc &dl,
11504                                                 SelectionDAG &DAG) const {
11505   EVT OperandVT = Op.getValueType();
11506   if (OperandVT.getScalarType() == ResultVT.getScalarType())
11507     return Op;
11508   EVT ResultIntVT = ResultVT.changeTypeToInteger();
11509   // We are rounding binary64/binary128 -> binary32 -> bfloat16. This
11510   // can induce double-rounding which may alter the results. We can
11511   // correct for this using a trick explained in: Boldo, Sylvie, and
11512   // Guillaume Melquiond. "When double rounding is odd." 17th IMACS
11513   // World Congress. 2005.
11514   unsigned BitSize = OperandVT.getScalarSizeInBits();
11515   EVT WideIntVT = OperandVT.changeTypeToInteger();
11516   SDValue OpAsInt = DAG.getBitcast(WideIntVT, Op);
11517   SDValue SignBit =
11518       DAG.getNode(ISD::AND, dl, WideIntVT, OpAsInt,
11519                   DAG.getConstant(APInt::getSignMask(BitSize), dl, WideIntVT));
11520   SDValue AbsWide;
11521   if (isOperationLegalOrCustom(ISD::FABS, OperandVT)) {
11522     AbsWide = DAG.getNode(ISD::FABS, dl, OperandVT, Op);
11523   } else {
11524     SDValue ClearedSign = DAG.getNode(
11525         ISD::AND, dl, WideIntVT, OpAsInt,
11526         DAG.getConstant(APInt::getSignedMaxValue(BitSize), dl, WideIntVT));
11527     AbsWide = DAG.getBitcast(OperandVT, ClearedSign);
11528   }
11529   SDValue AbsNarrow = DAG.getFPExtendOrRound(AbsWide, dl, ResultVT);
11530   SDValue AbsNarrowAsWide = DAG.getFPExtendOrRound(AbsNarrow, dl, OperandVT);
11531 
11532   // We can keep the narrow value as-is if narrowing was exact (no
11533   // rounding error), the wide value was NaN (the narrow value is also
11534   // NaN and should be preserved) or if we rounded to the odd value.
11535   SDValue NarrowBits = DAG.getNode(ISD::BITCAST, dl, ResultIntVT, AbsNarrow);
11536   SDValue One = DAG.getConstant(1, dl, ResultIntVT);
11537   SDValue NegativeOne = DAG.getAllOnesConstant(dl, ResultIntVT);
11538   SDValue And = DAG.getNode(ISD::AND, dl, ResultIntVT, NarrowBits, One);
11539   EVT ResultIntVTCCVT = getSetCCResultType(
11540       DAG.getDataLayout(), *DAG.getContext(), And.getValueType());
11541   SDValue Zero = DAG.getConstant(0, dl, ResultIntVT);
11542   // The result is already odd so we don't need to do anything.
11543   SDValue AlreadyOdd = DAG.getSetCC(dl, ResultIntVTCCVT, And, Zero, ISD::SETNE);
11544 
11545   EVT WideSetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
11546                                        AbsWide.getValueType());
11547   // We keep results which are exact, odd or NaN.
11548   SDValue KeepNarrow =
11549       DAG.getSetCC(dl, WideSetCCVT, AbsWide, AbsNarrowAsWide, ISD::SETUEQ);
11550   KeepNarrow = DAG.getNode(ISD::OR, dl, WideSetCCVT, KeepNarrow, AlreadyOdd);
11551   // We morally performed a round-down if AbsNarrow is smaller than
11552   // AbsWide.
11553   SDValue NarrowIsRd =
11554       DAG.getSetCC(dl, WideSetCCVT, AbsWide, AbsNarrowAsWide, ISD::SETOGT);
11555   // If the narrow value is odd or exact, pick it.
11556   // Otherwise, narrow is even and corresponds to either the rounded-up
11557   // or rounded-down value. If narrow is the rounded-down value, we want
11558   // the rounded-up value as it will be odd.
11559   SDValue Adjust = DAG.getSelect(dl, ResultIntVT, NarrowIsRd, One, NegativeOne);
11560   SDValue Adjusted = DAG.getNode(ISD::ADD, dl, ResultIntVT, NarrowBits, Adjust);
11561   Op = DAG.getSelect(dl, ResultIntVT, KeepNarrow, NarrowBits, Adjusted);
11562   int ShiftAmount = BitSize - ResultVT.getScalarSizeInBits();
11563   SDValue ShiftCnst = DAG.getShiftAmountConstant(ShiftAmount, WideIntVT, dl);
11564   SignBit = DAG.getNode(ISD::SRL, dl, WideIntVT, SignBit, ShiftCnst);
11565   SignBit = DAG.getNode(ISD::TRUNCATE, dl, ResultIntVT, SignBit);
11566   Op = DAG.getNode(ISD::OR, dl, ResultIntVT, Op, SignBit);
11567   return DAG.getNode(ISD::BITCAST, dl, ResultVT, Op);
11568 }
11569 
11570 SDValue TargetLowering::expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const {
11571   assert(Node->getOpcode() == ISD::FP_ROUND && "Unexpected opcode!");
11572   SDValue Op = Node->getOperand(0);
11573   EVT VT = Node->getValueType(0);
11574   SDLoc dl(Node);
11575   if (VT.getScalarType() == MVT::bf16) {
11576     if (Node->getConstantOperandVal(1) == 1) {
11577       return DAG.getNode(ISD::FP_TO_BF16, dl, VT, Node->getOperand(0));
11578     }
11579     EVT OperandVT = Op.getValueType();
11580     SDValue IsNaN = DAG.getSetCC(
11581         dl,
11582         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), OperandVT),
11583         Op, Op, ISD::SETUO);
11584 
11585     // We are rounding binary64/binary128 -> binary32 -> bfloat16. This
11586     // can induce double-rounding which may alter the results. We can
11587     // correct for this using a trick explained in: Boldo, Sylvie, and
11588     // Guillaume Melquiond. "When double rounding is odd." 17th IMACS
11589     // World Congress. 2005.
11590     EVT F32 = VT.isVector() ? VT.changeVectorElementType(MVT::f32) : MVT::f32;
11591     EVT I32 = F32.changeTypeToInteger();
11592     Op = expandRoundInexactToOdd(F32, Op, dl, DAG);
11593     Op = DAG.getNode(ISD::BITCAST, dl, I32, Op);
11594 
11595     // Conversions should set NaN's quiet bit. This also prevents NaNs from
11596     // turning into infinities.
11597     SDValue NaN =
11598         DAG.getNode(ISD::OR, dl, I32, Op, DAG.getConstant(0x400000, dl, I32));
11599 
11600     // Factor in the contribution of the low 16 bits.
11601     SDValue One = DAG.getConstant(1, dl, I32);
11602     SDValue Lsb = DAG.getNode(ISD::SRL, dl, I32, Op,
11603                               DAG.getShiftAmountConstant(16, I32, dl));
11604     Lsb = DAG.getNode(ISD::AND, dl, I32, Lsb, One);
11605     SDValue RoundingBias =
11606         DAG.getNode(ISD::ADD, dl, I32, DAG.getConstant(0x7fff, dl, I32), Lsb);
11607     SDValue Add = DAG.getNode(ISD::ADD, dl, I32, Op, RoundingBias);
11608 
11609     // Don't round if we had a NaN, we don't want to turn 0x7fffffff into
11610     // 0x80000000.
11611     Op = DAG.getSelect(dl, I32, IsNaN, NaN, Add);
11612 
11613     // Now that we have rounded, shift the bits into position.
11614     Op = DAG.getNode(ISD::SRL, dl, I32, Op,
11615                      DAG.getShiftAmountConstant(16, I32, dl));
11616     Op = DAG.getNode(ISD::BITCAST, dl, I32, Op);
11617     EVT I16 = I32.isVector() ? I32.changeVectorElementType(MVT::i16) : MVT::i16;
11618     Op = DAG.getNode(ISD::TRUNCATE, dl, I16, Op);
11619     return DAG.getNode(ISD::BITCAST, dl, VT, Op);
11620   }
11621   return SDValue();
11622 }
11623 
11624 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
11625                                            SelectionDAG &DAG) const {
11626   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
11627   assert(Node->getValueType(0).isScalableVector() &&
11628          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
11629 
11630   EVT VT = Node->getValueType(0);
11631   SDValue V1 = Node->getOperand(0);
11632   SDValue V2 = Node->getOperand(1);
11633   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
11634   SDLoc DL(Node);
11635 
11636   // Expand through memory thusly:
11637   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
11638   //  Store V1, Ptr
11639   //  Store V2, Ptr + sizeof(V1)
11640   //  If (Imm < 0)
11641   //    TrailingElts = -Imm
11642   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
11643   //  else
11644   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
11645   //  Res = Load Ptr
11646 
11647   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
11648 
11649   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
11650                                VT.getVectorElementCount() * 2);
11651   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
11652   EVT PtrVT = StackPtr.getValueType();
11653   auto &MF = DAG.getMachineFunction();
11654   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
11655   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
11656 
11657   // Store the lo part of CONCAT_VECTORS(V1, V2)
11658   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
11659   // Store the hi part of CONCAT_VECTORS(V1, V2)
11660   SDValue OffsetToV2 = DAG.getVScale(
11661       DL, PtrVT,
11662       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinValue()));
11663   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
11664   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
11665 
11666   if (Imm >= 0) {
11667     // Load back the required element. getVectorElementPointer takes care of
11668     // clamping the index if it's out-of-bounds.
11669     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
11670     // Load the spliced result
11671     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
11672                        MachinePointerInfo::getUnknownStack(MF));
11673   }
11674 
11675   uint64_t TrailingElts = -Imm;
11676 
11677   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
11678   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
11679   SDValue TrailingBytes =
11680       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
11681 
11682   if (TrailingElts > VT.getVectorMinNumElements()) {
11683     SDValue VLBytes =
11684         DAG.getVScale(DL, PtrVT,
11685                       APInt(PtrVT.getFixedSizeInBits(),
11686                             VT.getStoreSize().getKnownMinValue()));
11687     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
11688   }
11689 
11690   // Calculate the start address of the spliced result.
11691   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
11692 
11693   // Load the spliced result
11694   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
11695                      MachinePointerInfo::getUnknownStack(MF));
11696 }
11697 
11698 SDValue TargetLowering::expandVECTOR_COMPRESS(SDNode *Node,
11699                                               SelectionDAG &DAG) const {
11700   SDLoc DL(Node);
11701   SDValue Vec = Node->getOperand(0);
11702   SDValue Mask = Node->getOperand(1);
11703   SDValue Passthru = Node->getOperand(2);
11704 
11705   EVT VecVT = Vec.getValueType();
11706   EVT ScalarVT = VecVT.getScalarType();
11707   EVT MaskVT = Mask.getValueType();
11708   EVT MaskScalarVT = MaskVT.getScalarType();
11709 
11710   // Needs to be handled by targets that have scalable vector types.
11711   if (VecVT.isScalableVector())
11712     report_fatal_error("Cannot expand masked_compress for scalable vectors.");
11713 
11714   SDValue StackPtr = DAG.CreateStackTemporary(
11715       VecVT.getStoreSize(), DAG.getReducedAlign(VecVT, /*UseABI=*/false));
11716   int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
11717   MachinePointerInfo PtrInfo =
11718       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
11719 
11720   MVT PositionVT = getVectorIdxTy(DAG.getDataLayout());
11721   SDValue Chain = DAG.getEntryNode();
11722   SDValue OutPos = DAG.getConstant(0, DL, PositionVT);
11723 
11724   bool HasPassthru = !Passthru.isUndef();
11725 
11726   // If we have a passthru vector, store it on the stack, overwrite the matching
11727   // positions and then re-write the last element that was potentially
11728   // overwritten even though mask[i] = false.
11729   if (HasPassthru)
11730     Chain = DAG.getStore(Chain, DL, Passthru, StackPtr, PtrInfo);
11731 
11732   SDValue LastWriteVal;
11733   APInt PassthruSplatVal;
11734   bool IsSplatPassthru =
11735       ISD::isConstantSplatVector(Passthru.getNode(), PassthruSplatVal);
11736 
11737   if (IsSplatPassthru) {
11738     // As we do not know which position we wrote to last, we cannot simply
11739     // access that index from the passthru vector. So we first check if passthru
11740     // is a splat vector, to use any element ...
11741     LastWriteVal = DAG.getConstant(PassthruSplatVal, DL, ScalarVT);
11742   } else if (HasPassthru) {
11743     // ... if it is not a splat vector, we need to get the passthru value at
11744     // position = popcount(mask) and re-load it from the stack before it is
11745     // overwritten in the loop below.
11746     EVT PopcountVT = ScalarVT.changeTypeToInteger();
11747     SDValue Popcount = DAG.getNode(
11748         ISD::TRUNCATE, DL, MaskVT.changeVectorElementType(MVT::i1), Mask);
11749     Popcount =
11750         DAG.getNode(ISD::ZERO_EXTEND, DL,
11751                     MaskVT.changeVectorElementType(PopcountVT), Popcount);
11752     Popcount = DAG.getNode(ISD::VECREDUCE_ADD, DL, PopcountVT, Popcount);
11753     SDValue LastElmtPtr =
11754         getVectorElementPointer(DAG, StackPtr, VecVT, Popcount);
11755     LastWriteVal = DAG.getLoad(
11756         ScalarVT, DL, Chain, LastElmtPtr,
11757         MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
11758     Chain = LastWriteVal.getValue(1);
11759   }
11760 
11761   unsigned NumElms = VecVT.getVectorNumElements();
11762   for (unsigned I = 0; I < NumElms; I++) {
11763     SDValue Idx = DAG.getVectorIdxConstant(I, DL);
11764 
11765     SDValue ValI = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, Vec, Idx);
11766     SDValue OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos);
11767     Chain = DAG.getStore(
11768         Chain, DL, ValI, OutPtr,
11769         MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
11770 
11771     // Get the mask value and add it to the current output position. This
11772     // either increments by 1 if MaskI is true or adds 0 otherwise.
11773     // Freeze in case we have poison/undef mask entries.
11774     SDValue MaskI = DAG.getFreeze(
11775         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskScalarVT, Mask, Idx));
11776     MaskI = DAG.getFreeze(MaskI);
11777     MaskI = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, MaskI);
11778     MaskI = DAG.getNode(ISD::ZERO_EXTEND, DL, PositionVT, MaskI);
11779     OutPos = DAG.getNode(ISD::ADD, DL, PositionVT, OutPos, MaskI);
11780 
11781     if (HasPassthru && I == NumElms - 1) {
11782       SDValue EndOfVector =
11783           DAG.getConstant(VecVT.getVectorNumElements() - 1, DL, PositionVT);
11784       SDValue AllLanesSelected =
11785           DAG.getSetCC(DL, MVT::i1, OutPos, EndOfVector, ISD::CondCode::SETUGT);
11786       OutPos = DAG.getNode(ISD::UMIN, DL, PositionVT, OutPos, EndOfVector);
11787       OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos);
11788 
11789       // Re-write the last ValI if all lanes were selected. Otherwise,
11790       // overwrite the last write it with the passthru value.
11791       LastWriteVal = DAG.getSelect(DL, ScalarVT, AllLanesSelected, ValI,
11792                                    LastWriteVal, SDNodeFlags::Unpredictable);
11793       Chain = DAG.getStore(
11794           Chain, DL, LastWriteVal, OutPtr,
11795           MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
11796     }
11797   }
11798 
11799   return DAG.getLoad(VecVT, DL, Chain, StackPtr, PtrInfo);
11800 }
11801 
11802 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
11803                                            SDValue &LHS, SDValue &RHS,
11804                                            SDValue &CC, SDValue Mask,
11805                                            SDValue EVL, bool &NeedInvert,
11806                                            const SDLoc &dl, SDValue &Chain,
11807                                            bool IsSignaling) const {
11808   MVT OpVT = LHS.getSimpleValueType();
11809   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
11810   NeedInvert = false;
11811   assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset");
11812   bool IsNonVP = !EVL;
11813   switch (getCondCodeAction(CCCode, OpVT)) {
11814   default:
11815     llvm_unreachable("Unknown condition code action!");
11816   case TargetLowering::Legal:
11817     // Nothing to do.
11818     break;
11819   case TargetLowering::Expand: {
11820     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
11821     if (isCondCodeLegalOrCustom(InvCC, OpVT)) {
11822       std::swap(LHS, RHS);
11823       CC = DAG.getCondCode(InvCC);
11824       return true;
11825     }
11826     // Swapping operands didn't work. Try inverting the condition.
11827     bool NeedSwap = false;
11828     InvCC = getSetCCInverse(CCCode, OpVT);
11829     if (!isCondCodeLegalOrCustom(InvCC, OpVT)) {
11830       // If inverting the condition is not enough, try swapping operands
11831       // on top of it.
11832       InvCC = ISD::getSetCCSwappedOperands(InvCC);
11833       NeedSwap = true;
11834     }
11835     if (isCondCodeLegalOrCustom(InvCC, OpVT)) {
11836       CC = DAG.getCondCode(InvCC);
11837       NeedInvert = true;
11838       if (NeedSwap)
11839         std::swap(LHS, RHS);
11840       return true;
11841     }
11842 
11843     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
11844     unsigned Opc = 0;
11845     switch (CCCode) {
11846     default:
11847       llvm_unreachable("Don't know how to expand this condition!");
11848     case ISD::SETUO:
11849       if (isCondCodeLegal(ISD::SETUNE, OpVT)) {
11850         CC1 = ISD::SETUNE;
11851         CC2 = ISD::SETUNE;
11852         Opc = ISD::OR;
11853         break;
11854       }
11855       assert(isCondCodeLegal(ISD::SETOEQ, OpVT) &&
11856              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
11857       NeedInvert = true;
11858       [[fallthrough]];
11859     case ISD::SETO:
11860       assert(isCondCodeLegal(ISD::SETOEQ, OpVT) &&
11861              "If SETO is expanded, SETOEQ must be legal!");
11862       CC1 = ISD::SETOEQ;
11863       CC2 = ISD::SETOEQ;
11864       Opc = ISD::AND;
11865       break;
11866     case ISD::SETONE:
11867     case ISD::SETUEQ:
11868       // If the SETUO or SETO CC isn't legal, we might be able to use
11869       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
11870       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
11871       // the operands.
11872       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
11873       if (!isCondCodeLegal(CC2, OpVT) && (isCondCodeLegal(ISD::SETOGT, OpVT) ||
11874                                           isCondCodeLegal(ISD::SETOLT, OpVT))) {
11875         CC1 = ISD::SETOGT;
11876         CC2 = ISD::SETOLT;
11877         Opc = ISD::OR;
11878         NeedInvert = ((unsigned)CCCode & 0x8U);
11879         break;
11880       }
11881       [[fallthrough]];
11882     case ISD::SETOEQ:
11883     case ISD::SETOGT:
11884     case ISD::SETOGE:
11885     case ISD::SETOLT:
11886     case ISD::SETOLE:
11887     case ISD::SETUNE:
11888     case ISD::SETUGT:
11889     case ISD::SETUGE:
11890     case ISD::SETULT:
11891     case ISD::SETULE:
11892       // If we are floating point, assign and break, otherwise fall through.
11893       if (!OpVT.isInteger()) {
11894         // We can use the 4th bit to tell if we are the unordered
11895         // or ordered version of the opcode.
11896         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
11897         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
11898         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
11899         break;
11900       }
11901       // Fallthrough if we are unsigned integer.
11902       [[fallthrough]];
11903     case ISD::SETLE:
11904     case ISD::SETGT:
11905     case ISD::SETGE:
11906     case ISD::SETLT:
11907     case ISD::SETNE:
11908     case ISD::SETEQ:
11909       // If all combinations of inverting the condition and swapping operands
11910       // didn't work then we have no means to expand the condition.
11911       llvm_unreachable("Don't know how to expand this condition!");
11912     }
11913 
11914     SDValue SetCC1, SetCC2;
11915     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
11916       // If we aren't the ordered or unorder operation,
11917       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
11918       if (IsNonVP) {
11919         SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
11920         SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
11921       } else {
11922         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
11923         SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
11924       }
11925     } else {
11926       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
11927       if (IsNonVP) {
11928         SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
11929         SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
11930       } else {
11931         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
11932         SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
11933       }
11934     }
11935     if (Chain)
11936       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
11937                           SetCC2.getValue(1));
11938     if (IsNonVP)
11939       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
11940     else {
11941       // Transform the binary opcode to the VP equivalent.
11942       assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode");
11943       Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND;
11944       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
11945     }
11946     RHS = SDValue();
11947     CC = SDValue();
11948     return true;
11949   }
11950   }
11951   return false;
11952 }
11953 
11954 SDValue TargetLowering::expandVectorNaryOpBySplitting(SDNode *Node,
11955                                                       SelectionDAG &DAG) const {
11956   EVT VT = Node->getValueType(0);
11957   // Despite its documentation, GetSplitDestVTs will assert if VT cannot be
11958   // split into two equal parts.
11959   if (!VT.isVector() || !VT.getVectorElementCount().isKnownMultipleOf(2))
11960     return SDValue();
11961 
11962   // Restrict expansion to cases where both parts can be concatenated.
11963   auto [LoVT, HiVT] = DAG.GetSplitDestVTs(VT);
11964   if (LoVT != HiVT || !isTypeLegal(LoVT))
11965     return SDValue();
11966 
11967   SDLoc DL(Node);
11968   unsigned Opcode = Node->getOpcode();
11969 
11970   // Don't expand if the result is likely to be unrolled anyway.
11971   if (!isOperationLegalOrCustomOrPromote(Opcode, LoVT))
11972     return SDValue();
11973 
11974   SmallVector<SDValue, 4> LoOps, HiOps;
11975   for (const SDValue &V : Node->op_values()) {
11976     auto [Lo, Hi] = DAG.SplitVector(V, DL, LoVT, HiVT);
11977     LoOps.push_back(Lo);
11978     HiOps.push_back(Hi);
11979   }
11980 
11981   SDValue SplitOpLo = DAG.getNode(Opcode, DL, LoVT, LoOps);
11982   SDValue SplitOpHi = DAG.getNode(Opcode, DL, HiVT, HiOps);
11983   return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, SplitOpLo, SplitOpHi);
11984 }
11985