xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp (revision 112793a90ec84c31ced9bdacad7ce204e2148d2c)
1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/Analysis/VectorUtils.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/CodeGenCommonISel.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/TargetRegisterInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCExpr.h"
30 #include "llvm/Support/DivisionByConstantInfo.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/KnownBits.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40     : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function &F = DAG.getMachineFunction().getFunction();
55 
56   // First, check if tail calls have been disabled in this function.
57   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
58     return false;
59 
60   // Conservatively require the attributes of the call to match those of
61   // the return. Ignore following attributes because they don't affect the
62   // call sequence.
63   AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
64   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
65                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
66                            Attribute::NonNull, Attribute::NoUndef,
67                            Attribute::Range, Attribute::NoFPClass})
68     CallerAttrs.removeAttribute(Attr);
69 
70   if (CallerAttrs.hasAttributes())
71     return false;
72 
73   // It's not safe to eliminate the sign / zero extension of the return value.
74   if (CallerAttrs.contains(Attribute::ZExt) ||
75       CallerAttrs.contains(Attribute::SExt))
76     return false;
77 
78   // Check if the only use is a function return node.
79   return isUsedByReturnOnly(Node, Chain);
80 }
81 
82 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
83     const uint32_t *CallerPreservedMask,
84     const SmallVectorImpl<CCValAssign> &ArgLocs,
85     const SmallVectorImpl<SDValue> &OutVals) const {
86   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
87     const CCValAssign &ArgLoc = ArgLocs[I];
88     if (!ArgLoc.isRegLoc())
89       continue;
90     MCRegister Reg = ArgLoc.getLocReg();
91     // Only look at callee saved registers.
92     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
93       continue;
94     // Check that we pass the value used for the caller.
95     // (We look for a CopyFromReg reading a virtual register that is used
96     //  for the function live-in value of register Reg)
97     SDValue Value = OutVals[I];
98     if (Value->getOpcode() == ISD::AssertZext)
99       Value = Value.getOperand(0);
100     if (Value->getOpcode() != ISD::CopyFromReg)
101       return false;
102     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
103     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
104       return false;
105   }
106   return true;
107 }
108 
109 /// Set CallLoweringInfo attribute flags based on a call instruction
110 /// and called function attributes.
111 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
112                                                      unsigned ArgIdx) {
113   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
114   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
115   IsNoExt = Call->paramHasAttr(ArgIdx, Attribute::NoExt);
116   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
117   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
118   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
119   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
120   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
121   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
122   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
123   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
124   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
125   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
126   Alignment = Call->getParamStackAlign(ArgIdx);
127   IndirectType = nullptr;
128   assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 &&
129          "multiple ABI attributes?");
130   if (IsByVal) {
131     IndirectType = Call->getParamByValType(ArgIdx);
132     if (!Alignment)
133       Alignment = Call->getParamAlign(ArgIdx);
134   }
135   if (IsPreallocated)
136     IndirectType = Call->getParamPreallocatedType(ArgIdx);
137   if (IsInAlloca)
138     IndirectType = Call->getParamInAllocaType(ArgIdx);
139   if (IsSRet)
140     IndirectType = Call->getParamStructRetType(ArgIdx);
141 }
142 
143 /// Generate a libcall taking the given operands as arguments and returning a
144 /// result of type RetVT.
145 std::pair<SDValue, SDValue>
146 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
147                             ArrayRef<SDValue> Ops,
148                             MakeLibCallOptions CallOptions,
149                             const SDLoc &dl,
150                             SDValue InChain) const {
151   if (!InChain)
152     InChain = DAG.getEntryNode();
153 
154   TargetLowering::ArgListTy Args;
155   Args.reserve(Ops.size());
156 
157   TargetLowering::ArgListEntry Entry;
158   for (unsigned i = 0; i < Ops.size(); ++i) {
159     SDValue NewOp = Ops[i];
160     Entry.Node = NewOp;
161     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
162     Entry.IsSExt =
163         shouldSignExtendTypeInLibCall(Entry.Ty, CallOptions.IsSigned);
164     Entry.IsZExt = !Entry.IsSExt;
165 
166     if (CallOptions.IsSoften &&
167         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
168       Entry.IsSExt = Entry.IsZExt = false;
169     }
170     Args.push_back(Entry);
171   }
172 
173   if (LC == RTLIB::UNKNOWN_LIBCALL)
174     report_fatal_error("Unsupported library call operation!");
175   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
176                                          getPointerTy(DAG.getDataLayout()));
177 
178   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
179   TargetLowering::CallLoweringInfo CLI(DAG);
180   bool signExtend = shouldSignExtendTypeInLibCall(RetTy, CallOptions.IsSigned);
181   bool zeroExtend = !signExtend;
182 
183   if (CallOptions.IsSoften &&
184       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
185     signExtend = zeroExtend = false;
186   }
187 
188   CLI.setDebugLoc(dl)
189       .setChain(InChain)
190       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
191       .setNoReturn(CallOptions.DoesNotReturn)
192       .setDiscardResult(!CallOptions.IsReturnValueUsed)
193       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
194       .setSExtResult(signExtend)
195       .setZExtResult(zeroExtend);
196   return LowerCallTo(CLI);
197 }
198 
199 bool TargetLowering::findOptimalMemOpLowering(
200     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
201     unsigned SrcAS, const AttributeList &FuncAttributes) const {
202   if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() &&
203       Op.getSrcAlign() < Op.getDstAlign())
204     return false;
205 
206   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
207 
208   if (VT == MVT::Other) {
209     // Use the largest integer type whose alignment constraints are satisfied.
210     // We only need to check DstAlign here as SrcAlign is always greater or
211     // equal to DstAlign (or zero).
212     VT = MVT::LAST_INTEGER_VALUETYPE;
213     if (Op.isFixedDstAlign())
214       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
215              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
216         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
217     assert(VT.isInteger());
218 
219     // Find the largest legal integer type.
220     MVT LVT = MVT::LAST_INTEGER_VALUETYPE;
221     while (!isTypeLegal(LVT))
222       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
223     assert(LVT.isInteger());
224 
225     // If the type we've chosen is larger than the largest legal integer type
226     // then use that instead.
227     if (VT.bitsGT(LVT))
228       VT = LVT;
229   }
230 
231   unsigned NumMemOps = 0;
232   uint64_t Size = Op.size();
233   while (Size) {
234     unsigned VTSize = VT.getSizeInBits() / 8;
235     while (VTSize > Size) {
236       // For now, only use non-vector load / store's for the left-over pieces.
237       EVT NewVT = VT;
238       unsigned NewVTSize;
239 
240       bool Found = false;
241       if (VT.isVector() || VT.isFloatingPoint()) {
242         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
243         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
244             isSafeMemOpType(NewVT.getSimpleVT()))
245           Found = true;
246         else if (NewVT == MVT::i64 &&
247                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
248                  isSafeMemOpType(MVT::f64)) {
249           // i64 is usually not legal on 32-bit targets, but f64 may be.
250           NewVT = MVT::f64;
251           Found = true;
252         }
253       }
254 
255       if (!Found) {
256         do {
257           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
258           if (NewVT == MVT::i8)
259             break;
260         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
261       }
262       NewVTSize = NewVT.getSizeInBits() / 8;
263 
264       // If the new VT cannot cover all of the remaining bits, then consider
265       // issuing a (or a pair of) unaligned and overlapping load / store.
266       unsigned Fast;
267       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
268           allowsMisalignedMemoryAccesses(
269               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
270               MachineMemOperand::MONone, &Fast) &&
271           Fast)
272         VTSize = Size;
273       else {
274         VT = NewVT;
275         VTSize = NewVTSize;
276       }
277     }
278 
279     if (++NumMemOps > Limit)
280       return false;
281 
282     MemOps.push_back(VT);
283     Size -= VTSize;
284   }
285 
286   return true;
287 }
288 
289 /// Soften the operands of a comparison. This code is shared among BR_CC,
290 /// SELECT_CC, and SETCC handlers.
291 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
292                                          SDValue &NewLHS, SDValue &NewRHS,
293                                          ISD::CondCode &CCCode,
294                                          const SDLoc &dl, const SDValue OldLHS,
295                                          const SDValue OldRHS) const {
296   SDValue Chain;
297   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
298                              OldRHS, Chain);
299 }
300 
301 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
302                                          SDValue &NewLHS, SDValue &NewRHS,
303                                          ISD::CondCode &CCCode,
304                                          const SDLoc &dl, const SDValue OldLHS,
305                                          const SDValue OldRHS,
306                                          SDValue &Chain,
307                                          bool IsSignaling) const {
308   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
309   // not supporting it. We can update this code when libgcc provides such
310   // functions.
311 
312   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
313          && "Unsupported setcc type!");
314 
315   // Expand into one or more soft-fp libcall(s).
316   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
317   bool ShouldInvertCC = false;
318   switch (CCCode) {
319   case ISD::SETEQ:
320   case ISD::SETOEQ:
321     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
322           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
323           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
324     break;
325   case ISD::SETNE:
326   case ISD::SETUNE:
327     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
328           (VT == MVT::f64) ? RTLIB::UNE_F64 :
329           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
330     break;
331   case ISD::SETGE:
332   case ISD::SETOGE:
333     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
334           (VT == MVT::f64) ? RTLIB::OGE_F64 :
335           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
336     break;
337   case ISD::SETLT:
338   case ISD::SETOLT:
339     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
340           (VT == MVT::f64) ? RTLIB::OLT_F64 :
341           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
342     break;
343   case ISD::SETLE:
344   case ISD::SETOLE:
345     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
346           (VT == MVT::f64) ? RTLIB::OLE_F64 :
347           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
348     break;
349   case ISD::SETGT:
350   case ISD::SETOGT:
351     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
352           (VT == MVT::f64) ? RTLIB::OGT_F64 :
353           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
354     break;
355   case ISD::SETO:
356     ShouldInvertCC = true;
357     [[fallthrough]];
358   case ISD::SETUO:
359     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
360           (VT == MVT::f64) ? RTLIB::UO_F64 :
361           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
362     break;
363   case ISD::SETONE:
364     // SETONE = O && UNE
365     ShouldInvertCC = true;
366     [[fallthrough]];
367   case ISD::SETUEQ:
368     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
369           (VT == MVT::f64) ? RTLIB::UO_F64 :
370           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
371     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
372           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
373           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
374     break;
375   default:
376     // Invert CC for unordered comparisons
377     ShouldInvertCC = true;
378     switch (CCCode) {
379     case ISD::SETULT:
380       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
381             (VT == MVT::f64) ? RTLIB::OGE_F64 :
382             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
383       break;
384     case ISD::SETULE:
385       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
386             (VT == MVT::f64) ? RTLIB::OGT_F64 :
387             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
388       break;
389     case ISD::SETUGT:
390       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
391             (VT == MVT::f64) ? RTLIB::OLE_F64 :
392             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
393       break;
394     case ISD::SETUGE:
395       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
396             (VT == MVT::f64) ? RTLIB::OLT_F64 :
397             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
398       break;
399     default: llvm_unreachable("Do not know how to soften this setcc!");
400     }
401   }
402 
403   // Use the target specific return value for comparison lib calls.
404   EVT RetVT = getCmpLibcallReturnType();
405   SDValue Ops[2] = {NewLHS, NewRHS};
406   TargetLowering::MakeLibCallOptions CallOptions;
407   EVT OpsVT[2] = { OldLHS.getValueType(),
408                    OldRHS.getValueType() };
409   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
410   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
411   NewLHS = Call.first;
412   NewRHS = DAG.getConstant(0, dl, RetVT);
413 
414   CCCode = getCmpLibcallCC(LC1);
415   if (ShouldInvertCC) {
416     assert(RetVT.isInteger());
417     CCCode = getSetCCInverse(CCCode, RetVT);
418   }
419 
420   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
421     // Update Chain.
422     Chain = Call.second;
423   } else {
424     EVT SetCCVT =
425         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
426     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
427     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
428     CCCode = getCmpLibcallCC(LC2);
429     if (ShouldInvertCC)
430       CCCode = getSetCCInverse(CCCode, RetVT);
431     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
432     if (Chain)
433       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
434                           Call2.second);
435     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
436                          Tmp.getValueType(), Tmp, NewLHS);
437     NewRHS = SDValue();
438   }
439 }
440 
441 /// Return the entry encoding for a jump table in the current function. The
442 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
443 unsigned TargetLowering::getJumpTableEncoding() const {
444   // In non-pic modes, just use the address of a block.
445   if (!isPositionIndependent())
446     return MachineJumpTableInfo::EK_BlockAddress;
447 
448   // In PIC mode, if the target supports a GPRel32 directive, use it.
449   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
450     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
451 
452   // Otherwise, use a label difference.
453   return MachineJumpTableInfo::EK_LabelDifference32;
454 }
455 
456 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
457                                                  SelectionDAG &DAG) const {
458   // If our PIC model is GP relative, use the global offset table as the base.
459   unsigned JTEncoding = getJumpTableEncoding();
460 
461   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
462       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
463     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
464 
465   return Table;
466 }
467 
468 /// This returns the relocation base for the given PIC jumptable, the same as
469 /// getPICJumpTableRelocBase, but as an MCExpr.
470 const MCExpr *
471 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
472                                              unsigned JTI,MCContext &Ctx) const{
473   // The normal PIC reloc base is the label at the start of the jump table.
474   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
475 }
476 
477 SDValue TargetLowering::expandIndirectJTBranch(const SDLoc &dl, SDValue Value,
478                                                SDValue Addr, int JTI,
479                                                SelectionDAG &DAG) const {
480   SDValue Chain = Value;
481   // Jump table debug info is only needed if CodeView is enabled.
482   if (DAG.getTarget().getTargetTriple().isOSBinFormatCOFF()) {
483     Chain = DAG.getJumpTableDebugInfo(JTI, Chain, dl);
484   }
485   return DAG.getNode(ISD::BRIND, dl, MVT::Other, Chain, Addr);
486 }
487 
488 bool
489 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
490   const TargetMachine &TM = getTargetMachine();
491   const GlobalValue *GV = GA->getGlobal();
492 
493   // If the address is not even local to this DSO we will have to load it from
494   // a got and then add the offset.
495   if (!TM.shouldAssumeDSOLocal(GV))
496     return false;
497 
498   // If the code is position independent we will have to add a base register.
499   if (isPositionIndependent())
500     return false;
501 
502   // Otherwise we can do it.
503   return true;
504 }
505 
506 //===----------------------------------------------------------------------===//
507 //  Optimization Methods
508 //===----------------------------------------------------------------------===//
509 
510 /// If the specified instruction has a constant integer operand and there are
511 /// bits set in that constant that are not demanded, then clear those bits and
512 /// return true.
513 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
514                                             const APInt &DemandedBits,
515                                             const APInt &DemandedElts,
516                                             TargetLoweringOpt &TLO) const {
517   SDLoc DL(Op);
518   unsigned Opcode = Op.getOpcode();
519 
520   // Early-out if we've ended up calling an undemanded node, leave this to
521   // constant folding.
522   if (DemandedBits.isZero() || DemandedElts.isZero())
523     return false;
524 
525   // Do target-specific constant optimization.
526   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
527     return TLO.New.getNode();
528 
529   // FIXME: ISD::SELECT, ISD::SELECT_CC
530   switch (Opcode) {
531   default:
532     break;
533   case ISD::XOR:
534   case ISD::AND:
535   case ISD::OR: {
536     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
537     if (!Op1C || Op1C->isOpaque())
538       return false;
539 
540     // If this is a 'not' op, don't touch it because that's a canonical form.
541     const APInt &C = Op1C->getAPIntValue();
542     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
543       return false;
544 
545     if (!C.isSubsetOf(DemandedBits)) {
546       EVT VT = Op.getValueType();
547       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
548       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC,
549                                       Op->getFlags());
550       return TLO.CombineTo(Op, NewOp);
551     }
552 
553     break;
554   }
555   }
556 
557   return false;
558 }
559 
560 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
561                                             const APInt &DemandedBits,
562                                             TargetLoweringOpt &TLO) const {
563   EVT VT = Op.getValueType();
564   APInt DemandedElts = VT.isVector()
565                            ? APInt::getAllOnes(VT.getVectorNumElements())
566                            : APInt(1, 1);
567   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
568 }
569 
570 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
571 /// This uses isTruncateFree/isZExtFree and ANY_EXTEND for the widening cast,
572 /// but it could be generalized for targets with other types of implicit
573 /// widening casts.
574 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
575                                       const APInt &DemandedBits,
576                                       TargetLoweringOpt &TLO) const {
577   assert(Op.getNumOperands() == 2 &&
578          "ShrinkDemandedOp only supports binary operators!");
579   assert(Op.getNode()->getNumValues() == 1 &&
580          "ShrinkDemandedOp only supports nodes with one result!");
581 
582   EVT VT = Op.getValueType();
583   SelectionDAG &DAG = TLO.DAG;
584   SDLoc dl(Op);
585 
586   // Early return, as this function cannot handle vector types.
587   if (VT.isVector())
588     return false;
589 
590   assert(Op.getOperand(0).getValueType().getScalarSizeInBits() == BitWidth &&
591          Op.getOperand(1).getValueType().getScalarSizeInBits() == BitWidth &&
592          "ShrinkDemandedOp only supports operands that have the same size!");
593 
594   // Don't do this if the node has another user, which may require the
595   // full value.
596   if (!Op.getNode()->hasOneUse())
597     return false;
598 
599   // Search for the smallest integer type with free casts to and from
600   // Op's type. For expedience, just check power-of-2 integer types.
601   unsigned DemandedSize = DemandedBits.getActiveBits();
602   for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize);
603        SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
604     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
605     if (isTruncateFree(VT, SmallVT) && isZExtFree(SmallVT, VT)) {
606       // We found a type with free casts.
607 
608       // If the operation has the 'disjoint' flag, then the
609       // operands on the new node are also disjoint.
610       SDNodeFlags Flags(Op->getFlags().hasDisjoint() ? SDNodeFlags::Disjoint
611                                                      : SDNodeFlags::None);
612       SDValue X = DAG.getNode(
613           Op.getOpcode(), dl, SmallVT,
614           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
615           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)), Flags);
616       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
617       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, VT, X);
618       return TLO.CombineTo(Op, Z);
619     }
620   }
621   return false;
622 }
623 
624 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
625                                           DAGCombinerInfo &DCI) const {
626   SelectionDAG &DAG = DCI.DAG;
627   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
628                         !DCI.isBeforeLegalizeOps());
629   KnownBits Known;
630 
631   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
632   if (Simplified) {
633     DCI.AddToWorklist(Op.getNode());
634     DCI.CommitTargetLoweringOpt(TLO);
635   }
636   return Simplified;
637 }
638 
639 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
640                                           const APInt &DemandedElts,
641                                           DAGCombinerInfo &DCI) const {
642   SelectionDAG &DAG = DCI.DAG;
643   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
644                         !DCI.isBeforeLegalizeOps());
645   KnownBits Known;
646 
647   bool Simplified =
648       SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
649   if (Simplified) {
650     DCI.AddToWorklist(Op.getNode());
651     DCI.CommitTargetLoweringOpt(TLO);
652   }
653   return Simplified;
654 }
655 
656 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
657                                           KnownBits &Known,
658                                           TargetLoweringOpt &TLO,
659                                           unsigned Depth,
660                                           bool AssumeSingleUse) const {
661   EVT VT = Op.getValueType();
662 
663   // Since the number of lanes in a scalable vector is unknown at compile time,
664   // we track one bit which is implicitly broadcast to all lanes.  This means
665   // that all lanes in a scalable vector are considered demanded.
666   APInt DemandedElts = VT.isFixedLengthVector()
667                            ? APInt::getAllOnes(VT.getVectorNumElements())
668                            : APInt(1, 1);
669   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
670                               AssumeSingleUse);
671 }
672 
673 // TODO: Under what circumstances can we create nodes? Constant folding?
674 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
675     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
676     SelectionDAG &DAG, unsigned Depth) const {
677   EVT VT = Op.getValueType();
678 
679   // Limit search depth.
680   if (Depth >= SelectionDAG::MaxRecursionDepth)
681     return SDValue();
682 
683   // Ignore UNDEFs.
684   if (Op.isUndef())
685     return SDValue();
686 
687   // Not demanding any bits/elts from Op.
688   if (DemandedBits == 0 || DemandedElts == 0)
689     return DAG.getUNDEF(VT);
690 
691   bool IsLE = DAG.getDataLayout().isLittleEndian();
692   unsigned NumElts = DemandedElts.getBitWidth();
693   unsigned BitWidth = DemandedBits.getBitWidth();
694   KnownBits LHSKnown, RHSKnown;
695   switch (Op.getOpcode()) {
696   case ISD::BITCAST: {
697     if (VT.isScalableVector())
698       return SDValue();
699 
700     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
701     EVT SrcVT = Src.getValueType();
702     EVT DstVT = Op.getValueType();
703     if (SrcVT == DstVT)
704       return Src;
705 
706     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
707     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
708     if (NumSrcEltBits == NumDstEltBits)
709       if (SDValue V = SimplifyMultipleUseDemandedBits(
710               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
711         return DAG.getBitcast(DstVT, V);
712 
713     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
714       unsigned Scale = NumDstEltBits / NumSrcEltBits;
715       unsigned NumSrcElts = SrcVT.getVectorNumElements();
716       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
717       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
718       for (unsigned i = 0; i != Scale; ++i) {
719         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
720         unsigned BitOffset = EltOffset * NumSrcEltBits;
721         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
722         if (!Sub.isZero()) {
723           DemandedSrcBits |= Sub;
724           for (unsigned j = 0; j != NumElts; ++j)
725             if (DemandedElts[j])
726               DemandedSrcElts.setBit((j * Scale) + i);
727         }
728       }
729 
730       if (SDValue V = SimplifyMultipleUseDemandedBits(
731               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
732         return DAG.getBitcast(DstVT, V);
733     }
734 
735     // TODO - bigendian once we have test coverage.
736     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
737       unsigned Scale = NumSrcEltBits / NumDstEltBits;
738       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
739       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
740       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
741       for (unsigned i = 0; i != NumElts; ++i)
742         if (DemandedElts[i]) {
743           unsigned Offset = (i % Scale) * NumDstEltBits;
744           DemandedSrcBits.insertBits(DemandedBits, Offset);
745           DemandedSrcElts.setBit(i / Scale);
746         }
747 
748       if (SDValue V = SimplifyMultipleUseDemandedBits(
749               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
750         return DAG.getBitcast(DstVT, V);
751     }
752 
753     break;
754   }
755   case ISD::FREEZE: {
756     SDValue N0 = Op.getOperand(0);
757     if (DAG.isGuaranteedNotToBeUndefOrPoison(N0, DemandedElts,
758                                              /*PoisonOnly=*/false))
759       return N0;
760     break;
761   }
762   case ISD::AND: {
763     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
764     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
765 
766     // If all of the demanded bits are known 1 on one side, return the other.
767     // These bits cannot contribute to the result of the 'and' in this
768     // context.
769     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
770       return Op.getOperand(0);
771     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
772       return Op.getOperand(1);
773     break;
774   }
775   case ISD::OR: {
776     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
777     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
778 
779     // If all of the demanded bits are known zero on one side, return the
780     // other.  These bits cannot contribute to the result of the 'or' in this
781     // context.
782     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
783       return Op.getOperand(0);
784     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
785       return Op.getOperand(1);
786     break;
787   }
788   case ISD::XOR: {
789     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
790     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
791 
792     // If all of the demanded bits are known zero on one side, return the
793     // other.
794     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
795       return Op.getOperand(0);
796     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
797       return Op.getOperand(1);
798     break;
799   }
800   case ISD::ADD: {
801     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
802     if (RHSKnown.isZero())
803       return Op.getOperand(0);
804 
805     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
806     if (LHSKnown.isZero())
807       return Op.getOperand(1);
808     break;
809   }
810   case ISD::SHL: {
811     // If we are only demanding sign bits then we can use the shift source
812     // directly.
813     if (std::optional<uint64_t> MaxSA =
814             DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
815       SDValue Op0 = Op.getOperand(0);
816       unsigned ShAmt = *MaxSA;
817       unsigned NumSignBits =
818           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
819       unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero();
820       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
821         return Op0;
822     }
823     break;
824   }
825   case ISD::SRL: {
826     // If we are only demanding sign bits then we can use the shift source
827     // directly.
828     if (std::optional<uint64_t> MaxSA =
829             DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
830       SDValue Op0 = Op.getOperand(0);
831       unsigned ShAmt = *MaxSA;
832       // Must already be signbits in DemandedBits bounds, and can't demand any
833       // shifted in zeroes.
834       if (DemandedBits.countl_zero() >= ShAmt) {
835         unsigned NumSignBits =
836             DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
837         if (DemandedBits.countr_zero() >= (BitWidth - NumSignBits))
838           return Op0;
839       }
840     }
841     break;
842   }
843   case ISD::SETCC: {
844     SDValue Op0 = Op.getOperand(0);
845     SDValue Op1 = Op.getOperand(1);
846     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
847     // If (1) we only need the sign-bit, (2) the setcc operands are the same
848     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
849     // -1, we may be able to bypass the setcc.
850     if (DemandedBits.isSignMask() &&
851         Op0.getScalarValueSizeInBits() == BitWidth &&
852         getBooleanContents(Op0.getValueType()) ==
853             BooleanContent::ZeroOrNegativeOneBooleanContent) {
854       // If we're testing X < 0, then this compare isn't needed - just use X!
855       // FIXME: We're limiting to integer types here, but this should also work
856       // if we don't care about FP signed-zero. The use of SETLT with FP means
857       // that we don't care about NaNs.
858       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
859           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
860         return Op0;
861     }
862     break;
863   }
864   case ISD::SIGN_EXTEND_INREG: {
865     // If none of the extended bits are demanded, eliminate the sextinreg.
866     SDValue Op0 = Op.getOperand(0);
867     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
868     unsigned ExBits = ExVT.getScalarSizeInBits();
869     if (DemandedBits.getActiveBits() <= ExBits &&
870         shouldRemoveRedundantExtend(Op))
871       return Op0;
872     // If the input is already sign extended, just drop the extension.
873     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
874     if (NumSignBits >= (BitWidth - ExBits + 1))
875       return Op0;
876     break;
877   }
878   case ISD::ANY_EXTEND_VECTOR_INREG:
879   case ISD::SIGN_EXTEND_VECTOR_INREG:
880   case ISD::ZERO_EXTEND_VECTOR_INREG: {
881     if (VT.isScalableVector())
882       return SDValue();
883 
884     // If we only want the lowest element and none of extended bits, then we can
885     // return the bitcasted source vector.
886     SDValue Src = Op.getOperand(0);
887     EVT SrcVT = Src.getValueType();
888     EVT DstVT = Op.getValueType();
889     if (IsLE && DemandedElts == 1 &&
890         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
891         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
892       return DAG.getBitcast(DstVT, Src);
893     }
894     break;
895   }
896   case ISD::INSERT_VECTOR_ELT: {
897     if (VT.isScalableVector())
898       return SDValue();
899 
900     // If we don't demand the inserted element, return the base vector.
901     SDValue Vec = Op.getOperand(0);
902     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
903     EVT VecVT = Vec.getValueType();
904     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
905         !DemandedElts[CIdx->getZExtValue()])
906       return Vec;
907     break;
908   }
909   case ISD::INSERT_SUBVECTOR: {
910     if (VT.isScalableVector())
911       return SDValue();
912 
913     SDValue Vec = Op.getOperand(0);
914     SDValue Sub = Op.getOperand(1);
915     uint64_t Idx = Op.getConstantOperandVal(2);
916     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
917     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
918     // If we don't demand the inserted subvector, return the base vector.
919     if (DemandedSubElts == 0)
920       return Vec;
921     break;
922   }
923   case ISD::VECTOR_SHUFFLE: {
924     assert(!VT.isScalableVector());
925     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
926 
927     // If all the demanded elts are from one operand and are inline,
928     // then we can use the operand directly.
929     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
930     for (unsigned i = 0; i != NumElts; ++i) {
931       int M = ShuffleMask[i];
932       if (M < 0 || !DemandedElts[i])
933         continue;
934       AllUndef = false;
935       IdentityLHS &= (M == (int)i);
936       IdentityRHS &= ((M - NumElts) == i);
937     }
938 
939     if (AllUndef)
940       return DAG.getUNDEF(Op.getValueType());
941     if (IdentityLHS)
942       return Op.getOperand(0);
943     if (IdentityRHS)
944       return Op.getOperand(1);
945     break;
946   }
947   default:
948     // TODO: Probably okay to remove after audit; here to reduce change size
949     // in initial enablement patch for scalable vectors
950     if (VT.isScalableVector())
951       return SDValue();
952 
953     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
954       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
955               Op, DemandedBits, DemandedElts, DAG, Depth))
956         return V;
957     break;
958   }
959   return SDValue();
960 }
961 
962 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
963     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
964     unsigned Depth) const {
965   EVT VT = Op.getValueType();
966   // Since the number of lanes in a scalable vector is unknown at compile time,
967   // we track one bit which is implicitly broadcast to all lanes.  This means
968   // that all lanes in a scalable vector are considered demanded.
969   APInt DemandedElts = VT.isFixedLengthVector()
970                            ? APInt::getAllOnes(VT.getVectorNumElements())
971                            : APInt(1, 1);
972   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
973                                          Depth);
974 }
975 
976 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
977     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
978     unsigned Depth) const {
979   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
980   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
981                                          Depth);
982 }
983 
984 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
985 //      or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
986 static SDValue combineShiftToAVG(SDValue Op,
987                                  TargetLowering::TargetLoweringOpt &TLO,
988                                  const TargetLowering &TLI,
989                                  const APInt &DemandedBits,
990                                  const APInt &DemandedElts, unsigned Depth) {
991   assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
992          "SRL or SRA node is required here!");
993   // Is the right shift using an immediate value of 1?
994   ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
995   if (!N1C || !N1C->isOne())
996     return SDValue();
997 
998   // We are looking for an avgfloor
999   // add(ext, ext)
1000   // or one of these as a avgceil
1001   // add(add(ext, ext), 1)
1002   // add(add(ext, 1), ext)
1003   // add(ext, add(ext, 1))
1004   SDValue Add = Op.getOperand(0);
1005   if (Add.getOpcode() != ISD::ADD)
1006     return SDValue();
1007 
1008   SDValue ExtOpA = Add.getOperand(0);
1009   SDValue ExtOpB = Add.getOperand(1);
1010   SDValue Add2;
1011   auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3, SDValue A) {
1012     ConstantSDNode *ConstOp;
1013     if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
1014         ConstOp->isOne()) {
1015       ExtOpA = Op1;
1016       ExtOpB = Op3;
1017       Add2 = A;
1018       return true;
1019     }
1020     if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
1021         ConstOp->isOne()) {
1022       ExtOpA = Op1;
1023       ExtOpB = Op2;
1024       Add2 = A;
1025       return true;
1026     }
1027     return false;
1028   };
1029   bool IsCeil =
1030       (ExtOpA.getOpcode() == ISD::ADD &&
1031        MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB, ExtOpA)) ||
1032       (ExtOpB.getOpcode() == ISD::ADD &&
1033        MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA, ExtOpB));
1034 
1035   // If the shift is signed (sra):
1036   //  - Needs >= 2 sign bit for both operands.
1037   //  - Needs >= 2 zero bits.
1038   // If the shift is unsigned (srl):
1039   //  - Needs >= 1 zero bit for both operands.
1040   //  - Needs 1 demanded bit zero and >= 2 sign bits.
1041   SelectionDAG &DAG = TLO.DAG;
1042   unsigned ShiftOpc = Op.getOpcode();
1043   bool IsSigned = false;
1044   unsigned KnownBits;
1045   unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
1046   unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
1047   unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
1048   unsigned NumZeroA =
1049       DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
1050   unsigned NumZeroB =
1051       DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
1052   unsigned NumZero = std::min(NumZeroA, NumZeroB);
1053 
1054   switch (ShiftOpc) {
1055   default:
1056     llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
1057   case ISD::SRA: {
1058     if (NumZero >= 2 && NumSigned < NumZero) {
1059       IsSigned = false;
1060       KnownBits = NumZero;
1061       break;
1062     }
1063     if (NumSigned >= 1) {
1064       IsSigned = true;
1065       KnownBits = NumSigned;
1066       break;
1067     }
1068     return SDValue();
1069   }
1070   case ISD::SRL: {
1071     if (NumZero >= 1 && NumSigned < NumZero) {
1072       IsSigned = false;
1073       KnownBits = NumZero;
1074       break;
1075     }
1076     if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
1077       IsSigned = true;
1078       KnownBits = NumSigned;
1079       break;
1080     }
1081     return SDValue();
1082   }
1083   }
1084 
1085   unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
1086                            : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
1087 
1088   // Find the smallest power-2 type that is legal for this vector size and
1089   // operation, given the original type size and the number of known sign/zero
1090   // bits.
1091   EVT VT = Op.getValueType();
1092   unsigned MinWidth =
1093       std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
1094   EVT NVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_ceil(MinWidth));
1095   if (NVT.getScalarSizeInBits() > VT.getScalarSizeInBits())
1096     return SDValue();
1097   if (VT.isVector())
1098     NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
1099   if (TLO.LegalTypes() && !TLI.isOperationLegal(AVGOpc, NVT)) {
1100     // If we could not transform, and (both) adds are nuw/nsw, we can use the
1101     // larger type size to do the transform.
1102     if (TLO.LegalOperations() && !TLI.isOperationLegal(AVGOpc, VT))
1103       return SDValue();
1104     if (DAG.willNotOverflowAdd(IsSigned, Add.getOperand(0),
1105                                Add.getOperand(1)) &&
1106         (!Add2 || DAG.willNotOverflowAdd(IsSigned, Add2.getOperand(0),
1107                                          Add2.getOperand(1))))
1108       NVT = VT;
1109     else
1110       return SDValue();
1111   }
1112 
1113   // Don't create a AVGFLOOR node with a scalar constant unless its legal as
1114   // this is likely to stop other folds (reassociation, value tracking etc.)
1115   if (!IsCeil && !TLI.isOperationLegal(AVGOpc, NVT) &&
1116       (isa<ConstantSDNode>(ExtOpA) || isa<ConstantSDNode>(ExtOpB)))
1117     return SDValue();
1118 
1119   SDLoc DL(Op);
1120   SDValue ResultAVG =
1121       DAG.getNode(AVGOpc, DL, NVT, DAG.getExtOrTrunc(IsSigned, ExtOpA, DL, NVT),
1122                   DAG.getExtOrTrunc(IsSigned, ExtOpB, DL, NVT));
1123   return DAG.getExtOrTrunc(IsSigned, ResultAVG, DL, VT);
1124 }
1125 
1126 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
1127 /// result of Op are ever used downstream. If we can use this information to
1128 /// simplify Op, create a new simplified DAG node and return true, returning the
1129 /// original and new nodes in Old and New. Otherwise, analyze the expression and
1130 /// return a mask of Known bits for the expression (used to simplify the
1131 /// caller).  The Known bits may only be accurate for those bits in the
1132 /// OriginalDemandedBits and OriginalDemandedElts.
1133 bool TargetLowering::SimplifyDemandedBits(
1134     SDValue Op, const APInt &OriginalDemandedBits,
1135     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
1136     unsigned Depth, bool AssumeSingleUse) const {
1137   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
1138   assert(Op.getScalarValueSizeInBits() == BitWidth &&
1139          "Mask size mismatches value type size!");
1140 
1141   // Don't know anything.
1142   Known = KnownBits(BitWidth);
1143 
1144   EVT VT = Op.getValueType();
1145   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
1146   unsigned NumElts = OriginalDemandedElts.getBitWidth();
1147   assert((!VT.isFixedLengthVector() || NumElts == VT.getVectorNumElements()) &&
1148          "Unexpected vector size");
1149 
1150   APInt DemandedBits = OriginalDemandedBits;
1151   APInt DemandedElts = OriginalDemandedElts;
1152   SDLoc dl(Op);
1153 
1154   // Undef operand.
1155   if (Op.isUndef())
1156     return false;
1157 
1158   // We can't simplify target constants.
1159   if (Op.getOpcode() == ISD::TargetConstant)
1160     return false;
1161 
1162   if (Op.getOpcode() == ISD::Constant) {
1163     // We know all of the bits for a constant!
1164     Known = KnownBits::makeConstant(Op->getAsAPIntVal());
1165     return false;
1166   }
1167 
1168   if (Op.getOpcode() == ISD::ConstantFP) {
1169     // We know all of the bits for a floating point constant!
1170     Known = KnownBits::makeConstant(
1171         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
1172     return false;
1173   }
1174 
1175   // Other users may use these bits.
1176   bool HasMultiUse = false;
1177   if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) {
1178     if (Depth >= SelectionDAG::MaxRecursionDepth) {
1179       // Limit search depth.
1180       return false;
1181     }
1182     // Allow multiple uses, just set the DemandedBits/Elts to all bits.
1183     DemandedBits = APInt::getAllOnes(BitWidth);
1184     DemandedElts = APInt::getAllOnes(NumElts);
1185     HasMultiUse = true;
1186   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1187     // Not demanding any bits/elts from Op.
1188     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1189   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
1190     // Limit search depth.
1191     return false;
1192   }
1193 
1194   KnownBits Known2;
1195   switch (Op.getOpcode()) {
1196   case ISD::SCALAR_TO_VECTOR: {
1197     if (VT.isScalableVector())
1198       return false;
1199     if (!DemandedElts[0])
1200       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1201 
1202     KnownBits SrcKnown;
1203     SDValue Src = Op.getOperand(0);
1204     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1205     APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth);
1206     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
1207       return true;
1208 
1209     // Upper elements are undef, so only get the knownbits if we just demand
1210     // the bottom element.
1211     if (DemandedElts == 1)
1212       Known = SrcKnown.anyextOrTrunc(BitWidth);
1213     break;
1214   }
1215   case ISD::BUILD_VECTOR:
1216     // Collect the known bits that are shared by every demanded element.
1217     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
1218     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1219     return false; // Don't fall through, will infinitely loop.
1220   case ISD::SPLAT_VECTOR: {
1221     SDValue Scl = Op.getOperand(0);
1222     APInt DemandedSclBits = DemandedBits.zextOrTrunc(Scl.getValueSizeInBits());
1223     KnownBits KnownScl;
1224     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1225       return true;
1226 
1227     // Implicitly truncate the bits to match the official semantics of
1228     // SPLAT_VECTOR.
1229     Known = KnownScl.trunc(BitWidth);
1230     break;
1231   }
1232   case ISD::LOAD: {
1233     auto *LD = cast<LoadSDNode>(Op);
1234     if (getTargetConstantFromLoad(LD)) {
1235       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1236       return false; // Don't fall through, will infinitely loop.
1237     }
1238     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1239       // If this is a ZEXTLoad and we are looking at the loaded value.
1240       EVT MemVT = LD->getMemoryVT();
1241       unsigned MemBits = MemVT.getScalarSizeInBits();
1242       Known.Zero.setBitsFrom(MemBits);
1243       return false; // Don't fall through, will infinitely loop.
1244     }
1245     break;
1246   }
1247   case ISD::INSERT_VECTOR_ELT: {
1248     if (VT.isScalableVector())
1249       return false;
1250     SDValue Vec = Op.getOperand(0);
1251     SDValue Scl = Op.getOperand(1);
1252     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1253     EVT VecVT = Vec.getValueType();
1254 
1255     // If index isn't constant, assume we need all vector elements AND the
1256     // inserted element.
1257     APInt DemandedVecElts(DemandedElts);
1258     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1259       unsigned Idx = CIdx->getZExtValue();
1260       DemandedVecElts.clearBit(Idx);
1261 
1262       // Inserted element is not required.
1263       if (!DemandedElts[Idx])
1264         return TLO.CombineTo(Op, Vec);
1265     }
1266 
1267     KnownBits KnownScl;
1268     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1269     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1270     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1271       return true;
1272 
1273     Known = KnownScl.anyextOrTrunc(BitWidth);
1274 
1275     KnownBits KnownVec;
1276     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1277                              Depth + 1))
1278       return true;
1279 
1280     if (!!DemandedVecElts)
1281       Known = Known.intersectWith(KnownVec);
1282 
1283     return false;
1284   }
1285   case ISD::INSERT_SUBVECTOR: {
1286     if (VT.isScalableVector())
1287       return false;
1288     // Demand any elements from the subvector and the remainder from the src its
1289     // inserted into.
1290     SDValue Src = Op.getOperand(0);
1291     SDValue Sub = Op.getOperand(1);
1292     uint64_t Idx = Op.getConstantOperandVal(2);
1293     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1294     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1295     APInt DemandedSrcElts = DemandedElts;
1296     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1297 
1298     KnownBits KnownSub, KnownSrc;
1299     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1300                              Depth + 1))
1301       return true;
1302     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1303                              Depth + 1))
1304       return true;
1305 
1306     Known.Zero.setAllBits();
1307     Known.One.setAllBits();
1308     if (!!DemandedSubElts)
1309       Known = Known.intersectWith(KnownSub);
1310     if (!!DemandedSrcElts)
1311       Known = Known.intersectWith(KnownSrc);
1312 
1313     // Attempt to avoid multi-use src if we don't need anything from it.
1314     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1315         !DemandedSrcElts.isAllOnes()) {
1316       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1317           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1318       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1319           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1320       if (NewSub || NewSrc) {
1321         NewSub = NewSub ? NewSub : Sub;
1322         NewSrc = NewSrc ? NewSrc : Src;
1323         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1324                                         Op.getOperand(2));
1325         return TLO.CombineTo(Op, NewOp);
1326       }
1327     }
1328     break;
1329   }
1330   case ISD::EXTRACT_SUBVECTOR: {
1331     if (VT.isScalableVector())
1332       return false;
1333     // Offset the demanded elts by the subvector index.
1334     SDValue Src = Op.getOperand(0);
1335     if (Src.getValueType().isScalableVector())
1336       break;
1337     uint64_t Idx = Op.getConstantOperandVal(1);
1338     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1339     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
1340 
1341     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1342                              Depth + 1))
1343       return true;
1344 
1345     // Attempt to avoid multi-use src if we don't need anything from it.
1346     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1347       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1348           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1349       if (DemandedSrc) {
1350         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1351                                         Op.getOperand(1));
1352         return TLO.CombineTo(Op, NewOp);
1353       }
1354     }
1355     break;
1356   }
1357   case ISD::CONCAT_VECTORS: {
1358     if (VT.isScalableVector())
1359       return false;
1360     Known.Zero.setAllBits();
1361     Known.One.setAllBits();
1362     EVT SubVT = Op.getOperand(0).getValueType();
1363     unsigned NumSubVecs = Op.getNumOperands();
1364     unsigned NumSubElts = SubVT.getVectorNumElements();
1365     for (unsigned i = 0; i != NumSubVecs; ++i) {
1366       APInt DemandedSubElts =
1367           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1368       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1369                                Known2, TLO, Depth + 1))
1370         return true;
1371       // Known bits are shared by every demanded subvector element.
1372       if (!!DemandedSubElts)
1373         Known = Known.intersectWith(Known2);
1374     }
1375     break;
1376   }
1377   case ISD::VECTOR_SHUFFLE: {
1378     assert(!VT.isScalableVector());
1379     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1380 
1381     // Collect demanded elements from shuffle operands..
1382     APInt DemandedLHS, DemandedRHS;
1383     if (!getShuffleDemandedElts(NumElts, ShuffleMask, DemandedElts, DemandedLHS,
1384                                 DemandedRHS))
1385       break;
1386 
1387     if (!!DemandedLHS || !!DemandedRHS) {
1388       SDValue Op0 = Op.getOperand(0);
1389       SDValue Op1 = Op.getOperand(1);
1390 
1391       Known.Zero.setAllBits();
1392       Known.One.setAllBits();
1393       if (!!DemandedLHS) {
1394         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1395                                  Depth + 1))
1396           return true;
1397         Known = Known.intersectWith(Known2);
1398       }
1399       if (!!DemandedRHS) {
1400         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1401                                  Depth + 1))
1402           return true;
1403         Known = Known.intersectWith(Known2);
1404       }
1405 
1406       // Attempt to avoid multi-use ops if we don't need anything from them.
1407       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1408           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1409       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1410           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1411       if (DemandedOp0 || DemandedOp1) {
1412         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1413         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1414         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1415         return TLO.CombineTo(Op, NewOp);
1416       }
1417     }
1418     break;
1419   }
1420   case ISD::AND: {
1421     SDValue Op0 = Op.getOperand(0);
1422     SDValue Op1 = Op.getOperand(1);
1423 
1424     // If the RHS is a constant, check to see if the LHS would be zero without
1425     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1426     // simplify the LHS, here we're using information from the LHS to simplify
1427     // the RHS.
1428     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1, DemandedElts)) {
1429       // Do not increment Depth here; that can cause an infinite loop.
1430       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1431       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1432       if ((LHSKnown.Zero & DemandedBits) ==
1433           (~RHSC->getAPIntValue() & DemandedBits))
1434         return TLO.CombineTo(Op, Op0);
1435 
1436       // If any of the set bits in the RHS are known zero on the LHS, shrink
1437       // the constant.
1438       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1439                                  DemandedElts, TLO))
1440         return true;
1441 
1442       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1443       // constant, but if this 'and' is only clearing bits that were just set by
1444       // the xor, then this 'and' can be eliminated by shrinking the mask of
1445       // the xor. For example, for a 32-bit X:
1446       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1447       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1448           LHSKnown.One == ~RHSC->getAPIntValue()) {
1449         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1450         return TLO.CombineTo(Op, Xor);
1451       }
1452     }
1453 
1454     // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I)
1455     // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits).
1456     if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR && !VT.isScalableVector() &&
1457         (Op0.getOperand(0).isUndef() ||
1458          ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) &&
1459         Op0->hasOneUse()) {
1460       unsigned NumSubElts =
1461           Op0.getOperand(1).getValueType().getVectorNumElements();
1462       unsigned SubIdx = Op0.getConstantOperandVal(2);
1463       APInt DemandedSub =
1464           APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts);
1465       KnownBits KnownSubMask =
1466           TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1);
1467       if (DemandedBits.isSubsetOf(KnownSubMask.One)) {
1468         SDValue NewAnd =
1469             TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1);
1470         SDValue NewInsert =
1471             TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd,
1472                             Op0.getOperand(1), Op0.getOperand(2));
1473         return TLO.CombineTo(Op, NewInsert);
1474       }
1475     }
1476 
1477     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1478                              Depth + 1))
1479       return true;
1480     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1481                              Known2, TLO, Depth + 1))
1482       return true;
1483 
1484     // If all of the demanded bits are known one on one side, return the other.
1485     // These bits cannot contribute to the result of the 'and'.
1486     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1487       return TLO.CombineTo(Op, Op0);
1488     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1489       return TLO.CombineTo(Op, Op1);
1490     // If all of the demanded bits in the inputs are known zeros, return zero.
1491     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1492       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1493     // If the RHS is a constant, see if we can simplify it.
1494     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1495                                TLO))
1496       return true;
1497     // If the operation can be done in a smaller type, do so.
1498     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1499       return true;
1500 
1501     // Attempt to avoid multi-use ops if we don't need anything from them.
1502     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1503       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1504           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1505       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1506           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1507       if (DemandedOp0 || DemandedOp1) {
1508         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1509         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1510         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1511         return TLO.CombineTo(Op, NewOp);
1512       }
1513     }
1514 
1515     Known &= Known2;
1516     break;
1517   }
1518   case ISD::OR: {
1519     SDValue Op0 = Op.getOperand(0);
1520     SDValue Op1 = Op.getOperand(1);
1521     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1522                              Depth + 1)) {
1523       Op->dropFlags(SDNodeFlags::Disjoint);
1524       return true;
1525     }
1526 
1527     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1528                              Known2, TLO, Depth + 1)) {
1529       Op->dropFlags(SDNodeFlags::Disjoint);
1530       return true;
1531     }
1532 
1533     // If all of the demanded bits are known zero on one side, return the other.
1534     // These bits cannot contribute to the result of the 'or'.
1535     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1536       return TLO.CombineTo(Op, Op0);
1537     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1538       return TLO.CombineTo(Op, Op1);
1539     // If the RHS is a constant, see if we can simplify it.
1540     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1541       return true;
1542     // If the operation can be done in a smaller type, do so.
1543     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1544       return true;
1545 
1546     // Attempt to avoid multi-use ops if we don't need anything from them.
1547     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1548       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1549           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1550       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1551           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1552       if (DemandedOp0 || DemandedOp1) {
1553         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1554         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1555         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1556         return TLO.CombineTo(Op, NewOp);
1557       }
1558     }
1559 
1560     // (or (and X, C1), (and (or X, Y), C2)) -> (or (and X, C1|C2), (and Y, C2))
1561     // TODO: Use SimplifyMultipleUseDemandedBits to peek through masks.
1562     if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::AND &&
1563         Op0->hasOneUse() && Op1->hasOneUse()) {
1564       // Attempt to match all commutations - m_c_Or would've been useful!
1565       for (int I = 0; I != 2; ++I) {
1566         SDValue X = Op.getOperand(I).getOperand(0);
1567         SDValue C1 = Op.getOperand(I).getOperand(1);
1568         SDValue Alt = Op.getOperand(1 - I).getOperand(0);
1569         SDValue C2 = Op.getOperand(1 - I).getOperand(1);
1570         if (Alt.getOpcode() == ISD::OR) {
1571           for (int J = 0; J != 2; ++J) {
1572             if (X == Alt.getOperand(J)) {
1573               SDValue Y = Alt.getOperand(1 - J);
1574               if (SDValue C12 = TLO.DAG.FoldConstantArithmetic(ISD::OR, dl, VT,
1575                                                                {C1, C2})) {
1576                 SDValue MaskX = TLO.DAG.getNode(ISD::AND, dl, VT, X, C12);
1577                 SDValue MaskY = TLO.DAG.getNode(ISD::AND, dl, VT, Y, C2);
1578                 return TLO.CombineTo(
1579                     Op, TLO.DAG.getNode(ISD::OR, dl, VT, MaskX, MaskY));
1580               }
1581             }
1582           }
1583         }
1584       }
1585     }
1586 
1587     Known |= Known2;
1588     break;
1589   }
1590   case ISD::XOR: {
1591     SDValue Op0 = Op.getOperand(0);
1592     SDValue Op1 = Op.getOperand(1);
1593 
1594     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1595                              Depth + 1))
1596       return true;
1597     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1598                              Depth + 1))
1599       return true;
1600 
1601     // If all of the demanded bits are known zero on one side, return the other.
1602     // These bits cannot contribute to the result of the 'xor'.
1603     if (DemandedBits.isSubsetOf(Known.Zero))
1604       return TLO.CombineTo(Op, Op0);
1605     if (DemandedBits.isSubsetOf(Known2.Zero))
1606       return TLO.CombineTo(Op, Op1);
1607     // If the operation can be done in a smaller type, do so.
1608     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1609       return true;
1610 
1611     // If all of the unknown bits are known to be zero on one side or the other
1612     // turn this into an *inclusive* or.
1613     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1614     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1615       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1616 
1617     ConstantSDNode *C = isConstOrConstSplat(Op1, DemandedElts);
1618     if (C) {
1619       // If one side is a constant, and all of the set bits in the constant are
1620       // also known set on the other side, turn this into an AND, as we know
1621       // the bits will be cleared.
1622       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1623       // NB: it is okay if more bits are known than are requested
1624       if (C->getAPIntValue() == Known2.One) {
1625         SDValue ANDC =
1626             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1627         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1628       }
1629 
1630       // If the RHS is a constant, see if we can change it. Don't alter a -1
1631       // constant because that's a 'not' op, and that is better for combining
1632       // and codegen.
1633       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1634         // We're flipping all demanded bits. Flip the undemanded bits too.
1635         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1636         return TLO.CombineTo(Op, New);
1637       }
1638 
1639       unsigned Op0Opcode = Op0.getOpcode();
1640       if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) {
1641         if (ConstantSDNode *ShiftC =
1642                 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1643           // Don't crash on an oversized shift. We can not guarantee that a
1644           // bogus shift has been simplified to undef.
1645           if (ShiftC->getAPIntValue().ult(BitWidth)) {
1646             uint64_t ShiftAmt = ShiftC->getZExtValue();
1647             APInt Ones = APInt::getAllOnes(BitWidth);
1648             Ones = Op0Opcode == ISD::SHL ? Ones.shl(ShiftAmt)
1649                                          : Ones.lshr(ShiftAmt);
1650             if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) &&
1651                 isDesirableToCommuteXorWithShift(Op.getNode())) {
1652               // If the xor constant is a demanded mask, do a 'not' before the
1653               // shift:
1654               // xor (X << ShiftC), XorC --> (not X) << ShiftC
1655               // xor (X >> ShiftC), XorC --> (not X) >> ShiftC
1656               SDValue Not = TLO.DAG.getNOT(dl, Op0.getOperand(0), VT);
1657               return TLO.CombineTo(Op, TLO.DAG.getNode(Op0Opcode, dl, VT, Not,
1658                                                        Op0.getOperand(1)));
1659             }
1660           }
1661         }
1662       }
1663     }
1664 
1665     // If we can't turn this into a 'not', try to shrink the constant.
1666     if (!C || !C->isAllOnes())
1667       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1668         return true;
1669 
1670     // Attempt to avoid multi-use ops if we don't need anything from them.
1671     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1672       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1673           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1674       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1675           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1676       if (DemandedOp0 || DemandedOp1) {
1677         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1678         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1679         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1680         return TLO.CombineTo(Op, NewOp);
1681       }
1682     }
1683 
1684     Known ^= Known2;
1685     break;
1686   }
1687   case ISD::SELECT:
1688     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1689                              Known, TLO, Depth + 1))
1690       return true;
1691     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
1692                              Known2, TLO, Depth + 1))
1693       return true;
1694 
1695     // If the operands are constants, see if we can simplify them.
1696     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1697       return true;
1698 
1699     // Only known if known in both the LHS and RHS.
1700     Known = Known.intersectWith(Known2);
1701     break;
1702   case ISD::VSELECT:
1703     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1704                              Known, TLO, Depth + 1))
1705       return true;
1706     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
1707                              Known2, TLO, Depth + 1))
1708       return true;
1709 
1710     // Only known if known in both the LHS and RHS.
1711     Known = Known.intersectWith(Known2);
1712     break;
1713   case ISD::SELECT_CC:
1714     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, DemandedElts,
1715                              Known, TLO, Depth + 1))
1716       return true;
1717     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1718                              Known2, TLO, Depth + 1))
1719       return true;
1720 
1721     // If the operands are constants, see if we can simplify them.
1722     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1723       return true;
1724 
1725     // Only known if known in both the LHS and RHS.
1726     Known = Known.intersectWith(Known2);
1727     break;
1728   case ISD::SETCC: {
1729     SDValue Op0 = Op.getOperand(0);
1730     SDValue Op1 = Op.getOperand(1);
1731     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1732     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1733     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1734     // -1, we may be able to bypass the setcc.
1735     if (DemandedBits.isSignMask() &&
1736         Op0.getScalarValueSizeInBits() == BitWidth &&
1737         getBooleanContents(Op0.getValueType()) ==
1738             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1739       // If we're testing X < 0, then this compare isn't needed - just use X!
1740       // FIXME: We're limiting to integer types here, but this should also work
1741       // if we don't care about FP signed-zero. The use of SETLT with FP means
1742       // that we don't care about NaNs.
1743       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1744           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1745         return TLO.CombineTo(Op, Op0);
1746 
1747       // TODO: Should we check for other forms of sign-bit comparisons?
1748       // Examples: X <= -1, X >= 0
1749     }
1750     if (getBooleanContents(Op0.getValueType()) ==
1751             TargetLowering::ZeroOrOneBooleanContent &&
1752         BitWidth > 1)
1753       Known.Zero.setBitsFrom(1);
1754     break;
1755   }
1756   case ISD::SHL: {
1757     SDValue Op0 = Op.getOperand(0);
1758     SDValue Op1 = Op.getOperand(1);
1759     EVT ShiftVT = Op1.getValueType();
1760 
1761     if (std::optional<uint64_t> KnownSA =
1762             TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) {
1763       unsigned ShAmt = *KnownSA;
1764       if (ShAmt == 0)
1765         return TLO.CombineTo(Op, Op0);
1766 
1767       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1768       // single shift.  We can do this if the bottom bits (which are shifted
1769       // out) are never demanded.
1770       // TODO - support non-uniform vector amounts.
1771       if (Op0.getOpcode() == ISD::SRL) {
1772         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1773           if (std::optional<uint64_t> InnerSA =
1774                   TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
1775             unsigned C1 = *InnerSA;
1776             unsigned Opc = ISD::SHL;
1777             int Diff = ShAmt - C1;
1778             if (Diff < 0) {
1779               Diff = -Diff;
1780               Opc = ISD::SRL;
1781             }
1782             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1783             return TLO.CombineTo(
1784                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1785           }
1786         }
1787       }
1788 
1789       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1790       // are not demanded. This will likely allow the anyext to be folded away.
1791       // TODO - support non-uniform vector amounts.
1792       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1793         SDValue InnerOp = Op0.getOperand(0);
1794         EVT InnerVT = InnerOp.getValueType();
1795         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1796         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1797             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1798           SDValue NarrowShl = TLO.DAG.getNode(
1799               ISD::SHL, dl, InnerVT, InnerOp,
1800               TLO.DAG.getShiftAmountConstant(ShAmt, InnerVT, dl));
1801           return TLO.CombineTo(
1802               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1803         }
1804 
1805         // Repeat the SHL optimization above in cases where an extension
1806         // intervenes: (shl (anyext (shr x, c1)), c2) to
1807         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1808         // aren't demanded (as above) and that the shifted upper c1 bits of
1809         // x aren't demanded.
1810         // TODO - support non-uniform vector amounts.
1811         if (InnerOp.getOpcode() == ISD::SRL && Op0.hasOneUse() &&
1812             InnerOp.hasOneUse()) {
1813           if (std::optional<uint64_t> SA2 = TLO.DAG.getValidShiftAmount(
1814                   InnerOp, DemandedElts, Depth + 2)) {
1815             unsigned InnerShAmt = *SA2;
1816             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1817                 DemandedBits.getActiveBits() <=
1818                     (InnerBits - InnerShAmt + ShAmt) &&
1819                 DemandedBits.countr_zero() >= ShAmt) {
1820               SDValue NewSA =
1821                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1822               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1823                                                InnerOp.getOperand(0));
1824               return TLO.CombineTo(
1825                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1826             }
1827           }
1828         }
1829       }
1830 
1831       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1832       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1833                                Depth + 1)) {
1834         // Disable the nsw and nuw flags. We can no longer guarantee that we
1835         // won't wrap after simplification.
1836         Op->dropFlags(SDNodeFlags::NoWrap);
1837         return true;
1838       }
1839       Known.Zero <<= ShAmt;
1840       Known.One <<= ShAmt;
1841       // low bits known zero.
1842       Known.Zero.setLowBits(ShAmt);
1843 
1844       // Attempt to avoid multi-use ops if we don't need anything from them.
1845       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1846         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1847             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1848         if (DemandedOp0) {
1849           SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1);
1850           return TLO.CombineTo(Op, NewOp);
1851         }
1852       }
1853 
1854       // TODO: Can we merge this fold with the one below?
1855       // Try shrinking the operation as long as the shift amount will still be
1856       // in range.
1857       if (ShAmt < DemandedBits.getActiveBits() && !VT.isVector() &&
1858           Op.getNode()->hasOneUse()) {
1859         // Search for the smallest integer type with free casts to and from
1860         // Op's type. For expedience, just check power-of-2 integer types.
1861         unsigned DemandedSize = DemandedBits.getActiveBits();
1862         for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize);
1863              SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1864           EVT SmallVT = EVT::getIntegerVT(*TLO.DAG.getContext(), SmallVTBits);
1865           if (isNarrowingProfitable(Op.getNode(), VT, SmallVT) &&
1866               isTypeDesirableForOp(ISD::SHL, SmallVT) &&
1867               isTruncateFree(VT, SmallVT) && isZExtFree(SmallVT, VT) &&
1868               (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, SmallVT))) {
1869             assert(DemandedSize <= SmallVTBits &&
1870                    "Narrowed below demanded bits?");
1871             // We found a type with free casts.
1872             SDValue NarrowShl = TLO.DAG.getNode(
1873                 ISD::SHL, dl, SmallVT,
1874                 TLO.DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
1875                 TLO.DAG.getShiftAmountConstant(ShAmt, SmallVT, dl));
1876             return TLO.CombineTo(
1877                 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1878           }
1879         }
1880       }
1881 
1882       // Narrow shift to lower half - similar to ShrinkDemandedOp.
1883       // (shl i64:x, K) -> (i64 zero_extend (shl (i32 (trunc i64:x)), K))
1884       // Only do this if we demand the upper half so the knownbits are correct.
1885       unsigned HalfWidth = BitWidth / 2;
1886       if ((BitWidth % 2) == 0 && !VT.isVector() && ShAmt < HalfWidth &&
1887           DemandedBits.countLeadingOnes() >= HalfWidth) {
1888         EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), HalfWidth);
1889         if (isNarrowingProfitable(Op.getNode(), VT, HalfVT) &&
1890             isTypeDesirableForOp(ISD::SHL, HalfVT) &&
1891             isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) &&
1892             (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, HalfVT))) {
1893           // If we're demanding the upper bits at all, we must ensure
1894           // that the upper bits of the shift result are known to be zero,
1895           // which is equivalent to the narrow shift being NUW.
1896           if (bool IsNUW = (Known.countMinLeadingZeros() >= HalfWidth)) {
1897             bool IsNSW = Known.countMinSignBits() > HalfWidth;
1898             SDNodeFlags Flags;
1899             Flags.setNoSignedWrap(IsNSW);
1900             Flags.setNoUnsignedWrap(IsNUW);
1901             SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0);
1902             SDValue NewShiftAmt =
1903                 TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl);
1904             SDValue NewShift = TLO.DAG.getNode(ISD::SHL, dl, HalfVT, NewOp,
1905                                                NewShiftAmt, Flags);
1906             SDValue NewExt =
1907                 TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift);
1908             return TLO.CombineTo(Op, NewExt);
1909           }
1910         }
1911       }
1912     } else {
1913       // This is a variable shift, so we can't shift the demand mask by a known
1914       // amount. But if we are not demanding high bits, then we are not
1915       // demanding those bits from the pre-shifted operand either.
1916       if (unsigned CTLZ = DemandedBits.countl_zero()) {
1917         APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ));
1918         if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO,
1919                                  Depth + 1)) {
1920           // Disable the nsw and nuw flags. We can no longer guarantee that we
1921           // won't wrap after simplification.
1922           Op->dropFlags(SDNodeFlags::NoWrap);
1923           return true;
1924         }
1925         Known.resetAll();
1926       }
1927     }
1928 
1929     // If we are only demanding sign bits then we can use the shift source
1930     // directly.
1931     if (std::optional<uint64_t> MaxSA =
1932             TLO.DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
1933       unsigned ShAmt = *MaxSA;
1934       unsigned NumSignBits =
1935           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1936       unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero();
1937       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1938         return TLO.CombineTo(Op, Op0);
1939     }
1940     break;
1941   }
1942   case ISD::SRL: {
1943     SDValue Op0 = Op.getOperand(0);
1944     SDValue Op1 = Op.getOperand(1);
1945     EVT ShiftVT = Op1.getValueType();
1946 
1947     if (std::optional<uint64_t> KnownSA =
1948             TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) {
1949       unsigned ShAmt = *KnownSA;
1950       if (ShAmt == 0)
1951         return TLO.CombineTo(Op, Op0);
1952 
1953       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1954       // single shift.  We can do this if the top bits (which are shifted out)
1955       // are never demanded.
1956       // TODO - support non-uniform vector amounts.
1957       if (Op0.getOpcode() == ISD::SHL) {
1958         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1959           if (std::optional<uint64_t> InnerSA =
1960                   TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
1961             unsigned C1 = *InnerSA;
1962             unsigned Opc = ISD::SRL;
1963             int Diff = ShAmt - C1;
1964             if (Diff < 0) {
1965               Diff = -Diff;
1966               Opc = ISD::SHL;
1967             }
1968             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1969             return TLO.CombineTo(
1970                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1971           }
1972         }
1973       }
1974 
1975       // If this is (srl (sra X, C1), ShAmt), see if we can combine this into a
1976       // single sra. We can do this if the top bits are never demanded.
1977       if (Op0.getOpcode() == ISD::SRA && Op0.hasOneUse()) {
1978         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1979           if (std::optional<uint64_t> InnerSA =
1980                   TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
1981             unsigned C1 = *InnerSA;
1982             // Clamp the combined shift amount if it exceeds the bit width.
1983             unsigned Combined = std::min(C1 + ShAmt, BitWidth - 1);
1984             SDValue NewSA = TLO.DAG.getConstant(Combined, dl, ShiftVT);
1985             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRA, dl, VT,
1986                                                      Op0.getOperand(0), NewSA));
1987           }
1988         }
1989       }
1990 
1991       APInt InDemandedMask = (DemandedBits << ShAmt);
1992 
1993       // If the shift is exact, then it does demand the low bits (and knows that
1994       // they are zero).
1995       if (Op->getFlags().hasExact())
1996         InDemandedMask.setLowBits(ShAmt);
1997 
1998       // Narrow shift to lower half - similar to ShrinkDemandedOp.
1999       // (srl i64:x, K) -> (i64 zero_extend (srl (i32 (trunc i64:x)), K))
2000       if ((BitWidth % 2) == 0 && !VT.isVector()) {
2001         APInt HiBits = APInt::getHighBitsSet(BitWidth, BitWidth / 2);
2002         EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), BitWidth / 2);
2003         if (isNarrowingProfitable(Op.getNode(), VT, HalfVT) &&
2004             isTypeDesirableForOp(ISD::SRL, HalfVT) &&
2005             isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) &&
2006             (!TLO.LegalOperations() || isOperationLegal(ISD::SRL, HalfVT)) &&
2007             ((InDemandedMask.countLeadingZeros() >= (BitWidth / 2)) ||
2008              TLO.DAG.MaskedValueIsZero(Op0, HiBits))) {
2009           SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0);
2010           SDValue NewShiftAmt =
2011               TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl);
2012           SDValue NewShift =
2013               TLO.DAG.getNode(ISD::SRL, dl, HalfVT, NewOp, NewShiftAmt);
2014           return TLO.CombineTo(
2015               Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift));
2016         }
2017       }
2018 
2019       // Compute the new bits that are at the top now.
2020       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
2021                                Depth + 1))
2022         return true;
2023       Known.Zero.lshrInPlace(ShAmt);
2024       Known.One.lshrInPlace(ShAmt);
2025       // High bits known zero.
2026       Known.Zero.setHighBits(ShAmt);
2027 
2028       // Attempt to avoid multi-use ops if we don't need anything from them.
2029       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2030         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2031             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
2032         if (DemandedOp0) {
2033           SDValue NewOp = TLO.DAG.getNode(ISD::SRL, dl, VT, DemandedOp0, Op1);
2034           return TLO.CombineTo(Op, NewOp);
2035         }
2036       }
2037     } else {
2038       // Use generic knownbits computation as it has support for non-uniform
2039       // shift amounts.
2040       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2041     }
2042 
2043     // If we are only demanding sign bits then we can use the shift source
2044     // directly.
2045     if (std::optional<uint64_t> MaxSA =
2046             TLO.DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
2047       unsigned ShAmt = *MaxSA;
2048       // Must already be signbits in DemandedBits bounds, and can't demand any
2049       // shifted in zeroes.
2050       if (DemandedBits.countl_zero() >= ShAmt) {
2051         unsigned NumSignBits =
2052             TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
2053         if (DemandedBits.countr_zero() >= (BitWidth - NumSignBits))
2054           return TLO.CombineTo(Op, Op0);
2055       }
2056     }
2057 
2058     // Try to match AVG patterns (after shift simplification).
2059     if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits,
2060                                         DemandedElts, Depth + 1))
2061       return TLO.CombineTo(Op, AVG);
2062 
2063     break;
2064   }
2065   case ISD::SRA: {
2066     SDValue Op0 = Op.getOperand(0);
2067     SDValue Op1 = Op.getOperand(1);
2068     EVT ShiftVT = Op1.getValueType();
2069 
2070     // If we only want bits that already match the signbit then we don't need
2071     // to shift.
2072     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countr_zero();
2073     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
2074         NumHiDemandedBits)
2075       return TLO.CombineTo(Op, Op0);
2076 
2077     // If this is an arithmetic shift right and only the low-bit is set, we can
2078     // always convert this into a logical shr, even if the shift amount is
2079     // variable.  The low bit of the shift cannot be an input sign bit unless
2080     // the shift amount is >= the size of the datatype, which is undefined.
2081     if (DemandedBits.isOne())
2082       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
2083 
2084     if (std::optional<uint64_t> KnownSA =
2085             TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) {
2086       unsigned ShAmt = *KnownSA;
2087       if (ShAmt == 0)
2088         return TLO.CombineTo(Op, Op0);
2089 
2090       // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target
2091       // supports sext_inreg.
2092       if (Op0.getOpcode() == ISD::SHL) {
2093         if (std::optional<uint64_t> InnerSA =
2094                 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
2095           unsigned LowBits = BitWidth - ShAmt;
2096           EVT ExtVT = EVT::getIntegerVT(*TLO.DAG.getContext(), LowBits);
2097           if (VT.isVector())
2098             ExtVT = EVT::getVectorVT(*TLO.DAG.getContext(), ExtVT,
2099                                      VT.getVectorElementCount());
2100 
2101           if (*InnerSA == ShAmt) {
2102             if (!TLO.LegalOperations() ||
2103                 getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) == Legal)
2104               return TLO.CombineTo(
2105                   Op, TLO.DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT,
2106                                       Op0.getOperand(0),
2107                                       TLO.DAG.getValueType(ExtVT)));
2108 
2109             // Even if we can't convert to sext_inreg, we might be able to
2110             // remove this shift pair if the input is already sign extended.
2111             unsigned NumSignBits =
2112                 TLO.DAG.ComputeNumSignBits(Op0.getOperand(0), DemandedElts);
2113             if (NumSignBits > ShAmt)
2114               return TLO.CombineTo(Op, Op0.getOperand(0));
2115           }
2116         }
2117       }
2118 
2119       APInt InDemandedMask = (DemandedBits << ShAmt);
2120 
2121       // If the shift is exact, then it does demand the low bits (and knows that
2122       // they are zero).
2123       if (Op->getFlags().hasExact())
2124         InDemandedMask.setLowBits(ShAmt);
2125 
2126       // If any of the demanded bits are produced by the sign extension, we also
2127       // demand the input sign bit.
2128       if (DemandedBits.countl_zero() < ShAmt)
2129         InDemandedMask.setSignBit();
2130 
2131       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
2132                                Depth + 1))
2133         return true;
2134       Known.Zero.lshrInPlace(ShAmt);
2135       Known.One.lshrInPlace(ShAmt);
2136 
2137       // If the input sign bit is known to be zero, or if none of the top bits
2138       // are demanded, turn this into an unsigned shift right.
2139       if (Known.Zero[BitWidth - ShAmt - 1] ||
2140           DemandedBits.countl_zero() >= ShAmt) {
2141         SDNodeFlags Flags;
2142         Flags.setExact(Op->getFlags().hasExact());
2143         return TLO.CombineTo(
2144             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
2145       }
2146 
2147       int Log2 = DemandedBits.exactLogBase2();
2148       if (Log2 >= 0) {
2149         // The bit must come from the sign.
2150         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
2151         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
2152       }
2153 
2154       if (Known.One[BitWidth - ShAmt - 1])
2155         // New bits are known one.
2156         Known.One.setHighBits(ShAmt);
2157 
2158       // Attempt to avoid multi-use ops if we don't need anything from them.
2159       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2160         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2161             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
2162         if (DemandedOp0) {
2163           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
2164           return TLO.CombineTo(Op, NewOp);
2165         }
2166       }
2167     }
2168 
2169     // Try to match AVG patterns (after shift simplification).
2170     if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits,
2171                                         DemandedElts, Depth + 1))
2172       return TLO.CombineTo(Op, AVG);
2173 
2174     break;
2175   }
2176   case ISD::FSHL:
2177   case ISD::FSHR: {
2178     SDValue Op0 = Op.getOperand(0);
2179     SDValue Op1 = Op.getOperand(1);
2180     SDValue Op2 = Op.getOperand(2);
2181     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
2182 
2183     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
2184       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
2185 
2186       // For fshl, 0-shift returns the 1st arg.
2187       // For fshr, 0-shift returns the 2nd arg.
2188       if (Amt == 0) {
2189         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
2190                                  Known, TLO, Depth + 1))
2191           return true;
2192         break;
2193       }
2194 
2195       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
2196       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
2197       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
2198       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
2199       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
2200                                Depth + 1))
2201         return true;
2202       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
2203                                Depth + 1))
2204         return true;
2205 
2206       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
2207       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
2208       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
2209       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
2210       Known = Known.unionWith(Known2);
2211 
2212       // Attempt to avoid multi-use ops if we don't need anything from them.
2213       if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() ||
2214           !DemandedElts.isAllOnes()) {
2215         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2216             Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1);
2217         SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2218             Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1);
2219         if (DemandedOp0 || DemandedOp1) {
2220           DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
2221           DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
2222           SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0,
2223                                           DemandedOp1, Op2);
2224           return TLO.CombineTo(Op, NewOp);
2225         }
2226       }
2227     }
2228 
2229     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2230     if (isPowerOf2_32(BitWidth)) {
2231       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
2232       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
2233                                Known2, TLO, Depth + 1))
2234         return true;
2235     }
2236     break;
2237   }
2238   case ISD::ROTL:
2239   case ISD::ROTR: {
2240     SDValue Op0 = Op.getOperand(0);
2241     SDValue Op1 = Op.getOperand(1);
2242     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
2243 
2244     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
2245     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
2246       return TLO.CombineTo(Op, Op0);
2247 
2248     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
2249       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
2250       unsigned RevAmt = BitWidth - Amt;
2251 
2252       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
2253       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
2254       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
2255       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
2256                                Depth + 1))
2257         return true;
2258 
2259       // rot*(x, 0) --> x
2260       if (Amt == 0)
2261         return TLO.CombineTo(Op, Op0);
2262 
2263       // See if we don't demand either half of the rotated bits.
2264       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
2265           DemandedBits.countr_zero() >= (IsROTL ? Amt : RevAmt)) {
2266         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
2267         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
2268       }
2269       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
2270           DemandedBits.countl_zero() >= (IsROTL ? RevAmt : Amt)) {
2271         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
2272         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
2273       }
2274     }
2275 
2276     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2277     if (isPowerOf2_32(BitWidth)) {
2278       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
2279       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
2280                                Depth + 1))
2281         return true;
2282     }
2283     break;
2284   }
2285   case ISD::SMIN:
2286   case ISD::SMAX:
2287   case ISD::UMIN:
2288   case ISD::UMAX: {
2289     unsigned Opc = Op.getOpcode();
2290     SDValue Op0 = Op.getOperand(0);
2291     SDValue Op1 = Op.getOperand(1);
2292 
2293     // If we're only demanding signbits, then we can simplify to OR/AND node.
2294     unsigned BitOp =
2295         (Opc == ISD::SMIN || Opc == ISD::UMAX) ? ISD::OR : ISD::AND;
2296     unsigned NumSignBits =
2297         std::min(TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1),
2298                  TLO.DAG.ComputeNumSignBits(Op1, DemandedElts, Depth + 1));
2299     unsigned NumDemandedUpperBits = BitWidth - DemandedBits.countr_zero();
2300     if (NumSignBits >= NumDemandedUpperBits)
2301       return TLO.CombineTo(Op, TLO.DAG.getNode(BitOp, SDLoc(Op), VT, Op0, Op1));
2302 
2303     // Check if one arg is always less/greater than (or equal) to the other arg.
2304     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
2305     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
2306     switch (Opc) {
2307     case ISD::SMIN:
2308       if (std::optional<bool> IsSLE = KnownBits::sle(Known0, Known1))
2309         return TLO.CombineTo(Op, *IsSLE ? Op0 : Op1);
2310       if (std::optional<bool> IsSLT = KnownBits::slt(Known0, Known1))
2311         return TLO.CombineTo(Op, *IsSLT ? Op0 : Op1);
2312       Known = KnownBits::smin(Known0, Known1);
2313       break;
2314     case ISD::SMAX:
2315       if (std::optional<bool> IsSGE = KnownBits::sge(Known0, Known1))
2316         return TLO.CombineTo(Op, *IsSGE ? Op0 : Op1);
2317       if (std::optional<bool> IsSGT = KnownBits::sgt(Known0, Known1))
2318         return TLO.CombineTo(Op, *IsSGT ? Op0 : Op1);
2319       Known = KnownBits::smax(Known0, Known1);
2320       break;
2321     case ISD::UMIN:
2322       if (std::optional<bool> IsULE = KnownBits::ule(Known0, Known1))
2323         return TLO.CombineTo(Op, *IsULE ? Op0 : Op1);
2324       if (std::optional<bool> IsULT = KnownBits::ult(Known0, Known1))
2325         return TLO.CombineTo(Op, *IsULT ? Op0 : Op1);
2326       Known = KnownBits::umin(Known0, Known1);
2327       break;
2328     case ISD::UMAX:
2329       if (std::optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
2330         return TLO.CombineTo(Op, *IsUGE ? Op0 : Op1);
2331       if (std::optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
2332         return TLO.CombineTo(Op, *IsUGT ? Op0 : Op1);
2333       Known = KnownBits::umax(Known0, Known1);
2334       break;
2335     }
2336     break;
2337   }
2338   case ISD::BITREVERSE: {
2339     SDValue Src = Op.getOperand(0);
2340     APInt DemandedSrcBits = DemandedBits.reverseBits();
2341     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2342                              Depth + 1))
2343       return true;
2344     Known.One = Known2.One.reverseBits();
2345     Known.Zero = Known2.Zero.reverseBits();
2346     break;
2347   }
2348   case ISD::BSWAP: {
2349     SDValue Src = Op.getOperand(0);
2350 
2351     // If the only bits demanded come from one byte of the bswap result,
2352     // just shift the input byte into position to eliminate the bswap.
2353     unsigned NLZ = DemandedBits.countl_zero();
2354     unsigned NTZ = DemandedBits.countr_zero();
2355 
2356     // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
2357     // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
2358     // have 14 leading zeros, round to 8.
2359     NLZ = alignDown(NLZ, 8);
2360     NTZ = alignDown(NTZ, 8);
2361     // If we need exactly one byte, we can do this transformation.
2362     if (BitWidth - NLZ - NTZ == 8) {
2363       // Replace this with either a left or right shift to get the byte into
2364       // the right place.
2365       unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
2366       if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
2367         unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
2368         SDValue ShAmt = TLO.DAG.getShiftAmountConstant(ShiftAmount, VT, dl);
2369         SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
2370         return TLO.CombineTo(Op, NewOp);
2371       }
2372     }
2373 
2374     APInt DemandedSrcBits = DemandedBits.byteSwap();
2375     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2376                              Depth + 1))
2377       return true;
2378     Known.One = Known2.One.byteSwap();
2379     Known.Zero = Known2.Zero.byteSwap();
2380     break;
2381   }
2382   case ISD::CTPOP: {
2383     // If only 1 bit is demanded, replace with PARITY as long as we're before
2384     // op legalization.
2385     // FIXME: Limit to scalars for now.
2386     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
2387       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
2388                                                Op.getOperand(0)));
2389 
2390     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2391     break;
2392   }
2393   case ISD::SIGN_EXTEND_INREG: {
2394     SDValue Op0 = Op.getOperand(0);
2395     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2396     unsigned ExVTBits = ExVT.getScalarSizeInBits();
2397 
2398     // If we only care about the highest bit, don't bother shifting right.
2399     if (DemandedBits.isSignMask()) {
2400       unsigned MinSignedBits =
2401           TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
2402       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2403       // However if the input is already sign extended we expect the sign
2404       // extension to be dropped altogether later and do not simplify.
2405       if (!AlreadySignExtended) {
2406         // Compute the correct shift amount type, which must be getShiftAmountTy
2407         // for scalar types after legalization.
2408         SDValue ShiftAmt =
2409             TLO.DAG.getShiftAmountConstant(BitWidth - ExVTBits, VT, dl);
2410         return TLO.CombineTo(Op,
2411                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
2412       }
2413     }
2414 
2415     // If none of the extended bits are demanded, eliminate the sextinreg.
2416     if (DemandedBits.getActiveBits() <= ExVTBits)
2417       return TLO.CombineTo(Op, Op0);
2418 
2419     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
2420 
2421     // Since the sign extended bits are demanded, we know that the sign
2422     // bit is demanded.
2423     InputDemandedBits.setBit(ExVTBits - 1);
2424 
2425     if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO,
2426                              Depth + 1))
2427       return true;
2428 
2429     // If the sign bit of the input is known set or clear, then we know the
2430     // top bits of the result.
2431 
2432     // If the input sign bit is known zero, convert this into a zero extension.
2433     if (Known.Zero[ExVTBits - 1])
2434       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
2435 
2436     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
2437     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
2438       Known.One.setBitsFrom(ExVTBits);
2439       Known.Zero &= Mask;
2440     } else { // Input sign bit unknown
2441       Known.Zero &= Mask;
2442       Known.One &= Mask;
2443     }
2444     break;
2445   }
2446   case ISD::BUILD_PAIR: {
2447     EVT HalfVT = Op.getOperand(0).getValueType();
2448     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
2449 
2450     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
2451     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
2452 
2453     KnownBits KnownLo, KnownHi;
2454 
2455     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
2456       return true;
2457 
2458     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
2459       return true;
2460 
2461     Known = KnownHi.concat(KnownLo);
2462     break;
2463   }
2464   case ISD::ZERO_EXTEND_VECTOR_INREG:
2465     if (VT.isScalableVector())
2466       return false;
2467     [[fallthrough]];
2468   case ISD::ZERO_EXTEND: {
2469     SDValue Src = Op.getOperand(0);
2470     EVT SrcVT = Src.getValueType();
2471     unsigned InBits = SrcVT.getScalarSizeInBits();
2472     unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2473     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
2474 
2475     // If none of the top bits are demanded, convert this into an any_extend.
2476     if (DemandedBits.getActiveBits() <= InBits) {
2477       // If we only need the non-extended bits of the bottom element
2478       // then we can just bitcast to the result.
2479       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2480           VT.getSizeInBits() == SrcVT.getSizeInBits())
2481         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2482 
2483       unsigned Opc =
2484           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2485       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2486         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2487     }
2488 
2489     APInt InDemandedBits = DemandedBits.trunc(InBits);
2490     APInt InDemandedElts = DemandedElts.zext(InElts);
2491     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2492                              Depth + 1)) {
2493       Op->dropFlags(SDNodeFlags::NonNeg);
2494       return true;
2495     }
2496     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2497     Known = Known.zext(BitWidth);
2498 
2499     // Attempt to avoid multi-use ops if we don't need anything from them.
2500     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2501             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2502       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2503     break;
2504   }
2505   case ISD::SIGN_EXTEND_VECTOR_INREG:
2506     if (VT.isScalableVector())
2507       return false;
2508     [[fallthrough]];
2509   case ISD::SIGN_EXTEND: {
2510     SDValue Src = Op.getOperand(0);
2511     EVT SrcVT = Src.getValueType();
2512     unsigned InBits = SrcVT.getScalarSizeInBits();
2513     unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2514     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
2515 
2516     APInt InDemandedElts = DemandedElts.zext(InElts);
2517     APInt InDemandedBits = DemandedBits.trunc(InBits);
2518 
2519     // Since some of the sign extended bits are demanded, we know that the sign
2520     // bit is demanded.
2521     InDemandedBits.setBit(InBits - 1);
2522 
2523     // If none of the top bits are demanded, convert this into an any_extend.
2524     if (DemandedBits.getActiveBits() <= InBits) {
2525       // If we only need the non-extended bits of the bottom element
2526       // then we can just bitcast to the result.
2527       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2528           VT.getSizeInBits() == SrcVT.getSizeInBits())
2529         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2530 
2531       // Don't lose an all signbits 0/-1 splat on targets with 0/-1 booleans.
2532       if (getBooleanContents(VT) != ZeroOrNegativeOneBooleanContent ||
2533           TLO.DAG.ComputeNumSignBits(Src, InDemandedElts, Depth + 1) !=
2534               InBits) {
2535         unsigned Opc =
2536             IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2537         if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2538           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2539       }
2540     }
2541 
2542     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2543                              Depth + 1))
2544       return true;
2545     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2546 
2547     // If the sign bit is known one, the top bits match.
2548     Known = Known.sext(BitWidth);
2549 
2550     // If the sign bit is known zero, convert this to a zero extend.
2551     if (Known.isNonNegative()) {
2552       unsigned Opc =
2553           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
2554       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) {
2555         SDNodeFlags Flags;
2556         if (!IsVecInReg)
2557           Flags |= SDNodeFlags::NonNeg;
2558         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src, Flags));
2559       }
2560     }
2561 
2562     // Attempt to avoid multi-use ops if we don't need anything from them.
2563     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2564             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2565       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2566     break;
2567   }
2568   case ISD::ANY_EXTEND_VECTOR_INREG:
2569     if (VT.isScalableVector())
2570       return false;
2571     [[fallthrough]];
2572   case ISD::ANY_EXTEND: {
2573     SDValue Src = Op.getOperand(0);
2574     EVT SrcVT = Src.getValueType();
2575     unsigned InBits = SrcVT.getScalarSizeInBits();
2576     unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
2577     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2578 
2579     // If we only need the bottom element then we can just bitcast.
2580     // TODO: Handle ANY_EXTEND?
2581     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2582         VT.getSizeInBits() == SrcVT.getSizeInBits())
2583       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2584 
2585     APInt InDemandedBits = DemandedBits.trunc(InBits);
2586     APInt InDemandedElts = DemandedElts.zext(InElts);
2587     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2588                              Depth + 1))
2589       return true;
2590     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2591     Known = Known.anyext(BitWidth);
2592 
2593     // Attempt to avoid multi-use ops if we don't need anything from them.
2594     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2595             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2596       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2597     break;
2598   }
2599   case ISD::TRUNCATE: {
2600     SDValue Src = Op.getOperand(0);
2601 
2602     // Simplify the input, using demanded bit information, and compute the known
2603     // zero/one bits live out.
2604     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2605     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2606     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2607                              Depth + 1)) {
2608       // Disable the nsw and nuw flags. We can no longer guarantee that we
2609       // won't wrap after simplification.
2610       Op->dropFlags(SDNodeFlags::NoWrap);
2611       return true;
2612     }
2613     Known = Known.trunc(BitWidth);
2614 
2615     // Attempt to avoid multi-use ops if we don't need anything from them.
2616     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2617             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2618       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2619 
2620     // If the input is only used by this truncate, see if we can shrink it based
2621     // on the known demanded bits.
2622     switch (Src.getOpcode()) {
2623     default:
2624       break;
2625     case ISD::SRL:
2626       // Shrink SRL by a constant if none of the high bits shifted in are
2627       // demanded.
2628       if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2629         // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2630         // undesirable.
2631         break;
2632 
2633       if (Src.getNode()->hasOneUse()) {
2634         if (isTruncateFree(Src, VT) &&
2635             !isTruncateFree(Src.getValueType(), VT)) {
2636           // If truncate is only free at trunc(srl), do not turn it into
2637           // srl(trunc). The check is done by first check the truncate is free
2638           // at Src's opcode(srl), then check the truncate is not done by
2639           // referencing sub-register. In test, if both trunc(srl) and
2640           // srl(trunc)'s trunc are free, srl(trunc) performs better. If only
2641           // trunc(srl)'s trunc is free, trunc(srl) is better.
2642           break;
2643         }
2644 
2645         std::optional<uint64_t> ShAmtC =
2646             TLO.DAG.getValidShiftAmount(Src, DemandedElts, Depth + 2);
2647         if (!ShAmtC || *ShAmtC >= BitWidth)
2648           break;
2649         uint64_t ShVal = *ShAmtC;
2650 
2651         APInt HighBits =
2652             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2653         HighBits.lshrInPlace(ShVal);
2654         HighBits = HighBits.trunc(BitWidth);
2655         if (!(HighBits & DemandedBits)) {
2656           // None of the shifted in bits are needed.  Add a truncate of the
2657           // shift input, then shift it.
2658           SDValue NewShAmt = TLO.DAG.getShiftAmountConstant(ShVal, VT, dl);
2659           SDValue NewTrunc =
2660               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2661           return TLO.CombineTo(
2662               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2663         }
2664       }
2665       break;
2666     }
2667 
2668     break;
2669   }
2670   case ISD::AssertZext: {
2671     // AssertZext demands all of the high bits, plus any of the low bits
2672     // demanded by its users.
2673     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2674     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2675     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2676                              TLO, Depth + 1))
2677       return true;
2678 
2679     Known.Zero |= ~InMask;
2680     Known.One &= (~Known.Zero);
2681     break;
2682   }
2683   case ISD::EXTRACT_VECTOR_ELT: {
2684     SDValue Src = Op.getOperand(0);
2685     SDValue Idx = Op.getOperand(1);
2686     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2687     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2688 
2689     if (SrcEltCnt.isScalable())
2690       return false;
2691 
2692     // Demand the bits from every vector element without a constant index.
2693     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2694     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2695     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2696       if (CIdx->getAPIntValue().ult(NumSrcElts))
2697         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2698 
2699     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2700     // anything about the extended bits.
2701     APInt DemandedSrcBits = DemandedBits;
2702     if (BitWidth > EltBitWidth)
2703       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2704 
2705     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2706                              Depth + 1))
2707       return true;
2708 
2709     // Attempt to avoid multi-use ops if we don't need anything from them.
2710     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2711       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2712               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2713         SDValue NewOp =
2714             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2715         return TLO.CombineTo(Op, NewOp);
2716       }
2717     }
2718 
2719     Known = Known2;
2720     if (BitWidth > EltBitWidth)
2721       Known = Known.anyext(BitWidth);
2722     break;
2723   }
2724   case ISD::BITCAST: {
2725     if (VT.isScalableVector())
2726       return false;
2727     SDValue Src = Op.getOperand(0);
2728     EVT SrcVT = Src.getValueType();
2729     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2730 
2731     // If this is an FP->Int bitcast and if the sign bit is the only
2732     // thing demanded, turn this into a FGETSIGN.
2733     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2734         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2735         SrcVT.isFloatingPoint()) {
2736       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2737       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2738       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2739           SrcVT != MVT::f128) {
2740         // Cannot eliminate/lower SHL for f128 yet.
2741         EVT Ty = OpVTLegal ? VT : MVT::i32;
2742         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2743         // place.  We expect the SHL to be eliminated by other optimizations.
2744         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2745         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2746         if (!OpVTLegal && OpVTSizeInBits > 32)
2747           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2748         unsigned ShVal = Op.getValueSizeInBits() - 1;
2749         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2750         return TLO.CombineTo(Op,
2751                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2752       }
2753     }
2754 
2755     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2756     // Demand the elt/bit if any of the original elts/bits are demanded.
2757     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2758       unsigned Scale = BitWidth / NumSrcEltBits;
2759       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2760       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2761       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2762       for (unsigned i = 0; i != Scale; ++i) {
2763         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2764         unsigned BitOffset = EltOffset * NumSrcEltBits;
2765         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2766         if (!Sub.isZero()) {
2767           DemandedSrcBits |= Sub;
2768           for (unsigned j = 0; j != NumElts; ++j)
2769             if (DemandedElts[j])
2770               DemandedSrcElts.setBit((j * Scale) + i);
2771         }
2772       }
2773 
2774       APInt KnownSrcUndef, KnownSrcZero;
2775       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2776                                      KnownSrcZero, TLO, Depth + 1))
2777         return true;
2778 
2779       KnownBits KnownSrcBits;
2780       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2781                                KnownSrcBits, TLO, Depth + 1))
2782         return true;
2783     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2784       // TODO - bigendian once we have test coverage.
2785       unsigned Scale = NumSrcEltBits / BitWidth;
2786       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2787       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2788       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2789       for (unsigned i = 0; i != NumElts; ++i)
2790         if (DemandedElts[i]) {
2791           unsigned Offset = (i % Scale) * BitWidth;
2792           DemandedSrcBits.insertBits(DemandedBits, Offset);
2793           DemandedSrcElts.setBit(i / Scale);
2794         }
2795 
2796       if (SrcVT.isVector()) {
2797         APInt KnownSrcUndef, KnownSrcZero;
2798         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2799                                        KnownSrcZero, TLO, Depth + 1))
2800           return true;
2801       }
2802 
2803       KnownBits KnownSrcBits;
2804       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2805                                KnownSrcBits, TLO, Depth + 1))
2806         return true;
2807 
2808       // Attempt to avoid multi-use ops if we don't need anything from them.
2809       if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2810         if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2811                 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2812           SDValue NewOp = TLO.DAG.getBitcast(VT, DemandedSrc);
2813           return TLO.CombineTo(Op, NewOp);
2814         }
2815       }
2816     }
2817 
2818     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2819     // recursive call where Known may be useful to the caller.
2820     if (Depth > 0) {
2821       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2822       return false;
2823     }
2824     break;
2825   }
2826   case ISD::MUL:
2827     if (DemandedBits.isPowerOf2()) {
2828       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
2829       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
2830       // odd (has LSB set), then the left-shifted low bit of X is the answer.
2831       unsigned CTZ = DemandedBits.countr_zero();
2832       ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
2833       if (C && C->getAPIntValue().countr_zero() == CTZ) {
2834         SDValue AmtC = TLO.DAG.getShiftAmountConstant(CTZ, VT, dl);
2835         SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
2836         return TLO.CombineTo(Op, Shl);
2837       }
2838     }
2839     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
2840     // X * X is odd iff X is odd.
2841     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
2842     if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
2843       SDValue One = TLO.DAG.getConstant(1, dl, VT);
2844       SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
2845       return TLO.CombineTo(Op, And1);
2846     }
2847     [[fallthrough]];
2848   case ISD::ADD:
2849   case ISD::SUB: {
2850     // Add, Sub, and Mul don't demand any bits in positions beyond that
2851     // of the highest bit demanded of them.
2852     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2853     SDNodeFlags Flags = Op.getNode()->getFlags();
2854     unsigned DemandedBitsLZ = DemandedBits.countl_zero();
2855     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2856     KnownBits KnownOp0, KnownOp1;
2857     auto GetDemandedBitsLHSMask = [&](APInt Demanded,
2858                                       const KnownBits &KnownRHS) {
2859       if (Op.getOpcode() == ISD::MUL)
2860         Demanded.clearHighBits(KnownRHS.countMinTrailingZeros());
2861       return Demanded;
2862     };
2863     if (SimplifyDemandedBits(Op1, LoMask, DemandedElts, KnownOp1, TLO,
2864                              Depth + 1) ||
2865         SimplifyDemandedBits(Op0, GetDemandedBitsLHSMask(LoMask, KnownOp1),
2866                              DemandedElts, KnownOp0, TLO, Depth + 1) ||
2867         // See if the operation should be performed at a smaller bit width.
2868         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2869       // Disable the nsw and nuw flags. We can no longer guarantee that we
2870       // won't wrap after simplification.
2871       Op->dropFlags(SDNodeFlags::NoWrap);
2872       return true;
2873     }
2874 
2875     // neg x with only low bit demanded is simply x.
2876     if (Op.getOpcode() == ISD::SUB && DemandedBits.isOne() &&
2877         isNullConstant(Op0))
2878       return TLO.CombineTo(Op, Op1);
2879 
2880     // Attempt to avoid multi-use ops if we don't need anything from them.
2881     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2882       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2883           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2884       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2885           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2886       if (DemandedOp0 || DemandedOp1) {
2887         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2888         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2889         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1,
2890                                         Flags & ~SDNodeFlags::NoWrap);
2891         return TLO.CombineTo(Op, NewOp);
2892       }
2893     }
2894 
2895     // If we have a constant operand, we may be able to turn it into -1 if we
2896     // do not demand the high bits. This can make the constant smaller to
2897     // encode, allow more general folding, or match specialized instruction
2898     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2899     // is probably not useful (and could be detrimental).
2900     ConstantSDNode *C = isConstOrConstSplat(Op1);
2901     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2902     if (C && !C->isAllOnes() && !C->isOne() &&
2903         (C->getAPIntValue() | HighMask).isAllOnes()) {
2904       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2905       // Disable the nsw and nuw flags. We can no longer guarantee that we
2906       // won't wrap after simplification.
2907       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1,
2908                                       Flags & ~SDNodeFlags::NoWrap);
2909       return TLO.CombineTo(Op, NewOp);
2910     }
2911 
2912     // Match a multiply with a disguised negated-power-of-2 and convert to a
2913     // an equivalent shift-left amount.
2914     // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2915     auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
2916       if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
2917         return 0;
2918 
2919       // Don't touch opaque constants. Also, ignore zero and power-of-2
2920       // multiplies. Those will get folded later.
2921       ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
2922       if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
2923           !MulC->getAPIntValue().isPowerOf2()) {
2924         APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
2925         if (UnmaskedC.isNegatedPowerOf2())
2926           return (-UnmaskedC).logBase2();
2927       }
2928       return 0;
2929     };
2930 
2931     auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y,
2932                        unsigned ShlAmt) {
2933       SDValue ShlAmtC = TLO.DAG.getShiftAmountConstant(ShlAmt, VT, dl);
2934       SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
2935       SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl);
2936       return TLO.CombineTo(Op, Res);
2937     };
2938 
2939     if (isOperationLegalOrCustom(ISD::SHL, VT)) {
2940       if (Op.getOpcode() == ISD::ADD) {
2941         // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2942         if (unsigned ShAmt = getShiftLeftAmt(Op0))
2943           return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt);
2944         // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
2945         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2946           return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt);
2947       }
2948       if (Op.getOpcode() == ISD::SUB) {
2949         // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
2950         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2951           return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt);
2952       }
2953     }
2954 
2955     if (Op.getOpcode() == ISD::MUL) {
2956       Known = KnownBits::mul(KnownOp0, KnownOp1);
2957     } else { // Op.getOpcode() is either ISD::ADD or ISD::SUB.
2958       Known = KnownBits::computeForAddSub(
2959           Op.getOpcode() == ISD::ADD, Flags.hasNoSignedWrap(),
2960           Flags.hasNoUnsignedWrap(), KnownOp0, KnownOp1);
2961     }
2962     break;
2963   }
2964   default:
2965     // We also ask the target about intrinsics (which could be specific to it).
2966     if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2967         Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
2968       // TODO: Probably okay to remove after audit; here to reduce change size
2969       // in initial enablement patch for scalable vectors
2970       if (Op.getValueType().isScalableVector())
2971         break;
2972       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2973                                             Known, TLO, Depth))
2974         return true;
2975       break;
2976     }
2977 
2978     // Just use computeKnownBits to compute output bits.
2979     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2980     break;
2981   }
2982 
2983   // If we know the value of all of the demanded bits, return this as a
2984   // constant.
2985   if (!isTargetCanonicalConstantNode(Op) &&
2986       DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2987     // Avoid folding to a constant if any OpaqueConstant is involved.
2988     const SDNode *N = Op.getNode();
2989     for (SDNode *Op :
2990          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2991       if (auto *C = dyn_cast<ConstantSDNode>(Op))
2992         if (C->isOpaque())
2993           return false;
2994     }
2995     if (VT.isInteger())
2996       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2997     if (VT.isFloatingPoint())
2998       return TLO.CombineTo(
2999           Op, TLO.DAG.getConstantFP(APFloat(VT.getFltSemantics(), Known.One),
3000                                     dl, VT));
3001   }
3002 
3003   // A multi use 'all demanded elts' simplify failed to find any knownbits.
3004   // Try again just for the original demanded elts.
3005   // Ensure we do this AFTER constant folding above.
3006   if (HasMultiUse && Known.isUnknown() && !OriginalDemandedElts.isAllOnes())
3007     Known = TLO.DAG.computeKnownBits(Op, OriginalDemandedElts, Depth);
3008 
3009   return false;
3010 }
3011 
3012 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
3013                                                 const APInt &DemandedElts,
3014                                                 DAGCombinerInfo &DCI) const {
3015   SelectionDAG &DAG = DCI.DAG;
3016   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
3017                         !DCI.isBeforeLegalizeOps());
3018 
3019   APInt KnownUndef, KnownZero;
3020   bool Simplified =
3021       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
3022   if (Simplified) {
3023     DCI.AddToWorklist(Op.getNode());
3024     DCI.CommitTargetLoweringOpt(TLO);
3025   }
3026 
3027   return Simplified;
3028 }
3029 
3030 /// Given a vector binary operation and known undefined elements for each input
3031 /// operand, compute whether each element of the output is undefined.
3032 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
3033                                          const APInt &UndefOp0,
3034                                          const APInt &UndefOp1) {
3035   EVT VT = BO.getValueType();
3036   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
3037          "Vector binop only");
3038 
3039   EVT EltVT = VT.getVectorElementType();
3040   unsigned NumElts = VT.isFixedLengthVector() ? VT.getVectorNumElements() : 1;
3041   assert(UndefOp0.getBitWidth() == NumElts &&
3042          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
3043 
3044   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
3045                                    const APInt &UndefVals) {
3046     if (UndefVals[Index])
3047       return DAG.getUNDEF(EltVT);
3048 
3049     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
3050       // Try hard to make sure that the getNode() call is not creating temporary
3051       // nodes. Ignore opaque integers because they do not constant fold.
3052       SDValue Elt = BV->getOperand(Index);
3053       auto *C = dyn_cast<ConstantSDNode>(Elt);
3054       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
3055         return Elt;
3056     }
3057 
3058     return SDValue();
3059   };
3060 
3061   APInt KnownUndef = APInt::getZero(NumElts);
3062   for (unsigned i = 0; i != NumElts; ++i) {
3063     // If both inputs for this element are either constant or undef and match
3064     // the element type, compute the constant/undef result for this element of
3065     // the vector.
3066     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
3067     // not handle FP constants. The code within getNode() should be refactored
3068     // to avoid the danger of creating a bogus temporary node here.
3069     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
3070     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
3071     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
3072       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
3073         KnownUndef.setBit(i);
3074   }
3075   return KnownUndef;
3076 }
3077 
3078 bool TargetLowering::SimplifyDemandedVectorElts(
3079     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
3080     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
3081     bool AssumeSingleUse) const {
3082   EVT VT = Op.getValueType();
3083   unsigned Opcode = Op.getOpcode();
3084   APInt DemandedElts = OriginalDemandedElts;
3085   unsigned NumElts = DemandedElts.getBitWidth();
3086   assert(VT.isVector() && "Expected vector op");
3087 
3088   KnownUndef = KnownZero = APInt::getZero(NumElts);
3089 
3090   if (!shouldSimplifyDemandedVectorElts(Op, TLO))
3091     return false;
3092 
3093   // TODO: For now we assume we know nothing about scalable vectors.
3094   if (VT.isScalableVector())
3095     return false;
3096 
3097   assert(VT.getVectorNumElements() == NumElts &&
3098          "Mask size mismatches value type element count!");
3099 
3100   // Undef operand.
3101   if (Op.isUndef()) {
3102     KnownUndef.setAllBits();
3103     return false;
3104   }
3105 
3106   // If Op has other users, assume that all elements are needed.
3107   if (!AssumeSingleUse && !Op.getNode()->hasOneUse())
3108     DemandedElts.setAllBits();
3109 
3110   // Not demanding any elements from Op.
3111   if (DemandedElts == 0) {
3112     KnownUndef.setAllBits();
3113     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3114   }
3115 
3116   // Limit search depth.
3117   if (Depth >= SelectionDAG::MaxRecursionDepth)
3118     return false;
3119 
3120   SDLoc DL(Op);
3121   unsigned EltSizeInBits = VT.getScalarSizeInBits();
3122   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
3123 
3124   // Helper for demanding the specified elements and all the bits of both binary
3125   // operands.
3126   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
3127     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
3128                                                            TLO.DAG, Depth + 1);
3129     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
3130                                                            TLO.DAG, Depth + 1);
3131     if (NewOp0 || NewOp1) {
3132       SDValue NewOp =
3133           TLO.DAG.getNode(Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0,
3134                           NewOp1 ? NewOp1 : Op1, Op->getFlags());
3135       return TLO.CombineTo(Op, NewOp);
3136     }
3137     return false;
3138   };
3139 
3140   switch (Opcode) {
3141   case ISD::SCALAR_TO_VECTOR: {
3142     if (!DemandedElts[0]) {
3143       KnownUndef.setAllBits();
3144       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3145     }
3146     SDValue ScalarSrc = Op.getOperand(0);
3147     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
3148       SDValue Src = ScalarSrc.getOperand(0);
3149       SDValue Idx = ScalarSrc.getOperand(1);
3150       EVT SrcVT = Src.getValueType();
3151 
3152       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
3153 
3154       if (SrcEltCnt.isScalable())
3155         return false;
3156 
3157       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
3158       if (isNullConstant(Idx)) {
3159         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
3160         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
3161         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
3162         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3163                                        TLO, Depth + 1))
3164           return true;
3165       }
3166     }
3167     KnownUndef.setHighBits(NumElts - 1);
3168     break;
3169   }
3170   case ISD::BITCAST: {
3171     SDValue Src = Op.getOperand(0);
3172     EVT SrcVT = Src.getValueType();
3173 
3174     // We only handle vectors here.
3175     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
3176     if (!SrcVT.isVector())
3177       break;
3178 
3179     // Fast handling of 'identity' bitcasts.
3180     unsigned NumSrcElts = SrcVT.getVectorNumElements();
3181     if (NumSrcElts == NumElts)
3182       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
3183                                         KnownZero, TLO, Depth + 1);
3184 
3185     APInt SrcDemandedElts, SrcZero, SrcUndef;
3186 
3187     // Bitcast from 'large element' src vector to 'small element' vector, we
3188     // must demand a source element if any DemandedElt maps to it.
3189     if ((NumElts % NumSrcElts) == 0) {
3190       unsigned Scale = NumElts / NumSrcElts;
3191       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
3192       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3193                                      TLO, Depth + 1))
3194         return true;
3195 
3196       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
3197       // of the large element.
3198       // TODO - bigendian once we have test coverage.
3199       if (IsLE) {
3200         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
3201         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
3202         for (unsigned i = 0; i != NumElts; ++i)
3203           if (DemandedElts[i]) {
3204             unsigned Ofs = (i % Scale) * EltSizeInBits;
3205             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
3206           }
3207 
3208         KnownBits Known;
3209         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
3210                                  TLO, Depth + 1))
3211           return true;
3212 
3213         // The bitcast has split each wide element into a number of
3214         // narrow subelements. We have just computed the Known bits
3215         // for wide elements. See if element splitting results in
3216         // some subelements being zero. Only for demanded elements!
3217         for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
3218           if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits)
3219                    .isAllOnes())
3220             continue;
3221           for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
3222             unsigned Elt = Scale * SrcElt + SubElt;
3223             if (DemandedElts[Elt])
3224               KnownZero.setBit(Elt);
3225           }
3226         }
3227       }
3228 
3229       // If the src element is zero/undef then all the output elements will be -
3230       // only demanded elements are guaranteed to be correct.
3231       for (unsigned i = 0; i != NumSrcElts; ++i) {
3232         if (SrcDemandedElts[i]) {
3233           if (SrcZero[i])
3234             KnownZero.setBits(i * Scale, (i + 1) * Scale);
3235           if (SrcUndef[i])
3236             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
3237         }
3238       }
3239     }
3240 
3241     // Bitcast from 'small element' src vector to 'large element' vector, we
3242     // demand all smaller source elements covered by the larger demanded element
3243     // of this vector.
3244     if ((NumSrcElts % NumElts) == 0) {
3245       unsigned Scale = NumSrcElts / NumElts;
3246       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
3247       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3248                                      TLO, Depth + 1))
3249         return true;
3250 
3251       // If all the src elements covering an output element are zero/undef, then
3252       // the output element will be as well, assuming it was demanded.
3253       for (unsigned i = 0; i != NumElts; ++i) {
3254         if (DemandedElts[i]) {
3255           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
3256             KnownZero.setBit(i);
3257           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
3258             KnownUndef.setBit(i);
3259         }
3260       }
3261     }
3262     break;
3263   }
3264   case ISD::FREEZE: {
3265     SDValue N0 = Op.getOperand(0);
3266     if (TLO.DAG.isGuaranteedNotToBeUndefOrPoison(N0, DemandedElts,
3267                                                  /*PoisonOnly=*/false))
3268       return TLO.CombineTo(Op, N0);
3269 
3270     // TODO: Replace this with the general fold from DAGCombiner::visitFREEZE
3271     // freeze(op(x, ...)) -> op(freeze(x), ...).
3272     if (N0.getOpcode() == ISD::SCALAR_TO_VECTOR && DemandedElts == 1)
3273       return TLO.CombineTo(
3274           Op, TLO.DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT,
3275                               TLO.DAG.getFreeze(N0.getOperand(0))));
3276     break;
3277   }
3278   case ISD::BUILD_VECTOR: {
3279     // Check all elements and simplify any unused elements with UNDEF.
3280     if (!DemandedElts.isAllOnes()) {
3281       // Don't simplify BROADCASTS.
3282       if (llvm::any_of(Op->op_values(),
3283                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
3284         SmallVector<SDValue, 32> Ops(Op->ops());
3285         bool Updated = false;
3286         for (unsigned i = 0; i != NumElts; ++i) {
3287           if (!DemandedElts[i] && !Ops[i].isUndef()) {
3288             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
3289             KnownUndef.setBit(i);
3290             Updated = true;
3291           }
3292         }
3293         if (Updated)
3294           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
3295       }
3296     }
3297     for (unsigned i = 0; i != NumElts; ++i) {
3298       SDValue SrcOp = Op.getOperand(i);
3299       if (SrcOp.isUndef()) {
3300         KnownUndef.setBit(i);
3301       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
3302                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
3303         KnownZero.setBit(i);
3304       }
3305     }
3306     break;
3307   }
3308   case ISD::CONCAT_VECTORS: {
3309     EVT SubVT = Op.getOperand(0).getValueType();
3310     unsigned NumSubVecs = Op.getNumOperands();
3311     unsigned NumSubElts = SubVT.getVectorNumElements();
3312     for (unsigned i = 0; i != NumSubVecs; ++i) {
3313       SDValue SubOp = Op.getOperand(i);
3314       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
3315       APInt SubUndef, SubZero;
3316       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
3317                                      Depth + 1))
3318         return true;
3319       KnownUndef.insertBits(SubUndef, i * NumSubElts);
3320       KnownZero.insertBits(SubZero, i * NumSubElts);
3321     }
3322 
3323     // Attempt to avoid multi-use ops if we don't need anything from them.
3324     if (!DemandedElts.isAllOnes()) {
3325       bool FoundNewSub = false;
3326       SmallVector<SDValue, 2> DemandedSubOps;
3327       for (unsigned i = 0; i != NumSubVecs; ++i) {
3328         SDValue SubOp = Op.getOperand(i);
3329         APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
3330         SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts(
3331             SubOp, SubElts, TLO.DAG, Depth + 1);
3332         DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp);
3333         FoundNewSub = NewSubOp ? true : FoundNewSub;
3334       }
3335       if (FoundNewSub) {
3336         SDValue NewOp =
3337             TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps);
3338         return TLO.CombineTo(Op, NewOp);
3339       }
3340     }
3341     break;
3342   }
3343   case ISD::INSERT_SUBVECTOR: {
3344     // Demand any elements from the subvector and the remainder from the src its
3345     // inserted into.
3346     SDValue Src = Op.getOperand(0);
3347     SDValue Sub = Op.getOperand(1);
3348     uint64_t Idx = Op.getConstantOperandVal(2);
3349     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3350     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3351     APInt DemandedSrcElts = DemandedElts;
3352     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
3353 
3354     APInt SubUndef, SubZero;
3355     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
3356                                    Depth + 1))
3357       return true;
3358 
3359     // If none of the src operand elements are demanded, replace it with undef.
3360     if (!DemandedSrcElts && !Src.isUndef())
3361       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
3362                                                TLO.DAG.getUNDEF(VT), Sub,
3363                                                Op.getOperand(2)));
3364 
3365     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
3366                                    TLO, Depth + 1))
3367       return true;
3368     KnownUndef.insertBits(SubUndef, Idx);
3369     KnownZero.insertBits(SubZero, Idx);
3370 
3371     // Attempt to avoid multi-use ops if we don't need anything from them.
3372     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
3373       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3374           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3375       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
3376           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
3377       if (NewSrc || NewSub) {
3378         NewSrc = NewSrc ? NewSrc : Src;
3379         NewSub = NewSub ? NewSub : Sub;
3380         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3381                                         NewSub, Op.getOperand(2));
3382         return TLO.CombineTo(Op, NewOp);
3383       }
3384     }
3385     break;
3386   }
3387   case ISD::EXTRACT_SUBVECTOR: {
3388     // Offset the demanded elts by the subvector index.
3389     SDValue Src = Op.getOperand(0);
3390     if (Src.getValueType().isScalableVector())
3391       break;
3392     uint64_t Idx = Op.getConstantOperandVal(1);
3393     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3394     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3395 
3396     APInt SrcUndef, SrcZero;
3397     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3398                                    Depth + 1))
3399       return true;
3400     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
3401     KnownZero = SrcZero.extractBits(NumElts, Idx);
3402 
3403     // Attempt to avoid multi-use ops if we don't need anything from them.
3404     if (!DemandedElts.isAllOnes()) {
3405       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3406           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3407       if (NewSrc) {
3408         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3409                                         Op.getOperand(1));
3410         return TLO.CombineTo(Op, NewOp);
3411       }
3412     }
3413     break;
3414   }
3415   case ISD::INSERT_VECTOR_ELT: {
3416     SDValue Vec = Op.getOperand(0);
3417     SDValue Scl = Op.getOperand(1);
3418     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3419 
3420     // For a legal, constant insertion index, if we don't need this insertion
3421     // then strip it, else remove it from the demanded elts.
3422     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
3423       unsigned Idx = CIdx->getZExtValue();
3424       if (!DemandedElts[Idx])
3425         return TLO.CombineTo(Op, Vec);
3426 
3427       APInt DemandedVecElts(DemandedElts);
3428       DemandedVecElts.clearBit(Idx);
3429       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
3430                                      KnownZero, TLO, Depth + 1))
3431         return true;
3432 
3433       KnownUndef.setBitVal(Idx, Scl.isUndef());
3434 
3435       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
3436       break;
3437     }
3438 
3439     APInt VecUndef, VecZero;
3440     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
3441                                    Depth + 1))
3442       return true;
3443     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
3444     break;
3445   }
3446   case ISD::VSELECT: {
3447     SDValue Sel = Op.getOperand(0);
3448     SDValue LHS = Op.getOperand(1);
3449     SDValue RHS = Op.getOperand(2);
3450 
3451     // Try to transform the select condition based on the current demanded
3452     // elements.
3453     APInt UndefSel, ZeroSel;
3454     if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, ZeroSel, TLO,
3455                                    Depth + 1))
3456       return true;
3457 
3458     // See if we can simplify either vselect operand.
3459     APInt DemandedLHS(DemandedElts);
3460     APInt DemandedRHS(DemandedElts);
3461     APInt UndefLHS, ZeroLHS;
3462     APInt UndefRHS, ZeroRHS;
3463     if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3464                                    Depth + 1))
3465       return true;
3466     if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3467                                    Depth + 1))
3468       return true;
3469 
3470     KnownUndef = UndefLHS & UndefRHS;
3471     KnownZero = ZeroLHS & ZeroRHS;
3472 
3473     // If we know that the selected element is always zero, we don't need the
3474     // select value element.
3475     APInt DemandedSel = DemandedElts & ~KnownZero;
3476     if (DemandedSel != DemandedElts)
3477       if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, ZeroSel, TLO,
3478                                      Depth + 1))
3479         return true;
3480 
3481     break;
3482   }
3483   case ISD::VECTOR_SHUFFLE: {
3484     SDValue LHS = Op.getOperand(0);
3485     SDValue RHS = Op.getOperand(1);
3486     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
3487 
3488     // Collect demanded elements from shuffle operands..
3489     APInt DemandedLHS(NumElts, 0);
3490     APInt DemandedRHS(NumElts, 0);
3491     for (unsigned i = 0; i != NumElts; ++i) {
3492       int M = ShuffleMask[i];
3493       if (M < 0 || !DemandedElts[i])
3494         continue;
3495       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
3496       if (M < (int)NumElts)
3497         DemandedLHS.setBit(M);
3498       else
3499         DemandedRHS.setBit(M - NumElts);
3500     }
3501 
3502     // See if we can simplify either shuffle operand.
3503     APInt UndefLHS, ZeroLHS;
3504     APInt UndefRHS, ZeroRHS;
3505     if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3506                                    Depth + 1))
3507       return true;
3508     if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3509                                    Depth + 1))
3510       return true;
3511 
3512     // Simplify mask using undef elements from LHS/RHS.
3513     bool Updated = false;
3514     bool IdentityLHS = true, IdentityRHS = true;
3515     SmallVector<int, 32> NewMask(ShuffleMask);
3516     for (unsigned i = 0; i != NumElts; ++i) {
3517       int &M = NewMask[i];
3518       if (M < 0)
3519         continue;
3520       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
3521           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
3522         Updated = true;
3523         M = -1;
3524       }
3525       IdentityLHS &= (M < 0) || (M == (int)i);
3526       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3527     }
3528 
3529     // Update legal shuffle masks based on demanded elements if it won't reduce
3530     // to Identity which can cause premature removal of the shuffle mask.
3531     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
3532       SDValue LegalShuffle =
3533           buildLegalVectorShuffle(VT, DL, LHS, RHS, NewMask, TLO.DAG);
3534       if (LegalShuffle)
3535         return TLO.CombineTo(Op, LegalShuffle);
3536     }
3537 
3538     // Propagate undef/zero elements from LHS/RHS.
3539     for (unsigned i = 0; i != NumElts; ++i) {
3540       int M = ShuffleMask[i];
3541       if (M < 0) {
3542         KnownUndef.setBit(i);
3543       } else if (M < (int)NumElts) {
3544         if (UndefLHS[M])
3545           KnownUndef.setBit(i);
3546         if (ZeroLHS[M])
3547           KnownZero.setBit(i);
3548       } else {
3549         if (UndefRHS[M - NumElts])
3550           KnownUndef.setBit(i);
3551         if (ZeroRHS[M - NumElts])
3552           KnownZero.setBit(i);
3553       }
3554     }
3555     break;
3556   }
3557   case ISD::ANY_EXTEND_VECTOR_INREG:
3558   case ISD::SIGN_EXTEND_VECTOR_INREG:
3559   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3560     APInt SrcUndef, SrcZero;
3561     SDValue Src = Op.getOperand(0);
3562     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3563     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3564     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3565                                    Depth + 1))
3566       return true;
3567     KnownZero = SrcZero.zextOrTrunc(NumElts);
3568     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
3569 
3570     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
3571         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3572         DemandedSrcElts == 1) {
3573       // aext - if we just need the bottom element then we can bitcast.
3574       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
3575     }
3576 
3577     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
3578       // zext(undef) upper bits are guaranteed to be zero.
3579       if (DemandedElts.isSubsetOf(KnownUndef))
3580         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3581       KnownUndef.clearAllBits();
3582 
3583       // zext - if we just need the bottom element then we can mask:
3584       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
3585       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
3586           Op->isOnlyUserOf(Src.getNode()) &&
3587           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3588         SDLoc DL(Op);
3589         EVT SrcVT = Src.getValueType();
3590         EVT SrcSVT = SrcVT.getScalarType();
3591         SmallVector<SDValue> MaskElts;
3592         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
3593         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
3594         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
3595         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
3596                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
3597           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
3598           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
3599         }
3600       }
3601     }
3602     break;
3603   }
3604 
3605   // TODO: There are more binop opcodes that could be handled here - MIN,
3606   // MAX, saturated math, etc.
3607   case ISD::ADD: {
3608     SDValue Op0 = Op.getOperand(0);
3609     SDValue Op1 = Op.getOperand(1);
3610     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
3611       APInt UndefLHS, ZeroLHS;
3612       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3613                                      Depth + 1, /*AssumeSingleUse*/ true))
3614         return true;
3615     }
3616     [[fallthrough]];
3617   }
3618   case ISD::AVGCEILS:
3619   case ISD::AVGCEILU:
3620   case ISD::AVGFLOORS:
3621   case ISD::AVGFLOORU:
3622   case ISD::OR:
3623   case ISD::XOR:
3624   case ISD::SUB:
3625   case ISD::FADD:
3626   case ISD::FSUB:
3627   case ISD::FMUL:
3628   case ISD::FDIV:
3629   case ISD::FREM: {
3630     SDValue Op0 = Op.getOperand(0);
3631     SDValue Op1 = Op.getOperand(1);
3632 
3633     APInt UndefRHS, ZeroRHS;
3634     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3635                                    Depth + 1))
3636       return true;
3637     APInt UndefLHS, ZeroLHS;
3638     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3639                                    Depth + 1))
3640       return true;
3641 
3642     KnownZero = ZeroLHS & ZeroRHS;
3643     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
3644 
3645     // Attempt to avoid multi-use ops if we don't need anything from them.
3646     // TODO - use KnownUndef to relax the demandedelts?
3647     if (!DemandedElts.isAllOnes())
3648       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3649         return true;
3650     break;
3651   }
3652   case ISD::SHL:
3653   case ISD::SRL:
3654   case ISD::SRA:
3655   case ISD::ROTL:
3656   case ISD::ROTR: {
3657     SDValue Op0 = Op.getOperand(0);
3658     SDValue Op1 = Op.getOperand(1);
3659 
3660     APInt UndefRHS, ZeroRHS;
3661     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3662                                    Depth + 1))
3663       return true;
3664     APInt UndefLHS, ZeroLHS;
3665     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3666                                    Depth + 1))
3667       return true;
3668 
3669     KnownZero = ZeroLHS;
3670     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
3671 
3672     // Attempt to avoid multi-use ops if we don't need anything from them.
3673     // TODO - use KnownUndef to relax the demandedelts?
3674     if (!DemandedElts.isAllOnes())
3675       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3676         return true;
3677     break;
3678   }
3679   case ISD::MUL:
3680   case ISD::MULHU:
3681   case ISD::MULHS:
3682   case ISD::AND: {
3683     SDValue Op0 = Op.getOperand(0);
3684     SDValue Op1 = Op.getOperand(1);
3685 
3686     APInt SrcUndef, SrcZero;
3687     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3688                                    Depth + 1))
3689       return true;
3690     // If we know that a demanded element was zero in Op1 we don't need to
3691     // demand it in Op0 - its guaranteed to be zero.
3692     APInt DemandedElts0 = DemandedElts & ~SrcZero;
3693     if (SimplifyDemandedVectorElts(Op0, DemandedElts0, KnownUndef, KnownZero,
3694                                    TLO, Depth + 1))
3695       return true;
3696 
3697     KnownUndef &= DemandedElts0;
3698     KnownZero &= DemandedElts0;
3699 
3700     // If every element pair has a zero/undef then just fold to zero.
3701     // fold (and x, undef) -> 0  /  (and x, 0) -> 0
3702     // fold (mul x, undef) -> 0  /  (mul x, 0) -> 0
3703     if (DemandedElts.isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef))
3704       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3705 
3706     // If either side has a zero element, then the result element is zero, even
3707     // if the other is an UNDEF.
3708     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
3709     // and then handle 'and' nodes with the rest of the binop opcodes.
3710     KnownZero |= SrcZero;
3711     KnownUndef &= SrcUndef;
3712     KnownUndef &= ~KnownZero;
3713 
3714     // Attempt to avoid multi-use ops if we don't need anything from them.
3715     if (!DemandedElts.isAllOnes())
3716       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3717         return true;
3718     break;
3719   }
3720   case ISD::TRUNCATE:
3721   case ISD::SIGN_EXTEND:
3722   case ISD::ZERO_EXTEND:
3723     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3724                                    KnownZero, TLO, Depth + 1))
3725       return true;
3726 
3727     if (!DemandedElts.isAllOnes())
3728       if (SDValue NewOp = SimplifyMultipleUseDemandedVectorElts(
3729               Op.getOperand(0), DemandedElts, TLO.DAG, Depth + 1))
3730         return TLO.CombineTo(Op, TLO.DAG.getNode(Opcode, SDLoc(Op), VT, NewOp));
3731 
3732     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
3733       // zext(undef) upper bits are guaranteed to be zero.
3734       if (DemandedElts.isSubsetOf(KnownUndef))
3735         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3736       KnownUndef.clearAllBits();
3737     }
3738     break;
3739   case ISD::SINT_TO_FP:
3740   case ISD::UINT_TO_FP:
3741   case ISD::FP_TO_SINT:
3742   case ISD::FP_TO_UINT:
3743     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3744                                    KnownZero, TLO, Depth + 1))
3745       return true;
3746     // Don't fall through to generic undef -> undef handling.
3747     return false;
3748   default: {
3749     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3750       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3751                                                   KnownZero, TLO, Depth))
3752         return true;
3753     } else {
3754       KnownBits Known;
3755       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3756       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3757                                TLO, Depth, AssumeSingleUse))
3758         return true;
3759     }
3760     break;
3761   }
3762   }
3763   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3764 
3765   // Constant fold all undef cases.
3766   // TODO: Handle zero cases as well.
3767   if (DemandedElts.isSubsetOf(KnownUndef))
3768     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3769 
3770   return false;
3771 }
3772 
3773 /// Determine which of the bits specified in Mask are known to be either zero or
3774 /// one and return them in the Known.
3775 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3776                                                    KnownBits &Known,
3777                                                    const APInt &DemandedElts,
3778                                                    const SelectionDAG &DAG,
3779                                                    unsigned Depth) const {
3780   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3781           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3782           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3783           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3784          "Should use MaskedValueIsZero if you don't know whether Op"
3785          " is a target node!");
3786   Known.resetAll();
3787 }
3788 
3789 void TargetLowering::computeKnownBitsForTargetInstr(
3790     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3791     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3792     unsigned Depth) const {
3793   Known.resetAll();
3794 }
3795 
3796 void TargetLowering::computeKnownBitsForFrameIndex(
3797   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3798   // The low bits are known zero if the pointer is aligned.
3799   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3800 }
3801 
3802 Align TargetLowering::computeKnownAlignForTargetInstr(
3803   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3804   unsigned Depth) const {
3805   return Align(1);
3806 }
3807 
3808 /// This method can be implemented by targets that want to expose additional
3809 /// information about sign bits to the DAG Combiner.
3810 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3811                                                          const APInt &,
3812                                                          const SelectionDAG &,
3813                                                          unsigned Depth) const {
3814   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3815           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3816           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3817           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3818          "Should use ComputeNumSignBits if you don't know whether Op"
3819          " is a target node!");
3820   return 1;
3821 }
3822 
3823 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3824   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3825   const MachineRegisterInfo &MRI, unsigned Depth) const {
3826   return 1;
3827 }
3828 
3829 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3830     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3831     TargetLoweringOpt &TLO, unsigned Depth) const {
3832   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3833           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3834           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3835           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3836          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3837          " is a target node!");
3838   return false;
3839 }
3840 
3841 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3842     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3843     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3844   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3845           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3846           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3847           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3848          "Should use SimplifyDemandedBits if you don't know whether Op"
3849          " is a target node!");
3850   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3851   return false;
3852 }
3853 
3854 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3855     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3856     SelectionDAG &DAG, unsigned Depth) const {
3857   assert(
3858       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3859        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3860        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3861        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3862       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3863       " is a target node!");
3864   return SDValue();
3865 }
3866 
3867 SDValue
3868 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3869                                         SDValue N1, MutableArrayRef<int> Mask,
3870                                         SelectionDAG &DAG) const {
3871   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3872   if (!LegalMask) {
3873     std::swap(N0, N1);
3874     ShuffleVectorSDNode::commuteMask(Mask);
3875     LegalMask = isShuffleMaskLegal(Mask, VT);
3876   }
3877 
3878   if (!LegalMask)
3879     return SDValue();
3880 
3881   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3882 }
3883 
3884 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3885   return nullptr;
3886 }
3887 
3888 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3889     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3890     bool PoisonOnly, unsigned Depth) const {
3891   assert(
3892       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3893        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3894        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3895        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3896       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3897       " is a target node!");
3898 
3899   // If Op can't create undef/poison and none of its operands are undef/poison
3900   // then Op is never undef/poison.
3901   return !canCreateUndefOrPoisonForTargetNode(Op, DemandedElts, DAG, PoisonOnly,
3902                                               /*ConsiderFlags*/ true, Depth) &&
3903          all_of(Op->ops(), [&](SDValue V) {
3904            return DAG.isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly,
3905                                                        Depth + 1);
3906          });
3907 }
3908 
3909 bool TargetLowering::canCreateUndefOrPoisonForTargetNode(
3910     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3911     bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const {
3912   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3913           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3914           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3915           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3916          "Should use canCreateUndefOrPoison if you don't know whether Op"
3917          " is a target node!");
3918   // Be conservative and return true.
3919   return true;
3920 }
3921 
3922 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3923                                                   const SelectionDAG &DAG,
3924                                                   bool SNaN,
3925                                                   unsigned Depth) const {
3926   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3927           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3928           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3929           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3930          "Should use isKnownNeverNaN if you don't know whether Op"
3931          " is a target node!");
3932   return false;
3933 }
3934 
3935 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3936                                                const APInt &DemandedElts,
3937                                                APInt &UndefElts,
3938                                                const SelectionDAG &DAG,
3939                                                unsigned Depth) const {
3940   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3941           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3942           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3943           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3944          "Should use isSplatValue if you don't know whether Op"
3945          " is a target node!");
3946   return false;
3947 }
3948 
3949 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3950 // work with truncating build vectors and vectors with elements of less than
3951 // 8 bits.
3952 bool TargetLowering::isConstTrueVal(SDValue N) const {
3953   if (!N)
3954     return false;
3955 
3956   unsigned EltWidth;
3957   APInt CVal;
3958   if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
3959                                                /*AllowTruncation=*/true)) {
3960     CVal = CN->getAPIntValue();
3961     EltWidth = N.getValueType().getScalarSizeInBits();
3962   } else
3963     return false;
3964 
3965   // If this is a truncating splat, truncate the splat value.
3966   // Otherwise, we may fail to match the expected values below.
3967   if (EltWidth < CVal.getBitWidth())
3968     CVal = CVal.trunc(EltWidth);
3969 
3970   switch (getBooleanContents(N.getValueType())) {
3971   case UndefinedBooleanContent:
3972     return CVal[0];
3973   case ZeroOrOneBooleanContent:
3974     return CVal.isOne();
3975   case ZeroOrNegativeOneBooleanContent:
3976     return CVal.isAllOnes();
3977   }
3978 
3979   llvm_unreachable("Invalid boolean contents");
3980 }
3981 
3982 bool TargetLowering::isConstFalseVal(SDValue N) const {
3983   if (!N)
3984     return false;
3985 
3986   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3987   if (!CN) {
3988     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3989     if (!BV)
3990       return false;
3991 
3992     // Only interested in constant splats, we don't care about undef
3993     // elements in identifying boolean constants and getConstantSplatNode
3994     // returns NULL if all ops are undef;
3995     CN = BV->getConstantSplatNode();
3996     if (!CN)
3997       return false;
3998   }
3999 
4000   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
4001     return !CN->getAPIntValue()[0];
4002 
4003   return CN->isZero();
4004 }
4005 
4006 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
4007                                        bool SExt) const {
4008   if (VT == MVT::i1)
4009     return N->isOne();
4010 
4011   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
4012   switch (Cnt) {
4013   case TargetLowering::ZeroOrOneBooleanContent:
4014     // An extended value of 1 is always true, unless its original type is i1,
4015     // in which case it will be sign extended to -1.
4016     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
4017   case TargetLowering::UndefinedBooleanContent:
4018   case TargetLowering::ZeroOrNegativeOneBooleanContent:
4019     return N->isAllOnes() && SExt;
4020   }
4021   llvm_unreachable("Unexpected enumeration.");
4022 }
4023 
4024 /// This helper function of SimplifySetCC tries to optimize the comparison when
4025 /// either operand of the SetCC node is a bitwise-and instruction.
4026 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
4027                                          ISD::CondCode Cond, const SDLoc &DL,
4028                                          DAGCombinerInfo &DCI) const {
4029   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
4030     std::swap(N0, N1);
4031 
4032   SelectionDAG &DAG = DCI.DAG;
4033   EVT OpVT = N0.getValueType();
4034   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
4035       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
4036     return SDValue();
4037 
4038   // (X & Y) != 0 --> zextOrTrunc(X & Y)
4039   // iff everything but LSB is known zero:
4040   if (Cond == ISD::SETNE && isNullConstant(N1) &&
4041       (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
4042        getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
4043     unsigned NumEltBits = OpVT.getScalarSizeInBits();
4044     APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
4045     if (DAG.MaskedValueIsZero(N0, UpperBits))
4046       return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
4047   }
4048 
4049   // Try to eliminate a power-of-2 mask constant by converting to a signbit
4050   // test in a narrow type that we can truncate to with no cost. Examples:
4051   // (i32 X & 32768) == 0 --> (trunc X to i16) >= 0
4052   // (i32 X & 32768) != 0 --> (trunc X to i16) < 0
4053   // TODO: This conservatively checks for type legality on the source and
4054   //       destination types. That may inhibit optimizations, but it also
4055   //       allows setcc->shift transforms that may be more beneficial.
4056   auto *AndC = dyn_cast<ConstantSDNode>(N0.getOperand(1));
4057   if (AndC && isNullConstant(N1) && AndC->getAPIntValue().isPowerOf2() &&
4058       isTypeLegal(OpVT) && N0.hasOneUse()) {
4059     EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(),
4060                                      AndC->getAPIntValue().getActiveBits());
4061     if (isTruncateFree(OpVT, NarrowVT) && isTypeLegal(NarrowVT)) {
4062       SDValue Trunc = DAG.getZExtOrTrunc(N0.getOperand(0), DL, NarrowVT);
4063       SDValue Zero = DAG.getConstant(0, DL, NarrowVT);
4064       return DAG.getSetCC(DL, VT, Trunc, Zero,
4065                           Cond == ISD::SETEQ ? ISD::SETGE : ISD::SETLT);
4066     }
4067   }
4068 
4069   // Match these patterns in any of their permutations:
4070   // (X & Y) == Y
4071   // (X & Y) != Y
4072   SDValue X, Y;
4073   if (N0.getOperand(0) == N1) {
4074     X = N0.getOperand(1);
4075     Y = N0.getOperand(0);
4076   } else if (N0.getOperand(1) == N1) {
4077     X = N0.getOperand(0);
4078     Y = N0.getOperand(1);
4079   } else {
4080     return SDValue();
4081   }
4082 
4083   // TODO: We should invert (X & Y) eq/ne 0 -> (X & Y) ne/eq Y if
4084   // `isXAndYEqZeroPreferableToXAndYEqY` is false. This is a bit difficult as
4085   // its liable to create and infinite loop.
4086   SDValue Zero = DAG.getConstant(0, DL, OpVT);
4087   if (isXAndYEqZeroPreferableToXAndYEqY(Cond, OpVT) &&
4088       DAG.isKnownToBeAPowerOfTwo(Y)) {
4089     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
4090     // Note that where Y is variable and is known to have at most one bit set
4091     // (for example, if it is Z & 1) we cannot do this; the expressions are not
4092     // equivalent when Y == 0.
4093     assert(OpVT.isInteger());
4094     Cond = ISD::getSetCCInverse(Cond, OpVT);
4095     if (DCI.isBeforeLegalizeOps() ||
4096         isCondCodeLegal(Cond, N0.getSimpleValueType()))
4097       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
4098   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
4099     // If the target supports an 'and-not' or 'and-complement' logic operation,
4100     // try to use that to make a comparison operation more efficient.
4101     // But don't do this transform if the mask is a single bit because there are
4102     // more efficient ways to deal with that case (for example, 'bt' on x86 or
4103     // 'rlwinm' on PPC).
4104 
4105     // Bail out if the compare operand that we want to turn into a zero is
4106     // already a zero (otherwise, infinite loop).
4107     if (isNullConstant(Y))
4108       return SDValue();
4109 
4110     // Transform this into: ~X & Y == 0.
4111     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
4112     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
4113     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
4114   }
4115 
4116   return SDValue();
4117 }
4118 
4119 /// There are multiple IR patterns that could be checking whether certain
4120 /// truncation of a signed number would be lossy or not. The pattern which is
4121 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
4122 /// We are looking for the following pattern: (KeptBits is a constant)
4123 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
4124 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
4125 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
4126 /// We will unfold it into the natural trunc+sext pattern:
4127 ///   ((%x << C) a>> C) dstcond %x
4128 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
4129 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
4130     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
4131     const SDLoc &DL) const {
4132   // We must be comparing with a constant.
4133   ConstantSDNode *C1;
4134   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
4135     return SDValue();
4136 
4137   // N0 should be:  add %x, (1 << (KeptBits-1))
4138   if (N0->getOpcode() != ISD::ADD)
4139     return SDValue();
4140 
4141   // And we must be 'add'ing a constant.
4142   ConstantSDNode *C01;
4143   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
4144     return SDValue();
4145 
4146   SDValue X = N0->getOperand(0);
4147   EVT XVT = X.getValueType();
4148 
4149   // Validate constants ...
4150 
4151   APInt I1 = C1->getAPIntValue();
4152 
4153   ISD::CondCode NewCond;
4154   if (Cond == ISD::CondCode::SETULT) {
4155     NewCond = ISD::CondCode::SETEQ;
4156   } else if (Cond == ISD::CondCode::SETULE) {
4157     NewCond = ISD::CondCode::SETEQ;
4158     // But need to 'canonicalize' the constant.
4159     I1 += 1;
4160   } else if (Cond == ISD::CondCode::SETUGT) {
4161     NewCond = ISD::CondCode::SETNE;
4162     // But need to 'canonicalize' the constant.
4163     I1 += 1;
4164   } else if (Cond == ISD::CondCode::SETUGE) {
4165     NewCond = ISD::CondCode::SETNE;
4166   } else
4167     return SDValue();
4168 
4169   APInt I01 = C01->getAPIntValue();
4170 
4171   auto checkConstants = [&I1, &I01]() -> bool {
4172     // Both of them must be power-of-two, and the constant from setcc is bigger.
4173     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
4174   };
4175 
4176   if (checkConstants()) {
4177     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
4178   } else {
4179     // What if we invert constants? (and the target predicate)
4180     I1.negate();
4181     I01.negate();
4182     assert(XVT.isInteger());
4183     NewCond = getSetCCInverse(NewCond, XVT);
4184     if (!checkConstants())
4185       return SDValue();
4186     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
4187   }
4188 
4189   // They are power-of-two, so which bit is set?
4190   const unsigned KeptBits = I1.logBase2();
4191   const unsigned KeptBitsMinusOne = I01.logBase2();
4192 
4193   // Magic!
4194   if (KeptBits != (KeptBitsMinusOne + 1))
4195     return SDValue();
4196   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
4197 
4198   // We don't want to do this in every single case.
4199   SelectionDAG &DAG = DCI.DAG;
4200   if (!shouldTransformSignedTruncationCheck(XVT, KeptBits))
4201     return SDValue();
4202 
4203   // Unfold into:  sext_inreg(%x) cond %x
4204   // Where 'cond' will be either 'eq' or 'ne'.
4205   SDValue SExtInReg = DAG.getNode(
4206       ISD::SIGN_EXTEND_INREG, DL, XVT, X,
4207       DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), KeptBits)));
4208   return DAG.getSetCC(DL, SCCVT, SExtInReg, X, NewCond);
4209 }
4210 
4211 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4212 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
4213     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
4214     DAGCombinerInfo &DCI, const SDLoc &DL) const {
4215   assert(isConstOrConstSplat(N1C) && isConstOrConstSplat(N1C)->isZero() &&
4216          "Should be a comparison with 0.");
4217   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4218          "Valid only for [in]equality comparisons.");
4219 
4220   unsigned NewShiftOpcode;
4221   SDValue X, C, Y;
4222 
4223   SelectionDAG &DAG = DCI.DAG;
4224 
4225   // Look for '(C l>>/<< Y)'.
4226   auto Match = [&NewShiftOpcode, &X, &C, &Y, &DAG, this](SDValue V) {
4227     // The shift should be one-use.
4228     if (!V.hasOneUse())
4229       return false;
4230     unsigned OldShiftOpcode = V.getOpcode();
4231     switch (OldShiftOpcode) {
4232     case ISD::SHL:
4233       NewShiftOpcode = ISD::SRL;
4234       break;
4235     case ISD::SRL:
4236       NewShiftOpcode = ISD::SHL;
4237       break;
4238     default:
4239       return false; // must be a logical shift.
4240     }
4241     // We should be shifting a constant.
4242     // FIXME: best to use isConstantOrConstantVector().
4243     C = V.getOperand(0);
4244     ConstantSDNode *CC =
4245         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
4246     if (!CC)
4247       return false;
4248     Y = V.getOperand(1);
4249 
4250     ConstantSDNode *XC =
4251         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
4252     return shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
4253         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
4254   };
4255 
4256   // LHS of comparison should be an one-use 'and'.
4257   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
4258     return SDValue();
4259 
4260   X = N0.getOperand(0);
4261   SDValue Mask = N0.getOperand(1);
4262 
4263   // 'and' is commutative!
4264   if (!Match(Mask)) {
4265     std::swap(X, Mask);
4266     if (!Match(Mask))
4267       return SDValue();
4268   }
4269 
4270   EVT VT = X.getValueType();
4271 
4272   // Produce:
4273   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
4274   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
4275   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
4276   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
4277   return T2;
4278 }
4279 
4280 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
4281 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
4282 /// handle the commuted versions of these patterns.
4283 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
4284                                            ISD::CondCode Cond, const SDLoc &DL,
4285                                            DAGCombinerInfo &DCI) const {
4286   unsigned BOpcode = N0.getOpcode();
4287   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
4288          "Unexpected binop");
4289   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
4290 
4291   // (X + Y) == X --> Y == 0
4292   // (X - Y) == X --> Y == 0
4293   // (X ^ Y) == X --> Y == 0
4294   SelectionDAG &DAG = DCI.DAG;
4295   EVT OpVT = N0.getValueType();
4296   SDValue X = N0.getOperand(0);
4297   SDValue Y = N0.getOperand(1);
4298   if (X == N1)
4299     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
4300 
4301   if (Y != N1)
4302     return SDValue();
4303 
4304   // (X + Y) == Y --> X == 0
4305   // (X ^ Y) == Y --> X == 0
4306   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
4307     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
4308 
4309   // The shift would not be valid if the operands are boolean (i1).
4310   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
4311     return SDValue();
4312 
4313   // (X - Y) == Y --> X == Y << 1
4314   SDValue One = DAG.getShiftAmountConstant(1, OpVT, DL);
4315   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
4316   if (!DCI.isCalledByLegalizer())
4317     DCI.AddToWorklist(YShl1.getNode());
4318   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
4319 }
4320 
4321 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
4322                                       SDValue N0, const APInt &C1,
4323                                       ISD::CondCode Cond, const SDLoc &dl,
4324                                       SelectionDAG &DAG) {
4325   // Look through truncs that don't change the value of a ctpop.
4326   // FIXME: Add vector support? Need to be careful with setcc result type below.
4327   SDValue CTPOP = N0;
4328   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
4329       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
4330     CTPOP = N0.getOperand(0);
4331 
4332   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
4333     return SDValue();
4334 
4335   EVT CTVT = CTPOP.getValueType();
4336   SDValue CTOp = CTPOP.getOperand(0);
4337 
4338   // Expand a power-of-2-or-zero comparison based on ctpop:
4339   // (ctpop x) u< 2 -> (x & x-1) == 0
4340   // (ctpop x) u> 1 -> (x & x-1) != 0
4341   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
4342     // Keep the CTPOP if it is a cheap vector op.
4343     if (CTVT.isVector() && TLI.isCtpopFast(CTVT))
4344       return SDValue();
4345 
4346     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
4347     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
4348       return SDValue();
4349     if (C1 == 0 && (Cond == ISD::SETULT))
4350       return SDValue(); // This is handled elsewhere.
4351 
4352     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
4353 
4354     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
4355     SDValue Result = CTOp;
4356     for (unsigned i = 0; i < Passes; i++) {
4357       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
4358       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
4359     }
4360     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
4361     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
4362   }
4363 
4364   // Expand a power-of-2 comparison based on ctpop
4365   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
4366     // Keep the CTPOP if it is cheap.
4367     if (TLI.isCtpopFast(CTVT))
4368       return SDValue();
4369 
4370     SDValue Zero = DAG.getConstant(0, dl, CTVT);
4371     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
4372     assert(CTVT.isInteger());
4373     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
4374 
4375     // Its not uncommon for known-never-zero X to exist in (ctpop X) eq/ne 1, so
4376     // check before emitting a potentially unnecessary op.
4377     if (DAG.isKnownNeverZero(CTOp)) {
4378       // (ctpop x) == 1 --> (x & x-1) == 0
4379       // (ctpop x) != 1 --> (x & x-1) != 0
4380       SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
4381       SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
4382       return RHS;
4383     }
4384 
4385     // (ctpop x) == 1 --> (x ^ x-1) >  x-1
4386     // (ctpop x) != 1 --> (x ^ x-1) <= x-1
4387     SDValue Xor = DAG.getNode(ISD::XOR, dl, CTVT, CTOp, Add);
4388     ISD::CondCode CmpCond = Cond == ISD::SETEQ ? ISD::SETUGT : ISD::SETULE;
4389     return DAG.getSetCC(dl, VT, Xor, Add, CmpCond);
4390   }
4391 
4392   return SDValue();
4393 }
4394 
4395 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1,
4396                                    ISD::CondCode Cond, const SDLoc &dl,
4397                                    SelectionDAG &DAG) {
4398   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
4399     return SDValue();
4400 
4401   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4402   if (!C1 || !(C1->isZero() || C1->isAllOnes()))
4403     return SDValue();
4404 
4405   auto getRotateSource = [](SDValue X) {
4406     if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR)
4407       return X.getOperand(0);
4408     return SDValue();
4409   };
4410 
4411   // Peek through a rotated value compared against 0 or -1:
4412   // (rot X, Y) == 0/-1 --> X == 0/-1
4413   // (rot X, Y) != 0/-1 --> X != 0/-1
4414   if (SDValue R = getRotateSource(N0))
4415     return DAG.getSetCC(dl, VT, R, N1, Cond);
4416 
4417   // Peek through an 'or' of a rotated value compared against 0:
4418   // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0
4419   // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0
4420   //
4421   // TODO: Add the 'and' with -1 sibling.
4422   // TODO: Recurse through a series of 'or' ops to find the rotate.
4423   EVT OpVT = N0.getValueType();
4424   if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) {
4425     if (SDValue R = getRotateSource(N0.getOperand(0))) {
4426       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1));
4427       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4428     }
4429     if (SDValue R = getRotateSource(N0.getOperand(1))) {
4430       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0));
4431       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4432     }
4433   }
4434 
4435   return SDValue();
4436 }
4437 
4438 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1,
4439                                         ISD::CondCode Cond, const SDLoc &dl,
4440                                         SelectionDAG &DAG) {
4441   // If we are testing for all-bits-clear, we might be able to do that with
4442   // less shifting since bit-order does not matter.
4443   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
4444     return SDValue();
4445 
4446   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4447   if (!C1 || !C1->isZero())
4448     return SDValue();
4449 
4450   if (!N0.hasOneUse() ||
4451       (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR))
4452     return SDValue();
4453 
4454   unsigned BitWidth = N0.getScalarValueSizeInBits();
4455   auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2));
4456   if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
4457     return SDValue();
4458 
4459   // Canonicalize fshr as fshl to reduce pattern-matching.
4460   unsigned ShAmt = ShAmtC->getZExtValue();
4461   if (N0.getOpcode() == ISD::FSHR)
4462     ShAmt = BitWidth - ShAmt;
4463 
4464   // Match an 'or' with a specific operand 'Other' in either commuted variant.
4465   SDValue X, Y;
4466   auto matchOr = [&X, &Y](SDValue Or, SDValue Other) {
4467     if (Or.getOpcode() != ISD::OR || !Or.hasOneUse())
4468       return false;
4469     if (Or.getOperand(0) == Other) {
4470       X = Or.getOperand(0);
4471       Y = Or.getOperand(1);
4472       return true;
4473     }
4474     if (Or.getOperand(1) == Other) {
4475       X = Or.getOperand(1);
4476       Y = Or.getOperand(0);
4477       return true;
4478     }
4479     return false;
4480   };
4481 
4482   EVT OpVT = N0.getValueType();
4483   EVT ShAmtVT = N0.getOperand(2).getValueType();
4484   SDValue F0 = N0.getOperand(0);
4485   SDValue F1 = N0.getOperand(1);
4486   if (matchOr(F0, F1)) {
4487     // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0
4488     SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT);
4489     SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt);
4490     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4491     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4492   }
4493   if (matchOr(F1, F0)) {
4494     // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0
4495     SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT);
4496     SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt);
4497     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4498     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4499   }
4500 
4501   return SDValue();
4502 }
4503 
4504 /// Try to simplify a setcc built with the specified operands and cc. If it is
4505 /// unable to simplify it, return a null SDValue.
4506 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
4507                                       ISD::CondCode Cond, bool foldBooleans,
4508                                       DAGCombinerInfo &DCI,
4509                                       const SDLoc &dl) const {
4510   SelectionDAG &DAG = DCI.DAG;
4511   const DataLayout &Layout = DAG.getDataLayout();
4512   EVT OpVT = N0.getValueType();
4513   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4514 
4515   // Constant fold or commute setcc.
4516   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
4517     return Fold;
4518 
4519   bool N0ConstOrSplat =
4520       isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4521   bool N1ConstOrSplat =
4522       isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4523 
4524   // Canonicalize toward having the constant on the RHS.
4525   // TODO: Handle non-splat vector constants. All undef causes trouble.
4526   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
4527   // infinite loop here when we encounter one.
4528   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
4529   if (N0ConstOrSplat && !N1ConstOrSplat &&
4530       (DCI.isBeforeLegalizeOps() ||
4531        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
4532     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4533 
4534   // If we have a subtract with the same 2 non-constant operands as this setcc
4535   // -- but in reverse order -- then try to commute the operands of this setcc
4536   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
4537   // instruction on some targets.
4538   if (!N0ConstOrSplat && !N1ConstOrSplat &&
4539       (DCI.isBeforeLegalizeOps() ||
4540        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
4541       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
4542       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
4543     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4544 
4545   if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG))
4546     return V;
4547 
4548   if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG))
4549     return V;
4550 
4551   if (auto *N1C = isConstOrConstSplat(N1)) {
4552     const APInt &C1 = N1C->getAPIntValue();
4553 
4554     // Optimize some CTPOP cases.
4555     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
4556       return V;
4557 
4558     // For equality to 0 of a no-wrap multiply, decompose and test each op:
4559     // X * Y == 0 --> (X == 0) || (Y == 0)
4560     // X * Y != 0 --> (X != 0) && (Y != 0)
4561     // TODO: This bails out if minsize is set, but if the target doesn't have a
4562     //       single instruction multiply for this type, it would likely be
4563     //       smaller to decompose.
4564     if (C1.isZero() && (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4565         N0.getOpcode() == ISD::MUL && N0.hasOneUse() &&
4566         (N0->getFlags().hasNoUnsignedWrap() ||
4567          N0->getFlags().hasNoSignedWrap()) &&
4568         !Attr.hasFnAttr(Attribute::MinSize)) {
4569       SDValue IsXZero = DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4570       SDValue IsYZero = DAG.getSetCC(dl, VT, N0.getOperand(1), N1, Cond);
4571       unsigned LogicOp = Cond == ISD::SETEQ ? ISD::OR : ISD::AND;
4572       return DAG.getNode(LogicOp, dl, VT, IsXZero, IsYZero);
4573     }
4574 
4575     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
4576     // equality comparison, then we're just comparing whether X itself is
4577     // zero.
4578     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
4579         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
4580         llvm::has_single_bit<uint32_t>(N0.getScalarValueSizeInBits())) {
4581       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
4582         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4583             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
4584           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
4585             // (srl (ctlz x), 5) == 0  -> X != 0
4586             // (srl (ctlz x), 5) != 1  -> X != 0
4587             Cond = ISD::SETNE;
4588           } else {
4589             // (srl (ctlz x), 5) != 0  -> X == 0
4590             // (srl (ctlz x), 5) == 1  -> X == 0
4591             Cond = ISD::SETEQ;
4592           }
4593           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
4594           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
4595                               Cond);
4596         }
4597       }
4598     }
4599   }
4600 
4601   // FIXME: Support vectors.
4602   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4603     const APInt &C1 = N1C->getAPIntValue();
4604 
4605     // (zext x) == C --> x == (trunc C)
4606     // (sext x) == C --> x == (trunc C)
4607     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4608         DCI.isBeforeLegalize() && N0->hasOneUse()) {
4609       unsigned MinBits = N0.getValueSizeInBits();
4610       SDValue PreExt;
4611       bool Signed = false;
4612       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
4613         // ZExt
4614         MinBits = N0->getOperand(0).getValueSizeInBits();
4615         PreExt = N0->getOperand(0);
4616       } else if (N0->getOpcode() == ISD::AND) {
4617         // DAGCombine turns costly ZExts into ANDs
4618         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
4619           if ((C->getAPIntValue()+1).isPowerOf2()) {
4620             MinBits = C->getAPIntValue().countr_one();
4621             PreExt = N0->getOperand(0);
4622           }
4623       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
4624         // SExt
4625         MinBits = N0->getOperand(0).getValueSizeInBits();
4626         PreExt = N0->getOperand(0);
4627         Signed = true;
4628       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
4629         // ZEXTLOAD / SEXTLOAD
4630         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
4631           MinBits = LN0->getMemoryVT().getSizeInBits();
4632           PreExt = N0;
4633         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
4634           Signed = true;
4635           MinBits = LN0->getMemoryVT().getSizeInBits();
4636           PreExt = N0;
4637         }
4638       }
4639 
4640       // Figure out how many bits we need to preserve this constant.
4641       unsigned ReqdBits = Signed ? C1.getSignificantBits() : C1.getActiveBits();
4642 
4643       // Make sure we're not losing bits from the constant.
4644       if (MinBits > 0 &&
4645           MinBits < C1.getBitWidth() &&
4646           MinBits >= ReqdBits) {
4647         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
4648         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
4649           // Will get folded away.
4650           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
4651           if (MinBits == 1 && C1 == 1)
4652             // Invert the condition.
4653             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
4654                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4655           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
4656           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
4657         }
4658 
4659         // If truncating the setcc operands is not desirable, we can still
4660         // simplify the expression in some cases:
4661         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
4662         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
4663         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
4664         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
4665         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
4666         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
4667         SDValue TopSetCC = N0->getOperand(0);
4668         unsigned N0Opc = N0->getOpcode();
4669         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
4670         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
4671             TopSetCC.getOpcode() == ISD::SETCC &&
4672             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
4673             (isConstFalseVal(N1) ||
4674              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
4675 
4676           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
4677                          (!N1C->isZero() && Cond == ISD::SETNE);
4678 
4679           if (!Inverse)
4680             return TopSetCC;
4681 
4682           ISD::CondCode InvCond = ISD::getSetCCInverse(
4683               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
4684               TopSetCC.getOperand(0).getValueType());
4685           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
4686                                       TopSetCC.getOperand(1),
4687                                       InvCond);
4688         }
4689       }
4690     }
4691 
4692     // If the LHS is '(and load, const)', the RHS is 0, the test is for
4693     // equality or unsigned, and all 1 bits of the const are in the same
4694     // partial word, see if we can shorten the load.
4695     if (DCI.isBeforeLegalize() &&
4696         !ISD::isSignedIntSetCC(Cond) &&
4697         N0.getOpcode() == ISD::AND && C1 == 0 &&
4698         N0.getNode()->hasOneUse() &&
4699         isa<LoadSDNode>(N0.getOperand(0)) &&
4700         N0.getOperand(0).getNode()->hasOneUse() &&
4701         isa<ConstantSDNode>(N0.getOperand(1))) {
4702       auto *Lod = cast<LoadSDNode>(N0.getOperand(0));
4703       APInt bestMask;
4704       unsigned bestWidth = 0, bestOffset = 0;
4705       if (Lod->isSimple() && Lod->isUnindexed() &&
4706           (Lod->getMemoryVT().isByteSized() ||
4707            isPaddedAtMostSignificantBitsWhenStored(Lod->getMemoryVT()))) {
4708         unsigned memWidth = Lod->getMemoryVT().getStoreSizeInBits();
4709         unsigned origWidth = N0.getValueSizeInBits();
4710         unsigned maskWidth = origWidth;
4711         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
4712         // 8 bits, but have to be careful...
4713         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
4714           origWidth = Lod->getMemoryVT().getSizeInBits();
4715         const APInt &Mask = N0.getConstantOperandAPInt(1);
4716         // Only consider power-of-2 widths (and at least one byte) as candiates
4717         // for the narrowed load.
4718         for (unsigned width = 8; width < origWidth; width *= 2) {
4719           EVT newVT = EVT::getIntegerVT(*DAG.getContext(), width);
4720           if (!shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT))
4721             continue;
4722           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
4723           // Avoid accessing any padding here for now (we could use memWidth
4724           // instead of origWidth here otherwise).
4725           unsigned maxOffset = origWidth - width;
4726           for (unsigned offset = 0; offset <= maxOffset; offset += 8) {
4727             if (Mask.isSubsetOf(newMask)) {
4728               unsigned ptrOffset =
4729                   Layout.isLittleEndian() ? offset : memWidth - width - offset;
4730               unsigned IsFast = 0;
4731               Align NewAlign = commonAlignment(Lod->getAlign(), ptrOffset / 8);
4732               if (allowsMemoryAccess(
4733                       *DAG.getContext(), Layout, newVT, Lod->getAddressSpace(),
4734                       NewAlign, Lod->getMemOperand()->getFlags(), &IsFast) &&
4735                   IsFast) {
4736                 bestOffset = ptrOffset / 8;
4737                 bestMask = Mask.lshr(offset);
4738                 bestWidth = width;
4739                 break;
4740               }
4741             }
4742             newMask <<= 8;
4743           }
4744           if (bestWidth)
4745             break;
4746         }
4747       }
4748       if (bestWidth) {
4749         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
4750         SDValue Ptr = Lod->getBasePtr();
4751         if (bestOffset != 0)
4752           Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(bestOffset));
4753         SDValue NewLoad =
4754             DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
4755                         Lod->getPointerInfo().getWithOffset(bestOffset),
4756                         Lod->getOriginalAlign());
4757         SDValue And =
4758             DAG.getNode(ISD::AND, dl, newVT, NewLoad,
4759                         DAG.getConstant(bestMask.trunc(bestWidth), dl, newVT));
4760         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0LL, dl, newVT), Cond);
4761       }
4762     }
4763 
4764     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
4765     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
4766       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
4767 
4768       // If the comparison constant has bits in the upper part, the
4769       // zero-extended value could never match.
4770       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
4771                                               C1.getBitWidth() - InSize))) {
4772         switch (Cond) {
4773         case ISD::SETUGT:
4774         case ISD::SETUGE:
4775         case ISD::SETEQ:
4776           return DAG.getConstant(0, dl, VT);
4777         case ISD::SETULT:
4778         case ISD::SETULE:
4779         case ISD::SETNE:
4780           return DAG.getConstant(1, dl, VT);
4781         case ISD::SETGT:
4782         case ISD::SETGE:
4783           // True if the sign bit of C1 is set.
4784           return DAG.getConstant(C1.isNegative(), dl, VT);
4785         case ISD::SETLT:
4786         case ISD::SETLE:
4787           // True if the sign bit of C1 isn't set.
4788           return DAG.getConstant(C1.isNonNegative(), dl, VT);
4789         default:
4790           break;
4791         }
4792       }
4793 
4794       // Otherwise, we can perform the comparison with the low bits.
4795       switch (Cond) {
4796       case ISD::SETEQ:
4797       case ISD::SETNE:
4798       case ISD::SETUGT:
4799       case ISD::SETUGE:
4800       case ISD::SETULT:
4801       case ISD::SETULE: {
4802         EVT newVT = N0.getOperand(0).getValueType();
4803         // FIXME: Should use isNarrowingProfitable.
4804         if (DCI.isBeforeLegalizeOps() ||
4805             (isOperationLegal(ISD::SETCC, newVT) &&
4806              isCondCodeLegal(Cond, newVT.getSimpleVT()) &&
4807              isTypeDesirableForOp(ISD::SETCC, newVT))) {
4808           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
4809           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
4810 
4811           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
4812                                           NewConst, Cond);
4813           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
4814         }
4815         break;
4816       }
4817       default:
4818         break; // todo, be more careful with signed comparisons
4819       }
4820     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4821                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4822                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
4823                                       OpVT)) {
4824       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
4825       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
4826       EVT ExtDstTy = N0.getValueType();
4827       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
4828 
4829       // If the constant doesn't fit into the number of bits for the source of
4830       // the sign extension, it is impossible for both sides to be equal.
4831       if (C1.getSignificantBits() > ExtSrcTyBits)
4832         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
4833 
4834       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
4835              ExtDstTy != ExtSrcTy && "Unexpected types!");
4836       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
4837       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
4838                                    DAG.getConstant(Imm, dl, ExtDstTy));
4839       if (!DCI.isCalledByLegalizer())
4840         DCI.AddToWorklist(ZextOp.getNode());
4841       // Otherwise, make this a use of a zext.
4842       return DAG.getSetCC(dl, VT, ZextOp,
4843                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
4844     } else if ((N1C->isZero() || N1C->isOne()) &&
4845                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4846       // SETCC (X), [0|1], [EQ|NE]  -> X if X is known 0/1. i1 types are
4847       // excluded as they are handled below whilst checking for foldBooleans.
4848       if ((N0.getOpcode() == ISD::SETCC || VT.getScalarType() != MVT::i1) &&
4849           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
4850           (N0.getValueType() == MVT::i1 ||
4851            getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4852           DAG.MaskedValueIsZero(
4853               N0, APInt::getBitsSetFrom(N0.getValueSizeInBits(), 1))) {
4854         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
4855         if (TrueWhenTrue)
4856           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
4857         // Invert the condition.
4858         if (N0.getOpcode() == ISD::SETCC) {
4859           ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4860           CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
4861           if (DCI.isBeforeLegalizeOps() ||
4862               isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
4863             return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
4864         }
4865       }
4866 
4867       if ((N0.getOpcode() == ISD::XOR ||
4868            (N0.getOpcode() == ISD::AND &&
4869             N0.getOperand(0).getOpcode() == ISD::XOR &&
4870             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
4871           isOneConstant(N0.getOperand(1))) {
4872         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
4873         // can only do this if the top bits are known zero.
4874         unsigned BitWidth = N0.getValueSizeInBits();
4875         if (DAG.MaskedValueIsZero(N0,
4876                                   APInt::getHighBitsSet(BitWidth,
4877                                                         BitWidth-1))) {
4878           // Okay, get the un-inverted input value.
4879           SDValue Val;
4880           if (N0.getOpcode() == ISD::XOR) {
4881             Val = N0.getOperand(0);
4882           } else {
4883             assert(N0.getOpcode() == ISD::AND &&
4884                     N0.getOperand(0).getOpcode() == ISD::XOR);
4885             // ((X^1)&1)^1 -> X & 1
4886             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
4887                               N0.getOperand(0).getOperand(0),
4888                               N0.getOperand(1));
4889           }
4890 
4891           return DAG.getSetCC(dl, VT, Val, N1,
4892                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4893         }
4894       } else if (N1C->isOne()) {
4895         SDValue Op0 = N0;
4896         if (Op0.getOpcode() == ISD::TRUNCATE)
4897           Op0 = Op0.getOperand(0);
4898 
4899         if ((Op0.getOpcode() == ISD::XOR) &&
4900             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
4901             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
4902           SDValue XorLHS = Op0.getOperand(0);
4903           SDValue XorRHS = Op0.getOperand(1);
4904           // Ensure that the input setccs return an i1 type or 0/1 value.
4905           if (Op0.getValueType() == MVT::i1 ||
4906               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
4907                       ZeroOrOneBooleanContent &&
4908                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
4909                         ZeroOrOneBooleanContent)) {
4910             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
4911             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
4912             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
4913           }
4914         }
4915         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
4916           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
4917           if (Op0.getValueType().bitsGT(VT))
4918             Op0 = DAG.getNode(ISD::AND, dl, VT,
4919                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
4920                           DAG.getConstant(1, dl, VT));
4921           else if (Op0.getValueType().bitsLT(VT))
4922             Op0 = DAG.getNode(ISD::AND, dl, VT,
4923                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
4924                         DAG.getConstant(1, dl, VT));
4925 
4926           return DAG.getSetCC(dl, VT, Op0,
4927                               DAG.getConstant(0, dl, Op0.getValueType()),
4928                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4929         }
4930         if (Op0.getOpcode() == ISD::AssertZext &&
4931             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
4932           return DAG.getSetCC(dl, VT, Op0,
4933                               DAG.getConstant(0, dl, Op0.getValueType()),
4934                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4935       }
4936     }
4937 
4938     // Given:
4939     //   icmp eq/ne (urem %x, %y), 0
4940     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
4941     //   icmp eq/ne %x, 0
4942     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
4943         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4944       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
4945       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
4946       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
4947         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4948     }
4949 
4950     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
4951     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
4952     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4953         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
4954         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
4955         N1C->isAllOnes()) {
4956       return DAG.getSetCC(dl, VT, N0.getOperand(0),
4957                           DAG.getConstant(0, dl, OpVT),
4958                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
4959     }
4960 
4961     if (SDValue V =
4962             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
4963       return V;
4964   }
4965 
4966   // These simplifications apply to splat vectors as well.
4967   // TODO: Handle more splat vector cases.
4968   if (auto *N1C = isConstOrConstSplat(N1)) {
4969     const APInt &C1 = N1C->getAPIntValue();
4970 
4971     APInt MinVal, MaxVal;
4972     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
4973     if (ISD::isSignedIntSetCC(Cond)) {
4974       MinVal = APInt::getSignedMinValue(OperandBitSize);
4975       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
4976     } else {
4977       MinVal = APInt::getMinValue(OperandBitSize);
4978       MaxVal = APInt::getMaxValue(OperandBitSize);
4979     }
4980 
4981     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4982     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4983       // X >= MIN --> true
4984       if (C1 == MinVal)
4985         return DAG.getBoolConstant(true, dl, VT, OpVT);
4986 
4987       if (!VT.isVector()) { // TODO: Support this for vectors.
4988         // X >= C0 --> X > (C0 - 1)
4989         APInt C = C1 - 1;
4990         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4991         if ((DCI.isBeforeLegalizeOps() ||
4992              isCondCodeLegal(NewCC, OpVT.getSimpleVT())) &&
4993             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4994                                   isLegalICmpImmediate(C.getSExtValue())))) {
4995           return DAG.getSetCC(dl, VT, N0,
4996                               DAG.getConstant(C, dl, N1.getValueType()),
4997                               NewCC);
4998         }
4999       }
5000     }
5001 
5002     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
5003       // X <= MAX --> true
5004       if (C1 == MaxVal)
5005         return DAG.getBoolConstant(true, dl, VT, OpVT);
5006 
5007       // X <= C0 --> X < (C0 + 1)
5008       if (!VT.isVector()) { // TODO: Support this for vectors.
5009         APInt C = C1 + 1;
5010         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
5011         if ((DCI.isBeforeLegalizeOps() ||
5012              isCondCodeLegal(NewCC, OpVT.getSimpleVT())) &&
5013             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
5014                                   isLegalICmpImmediate(C.getSExtValue())))) {
5015           return DAG.getSetCC(dl, VT, N0,
5016                               DAG.getConstant(C, dl, N1.getValueType()),
5017                               NewCC);
5018         }
5019       }
5020     }
5021 
5022     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
5023       if (C1 == MinVal)
5024         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
5025 
5026       // TODO: Support this for vectors after legalize ops.
5027       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
5028         // Canonicalize setlt X, Max --> setne X, Max
5029         if (C1 == MaxVal)
5030           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
5031 
5032         // If we have setult X, 1, turn it into seteq X, 0
5033         if (C1 == MinVal+1)
5034           return DAG.getSetCC(dl, VT, N0,
5035                               DAG.getConstant(MinVal, dl, N0.getValueType()),
5036                               ISD::SETEQ);
5037       }
5038     }
5039 
5040     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
5041       if (C1 == MaxVal)
5042         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
5043 
5044       // TODO: Support this for vectors after legalize ops.
5045       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
5046         // Canonicalize setgt X, Min --> setne X, Min
5047         if (C1 == MinVal)
5048           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
5049 
5050         // If we have setugt X, Max-1, turn it into seteq X, Max
5051         if (C1 == MaxVal-1)
5052           return DAG.getSetCC(dl, VT, N0,
5053                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
5054                               ISD::SETEQ);
5055       }
5056     }
5057 
5058     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
5059       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
5060       if (C1.isZero())
5061         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
5062                 VT, N0, N1, Cond, DCI, dl))
5063           return CC;
5064 
5065       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
5066       // For example, when high 32-bits of i64 X are known clear:
5067       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
5068       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
5069       bool CmpZero = N1C->isZero();
5070       bool CmpNegOne = N1C->isAllOnes();
5071       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
5072         // Match or(lo,shl(hi,bw/2)) pattern.
5073         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
5074           unsigned EltBits = V.getScalarValueSizeInBits();
5075           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
5076             return false;
5077           SDValue LHS = V.getOperand(0);
5078           SDValue RHS = V.getOperand(1);
5079           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
5080           // Unshifted element must have zero upperbits.
5081           if (RHS.getOpcode() == ISD::SHL &&
5082               isa<ConstantSDNode>(RHS.getOperand(1)) &&
5083               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
5084               DAG.MaskedValueIsZero(LHS, HiBits)) {
5085             Lo = LHS;
5086             Hi = RHS.getOperand(0);
5087             return true;
5088           }
5089           if (LHS.getOpcode() == ISD::SHL &&
5090               isa<ConstantSDNode>(LHS.getOperand(1)) &&
5091               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
5092               DAG.MaskedValueIsZero(RHS, HiBits)) {
5093             Lo = RHS;
5094             Hi = LHS.getOperand(0);
5095             return true;
5096           }
5097           return false;
5098         };
5099 
5100         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
5101           unsigned EltBits = N0.getScalarValueSizeInBits();
5102           unsigned HalfBits = EltBits / 2;
5103           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
5104           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
5105           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
5106           SDValue NewN0 =
5107               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
5108           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
5109           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
5110         };
5111 
5112         SDValue Lo, Hi;
5113         if (IsConcat(N0, Lo, Hi))
5114           return MergeConcat(Lo, Hi);
5115 
5116         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
5117           SDValue Lo0, Lo1, Hi0, Hi1;
5118           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
5119               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
5120             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
5121                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
5122           }
5123         }
5124       }
5125     }
5126 
5127     // If we have "setcc X, C0", check to see if we can shrink the immediate
5128     // by changing cc.
5129     // TODO: Support this for vectors after legalize ops.
5130     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
5131       // SETUGT X, SINTMAX  -> SETLT X, 0
5132       // SETUGE X, SINTMIN -> SETLT X, 0
5133       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
5134           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
5135         return DAG.getSetCC(dl, VT, N0,
5136                             DAG.getConstant(0, dl, N1.getValueType()),
5137                             ISD::SETLT);
5138 
5139       // SETULT X, SINTMIN  -> SETGT X, -1
5140       // SETULE X, SINTMAX  -> SETGT X, -1
5141       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
5142           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
5143         return DAG.getSetCC(dl, VT, N0,
5144                             DAG.getAllOnesConstant(dl, N1.getValueType()),
5145                             ISD::SETGT);
5146     }
5147   }
5148 
5149   // Back to non-vector simplifications.
5150   // TODO: Can we do these for vector splats?
5151   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
5152     const APInt &C1 = N1C->getAPIntValue();
5153     EVT ShValTy = N0.getValueType();
5154 
5155     // Fold bit comparisons when we can. This will result in an
5156     // incorrect value when boolean false is negative one, unless
5157     // the bitsize is 1 in which case the false value is the same
5158     // in practice regardless of the representation.
5159     if ((VT.getSizeInBits() == 1 ||
5160          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
5161         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5162         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
5163         N0.getOpcode() == ISD::AND) {
5164       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5165         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
5166           // Perform the xform if the AND RHS is a single bit.
5167           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
5168           if (AndRHS->getAPIntValue().isPowerOf2() &&
5169               !shouldAvoidTransformToShift(ShValTy, ShCt)) {
5170             return DAG.getNode(
5171                 ISD::TRUNCATE, dl, VT,
5172                 DAG.getNode(ISD::SRL, dl, ShValTy, N0,
5173                             DAG.getShiftAmountConstant(ShCt, ShValTy, dl)));
5174           }
5175         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
5176           // (X & 8) == 8  -->  (X & 8) >> 3
5177           // Perform the xform if C1 is a single bit.
5178           unsigned ShCt = C1.logBase2();
5179           if (C1.isPowerOf2() && !shouldAvoidTransformToShift(ShValTy, ShCt)) {
5180             return DAG.getNode(
5181                 ISD::TRUNCATE, dl, VT,
5182                 DAG.getNode(ISD::SRL, dl, ShValTy, N0,
5183                             DAG.getShiftAmountConstant(ShCt, ShValTy, dl)));
5184           }
5185         }
5186       }
5187     }
5188 
5189     if (C1.getSignificantBits() <= 64 &&
5190         !isLegalICmpImmediate(C1.getSExtValue())) {
5191       // (X & -256) == 256 -> (X >> 8) == 1
5192       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5193           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
5194         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5195           const APInt &AndRHSC = AndRHS->getAPIntValue();
5196           if (AndRHSC.isNegatedPowerOf2() && C1.isSubsetOf(AndRHSC)) {
5197             unsigned ShiftBits = AndRHSC.countr_zero();
5198             if (!shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
5199               SDValue Shift = DAG.getNode(
5200                   ISD::SRL, dl, ShValTy, N0.getOperand(0),
5201                   DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl));
5202               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
5203               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
5204             }
5205           }
5206         }
5207       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
5208                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
5209         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
5210         // X <  0x100000000 -> (X >> 32) <  1
5211         // X >= 0x100000000 -> (X >> 32) >= 1
5212         // X <= 0x0ffffffff -> (X >> 32) <  1
5213         // X >  0x0ffffffff -> (X >> 32) >= 1
5214         unsigned ShiftBits;
5215         APInt NewC = C1;
5216         ISD::CondCode NewCond = Cond;
5217         if (AdjOne) {
5218           ShiftBits = C1.countr_one();
5219           NewC = NewC + 1;
5220           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
5221         } else {
5222           ShiftBits = C1.countr_zero();
5223         }
5224         NewC.lshrInPlace(ShiftBits);
5225         if (ShiftBits && NewC.getSignificantBits() <= 64 &&
5226             isLegalICmpImmediate(NewC.getSExtValue()) &&
5227             !shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
5228           SDValue Shift =
5229               DAG.getNode(ISD::SRL, dl, ShValTy, N0,
5230                           DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl));
5231           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
5232           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
5233         }
5234       }
5235     }
5236   }
5237 
5238   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
5239     auto *CFP = cast<ConstantFPSDNode>(N1);
5240     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
5241 
5242     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
5243     // constant if knowing that the operand is non-nan is enough.  We prefer to
5244     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
5245     // materialize 0.0.
5246     if (Cond == ISD::SETO || Cond == ISD::SETUO)
5247       return DAG.getSetCC(dl, VT, N0, N0, Cond);
5248 
5249     // setcc (fneg x), C -> setcc swap(pred) x, -C
5250     if (N0.getOpcode() == ISD::FNEG) {
5251       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
5252       if (DCI.isBeforeLegalizeOps() ||
5253           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
5254         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
5255         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
5256       }
5257     }
5258 
5259     // setueq/setoeq X, (fabs Inf) -> is_fpclass X, fcInf
5260     if (isOperationLegalOrCustom(ISD::IS_FPCLASS, N0.getValueType()) &&
5261         !isFPImmLegal(CFP->getValueAPF(), CFP->getValueType(0))) {
5262       bool IsFabs = N0.getOpcode() == ISD::FABS;
5263       SDValue Op = IsFabs ? N0.getOperand(0) : N0;
5264       if ((Cond == ISD::SETOEQ || Cond == ISD::SETUEQ) && CFP->isInfinity()) {
5265         FPClassTest Flag = CFP->isNegative() ? (IsFabs ? fcNone : fcNegInf)
5266                                              : (IsFabs ? fcInf : fcPosInf);
5267         if (Cond == ISD::SETUEQ)
5268           Flag |= fcNan;
5269         return DAG.getNode(ISD::IS_FPCLASS, dl, VT, Op,
5270                            DAG.getTargetConstant(Flag, dl, MVT::i32));
5271       }
5272     }
5273 
5274     // If the condition is not legal, see if we can find an equivalent one
5275     // which is legal.
5276     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
5277       // If the comparison was an awkward floating-point == or != and one of
5278       // the comparison operands is infinity or negative infinity, convert the
5279       // condition to a less-awkward <= or >=.
5280       if (CFP->getValueAPF().isInfinity()) {
5281         bool IsNegInf = CFP->getValueAPF().isNegative();
5282         ISD::CondCode NewCond = ISD::SETCC_INVALID;
5283         switch (Cond) {
5284         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
5285         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
5286         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
5287         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
5288         default: break;
5289         }
5290         if (NewCond != ISD::SETCC_INVALID &&
5291             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
5292           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
5293       }
5294     }
5295   }
5296 
5297   if (N0 == N1) {
5298     // The sext(setcc()) => setcc() optimization relies on the appropriate
5299     // constant being emitted.
5300     assert(!N0.getValueType().isInteger() &&
5301            "Integer types should be handled by FoldSetCC");
5302 
5303     bool EqTrue = ISD::isTrueWhenEqual(Cond);
5304     unsigned UOF = ISD::getUnorderedFlavor(Cond);
5305     if (UOF == 2) // FP operators that are undefined on NaNs.
5306       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
5307     if (UOF == unsigned(EqTrue))
5308       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
5309     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
5310     // if it is not already.
5311     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
5312     if (NewCond != Cond &&
5313         (DCI.isBeforeLegalizeOps() ||
5314                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
5315       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
5316   }
5317 
5318   // ~X > ~Y --> Y > X
5319   // ~X < ~Y --> Y < X
5320   // ~X < C --> X > ~C
5321   // ~X > C --> X < ~C
5322   if ((isSignedIntSetCC(Cond) || isUnsignedIntSetCC(Cond)) &&
5323       N0.getValueType().isInteger()) {
5324     if (isBitwiseNot(N0)) {
5325       if (isBitwiseNot(N1))
5326         return DAG.getSetCC(dl, VT, N1.getOperand(0), N0.getOperand(0), Cond);
5327 
5328       if (DAG.isConstantIntBuildVectorOrConstantInt(N1) &&
5329           !DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(0))) {
5330         SDValue Not = DAG.getNOT(dl, N1, OpVT);
5331         return DAG.getSetCC(dl, VT, Not, N0.getOperand(0), Cond);
5332       }
5333     }
5334   }
5335 
5336   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5337       N0.getValueType().isInteger()) {
5338     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
5339         N0.getOpcode() == ISD::XOR) {
5340       // Simplify (X+Y) == (X+Z) -->  Y == Z
5341       if (N0.getOpcode() == N1.getOpcode()) {
5342         if (N0.getOperand(0) == N1.getOperand(0))
5343           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
5344         if (N0.getOperand(1) == N1.getOperand(1))
5345           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
5346         if (isCommutativeBinOp(N0.getOpcode())) {
5347           // If X op Y == Y op X, try other combinations.
5348           if (N0.getOperand(0) == N1.getOperand(1))
5349             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
5350                                 Cond);
5351           if (N0.getOperand(1) == N1.getOperand(0))
5352             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
5353                                 Cond);
5354         }
5355       }
5356 
5357       // If RHS is a legal immediate value for a compare instruction, we need
5358       // to be careful about increasing register pressure needlessly.
5359       bool LegalRHSImm = false;
5360 
5361       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
5362         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5363           // Turn (X+C1) == C2 --> X == C2-C1
5364           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse())
5365             return DAG.getSetCC(
5366                 dl, VT, N0.getOperand(0),
5367                 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
5368                                 dl, N0.getValueType()),
5369                 Cond);
5370 
5371           // Turn (X^C1) == C2 --> X == C1^C2
5372           if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse())
5373             return DAG.getSetCC(
5374                 dl, VT, N0.getOperand(0),
5375                 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
5376                                 dl, N0.getValueType()),
5377                 Cond);
5378         }
5379 
5380         // Turn (C1-X) == C2 --> X == C1-C2
5381         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
5382           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse())
5383             return DAG.getSetCC(
5384                 dl, VT, N0.getOperand(1),
5385                 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
5386                                 dl, N0.getValueType()),
5387                 Cond);
5388 
5389         // Could RHSC fold directly into a compare?
5390         if (RHSC->getValueType(0).getSizeInBits() <= 64)
5391           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
5392       }
5393 
5394       // (X+Y) == X --> Y == 0 and similar folds.
5395       // Don't do this if X is an immediate that can fold into a cmp
5396       // instruction and X+Y has other uses. It could be an induction variable
5397       // chain, and the transform would increase register pressure.
5398       if (!LegalRHSImm || N0.hasOneUse())
5399         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
5400           return V;
5401     }
5402 
5403     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
5404         N1.getOpcode() == ISD::XOR)
5405       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
5406         return V;
5407 
5408     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
5409       return V;
5410   }
5411 
5412   // Fold remainder of division by a constant.
5413   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
5414       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
5415     // When division is cheap or optimizing for minimum size,
5416     // fall through to DIVREM creation by skipping this fold.
5417     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
5418       if (N0.getOpcode() == ISD::UREM) {
5419         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
5420           return Folded;
5421       } else if (N0.getOpcode() == ISD::SREM) {
5422         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
5423           return Folded;
5424       }
5425     }
5426   }
5427 
5428   // Fold away ALL boolean setcc's.
5429   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
5430     SDValue Temp;
5431     switch (Cond) {
5432     default: llvm_unreachable("Unknown integer setcc!");
5433     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
5434       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
5435       N0 = DAG.getNOT(dl, Temp, OpVT);
5436       if (!DCI.isCalledByLegalizer())
5437         DCI.AddToWorklist(Temp.getNode());
5438       break;
5439     case ISD::SETNE:  // X != Y   -->  (X^Y)
5440       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
5441       break;
5442     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
5443     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
5444       Temp = DAG.getNOT(dl, N0, OpVT);
5445       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
5446       if (!DCI.isCalledByLegalizer())
5447         DCI.AddToWorklist(Temp.getNode());
5448       break;
5449     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
5450     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
5451       Temp = DAG.getNOT(dl, N1, OpVT);
5452       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
5453       if (!DCI.isCalledByLegalizer())
5454         DCI.AddToWorklist(Temp.getNode());
5455       break;
5456     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
5457     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
5458       Temp = DAG.getNOT(dl, N0, OpVT);
5459       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
5460       if (!DCI.isCalledByLegalizer())
5461         DCI.AddToWorklist(Temp.getNode());
5462       break;
5463     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
5464     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
5465       Temp = DAG.getNOT(dl, N1, OpVT);
5466       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
5467       break;
5468     }
5469     if (VT.getScalarType() != MVT::i1) {
5470       if (!DCI.isCalledByLegalizer())
5471         DCI.AddToWorklist(N0.getNode());
5472       // FIXME: If running after legalize, we probably can't do this.
5473       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
5474       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
5475     }
5476     return N0;
5477   }
5478 
5479   // Could not fold it.
5480   return SDValue();
5481 }
5482 
5483 /// Returns true (and the GlobalValue and the offset) if the node is a
5484 /// GlobalAddress + offset.
5485 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
5486                                     int64_t &Offset) const {
5487 
5488   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
5489 
5490   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
5491     GA = GASD->getGlobal();
5492     Offset += GASD->getOffset();
5493     return true;
5494   }
5495 
5496   if (N->getOpcode() == ISD::ADD) {
5497     SDValue N1 = N->getOperand(0);
5498     SDValue N2 = N->getOperand(1);
5499     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
5500       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
5501         Offset += V->getSExtValue();
5502         return true;
5503       }
5504     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
5505       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
5506         Offset += V->getSExtValue();
5507         return true;
5508       }
5509     }
5510   }
5511 
5512   return false;
5513 }
5514 
5515 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
5516                                           DAGCombinerInfo &DCI) const {
5517   // Default implementation: no optimization.
5518   return SDValue();
5519 }
5520 
5521 //===----------------------------------------------------------------------===//
5522 //  Inline Assembler Implementation Methods
5523 //===----------------------------------------------------------------------===//
5524 
5525 TargetLowering::ConstraintType
5526 TargetLowering::getConstraintType(StringRef Constraint) const {
5527   unsigned S = Constraint.size();
5528 
5529   if (S == 1) {
5530     switch (Constraint[0]) {
5531     default: break;
5532     case 'r':
5533       return C_RegisterClass;
5534     case 'm': // memory
5535     case 'o': // offsetable
5536     case 'V': // not offsetable
5537       return C_Memory;
5538     case 'p': // Address.
5539       return C_Address;
5540     case 'n': // Simple Integer
5541     case 'E': // Floating Point Constant
5542     case 'F': // Floating Point Constant
5543       return C_Immediate;
5544     case 'i': // Simple Integer or Relocatable Constant
5545     case 's': // Relocatable Constant
5546     case 'X': // Allow ANY value.
5547     case 'I': // Target registers.
5548     case 'J':
5549     case 'K':
5550     case 'L':
5551     case 'M':
5552     case 'N':
5553     case 'O':
5554     case 'P':
5555     case '<':
5556     case '>':
5557       return C_Other;
5558     }
5559   }
5560 
5561   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
5562     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
5563       return C_Memory;
5564     return C_Register;
5565   }
5566   return C_Unknown;
5567 }
5568 
5569 /// Try to replace an X constraint, which matches anything, with another that
5570 /// has more specific requirements based on the type of the corresponding
5571 /// operand.
5572 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
5573   if (ConstraintVT.isInteger())
5574     return "r";
5575   if (ConstraintVT.isFloatingPoint())
5576     return "f"; // works for many targets
5577   return nullptr;
5578 }
5579 
5580 SDValue TargetLowering::LowerAsmOutputForConstraint(
5581     SDValue &Chain, SDValue &Glue, const SDLoc &DL,
5582     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
5583   return SDValue();
5584 }
5585 
5586 /// Lower the specified operand into the Ops vector.
5587 /// If it is invalid, don't add anything to Ops.
5588 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5589                                                   StringRef Constraint,
5590                                                   std::vector<SDValue> &Ops,
5591                                                   SelectionDAG &DAG) const {
5592 
5593   if (Constraint.size() > 1)
5594     return;
5595 
5596   char ConstraintLetter = Constraint[0];
5597   switch (ConstraintLetter) {
5598   default: break;
5599   case 'X':    // Allows any operand
5600   case 'i':    // Simple Integer or Relocatable Constant
5601   case 'n':    // Simple Integer
5602   case 's': {  // Relocatable Constant
5603 
5604     ConstantSDNode *C;
5605     uint64_t Offset = 0;
5606 
5607     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
5608     // etc., since getelementpointer is variadic. We can't use
5609     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
5610     // while in this case the GA may be furthest from the root node which is
5611     // likely an ISD::ADD.
5612     while (true) {
5613       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
5614         // gcc prints these as sign extended.  Sign extend value to 64 bits
5615         // now; without this it would get ZExt'd later in
5616         // ScheduleDAGSDNodes::EmitNode, which is very generic.
5617         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
5618         BooleanContent BCont = getBooleanContents(MVT::i64);
5619         ISD::NodeType ExtOpc =
5620             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
5621         int64_t ExtVal =
5622             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
5623         Ops.push_back(
5624             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
5625         return;
5626       }
5627       if (ConstraintLetter != 'n') {
5628         if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5629           Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
5630                                                    GA->getValueType(0),
5631                                                    Offset + GA->getOffset()));
5632           return;
5633         }
5634         if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
5635           Ops.push_back(DAG.getTargetBlockAddress(
5636               BA->getBlockAddress(), BA->getValueType(0),
5637               Offset + BA->getOffset(), BA->getTargetFlags()));
5638           return;
5639         }
5640         if (isa<BasicBlockSDNode>(Op)) {
5641           Ops.push_back(Op);
5642           return;
5643         }
5644       }
5645       const unsigned OpCode = Op.getOpcode();
5646       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
5647         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
5648           Op = Op.getOperand(1);
5649         // Subtraction is not commutative.
5650         else if (OpCode == ISD::ADD &&
5651                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
5652           Op = Op.getOperand(0);
5653         else
5654           return;
5655         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
5656         continue;
5657       }
5658       return;
5659     }
5660     break;
5661   }
5662   }
5663 }
5664 
5665 void TargetLowering::CollectTargetIntrinsicOperands(
5666     const CallInst &I, SmallVectorImpl<SDValue> &Ops, SelectionDAG &DAG) const {
5667 }
5668 
5669 std::pair<unsigned, const TargetRegisterClass *>
5670 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
5671                                              StringRef Constraint,
5672                                              MVT VT) const {
5673   if (!Constraint.starts_with("{"))
5674     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
5675   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
5676 
5677   // Remove the braces from around the name.
5678   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
5679 
5680   std::pair<unsigned, const TargetRegisterClass *> R =
5681       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
5682 
5683   // Figure out which register class contains this reg.
5684   for (const TargetRegisterClass *RC : RI->regclasses()) {
5685     // If none of the value types for this register class are valid, we
5686     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5687     if (!isLegalRC(*RI, *RC))
5688       continue;
5689 
5690     for (const MCPhysReg &PR : *RC) {
5691       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
5692         std::pair<unsigned, const TargetRegisterClass *> S =
5693             std::make_pair(PR, RC);
5694 
5695         // If this register class has the requested value type, return it,
5696         // otherwise keep searching and return the first class found
5697         // if no other is found which explicitly has the requested type.
5698         if (RI->isTypeLegalForClass(*RC, VT))
5699           return S;
5700         if (!R.second)
5701           R = S;
5702       }
5703     }
5704   }
5705 
5706   return R;
5707 }
5708 
5709 //===----------------------------------------------------------------------===//
5710 // Constraint Selection.
5711 
5712 /// Return true of this is an input operand that is a matching constraint like
5713 /// "4".
5714 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
5715   assert(!ConstraintCode.empty() && "No known constraint!");
5716   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
5717 }
5718 
5719 /// If this is an input matching constraint, this method returns the output
5720 /// operand it matches.
5721 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
5722   assert(!ConstraintCode.empty() && "No known constraint!");
5723   return atoi(ConstraintCode.c_str());
5724 }
5725 
5726 /// Split up the constraint string from the inline assembly value into the
5727 /// specific constraints and their prefixes, and also tie in the associated
5728 /// operand values.
5729 /// If this returns an empty vector, and if the constraint string itself
5730 /// isn't empty, there was an error parsing.
5731 TargetLowering::AsmOperandInfoVector
5732 TargetLowering::ParseConstraints(const DataLayout &DL,
5733                                  const TargetRegisterInfo *TRI,
5734                                  const CallBase &Call) const {
5735   /// Information about all of the constraints.
5736   AsmOperandInfoVector ConstraintOperands;
5737   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
5738   unsigned maCount = 0; // Largest number of multiple alternative constraints.
5739 
5740   // Do a prepass over the constraints, canonicalizing them, and building up the
5741   // ConstraintOperands list.
5742   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5743   unsigned ResNo = 0; // ResNo - The result number of the next output.
5744   unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number.
5745 
5746   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
5747     ConstraintOperands.emplace_back(std::move(CI));
5748     AsmOperandInfo &OpInfo = ConstraintOperands.back();
5749 
5750     // Update multiple alternative constraint count.
5751     if (OpInfo.multipleAlternatives.size() > maCount)
5752       maCount = OpInfo.multipleAlternatives.size();
5753 
5754     OpInfo.ConstraintVT = MVT::Other;
5755 
5756     // Compute the value type for each operand.
5757     switch (OpInfo.Type) {
5758     case InlineAsm::isOutput:
5759       // Indirect outputs just consume an argument.
5760       if (OpInfo.isIndirect) {
5761         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5762         break;
5763       }
5764 
5765       // The return value of the call is this value.  As such, there is no
5766       // corresponding argument.
5767       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
5768       if (auto *STy = dyn_cast<StructType>(Call.getType())) {
5769         OpInfo.ConstraintVT =
5770             getAsmOperandValueType(DL, STy->getElementType(ResNo))
5771                 .getSimpleVT();
5772       } else {
5773         assert(ResNo == 0 && "Asm only has one result!");
5774         OpInfo.ConstraintVT =
5775             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
5776       }
5777       ++ResNo;
5778       break;
5779     case InlineAsm::isInput:
5780       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5781       break;
5782     case InlineAsm::isLabel:
5783       OpInfo.CallOperandVal = cast<CallBrInst>(&Call)->getIndirectDest(LabelNo);
5784       ++LabelNo;
5785       continue;
5786     case InlineAsm::isClobber:
5787       // Nothing to do.
5788       break;
5789     }
5790 
5791     if (OpInfo.CallOperandVal) {
5792       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5793       if (OpInfo.isIndirect) {
5794         OpTy = Call.getParamElementType(ArgNo);
5795         assert(OpTy && "Indirect operand must have elementtype attribute");
5796       }
5797 
5798       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5799       if (StructType *STy = dyn_cast<StructType>(OpTy))
5800         if (STy->getNumElements() == 1)
5801           OpTy = STy->getElementType(0);
5802 
5803       // If OpTy is not a single value, it may be a struct/union that we
5804       // can tile with integers.
5805       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5806         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5807         switch (BitSize) {
5808         default: break;
5809         case 1:
5810         case 8:
5811         case 16:
5812         case 32:
5813         case 64:
5814         case 128:
5815           OpTy = IntegerType::get(OpTy->getContext(), BitSize);
5816           break;
5817         }
5818       }
5819 
5820       EVT VT = getAsmOperandValueType(DL, OpTy, true);
5821       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
5822       ArgNo++;
5823     }
5824   }
5825 
5826   // If we have multiple alternative constraints, select the best alternative.
5827   if (!ConstraintOperands.empty()) {
5828     if (maCount) {
5829       unsigned bestMAIndex = 0;
5830       int bestWeight = -1;
5831       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
5832       int weight = -1;
5833       unsigned maIndex;
5834       // Compute the sums of the weights for each alternative, keeping track
5835       // of the best (highest weight) one so far.
5836       for (maIndex = 0; maIndex < maCount; ++maIndex) {
5837         int weightSum = 0;
5838         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5839              cIndex != eIndex; ++cIndex) {
5840           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5841           if (OpInfo.Type == InlineAsm::isClobber)
5842             continue;
5843 
5844           // If this is an output operand with a matching input operand,
5845           // look up the matching input. If their types mismatch, e.g. one
5846           // is an integer, the other is floating point, or their sizes are
5847           // different, flag it as an maCantMatch.
5848           if (OpInfo.hasMatchingInput()) {
5849             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5850             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5851               if ((OpInfo.ConstraintVT.isInteger() !=
5852                    Input.ConstraintVT.isInteger()) ||
5853                   (OpInfo.ConstraintVT.getSizeInBits() !=
5854                    Input.ConstraintVT.getSizeInBits())) {
5855                 weightSum = -1; // Can't match.
5856                 break;
5857               }
5858             }
5859           }
5860           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
5861           if (weight == -1) {
5862             weightSum = -1;
5863             break;
5864           }
5865           weightSum += weight;
5866         }
5867         // Update best.
5868         if (weightSum > bestWeight) {
5869           bestWeight = weightSum;
5870           bestMAIndex = maIndex;
5871         }
5872       }
5873 
5874       // Now select chosen alternative in each constraint.
5875       for (AsmOperandInfo &cInfo : ConstraintOperands)
5876         if (cInfo.Type != InlineAsm::isClobber)
5877           cInfo.selectAlternative(bestMAIndex);
5878     }
5879   }
5880 
5881   // Check and hook up tied operands, choose constraint code to use.
5882   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5883        cIndex != eIndex; ++cIndex) {
5884     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5885 
5886     // If this is an output operand with a matching input operand, look up the
5887     // matching input. If their types mismatch, e.g. one is an integer, the
5888     // other is floating point, or their sizes are different, flag it as an
5889     // error.
5890     if (OpInfo.hasMatchingInput()) {
5891       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5892 
5893       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5894         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
5895             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
5896                                          OpInfo.ConstraintVT);
5897         std::pair<unsigned, const TargetRegisterClass *> InputRC =
5898             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
5899                                          Input.ConstraintVT);
5900         const bool OutOpIsIntOrFP = OpInfo.ConstraintVT.isInteger() ||
5901                                     OpInfo.ConstraintVT.isFloatingPoint();
5902         const bool InOpIsIntOrFP = Input.ConstraintVT.isInteger() ||
5903                                    Input.ConstraintVT.isFloatingPoint();
5904         if ((OutOpIsIntOrFP != InOpIsIntOrFP) ||
5905             (MatchRC.second != InputRC.second)) {
5906           report_fatal_error("Unsupported asm: input constraint"
5907                              " with a matching output constraint of"
5908                              " incompatible type!");
5909         }
5910       }
5911     }
5912   }
5913 
5914   return ConstraintOperands;
5915 }
5916 
5917 /// Return a number indicating our preference for chosing a type of constraint
5918 /// over another, for the purpose of sorting them. Immediates are almost always
5919 /// preferrable (when they can be emitted). A higher return value means a
5920 /// stronger preference for one constraint type relative to another.
5921 /// FIXME: We should prefer registers over memory but doing so may lead to
5922 /// unrecoverable register exhaustion later.
5923 /// https://github.com/llvm/llvm-project/issues/20571
5924 static unsigned getConstraintPiority(TargetLowering::ConstraintType CT) {
5925   switch (CT) {
5926   case TargetLowering::C_Immediate:
5927   case TargetLowering::C_Other:
5928     return 4;
5929   case TargetLowering::C_Memory:
5930   case TargetLowering::C_Address:
5931     return 3;
5932   case TargetLowering::C_RegisterClass:
5933     return 2;
5934   case TargetLowering::C_Register:
5935     return 1;
5936   case TargetLowering::C_Unknown:
5937     return 0;
5938   }
5939   llvm_unreachable("Invalid constraint type");
5940 }
5941 
5942 /// Examine constraint type and operand type and determine a weight value.
5943 /// This object must already have been set up with the operand type
5944 /// and the current alternative constraint selected.
5945 TargetLowering::ConstraintWeight
5946   TargetLowering::getMultipleConstraintMatchWeight(
5947     AsmOperandInfo &info, int maIndex) const {
5948   InlineAsm::ConstraintCodeVector *rCodes;
5949   if (maIndex >= (int)info.multipleAlternatives.size())
5950     rCodes = &info.Codes;
5951   else
5952     rCodes = &info.multipleAlternatives[maIndex].Codes;
5953   ConstraintWeight BestWeight = CW_Invalid;
5954 
5955   // Loop over the options, keeping track of the most general one.
5956   for (const std::string &rCode : *rCodes) {
5957     ConstraintWeight weight =
5958         getSingleConstraintMatchWeight(info, rCode.c_str());
5959     if (weight > BestWeight)
5960       BestWeight = weight;
5961   }
5962 
5963   return BestWeight;
5964 }
5965 
5966 /// Examine constraint type and operand type and determine a weight value.
5967 /// This object must already have been set up with the operand type
5968 /// and the current alternative constraint selected.
5969 TargetLowering::ConstraintWeight
5970   TargetLowering::getSingleConstraintMatchWeight(
5971     AsmOperandInfo &info, const char *constraint) const {
5972   ConstraintWeight weight = CW_Invalid;
5973   Value *CallOperandVal = info.CallOperandVal;
5974     // If we don't have a value, we can't do a match,
5975     // but allow it at the lowest weight.
5976   if (!CallOperandVal)
5977     return CW_Default;
5978   // Look at the constraint type.
5979   switch (*constraint) {
5980     case 'i': // immediate integer.
5981     case 'n': // immediate integer with a known value.
5982       if (isa<ConstantInt>(CallOperandVal))
5983         weight = CW_Constant;
5984       break;
5985     case 's': // non-explicit intregal immediate.
5986       if (isa<GlobalValue>(CallOperandVal))
5987         weight = CW_Constant;
5988       break;
5989     case 'E': // immediate float if host format.
5990     case 'F': // immediate float.
5991       if (isa<ConstantFP>(CallOperandVal))
5992         weight = CW_Constant;
5993       break;
5994     case '<': // memory operand with autodecrement.
5995     case '>': // memory operand with autoincrement.
5996     case 'm': // memory operand.
5997     case 'o': // offsettable memory operand
5998     case 'V': // non-offsettable memory operand
5999       weight = CW_Memory;
6000       break;
6001     case 'r': // general register.
6002     case 'g': // general register, memory operand or immediate integer.
6003               // note: Clang converts "g" to "imr".
6004       if (CallOperandVal->getType()->isIntegerTy())
6005         weight = CW_Register;
6006       break;
6007     case 'X': // any operand.
6008   default:
6009     weight = CW_Default;
6010     break;
6011   }
6012   return weight;
6013 }
6014 
6015 /// If there are multiple different constraints that we could pick for this
6016 /// operand (e.g. "imr") try to pick the 'best' one.
6017 /// This is somewhat tricky: constraints (TargetLowering::ConstraintType) fall
6018 /// into seven classes:
6019 ///    Register      -> one specific register
6020 ///    RegisterClass -> a group of regs
6021 ///    Memory        -> memory
6022 ///    Address       -> a symbolic memory reference
6023 ///    Immediate     -> immediate values
6024 ///    Other         -> magic values (such as "Flag Output Operands")
6025 ///    Unknown       -> something we don't recognize yet and can't handle
6026 /// Ideally, we would pick the most specific constraint possible: if we have
6027 /// something that fits into a register, we would pick it.  The problem here
6028 /// is that if we have something that could either be in a register or in
6029 /// memory that use of the register could cause selection of *other*
6030 /// operands to fail: they might only succeed if we pick memory.  Because of
6031 /// this the heuristic we use is:
6032 ///
6033 ///  1) If there is an 'other' constraint, and if the operand is valid for
6034 ///     that constraint, use it.  This makes us take advantage of 'i'
6035 ///     constraints when available.
6036 ///  2) Otherwise, pick the most general constraint present.  This prefers
6037 ///     'm' over 'r', for example.
6038 ///
6039 TargetLowering::ConstraintGroup TargetLowering::getConstraintPreferences(
6040     TargetLowering::AsmOperandInfo &OpInfo) const {
6041   ConstraintGroup Ret;
6042 
6043   Ret.reserve(OpInfo.Codes.size());
6044   for (StringRef Code : OpInfo.Codes) {
6045     TargetLowering::ConstraintType CType = getConstraintType(Code);
6046 
6047     // Indirect 'other' or 'immediate' constraints are not allowed.
6048     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
6049                                CType == TargetLowering::C_Register ||
6050                                CType == TargetLowering::C_RegisterClass))
6051       continue;
6052 
6053     // Things with matching constraints can only be registers, per gcc
6054     // documentation.  This mainly affects "g" constraints.
6055     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
6056       continue;
6057 
6058     Ret.emplace_back(Code, CType);
6059   }
6060 
6061   std::stable_sort(
6062       Ret.begin(), Ret.end(), [](ConstraintPair a, ConstraintPair b) {
6063         return getConstraintPiority(a.second) > getConstraintPiority(b.second);
6064       });
6065 
6066   return Ret;
6067 }
6068 
6069 /// If we have an immediate, see if we can lower it. Return true if we can,
6070 /// false otherwise.
6071 static bool lowerImmediateIfPossible(TargetLowering::ConstraintPair &P,
6072                                      SDValue Op, SelectionDAG *DAG,
6073                                      const TargetLowering &TLI) {
6074 
6075   assert((P.second == TargetLowering::C_Other ||
6076           P.second == TargetLowering::C_Immediate) &&
6077          "need immediate or other");
6078 
6079   if (!Op.getNode())
6080     return false;
6081 
6082   std::vector<SDValue> ResultOps;
6083   TLI.LowerAsmOperandForConstraint(Op, P.first, ResultOps, *DAG);
6084   return !ResultOps.empty();
6085 }
6086 
6087 /// Determines the constraint code and constraint type to use for the specific
6088 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
6089 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
6090                                             SDValue Op,
6091                                             SelectionDAG *DAG) const {
6092   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
6093 
6094   // Single-letter constraints ('r') are very common.
6095   if (OpInfo.Codes.size() == 1) {
6096     OpInfo.ConstraintCode = OpInfo.Codes[0];
6097     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
6098   } else {
6099     ConstraintGroup G = getConstraintPreferences(OpInfo);
6100     if (G.empty())
6101       return;
6102 
6103     unsigned BestIdx = 0;
6104     for (const unsigned E = G.size();
6105          BestIdx < E && (G[BestIdx].second == TargetLowering::C_Other ||
6106                          G[BestIdx].second == TargetLowering::C_Immediate);
6107          ++BestIdx) {
6108       if (lowerImmediateIfPossible(G[BestIdx], Op, DAG, *this))
6109         break;
6110       // If we're out of constraints, just pick the first one.
6111       if (BestIdx + 1 == E) {
6112         BestIdx = 0;
6113         break;
6114       }
6115     }
6116 
6117     OpInfo.ConstraintCode = G[BestIdx].first;
6118     OpInfo.ConstraintType = G[BestIdx].second;
6119   }
6120 
6121   // 'X' matches anything.
6122   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
6123     // Constants are handled elsewhere.  For Functions, the type here is the
6124     // type of the result, which is not what we want to look at; leave them
6125     // alone.
6126     Value *v = OpInfo.CallOperandVal;
6127     if (isa<ConstantInt>(v) || isa<Function>(v)) {
6128       return;
6129     }
6130 
6131     if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
6132       OpInfo.ConstraintCode = "i";
6133       return;
6134     }
6135 
6136     // Otherwise, try to resolve it to something we know about by looking at
6137     // the actual operand type.
6138     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
6139       OpInfo.ConstraintCode = Repl;
6140       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
6141     }
6142   }
6143 }
6144 
6145 /// Given an exact SDIV by a constant, create a multiplication
6146 /// with the multiplicative inverse of the constant.
6147 /// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242
6148 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
6149                               const SDLoc &dl, SelectionDAG &DAG,
6150                               SmallVectorImpl<SDNode *> &Created) {
6151   SDValue Op0 = N->getOperand(0);
6152   SDValue Op1 = N->getOperand(1);
6153   EVT VT = N->getValueType(0);
6154   EVT SVT = VT.getScalarType();
6155   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
6156   EVT ShSVT = ShVT.getScalarType();
6157 
6158   bool UseSRA = false;
6159   SmallVector<SDValue, 16> Shifts, Factors;
6160 
6161   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
6162     if (C->isZero())
6163       return false;
6164     APInt Divisor = C->getAPIntValue();
6165     unsigned Shift = Divisor.countr_zero();
6166     if (Shift) {
6167       Divisor.ashrInPlace(Shift);
6168       UseSRA = true;
6169     }
6170     APInt Factor = Divisor.multiplicativeInverse();
6171     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
6172     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
6173     return true;
6174   };
6175 
6176   // Collect all magic values from the build vector.
6177   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
6178     return SDValue();
6179 
6180   SDValue Shift, Factor;
6181   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
6182     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
6183     Factor = DAG.getBuildVector(VT, dl, Factors);
6184   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
6185     assert(Shifts.size() == 1 && Factors.size() == 1 &&
6186            "Expected matchUnaryPredicate to return one element for scalable "
6187            "vectors");
6188     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
6189     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
6190   } else {
6191     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
6192     Shift = Shifts[0];
6193     Factor = Factors[0];
6194   }
6195 
6196   SDValue Res = Op0;
6197   if (UseSRA) {
6198     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, SDNodeFlags::Exact);
6199     Created.push_back(Res.getNode());
6200   }
6201 
6202   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
6203 }
6204 
6205 /// Given an exact UDIV by a constant, create a multiplication
6206 /// with the multiplicative inverse of the constant.
6207 /// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242
6208 static SDValue BuildExactUDIV(const TargetLowering &TLI, SDNode *N,
6209                               const SDLoc &dl, SelectionDAG &DAG,
6210                               SmallVectorImpl<SDNode *> &Created) {
6211   EVT VT = N->getValueType(0);
6212   EVT SVT = VT.getScalarType();
6213   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
6214   EVT ShSVT = ShVT.getScalarType();
6215 
6216   bool UseSRL = false;
6217   SmallVector<SDValue, 16> Shifts, Factors;
6218 
6219   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
6220     if (C->isZero())
6221       return false;
6222     APInt Divisor = C->getAPIntValue();
6223     unsigned Shift = Divisor.countr_zero();
6224     if (Shift) {
6225       Divisor.lshrInPlace(Shift);
6226       UseSRL = true;
6227     }
6228     // Calculate the multiplicative inverse modulo BW.
6229     APInt Factor = Divisor.multiplicativeInverse();
6230     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
6231     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
6232     return true;
6233   };
6234 
6235   SDValue Op1 = N->getOperand(1);
6236 
6237   // Collect all magic values from the build vector.
6238   if (!ISD::matchUnaryPredicate(Op1, BuildUDIVPattern))
6239     return SDValue();
6240 
6241   SDValue Shift, Factor;
6242   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
6243     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
6244     Factor = DAG.getBuildVector(VT, dl, Factors);
6245   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
6246     assert(Shifts.size() == 1 && Factors.size() == 1 &&
6247            "Expected matchUnaryPredicate to return one element for scalable "
6248            "vectors");
6249     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
6250     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
6251   } else {
6252     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
6253     Shift = Shifts[0];
6254     Factor = Factors[0];
6255   }
6256 
6257   SDValue Res = N->getOperand(0);
6258   if (UseSRL) {
6259     Res = DAG.getNode(ISD::SRL, dl, VT, Res, Shift, SDNodeFlags::Exact);
6260     Created.push_back(Res.getNode());
6261   }
6262 
6263   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
6264 }
6265 
6266 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
6267                               SelectionDAG &DAG,
6268                               SmallVectorImpl<SDNode *> &Created) const {
6269   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
6270   if (isIntDivCheap(N->getValueType(0), Attr))
6271     return SDValue(N, 0); // Lower SDIV as SDIV
6272   return SDValue();
6273 }
6274 
6275 SDValue
6276 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor,
6277                               SelectionDAG &DAG,
6278                               SmallVectorImpl<SDNode *> &Created) const {
6279   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
6280   if (isIntDivCheap(N->getValueType(0), Attr))
6281     return SDValue(N, 0); // Lower SREM as SREM
6282   return SDValue();
6283 }
6284 
6285 /// Build sdiv by power-of-2 with conditional move instructions
6286 /// Ref: "Hacker's Delight" by Henry Warren 10-1
6287 /// If conditional move/branch is preferred, we lower sdiv x, +/-2**k into:
6288 ///   bgez x, label
6289 ///   add x, x, 2**k-1
6290 /// label:
6291 ///   sra res, x, k
6292 ///   neg res, res (when the divisor is negative)
6293 SDValue TargetLowering::buildSDIVPow2WithCMov(
6294     SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
6295     SmallVectorImpl<SDNode *> &Created) const {
6296   unsigned Lg2 = Divisor.countr_zero();
6297   EVT VT = N->getValueType(0);
6298 
6299   SDLoc DL(N);
6300   SDValue N0 = N->getOperand(0);
6301   SDValue Zero = DAG.getConstant(0, DL, VT);
6302   APInt Lg2Mask = APInt::getLowBitsSet(VT.getSizeInBits(), Lg2);
6303   SDValue Pow2MinusOne = DAG.getConstant(Lg2Mask, DL, VT);
6304 
6305   // If N0 is negative, we need to add (Pow2 - 1) to it before shifting right.
6306   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6307   SDValue Cmp = DAG.getSetCC(DL, CCVT, N0, Zero, ISD::SETLT);
6308   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
6309   SDValue CMov = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
6310 
6311   Created.push_back(Cmp.getNode());
6312   Created.push_back(Add.getNode());
6313   Created.push_back(CMov.getNode());
6314 
6315   // Divide by pow2.
6316   SDValue SRA =
6317       DAG.getNode(ISD::SRA, DL, VT, CMov, DAG.getConstant(Lg2, DL, VT));
6318 
6319   // If we're dividing by a positive value, we're done.  Otherwise, we must
6320   // negate the result.
6321   if (Divisor.isNonNegative())
6322     return SRA;
6323 
6324   Created.push_back(SRA.getNode());
6325   return DAG.getNode(ISD::SUB, DL, VT, Zero, SRA);
6326 }
6327 
6328 /// Given an ISD::SDIV node expressing a divide by constant,
6329 /// return a DAG expression to select that will generate the same value by
6330 /// multiplying by a magic number.
6331 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
6332 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
6333                                   bool IsAfterLegalization,
6334                                   bool IsAfterLegalTypes,
6335                                   SmallVectorImpl<SDNode *> &Created) const {
6336   SDLoc dl(N);
6337   EVT VT = N->getValueType(0);
6338   EVT SVT = VT.getScalarType();
6339   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6340   EVT ShSVT = ShVT.getScalarType();
6341   unsigned EltBits = VT.getScalarSizeInBits();
6342   EVT MulVT;
6343 
6344   // Check to see if we can do this.
6345   // FIXME: We should be more aggressive here.
6346   if (!isTypeLegal(VT)) {
6347     // Limit this to simple scalars for now.
6348     if (VT.isVector() || !VT.isSimple())
6349       return SDValue();
6350 
6351     // If this type will be promoted to a large enough type with a legal
6352     // multiply operation, we can go ahead and do this transform.
6353     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
6354       return SDValue();
6355 
6356     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
6357     if (MulVT.getSizeInBits() < (2 * EltBits) ||
6358         !isOperationLegal(ISD::MUL, MulVT))
6359       return SDValue();
6360   }
6361 
6362   // If the sdiv has an 'exact' bit we can use a simpler lowering.
6363   if (N->getFlags().hasExact())
6364     return BuildExactSDIV(*this, N, dl, DAG, Created);
6365 
6366   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
6367 
6368   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
6369     if (C->isZero())
6370       return false;
6371 
6372     const APInt &Divisor = C->getAPIntValue();
6373     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
6374     int NumeratorFactor = 0;
6375     int ShiftMask = -1;
6376 
6377     if (Divisor.isOne() || Divisor.isAllOnes()) {
6378       // If d is +1/-1, we just multiply the numerator by +1/-1.
6379       NumeratorFactor = Divisor.getSExtValue();
6380       magics.Magic = 0;
6381       magics.ShiftAmount = 0;
6382       ShiftMask = 0;
6383     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
6384       // If d > 0 and m < 0, add the numerator.
6385       NumeratorFactor = 1;
6386     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
6387       // If d < 0 and m > 0, subtract the numerator.
6388       NumeratorFactor = -1;
6389     }
6390 
6391     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
6392     Factors.push_back(DAG.getSignedConstant(NumeratorFactor, dl, SVT));
6393     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
6394     ShiftMasks.push_back(DAG.getSignedConstant(ShiftMask, dl, SVT));
6395     return true;
6396   };
6397 
6398   SDValue N0 = N->getOperand(0);
6399   SDValue N1 = N->getOperand(1);
6400 
6401   // Collect the shifts / magic values from each element.
6402   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
6403     return SDValue();
6404 
6405   SDValue MagicFactor, Factor, Shift, ShiftMask;
6406   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
6407     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
6408     Factor = DAG.getBuildVector(VT, dl, Factors);
6409     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
6410     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
6411   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
6412     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
6413            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
6414            "Expected matchUnaryPredicate to return one element for scalable "
6415            "vectors");
6416     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
6417     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
6418     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
6419     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
6420   } else {
6421     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
6422     MagicFactor = MagicFactors[0];
6423     Factor = Factors[0];
6424     Shift = Shifts[0];
6425     ShiftMask = ShiftMasks[0];
6426   }
6427 
6428   // Multiply the numerator (operand 0) by the magic value.
6429   // FIXME: We should support doing a MUL in a wider type.
6430   auto GetMULHS = [&](SDValue X, SDValue Y) {
6431     // If the type isn't legal, use a wider mul of the type calculated
6432     // earlier.
6433     if (!isTypeLegal(VT)) {
6434       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
6435       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
6436       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
6437       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
6438                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
6439       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6440     }
6441 
6442     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
6443       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
6444     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
6445       SDValue LoHi =
6446           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
6447       return SDValue(LoHi.getNode(), 1);
6448     }
6449     // If type twice as wide legal, widen and use a mul plus a shift.
6450     unsigned Size = VT.getScalarSizeInBits();
6451     EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2);
6452     if (VT.isVector())
6453       WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
6454                                 VT.getVectorElementCount());
6455     // Some targets like AMDGPU try to go from SDIV to SDIVREM which is then
6456     // custom lowered. This is very expensive so avoid it at all costs for
6457     // constant divisors.
6458     if ((!IsAfterLegalTypes && isOperationExpand(ISD::SDIV, VT) &&
6459          isOperationCustom(ISD::SDIVREM, VT.getScalarType())) ||
6460         isOperationLegalOrCustom(ISD::MUL, WideVT)) {
6461       X = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, X);
6462       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, Y);
6463       Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y);
6464       Y = DAG.getNode(ISD::SRL, dl, WideVT, Y,
6465                       DAG.getShiftAmountConstant(EltBits, WideVT, dl));
6466       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6467     }
6468     return SDValue();
6469   };
6470 
6471   SDValue Q = GetMULHS(N0, MagicFactor);
6472   if (!Q)
6473     return SDValue();
6474 
6475   Created.push_back(Q.getNode());
6476 
6477   // (Optionally) Add/subtract the numerator using Factor.
6478   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
6479   Created.push_back(Factor.getNode());
6480   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
6481   Created.push_back(Q.getNode());
6482 
6483   // Shift right algebraic by shift value.
6484   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
6485   Created.push_back(Q.getNode());
6486 
6487   // Extract the sign bit, mask it and add it to the quotient.
6488   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
6489   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
6490   Created.push_back(T.getNode());
6491   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
6492   Created.push_back(T.getNode());
6493   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
6494 }
6495 
6496 /// Given an ISD::UDIV node expressing a divide by constant,
6497 /// return a DAG expression to select that will generate the same value by
6498 /// multiplying by a magic number.
6499 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
6500 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
6501                                   bool IsAfterLegalization,
6502                                   bool IsAfterLegalTypes,
6503                                   SmallVectorImpl<SDNode *> &Created) const {
6504   SDLoc dl(N);
6505   EVT VT = N->getValueType(0);
6506   EVT SVT = VT.getScalarType();
6507   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6508   EVT ShSVT = ShVT.getScalarType();
6509   unsigned EltBits = VT.getScalarSizeInBits();
6510   EVT MulVT;
6511 
6512   // Check to see if we can do this.
6513   // FIXME: We should be more aggressive here.
6514   if (!isTypeLegal(VT)) {
6515     // Limit this to simple scalars for now.
6516     if (VT.isVector() || !VT.isSimple())
6517       return SDValue();
6518 
6519     // If this type will be promoted to a large enough type with a legal
6520     // multiply operation, we can go ahead and do this transform.
6521     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
6522       return SDValue();
6523 
6524     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
6525     if (MulVT.getSizeInBits() < (2 * EltBits) ||
6526         !isOperationLegal(ISD::MUL, MulVT))
6527       return SDValue();
6528   }
6529 
6530   // If the udiv has an 'exact' bit we can use a simpler lowering.
6531   if (N->getFlags().hasExact())
6532     return BuildExactUDIV(*this, N, dl, DAG, Created);
6533 
6534   SDValue N0 = N->getOperand(0);
6535   SDValue N1 = N->getOperand(1);
6536 
6537   // Try to use leading zeros of the dividend to reduce the multiplier and
6538   // avoid expensive fixups.
6539   unsigned KnownLeadingZeros = DAG.computeKnownBits(N0).countMinLeadingZeros();
6540 
6541   bool UseNPQ = false, UsePreShift = false, UsePostShift = false;
6542   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
6543 
6544   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
6545     if (C->isZero())
6546       return false;
6547     const APInt& Divisor = C->getAPIntValue();
6548 
6549     SDValue PreShift, MagicFactor, NPQFactor, PostShift;
6550 
6551     // Magic algorithm doesn't work for division by 1. We need to emit a select
6552     // at the end.
6553     if (Divisor.isOne()) {
6554       PreShift = PostShift = DAG.getUNDEF(ShSVT);
6555       MagicFactor = NPQFactor = DAG.getUNDEF(SVT);
6556     } else {
6557       UnsignedDivisionByConstantInfo magics =
6558           UnsignedDivisionByConstantInfo::get(
6559               Divisor, std::min(KnownLeadingZeros, Divisor.countl_zero()));
6560 
6561       MagicFactor = DAG.getConstant(magics.Magic, dl, SVT);
6562 
6563       assert(magics.PreShift < Divisor.getBitWidth() &&
6564              "We shouldn't generate an undefined shift!");
6565       assert(magics.PostShift < Divisor.getBitWidth() &&
6566              "We shouldn't generate an undefined shift!");
6567       assert((!magics.IsAdd || magics.PreShift == 0) &&
6568              "Unexpected pre-shift");
6569       PreShift = DAG.getConstant(magics.PreShift, dl, ShSVT);
6570       PostShift = DAG.getConstant(magics.PostShift, dl, ShSVT);
6571       NPQFactor = DAG.getConstant(
6572           magics.IsAdd ? APInt::getOneBitSet(EltBits, EltBits - 1)
6573                        : APInt::getZero(EltBits),
6574           dl, SVT);
6575       UseNPQ |= magics.IsAdd;
6576       UsePreShift |= magics.PreShift != 0;
6577       UsePostShift |= magics.PostShift != 0;
6578     }
6579 
6580     PreShifts.push_back(PreShift);
6581     MagicFactors.push_back(MagicFactor);
6582     NPQFactors.push_back(NPQFactor);
6583     PostShifts.push_back(PostShift);
6584     return true;
6585   };
6586 
6587   // Collect the shifts/magic values from each element.
6588   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
6589     return SDValue();
6590 
6591   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
6592   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
6593     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
6594     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
6595     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
6596     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
6597   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
6598     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
6599            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
6600            "Expected matchUnaryPredicate to return one for scalable vectors");
6601     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
6602     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
6603     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
6604     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
6605   } else {
6606     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
6607     PreShift = PreShifts[0];
6608     MagicFactor = MagicFactors[0];
6609     PostShift = PostShifts[0];
6610   }
6611 
6612   SDValue Q = N0;
6613   if (UsePreShift) {
6614     Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
6615     Created.push_back(Q.getNode());
6616   }
6617 
6618   // FIXME: We should support doing a MUL in a wider type.
6619   auto GetMULHU = [&](SDValue X, SDValue Y) {
6620     // If the type isn't legal, use a wider mul of the type calculated
6621     // earlier.
6622     if (!isTypeLegal(VT)) {
6623       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
6624       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
6625       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
6626       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
6627                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
6628       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6629     }
6630 
6631     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
6632       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
6633     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
6634       SDValue LoHi =
6635           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
6636       return SDValue(LoHi.getNode(), 1);
6637     }
6638     // If type twice as wide legal, widen and use a mul plus a shift.
6639     unsigned Size = VT.getScalarSizeInBits();
6640     EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2);
6641     if (VT.isVector())
6642       WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
6643                                 VT.getVectorElementCount());
6644     // Some targets like AMDGPU try to go from UDIV to UDIVREM which is then
6645     // custom lowered. This is very expensive so avoid it at all costs for
6646     // constant divisors.
6647     if ((!IsAfterLegalTypes && isOperationExpand(ISD::UDIV, VT) &&
6648          isOperationCustom(ISD::UDIVREM, VT.getScalarType())) ||
6649         isOperationLegalOrCustom(ISD::MUL, WideVT)) {
6650       X = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, X);
6651       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, Y);
6652       Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y);
6653       Y = DAG.getNode(ISD::SRL, dl, WideVT, Y,
6654                       DAG.getShiftAmountConstant(EltBits, WideVT, dl));
6655       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
6656     }
6657     return SDValue(); // No mulhu or equivalent
6658   };
6659 
6660   // Multiply the numerator (operand 0) by the magic value.
6661   Q = GetMULHU(Q, MagicFactor);
6662   if (!Q)
6663     return SDValue();
6664 
6665   Created.push_back(Q.getNode());
6666 
6667   if (UseNPQ) {
6668     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
6669     Created.push_back(NPQ.getNode());
6670 
6671     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
6672     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
6673     if (VT.isVector())
6674       NPQ = GetMULHU(NPQ, NPQFactor);
6675     else
6676       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
6677 
6678     Created.push_back(NPQ.getNode());
6679 
6680     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
6681     Created.push_back(Q.getNode());
6682   }
6683 
6684   if (UsePostShift) {
6685     Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
6686     Created.push_back(Q.getNode());
6687   }
6688 
6689   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6690 
6691   SDValue One = DAG.getConstant(1, dl, VT);
6692   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
6693   return DAG.getSelect(dl, VT, IsOne, N0, Q);
6694 }
6695 
6696 /// If all values in Values that *don't* match the predicate are same 'splat'
6697 /// value, then replace all values with that splat value.
6698 /// Else, if AlternativeReplacement was provided, then replace all values that
6699 /// do match predicate with AlternativeReplacement value.
6700 static void
6701 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
6702                           std::function<bool(SDValue)> Predicate,
6703                           SDValue AlternativeReplacement = SDValue()) {
6704   SDValue Replacement;
6705   // Is there a value for which the Predicate does *NOT* match? What is it?
6706   auto SplatValue = llvm::find_if_not(Values, Predicate);
6707   if (SplatValue != Values.end()) {
6708     // Does Values consist only of SplatValue's and values matching Predicate?
6709     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
6710           return Value == *SplatValue || Predicate(Value);
6711         })) // Then we shall replace values matching predicate with SplatValue.
6712       Replacement = *SplatValue;
6713   }
6714   if (!Replacement) {
6715     // Oops, we did not find the "baseline" splat value.
6716     if (!AlternativeReplacement)
6717       return; // Nothing to do.
6718     // Let's replace with provided value then.
6719     Replacement = AlternativeReplacement;
6720   }
6721   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
6722 }
6723 
6724 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
6725 /// where the divisor is constant and the comparison target is zero,
6726 /// return a DAG expression that will generate the same comparison result
6727 /// using only multiplications, additions and shifts/rotations.
6728 /// Ref: "Hacker's Delight" 10-17.
6729 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
6730                                         SDValue CompTargetNode,
6731                                         ISD::CondCode Cond,
6732                                         DAGCombinerInfo &DCI,
6733                                         const SDLoc &DL) const {
6734   SmallVector<SDNode *, 5> Built;
6735   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6736                                          DCI, DL, Built)) {
6737     for (SDNode *N : Built)
6738       DCI.AddToWorklist(N);
6739     return Folded;
6740   }
6741 
6742   return SDValue();
6743 }
6744 
6745 SDValue
6746 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
6747                                   SDValue CompTargetNode, ISD::CondCode Cond,
6748                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6749                                   SmallVectorImpl<SDNode *> &Created) const {
6750   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
6751   // - D must be constant, with D = D0 * 2^K where D0 is odd
6752   // - P is the multiplicative inverse of D0 modulo 2^W
6753   // - Q = floor(((2^W) - 1) / D)
6754   // where W is the width of the common type of N and D.
6755   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6756          "Only applicable for (in)equality comparisons.");
6757 
6758   SelectionDAG &DAG = DCI.DAG;
6759 
6760   EVT VT = REMNode.getValueType();
6761   EVT SVT = VT.getScalarType();
6762   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6763   EVT ShSVT = ShVT.getScalarType();
6764 
6765   // If MUL is unavailable, we cannot proceed in any case.
6766   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6767     return SDValue();
6768 
6769   bool ComparingWithAllZeros = true;
6770   bool AllComparisonsWithNonZerosAreTautological = true;
6771   bool HadTautologicalLanes = false;
6772   bool AllLanesAreTautological = true;
6773   bool HadEvenDivisor = false;
6774   bool AllDivisorsArePowerOfTwo = true;
6775   bool HadTautologicalInvertedLanes = false;
6776   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
6777 
6778   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
6779     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6780     if (CDiv->isZero())
6781       return false;
6782 
6783     const APInt &D = CDiv->getAPIntValue();
6784     const APInt &Cmp = CCmp->getAPIntValue();
6785 
6786     ComparingWithAllZeros &= Cmp.isZero();
6787 
6788     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6789     // if C2 is not less than C1, the comparison is always false.
6790     // But we will only be able to produce the comparison that will give the
6791     // opposive tautological answer. So this lane would need to be fixed up.
6792     bool TautologicalInvertedLane = D.ule(Cmp);
6793     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
6794 
6795     // If all lanes are tautological (either all divisors are ones, or divisor
6796     // is not greater than the constant we are comparing with),
6797     // we will prefer to avoid the fold.
6798     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
6799     HadTautologicalLanes |= TautologicalLane;
6800     AllLanesAreTautological &= TautologicalLane;
6801 
6802     // If we are comparing with non-zero, we need'll need  to subtract said
6803     // comparison value from the LHS. But there is no point in doing that if
6804     // every lane where we are comparing with non-zero is tautological..
6805     if (!Cmp.isZero())
6806       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
6807 
6808     // Decompose D into D0 * 2^K
6809     unsigned K = D.countr_zero();
6810     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6811     APInt D0 = D.lshr(K);
6812 
6813     // D is even if it has trailing zeros.
6814     HadEvenDivisor |= (K != 0);
6815     // D is a power-of-two if D0 is one.
6816     // If all divisors are power-of-two, we will prefer to avoid the fold.
6817     AllDivisorsArePowerOfTwo &= D0.isOne();
6818 
6819     // P = inv(D0, 2^W)
6820     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6821     unsigned W = D.getBitWidth();
6822     APInt P = D0.multiplicativeInverse();
6823     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6824 
6825     // Q = floor((2^W - 1) u/ D)
6826     // R = ((2^W - 1) u% D)
6827     APInt Q, R;
6828     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
6829 
6830     // If we are comparing with zero, then that comparison constant is okay,
6831     // else it may need to be one less than that.
6832     if (Cmp.ugt(R))
6833       Q -= 1;
6834 
6835     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6836            "We are expecting that K is always less than all-ones for ShSVT");
6837 
6838     // If the lane is tautological the result can be constant-folded.
6839     if (TautologicalLane) {
6840       // Set P and K amount to a bogus values so we can try to splat them.
6841       P = 0;
6842       K = -1;
6843       // And ensure that comparison constant is tautological,
6844       // it will always compare true/false.
6845       Q = -1;
6846     }
6847 
6848     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6849     KAmts.push_back(
6850         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K, /*isSigned=*/false,
6851                               /*implicitTrunc=*/true),
6852                         DL, ShSVT));
6853     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6854     return true;
6855   };
6856 
6857   SDValue N = REMNode.getOperand(0);
6858   SDValue D = REMNode.getOperand(1);
6859 
6860   // Collect the values from each element.
6861   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
6862     return SDValue();
6863 
6864   // If all lanes are tautological, the result can be constant-folded.
6865   if (AllLanesAreTautological)
6866     return SDValue();
6867 
6868   // If this is a urem by a powers-of-two, avoid the fold since it can be
6869   // best implemented as a bit test.
6870   if (AllDivisorsArePowerOfTwo)
6871     return SDValue();
6872 
6873   SDValue PVal, KVal, QVal;
6874   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6875     if (HadTautologicalLanes) {
6876       // Try to turn PAmts into a splat, since we don't care about the values
6877       // that are currently '0'. If we can't, just keep '0'`s.
6878       turnVectorIntoSplatVector(PAmts, isNullConstant);
6879       // Try to turn KAmts into a splat, since we don't care about the values
6880       // that are currently '-1'. If we can't, change them to '0'`s.
6881       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6882                                 DAG.getConstant(0, DL, ShSVT));
6883     }
6884 
6885     PVal = DAG.getBuildVector(VT, DL, PAmts);
6886     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6887     QVal = DAG.getBuildVector(VT, DL, QAmts);
6888   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6889     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
6890            "Expected matchBinaryPredicate to return one element for "
6891            "SPLAT_VECTORs");
6892     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6893     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6894     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6895   } else {
6896     PVal = PAmts[0];
6897     KVal = KAmts[0];
6898     QVal = QAmts[0];
6899   }
6900 
6901   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
6902     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
6903       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
6904     assert(CompTargetNode.getValueType() == N.getValueType() &&
6905            "Expecting that the types on LHS and RHS of comparisons match.");
6906     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
6907   }
6908 
6909   // (mul N, P)
6910   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6911   Created.push_back(Op0.getNode());
6912 
6913   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6914   // divisors as a performance improvement, since rotating by 0 is a no-op.
6915   if (HadEvenDivisor) {
6916     // We need ROTR to do this.
6917     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6918       return SDValue();
6919     // UREM: (rotr (mul N, P), K)
6920     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6921     Created.push_back(Op0.getNode());
6922   }
6923 
6924   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
6925   SDValue NewCC =
6926       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6927                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6928   if (!HadTautologicalInvertedLanes)
6929     return NewCC;
6930 
6931   // If any lanes previously compared always-false, the NewCC will give
6932   // always-true result for them, so we need to fixup those lanes.
6933   // Or the other way around for inequality predicate.
6934   assert(VT.isVector() && "Can/should only get here for vectors.");
6935   Created.push_back(NewCC.getNode());
6936 
6937   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6938   // if C2 is not less than C1, the comparison is always false.
6939   // But we have produced the comparison that will give the
6940   // opposive tautological answer. So these lanes would need to be fixed up.
6941   SDValue TautologicalInvertedChannels =
6942       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
6943   Created.push_back(TautologicalInvertedChannels.getNode());
6944 
6945   // NOTE: we avoid letting illegal types through even if we're before legalize
6946   // ops – legalization has a hard time producing good code for this.
6947   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
6948     // If we have a vector select, let's replace the comparison results in the
6949     // affected lanes with the correct tautological result.
6950     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
6951                                               DL, SETCCVT, SETCCVT);
6952     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
6953                        Replacement, NewCC);
6954   }
6955 
6956   // Else, we can just invert the comparison result in the appropriate lanes.
6957   //
6958   // NOTE: see the note above VSELECT above.
6959   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
6960     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
6961                        TautologicalInvertedChannels);
6962 
6963   return SDValue(); // Don't know how to lower.
6964 }
6965 
6966 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
6967 /// where the divisor is constant and the comparison target is zero,
6968 /// return a DAG expression that will generate the same comparison result
6969 /// using only multiplications, additions and shifts/rotations.
6970 /// Ref: "Hacker's Delight" 10-17.
6971 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
6972                                         SDValue CompTargetNode,
6973                                         ISD::CondCode Cond,
6974                                         DAGCombinerInfo &DCI,
6975                                         const SDLoc &DL) const {
6976   SmallVector<SDNode *, 7> Built;
6977   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6978                                          DCI, DL, Built)) {
6979     assert(Built.size() <= 7 && "Max size prediction failed.");
6980     for (SDNode *N : Built)
6981       DCI.AddToWorklist(N);
6982     return Folded;
6983   }
6984 
6985   return SDValue();
6986 }
6987 
6988 SDValue
6989 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
6990                                   SDValue CompTargetNode, ISD::CondCode Cond,
6991                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6992                                   SmallVectorImpl<SDNode *> &Created) const {
6993   // Derived from Hacker's Delight, 2nd Edition, by Hank Warren. Section 10-17.
6994   // Fold:
6995   //   (seteq/ne (srem N, D), 0)
6996   // To:
6997   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
6998   //
6999   // - D must be constant, with D = D0 * 2^K where D0 is odd
7000   // - P is the multiplicative inverse of D0 modulo 2^W
7001   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
7002   // - Q = floor((2 * A) / (2^K))
7003   // where W is the width of the common type of N and D.
7004   //
7005   // When D is a power of two (and thus D0 is 1), the normal
7006   // formula for A and Q don't apply, because the derivation
7007   // depends on D not dividing 2^(W-1), and thus theorem ZRS
7008   // does not apply. This specifically fails when N = INT_MIN.
7009   //
7010   // Instead, for power-of-two D, we use:
7011   // - A = 2^(W-1)
7012   // |-> Order-preserving map from [-2^(W-1), 2^(W-1) - 1] to [0,2^W - 1])
7013   // - Q = 2^(W-K) - 1
7014   // |-> Test that the top K bits are zero after rotation
7015   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
7016          "Only applicable for (in)equality comparisons.");
7017 
7018   SelectionDAG &DAG = DCI.DAG;
7019 
7020   EVT VT = REMNode.getValueType();
7021   EVT SVT = VT.getScalarType();
7022   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7023   EVT ShSVT = ShVT.getScalarType();
7024 
7025   // If we are after ops legalization, and MUL is unavailable, we can not
7026   // proceed.
7027   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
7028     return SDValue();
7029 
7030   // TODO: Could support comparing with non-zero too.
7031   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
7032   if (!CompTarget || !CompTarget->isZero())
7033     return SDValue();
7034 
7035   bool HadIntMinDivisor = false;
7036   bool HadOneDivisor = false;
7037   bool AllDivisorsAreOnes = true;
7038   bool HadEvenDivisor = false;
7039   bool NeedToApplyOffset = false;
7040   bool AllDivisorsArePowerOfTwo = true;
7041   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
7042 
7043   auto BuildSREMPattern = [&](ConstantSDNode *C) {
7044     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
7045     if (C->isZero())
7046       return false;
7047 
7048     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
7049 
7050     // WARNING: this fold is only valid for positive divisors!
7051     APInt D = C->getAPIntValue();
7052     if (D.isNegative())
7053       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
7054 
7055     HadIntMinDivisor |= D.isMinSignedValue();
7056 
7057     // If all divisors are ones, we will prefer to avoid the fold.
7058     HadOneDivisor |= D.isOne();
7059     AllDivisorsAreOnes &= D.isOne();
7060 
7061     // Decompose D into D0 * 2^K
7062     unsigned K = D.countr_zero();
7063     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
7064     APInt D0 = D.lshr(K);
7065 
7066     if (!D.isMinSignedValue()) {
7067       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
7068       // we don't care about this lane in this fold, we'll special-handle it.
7069       HadEvenDivisor |= (K != 0);
7070     }
7071 
7072     // D is a power-of-two if D0 is one. This includes INT_MIN.
7073     // If all divisors are power-of-two, we will prefer to avoid the fold.
7074     AllDivisorsArePowerOfTwo &= D0.isOne();
7075 
7076     // P = inv(D0, 2^W)
7077     // 2^W requires W + 1 bits, so we have to extend and then truncate.
7078     unsigned W = D.getBitWidth();
7079     APInt P = D0.multiplicativeInverse();
7080     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
7081 
7082     // A = floor((2^(W - 1) - 1) / D0) & -2^K
7083     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
7084     A.clearLowBits(K);
7085 
7086     if (!D.isMinSignedValue()) {
7087       // If divisor INT_MIN, then we don't care about this lane in this fold,
7088       // we'll special-handle it.
7089       NeedToApplyOffset |= A != 0;
7090     }
7091 
7092     // Q = floor((2 * A) / (2^K))
7093     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
7094 
7095     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
7096            "We are expecting that A is always less than all-ones for SVT");
7097     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
7098            "We are expecting that K is always less than all-ones for ShSVT");
7099 
7100     // If D was a power of two, apply the alternate constant derivation.
7101     if (D0.isOne()) {
7102       // A = 2^(W-1)
7103       A = APInt::getSignedMinValue(W);
7104       // - Q = 2^(W-K) - 1
7105       Q = APInt::getAllOnes(W - K).zext(W);
7106     }
7107 
7108     // If the divisor is 1 the result can be constant-folded. Likewise, we
7109     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
7110     if (D.isOne()) {
7111       // Set P, A and K to a bogus values so we can try to splat them.
7112       P = 0;
7113       A = -1;
7114       K = -1;
7115 
7116       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
7117       Q = -1;
7118     }
7119 
7120     PAmts.push_back(DAG.getConstant(P, DL, SVT));
7121     AAmts.push_back(DAG.getConstant(A, DL, SVT));
7122     KAmts.push_back(
7123         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K, /*isSigned=*/false,
7124                               /*implicitTrunc=*/true),
7125                         DL, ShSVT));
7126     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
7127     return true;
7128   };
7129 
7130   SDValue N = REMNode.getOperand(0);
7131   SDValue D = REMNode.getOperand(1);
7132 
7133   // Collect the values from each element.
7134   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
7135     return SDValue();
7136 
7137   // If this is a srem by a one, avoid the fold since it can be constant-folded.
7138   if (AllDivisorsAreOnes)
7139     return SDValue();
7140 
7141   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
7142   // since it can be best implemented as a bit test.
7143   if (AllDivisorsArePowerOfTwo)
7144     return SDValue();
7145 
7146   SDValue PVal, AVal, KVal, QVal;
7147   if (D.getOpcode() == ISD::BUILD_VECTOR) {
7148     if (HadOneDivisor) {
7149       // Try to turn PAmts into a splat, since we don't care about the values
7150       // that are currently '0'. If we can't, just keep '0'`s.
7151       turnVectorIntoSplatVector(PAmts, isNullConstant);
7152       // Try to turn AAmts into a splat, since we don't care about the
7153       // values that are currently '-1'. If we can't, change them to '0'`s.
7154       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
7155                                 DAG.getConstant(0, DL, SVT));
7156       // Try to turn KAmts into a splat, since we don't care about the values
7157       // that are currently '-1'. If we can't, change them to '0'`s.
7158       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
7159                                 DAG.getConstant(0, DL, ShSVT));
7160     }
7161 
7162     PVal = DAG.getBuildVector(VT, DL, PAmts);
7163     AVal = DAG.getBuildVector(VT, DL, AAmts);
7164     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
7165     QVal = DAG.getBuildVector(VT, DL, QAmts);
7166   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
7167     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
7168            QAmts.size() == 1 &&
7169            "Expected matchUnaryPredicate to return one element for scalable "
7170            "vectors");
7171     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
7172     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
7173     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
7174     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
7175   } else {
7176     assert(isa<ConstantSDNode>(D) && "Expected a constant");
7177     PVal = PAmts[0];
7178     AVal = AAmts[0];
7179     KVal = KAmts[0];
7180     QVal = QAmts[0];
7181   }
7182 
7183   // (mul N, P)
7184   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
7185   Created.push_back(Op0.getNode());
7186 
7187   if (NeedToApplyOffset) {
7188     // We need ADD to do this.
7189     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
7190       return SDValue();
7191 
7192     // (add (mul N, P), A)
7193     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
7194     Created.push_back(Op0.getNode());
7195   }
7196 
7197   // Rotate right only if any divisor was even. We avoid rotates for all-odd
7198   // divisors as a performance improvement, since rotating by 0 is a no-op.
7199   if (HadEvenDivisor) {
7200     // We need ROTR to do this.
7201     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
7202       return SDValue();
7203     // SREM: (rotr (add (mul N, P), A), K)
7204     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
7205     Created.push_back(Op0.getNode());
7206   }
7207 
7208   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
7209   SDValue Fold =
7210       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
7211                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
7212 
7213   // If we didn't have lanes with INT_MIN divisor, then we're done.
7214   if (!HadIntMinDivisor)
7215     return Fold;
7216 
7217   // That fold is only valid for positive divisors. Which effectively means,
7218   // it is invalid for INT_MIN divisors. So if we have such a lane,
7219   // we must fix-up results for said lanes.
7220   assert(VT.isVector() && "Can/should only get here for vectors.");
7221 
7222   // NOTE: we avoid letting illegal types through even if we're before legalize
7223   // ops – legalization has a hard time producing good code for the code that
7224   // follows.
7225   if (!isOperationLegalOrCustom(ISD::SETCC, SETCCVT) ||
7226       !isOperationLegalOrCustom(ISD::AND, VT) ||
7227       !isCondCodeLegalOrCustom(Cond, VT.getSimpleVT()) ||
7228       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
7229     return SDValue();
7230 
7231   Created.push_back(Fold.getNode());
7232 
7233   SDValue IntMin = DAG.getConstant(
7234       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
7235   SDValue IntMax = DAG.getConstant(
7236       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
7237   SDValue Zero =
7238       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
7239 
7240   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
7241   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
7242   Created.push_back(DivisorIsIntMin.getNode());
7243 
7244   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
7245   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
7246   Created.push_back(Masked.getNode());
7247   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
7248   Created.push_back(MaskedIsZero.getNode());
7249 
7250   // To produce final result we need to blend 2 vectors: 'SetCC' and
7251   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
7252   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
7253   // constant-folded, select can get lowered to a shuffle with constant mask.
7254   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
7255                                 MaskedIsZero, Fold);
7256 
7257   return Blended;
7258 }
7259 
7260 bool TargetLowering::
7261 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
7262   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
7263     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
7264                                 "be a constant integer");
7265     return true;
7266   }
7267 
7268   return false;
7269 }
7270 
7271 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
7272                                          const DenormalMode &Mode) const {
7273   SDLoc DL(Op);
7274   EVT VT = Op.getValueType();
7275   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7276   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
7277 
7278   // This is specifically a check for the handling of denormal inputs, not the
7279   // result.
7280   if (Mode.Input == DenormalMode::PreserveSign ||
7281       Mode.Input == DenormalMode::PositiveZero) {
7282     // Test = X == 0.0
7283     return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
7284   }
7285 
7286   // Testing it with denormal inputs to avoid wrong estimate.
7287   //
7288   // Test = fabs(X) < SmallestNormal
7289   const fltSemantics &FltSem = VT.getFltSemantics();
7290   APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
7291   SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
7292   SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
7293   return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
7294 }
7295 
7296 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
7297                                              bool LegalOps, bool OptForSize,
7298                                              NegatibleCost &Cost,
7299                                              unsigned Depth) const {
7300   // fneg is removable even if it has multiple uses.
7301   if (Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::VP_FNEG) {
7302     Cost = NegatibleCost::Cheaper;
7303     return Op.getOperand(0);
7304   }
7305 
7306   // Don't recurse exponentially.
7307   if (Depth > SelectionDAG::MaxRecursionDepth)
7308     return SDValue();
7309 
7310   // Pre-increment recursion depth for use in recursive calls.
7311   ++Depth;
7312   const SDNodeFlags Flags = Op->getFlags();
7313   const TargetOptions &Options = DAG.getTarget().Options;
7314   EVT VT = Op.getValueType();
7315   unsigned Opcode = Op.getOpcode();
7316 
7317   // Don't allow anything with multiple uses unless we know it is free.
7318   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
7319     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
7320                         isFPExtFree(VT, Op.getOperand(0).getValueType());
7321     if (!IsFreeExtend)
7322       return SDValue();
7323   }
7324 
7325   auto RemoveDeadNode = [&](SDValue N) {
7326     if (N && N.getNode()->use_empty())
7327       DAG.RemoveDeadNode(N.getNode());
7328   };
7329 
7330   SDLoc DL(Op);
7331 
7332   // Because getNegatedExpression can delete nodes we need a handle to keep
7333   // temporary nodes alive in case the recursion manages to create an identical
7334   // node.
7335   std::list<HandleSDNode> Handles;
7336 
7337   switch (Opcode) {
7338   case ISD::ConstantFP: {
7339     // Don't invert constant FP values after legalization unless the target says
7340     // the negated constant is legal.
7341     bool IsOpLegal =
7342         isOperationLegal(ISD::ConstantFP, VT) ||
7343         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
7344                      OptForSize);
7345 
7346     if (LegalOps && !IsOpLegal)
7347       break;
7348 
7349     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
7350     V.changeSign();
7351     SDValue CFP = DAG.getConstantFP(V, DL, VT);
7352 
7353     // If we already have the use of the negated floating constant, it is free
7354     // to negate it even it has multiple uses.
7355     if (!Op.hasOneUse() && CFP.use_empty())
7356       break;
7357     Cost = NegatibleCost::Neutral;
7358     return CFP;
7359   }
7360   case ISD::BUILD_VECTOR: {
7361     // Only permit BUILD_VECTOR of constants.
7362     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
7363           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
7364         }))
7365       break;
7366 
7367     bool IsOpLegal =
7368         (isOperationLegal(ISD::ConstantFP, VT) &&
7369          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
7370         llvm::all_of(Op->op_values(), [&](SDValue N) {
7371           return N.isUndef() ||
7372                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
7373                               OptForSize);
7374         });
7375 
7376     if (LegalOps && !IsOpLegal)
7377       break;
7378 
7379     SmallVector<SDValue, 4> Ops;
7380     for (SDValue C : Op->op_values()) {
7381       if (C.isUndef()) {
7382         Ops.push_back(C);
7383         continue;
7384       }
7385       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
7386       V.changeSign();
7387       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
7388     }
7389     Cost = NegatibleCost::Neutral;
7390     return DAG.getBuildVector(VT, DL, Ops);
7391   }
7392   case ISD::FADD: {
7393     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7394       break;
7395 
7396     // After operation legalization, it might not be legal to create new FSUBs.
7397     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
7398       break;
7399     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
7400 
7401     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
7402     NegatibleCost CostX = NegatibleCost::Expensive;
7403     SDValue NegX =
7404         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
7405     // Prevent this node from being deleted by the next call.
7406     if (NegX)
7407       Handles.emplace_back(NegX);
7408 
7409     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
7410     NegatibleCost CostY = NegatibleCost::Expensive;
7411     SDValue NegY =
7412         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
7413 
7414     // We're done with the handles.
7415     Handles.clear();
7416 
7417     // Negate the X if its cost is less or equal than Y.
7418     if (NegX && (CostX <= CostY)) {
7419       Cost = CostX;
7420       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
7421       if (NegY != N)
7422         RemoveDeadNode(NegY);
7423       return N;
7424     }
7425 
7426     // Negate the Y if it is not expensive.
7427     if (NegY) {
7428       Cost = CostY;
7429       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
7430       if (NegX != N)
7431         RemoveDeadNode(NegX);
7432       return N;
7433     }
7434     break;
7435   }
7436   case ISD::FSUB: {
7437     // We can't turn -(A-B) into B-A when we honor signed zeros.
7438     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7439       break;
7440 
7441     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
7442     // fold (fneg (fsub 0, Y)) -> Y
7443     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
7444       if (C->isZero()) {
7445         Cost = NegatibleCost::Cheaper;
7446         return Y;
7447       }
7448 
7449     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
7450     Cost = NegatibleCost::Neutral;
7451     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
7452   }
7453   case ISD::FMUL:
7454   case ISD::FDIV: {
7455     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
7456 
7457     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
7458     NegatibleCost CostX = NegatibleCost::Expensive;
7459     SDValue NegX =
7460         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
7461     // Prevent this node from being deleted by the next call.
7462     if (NegX)
7463       Handles.emplace_back(NegX);
7464 
7465     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
7466     NegatibleCost CostY = NegatibleCost::Expensive;
7467     SDValue NegY =
7468         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
7469 
7470     // We're done with the handles.
7471     Handles.clear();
7472 
7473     // Negate the X if its cost is less or equal than Y.
7474     if (NegX && (CostX <= CostY)) {
7475       Cost = CostX;
7476       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
7477       if (NegY != N)
7478         RemoveDeadNode(NegY);
7479       return N;
7480     }
7481 
7482     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
7483     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
7484       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
7485         break;
7486 
7487     // Negate the Y if it is not expensive.
7488     if (NegY) {
7489       Cost = CostY;
7490       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
7491       if (NegX != N)
7492         RemoveDeadNode(NegX);
7493       return N;
7494     }
7495     break;
7496   }
7497   case ISD::FMA:
7498   case ISD::FMAD: {
7499     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7500       break;
7501 
7502     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
7503     NegatibleCost CostZ = NegatibleCost::Expensive;
7504     SDValue NegZ =
7505         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
7506     // Give up if fail to negate the Z.
7507     if (!NegZ)
7508       break;
7509 
7510     // Prevent this node from being deleted by the next two calls.
7511     Handles.emplace_back(NegZ);
7512 
7513     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
7514     NegatibleCost CostX = NegatibleCost::Expensive;
7515     SDValue NegX =
7516         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
7517     // Prevent this node from being deleted by the next call.
7518     if (NegX)
7519       Handles.emplace_back(NegX);
7520 
7521     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
7522     NegatibleCost CostY = NegatibleCost::Expensive;
7523     SDValue NegY =
7524         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
7525 
7526     // We're done with the handles.
7527     Handles.clear();
7528 
7529     // Negate the X if its cost is less or equal than Y.
7530     if (NegX && (CostX <= CostY)) {
7531       Cost = std::min(CostX, CostZ);
7532       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
7533       if (NegY != N)
7534         RemoveDeadNode(NegY);
7535       return N;
7536     }
7537 
7538     // Negate the Y if it is not expensive.
7539     if (NegY) {
7540       Cost = std::min(CostY, CostZ);
7541       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
7542       if (NegX != N)
7543         RemoveDeadNode(NegX);
7544       return N;
7545     }
7546     break;
7547   }
7548 
7549   case ISD::FP_EXTEND:
7550   case ISD::FSIN:
7551     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
7552                                             OptForSize, Cost, Depth))
7553       return DAG.getNode(Opcode, DL, VT, NegV);
7554     break;
7555   case ISD::FP_ROUND:
7556     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
7557                                             OptForSize, Cost, Depth))
7558       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
7559     break;
7560   case ISD::SELECT:
7561   case ISD::VSELECT: {
7562     // fold (fneg (select C, LHS, RHS)) -> (select C, (fneg LHS), (fneg RHS))
7563     // iff at least one cost is cheaper and the other is neutral/cheaper
7564     SDValue LHS = Op.getOperand(1);
7565     NegatibleCost CostLHS = NegatibleCost::Expensive;
7566     SDValue NegLHS =
7567         getNegatedExpression(LHS, DAG, LegalOps, OptForSize, CostLHS, Depth);
7568     if (!NegLHS || CostLHS > NegatibleCost::Neutral) {
7569       RemoveDeadNode(NegLHS);
7570       break;
7571     }
7572 
7573     // Prevent this node from being deleted by the next call.
7574     Handles.emplace_back(NegLHS);
7575 
7576     SDValue RHS = Op.getOperand(2);
7577     NegatibleCost CostRHS = NegatibleCost::Expensive;
7578     SDValue NegRHS =
7579         getNegatedExpression(RHS, DAG, LegalOps, OptForSize, CostRHS, Depth);
7580 
7581     // We're done with the handles.
7582     Handles.clear();
7583 
7584     if (!NegRHS || CostRHS > NegatibleCost::Neutral ||
7585         (CostLHS != NegatibleCost::Cheaper &&
7586          CostRHS != NegatibleCost::Cheaper)) {
7587       RemoveDeadNode(NegLHS);
7588       RemoveDeadNode(NegRHS);
7589       break;
7590     }
7591 
7592     Cost = std::min(CostLHS, CostRHS);
7593     return DAG.getSelect(DL, VT, Op.getOperand(0), NegLHS, NegRHS);
7594   }
7595   }
7596 
7597   return SDValue();
7598 }
7599 
7600 //===----------------------------------------------------------------------===//
7601 // Legalization Utilities
7602 //===----------------------------------------------------------------------===//
7603 
7604 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
7605                                     SDValue LHS, SDValue RHS,
7606                                     SmallVectorImpl<SDValue> &Result,
7607                                     EVT HiLoVT, SelectionDAG &DAG,
7608                                     MulExpansionKind Kind, SDValue LL,
7609                                     SDValue LH, SDValue RL, SDValue RH) const {
7610   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
7611          Opcode == ISD::SMUL_LOHI);
7612 
7613   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
7614                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
7615   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
7616                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
7617   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
7618                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
7619   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
7620                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
7621 
7622   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
7623     return false;
7624 
7625   unsigned OuterBitSize = VT.getScalarSizeInBits();
7626   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
7627 
7628   // LL, LH, RL, and RH must be either all NULL or all set to a value.
7629   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
7630          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
7631 
7632   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
7633   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
7634                           bool Signed) -> bool {
7635     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
7636       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
7637       Hi = SDValue(Lo.getNode(), 1);
7638       return true;
7639     }
7640     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
7641       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
7642       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
7643       return true;
7644     }
7645     return false;
7646   };
7647 
7648   SDValue Lo, Hi;
7649 
7650   if (!LL.getNode() && !RL.getNode() &&
7651       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
7652     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
7653     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
7654   }
7655 
7656   if (!LL.getNode())
7657     return false;
7658 
7659   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
7660   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
7661       DAG.MaskedValueIsZero(RHS, HighMask)) {
7662     // The inputs are both zero-extended.
7663     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
7664       Result.push_back(Lo);
7665       Result.push_back(Hi);
7666       if (Opcode != ISD::MUL) {
7667         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
7668         Result.push_back(Zero);
7669         Result.push_back(Zero);
7670       }
7671       return true;
7672     }
7673   }
7674 
7675   if (!VT.isVector() && Opcode == ISD::MUL &&
7676       DAG.ComputeMaxSignificantBits(LHS) <= InnerBitSize &&
7677       DAG.ComputeMaxSignificantBits(RHS) <= InnerBitSize) {
7678     // The input values are both sign-extended.
7679     // TODO non-MUL case?
7680     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
7681       Result.push_back(Lo);
7682       Result.push_back(Hi);
7683       return true;
7684     }
7685   }
7686 
7687   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
7688   SDValue Shift = DAG.getShiftAmountConstant(ShiftAmount, VT, dl);
7689 
7690   if (!LH.getNode() && !RH.getNode() &&
7691       isOperationLegalOrCustom(ISD::SRL, VT) &&
7692       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
7693     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
7694     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
7695     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
7696     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
7697   }
7698 
7699   if (!LH.getNode())
7700     return false;
7701 
7702   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
7703     return false;
7704 
7705   Result.push_back(Lo);
7706 
7707   if (Opcode == ISD::MUL) {
7708     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
7709     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
7710     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
7711     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
7712     Result.push_back(Hi);
7713     return true;
7714   }
7715 
7716   // Compute the full width result.
7717   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
7718     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
7719     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7720     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
7721     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
7722   };
7723 
7724   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7725   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
7726     return false;
7727 
7728   // This is effectively the add part of a multiply-add of half-sized operands,
7729   // so it cannot overflow.
7730   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7731 
7732   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
7733     return false;
7734 
7735   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
7736   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7737 
7738   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
7739                   isOperationLegalOrCustom(ISD::ADDE, VT));
7740   if (UseGlue)
7741     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
7742                        Merge(Lo, Hi));
7743   else
7744     Next = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(VT, BoolType), Next,
7745                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
7746 
7747   SDValue Carry = Next.getValue(1);
7748   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7749   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7750 
7751   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
7752     return false;
7753 
7754   if (UseGlue)
7755     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
7756                      Carry);
7757   else
7758     Hi = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
7759                      Zero, Carry);
7760 
7761   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7762 
7763   if (Opcode == ISD::SMUL_LOHI) {
7764     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7765                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
7766     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
7767 
7768     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7769                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
7770     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
7771   }
7772 
7773   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7774   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7775   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7776   return true;
7777 }
7778 
7779 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
7780                                SelectionDAG &DAG, MulExpansionKind Kind,
7781                                SDValue LL, SDValue LH, SDValue RL,
7782                                SDValue RH) const {
7783   SmallVector<SDValue, 2> Result;
7784   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
7785                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
7786                            DAG, Kind, LL, LH, RL, RH);
7787   if (Ok) {
7788     assert(Result.size() == 2);
7789     Lo = Result[0];
7790     Hi = Result[1];
7791   }
7792   return Ok;
7793 }
7794 
7795 // Optimize unsigned division or remainder by constants for types twice as large
7796 // as a legal VT.
7797 //
7798 // If (1 << (BitWidth / 2)) % Constant == 1, then the remainder
7799 // can be computed
7800 // as:
7801 //   Sum += __builtin_uadd_overflow(Lo, High, &Sum);
7802 //   Remainder = Sum % Constant
7803 // This is based on "Remainder by Summing Digits" from Hacker's Delight.
7804 //
7805 // For division, we can compute the remainder using the algorithm described
7806 // above, subtract it from the dividend to get an exact multiple of Constant.
7807 // Then multiply that exact multiply by the multiplicative inverse modulo
7808 // (1 << (BitWidth / 2)) to get the quotient.
7809 
7810 // If Constant is even, we can shift right the dividend and the divisor by the
7811 // number of trailing zeros in Constant before applying the remainder algorithm.
7812 // If we're after the quotient, we can subtract this value from the shifted
7813 // dividend and multiply by the multiplicative inverse of the shifted divisor.
7814 // If we want the remainder, we shift the value left by the number of trailing
7815 // zeros and add the bits that were shifted out of the dividend.
7816 bool TargetLowering::expandDIVREMByConstant(SDNode *N,
7817                                             SmallVectorImpl<SDValue> &Result,
7818                                             EVT HiLoVT, SelectionDAG &DAG,
7819                                             SDValue LL, SDValue LH) const {
7820   unsigned Opcode = N->getOpcode();
7821   EVT VT = N->getValueType(0);
7822 
7823   // TODO: Support signed division/remainder.
7824   if (Opcode == ISD::SREM || Opcode == ISD::SDIV || Opcode == ISD::SDIVREM)
7825     return false;
7826   assert(
7827       (Opcode == ISD::UREM || Opcode == ISD::UDIV || Opcode == ISD::UDIVREM) &&
7828       "Unexpected opcode");
7829 
7830   auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(1));
7831   if (!CN)
7832     return false;
7833 
7834   APInt Divisor = CN->getAPIntValue();
7835   unsigned BitWidth = Divisor.getBitWidth();
7836   unsigned HBitWidth = BitWidth / 2;
7837   assert(VT.getScalarSizeInBits() == BitWidth &&
7838          HiLoVT.getScalarSizeInBits() == HBitWidth && "Unexpected VTs");
7839 
7840   // Divisor needs to less than (1 << HBitWidth).
7841   APInt HalfMaxPlus1 = APInt::getOneBitSet(BitWidth, HBitWidth);
7842   if (Divisor.uge(HalfMaxPlus1))
7843     return false;
7844 
7845   // We depend on the UREM by constant optimization in DAGCombiner that requires
7846   // high multiply.
7847   if (!isOperationLegalOrCustom(ISD::MULHU, HiLoVT) &&
7848       !isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT))
7849     return false;
7850 
7851   // Don't expand if optimizing for size.
7852   if (DAG.shouldOptForSize())
7853     return false;
7854 
7855   // Early out for 0 or 1 divisors.
7856   if (Divisor.ule(1))
7857     return false;
7858 
7859   // If the divisor is even, shift it until it becomes odd.
7860   unsigned TrailingZeros = 0;
7861   if (!Divisor[0]) {
7862     TrailingZeros = Divisor.countr_zero();
7863     Divisor.lshrInPlace(TrailingZeros);
7864   }
7865 
7866   SDLoc dl(N);
7867   SDValue Sum;
7868   SDValue PartialRem;
7869 
7870   // If (1 << HBitWidth) % divisor == 1, we can add the two halves together and
7871   // then add in the carry.
7872   // TODO: If we can't split it in half, we might be able to split into 3 or
7873   // more pieces using a smaller bit width.
7874   if (HalfMaxPlus1.urem(Divisor).isOne()) {
7875     assert(!LL == !LH && "Expected both input halves or no input halves!");
7876     if (!LL)
7877       std::tie(LL, LH) = DAG.SplitScalar(N->getOperand(0), dl, HiLoVT, HiLoVT);
7878 
7879     // Shift the input by the number of TrailingZeros in the divisor. The
7880     // shifted out bits will be added to the remainder later.
7881     if (TrailingZeros) {
7882       // Save the shifted off bits if we need the remainder.
7883       if (Opcode != ISD::UDIV) {
7884         APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros);
7885         PartialRem = DAG.getNode(ISD::AND, dl, HiLoVT, LL,
7886                                  DAG.getConstant(Mask, dl, HiLoVT));
7887       }
7888 
7889       LL = DAG.getNode(
7890           ISD::OR, dl, HiLoVT,
7891           DAG.getNode(ISD::SRL, dl, HiLoVT, LL,
7892                       DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)),
7893           DAG.getNode(ISD::SHL, dl, HiLoVT, LH,
7894                       DAG.getShiftAmountConstant(HBitWidth - TrailingZeros,
7895                                                  HiLoVT, dl)));
7896       LH = DAG.getNode(ISD::SRL, dl, HiLoVT, LH,
7897                        DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl));
7898     }
7899 
7900     // Use uaddo_carry if we can, otherwise use a compare to detect overflow.
7901     EVT SetCCType =
7902         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), HiLoVT);
7903     if (isOperationLegalOrCustom(ISD::UADDO_CARRY, HiLoVT)) {
7904       SDVTList VTList = DAG.getVTList(HiLoVT, SetCCType);
7905       Sum = DAG.getNode(ISD::UADDO, dl, VTList, LL, LH);
7906       Sum = DAG.getNode(ISD::UADDO_CARRY, dl, VTList, Sum,
7907                         DAG.getConstant(0, dl, HiLoVT), Sum.getValue(1));
7908     } else {
7909       Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, LL, LH);
7910       SDValue Carry = DAG.getSetCC(dl, SetCCType, Sum, LL, ISD::SETULT);
7911       // If the boolean for the target is 0 or 1, we can add the setcc result
7912       // directly.
7913       if (getBooleanContents(HiLoVT) ==
7914           TargetLoweringBase::ZeroOrOneBooleanContent)
7915         Carry = DAG.getZExtOrTrunc(Carry, dl, HiLoVT);
7916       else
7917         Carry = DAG.getSelect(dl, HiLoVT, Carry, DAG.getConstant(1, dl, HiLoVT),
7918                               DAG.getConstant(0, dl, HiLoVT));
7919       Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, Sum, Carry);
7920     }
7921   }
7922 
7923   // If we didn't find a sum, we can't do the expansion.
7924   if (!Sum)
7925     return false;
7926 
7927   // Perform a HiLoVT urem on the Sum using truncated divisor.
7928   SDValue RemL =
7929       DAG.getNode(ISD::UREM, dl, HiLoVT, Sum,
7930                   DAG.getConstant(Divisor.trunc(HBitWidth), dl, HiLoVT));
7931   SDValue RemH = DAG.getConstant(0, dl, HiLoVT);
7932 
7933   if (Opcode != ISD::UREM) {
7934     // Subtract the remainder from the shifted dividend.
7935     SDValue Dividend = DAG.getNode(ISD::BUILD_PAIR, dl, VT, LL, LH);
7936     SDValue Rem = DAG.getNode(ISD::BUILD_PAIR, dl, VT, RemL, RemH);
7937 
7938     Dividend = DAG.getNode(ISD::SUB, dl, VT, Dividend, Rem);
7939 
7940     // Multiply by the multiplicative inverse of the divisor modulo
7941     // (1 << BitWidth).
7942     APInt MulFactor = Divisor.multiplicativeInverse();
7943 
7944     SDValue Quotient = DAG.getNode(ISD::MUL, dl, VT, Dividend,
7945                                    DAG.getConstant(MulFactor, dl, VT));
7946 
7947     // Split the quotient into low and high parts.
7948     SDValue QuotL, QuotH;
7949     std::tie(QuotL, QuotH) = DAG.SplitScalar(Quotient, dl, HiLoVT, HiLoVT);
7950     Result.push_back(QuotL);
7951     Result.push_back(QuotH);
7952   }
7953 
7954   if (Opcode != ISD::UDIV) {
7955     // If we shifted the input, shift the remainder left and add the bits we
7956     // shifted off the input.
7957     if (TrailingZeros) {
7958       APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros);
7959       RemL = DAG.getNode(ISD::SHL, dl, HiLoVT, RemL,
7960                          DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl));
7961       RemL = DAG.getNode(ISD::ADD, dl, HiLoVT, RemL, PartialRem);
7962     }
7963     Result.push_back(RemL);
7964     Result.push_back(DAG.getConstant(0, dl, HiLoVT));
7965   }
7966 
7967   return true;
7968 }
7969 
7970 // Check that (every element of) Z is undef or not an exact multiple of BW.
7971 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
7972   return ISD::matchUnaryPredicate(
7973       Z,
7974       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
7975       true);
7976 }
7977 
7978 static SDValue expandVPFunnelShift(SDNode *Node, SelectionDAG &DAG) {
7979   EVT VT = Node->getValueType(0);
7980   SDValue ShX, ShY;
7981   SDValue ShAmt, InvShAmt;
7982   SDValue X = Node->getOperand(0);
7983   SDValue Y = Node->getOperand(1);
7984   SDValue Z = Node->getOperand(2);
7985   SDValue Mask = Node->getOperand(3);
7986   SDValue VL = Node->getOperand(4);
7987 
7988   unsigned BW = VT.getScalarSizeInBits();
7989   bool IsFSHL = Node->getOpcode() == ISD::VP_FSHL;
7990   SDLoc DL(SDValue(Node, 0));
7991 
7992   EVT ShVT = Z.getValueType();
7993   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7994     // fshl: X << C | Y >> (BW - C)
7995     // fshr: X << (BW - C) | Y >> C
7996     // where C = Z % BW is not zero
7997     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7998     ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL);
7999     InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitWidthC, ShAmt, Mask, VL);
8000     ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt, Mask,
8001                       VL);
8002     ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt, Mask,
8003                       VL);
8004   } else {
8005     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
8006     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
8007     SDValue BitMask = DAG.getConstant(BW - 1, DL, ShVT);
8008     if (isPowerOf2_32(BW)) {
8009       // Z % BW -> Z & (BW - 1)
8010       ShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, Z, BitMask, Mask, VL);
8011       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
8012       SDValue NotZ = DAG.getNode(ISD::VP_XOR, DL, ShVT, Z,
8013                                  DAG.getAllOnesConstant(DL, ShVT), Mask, VL);
8014       InvShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, NotZ, BitMask, Mask, VL);
8015     } else {
8016       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
8017       ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL);
8018       InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitMask, ShAmt, Mask, VL);
8019     }
8020 
8021     SDValue One = DAG.getConstant(1, DL, ShVT);
8022     if (IsFSHL) {
8023       ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, ShAmt, Mask, VL);
8024       SDValue ShY1 = DAG.getNode(ISD::VP_SRL, DL, VT, Y, One, Mask, VL);
8025       ShY = DAG.getNode(ISD::VP_SRL, DL, VT, ShY1, InvShAmt, Mask, VL);
8026     } else {
8027       SDValue ShX1 = DAG.getNode(ISD::VP_SHL, DL, VT, X, One, Mask, VL);
8028       ShX = DAG.getNode(ISD::VP_SHL, DL, VT, ShX1, InvShAmt, Mask, VL);
8029       ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, ShAmt, Mask, VL);
8030     }
8031   }
8032   return DAG.getNode(ISD::VP_OR, DL, VT, ShX, ShY, Mask, VL);
8033 }
8034 
8035 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
8036                                           SelectionDAG &DAG) const {
8037   if (Node->isVPOpcode())
8038     return expandVPFunnelShift(Node, DAG);
8039 
8040   EVT VT = Node->getValueType(0);
8041 
8042   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
8043                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
8044                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
8045                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
8046     return SDValue();
8047 
8048   SDValue X = Node->getOperand(0);
8049   SDValue Y = Node->getOperand(1);
8050   SDValue Z = Node->getOperand(2);
8051 
8052   unsigned BW = VT.getScalarSizeInBits();
8053   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
8054   SDLoc DL(SDValue(Node, 0));
8055 
8056   EVT ShVT = Z.getValueType();
8057 
8058   // If a funnel shift in the other direction is more supported, use it.
8059   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
8060   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
8061       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
8062     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
8063       // fshl X, Y, Z -> fshr X, Y, -Z
8064       // fshr X, Y, Z -> fshl X, Y, -Z
8065       SDValue Zero = DAG.getConstant(0, DL, ShVT);
8066       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
8067     } else {
8068       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
8069       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
8070       SDValue One = DAG.getConstant(1, DL, ShVT);
8071       if (IsFSHL) {
8072         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
8073         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
8074       } else {
8075         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
8076         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
8077       }
8078       Z = DAG.getNOT(DL, Z, ShVT);
8079     }
8080     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
8081   }
8082 
8083   SDValue ShX, ShY;
8084   SDValue ShAmt, InvShAmt;
8085   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
8086     // fshl: X << C | Y >> (BW - C)
8087     // fshr: X << (BW - C) | Y >> C
8088     // where C = Z % BW is not zero
8089     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
8090     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
8091     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
8092     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
8093     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
8094   } else {
8095     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
8096     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
8097     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
8098     if (isPowerOf2_32(BW)) {
8099       // Z % BW -> Z & (BW - 1)
8100       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
8101       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
8102       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
8103     } else {
8104       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
8105       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
8106       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
8107     }
8108 
8109     SDValue One = DAG.getConstant(1, DL, ShVT);
8110     if (IsFSHL) {
8111       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
8112       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
8113       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
8114     } else {
8115       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
8116       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
8117       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
8118     }
8119   }
8120   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
8121 }
8122 
8123 // TODO: Merge with expandFunnelShift.
8124 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
8125                                   SelectionDAG &DAG) const {
8126   EVT VT = Node->getValueType(0);
8127   unsigned EltSizeInBits = VT.getScalarSizeInBits();
8128   bool IsLeft = Node->getOpcode() == ISD::ROTL;
8129   SDValue Op0 = Node->getOperand(0);
8130   SDValue Op1 = Node->getOperand(1);
8131   SDLoc DL(SDValue(Node, 0));
8132 
8133   EVT ShVT = Op1.getValueType();
8134   SDValue Zero = DAG.getConstant(0, DL, ShVT);
8135 
8136   // If a rotate in the other direction is more supported, use it.
8137   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
8138   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
8139       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
8140     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
8141     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
8142   }
8143 
8144   if (!AllowVectorOps && VT.isVector() &&
8145       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
8146        !isOperationLegalOrCustom(ISD::SRL, VT) ||
8147        !isOperationLegalOrCustom(ISD::SUB, VT) ||
8148        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
8149        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
8150     return SDValue();
8151 
8152   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
8153   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
8154   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
8155   SDValue ShVal;
8156   SDValue HsVal;
8157   if (isPowerOf2_32(EltSizeInBits)) {
8158     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
8159     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
8160     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
8161     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
8162     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
8163     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
8164     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
8165   } else {
8166     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
8167     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
8168     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
8169     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
8170     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
8171     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
8172     SDValue One = DAG.getConstant(1, DL, ShVT);
8173     HsVal =
8174         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
8175   }
8176   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
8177 }
8178 
8179 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
8180                                       SelectionDAG &DAG) const {
8181   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
8182   EVT VT = Node->getValueType(0);
8183   unsigned VTBits = VT.getScalarSizeInBits();
8184   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
8185 
8186   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
8187   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
8188   SDValue ShOpLo = Node->getOperand(0);
8189   SDValue ShOpHi = Node->getOperand(1);
8190   SDValue ShAmt = Node->getOperand(2);
8191   EVT ShAmtVT = ShAmt.getValueType();
8192   EVT ShAmtCCVT =
8193       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
8194   SDLoc dl(Node);
8195 
8196   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
8197   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
8198   // away during isel.
8199   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
8200                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
8201   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
8202                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
8203                        : DAG.getConstant(0, dl, VT);
8204 
8205   SDValue Tmp2, Tmp3;
8206   if (IsSHL) {
8207     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
8208     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
8209   } else {
8210     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
8211     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
8212   }
8213 
8214   // If the shift amount is larger or equal than the width of a part we don't
8215   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
8216   // values for large shift amounts.
8217   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
8218                                 DAG.getConstant(VTBits, dl, ShAmtVT));
8219   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
8220                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
8221 
8222   if (IsSHL) {
8223     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
8224     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
8225   } else {
8226     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
8227     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
8228   }
8229 }
8230 
8231 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
8232                                       SelectionDAG &DAG) const {
8233   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
8234   SDValue Src = Node->getOperand(OpNo);
8235   EVT SrcVT = Src.getValueType();
8236   EVT DstVT = Node->getValueType(0);
8237   SDLoc dl(SDValue(Node, 0));
8238 
8239   // FIXME: Only f32 to i64 conversions are supported.
8240   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
8241     return false;
8242 
8243   if (Node->isStrictFPOpcode())
8244     // When a NaN is converted to an integer a trap is allowed. We can't
8245     // use this expansion here because it would eliminate that trap. Other
8246     // traps are also allowed and cannot be eliminated. See
8247     // IEEE 754-2008 sec 5.8.
8248     return false;
8249 
8250   // Expand f32 -> i64 conversion
8251   // This algorithm comes from compiler-rt's implementation of fixsfdi:
8252   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
8253   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
8254   EVT IntVT = SrcVT.changeTypeToInteger();
8255   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
8256 
8257   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
8258   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
8259   SDValue Bias = DAG.getConstant(127, dl, IntVT);
8260   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
8261   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
8262   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
8263 
8264   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
8265 
8266   SDValue ExponentBits = DAG.getNode(
8267       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
8268       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
8269   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
8270 
8271   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
8272                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
8273                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
8274   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
8275 
8276   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
8277                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
8278                           DAG.getConstant(0x00800000, dl, IntVT));
8279 
8280   R = DAG.getZExtOrTrunc(R, dl, DstVT);
8281 
8282   R = DAG.getSelectCC(
8283       dl, Exponent, ExponentLoBit,
8284       DAG.getNode(ISD::SHL, dl, DstVT, R,
8285                   DAG.getZExtOrTrunc(
8286                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
8287                       dl, IntShVT)),
8288       DAG.getNode(ISD::SRL, dl, DstVT, R,
8289                   DAG.getZExtOrTrunc(
8290                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
8291                       dl, IntShVT)),
8292       ISD::SETGT);
8293 
8294   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
8295                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
8296 
8297   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
8298                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
8299   return true;
8300 }
8301 
8302 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
8303                                       SDValue &Chain,
8304                                       SelectionDAG &DAG) const {
8305   SDLoc dl(SDValue(Node, 0));
8306   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
8307   SDValue Src = Node->getOperand(OpNo);
8308 
8309   EVT SrcVT = Src.getValueType();
8310   EVT DstVT = Node->getValueType(0);
8311   EVT SetCCVT =
8312       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
8313   EVT DstSetCCVT =
8314       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
8315 
8316   // Only expand vector types if we have the appropriate vector bit operations.
8317   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
8318                                                    ISD::FP_TO_SINT;
8319   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
8320                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
8321     return false;
8322 
8323   // If the maximum float value is smaller then the signed integer range,
8324   // the destination signmask can't be represented by the float, so we can
8325   // just use FP_TO_SINT directly.
8326   const fltSemantics &APFSem = SrcVT.getFltSemantics();
8327   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
8328   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
8329   if (APFloat::opOverflow &
8330       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
8331     if (Node->isStrictFPOpcode()) {
8332       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
8333                            { Node->getOperand(0), Src });
8334       Chain = Result.getValue(1);
8335     } else
8336       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
8337     return true;
8338   }
8339 
8340   // Don't expand it if there isn't cheap fsub instruction.
8341   if (!isOperationLegalOrCustom(
8342           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
8343     return false;
8344 
8345   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
8346   SDValue Sel;
8347 
8348   if (Node->isStrictFPOpcode()) {
8349     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
8350                        Node->getOperand(0), /*IsSignaling*/ true);
8351     Chain = Sel.getValue(1);
8352   } else {
8353     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
8354   }
8355 
8356   bool Strict = Node->isStrictFPOpcode() ||
8357                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
8358 
8359   if (Strict) {
8360     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
8361     // signmask then offset (the result of which should be fully representable).
8362     // Sel = Src < 0x8000000000000000
8363     // FltOfs = select Sel, 0, 0x8000000000000000
8364     // IntOfs = select Sel, 0, 0x8000000000000000
8365     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
8366 
8367     // TODO: Should any fast-math-flags be set for the FSUB?
8368     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
8369                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
8370     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8371     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
8372                                    DAG.getConstant(0, dl, DstVT),
8373                                    DAG.getConstant(SignMask, dl, DstVT));
8374     SDValue SInt;
8375     if (Node->isStrictFPOpcode()) {
8376       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
8377                                 { Chain, Src, FltOfs });
8378       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
8379                          { Val.getValue(1), Val });
8380       Chain = SInt.getValue(1);
8381     } else {
8382       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
8383       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
8384     }
8385     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
8386   } else {
8387     // Expand based on maximum range of FP_TO_SINT:
8388     // True = fp_to_sint(Src)
8389     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
8390     // Result = select (Src < 0x8000000000000000), True, False
8391 
8392     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
8393     // TODO: Should any fast-math-flags be set for the FSUB?
8394     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
8395                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
8396     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
8397                         DAG.getConstant(SignMask, dl, DstVT));
8398     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8399     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
8400   }
8401   return true;
8402 }
8403 
8404 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
8405                                       SDValue &Chain, SelectionDAG &DAG) const {
8406   // This transform is not correct for converting 0 when rounding mode is set
8407   // to round toward negative infinity which will produce -0.0. So disable
8408   // under strictfp.
8409   if (Node->isStrictFPOpcode())
8410     return false;
8411 
8412   SDValue Src = Node->getOperand(0);
8413   EVT SrcVT = Src.getValueType();
8414   EVT DstVT = Node->getValueType(0);
8415 
8416   // If the input is known to be non-negative and SINT_TO_FP is legal then use
8417   // it.
8418   if (Node->getFlags().hasNonNeg() &&
8419       isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT)) {
8420     Result =
8421         DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), DstVT, Node->getOperand(0));
8422     return true;
8423   }
8424 
8425   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
8426     return false;
8427 
8428   // Only expand vector types if we have the appropriate vector bit
8429   // operations.
8430   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
8431                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
8432                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
8433                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
8434                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
8435     return false;
8436 
8437   SDLoc dl(SDValue(Node, 0));
8438 
8439   // Implementation of unsigned i64 to f64 following the algorithm in
8440   // __floatundidf in compiler_rt.  This implementation performs rounding
8441   // correctly in all rounding modes with the exception of converting 0
8442   // when rounding toward negative infinity. In that case the fsub will
8443   // produce -0.0. This will be added to +0.0 and produce -0.0 which is
8444   // incorrect.
8445   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
8446   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
8447       llvm::bit_cast<double>(UINT64_C(0x4530000000100000)), dl, DstVT);
8448   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
8449   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
8450   SDValue HiShift = DAG.getShiftAmountConstant(32, SrcVT, dl);
8451 
8452   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
8453   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
8454   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
8455   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
8456   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
8457   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
8458   SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
8459   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
8460   return true;
8461 }
8462 
8463 SDValue
8464 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node,
8465                                                SelectionDAG &DAG) const {
8466   unsigned Opcode = Node->getOpcode();
8467   assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
8468           Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) &&
8469          "Wrong opcode");
8470 
8471   if (Node->getFlags().hasNoNaNs()) {
8472     ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
8473     EVT VT = Node->getValueType(0);
8474     if ((!isCondCodeLegal(Pred, VT.getSimpleVT()) ||
8475          !isOperationLegalOrCustom(ISD::VSELECT, VT)) &&
8476         VT.isVector())
8477       return SDValue();
8478     SDValue Op1 = Node->getOperand(0);
8479     SDValue Op2 = Node->getOperand(1);
8480     SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred);
8481     // Copy FMF flags, but always set the no-signed-zeros flag
8482     // as this is implied by the FMINNUM/FMAXNUM semantics.
8483     SelCC->setFlags(Node->getFlags() | SDNodeFlags::NoSignedZeros);
8484     return SelCC;
8485   }
8486 
8487   return SDValue();
8488 }
8489 
8490 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
8491                                               SelectionDAG &DAG) const {
8492   if (SDValue Expanded = expandVectorNaryOpBySplitting(Node, DAG))
8493     return Expanded;
8494 
8495   EVT VT = Node->getValueType(0);
8496   if (VT.isScalableVector())
8497     report_fatal_error(
8498         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
8499 
8500   SDLoc dl(Node);
8501   unsigned NewOp =
8502       Node->getOpcode() == ISD::FMINNUM ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
8503 
8504   if (isOperationLegalOrCustom(NewOp, VT)) {
8505     SDValue Quiet0 = Node->getOperand(0);
8506     SDValue Quiet1 = Node->getOperand(1);
8507 
8508     if (!Node->getFlags().hasNoNaNs()) {
8509       // Insert canonicalizes if it's possible we need to quiet to get correct
8510       // sNaN behavior.
8511       if (!DAG.isKnownNeverSNaN(Quiet0)) {
8512         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
8513                              Node->getFlags());
8514       }
8515       if (!DAG.isKnownNeverSNaN(Quiet1)) {
8516         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
8517                              Node->getFlags());
8518       }
8519     }
8520 
8521     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
8522   }
8523 
8524   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
8525   // instead if there are no NaNs and there can't be an incompatible zero
8526   // compare: at least one operand isn't +/-0, or there are no signed-zeros.
8527   if ((Node->getFlags().hasNoNaNs() ||
8528        (DAG.isKnownNeverNaN(Node->getOperand(0)) &&
8529         DAG.isKnownNeverNaN(Node->getOperand(1)))) &&
8530       (Node->getFlags().hasNoSignedZeros() ||
8531        DAG.isKnownNeverZeroFloat(Node->getOperand(0)) ||
8532        DAG.isKnownNeverZeroFloat(Node->getOperand(1)))) {
8533     unsigned IEEE2018Op =
8534         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
8535     if (isOperationLegalOrCustom(IEEE2018Op, VT))
8536       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
8537                          Node->getOperand(1), Node->getFlags());
8538   }
8539 
8540   if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG))
8541     return SelCC;
8542 
8543   return SDValue();
8544 }
8545 
8546 SDValue TargetLowering::expandFMINIMUM_FMAXIMUM(SDNode *N,
8547                                                 SelectionDAG &DAG) const {
8548   if (SDValue Expanded = expandVectorNaryOpBySplitting(N, DAG))
8549     return Expanded;
8550 
8551   SDLoc DL(N);
8552   SDValue LHS = N->getOperand(0);
8553   SDValue RHS = N->getOperand(1);
8554   unsigned Opc = N->getOpcode();
8555   EVT VT = N->getValueType(0);
8556   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8557   bool IsMax = Opc == ISD::FMAXIMUM;
8558   SDNodeFlags Flags = N->getFlags();
8559 
8560   // First, implement comparison not propagating NaN. If no native fmin or fmax
8561   // available, use plain select with setcc instead.
8562   SDValue MinMax;
8563   unsigned CompOpcIeee = IsMax ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE;
8564   unsigned CompOpc = IsMax ? ISD::FMAXNUM : ISD::FMINNUM;
8565 
8566   // FIXME: We should probably define fminnum/fmaxnum variants with correct
8567   // signed zero behavior.
8568   bool MinMaxMustRespectOrderedZero = false;
8569 
8570   if (isOperationLegalOrCustom(CompOpcIeee, VT)) {
8571     MinMax = DAG.getNode(CompOpcIeee, DL, VT, LHS, RHS, Flags);
8572     MinMaxMustRespectOrderedZero = true;
8573   } else if (isOperationLegalOrCustom(CompOpc, VT)) {
8574     MinMax = DAG.getNode(CompOpc, DL, VT, LHS, RHS, Flags);
8575   } else {
8576     if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8577       return DAG.UnrollVectorOp(N);
8578 
8579     // NaN (if exists) will be propagated later, so orderness doesn't matter.
8580     SDValue Compare =
8581         DAG.getSetCC(DL, CCVT, LHS, RHS, IsMax ? ISD::SETOGT : ISD::SETOLT);
8582     MinMax = DAG.getSelect(DL, VT, Compare, LHS, RHS, Flags);
8583   }
8584 
8585   // Propagate any NaN of both operands
8586   if (!N->getFlags().hasNoNaNs() &&
8587       (!DAG.isKnownNeverNaN(RHS) || !DAG.isKnownNeverNaN(LHS))) {
8588     ConstantFP *FPNaN = ConstantFP::get(*DAG.getContext(),
8589                                         APFloat::getNaN(VT.getFltSemantics()));
8590     MinMax = DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, LHS, RHS, ISD::SETUO),
8591                            DAG.getConstantFP(*FPNaN, DL, VT), MinMax, Flags);
8592   }
8593 
8594   // fminimum/fmaximum requires -0.0 less than +0.0
8595   if (!MinMaxMustRespectOrderedZero && !N->getFlags().hasNoSignedZeros() &&
8596       !DAG.isKnownNeverZeroFloat(RHS) && !DAG.isKnownNeverZeroFloat(LHS)) {
8597     SDValue IsZero = DAG.getSetCC(DL, CCVT, MinMax,
8598                                   DAG.getConstantFP(0.0, DL, VT), ISD::SETOEQ);
8599     SDValue TestZero =
8600         DAG.getTargetConstant(IsMax ? fcPosZero : fcNegZero, DL, MVT::i32);
8601     SDValue LCmp = DAG.getSelect(
8602         DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, LHS, TestZero), LHS,
8603         MinMax, Flags);
8604     SDValue RCmp = DAG.getSelect(
8605         DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, RHS, TestZero), RHS,
8606         LCmp, Flags);
8607     MinMax = DAG.getSelect(DL, VT, IsZero, RCmp, MinMax, Flags);
8608   }
8609 
8610   return MinMax;
8611 }
8612 
8613 SDValue TargetLowering::expandFMINIMUMNUM_FMAXIMUMNUM(SDNode *Node,
8614                                                       SelectionDAG &DAG) const {
8615   SDLoc DL(Node);
8616   SDValue LHS = Node->getOperand(0);
8617   SDValue RHS = Node->getOperand(1);
8618   unsigned Opc = Node->getOpcode();
8619   EVT VT = Node->getValueType(0);
8620   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8621   bool IsMax = Opc == ISD::FMAXIMUMNUM;
8622   const TargetOptions &Options = DAG.getTarget().Options;
8623   SDNodeFlags Flags = Node->getFlags();
8624 
8625   unsigned NewOp =
8626       Opc == ISD::FMINIMUMNUM ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
8627 
8628   if (isOperationLegalOrCustom(NewOp, VT)) {
8629     if (!Flags.hasNoNaNs()) {
8630       // Insert canonicalizes if it's possible we need to quiet to get correct
8631       // sNaN behavior.
8632       if (!DAG.isKnownNeverSNaN(LHS)) {
8633         LHS = DAG.getNode(ISD::FCANONICALIZE, DL, VT, LHS, Flags);
8634       }
8635       if (!DAG.isKnownNeverSNaN(RHS)) {
8636         RHS = DAG.getNode(ISD::FCANONICALIZE, DL, VT, RHS, Flags);
8637       }
8638     }
8639 
8640     return DAG.getNode(NewOp, DL, VT, LHS, RHS, Flags);
8641   }
8642 
8643   // We can use FMINIMUM/FMAXIMUM if there is no NaN, since it has
8644   // same behaviors for all of other cases: +0.0 vs -0.0 included.
8645   if (Flags.hasNoNaNs() ||
8646       (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS))) {
8647     unsigned IEEE2019Op =
8648         Opc == ISD::FMINIMUMNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
8649     if (isOperationLegalOrCustom(IEEE2019Op, VT))
8650       return DAG.getNode(IEEE2019Op, DL, VT, LHS, RHS, Flags);
8651   }
8652 
8653   // FMINNUM/FMAXMUM returns qNaN if either operand is sNaN, and it may return
8654   // either one for +0.0 vs -0.0.
8655   if ((Flags.hasNoNaNs() ||
8656        (DAG.isKnownNeverSNaN(LHS) && DAG.isKnownNeverSNaN(RHS))) &&
8657       (Flags.hasNoSignedZeros() || DAG.isKnownNeverZeroFloat(LHS) ||
8658        DAG.isKnownNeverZeroFloat(RHS))) {
8659     unsigned IEEE2008Op = Opc == ISD::FMINIMUMNUM ? ISD::FMINNUM : ISD::FMAXNUM;
8660     if (isOperationLegalOrCustom(IEEE2008Op, VT))
8661       return DAG.getNode(IEEE2008Op, DL, VT, LHS, RHS, Flags);
8662   }
8663 
8664   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8665     return DAG.UnrollVectorOp(Node);
8666 
8667   // If only one operand is NaN, override it with another operand.
8668   if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(LHS)) {
8669     LHS = DAG.getSelectCC(DL, LHS, LHS, RHS, LHS, ISD::SETUO);
8670   }
8671   if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(RHS)) {
8672     RHS = DAG.getSelectCC(DL, RHS, RHS, LHS, RHS, ISD::SETUO);
8673   }
8674 
8675   SDValue MinMax =
8676       DAG.getSelectCC(DL, LHS, RHS, LHS, RHS, IsMax ? ISD::SETGT : ISD::SETLT);
8677   // If MinMax is NaN, let's quiet it.
8678   if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(LHS) &&
8679       !DAG.isKnownNeverNaN(RHS)) {
8680     MinMax = DAG.getNode(ISD::FCANONICALIZE, DL, VT, MinMax, Flags);
8681   }
8682 
8683   // Fixup signed zero behavior.
8684   if (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros() ||
8685       DAG.isKnownNeverZeroFloat(LHS) || DAG.isKnownNeverZeroFloat(RHS)) {
8686     return MinMax;
8687   }
8688   SDValue TestZero =
8689       DAG.getTargetConstant(IsMax ? fcPosZero : fcNegZero, DL, MVT::i32);
8690   SDValue IsZero = DAG.getSetCC(DL, CCVT, MinMax,
8691                                 DAG.getConstantFP(0.0, DL, VT), ISD::SETEQ);
8692   SDValue LCmp = DAG.getSelect(
8693       DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, LHS, TestZero), LHS,
8694       MinMax, Flags);
8695   SDValue RCmp = DAG.getSelect(
8696       DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, RHS, TestZero), RHS, LCmp,
8697       Flags);
8698   return DAG.getSelect(DL, VT, IsZero, RCmp, MinMax, Flags);
8699 }
8700 
8701 /// Returns a true value if if this FPClassTest can be performed with an ordered
8702 /// fcmp to 0, and a false value if it's an unordered fcmp to 0. Returns
8703 /// std::nullopt if it cannot be performed as a compare with 0.
8704 static std::optional<bool> isFCmpEqualZero(FPClassTest Test,
8705                                            const fltSemantics &Semantics,
8706                                            const MachineFunction &MF) {
8707   FPClassTest OrderedMask = Test & ~fcNan;
8708   FPClassTest NanTest = Test & fcNan;
8709   bool IsOrdered = NanTest == fcNone;
8710   bool IsUnordered = NanTest == fcNan;
8711 
8712   // Skip cases that are testing for only a qnan or snan.
8713   if (!IsOrdered && !IsUnordered)
8714     return std::nullopt;
8715 
8716   if (OrderedMask == fcZero &&
8717       MF.getDenormalMode(Semantics).Input == DenormalMode::IEEE)
8718     return IsOrdered;
8719   if (OrderedMask == (fcZero | fcSubnormal) &&
8720       MF.getDenormalMode(Semantics).inputsAreZero())
8721     return IsOrdered;
8722   return std::nullopt;
8723 }
8724 
8725 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op,
8726                                          const FPClassTest OrigTestMask,
8727                                          SDNodeFlags Flags, const SDLoc &DL,
8728                                          SelectionDAG &DAG) const {
8729   EVT OperandVT = Op.getValueType();
8730   assert(OperandVT.isFloatingPoint());
8731   FPClassTest Test = OrigTestMask;
8732 
8733   // Degenerated cases.
8734   if (Test == fcNone)
8735     return DAG.getBoolConstant(false, DL, ResultVT, OperandVT);
8736   if (Test == fcAllFlags)
8737     return DAG.getBoolConstant(true, DL, ResultVT, OperandVT);
8738 
8739   // PPC double double is a pair of doubles, of which the higher part determines
8740   // the value class.
8741   if (OperandVT == MVT::ppcf128) {
8742     Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op,
8743                      DAG.getConstant(1, DL, MVT::i32));
8744     OperandVT = MVT::f64;
8745   }
8746 
8747   // Floating-point type properties.
8748   EVT ScalarFloatVT = OperandVT.getScalarType();
8749   const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext());
8750   const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics();
8751   bool IsF80 = (ScalarFloatVT == MVT::f80);
8752 
8753   // Some checks can be implemented using float comparisons, if floating point
8754   // exceptions are ignored.
8755   if (Flags.hasNoFPExcept() &&
8756       isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) {
8757     FPClassTest FPTestMask = Test;
8758     bool IsInvertedFP = false;
8759 
8760     if (FPClassTest InvertedFPCheck =
8761             invertFPClassTestIfSimpler(FPTestMask, true)) {
8762       FPTestMask = InvertedFPCheck;
8763       IsInvertedFP = true;
8764     }
8765 
8766     ISD::CondCode OrderedCmpOpcode = IsInvertedFP ? ISD::SETUNE : ISD::SETOEQ;
8767     ISD::CondCode UnorderedCmpOpcode = IsInvertedFP ? ISD::SETONE : ISD::SETUEQ;
8768 
8769     // See if we can fold an | fcNan into an unordered compare.
8770     FPClassTest OrderedFPTestMask = FPTestMask & ~fcNan;
8771 
8772     // Can't fold the ordered check if we're only testing for snan or qnan
8773     // individually.
8774     if ((FPTestMask & fcNan) != fcNan)
8775       OrderedFPTestMask = FPTestMask;
8776 
8777     const bool IsOrdered = FPTestMask == OrderedFPTestMask;
8778 
8779     if (std::optional<bool> IsCmp0 =
8780             isFCmpEqualZero(FPTestMask, Semantics, DAG.getMachineFunction());
8781         IsCmp0 && (isCondCodeLegalOrCustom(
8782                       *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode,
8783                       OperandVT.getScalarType().getSimpleVT()))) {
8784 
8785       // If denormals could be implicitly treated as 0, this is not equivalent
8786       // to a compare with 0 since it will also be true for denormals.
8787       return DAG.getSetCC(DL, ResultVT, Op,
8788                           DAG.getConstantFP(0.0, DL, OperandVT),
8789                           *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode);
8790     }
8791 
8792     if (FPTestMask == fcNan &&
8793         isCondCodeLegalOrCustom(IsInvertedFP ? ISD::SETO : ISD::SETUO,
8794                                 OperandVT.getScalarType().getSimpleVT()))
8795       return DAG.getSetCC(DL, ResultVT, Op, Op,
8796                           IsInvertedFP ? ISD::SETO : ISD::SETUO);
8797 
8798     bool IsOrderedInf = FPTestMask == fcInf;
8799     if ((FPTestMask == fcInf || FPTestMask == (fcInf | fcNan)) &&
8800         isCondCodeLegalOrCustom(IsOrderedInf ? OrderedCmpOpcode
8801                                              : UnorderedCmpOpcode,
8802                                 OperandVT.getScalarType().getSimpleVT()) &&
8803         isOperationLegalOrCustom(ISD::FABS, OperandVT.getScalarType()) &&
8804         (isOperationLegal(ISD::ConstantFP, OperandVT.getScalarType()) ||
8805          (OperandVT.isVector() &&
8806           isOperationLegalOrCustom(ISD::BUILD_VECTOR, OperandVT)))) {
8807       // isinf(x) --> fabs(x) == inf
8808       SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op);
8809       SDValue Inf =
8810           DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT);
8811       return DAG.getSetCC(DL, ResultVT, Abs, Inf,
8812                           IsOrderedInf ? OrderedCmpOpcode : UnorderedCmpOpcode);
8813     }
8814 
8815     if ((OrderedFPTestMask == fcPosInf || OrderedFPTestMask == fcNegInf) &&
8816         isCondCodeLegalOrCustom(IsOrdered ? OrderedCmpOpcode
8817                                           : UnorderedCmpOpcode,
8818                                 OperandVT.getSimpleVT())) {
8819       // isposinf(x) --> x == inf
8820       // isneginf(x) --> x == -inf
8821       // isposinf(x) || nan --> x u== inf
8822       // isneginf(x) || nan --> x u== -inf
8823 
8824       SDValue Inf = DAG.getConstantFP(
8825           APFloat::getInf(Semantics, OrderedFPTestMask == fcNegInf), DL,
8826           OperandVT);
8827       return DAG.getSetCC(DL, ResultVT, Op, Inf,
8828                           IsOrdered ? OrderedCmpOpcode : UnorderedCmpOpcode);
8829     }
8830 
8831     if (OrderedFPTestMask == (fcSubnormal | fcZero) && !IsOrdered) {
8832       // TODO: Could handle ordered case, but it produces worse code for
8833       // x86. Maybe handle ordered if fabs is free?
8834 
8835       ISD::CondCode OrderedOp = IsInvertedFP ? ISD::SETUGE : ISD::SETOLT;
8836       ISD::CondCode UnorderedOp = IsInvertedFP ? ISD::SETOGE : ISD::SETULT;
8837 
8838       if (isCondCodeLegalOrCustom(IsOrdered ? OrderedOp : UnorderedOp,
8839                                   OperandVT.getScalarType().getSimpleVT())) {
8840         // (issubnormal(x) || iszero(x)) --> fabs(x) < smallest_normal
8841 
8842         // TODO: Maybe only makes sense if fabs is free. Integer test of
8843         // exponent bits seems better for x86.
8844         SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op);
8845         SDValue SmallestNormal = DAG.getConstantFP(
8846             APFloat::getSmallestNormalized(Semantics), DL, OperandVT);
8847         return DAG.getSetCC(DL, ResultVT, Abs, SmallestNormal,
8848                             IsOrdered ? OrderedOp : UnorderedOp);
8849       }
8850     }
8851 
8852     if (FPTestMask == fcNormal) {
8853       // TODO: Handle unordered
8854       ISD::CondCode IsFiniteOp = IsInvertedFP ? ISD::SETUGE : ISD::SETOLT;
8855       ISD::CondCode IsNormalOp = IsInvertedFP ? ISD::SETOLT : ISD::SETUGE;
8856 
8857       if (isCondCodeLegalOrCustom(IsFiniteOp,
8858                                   OperandVT.getScalarType().getSimpleVT()) &&
8859           isCondCodeLegalOrCustom(IsNormalOp,
8860                                   OperandVT.getScalarType().getSimpleVT()) &&
8861           isFAbsFree(OperandVT)) {
8862         // isnormal(x) --> fabs(x) < infinity && !(fabs(x) < smallest_normal)
8863         SDValue Inf =
8864             DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT);
8865         SDValue SmallestNormal = DAG.getConstantFP(
8866             APFloat::getSmallestNormalized(Semantics), DL, OperandVT);
8867 
8868         SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op);
8869         SDValue IsFinite = DAG.getSetCC(DL, ResultVT, Abs, Inf, IsFiniteOp);
8870         SDValue IsNormal =
8871             DAG.getSetCC(DL, ResultVT, Abs, SmallestNormal, IsNormalOp);
8872         unsigned LogicOp = IsInvertedFP ? ISD::OR : ISD::AND;
8873         return DAG.getNode(LogicOp, DL, ResultVT, IsFinite, IsNormal);
8874       }
8875     }
8876   }
8877 
8878   // Some checks may be represented as inversion of simpler check, for example
8879   // "inf|normal|subnormal|zero" => !"nan".
8880   bool IsInverted = false;
8881 
8882   if (FPClassTest InvertedCheck = invertFPClassTestIfSimpler(Test, false)) {
8883     Test = InvertedCheck;
8884     IsInverted = true;
8885   }
8886 
8887   // In the general case use integer operations.
8888   unsigned BitSize = OperandVT.getScalarSizeInBits();
8889   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize);
8890   if (OperandVT.isVector())
8891     IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT,
8892                              OperandVT.getVectorElementCount());
8893   SDValue OpAsInt = DAG.getBitcast(IntVT, Op);
8894 
8895   // Various masks.
8896   APInt SignBit = APInt::getSignMask(BitSize);
8897   APInt ValueMask = APInt::getSignedMaxValue(BitSize);     // All bits but sign.
8898   APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit.
8899   const unsigned ExplicitIntBitInF80 = 63;
8900   APInt ExpMask = Inf;
8901   if (IsF80)
8902     ExpMask.clearBit(ExplicitIntBitInF80);
8903   APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf;
8904   APInt QNaNBitMask =
8905       APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1);
8906   APInt InvertionMask = APInt::getAllOnes(ResultVT.getScalarSizeInBits());
8907 
8908   SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT);
8909   SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT);
8910   SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT);
8911   SDValue ZeroV = DAG.getConstant(0, DL, IntVT);
8912   SDValue InfV = DAG.getConstant(Inf, DL, IntVT);
8913   SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT);
8914 
8915   SDValue Res;
8916   const auto appendResult = [&](SDValue PartialRes) {
8917     if (PartialRes) {
8918       if (Res)
8919         Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes);
8920       else
8921         Res = PartialRes;
8922     }
8923   };
8924 
8925   SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set.
8926   const auto getIntBitIsSet = [&]() -> SDValue {
8927     if (!IntBitIsSetV) {
8928       APInt IntBitMask(BitSize, 0);
8929       IntBitMask.setBit(ExplicitIntBitInF80);
8930       SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT);
8931       SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV);
8932       IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE);
8933     }
8934     return IntBitIsSetV;
8935   };
8936 
8937   // Split the value into sign bit and absolute value.
8938   SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV);
8939   SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt,
8940                                DAG.getConstant(0, DL, IntVT), ISD::SETLT);
8941 
8942   // Tests that involve more than one class should be processed first.
8943   SDValue PartialRes;
8944 
8945   if (IsF80)
8946     ; // Detect finite numbers of f80 by checking individual classes because
8947       // they have different settings of the explicit integer bit.
8948   else if ((Test & fcFinite) == fcFinite) {
8949     // finite(V) ==> abs(V) < exp_mask
8950     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
8951     Test &= ~fcFinite;
8952   } else if ((Test & fcFinite) == fcPosFinite) {
8953     // finite(V) && V > 0 ==> V < exp_mask
8954     PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT);
8955     Test &= ~fcPosFinite;
8956   } else if ((Test & fcFinite) == fcNegFinite) {
8957     // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1
8958     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
8959     PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
8960     Test &= ~fcNegFinite;
8961   }
8962   appendResult(PartialRes);
8963 
8964   if (FPClassTest PartialCheck = Test & (fcZero | fcSubnormal)) {
8965     // fcZero | fcSubnormal => test all exponent bits are 0
8966     // TODO: Handle sign bit specific cases
8967     if (PartialCheck == (fcZero | fcSubnormal)) {
8968       SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ExpMaskV);
8969       SDValue ExpIsZero =
8970           DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
8971       appendResult(ExpIsZero);
8972       Test &= ~PartialCheck & fcAllFlags;
8973     }
8974   }
8975 
8976   // Check for individual classes.
8977 
8978   if (unsigned PartialCheck = Test & fcZero) {
8979     if (PartialCheck == fcPosZero)
8980       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ);
8981     else if (PartialCheck == fcZero)
8982       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ);
8983     else // ISD::fcNegZero
8984       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ);
8985     appendResult(PartialRes);
8986   }
8987 
8988   if (unsigned PartialCheck = Test & fcSubnormal) {
8989     // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set)
8990     // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set)
8991     SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV;
8992     SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT);
8993     SDValue VMinusOneV =
8994         DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT));
8995     PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT);
8996     if (PartialCheck == fcNegSubnormal)
8997       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
8998     appendResult(PartialRes);
8999   }
9000 
9001   if (unsigned PartialCheck = Test & fcInf) {
9002     if (PartialCheck == fcPosInf)
9003       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ);
9004     else if (PartialCheck == fcInf)
9005       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ);
9006     else { // ISD::fcNegInf
9007       APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt();
9008       SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT);
9009       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ);
9010     }
9011     appendResult(PartialRes);
9012   }
9013 
9014   if (unsigned PartialCheck = Test & fcNan) {
9015     APInt InfWithQnanBit = Inf | QNaNBitMask;
9016     SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT);
9017     if (PartialCheck == fcNan) {
9018       // isnan(V) ==> abs(V) > int(inf)
9019       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
9020       if (IsF80) {
9021         // Recognize unsupported values as NaNs for compatibility with glibc.
9022         // In them (exp(V)==0) == int_bit.
9023         SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV);
9024         SDValue ExpIsZero =
9025             DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
9026         SDValue IsPseudo =
9027             DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ);
9028         PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo);
9029       }
9030     } else if (PartialCheck == fcQNan) {
9031       // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit)
9032       PartialRes =
9033           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE);
9034     } else { // ISD::fcSNan
9035       // issignaling(V) ==> abs(V) > unsigned(Inf) &&
9036       //                    abs(V) < (unsigned(Inf) | quiet_bit)
9037       SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
9038       SDValue IsNotQnan =
9039           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT);
9040       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan);
9041     }
9042     appendResult(PartialRes);
9043   }
9044 
9045   if (unsigned PartialCheck = Test & fcNormal) {
9046     // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1))
9047     APInt ExpLSB = ExpMask & ~(ExpMask.shl(1));
9048     SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT);
9049     SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV);
9050     APInt ExpLimit = ExpMask - ExpLSB;
9051     SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT);
9052     PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT);
9053     if (PartialCheck == fcNegNormal)
9054       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
9055     else if (PartialCheck == fcPosNormal) {
9056       SDValue PosSignV =
9057           DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask);
9058       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV);
9059     }
9060     if (IsF80)
9061       PartialRes =
9062           DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet());
9063     appendResult(PartialRes);
9064   }
9065 
9066   if (!Res)
9067     return DAG.getConstant(IsInverted, DL, ResultVT);
9068   if (IsInverted)
9069     Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask);
9070   return Res;
9071 }
9072 
9073 // Only expand vector types if we have the appropriate vector bit operations.
9074 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
9075   assert(VT.isVector() && "Expected vector type");
9076   unsigned Len = VT.getScalarSizeInBits();
9077   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
9078          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
9079          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
9080          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
9081          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
9082 }
9083 
9084 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
9085   SDLoc dl(Node);
9086   EVT VT = Node->getValueType(0);
9087   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9088   SDValue Op = Node->getOperand(0);
9089   unsigned Len = VT.getScalarSizeInBits();
9090   assert(VT.isInteger() && "CTPOP not implemented for this type.");
9091 
9092   // TODO: Add support for irregular type lengths.
9093   if (!(Len <= 128 && Len % 8 == 0))
9094     return SDValue();
9095 
9096   // Only expand vector types if we have the appropriate vector bit operations.
9097   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
9098     return SDValue();
9099 
9100   // This is the "best" algorithm from
9101   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
9102   SDValue Mask55 =
9103       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
9104   SDValue Mask33 =
9105       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
9106   SDValue Mask0F =
9107       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
9108 
9109   // v = v - ((v >> 1) & 0x55555555...)
9110   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
9111                    DAG.getNode(ISD::AND, dl, VT,
9112                                DAG.getNode(ISD::SRL, dl, VT, Op,
9113                                            DAG.getConstant(1, dl, ShVT)),
9114                                Mask55));
9115   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
9116   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
9117                    DAG.getNode(ISD::AND, dl, VT,
9118                                DAG.getNode(ISD::SRL, dl, VT, Op,
9119                                            DAG.getConstant(2, dl, ShVT)),
9120                                Mask33));
9121   // v = (v + (v >> 4)) & 0x0F0F0F0F...
9122   Op = DAG.getNode(ISD::AND, dl, VT,
9123                    DAG.getNode(ISD::ADD, dl, VT, Op,
9124                                DAG.getNode(ISD::SRL, dl, VT, Op,
9125                                            DAG.getConstant(4, dl, ShVT))),
9126                    Mask0F);
9127 
9128   if (Len <= 8)
9129     return Op;
9130 
9131   // Avoid the multiply if we only have 2 bytes to add.
9132   // TODO: Only doing this for scalars because vectors weren't as obviously
9133   // improved.
9134   if (Len == 16 && !VT.isVector()) {
9135     // v = (v + (v >> 8)) & 0x00FF;
9136     return DAG.getNode(ISD::AND, dl, VT,
9137                      DAG.getNode(ISD::ADD, dl, VT, Op,
9138                                  DAG.getNode(ISD::SRL, dl, VT, Op,
9139                                              DAG.getConstant(8, dl, ShVT))),
9140                      DAG.getConstant(0xFF, dl, VT));
9141   }
9142 
9143   // v = (v * 0x01010101...) >> (Len - 8)
9144   SDValue V;
9145   if (isOperationLegalOrCustomOrPromote(
9146           ISD::MUL, getTypeToTransformTo(*DAG.getContext(), VT))) {
9147     SDValue Mask01 =
9148         DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
9149     V = DAG.getNode(ISD::MUL, dl, VT, Op, Mask01);
9150   } else {
9151     V = Op;
9152     for (unsigned Shift = 8; Shift < Len; Shift *= 2) {
9153       SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl);
9154       V = DAG.getNode(ISD::ADD, dl, VT, V,
9155                       DAG.getNode(ISD::SHL, dl, VT, V, ShiftC));
9156     }
9157   }
9158   return DAG.getNode(ISD::SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT));
9159 }
9160 
9161 SDValue TargetLowering::expandVPCTPOP(SDNode *Node, SelectionDAG &DAG) const {
9162   SDLoc dl(Node);
9163   EVT VT = Node->getValueType(0);
9164   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9165   SDValue Op = Node->getOperand(0);
9166   SDValue Mask = Node->getOperand(1);
9167   SDValue VL = Node->getOperand(2);
9168   unsigned Len = VT.getScalarSizeInBits();
9169   assert(VT.isInteger() && "VP_CTPOP not implemented for this type.");
9170 
9171   // TODO: Add support for irregular type lengths.
9172   if (!(Len <= 128 && Len % 8 == 0))
9173     return SDValue();
9174 
9175   // This is same algorithm of expandCTPOP from
9176   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
9177   SDValue Mask55 =
9178       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
9179   SDValue Mask33 =
9180       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
9181   SDValue Mask0F =
9182       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
9183 
9184   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5;
9185 
9186   // v = v - ((v >> 1) & 0x55555555...)
9187   Tmp1 = DAG.getNode(ISD::VP_AND, dl, VT,
9188                      DAG.getNode(ISD::VP_SRL, dl, VT, Op,
9189                                  DAG.getConstant(1, dl, ShVT), Mask, VL),
9190                      Mask55, Mask, VL);
9191   Op = DAG.getNode(ISD::VP_SUB, dl, VT, Op, Tmp1, Mask, VL);
9192 
9193   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
9194   Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Op, Mask33, Mask, VL);
9195   Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT,
9196                      DAG.getNode(ISD::VP_SRL, dl, VT, Op,
9197                                  DAG.getConstant(2, dl, ShVT), Mask, VL),
9198                      Mask33, Mask, VL);
9199   Op = DAG.getNode(ISD::VP_ADD, dl, VT, Tmp2, Tmp3, Mask, VL);
9200 
9201   // v = (v + (v >> 4)) & 0x0F0F0F0F...
9202   Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(4, dl, ShVT),
9203                      Mask, VL),
9204   Tmp5 = DAG.getNode(ISD::VP_ADD, dl, VT, Op, Tmp4, Mask, VL);
9205   Op = DAG.getNode(ISD::VP_AND, dl, VT, Tmp5, Mask0F, Mask, VL);
9206 
9207   if (Len <= 8)
9208     return Op;
9209 
9210   // v = (v * 0x01010101...) >> (Len - 8)
9211   SDValue V;
9212   if (isOperationLegalOrCustomOrPromote(
9213           ISD::VP_MUL, getTypeToTransformTo(*DAG.getContext(), VT))) {
9214     SDValue Mask01 =
9215         DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
9216     V = DAG.getNode(ISD::VP_MUL, dl, VT, Op, Mask01, Mask, VL);
9217   } else {
9218     V = Op;
9219     for (unsigned Shift = 8; Shift < Len; Shift *= 2) {
9220       SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl);
9221       V = DAG.getNode(ISD::VP_ADD, dl, VT, V,
9222                       DAG.getNode(ISD::VP_SHL, dl, VT, V, ShiftC, Mask, VL),
9223                       Mask, VL);
9224     }
9225   }
9226   return DAG.getNode(ISD::VP_SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT),
9227                      Mask, VL);
9228 }
9229 
9230 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
9231   SDLoc dl(Node);
9232   EVT VT = Node->getValueType(0);
9233   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9234   SDValue Op = Node->getOperand(0);
9235   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
9236 
9237   // If the non-ZERO_UNDEF version is supported we can use that instead.
9238   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
9239       isOperationLegalOrCustom(ISD::CTLZ, VT))
9240     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
9241 
9242   // If the ZERO_UNDEF version is supported use that and handle the zero case.
9243   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
9244     EVT SetCCVT =
9245         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9246     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
9247     SDValue Zero = DAG.getConstant(0, dl, VT);
9248     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
9249     return DAG.getSelect(dl, VT, SrcIsZero,
9250                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
9251   }
9252 
9253   // Only expand vector types if we have the appropriate vector bit operations.
9254   // This includes the operations needed to expand CTPOP if it isn't supported.
9255   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
9256                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
9257                          !canExpandVectorCTPOP(*this, VT)) ||
9258                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
9259                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
9260     return SDValue();
9261 
9262   // for now, we do this:
9263   // x = x | (x >> 1);
9264   // x = x | (x >> 2);
9265   // ...
9266   // x = x | (x >>16);
9267   // x = x | (x >>32); // for 64-bit input
9268   // return popcount(~x);
9269   //
9270   // Ref: "Hacker's Delight" by Henry Warren
9271   for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
9272     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
9273     Op = DAG.getNode(ISD::OR, dl, VT, Op,
9274                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
9275   }
9276   Op = DAG.getNOT(dl, Op, VT);
9277   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
9278 }
9279 
9280 SDValue TargetLowering::expandVPCTLZ(SDNode *Node, SelectionDAG &DAG) const {
9281   SDLoc dl(Node);
9282   EVT VT = Node->getValueType(0);
9283   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
9284   SDValue Op = Node->getOperand(0);
9285   SDValue Mask = Node->getOperand(1);
9286   SDValue VL = Node->getOperand(2);
9287   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
9288 
9289   // do this:
9290   // x = x | (x >> 1);
9291   // x = x | (x >> 2);
9292   // ...
9293   // x = x | (x >>16);
9294   // x = x | (x >>32); // for 64-bit input
9295   // return popcount(~x);
9296   for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
9297     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
9298     Op = DAG.getNode(ISD::VP_OR, dl, VT, Op,
9299                      DAG.getNode(ISD::VP_SRL, dl, VT, Op, Tmp, Mask, VL), Mask,
9300                      VL);
9301   }
9302   Op = DAG.getNode(ISD::VP_XOR, dl, VT, Op, DAG.getAllOnesConstant(dl, VT),
9303                    Mask, VL);
9304   return DAG.getNode(ISD::VP_CTPOP, dl, VT, Op, Mask, VL);
9305 }
9306 
9307 SDValue TargetLowering::CTTZTableLookup(SDNode *Node, SelectionDAG &DAG,
9308                                         const SDLoc &DL, EVT VT, SDValue Op,
9309                                         unsigned BitWidth) const {
9310   if (BitWidth != 32 && BitWidth != 64)
9311     return SDValue();
9312   APInt DeBruijn = BitWidth == 32 ? APInt(32, 0x077CB531U)
9313                                   : APInt(64, 0x0218A392CD3D5DBFULL);
9314   const DataLayout &TD = DAG.getDataLayout();
9315   MachinePointerInfo PtrInfo =
9316       MachinePointerInfo::getConstantPool(DAG.getMachineFunction());
9317   unsigned ShiftAmt = BitWidth - Log2_32(BitWidth);
9318   SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
9319   SDValue Lookup = DAG.getNode(
9320       ISD::SRL, DL, VT,
9321       DAG.getNode(ISD::MUL, DL, VT, DAG.getNode(ISD::AND, DL, VT, Op, Neg),
9322                   DAG.getConstant(DeBruijn, DL, VT)),
9323       DAG.getConstant(ShiftAmt, DL, VT));
9324   Lookup = DAG.getSExtOrTrunc(Lookup, DL, getPointerTy(TD));
9325 
9326   SmallVector<uint8_t> Table(BitWidth, 0);
9327   for (unsigned i = 0; i < BitWidth; i++) {
9328     APInt Shl = DeBruijn.shl(i);
9329     APInt Lshr = Shl.lshr(ShiftAmt);
9330     Table[Lshr.getZExtValue()] = i;
9331   }
9332 
9333   // Create a ConstantArray in Constant Pool
9334   auto *CA = ConstantDataArray::get(*DAG.getContext(), Table);
9335   SDValue CPIdx = DAG.getConstantPool(CA, getPointerTy(TD),
9336                                       TD.getPrefTypeAlign(CA->getType()));
9337   SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, VT, DAG.getEntryNode(),
9338                                    DAG.getMemBasePlusOffset(CPIdx, Lookup, DL),
9339                                    PtrInfo, MVT::i8);
9340   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF)
9341     return ExtLoad;
9342 
9343   EVT SetCCVT =
9344       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9345   SDValue Zero = DAG.getConstant(0, DL, VT);
9346   SDValue SrcIsZero = DAG.getSetCC(DL, SetCCVT, Op, Zero, ISD::SETEQ);
9347   return DAG.getSelect(DL, VT, SrcIsZero,
9348                        DAG.getConstant(BitWidth, DL, VT), ExtLoad);
9349 }
9350 
9351 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
9352   SDLoc dl(Node);
9353   EVT VT = Node->getValueType(0);
9354   SDValue Op = Node->getOperand(0);
9355   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
9356 
9357   // If the non-ZERO_UNDEF version is supported we can use that instead.
9358   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
9359       isOperationLegalOrCustom(ISD::CTTZ, VT))
9360     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
9361 
9362   // If the ZERO_UNDEF version is supported use that and handle the zero case.
9363   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
9364     EVT SetCCVT =
9365         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9366     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
9367     SDValue Zero = DAG.getConstant(0, dl, VT);
9368     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
9369     return DAG.getSelect(dl, VT, SrcIsZero,
9370                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
9371   }
9372 
9373   // Only expand vector types if we have the appropriate vector bit operations.
9374   // This includes the operations needed to expand CTPOP if it isn't supported.
9375   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
9376                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
9377                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
9378                          !canExpandVectorCTPOP(*this, VT)) ||
9379                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
9380                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
9381                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
9382     return SDValue();
9383 
9384   // Emit Table Lookup if ISD::CTLZ and ISD::CTPOP are not legal.
9385   if (!VT.isVector() && isOperationExpand(ISD::CTPOP, VT) &&
9386       !isOperationLegal(ISD::CTLZ, VT))
9387     if (SDValue V = CTTZTableLookup(Node, DAG, dl, VT, Op, NumBitsPerElt))
9388       return V;
9389 
9390   // for now, we use: { return popcount(~x & (x - 1)); }
9391   // unless the target has ctlz but not ctpop, in which case we use:
9392   // { return 32 - nlz(~x & (x-1)); }
9393   // Ref: "Hacker's Delight" by Henry Warren
9394   SDValue Tmp = DAG.getNode(
9395       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
9396       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
9397 
9398   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
9399   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
9400     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
9401                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
9402   }
9403 
9404   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
9405 }
9406 
9407 SDValue TargetLowering::expandVPCTTZ(SDNode *Node, SelectionDAG &DAG) const {
9408   SDValue Op = Node->getOperand(0);
9409   SDValue Mask = Node->getOperand(1);
9410   SDValue VL = Node->getOperand(2);
9411   SDLoc dl(Node);
9412   EVT VT = Node->getValueType(0);
9413 
9414   // Same as the vector part of expandCTTZ, use: popcount(~x & (x - 1))
9415   SDValue Not = DAG.getNode(ISD::VP_XOR, dl, VT, Op,
9416                             DAG.getAllOnesConstant(dl, VT), Mask, VL);
9417   SDValue MinusOne = DAG.getNode(ISD::VP_SUB, dl, VT, Op,
9418                                  DAG.getConstant(1, dl, VT), Mask, VL);
9419   SDValue Tmp = DAG.getNode(ISD::VP_AND, dl, VT, Not, MinusOne, Mask, VL);
9420   return DAG.getNode(ISD::VP_CTPOP, dl, VT, Tmp, Mask, VL);
9421 }
9422 
9423 SDValue TargetLowering::expandVPCTTZElements(SDNode *N,
9424                                              SelectionDAG &DAG) const {
9425   // %cond = to_bool_vec %source
9426   // %splat = splat /*val=*/VL
9427   // %tz = step_vector
9428   // %v = vp.select %cond, /*true=*/tz, /*false=*/%splat
9429   // %r = vp.reduce.umin %v
9430   SDLoc DL(N);
9431   SDValue Source = N->getOperand(0);
9432   SDValue Mask = N->getOperand(1);
9433   SDValue EVL = N->getOperand(2);
9434   EVT SrcVT = Source.getValueType();
9435   EVT ResVT = N->getValueType(0);
9436   EVT ResVecVT =
9437       EVT::getVectorVT(*DAG.getContext(), ResVT, SrcVT.getVectorElementCount());
9438 
9439   // Convert to boolean vector.
9440   if (SrcVT.getScalarType() != MVT::i1) {
9441     SDValue AllZero = DAG.getConstant(0, DL, SrcVT);
9442     SrcVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
9443                              SrcVT.getVectorElementCount());
9444     Source = DAG.getNode(ISD::VP_SETCC, DL, SrcVT, Source, AllZero,
9445                          DAG.getCondCode(ISD::SETNE), Mask, EVL);
9446   }
9447 
9448   SDValue ExtEVL = DAG.getZExtOrTrunc(EVL, DL, ResVT);
9449   SDValue Splat = DAG.getSplat(ResVecVT, DL, ExtEVL);
9450   SDValue StepVec = DAG.getStepVector(DL, ResVecVT);
9451   SDValue Select =
9452       DAG.getNode(ISD::VP_SELECT, DL, ResVecVT, Source, StepVec, Splat, EVL);
9453   return DAG.getNode(ISD::VP_REDUCE_UMIN, DL, ResVT, ExtEVL, Select, Mask, EVL);
9454 }
9455 
9456 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
9457                                   bool IsNegative) const {
9458   SDLoc dl(N);
9459   EVT VT = N->getValueType(0);
9460   SDValue Op = N->getOperand(0);
9461 
9462   // abs(x) -> smax(x,sub(0,x))
9463   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
9464       isOperationLegal(ISD::SMAX, VT)) {
9465     SDValue Zero = DAG.getConstant(0, dl, VT);
9466     Op = DAG.getFreeze(Op);
9467     return DAG.getNode(ISD::SMAX, dl, VT, Op,
9468                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
9469   }
9470 
9471   // abs(x) -> umin(x,sub(0,x))
9472   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
9473       isOperationLegal(ISD::UMIN, VT)) {
9474     SDValue Zero = DAG.getConstant(0, dl, VT);
9475     Op = DAG.getFreeze(Op);
9476     return DAG.getNode(ISD::UMIN, dl, VT, Op,
9477                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
9478   }
9479 
9480   // 0 - abs(x) -> smin(x, sub(0,x))
9481   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
9482       isOperationLegal(ISD::SMIN, VT)) {
9483     SDValue Zero = DAG.getConstant(0, dl, VT);
9484     Op = DAG.getFreeze(Op);
9485     return DAG.getNode(ISD::SMIN, dl, VT, Op,
9486                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
9487   }
9488 
9489   // Only expand vector types if we have the appropriate vector operations.
9490   if (VT.isVector() &&
9491       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
9492        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
9493        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
9494        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
9495     return SDValue();
9496 
9497   Op = DAG.getFreeze(Op);
9498   SDValue Shift = DAG.getNode(
9499       ISD::SRA, dl, VT, Op,
9500       DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, dl));
9501   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
9502 
9503   // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
9504   if (!IsNegative)
9505     return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
9506 
9507   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
9508   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
9509 }
9510 
9511 SDValue TargetLowering::expandABD(SDNode *N, SelectionDAG &DAG) const {
9512   SDLoc dl(N);
9513   EVT VT = N->getValueType(0);
9514   SDValue LHS = DAG.getFreeze(N->getOperand(0));
9515   SDValue RHS = DAG.getFreeze(N->getOperand(1));
9516   bool IsSigned = N->getOpcode() == ISD::ABDS;
9517 
9518   // abds(lhs, rhs) -> sub(smax(lhs,rhs), smin(lhs,rhs))
9519   // abdu(lhs, rhs) -> sub(umax(lhs,rhs), umin(lhs,rhs))
9520   unsigned MaxOpc = IsSigned ? ISD::SMAX : ISD::UMAX;
9521   unsigned MinOpc = IsSigned ? ISD::SMIN : ISD::UMIN;
9522   if (isOperationLegal(MaxOpc, VT) && isOperationLegal(MinOpc, VT)) {
9523     SDValue Max = DAG.getNode(MaxOpc, dl, VT, LHS, RHS);
9524     SDValue Min = DAG.getNode(MinOpc, dl, VT, LHS, RHS);
9525     return DAG.getNode(ISD::SUB, dl, VT, Max, Min);
9526   }
9527 
9528   // abdu(lhs, rhs) -> or(usubsat(lhs,rhs), usubsat(rhs,lhs))
9529   if (!IsSigned && isOperationLegal(ISD::USUBSAT, VT))
9530     return DAG.getNode(ISD::OR, dl, VT,
9531                        DAG.getNode(ISD::USUBSAT, dl, VT, LHS, RHS),
9532                        DAG.getNode(ISD::USUBSAT, dl, VT, RHS, LHS));
9533 
9534   // If the subtract doesn't overflow then just use abs(sub())
9535   // NOTE: don't use frozen operands for value tracking.
9536   bool IsNonNegative = DAG.SignBitIsZero(N->getOperand(1)) &&
9537                        DAG.SignBitIsZero(N->getOperand(0));
9538 
9539   if (DAG.willNotOverflowSub(IsSigned || IsNonNegative, N->getOperand(0),
9540                              N->getOperand(1)))
9541     return DAG.getNode(ISD::ABS, dl, VT,
9542                        DAG.getNode(ISD::SUB, dl, VT, LHS, RHS));
9543 
9544   if (DAG.willNotOverflowSub(IsSigned || IsNonNegative, N->getOperand(1),
9545                              N->getOperand(0)))
9546     return DAG.getNode(ISD::ABS, dl, VT,
9547                        DAG.getNode(ISD::SUB, dl, VT, RHS, LHS));
9548 
9549   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9550   ISD::CondCode CC = IsSigned ? ISD::CondCode::SETGT : ISD::CondCode::SETUGT;
9551   SDValue Cmp = DAG.getSetCC(dl, CCVT, LHS, RHS, CC);
9552 
9553   // Branchless expansion iff cmp result is allbits:
9554   // abds(lhs, rhs) -> sub(sgt(lhs, rhs), xor(sgt(lhs, rhs), sub(lhs, rhs)))
9555   // abdu(lhs, rhs) -> sub(ugt(lhs, rhs), xor(ugt(lhs, rhs), sub(lhs, rhs)))
9556   if (CCVT == VT && getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
9557     SDValue Diff = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
9558     SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Diff, Cmp);
9559     return DAG.getNode(ISD::SUB, dl, VT, Cmp, Xor);
9560   }
9561 
9562   // Similar to the branchless expansion, use the (sign-extended) usubo overflow
9563   // flag if the (scalar) type is illegal as this is more likely to legalize
9564   // cleanly:
9565   // abdu(lhs, rhs) -> sub(xor(sub(lhs, rhs), uof(lhs, rhs)), uof(lhs, rhs))
9566   if (!IsSigned && VT.isScalarInteger() && !isTypeLegal(VT)) {
9567     SDValue USubO =
9568         DAG.getNode(ISD::USUBO, dl, DAG.getVTList(VT, MVT::i1), {LHS, RHS});
9569     SDValue Cmp = DAG.getNode(ISD::SIGN_EXTEND, dl, VT, USubO.getValue(1));
9570     SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, USubO.getValue(0), Cmp);
9571     return DAG.getNode(ISD::SUB, dl, VT, Xor, Cmp);
9572   }
9573 
9574   // FIXME: Should really try to split the vector in case it's legal on a
9575   // subvector.
9576   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
9577     return DAG.UnrollVectorOp(N);
9578 
9579   // abds(lhs, rhs) -> select(sgt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs))
9580   // abdu(lhs, rhs) -> select(ugt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs))
9581   return DAG.getSelect(dl, VT, Cmp, DAG.getNode(ISD::SUB, dl, VT, LHS, RHS),
9582                        DAG.getNode(ISD::SUB, dl, VT, RHS, LHS));
9583 }
9584 
9585 SDValue TargetLowering::expandAVG(SDNode *N, SelectionDAG &DAG) const {
9586   SDLoc dl(N);
9587   EVT VT = N->getValueType(0);
9588   SDValue LHS = N->getOperand(0);
9589   SDValue RHS = N->getOperand(1);
9590 
9591   unsigned Opc = N->getOpcode();
9592   bool IsFloor = Opc == ISD::AVGFLOORS || Opc == ISD::AVGFLOORU;
9593   bool IsSigned = Opc == ISD::AVGCEILS || Opc == ISD::AVGFLOORS;
9594   unsigned SumOpc = IsFloor ? ISD::ADD : ISD::SUB;
9595   unsigned SignOpc = IsFloor ? ISD::AND : ISD::OR;
9596   unsigned ShiftOpc = IsSigned ? ISD::SRA : ISD::SRL;
9597   unsigned ExtOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
9598   assert((Opc == ISD::AVGFLOORS || Opc == ISD::AVGCEILS ||
9599           Opc == ISD::AVGFLOORU || Opc == ISD::AVGCEILU) &&
9600          "Unknown AVG node");
9601 
9602   // If the operands are already extended, we can add+shift.
9603   bool IsExt =
9604       (IsSigned && DAG.ComputeNumSignBits(LHS) >= 2 &&
9605        DAG.ComputeNumSignBits(RHS) >= 2) ||
9606       (!IsSigned && DAG.computeKnownBits(LHS).countMinLeadingZeros() >= 1 &&
9607        DAG.computeKnownBits(RHS).countMinLeadingZeros() >= 1);
9608   if (IsExt) {
9609     SDValue Sum = DAG.getNode(ISD::ADD, dl, VT, LHS, RHS);
9610     if (!IsFloor)
9611       Sum = DAG.getNode(ISD::ADD, dl, VT, Sum, DAG.getConstant(1, dl, VT));
9612     return DAG.getNode(ShiftOpc, dl, VT, Sum,
9613                        DAG.getShiftAmountConstant(1, VT, dl));
9614   }
9615 
9616   // For scalars, see if we can efficiently extend/truncate to use add+shift.
9617   if (VT.isScalarInteger()) {
9618     unsigned BW = VT.getScalarSizeInBits();
9619     EVT ExtVT = VT.getIntegerVT(*DAG.getContext(), 2 * BW);
9620     if (isTypeLegal(ExtVT) && isTruncateFree(ExtVT, VT)) {
9621       LHS = DAG.getNode(ExtOpc, dl, ExtVT, LHS);
9622       RHS = DAG.getNode(ExtOpc, dl, ExtVT, RHS);
9623       SDValue Avg = DAG.getNode(ISD::ADD, dl, ExtVT, LHS, RHS);
9624       if (!IsFloor)
9625         Avg = DAG.getNode(ISD::ADD, dl, ExtVT, Avg,
9626                           DAG.getConstant(1, dl, ExtVT));
9627       // Just use SRL as we will be truncating away the extended sign bits.
9628       Avg = DAG.getNode(ISD::SRL, dl, ExtVT, Avg,
9629                         DAG.getShiftAmountConstant(1, ExtVT, dl));
9630       return DAG.getNode(ISD::TRUNCATE, dl, VT, Avg);
9631     }
9632   }
9633 
9634   // avgflooru(lhs, rhs) -> or(lshr(add(lhs, rhs),1),shl(overflow, typesize-1))
9635   if (Opc == ISD::AVGFLOORU && VT.isScalarInteger() && !isTypeLegal(VT)) {
9636     SDValue UAddWithOverflow =
9637         DAG.getNode(ISD::UADDO, dl, DAG.getVTList(VT, MVT::i1), {RHS, LHS});
9638 
9639     SDValue Sum = UAddWithOverflow.getValue(0);
9640     SDValue Overflow = UAddWithOverflow.getValue(1);
9641 
9642     // Right shift the sum by 1
9643     SDValue LShrVal = DAG.getNode(ISD::SRL, dl, VT, Sum,
9644                                   DAG.getShiftAmountConstant(1, VT, dl));
9645 
9646     SDValue ZeroExtOverflow = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Overflow);
9647     SDValue OverflowShl = DAG.getNode(
9648         ISD::SHL, dl, VT, ZeroExtOverflow,
9649         DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, dl));
9650 
9651     return DAG.getNode(ISD::OR, dl, VT, LShrVal, OverflowShl);
9652   }
9653 
9654   // avgceils(lhs, rhs) -> sub(or(lhs,rhs),ashr(xor(lhs,rhs),1))
9655   // avgceilu(lhs, rhs) -> sub(or(lhs,rhs),lshr(xor(lhs,rhs),1))
9656   // avgfloors(lhs, rhs) -> add(and(lhs,rhs),ashr(xor(lhs,rhs),1))
9657   // avgflooru(lhs, rhs) -> add(and(lhs,rhs),lshr(xor(lhs,rhs),1))
9658   LHS = DAG.getFreeze(LHS);
9659   RHS = DAG.getFreeze(RHS);
9660   SDValue Sign = DAG.getNode(SignOpc, dl, VT, LHS, RHS);
9661   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
9662   SDValue Shift =
9663       DAG.getNode(ShiftOpc, dl, VT, Xor, DAG.getShiftAmountConstant(1, VT, dl));
9664   return DAG.getNode(SumOpc, dl, VT, Sign, Shift);
9665 }
9666 
9667 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
9668   SDLoc dl(N);
9669   EVT VT = N->getValueType(0);
9670   SDValue Op = N->getOperand(0);
9671 
9672   if (!VT.isSimple())
9673     return SDValue();
9674 
9675   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
9676   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
9677   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
9678   default:
9679     return SDValue();
9680   case MVT::i16:
9681     // Use a rotate by 8. This can be further expanded if necessary.
9682     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
9683   case MVT::i32:
9684     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
9685     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Op,
9686                        DAG.getConstant(0xFF00, dl, VT));
9687     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT));
9688     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
9689     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
9690     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
9691     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
9692     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
9693     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
9694   case MVT::i64:
9695     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
9696     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Op,
9697                        DAG.getConstant(255ULL<<8, dl, VT));
9698     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT));
9699     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Op,
9700                        DAG.getConstant(255ULL<<16, dl, VT));
9701     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT));
9702     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Op,
9703                        DAG.getConstant(255ULL<<24, dl, VT));
9704     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT));
9705     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
9706     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
9707                        DAG.getConstant(255ULL<<24, dl, VT));
9708     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
9709     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
9710                        DAG.getConstant(255ULL<<16, dl, VT));
9711     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
9712     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
9713                        DAG.getConstant(255ULL<<8, dl, VT));
9714     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
9715     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
9716     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
9717     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
9718     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
9719     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
9720     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
9721     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
9722   }
9723 }
9724 
9725 SDValue TargetLowering::expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const {
9726   SDLoc dl(N);
9727   EVT VT = N->getValueType(0);
9728   SDValue Op = N->getOperand(0);
9729   SDValue Mask = N->getOperand(1);
9730   SDValue EVL = N->getOperand(2);
9731 
9732   if (!VT.isSimple())
9733     return SDValue();
9734 
9735   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
9736   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
9737   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
9738   default:
9739     return SDValue();
9740   case MVT::i16:
9741     Tmp1 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
9742                        Mask, EVL);
9743     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
9744                        Mask, EVL);
9745     return DAG.getNode(ISD::VP_OR, dl, VT, Tmp1, Tmp2, Mask, EVL);
9746   case MVT::i32:
9747     Tmp4 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
9748                        Mask, EVL);
9749     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Op, DAG.getConstant(0xFF00, dl, VT),
9750                        Mask, EVL);
9751     Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT),
9752                        Mask, EVL);
9753     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
9754                        Mask, EVL);
9755     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9756                        DAG.getConstant(0xFF00, dl, VT), Mask, EVL);
9757     Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
9758                        Mask, EVL);
9759     Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
9760     Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
9761     return DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
9762   case MVT::i64:
9763     Tmp8 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT),
9764                        Mask, EVL);
9765     Tmp7 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
9766                        DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL);
9767     Tmp7 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT),
9768                        Mask, EVL);
9769     Tmp6 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
9770                        DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL);
9771     Tmp6 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT),
9772                        Mask, EVL);
9773     Tmp5 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
9774                        DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL);
9775     Tmp5 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT),
9776                        Mask, EVL);
9777     Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
9778                        Mask, EVL);
9779     Tmp4 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp4,
9780                        DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL);
9781     Tmp3 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
9782                        Mask, EVL);
9783     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp3,
9784                        DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL);
9785     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT),
9786                        Mask, EVL);
9787     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9788                        DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL);
9789     Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT),
9790                        Mask, EVL);
9791     Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp7, Mask, EVL);
9792     Tmp6 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp6, Tmp5, Mask, EVL);
9793     Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
9794     Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
9795     Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp6, Mask, EVL);
9796     Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
9797     return DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp4, Mask, EVL);
9798   }
9799 }
9800 
9801 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
9802   SDLoc dl(N);
9803   EVT VT = N->getValueType(0);
9804   SDValue Op = N->getOperand(0);
9805   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
9806   unsigned Sz = VT.getScalarSizeInBits();
9807 
9808   SDValue Tmp, Tmp2, Tmp3;
9809 
9810   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
9811   // and finally the i1 pairs.
9812   // TODO: We can easily support i4/i2 legal types if any target ever does.
9813   if (Sz >= 8 && isPowerOf2_32(Sz)) {
9814     // Create the masks - repeating the pattern every byte.
9815     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
9816     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
9817     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
9818 
9819     // BSWAP if the type is wider than a single byte.
9820     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
9821 
9822     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
9823     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
9824     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
9825     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
9826     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
9827     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
9828 
9829     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
9830     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
9831     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
9832     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
9833     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
9834     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
9835 
9836     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
9837     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
9838     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
9839     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
9840     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
9841     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
9842     return Tmp;
9843   }
9844 
9845   Tmp = DAG.getConstant(0, dl, VT);
9846   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
9847     if (I < J)
9848       Tmp2 =
9849           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
9850     else
9851       Tmp2 =
9852           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
9853 
9854     APInt Shift = APInt::getOneBitSet(Sz, J);
9855     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
9856     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
9857   }
9858 
9859   return Tmp;
9860 }
9861 
9862 SDValue TargetLowering::expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
9863   assert(N->getOpcode() == ISD::VP_BITREVERSE);
9864 
9865   SDLoc dl(N);
9866   EVT VT = N->getValueType(0);
9867   SDValue Op = N->getOperand(0);
9868   SDValue Mask = N->getOperand(1);
9869   SDValue EVL = N->getOperand(2);
9870   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
9871   unsigned Sz = VT.getScalarSizeInBits();
9872 
9873   SDValue Tmp, Tmp2, Tmp3;
9874 
9875   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
9876   // and finally the i1 pairs.
9877   // TODO: We can easily support i4/i2 legal types if any target ever does.
9878   if (Sz >= 8 && isPowerOf2_32(Sz)) {
9879     // Create the masks - repeating the pattern every byte.
9880     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
9881     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
9882     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
9883 
9884     // BSWAP if the type is wider than a single byte.
9885     Tmp = (Sz > 8 ? DAG.getNode(ISD::VP_BSWAP, dl, VT, Op, Mask, EVL) : Op);
9886 
9887     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
9888     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT),
9889                        Mask, EVL);
9890     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9891                        DAG.getConstant(Mask4, dl, VT), Mask, EVL);
9892     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT),
9893                        Mask, EVL);
9894     Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT),
9895                        Mask, EVL);
9896     Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
9897 
9898     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
9899     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT),
9900                        Mask, EVL);
9901     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9902                        DAG.getConstant(Mask2, dl, VT), Mask, EVL);
9903     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT),
9904                        Mask, EVL);
9905     Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT),
9906                        Mask, EVL);
9907     Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
9908 
9909     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
9910     Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT),
9911                        Mask, EVL);
9912     Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
9913                        DAG.getConstant(Mask1, dl, VT), Mask, EVL);
9914     Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT),
9915                        Mask, EVL);
9916     Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT),
9917                        Mask, EVL);
9918     Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
9919     return Tmp;
9920   }
9921   return SDValue();
9922 }
9923 
9924 std::pair<SDValue, SDValue>
9925 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
9926                                     SelectionDAG &DAG) const {
9927   SDLoc SL(LD);
9928   SDValue Chain = LD->getChain();
9929   SDValue BasePTR = LD->getBasePtr();
9930   EVT SrcVT = LD->getMemoryVT();
9931   EVT DstVT = LD->getValueType(0);
9932   ISD::LoadExtType ExtType = LD->getExtensionType();
9933 
9934   if (SrcVT.isScalableVector())
9935     report_fatal_error("Cannot scalarize scalable vector loads");
9936 
9937   unsigned NumElem = SrcVT.getVectorNumElements();
9938 
9939   EVT SrcEltVT = SrcVT.getScalarType();
9940   EVT DstEltVT = DstVT.getScalarType();
9941 
9942   // A vector must always be stored in memory as-is, i.e. without any padding
9943   // between the elements, since various code depend on it, e.g. in the
9944   // handling of a bitcast of a vector type to int, which may be done with a
9945   // vector store followed by an integer load. A vector that does not have
9946   // elements that are byte-sized must therefore be stored as an integer
9947   // built out of the extracted vector elements.
9948   if (!SrcEltVT.isByteSized()) {
9949     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
9950     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
9951 
9952     unsigned NumSrcBits = SrcVT.getSizeInBits();
9953     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
9954 
9955     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
9956     SDValue SrcEltBitMask = DAG.getConstant(
9957         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
9958 
9959     // Load the whole vector and avoid masking off the top bits as it makes
9960     // the codegen worse.
9961     SDValue Load =
9962         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
9963                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
9964                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
9965 
9966     SmallVector<SDValue, 8> Vals;
9967     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
9968       unsigned ShiftIntoIdx =
9969           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
9970       SDValue ShiftAmount = DAG.getShiftAmountConstant(
9971           ShiftIntoIdx * SrcEltVT.getSizeInBits(), LoadVT, SL);
9972       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
9973       SDValue Elt =
9974           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
9975       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
9976 
9977       if (ExtType != ISD::NON_EXTLOAD) {
9978         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
9979         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
9980       }
9981 
9982       Vals.push_back(Scalar);
9983     }
9984 
9985     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
9986     return std::make_pair(Value, Load.getValue(1));
9987   }
9988 
9989   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
9990   assert(SrcEltVT.isByteSized());
9991 
9992   SmallVector<SDValue, 8> Vals;
9993   SmallVector<SDValue, 8> LoadChains;
9994 
9995   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
9996     SDValue ScalarLoad =
9997         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
9998                        LD->getPointerInfo().getWithOffset(Idx * Stride),
9999                        SrcEltVT, LD->getOriginalAlign(),
10000                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
10001 
10002     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::getFixed(Stride));
10003 
10004     Vals.push_back(ScalarLoad.getValue(0));
10005     LoadChains.push_back(ScalarLoad.getValue(1));
10006   }
10007 
10008   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
10009   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
10010 
10011   return std::make_pair(Value, NewChain);
10012 }
10013 
10014 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
10015                                              SelectionDAG &DAG) const {
10016   SDLoc SL(ST);
10017 
10018   SDValue Chain = ST->getChain();
10019   SDValue BasePtr = ST->getBasePtr();
10020   SDValue Value = ST->getValue();
10021   EVT StVT = ST->getMemoryVT();
10022 
10023   if (StVT.isScalableVector())
10024     report_fatal_error("Cannot scalarize scalable vector stores");
10025 
10026   // The type of the data we want to save
10027   EVT RegVT = Value.getValueType();
10028   EVT RegSclVT = RegVT.getScalarType();
10029 
10030   // The type of data as saved in memory.
10031   EVT MemSclVT = StVT.getScalarType();
10032 
10033   unsigned NumElem = StVT.getVectorNumElements();
10034 
10035   // A vector must always be stored in memory as-is, i.e. without any padding
10036   // between the elements, since various code depend on it, e.g. in the
10037   // handling of a bitcast of a vector type to int, which may be done with a
10038   // vector store followed by an integer load. A vector that does not have
10039   // elements that are byte-sized must therefore be stored as an integer
10040   // built out of the extracted vector elements.
10041   if (!MemSclVT.isByteSized()) {
10042     unsigned NumBits = StVT.getSizeInBits();
10043     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
10044 
10045     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
10046 
10047     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
10048       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
10049                                 DAG.getVectorIdxConstant(Idx, SL));
10050       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
10051       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
10052       unsigned ShiftIntoIdx =
10053           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
10054       SDValue ShiftAmount =
10055           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
10056       SDValue ShiftedElt =
10057           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
10058       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
10059     }
10060 
10061     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
10062                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
10063                         ST->getAAInfo());
10064   }
10065 
10066   // Store Stride in bytes
10067   unsigned Stride = MemSclVT.getSizeInBits() / 8;
10068   assert(Stride && "Zero stride!");
10069   // Extract each of the elements from the original vector and save them into
10070   // memory individually.
10071   SmallVector<SDValue, 8> Stores;
10072   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
10073     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
10074                               DAG.getVectorIdxConstant(Idx, SL));
10075 
10076     SDValue Ptr =
10077         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::getFixed(Idx * Stride));
10078 
10079     // This scalar TruncStore may be illegal, but we legalize it later.
10080     SDValue Store = DAG.getTruncStore(
10081         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
10082         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
10083         ST->getAAInfo());
10084 
10085     Stores.push_back(Store);
10086   }
10087 
10088   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
10089 }
10090 
10091 std::pair<SDValue, SDValue>
10092 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
10093   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
10094          "unaligned indexed loads not implemented!");
10095   SDValue Chain = LD->getChain();
10096   SDValue Ptr = LD->getBasePtr();
10097   EVT VT = LD->getValueType(0);
10098   EVT LoadedVT = LD->getMemoryVT();
10099   SDLoc dl(LD);
10100   auto &MF = DAG.getMachineFunction();
10101 
10102   if (VT.isFloatingPoint() || VT.isVector()) {
10103     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
10104     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
10105       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
10106           LoadedVT.isVector()) {
10107         // Scalarize the load and let the individual components be handled.
10108         return scalarizeVectorLoad(LD, DAG);
10109       }
10110 
10111       // Expand to a (misaligned) integer load of the same size,
10112       // then bitconvert to floating point or vector.
10113       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
10114                                     LD->getMemOperand());
10115       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
10116       if (LoadedVT != VT)
10117         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
10118                              ISD::ANY_EXTEND, dl, VT, Result);
10119 
10120       return std::make_pair(Result, newLoad.getValue(1));
10121     }
10122 
10123     // Copy the value to a (aligned) stack slot using (unaligned) integer
10124     // loads and stores, then do a (aligned) load from the stack slot.
10125     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
10126     unsigned LoadedBytes = LoadedVT.getStoreSize();
10127     unsigned RegBytes = RegVT.getSizeInBits() / 8;
10128     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
10129 
10130     // Make sure the stack slot is also aligned for the register type.
10131     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
10132     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
10133     SmallVector<SDValue, 8> Stores;
10134     SDValue StackPtr = StackBase;
10135     unsigned Offset = 0;
10136 
10137     EVT PtrVT = Ptr.getValueType();
10138     EVT StackPtrVT = StackPtr.getValueType();
10139 
10140     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
10141     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
10142 
10143     // Do all but one copies using the full register width.
10144     for (unsigned i = 1; i < NumRegs; i++) {
10145       // Load one integer register's worth from the original location.
10146       SDValue Load = DAG.getLoad(
10147           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
10148           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
10149           LD->getAAInfo());
10150       // Follow the load with a store to the stack slot.  Remember the store.
10151       Stores.push_back(DAG.getStore(
10152           Load.getValue(1), dl, Load, StackPtr,
10153           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
10154       // Increment the pointers.
10155       Offset += RegBytes;
10156 
10157       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
10158       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
10159     }
10160 
10161     // The last copy may be partial.  Do an extending load.
10162     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
10163                                   8 * (LoadedBytes - Offset));
10164     SDValue Load =
10165         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
10166                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
10167                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
10168                        LD->getAAInfo());
10169     // Follow the load with a store to the stack slot.  Remember the store.
10170     // On big-endian machines this requires a truncating store to ensure
10171     // that the bits end up in the right place.
10172     Stores.push_back(DAG.getTruncStore(
10173         Load.getValue(1), dl, Load, StackPtr,
10174         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
10175 
10176     // The order of the stores doesn't matter - say it with a TokenFactor.
10177     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10178 
10179     // Finally, perform the original load only redirected to the stack slot.
10180     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
10181                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
10182                           LoadedVT);
10183 
10184     // Callers expect a MERGE_VALUES node.
10185     return std::make_pair(Load, TF);
10186   }
10187 
10188   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
10189          "Unaligned load of unsupported type.");
10190 
10191   // Compute the new VT that is half the size of the old one.  This is an
10192   // integer MVT.
10193   unsigned NumBits = LoadedVT.getSizeInBits();
10194   EVT NewLoadedVT;
10195   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
10196   NumBits >>= 1;
10197 
10198   Align Alignment = LD->getOriginalAlign();
10199   unsigned IncrementSize = NumBits / 8;
10200   ISD::LoadExtType HiExtType = LD->getExtensionType();
10201 
10202   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
10203   if (HiExtType == ISD::NON_EXTLOAD)
10204     HiExtType = ISD::ZEXTLOAD;
10205 
10206   // Load the value in two parts
10207   SDValue Lo, Hi;
10208   if (DAG.getDataLayout().isLittleEndian()) {
10209     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
10210                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10211                         LD->getAAInfo());
10212 
10213     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize));
10214     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
10215                         LD->getPointerInfo().getWithOffset(IncrementSize),
10216                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10217                         LD->getAAInfo());
10218   } else {
10219     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
10220                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10221                         LD->getAAInfo());
10222 
10223     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize));
10224     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
10225                         LD->getPointerInfo().getWithOffset(IncrementSize),
10226                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10227                         LD->getAAInfo());
10228   }
10229 
10230   // aggregate the two parts
10231   SDValue ShiftAmount = DAG.getShiftAmountConstant(NumBits, VT, dl);
10232   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
10233   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
10234 
10235   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
10236                              Hi.getValue(1));
10237 
10238   return std::make_pair(Result, TF);
10239 }
10240 
10241 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
10242                                              SelectionDAG &DAG) const {
10243   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
10244          "unaligned indexed stores not implemented!");
10245   SDValue Chain = ST->getChain();
10246   SDValue Ptr = ST->getBasePtr();
10247   SDValue Val = ST->getValue();
10248   EVT VT = Val.getValueType();
10249   Align Alignment = ST->getOriginalAlign();
10250   auto &MF = DAG.getMachineFunction();
10251   EVT StoreMemVT = ST->getMemoryVT();
10252 
10253   SDLoc dl(ST);
10254   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
10255     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
10256     if (isTypeLegal(intVT)) {
10257       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
10258           StoreMemVT.isVector()) {
10259         // Scalarize the store and let the individual components be handled.
10260         SDValue Result = scalarizeVectorStore(ST, DAG);
10261         return Result;
10262       }
10263       // Expand to a bitconvert of the value to the integer type of the
10264       // same size, then a (misaligned) int store.
10265       // FIXME: Does not handle truncating floating point stores!
10266       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
10267       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
10268                             Alignment, ST->getMemOperand()->getFlags());
10269       return Result;
10270     }
10271     // Do a (aligned) store to a stack slot, then copy from the stack slot
10272     // to the final destination using (unaligned) integer loads and stores.
10273     MVT RegVT = getRegisterType(
10274         *DAG.getContext(),
10275         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
10276     EVT PtrVT = Ptr.getValueType();
10277     unsigned StoredBytes = StoreMemVT.getStoreSize();
10278     unsigned RegBytes = RegVT.getSizeInBits() / 8;
10279     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
10280 
10281     // Make sure the stack slot is also aligned for the register type.
10282     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
10283     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
10284 
10285     // Perform the original store, only redirected to the stack slot.
10286     SDValue Store = DAG.getTruncStore(
10287         Chain, dl, Val, StackPtr,
10288         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
10289 
10290     EVT StackPtrVT = StackPtr.getValueType();
10291 
10292     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
10293     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
10294     SmallVector<SDValue, 8> Stores;
10295     unsigned Offset = 0;
10296 
10297     // Do all but one copies using the full register width.
10298     for (unsigned i = 1; i < NumRegs; i++) {
10299       // Load one integer register's worth from the stack slot.
10300       SDValue Load = DAG.getLoad(
10301           RegVT, dl, Store, StackPtr,
10302           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
10303       // Store it to the final location.  Remember the store.
10304       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
10305                                     ST->getPointerInfo().getWithOffset(Offset),
10306                                     ST->getOriginalAlign(),
10307                                     ST->getMemOperand()->getFlags()));
10308       // Increment the pointers.
10309       Offset += RegBytes;
10310       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
10311       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
10312     }
10313 
10314     // The last store may be partial.  Do a truncating store.  On big-endian
10315     // machines this requires an extending load from the stack slot to ensure
10316     // that the bits are in the right place.
10317     EVT LoadMemVT =
10318         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
10319 
10320     // Load from the stack slot.
10321     SDValue Load = DAG.getExtLoad(
10322         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
10323         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
10324 
10325     Stores.push_back(
10326         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
10327                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
10328                           ST->getOriginalAlign(),
10329                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
10330     // The order of the stores doesn't matter - say it with a TokenFactor.
10331     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10332     return Result;
10333   }
10334 
10335   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
10336          "Unaligned store of unknown type.");
10337   // Get the half-size VT
10338   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
10339   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
10340   unsigned IncrementSize = NumBits / 8;
10341 
10342   // Divide the stored value in two parts.
10343   SDValue ShiftAmount =
10344       DAG.getShiftAmountConstant(NumBits, Val.getValueType(), dl);
10345   SDValue Lo = Val;
10346   // If Val is a constant, replace the upper bits with 0. The SRL will constant
10347   // fold and not use the upper bits. A smaller constant may be easier to
10348   // materialize.
10349   if (auto *C = dyn_cast<ConstantSDNode>(Lo); C && !C->isOpaque())
10350     Lo = DAG.getNode(
10351         ISD::AND, dl, VT, Lo,
10352         DAG.getConstant(APInt::getLowBitsSet(VT.getSizeInBits(), NumBits), dl,
10353                         VT));
10354   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
10355 
10356   // Store the two parts
10357   SDValue Store1, Store2;
10358   Store1 = DAG.getTruncStore(Chain, dl,
10359                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
10360                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
10361                              ST->getMemOperand()->getFlags());
10362 
10363   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize));
10364   Store2 = DAG.getTruncStore(
10365       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
10366       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
10367       ST->getMemOperand()->getFlags(), ST->getAAInfo());
10368 
10369   SDValue Result =
10370       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
10371   return Result;
10372 }
10373 
10374 SDValue
10375 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
10376                                        const SDLoc &DL, EVT DataVT,
10377                                        SelectionDAG &DAG,
10378                                        bool IsCompressedMemory) const {
10379   SDValue Increment;
10380   EVT AddrVT = Addr.getValueType();
10381   EVT MaskVT = Mask.getValueType();
10382   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
10383          "Incompatible types of Data and Mask");
10384   if (IsCompressedMemory) {
10385     if (DataVT.isScalableVector())
10386       report_fatal_error(
10387           "Cannot currently handle compressed memory with scalable vectors");
10388     // Incrementing the pointer according to number of '1's in the mask.
10389     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
10390     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
10391     if (MaskIntVT.getSizeInBits() < 32) {
10392       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
10393       MaskIntVT = MVT::i32;
10394     }
10395 
10396     // Count '1's with POPCNT.
10397     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
10398     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
10399     // Scale is an element size in bytes.
10400     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
10401                                     AddrVT);
10402     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
10403   } else if (DataVT.isScalableVector()) {
10404     Increment = DAG.getVScale(DL, AddrVT,
10405                               APInt(AddrVT.getFixedSizeInBits(),
10406                                     DataVT.getStoreSize().getKnownMinValue()));
10407   } else
10408     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
10409 
10410   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
10411 }
10412 
10413 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
10414                                        EVT VecVT, const SDLoc &dl,
10415                                        ElementCount SubEC) {
10416   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
10417          "Cannot index a scalable vector within a fixed-width vector");
10418 
10419   unsigned NElts = VecVT.getVectorMinNumElements();
10420   unsigned NumSubElts = SubEC.getKnownMinValue();
10421   EVT IdxVT = Idx.getValueType();
10422 
10423   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
10424     // If this is a constant index and we know the value plus the number of the
10425     // elements in the subvector minus one is less than the minimum number of
10426     // elements then it's safe to return Idx.
10427     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
10428       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
10429         return Idx;
10430     SDValue VS =
10431         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
10432     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
10433     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
10434                               DAG.getConstant(NumSubElts, dl, IdxVT));
10435     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
10436   }
10437   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
10438     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
10439     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
10440                        DAG.getConstant(Imm, dl, IdxVT));
10441   }
10442   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
10443   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
10444                      DAG.getConstant(MaxIndex, dl, IdxVT));
10445 }
10446 
10447 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
10448                                                 SDValue VecPtr, EVT VecVT,
10449                                                 SDValue Index) const {
10450   return getVectorSubVecPointer(
10451       DAG, VecPtr, VecVT,
10452       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
10453       Index);
10454 }
10455 
10456 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
10457                                                SDValue VecPtr, EVT VecVT,
10458                                                EVT SubVecVT,
10459                                                SDValue Index) const {
10460   SDLoc dl(Index);
10461   // Make sure the index type is big enough to compute in.
10462   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
10463 
10464   EVT EltVT = VecVT.getVectorElementType();
10465 
10466   // Calculate the element offset and add it to the pointer.
10467   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
10468   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
10469          "Converting bits to bytes lost precision");
10470   assert(SubVecVT.getVectorElementType() == EltVT &&
10471          "Sub-vector must be a vector with matching element type");
10472   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
10473                                   SubVecVT.getVectorElementCount());
10474 
10475   EVT IdxVT = Index.getValueType();
10476   if (SubVecVT.isScalableVector())
10477     Index =
10478         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
10479                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
10480 
10481   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
10482                       DAG.getConstant(EltSize, dl, IdxVT));
10483   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
10484 }
10485 
10486 //===----------------------------------------------------------------------===//
10487 // Implementation of Emulated TLS Model
10488 //===----------------------------------------------------------------------===//
10489 
10490 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
10491                                                 SelectionDAG &DAG) const {
10492   // Access to address of TLS varialbe xyz is lowered to a function call:
10493   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
10494   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10495   PointerType *VoidPtrType = PointerType::get(*DAG.getContext(), 0);
10496   SDLoc dl(GA);
10497 
10498   ArgListTy Args;
10499   ArgListEntry Entry;
10500   const GlobalValue *GV =
10501       cast<GlobalValue>(GA->getGlobal()->stripPointerCastsAndAliases());
10502   SmallString<32> NameString("__emutls_v.");
10503   NameString += GV->getName();
10504   StringRef EmuTlsVarName(NameString);
10505   const GlobalVariable *EmuTlsVar =
10506       GV->getParent()->getNamedGlobal(EmuTlsVarName);
10507   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
10508   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
10509   Entry.Ty = VoidPtrType;
10510   Args.push_back(Entry);
10511 
10512   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
10513 
10514   TargetLowering::CallLoweringInfo CLI(DAG);
10515   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
10516   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
10517   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
10518 
10519   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
10520   // At last for X86 targets, maybe good for other targets too?
10521   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10522   MFI.setAdjustsStack(true); // Is this only for X86 target?
10523   MFI.setHasCalls(true);
10524 
10525   assert((GA->getOffset() == 0) &&
10526          "Emulated TLS must have zero offset in GlobalAddressSDNode");
10527   return CallResult.first;
10528 }
10529 
10530 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
10531                                                 SelectionDAG &DAG) const {
10532   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
10533   if (!isCtlzFast())
10534     return SDValue();
10535   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
10536   SDLoc dl(Op);
10537   if (isNullConstant(Op.getOperand(1)) && CC == ISD::SETEQ) {
10538     EVT VT = Op.getOperand(0).getValueType();
10539     SDValue Zext = Op.getOperand(0);
10540     if (VT.bitsLT(MVT::i32)) {
10541       VT = MVT::i32;
10542       Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
10543     }
10544     unsigned Log2b = Log2_32(VT.getSizeInBits());
10545     SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
10546     SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
10547                               DAG.getConstant(Log2b, dl, MVT::i32));
10548     return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
10549   }
10550   return SDValue();
10551 }
10552 
10553 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
10554   SDValue Op0 = Node->getOperand(0);
10555   SDValue Op1 = Node->getOperand(1);
10556   EVT VT = Op0.getValueType();
10557   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10558   unsigned Opcode = Node->getOpcode();
10559   SDLoc DL(Node);
10560 
10561   // umax(x,1) --> sub(x,cmpeq(x,0)) iff cmp result is allbits
10562   if (Opcode == ISD::UMAX && llvm::isOneOrOneSplat(Op1, true) && BoolVT == VT &&
10563       getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
10564     Op0 = DAG.getFreeze(Op0);
10565     SDValue Zero = DAG.getConstant(0, DL, VT);
10566     return DAG.getNode(ISD::SUB, DL, VT, Op0,
10567                        DAG.getSetCC(DL, VT, Op0, Zero, ISD::SETEQ));
10568   }
10569 
10570   // umin(x,y) -> sub(x,usubsat(x,y))
10571   // TODO: Missing freeze(Op0)?
10572   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
10573       isOperationLegal(ISD::USUBSAT, VT)) {
10574     return DAG.getNode(ISD::SUB, DL, VT, Op0,
10575                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
10576   }
10577 
10578   // umax(x,y) -> add(x,usubsat(y,x))
10579   // TODO: Missing freeze(Op0)?
10580   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
10581       isOperationLegal(ISD::USUBSAT, VT)) {
10582     return DAG.getNode(ISD::ADD, DL, VT, Op0,
10583                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
10584   }
10585 
10586   // FIXME: Should really try to split the vector in case it's legal on a
10587   // subvector.
10588   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
10589     return DAG.UnrollVectorOp(Node);
10590 
10591   // Attempt to find an existing SETCC node that we can reuse.
10592   // TODO: Do we need a generic doesSETCCNodeExist?
10593   // TODO: Missing freeze(Op0)/freeze(Op1)?
10594   auto buildMinMax = [&](ISD::CondCode PrefCC, ISD::CondCode AltCC,
10595                          ISD::CondCode PrefCommuteCC,
10596                          ISD::CondCode AltCommuteCC) {
10597     SDVTList BoolVTList = DAG.getVTList(BoolVT);
10598     for (ISD::CondCode CC : {PrefCC, AltCC}) {
10599       if (DAG.doesNodeExist(ISD::SETCC, BoolVTList,
10600                             {Op0, Op1, DAG.getCondCode(CC)})) {
10601         SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
10602         return DAG.getSelect(DL, VT, Cond, Op0, Op1);
10603       }
10604     }
10605     for (ISD::CondCode CC : {PrefCommuteCC, AltCommuteCC}) {
10606       if (DAG.doesNodeExist(ISD::SETCC, BoolVTList,
10607                             {Op0, Op1, DAG.getCondCode(CC)})) {
10608         SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
10609         return DAG.getSelect(DL, VT, Cond, Op1, Op0);
10610       }
10611     }
10612     SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, PrefCC);
10613     return DAG.getSelect(DL, VT, Cond, Op0, Op1);
10614   };
10615 
10616   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
10617   //                      -> Y = (A < B) ? B : A
10618   //                      -> Y = (A >= B) ? A : B
10619   //                      -> Y = (A <= B) ? B : A
10620   switch (Opcode) {
10621   case ISD::SMAX:
10622     return buildMinMax(ISD::SETGT, ISD::SETGE, ISD::SETLT, ISD::SETLE);
10623   case ISD::SMIN:
10624     return buildMinMax(ISD::SETLT, ISD::SETLE, ISD::SETGT, ISD::SETGE);
10625   case ISD::UMAX:
10626     return buildMinMax(ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE);
10627   case ISD::UMIN:
10628     return buildMinMax(ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE);
10629   }
10630 
10631   llvm_unreachable("How did we get here?");
10632 }
10633 
10634 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
10635   unsigned Opcode = Node->getOpcode();
10636   SDValue LHS = Node->getOperand(0);
10637   SDValue RHS = Node->getOperand(1);
10638   EVT VT = LHS.getValueType();
10639   SDLoc dl(Node);
10640 
10641   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
10642   assert(VT.isInteger() && "Expected operands to be integers");
10643 
10644   // usub.sat(a, b) -> umax(a, b) - b
10645   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
10646     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
10647     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
10648   }
10649 
10650   // uadd.sat(a, b) -> umin(a, ~b) + b
10651   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
10652     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
10653     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
10654     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
10655   }
10656 
10657   unsigned OverflowOp;
10658   switch (Opcode) {
10659   case ISD::SADDSAT:
10660     OverflowOp = ISD::SADDO;
10661     break;
10662   case ISD::UADDSAT:
10663     OverflowOp = ISD::UADDO;
10664     break;
10665   case ISD::SSUBSAT:
10666     OverflowOp = ISD::SSUBO;
10667     break;
10668   case ISD::USUBSAT:
10669     OverflowOp = ISD::USUBO;
10670     break;
10671   default:
10672     llvm_unreachable("Expected method to receive signed or unsigned saturation "
10673                      "addition or subtraction node.");
10674   }
10675 
10676   // FIXME: Should really try to split the vector in case it's legal on a
10677   // subvector.
10678   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
10679     return DAG.UnrollVectorOp(Node);
10680 
10681   unsigned BitWidth = LHS.getScalarValueSizeInBits();
10682   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10683   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
10684   SDValue SumDiff = Result.getValue(0);
10685   SDValue Overflow = Result.getValue(1);
10686   SDValue Zero = DAG.getConstant(0, dl, VT);
10687   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
10688 
10689   if (Opcode == ISD::UADDSAT) {
10690     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
10691       // (LHS + RHS) | OverflowMask
10692       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
10693       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
10694     }
10695     // Overflow ? 0xffff.... : (LHS + RHS)
10696     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
10697   }
10698 
10699   if (Opcode == ISD::USUBSAT) {
10700     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
10701       // (LHS - RHS) & ~OverflowMask
10702       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
10703       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
10704       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
10705     }
10706     // Overflow ? 0 : (LHS - RHS)
10707     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
10708   }
10709 
10710   if (Opcode == ISD::SADDSAT || Opcode == ISD::SSUBSAT) {
10711     APInt MinVal = APInt::getSignedMinValue(BitWidth);
10712     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
10713 
10714     KnownBits KnownLHS = DAG.computeKnownBits(LHS);
10715     KnownBits KnownRHS = DAG.computeKnownBits(RHS);
10716 
10717     // If either of the operand signs are known, then they are guaranteed to
10718     // only saturate in one direction. If non-negative they will saturate
10719     // towards SIGNED_MAX, if negative they will saturate towards SIGNED_MIN.
10720     //
10721     // In the case of ISD::SSUBSAT, 'x - y' is equivalent to 'x + (-y)', so the
10722     // sign of 'y' has to be flipped.
10723 
10724     bool LHSIsNonNegative = KnownLHS.isNonNegative();
10725     bool RHSIsNonNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNonNegative()
10726                                                    : KnownRHS.isNegative();
10727     if (LHSIsNonNegative || RHSIsNonNegative) {
10728       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
10729       return DAG.getSelect(dl, VT, Overflow, SatMax, SumDiff);
10730     }
10731 
10732     bool LHSIsNegative = KnownLHS.isNegative();
10733     bool RHSIsNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNegative()
10734                                                 : KnownRHS.isNonNegative();
10735     if (LHSIsNegative || RHSIsNegative) {
10736       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
10737       return DAG.getSelect(dl, VT, Overflow, SatMin, SumDiff);
10738     }
10739   }
10740 
10741   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
10742   APInt MinVal = APInt::getSignedMinValue(BitWidth);
10743   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
10744   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
10745                               DAG.getConstant(BitWidth - 1, dl, VT));
10746   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
10747   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
10748 }
10749 
10750 SDValue TargetLowering::expandCMP(SDNode *Node, SelectionDAG &DAG) const {
10751   unsigned Opcode = Node->getOpcode();
10752   SDValue LHS = Node->getOperand(0);
10753   SDValue RHS = Node->getOperand(1);
10754   EVT VT = LHS.getValueType();
10755   EVT ResVT = Node->getValueType(0);
10756   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10757   SDLoc dl(Node);
10758 
10759   auto LTPredicate = (Opcode == ISD::UCMP ? ISD::SETULT : ISD::SETLT);
10760   auto GTPredicate = (Opcode == ISD::UCMP ? ISD::SETUGT : ISD::SETGT);
10761   SDValue IsLT = DAG.getSetCC(dl, BoolVT, LHS, RHS, LTPredicate);
10762   SDValue IsGT = DAG.getSetCC(dl, BoolVT, LHS, RHS, GTPredicate);
10763 
10764   // We can't perform arithmetic on i1 values. Extending them would
10765   // probably result in worse codegen, so let's just use two selects instead.
10766   // Some targets are also just better off using selects rather than subtraction
10767   // because one of the conditions can be merged with one of the selects.
10768   // And finally, if we don't know the contents of high bits of a boolean value
10769   // we can't perform any arithmetic either.
10770   if (shouldExpandCmpUsingSelects(VT) || BoolVT.getScalarSizeInBits() == 1 ||
10771       getBooleanContents(BoolVT) == UndefinedBooleanContent) {
10772     SDValue SelectZeroOrOne =
10773         DAG.getSelect(dl, ResVT, IsGT, DAG.getConstant(1, dl, ResVT),
10774                       DAG.getConstant(0, dl, ResVT));
10775     return DAG.getSelect(dl, ResVT, IsLT, DAG.getAllOnesConstant(dl, ResVT),
10776                          SelectZeroOrOne);
10777   }
10778 
10779   if (getBooleanContents(BoolVT) == ZeroOrNegativeOneBooleanContent)
10780     std::swap(IsGT, IsLT);
10781   return DAG.getSExtOrTrunc(DAG.getNode(ISD::SUB, dl, BoolVT, IsGT, IsLT), dl,
10782                             ResVT);
10783 }
10784 
10785 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
10786   unsigned Opcode = Node->getOpcode();
10787   bool IsSigned = Opcode == ISD::SSHLSAT;
10788   SDValue LHS = Node->getOperand(0);
10789   SDValue RHS = Node->getOperand(1);
10790   EVT VT = LHS.getValueType();
10791   SDLoc dl(Node);
10792 
10793   assert((Node->getOpcode() == ISD::SSHLSAT ||
10794           Node->getOpcode() == ISD::USHLSAT) &&
10795           "Expected a SHLSAT opcode");
10796   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
10797   assert(VT.isInteger() && "Expected operands to be integers");
10798 
10799   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
10800     return DAG.UnrollVectorOp(Node);
10801 
10802   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
10803 
10804   unsigned BW = VT.getScalarSizeInBits();
10805   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10806   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
10807   SDValue Orig =
10808       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
10809 
10810   SDValue SatVal;
10811   if (IsSigned) {
10812     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
10813     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
10814     SDValue Cond =
10815         DAG.getSetCC(dl, BoolVT, LHS, DAG.getConstant(0, dl, VT), ISD::SETLT);
10816     SatVal = DAG.getSelect(dl, VT, Cond, SatMin, SatMax);
10817   } else {
10818     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
10819   }
10820   SDValue Cond = DAG.getSetCC(dl, BoolVT, LHS, Orig, ISD::SETNE);
10821   return DAG.getSelect(dl, VT, Cond, SatVal, Result);
10822 }
10823 
10824 void TargetLowering::forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl,
10825                                         bool Signed, EVT WideVT,
10826                                         const SDValue LL, const SDValue LH,
10827                                         const SDValue RL, const SDValue RH,
10828                                         SDValue &Lo, SDValue &Hi) const {
10829   // We can fall back to a libcall with an illegal type for the MUL if we
10830   // have a libcall big enough.
10831   // Also, we can fall back to a division in some cases, but that's a big
10832   // performance hit in the general case.
10833   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
10834   if (WideVT == MVT::i16)
10835     LC = RTLIB::MUL_I16;
10836   else if (WideVT == MVT::i32)
10837     LC = RTLIB::MUL_I32;
10838   else if (WideVT == MVT::i64)
10839     LC = RTLIB::MUL_I64;
10840   else if (WideVT == MVT::i128)
10841     LC = RTLIB::MUL_I128;
10842 
10843   if (LC == RTLIB::UNKNOWN_LIBCALL || !getLibcallName(LC)) {
10844     // We'll expand the multiplication by brute force because we have no other
10845     // options. This is a trivially-generalized version of the code from
10846     // Hacker's Delight (itself derived from Knuth's Algorithm M from section
10847     // 4.3.1).
10848     EVT VT = LL.getValueType();
10849     unsigned Bits = VT.getSizeInBits();
10850     unsigned HalfBits = Bits >> 1;
10851     SDValue Mask =
10852         DAG.getConstant(APInt::getLowBitsSet(Bits, HalfBits), dl, VT);
10853     SDValue LLL = DAG.getNode(ISD::AND, dl, VT, LL, Mask);
10854     SDValue RLL = DAG.getNode(ISD::AND, dl, VT, RL, Mask);
10855 
10856     SDValue T = DAG.getNode(ISD::MUL, dl, VT, LLL, RLL);
10857     SDValue TL = DAG.getNode(ISD::AND, dl, VT, T, Mask);
10858 
10859     SDValue Shift = DAG.getShiftAmountConstant(HalfBits, VT, dl);
10860     SDValue TH = DAG.getNode(ISD::SRL, dl, VT, T, Shift);
10861     SDValue LLH = DAG.getNode(ISD::SRL, dl, VT, LL, Shift);
10862     SDValue RLH = DAG.getNode(ISD::SRL, dl, VT, RL, Shift);
10863 
10864     SDValue U = DAG.getNode(ISD::ADD, dl, VT,
10865                             DAG.getNode(ISD::MUL, dl, VT, LLH, RLL), TH);
10866     SDValue UL = DAG.getNode(ISD::AND, dl, VT, U, Mask);
10867     SDValue UH = DAG.getNode(ISD::SRL, dl, VT, U, Shift);
10868 
10869     SDValue V = DAG.getNode(ISD::ADD, dl, VT,
10870                             DAG.getNode(ISD::MUL, dl, VT, LLL, RLH), UL);
10871     SDValue VH = DAG.getNode(ISD::SRL, dl, VT, V, Shift);
10872 
10873     SDValue W =
10874         DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::MUL, dl, VT, LLH, RLH),
10875                     DAG.getNode(ISD::ADD, dl, VT, UH, VH));
10876     Lo = DAG.getNode(ISD::ADD, dl, VT, TL,
10877                      DAG.getNode(ISD::SHL, dl, VT, V, Shift));
10878 
10879     Hi = DAG.getNode(ISD::ADD, dl, VT, W,
10880                      DAG.getNode(ISD::ADD, dl, VT,
10881                                  DAG.getNode(ISD::MUL, dl, VT, RH, LL),
10882                                  DAG.getNode(ISD::MUL, dl, VT, RL, LH)));
10883   } else {
10884     // Attempt a libcall.
10885     SDValue Ret;
10886     TargetLowering::MakeLibCallOptions CallOptions;
10887     CallOptions.setIsSigned(Signed);
10888     CallOptions.setIsPostTypeLegalization(true);
10889     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
10890       // Halves of WideVT are packed into registers in different order
10891       // depending on platform endianness. This is usually handled by
10892       // the C calling convention, but we can't defer to it in
10893       // the legalizer.
10894       SDValue Args[] = {LL, LH, RL, RH};
10895       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
10896     } else {
10897       SDValue Args[] = {LH, LL, RH, RL};
10898       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
10899     }
10900     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
10901            "Ret value is a collection of constituent nodes holding result.");
10902     if (DAG.getDataLayout().isLittleEndian()) {
10903       // Same as above.
10904       Lo = Ret.getOperand(0);
10905       Hi = Ret.getOperand(1);
10906     } else {
10907       Lo = Ret.getOperand(1);
10908       Hi = Ret.getOperand(0);
10909     }
10910   }
10911 }
10912 
10913 void TargetLowering::forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl,
10914                                         bool Signed, const SDValue LHS,
10915                                         const SDValue RHS, SDValue &Lo,
10916                                         SDValue &Hi) const {
10917   EVT VT = LHS.getValueType();
10918   assert(RHS.getValueType() == VT && "Mismatching operand types");
10919 
10920   SDValue HiLHS;
10921   SDValue HiRHS;
10922   if (Signed) {
10923     // The high part is obtained by SRA'ing all but one of the bits of low
10924     // part.
10925     unsigned LoSize = VT.getFixedSizeInBits();
10926     HiLHS = DAG.getNode(
10927         ISD::SRA, dl, VT, LHS,
10928         DAG.getConstant(LoSize - 1, dl, getPointerTy(DAG.getDataLayout())));
10929     HiRHS = DAG.getNode(
10930         ISD::SRA, dl, VT, RHS,
10931         DAG.getConstant(LoSize - 1, dl, getPointerTy(DAG.getDataLayout())));
10932   } else {
10933     HiLHS = DAG.getConstant(0, dl, VT);
10934     HiRHS = DAG.getConstant(0, dl, VT);
10935   }
10936   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
10937   forceExpandWideMUL(DAG, dl, Signed, WideVT, LHS, HiLHS, RHS, HiRHS, Lo, Hi);
10938 }
10939 
10940 SDValue
10941 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
10942   assert((Node->getOpcode() == ISD::SMULFIX ||
10943           Node->getOpcode() == ISD::UMULFIX ||
10944           Node->getOpcode() == ISD::SMULFIXSAT ||
10945           Node->getOpcode() == ISD::UMULFIXSAT) &&
10946          "Expected a fixed point multiplication opcode");
10947 
10948   SDLoc dl(Node);
10949   SDValue LHS = Node->getOperand(0);
10950   SDValue RHS = Node->getOperand(1);
10951   EVT VT = LHS.getValueType();
10952   unsigned Scale = Node->getConstantOperandVal(2);
10953   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
10954                      Node->getOpcode() == ISD::UMULFIXSAT);
10955   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
10956                  Node->getOpcode() == ISD::SMULFIXSAT);
10957   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
10958   unsigned VTSize = VT.getScalarSizeInBits();
10959 
10960   if (!Scale) {
10961     // [us]mul.fix(a, b, 0) -> mul(a, b)
10962     if (!Saturating) {
10963       if (isOperationLegalOrCustom(ISD::MUL, VT))
10964         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
10965     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
10966       SDValue Result =
10967           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
10968       SDValue Product = Result.getValue(0);
10969       SDValue Overflow = Result.getValue(1);
10970       SDValue Zero = DAG.getConstant(0, dl, VT);
10971 
10972       APInt MinVal = APInt::getSignedMinValue(VTSize);
10973       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
10974       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
10975       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
10976       // Xor the inputs, if resulting sign bit is 0 the product will be
10977       // positive, else negative.
10978       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
10979       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
10980       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
10981       return DAG.getSelect(dl, VT, Overflow, Result, Product);
10982     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
10983       SDValue Result =
10984           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
10985       SDValue Product = Result.getValue(0);
10986       SDValue Overflow = Result.getValue(1);
10987 
10988       APInt MaxVal = APInt::getMaxValue(VTSize);
10989       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
10990       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
10991     }
10992   }
10993 
10994   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
10995          "Expected scale to be less than the number of bits if signed or at "
10996          "most the number of bits if unsigned.");
10997   assert(LHS.getValueType() == RHS.getValueType() &&
10998          "Expected both operands to be the same type");
10999 
11000   // Get the upper and lower bits of the result.
11001   SDValue Lo, Hi;
11002   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
11003   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
11004   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VTSize * 2);
11005   if (VT.isVector())
11006     WideVT =
11007         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
11008   if (isOperationLegalOrCustom(LoHiOp, VT)) {
11009     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
11010     Lo = Result.getValue(0);
11011     Hi = Result.getValue(1);
11012   } else if (isOperationLegalOrCustom(HiOp, VT)) {
11013     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
11014     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
11015   } else if (isOperationLegalOrCustom(ISD::MUL, WideVT)) {
11016     // Try for a multiplication using a wider type.
11017     unsigned Ext = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
11018     SDValue LHSExt = DAG.getNode(Ext, dl, WideVT, LHS);
11019     SDValue RHSExt = DAG.getNode(Ext, dl, WideVT, RHS);
11020     SDValue Res = DAG.getNode(ISD::MUL, dl, WideVT, LHSExt, RHSExt);
11021     Lo = DAG.getNode(ISD::TRUNCATE, dl, VT, Res);
11022     SDValue Shifted =
11023         DAG.getNode(ISD::SRA, dl, WideVT, Res,
11024                     DAG.getShiftAmountConstant(VTSize, WideVT, dl));
11025     Hi = DAG.getNode(ISD::TRUNCATE, dl, VT, Shifted);
11026   } else if (VT.isVector()) {
11027     return SDValue();
11028   } else {
11029     forceExpandWideMUL(DAG, dl, Signed, LHS, RHS, Lo, Hi);
11030   }
11031 
11032   if (Scale == VTSize)
11033     // Result is just the top half since we'd be shifting by the width of the
11034     // operand. Overflow impossible so this works for both UMULFIX and
11035     // UMULFIXSAT.
11036     return Hi;
11037 
11038   // The result will need to be shifted right by the scale since both operands
11039   // are scaled. The result is given to us in 2 halves, so we only want part of
11040   // both in the result.
11041   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
11042                                DAG.getShiftAmountConstant(Scale, VT, dl));
11043   if (!Saturating)
11044     return Result;
11045 
11046   if (!Signed) {
11047     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
11048     // widened multiplication) aren't all zeroes.
11049 
11050     // Saturate to max if ((Hi >> Scale) != 0),
11051     // which is the same as if (Hi > ((1 << Scale) - 1))
11052     APInt MaxVal = APInt::getMaxValue(VTSize);
11053     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
11054                                       dl, VT);
11055     Result = DAG.getSelectCC(dl, Hi, LowMask,
11056                              DAG.getConstant(MaxVal, dl, VT), Result,
11057                              ISD::SETUGT);
11058 
11059     return Result;
11060   }
11061 
11062   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
11063   // widened multiplication) aren't all ones or all zeroes.
11064 
11065   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
11066   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
11067 
11068   if (Scale == 0) {
11069     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
11070                                DAG.getShiftAmountConstant(VTSize - 1, VT, dl));
11071     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
11072     // Saturated to SatMin if wide product is negative, and SatMax if wide
11073     // product is positive ...
11074     SDValue Zero = DAG.getConstant(0, dl, VT);
11075     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
11076                                                ISD::SETLT);
11077     // ... but only if we overflowed.
11078     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
11079   }
11080 
11081   //  We handled Scale==0 above so all the bits to examine is in Hi.
11082 
11083   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
11084   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
11085   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
11086                                     dl, VT);
11087   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
11088   // Saturate to min if (Hi >> (Scale - 1)) < -1),
11089   // which is the same as if (HI < (-1 << (Scale - 1))
11090   SDValue HighMask =
11091       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
11092                       dl, VT);
11093   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
11094   return Result;
11095 }
11096 
11097 SDValue
11098 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
11099                                     SDValue LHS, SDValue RHS,
11100                                     unsigned Scale, SelectionDAG &DAG) const {
11101   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
11102           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
11103          "Expected a fixed point division opcode");
11104 
11105   EVT VT = LHS.getValueType();
11106   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
11107   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
11108   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
11109 
11110   // If there is enough room in the type to upscale the LHS or downscale the
11111   // RHS before the division, we can perform it in this type without having to
11112   // resize. For signed operations, the LHS headroom is the number of
11113   // redundant sign bits, and for unsigned ones it is the number of zeroes.
11114   // The headroom for the RHS is the number of trailing zeroes.
11115   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
11116                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
11117   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
11118 
11119   // For signed saturating operations, we need to be able to detect true integer
11120   // division overflow; that is, when you have MIN / -EPS. However, this
11121   // is undefined behavior and if we emit divisions that could take such
11122   // values it may cause undesired behavior (arithmetic exceptions on x86, for
11123   // example).
11124   // Avoid this by requiring an extra bit so that we never get this case.
11125   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
11126   // signed saturating division, we need to emit a whopping 32-bit division.
11127   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
11128     return SDValue();
11129 
11130   unsigned LHSShift = std::min(LHSLead, Scale);
11131   unsigned RHSShift = Scale - LHSShift;
11132 
11133   // At this point, we know that if we shift the LHS up by LHSShift and the
11134   // RHS down by RHSShift, we can emit a regular division with a final scaling
11135   // factor of Scale.
11136 
11137   if (LHSShift)
11138     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
11139                       DAG.getShiftAmountConstant(LHSShift, VT, dl));
11140   if (RHSShift)
11141     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
11142                       DAG.getShiftAmountConstant(RHSShift, VT, dl));
11143 
11144   SDValue Quot;
11145   if (Signed) {
11146     // For signed operations, if the resulting quotient is negative and the
11147     // remainder is nonzero, subtract 1 from the quotient to round towards
11148     // negative infinity.
11149     SDValue Rem;
11150     // FIXME: Ideally we would always produce an SDIVREM here, but if the
11151     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
11152     // we couldn't just form a libcall, but the type legalizer doesn't do it.
11153     if (isTypeLegal(VT) &&
11154         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
11155       Quot = DAG.getNode(ISD::SDIVREM, dl,
11156                          DAG.getVTList(VT, VT),
11157                          LHS, RHS);
11158       Rem = Quot.getValue(1);
11159       Quot = Quot.getValue(0);
11160     } else {
11161       Quot = DAG.getNode(ISD::SDIV, dl, VT,
11162                          LHS, RHS);
11163       Rem = DAG.getNode(ISD::SREM, dl, VT,
11164                         LHS, RHS);
11165     }
11166     SDValue Zero = DAG.getConstant(0, dl, VT);
11167     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
11168     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
11169     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
11170     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
11171     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
11172                                DAG.getConstant(1, dl, VT));
11173     Quot = DAG.getSelect(dl, VT,
11174                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
11175                          Sub1, Quot);
11176   } else
11177     Quot = DAG.getNode(ISD::UDIV, dl, VT,
11178                        LHS, RHS);
11179 
11180   return Quot;
11181 }
11182 
11183 void TargetLowering::expandUADDSUBO(
11184     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
11185   SDLoc dl(Node);
11186   SDValue LHS = Node->getOperand(0);
11187   SDValue RHS = Node->getOperand(1);
11188   bool IsAdd = Node->getOpcode() == ISD::UADDO;
11189 
11190   // If UADDO_CARRY/SUBO_CARRY is legal, use that instead.
11191   unsigned OpcCarry = IsAdd ? ISD::UADDO_CARRY : ISD::USUBO_CARRY;
11192   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
11193     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
11194     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
11195                                     { LHS, RHS, CarryIn });
11196     Result = SDValue(NodeCarry.getNode(), 0);
11197     Overflow = SDValue(NodeCarry.getNode(), 1);
11198     return;
11199   }
11200 
11201   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
11202                             LHS.getValueType(), LHS, RHS);
11203 
11204   EVT ResultType = Node->getValueType(1);
11205   EVT SetCCType = getSetCCResultType(
11206       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
11207   SDValue SetCC;
11208   if (IsAdd && isOneConstant(RHS)) {
11209     // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces
11210     // the live range of X. We assume comparing with 0 is cheap.
11211     // The general case (X + C) < C is not necessarily beneficial. Although we
11212     // reduce the live range of X, we may introduce the materialization of
11213     // constant C.
11214     SetCC =
11215         DAG.getSetCC(dl, SetCCType, Result,
11216                      DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ);
11217   } else if (IsAdd && isAllOnesConstant(RHS)) {
11218     // Special case: uaddo X, -1 overflows if X != 0.
11219     SetCC =
11220         DAG.getSetCC(dl, SetCCType, LHS,
11221                      DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETNE);
11222   } else {
11223     ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
11224     SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
11225   }
11226   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
11227 }
11228 
11229 void TargetLowering::expandSADDSUBO(
11230     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
11231   SDLoc dl(Node);
11232   SDValue LHS = Node->getOperand(0);
11233   SDValue RHS = Node->getOperand(1);
11234   bool IsAdd = Node->getOpcode() == ISD::SADDO;
11235 
11236   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
11237                             LHS.getValueType(), LHS, RHS);
11238 
11239   EVT ResultType = Node->getValueType(1);
11240   EVT OType = getSetCCResultType(
11241       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
11242 
11243   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
11244   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
11245   if (isOperationLegal(OpcSat, LHS.getValueType())) {
11246     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
11247     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
11248     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
11249     return;
11250   }
11251 
11252   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
11253 
11254   // For an addition, the result should be less than one of the operands (LHS)
11255   // if and only if the other operand (RHS) is negative, otherwise there will
11256   // be overflow.
11257   // For a subtraction, the result should be less than one of the operands
11258   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
11259   // otherwise there will be overflow.
11260   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
11261   SDValue ConditionRHS =
11262       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
11263 
11264   Overflow = DAG.getBoolExtOrTrunc(
11265       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
11266       ResultType, ResultType);
11267 }
11268 
11269 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
11270                                 SDValue &Overflow, SelectionDAG &DAG) const {
11271   SDLoc dl(Node);
11272   EVT VT = Node->getValueType(0);
11273   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
11274   SDValue LHS = Node->getOperand(0);
11275   SDValue RHS = Node->getOperand(1);
11276   bool isSigned = Node->getOpcode() == ISD::SMULO;
11277 
11278   // For power-of-two multiplications we can use a simpler shift expansion.
11279   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
11280     const APInt &C = RHSC->getAPIntValue();
11281     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
11282     if (C.isPowerOf2()) {
11283       // smulo(x, signed_min) is same as umulo(x, signed_min).
11284       bool UseArithShift = isSigned && !C.isMinSignedValue();
11285       SDValue ShiftAmt = DAG.getShiftAmountConstant(C.logBase2(), VT, dl);
11286       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
11287       Overflow = DAG.getSetCC(dl, SetCCVT,
11288           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
11289                       dl, VT, Result, ShiftAmt),
11290           LHS, ISD::SETNE);
11291       return true;
11292     }
11293   }
11294 
11295   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
11296   if (VT.isVector())
11297     WideVT =
11298         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
11299 
11300   SDValue BottomHalf;
11301   SDValue TopHalf;
11302   static const unsigned Ops[2][3] =
11303       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
11304         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
11305   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
11306     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
11307     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
11308   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
11309     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
11310                              RHS);
11311     TopHalf = BottomHalf.getValue(1);
11312   } else if (isTypeLegal(WideVT)) {
11313     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
11314     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
11315     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
11316     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
11317     SDValue ShiftAmt =
11318         DAG.getShiftAmountConstant(VT.getScalarSizeInBits(), WideVT, dl);
11319     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
11320                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
11321   } else {
11322     if (VT.isVector())
11323       return false;
11324 
11325     forceExpandWideMUL(DAG, dl, isSigned, LHS, RHS, BottomHalf, TopHalf);
11326   }
11327 
11328   Result = BottomHalf;
11329   if (isSigned) {
11330     SDValue ShiftAmt = DAG.getShiftAmountConstant(
11331         VT.getScalarSizeInBits() - 1, BottomHalf.getValueType(), dl);
11332     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
11333     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
11334   } else {
11335     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
11336                             DAG.getConstant(0, dl, VT), ISD::SETNE);
11337   }
11338 
11339   // Truncate the result if SetCC returns a larger type than needed.
11340   EVT RType = Node->getValueType(1);
11341   if (RType.bitsLT(Overflow.getValueType()))
11342     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
11343 
11344   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
11345          "Unexpected result type for S/UMULO legalization");
11346   return true;
11347 }
11348 
11349 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
11350   SDLoc dl(Node);
11351   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
11352   SDValue Op = Node->getOperand(0);
11353   EVT VT = Op.getValueType();
11354 
11355   if (VT.isScalableVector())
11356     report_fatal_error(
11357         "Expanding reductions for scalable vectors is undefined.");
11358 
11359   // Try to use a shuffle reduction for power of two vectors.
11360   if (VT.isPow2VectorType()) {
11361     while (VT.getVectorNumElements() > 1) {
11362       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
11363       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
11364         break;
11365 
11366       SDValue Lo, Hi;
11367       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
11368       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi, Node->getFlags());
11369       VT = HalfVT;
11370     }
11371   }
11372 
11373   EVT EltVT = VT.getVectorElementType();
11374   unsigned NumElts = VT.getVectorNumElements();
11375 
11376   SmallVector<SDValue, 8> Ops;
11377   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
11378 
11379   SDValue Res = Ops[0];
11380   for (unsigned i = 1; i < NumElts; i++)
11381     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
11382 
11383   // Result type may be wider than element type.
11384   if (EltVT != Node->getValueType(0))
11385     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
11386   return Res;
11387 }
11388 
11389 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
11390   SDLoc dl(Node);
11391   SDValue AccOp = Node->getOperand(0);
11392   SDValue VecOp = Node->getOperand(1);
11393   SDNodeFlags Flags = Node->getFlags();
11394 
11395   EVT VT = VecOp.getValueType();
11396   EVT EltVT = VT.getVectorElementType();
11397 
11398   if (VT.isScalableVector())
11399     report_fatal_error(
11400         "Expanding reductions for scalable vectors is undefined.");
11401 
11402   unsigned NumElts = VT.getVectorNumElements();
11403 
11404   SmallVector<SDValue, 8> Ops;
11405   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
11406 
11407   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
11408 
11409   SDValue Res = AccOp;
11410   for (unsigned i = 0; i < NumElts; i++)
11411     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
11412 
11413   return Res;
11414 }
11415 
11416 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
11417                                SelectionDAG &DAG) const {
11418   EVT VT = Node->getValueType(0);
11419   SDLoc dl(Node);
11420   bool isSigned = Node->getOpcode() == ISD::SREM;
11421   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
11422   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
11423   SDValue Dividend = Node->getOperand(0);
11424   SDValue Divisor = Node->getOperand(1);
11425   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
11426     SDVTList VTs = DAG.getVTList(VT, VT);
11427     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
11428     return true;
11429   }
11430   if (isOperationLegalOrCustom(DivOpc, VT)) {
11431     // X % Y -> X-X/Y*Y
11432     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
11433     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
11434     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
11435     return true;
11436   }
11437   return false;
11438 }
11439 
11440 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
11441                                             SelectionDAG &DAG) const {
11442   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
11443   SDLoc dl(SDValue(Node, 0));
11444   SDValue Src = Node->getOperand(0);
11445 
11446   // DstVT is the result type, while SatVT is the size to which we saturate
11447   EVT SrcVT = Src.getValueType();
11448   EVT DstVT = Node->getValueType(0);
11449 
11450   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
11451   unsigned SatWidth = SatVT.getScalarSizeInBits();
11452   unsigned DstWidth = DstVT.getScalarSizeInBits();
11453   assert(SatWidth <= DstWidth &&
11454          "Expected saturation width smaller than result width");
11455 
11456   // Determine minimum and maximum integer values and their corresponding
11457   // floating-point values.
11458   APInt MinInt, MaxInt;
11459   if (IsSigned) {
11460     MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth);
11461     MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth);
11462   } else {
11463     MinInt = APInt::getMinValue(SatWidth).zext(DstWidth);
11464     MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth);
11465   }
11466 
11467   // We cannot risk emitting FP_TO_XINT nodes with a source VT of [b]f16, as
11468   // libcall emission cannot handle this. Large result types will fail.
11469   if (SrcVT == MVT::f16 || SrcVT == MVT::bf16) {
11470     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
11471     SrcVT = Src.getValueType();
11472   }
11473 
11474   const fltSemantics &Sem = SrcVT.getFltSemantics();
11475   APFloat MinFloat(Sem);
11476   APFloat MaxFloat(Sem);
11477 
11478   APFloat::opStatus MinStatus =
11479       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
11480   APFloat::opStatus MaxStatus =
11481       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
11482   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
11483                              !(MaxStatus & APFloat::opStatus::opInexact);
11484 
11485   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
11486   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
11487 
11488   // If the integer bounds are exactly representable as floats and min/max are
11489   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
11490   // of comparisons and selects.
11491   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
11492                      isOperationLegal(ISD::FMAXNUM, SrcVT);
11493   if (AreExactFloatBounds && MinMaxLegal) {
11494     SDValue Clamped = Src;
11495 
11496     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
11497     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
11498     // Clamp by MaxFloat from above. NaN cannot occur.
11499     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
11500     // Convert clamped value to integer.
11501     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
11502                                   dl, DstVT, Clamped);
11503 
11504     // In the unsigned case we're done, because we mapped NaN to MinFloat,
11505     // which will cast to zero.
11506     if (!IsSigned)
11507       return FpToInt;
11508 
11509     // Otherwise, select 0 if Src is NaN.
11510     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
11511     EVT SetCCVT =
11512         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
11513     SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO);
11514     return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, FpToInt);
11515   }
11516 
11517   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
11518   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
11519 
11520   // Result of direct conversion. The assumption here is that the operation is
11521   // non-trapping and it's fine to apply it to an out-of-range value if we
11522   // select it away later.
11523   SDValue FpToInt =
11524       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
11525 
11526   SDValue Select = FpToInt;
11527 
11528   EVT SetCCVT =
11529       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
11530 
11531   // If Src ULT MinFloat, select MinInt. In particular, this also selects
11532   // MinInt if Src is NaN.
11533   SDValue ULT = DAG.getSetCC(dl, SetCCVT, Src, MinFloatNode, ISD::SETULT);
11534   Select = DAG.getSelect(dl, DstVT, ULT, MinIntNode, Select);
11535   // If Src OGT MaxFloat, select MaxInt.
11536   SDValue OGT = DAG.getSetCC(dl, SetCCVT, Src, MaxFloatNode, ISD::SETOGT);
11537   Select = DAG.getSelect(dl, DstVT, OGT, MaxIntNode, Select);
11538 
11539   // In the unsigned case we are done, because we mapped NaN to MinInt, which
11540   // is already zero.
11541   if (!IsSigned)
11542     return Select;
11543 
11544   // Otherwise, select 0 if Src is NaN.
11545   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
11546   SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO);
11547   return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, Select);
11548 }
11549 
11550 SDValue TargetLowering::expandRoundInexactToOdd(EVT ResultVT, SDValue Op,
11551                                                 const SDLoc &dl,
11552                                                 SelectionDAG &DAG) const {
11553   EVT OperandVT = Op.getValueType();
11554   if (OperandVT.getScalarType() == ResultVT.getScalarType())
11555     return Op;
11556   EVT ResultIntVT = ResultVT.changeTypeToInteger();
11557   // We are rounding binary64/binary128 -> binary32 -> bfloat16. This
11558   // can induce double-rounding which may alter the results. We can
11559   // correct for this using a trick explained in: Boldo, Sylvie, and
11560   // Guillaume Melquiond. "When double rounding is odd." 17th IMACS
11561   // World Congress. 2005.
11562   unsigned BitSize = OperandVT.getScalarSizeInBits();
11563   EVT WideIntVT = OperandVT.changeTypeToInteger();
11564   SDValue OpAsInt = DAG.getBitcast(WideIntVT, Op);
11565   SDValue SignBit =
11566       DAG.getNode(ISD::AND, dl, WideIntVT, OpAsInt,
11567                   DAG.getConstant(APInt::getSignMask(BitSize), dl, WideIntVT));
11568   SDValue AbsWide;
11569   if (isOperationLegalOrCustom(ISD::FABS, OperandVT)) {
11570     AbsWide = DAG.getNode(ISD::FABS, dl, OperandVT, Op);
11571   } else {
11572     SDValue ClearedSign = DAG.getNode(
11573         ISD::AND, dl, WideIntVT, OpAsInt,
11574         DAG.getConstant(APInt::getSignedMaxValue(BitSize), dl, WideIntVT));
11575     AbsWide = DAG.getBitcast(OperandVT, ClearedSign);
11576   }
11577   SDValue AbsNarrow = DAG.getFPExtendOrRound(AbsWide, dl, ResultVT);
11578   SDValue AbsNarrowAsWide = DAG.getFPExtendOrRound(AbsNarrow, dl, OperandVT);
11579 
11580   // We can keep the narrow value as-is if narrowing was exact (no
11581   // rounding error), the wide value was NaN (the narrow value is also
11582   // NaN and should be preserved) or if we rounded to the odd value.
11583   SDValue NarrowBits = DAG.getNode(ISD::BITCAST, dl, ResultIntVT, AbsNarrow);
11584   SDValue One = DAG.getConstant(1, dl, ResultIntVT);
11585   SDValue NegativeOne = DAG.getAllOnesConstant(dl, ResultIntVT);
11586   SDValue And = DAG.getNode(ISD::AND, dl, ResultIntVT, NarrowBits, One);
11587   EVT ResultIntVTCCVT = getSetCCResultType(
11588       DAG.getDataLayout(), *DAG.getContext(), And.getValueType());
11589   SDValue Zero = DAG.getConstant(0, dl, ResultIntVT);
11590   // The result is already odd so we don't need to do anything.
11591   SDValue AlreadyOdd = DAG.getSetCC(dl, ResultIntVTCCVT, And, Zero, ISD::SETNE);
11592 
11593   EVT WideSetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
11594                                        AbsWide.getValueType());
11595   // We keep results which are exact, odd or NaN.
11596   SDValue KeepNarrow =
11597       DAG.getSetCC(dl, WideSetCCVT, AbsWide, AbsNarrowAsWide, ISD::SETUEQ);
11598   KeepNarrow = DAG.getNode(ISD::OR, dl, WideSetCCVT, KeepNarrow, AlreadyOdd);
11599   // We morally performed a round-down if AbsNarrow is smaller than
11600   // AbsWide.
11601   SDValue NarrowIsRd =
11602       DAG.getSetCC(dl, WideSetCCVT, AbsWide, AbsNarrowAsWide, ISD::SETOGT);
11603   // If the narrow value is odd or exact, pick it.
11604   // Otherwise, narrow is even and corresponds to either the rounded-up
11605   // or rounded-down value. If narrow is the rounded-down value, we want
11606   // the rounded-up value as it will be odd.
11607   SDValue Adjust = DAG.getSelect(dl, ResultIntVT, NarrowIsRd, One, NegativeOne);
11608   SDValue Adjusted = DAG.getNode(ISD::ADD, dl, ResultIntVT, NarrowBits, Adjust);
11609   Op = DAG.getSelect(dl, ResultIntVT, KeepNarrow, NarrowBits, Adjusted);
11610   int ShiftAmount = BitSize - ResultVT.getScalarSizeInBits();
11611   SDValue ShiftCnst = DAG.getShiftAmountConstant(ShiftAmount, WideIntVT, dl);
11612   SignBit = DAG.getNode(ISD::SRL, dl, WideIntVT, SignBit, ShiftCnst);
11613   SignBit = DAG.getNode(ISD::TRUNCATE, dl, ResultIntVT, SignBit);
11614   Op = DAG.getNode(ISD::OR, dl, ResultIntVT, Op, SignBit);
11615   return DAG.getNode(ISD::BITCAST, dl, ResultVT, Op);
11616 }
11617 
11618 SDValue TargetLowering::expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const {
11619   assert(Node->getOpcode() == ISD::FP_ROUND && "Unexpected opcode!");
11620   SDValue Op = Node->getOperand(0);
11621   EVT VT = Node->getValueType(0);
11622   SDLoc dl(Node);
11623   if (VT.getScalarType() == MVT::bf16) {
11624     if (Node->getConstantOperandVal(1) == 1) {
11625       return DAG.getNode(ISD::FP_TO_BF16, dl, VT, Node->getOperand(0));
11626     }
11627     EVT OperandVT = Op.getValueType();
11628     SDValue IsNaN = DAG.getSetCC(
11629         dl,
11630         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), OperandVT),
11631         Op, Op, ISD::SETUO);
11632 
11633     // We are rounding binary64/binary128 -> binary32 -> bfloat16. This
11634     // can induce double-rounding which may alter the results. We can
11635     // correct for this using a trick explained in: Boldo, Sylvie, and
11636     // Guillaume Melquiond. "When double rounding is odd." 17th IMACS
11637     // World Congress. 2005.
11638     EVT F32 = VT.isVector() ? VT.changeVectorElementType(MVT::f32) : MVT::f32;
11639     EVT I32 = F32.changeTypeToInteger();
11640     Op = expandRoundInexactToOdd(F32, Op, dl, DAG);
11641     Op = DAG.getNode(ISD::BITCAST, dl, I32, Op);
11642 
11643     // Conversions should set NaN's quiet bit. This also prevents NaNs from
11644     // turning into infinities.
11645     SDValue NaN =
11646         DAG.getNode(ISD::OR, dl, I32, Op, DAG.getConstant(0x400000, dl, I32));
11647 
11648     // Factor in the contribution of the low 16 bits.
11649     SDValue One = DAG.getConstant(1, dl, I32);
11650     SDValue Lsb = DAG.getNode(ISD::SRL, dl, I32, Op,
11651                               DAG.getShiftAmountConstant(16, I32, dl));
11652     Lsb = DAG.getNode(ISD::AND, dl, I32, Lsb, One);
11653     SDValue RoundingBias =
11654         DAG.getNode(ISD::ADD, dl, I32, DAG.getConstant(0x7fff, dl, I32), Lsb);
11655     SDValue Add = DAG.getNode(ISD::ADD, dl, I32, Op, RoundingBias);
11656 
11657     // Don't round if we had a NaN, we don't want to turn 0x7fffffff into
11658     // 0x80000000.
11659     Op = DAG.getSelect(dl, I32, IsNaN, NaN, Add);
11660 
11661     // Now that we have rounded, shift the bits into position.
11662     Op = DAG.getNode(ISD::SRL, dl, I32, Op,
11663                      DAG.getShiftAmountConstant(16, I32, dl));
11664     Op = DAG.getNode(ISD::BITCAST, dl, I32, Op);
11665     EVT I16 = I32.isVector() ? I32.changeVectorElementType(MVT::i16) : MVT::i16;
11666     Op = DAG.getNode(ISD::TRUNCATE, dl, I16, Op);
11667     return DAG.getNode(ISD::BITCAST, dl, VT, Op);
11668   }
11669   return SDValue();
11670 }
11671 
11672 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
11673                                            SelectionDAG &DAG) const {
11674   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
11675   assert(Node->getValueType(0).isScalableVector() &&
11676          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
11677 
11678   EVT VT = Node->getValueType(0);
11679   SDValue V1 = Node->getOperand(0);
11680   SDValue V2 = Node->getOperand(1);
11681   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
11682   SDLoc DL(Node);
11683 
11684   // Expand through memory thusly:
11685   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
11686   //  Store V1, Ptr
11687   //  Store V2, Ptr + sizeof(V1)
11688   //  If (Imm < 0)
11689   //    TrailingElts = -Imm
11690   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
11691   //  else
11692   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
11693   //  Res = Load Ptr
11694 
11695   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
11696 
11697   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
11698                                VT.getVectorElementCount() * 2);
11699   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
11700   EVT PtrVT = StackPtr.getValueType();
11701   auto &MF = DAG.getMachineFunction();
11702   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
11703   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
11704 
11705   // Store the lo part of CONCAT_VECTORS(V1, V2)
11706   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
11707   // Store the hi part of CONCAT_VECTORS(V1, V2)
11708   SDValue OffsetToV2 = DAG.getVScale(
11709       DL, PtrVT,
11710       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinValue()));
11711   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
11712   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
11713 
11714   if (Imm >= 0) {
11715     // Load back the required element. getVectorElementPointer takes care of
11716     // clamping the index if it's out-of-bounds.
11717     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
11718     // Load the spliced result
11719     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
11720                        MachinePointerInfo::getUnknownStack(MF));
11721   }
11722 
11723   uint64_t TrailingElts = -Imm;
11724 
11725   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
11726   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
11727   SDValue TrailingBytes =
11728       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
11729 
11730   if (TrailingElts > VT.getVectorMinNumElements()) {
11731     SDValue VLBytes =
11732         DAG.getVScale(DL, PtrVT,
11733                       APInt(PtrVT.getFixedSizeInBits(),
11734                             VT.getStoreSize().getKnownMinValue()));
11735     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
11736   }
11737 
11738   // Calculate the start address of the spliced result.
11739   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
11740 
11741   // Load the spliced result
11742   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
11743                      MachinePointerInfo::getUnknownStack(MF));
11744 }
11745 
11746 SDValue TargetLowering::expandVECTOR_COMPRESS(SDNode *Node,
11747                                               SelectionDAG &DAG) const {
11748   SDLoc DL(Node);
11749   SDValue Vec = Node->getOperand(0);
11750   SDValue Mask = Node->getOperand(1);
11751   SDValue Passthru = Node->getOperand(2);
11752 
11753   EVT VecVT = Vec.getValueType();
11754   EVT ScalarVT = VecVT.getScalarType();
11755   EVT MaskVT = Mask.getValueType();
11756   EVT MaskScalarVT = MaskVT.getScalarType();
11757 
11758   // Needs to be handled by targets that have scalable vector types.
11759   if (VecVT.isScalableVector())
11760     report_fatal_error("Cannot expand masked_compress for scalable vectors.");
11761 
11762   SDValue StackPtr = DAG.CreateStackTemporary(
11763       VecVT.getStoreSize(), DAG.getReducedAlign(VecVT, /*UseABI=*/false));
11764   int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
11765   MachinePointerInfo PtrInfo =
11766       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
11767 
11768   MVT PositionVT = getVectorIdxTy(DAG.getDataLayout());
11769   SDValue Chain = DAG.getEntryNode();
11770   SDValue OutPos = DAG.getConstant(0, DL, PositionVT);
11771 
11772   bool HasPassthru = !Passthru.isUndef();
11773 
11774   // If we have a passthru vector, store it on the stack, overwrite the matching
11775   // positions and then re-write the last element that was potentially
11776   // overwritten even though mask[i] = false.
11777   if (HasPassthru)
11778     Chain = DAG.getStore(Chain, DL, Passthru, StackPtr, PtrInfo);
11779 
11780   SDValue LastWriteVal;
11781   APInt PassthruSplatVal;
11782   bool IsSplatPassthru =
11783       ISD::isConstantSplatVector(Passthru.getNode(), PassthruSplatVal);
11784 
11785   if (IsSplatPassthru) {
11786     // As we do not know which position we wrote to last, we cannot simply
11787     // access that index from the passthru vector. So we first check if passthru
11788     // is a splat vector, to use any element ...
11789     LastWriteVal = DAG.getConstant(PassthruSplatVal, DL, ScalarVT);
11790   } else if (HasPassthru) {
11791     // ... if it is not a splat vector, we need to get the passthru value at
11792     // position = popcount(mask) and re-load it from the stack before it is
11793     // overwritten in the loop below.
11794     EVT PopcountVT = ScalarVT.changeTypeToInteger();
11795     SDValue Popcount = DAG.getNode(
11796         ISD::TRUNCATE, DL, MaskVT.changeVectorElementType(MVT::i1), Mask);
11797     Popcount =
11798         DAG.getNode(ISD::ZERO_EXTEND, DL,
11799                     MaskVT.changeVectorElementType(PopcountVT), Popcount);
11800     Popcount = DAG.getNode(ISD::VECREDUCE_ADD, DL, PopcountVT, Popcount);
11801     SDValue LastElmtPtr =
11802         getVectorElementPointer(DAG, StackPtr, VecVT, Popcount);
11803     LastWriteVal = DAG.getLoad(
11804         ScalarVT, DL, Chain, LastElmtPtr,
11805         MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
11806     Chain = LastWriteVal.getValue(1);
11807   }
11808 
11809   unsigned NumElms = VecVT.getVectorNumElements();
11810   for (unsigned I = 0; I < NumElms; I++) {
11811     SDValue Idx = DAG.getVectorIdxConstant(I, DL);
11812 
11813     SDValue ValI = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, Vec, Idx);
11814     SDValue OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos);
11815     Chain = DAG.getStore(
11816         Chain, DL, ValI, OutPtr,
11817         MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
11818 
11819     // Get the mask value and add it to the current output position. This
11820     // either increments by 1 if MaskI is true or adds 0 otherwise.
11821     // Freeze in case we have poison/undef mask entries.
11822     SDValue MaskI = DAG.getFreeze(
11823         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskScalarVT, Mask, Idx));
11824     MaskI = DAG.getFreeze(MaskI);
11825     MaskI = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, MaskI);
11826     MaskI = DAG.getNode(ISD::ZERO_EXTEND, DL, PositionVT, MaskI);
11827     OutPos = DAG.getNode(ISD::ADD, DL, PositionVT, OutPos, MaskI);
11828 
11829     if (HasPassthru && I == NumElms - 1) {
11830       SDValue EndOfVector =
11831           DAG.getConstant(VecVT.getVectorNumElements() - 1, DL, PositionVT);
11832       SDValue AllLanesSelected =
11833           DAG.getSetCC(DL, MVT::i1, OutPos, EndOfVector, ISD::CondCode::SETUGT);
11834       OutPos = DAG.getNode(ISD::UMIN, DL, PositionVT, OutPos, EndOfVector);
11835       OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos);
11836 
11837       // Re-write the last ValI if all lanes were selected. Otherwise,
11838       // overwrite the last write it with the passthru value.
11839       LastWriteVal = DAG.getSelect(DL, ScalarVT, AllLanesSelected, ValI,
11840                                    LastWriteVal, SDNodeFlags::Unpredictable);
11841       Chain = DAG.getStore(
11842           Chain, DL, LastWriteVal, OutPtr,
11843           MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
11844     }
11845   }
11846 
11847   return DAG.getLoad(VecVT, DL, Chain, StackPtr, PtrInfo);
11848 }
11849 
11850 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
11851                                            SDValue &LHS, SDValue &RHS,
11852                                            SDValue &CC, SDValue Mask,
11853                                            SDValue EVL, bool &NeedInvert,
11854                                            const SDLoc &dl, SDValue &Chain,
11855                                            bool IsSignaling) const {
11856   MVT OpVT = LHS.getSimpleValueType();
11857   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
11858   NeedInvert = false;
11859   assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset");
11860   bool IsNonVP = !EVL;
11861   switch (getCondCodeAction(CCCode, OpVT)) {
11862   default:
11863     llvm_unreachable("Unknown condition code action!");
11864   case TargetLowering::Legal:
11865     // Nothing to do.
11866     break;
11867   case TargetLowering::Expand: {
11868     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
11869     if (isCondCodeLegalOrCustom(InvCC, OpVT)) {
11870       std::swap(LHS, RHS);
11871       CC = DAG.getCondCode(InvCC);
11872       return true;
11873     }
11874     // Swapping operands didn't work. Try inverting the condition.
11875     bool NeedSwap = false;
11876     InvCC = getSetCCInverse(CCCode, OpVT);
11877     if (!isCondCodeLegalOrCustom(InvCC, OpVT)) {
11878       // If inverting the condition is not enough, try swapping operands
11879       // on top of it.
11880       InvCC = ISD::getSetCCSwappedOperands(InvCC);
11881       NeedSwap = true;
11882     }
11883     if (isCondCodeLegalOrCustom(InvCC, OpVT)) {
11884       CC = DAG.getCondCode(InvCC);
11885       NeedInvert = true;
11886       if (NeedSwap)
11887         std::swap(LHS, RHS);
11888       return true;
11889     }
11890 
11891     // Special case: expand i1 comparisons using logical operations.
11892     if (OpVT == MVT::i1) {
11893       SDValue Ret;
11894       switch (CCCode) {
11895       default:
11896         llvm_unreachable("Unknown integer setcc!");
11897       case ISD::SETEQ: // X == Y  -->  ~(X ^ Y)
11898         Ret = DAG.getNOT(dl, DAG.getNode(ISD::XOR, dl, MVT::i1, LHS, RHS),
11899                          MVT::i1);
11900         break;
11901       case ISD::SETNE: // X != Y  -->  (X ^ Y)
11902         Ret = DAG.getNode(ISD::XOR, dl, MVT::i1, LHS, RHS);
11903         break;
11904       case ISD::SETGT:  // X >s Y  -->  X == 0 & Y == 1  -->  ~X & Y
11905       case ISD::SETULT: // X <u Y  -->  X == 0 & Y == 1  -->  ~X & Y
11906         Ret = DAG.getNode(ISD::AND, dl, MVT::i1, RHS,
11907                           DAG.getNOT(dl, LHS, MVT::i1));
11908         break;
11909       case ISD::SETLT:  // X <s Y  -->  X == 1 & Y == 0  -->  ~Y & X
11910       case ISD::SETUGT: // X >u Y  -->  X == 1 & Y == 0  -->  ~Y & X
11911         Ret = DAG.getNode(ISD::AND, dl, MVT::i1, LHS,
11912                           DAG.getNOT(dl, RHS, MVT::i1));
11913         break;
11914       case ISD::SETULE: // X <=u Y  -->  X == 0 | Y == 1  -->  ~X | Y
11915       case ISD::SETGE:  // X >=s Y  -->  X == 0 | Y == 1  -->  ~X | Y
11916         Ret = DAG.getNode(ISD::OR, dl, MVT::i1, RHS,
11917                           DAG.getNOT(dl, LHS, MVT::i1));
11918         break;
11919       case ISD::SETUGE: // X >=u Y  -->  X == 1 | Y == 0  -->  ~Y | X
11920       case ISD::SETLE:  // X <=s Y  -->  X == 1 | Y == 0  -->  ~Y | X
11921         Ret = DAG.getNode(ISD::OR, dl, MVT::i1, LHS,
11922                           DAG.getNOT(dl, RHS, MVT::i1));
11923         break;
11924       }
11925 
11926       LHS = DAG.getZExtOrTrunc(Ret, dl, VT);
11927       RHS = SDValue();
11928       CC = SDValue();
11929       return true;
11930     }
11931 
11932     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
11933     unsigned Opc = 0;
11934     switch (CCCode) {
11935     default:
11936       llvm_unreachable("Don't know how to expand this condition!");
11937     case ISD::SETUO:
11938       if (isCondCodeLegal(ISD::SETUNE, OpVT)) {
11939         CC1 = ISD::SETUNE;
11940         CC2 = ISD::SETUNE;
11941         Opc = ISD::OR;
11942         break;
11943       }
11944       assert(isCondCodeLegal(ISD::SETOEQ, OpVT) &&
11945              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
11946       NeedInvert = true;
11947       [[fallthrough]];
11948     case ISD::SETO:
11949       assert(isCondCodeLegal(ISD::SETOEQ, OpVT) &&
11950              "If SETO is expanded, SETOEQ must be legal!");
11951       CC1 = ISD::SETOEQ;
11952       CC2 = ISD::SETOEQ;
11953       Opc = ISD::AND;
11954       break;
11955     case ISD::SETONE:
11956     case ISD::SETUEQ:
11957       // If the SETUO or SETO CC isn't legal, we might be able to use
11958       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
11959       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
11960       // the operands.
11961       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
11962       if (!isCondCodeLegal(CC2, OpVT) && (isCondCodeLegal(ISD::SETOGT, OpVT) ||
11963                                           isCondCodeLegal(ISD::SETOLT, OpVT))) {
11964         CC1 = ISD::SETOGT;
11965         CC2 = ISD::SETOLT;
11966         Opc = ISD::OR;
11967         NeedInvert = ((unsigned)CCCode & 0x8U);
11968         break;
11969       }
11970       [[fallthrough]];
11971     case ISD::SETOEQ:
11972     case ISD::SETOGT:
11973     case ISD::SETOGE:
11974     case ISD::SETOLT:
11975     case ISD::SETOLE:
11976     case ISD::SETUNE:
11977     case ISD::SETUGT:
11978     case ISD::SETUGE:
11979     case ISD::SETULT:
11980     case ISD::SETULE:
11981       // If we are floating point, assign and break, otherwise fall through.
11982       if (!OpVT.isInteger()) {
11983         // We can use the 4th bit to tell if we are the unordered
11984         // or ordered version of the opcode.
11985         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
11986         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
11987         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
11988         break;
11989       }
11990       // Fallthrough if we are unsigned integer.
11991       [[fallthrough]];
11992     case ISD::SETLE:
11993     case ISD::SETGT:
11994     case ISD::SETGE:
11995     case ISD::SETLT:
11996     case ISD::SETNE:
11997     case ISD::SETEQ:
11998       // If all combinations of inverting the condition and swapping operands
11999       // didn't work then we have no means to expand the condition.
12000       llvm_unreachable("Don't know how to expand this condition!");
12001     }
12002 
12003     SDValue SetCC1, SetCC2;
12004     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
12005       // If we aren't the ordered or unorder operation,
12006       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
12007       if (IsNonVP) {
12008         SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
12009         SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
12010       } else {
12011         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
12012         SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
12013       }
12014     } else {
12015       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
12016       if (IsNonVP) {
12017         SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
12018         SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
12019       } else {
12020         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
12021         SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
12022       }
12023     }
12024     if (Chain)
12025       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
12026                           SetCC2.getValue(1));
12027     if (IsNonVP)
12028       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
12029     else {
12030       // Transform the binary opcode to the VP equivalent.
12031       assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode");
12032       Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND;
12033       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
12034     }
12035     RHS = SDValue();
12036     CC = SDValue();
12037     return true;
12038   }
12039   }
12040   return false;
12041 }
12042 
12043 SDValue TargetLowering::expandVectorNaryOpBySplitting(SDNode *Node,
12044                                                       SelectionDAG &DAG) const {
12045   EVT VT = Node->getValueType(0);
12046   // Despite its documentation, GetSplitDestVTs will assert if VT cannot be
12047   // split into two equal parts.
12048   if (!VT.isVector() || !VT.getVectorElementCount().isKnownMultipleOf(2))
12049     return SDValue();
12050 
12051   // Restrict expansion to cases where both parts can be concatenated.
12052   auto [LoVT, HiVT] = DAG.GetSplitDestVTs(VT);
12053   if (LoVT != HiVT || !isTypeLegal(LoVT))
12054     return SDValue();
12055 
12056   SDLoc DL(Node);
12057   unsigned Opcode = Node->getOpcode();
12058 
12059   // Don't expand if the result is likely to be unrolled anyway.
12060   if (!isOperationLegalOrCustomOrPromote(Opcode, LoVT))
12061     return SDValue();
12062 
12063   SmallVector<SDValue, 4> LoOps, HiOps;
12064   for (const SDValue &V : Node->op_values()) {
12065     auto [Lo, Hi] = DAG.SplitVector(V, DL, LoVT, HiVT);
12066     LoOps.push_back(Lo);
12067     HiOps.push_back(Hi);
12068   }
12069 
12070   SDValue SplitOpLo = DAG.getNode(Opcode, DL, LoVT, LoOps);
12071   SDValue SplitOpHi = DAG.getNode(Opcode, DL, HiVT, HiOps);
12072   return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, SplitOpLo, SplitOpHi);
12073 }
12074