1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/Analysis/VectorUtils.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/CodeGenCommonISel.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/CodeGen/TargetRegisterInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCExpr.h" 30 #include "llvm/Support/DivisionByConstantInfo.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/KnownBits.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function &F = DAG.getMachineFunction().getFunction(); 55 56 // First, check if tail calls have been disabled in this function. 57 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 58 return false; 59 60 // Conservatively require the attributes of the call to match those of 61 // the return. Ignore following attributes because they don't affect the 62 // call sequence. 63 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs()); 64 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 65 Attribute::DereferenceableOrNull, Attribute::NoAlias, 66 Attribute::NonNull, Attribute::NoUndef, 67 Attribute::Range, Attribute::NoFPClass}) 68 CallerAttrs.removeAttribute(Attr); 69 70 if (CallerAttrs.hasAttributes()) 71 return false; 72 73 // It's not safe to eliminate the sign / zero extension of the return value. 74 if (CallerAttrs.contains(Attribute::ZExt) || 75 CallerAttrs.contains(Attribute::SExt)) 76 return false; 77 78 // Check if the only use is a function return node. 79 return isUsedByReturnOnly(Node, Chain); 80 } 81 82 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 83 const uint32_t *CallerPreservedMask, 84 const SmallVectorImpl<CCValAssign> &ArgLocs, 85 const SmallVectorImpl<SDValue> &OutVals) const { 86 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 87 const CCValAssign &ArgLoc = ArgLocs[I]; 88 if (!ArgLoc.isRegLoc()) 89 continue; 90 MCRegister Reg = ArgLoc.getLocReg(); 91 // Only look at callee saved registers. 92 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 93 continue; 94 // Check that we pass the value used for the caller. 95 // (We look for a CopyFromReg reading a virtual register that is used 96 // for the function live-in value of register Reg) 97 SDValue Value = OutVals[I]; 98 if (Value->getOpcode() == ISD::AssertZext) 99 Value = Value.getOperand(0); 100 if (Value->getOpcode() != ISD::CopyFromReg) 101 return false; 102 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 103 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 104 return false; 105 } 106 return true; 107 } 108 109 /// Set CallLoweringInfo attribute flags based on a call instruction 110 /// and called function attributes. 111 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 112 unsigned ArgIdx) { 113 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 114 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 115 IsNoExt = Call->paramHasAttr(ArgIdx, Attribute::NoExt); 116 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 117 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 118 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 119 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 120 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 121 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 122 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 123 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 124 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 125 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 126 Alignment = Call->getParamStackAlign(ArgIdx); 127 IndirectType = nullptr; 128 assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 && 129 "multiple ABI attributes?"); 130 if (IsByVal) { 131 IndirectType = Call->getParamByValType(ArgIdx); 132 if (!Alignment) 133 Alignment = Call->getParamAlign(ArgIdx); 134 } 135 if (IsPreallocated) 136 IndirectType = Call->getParamPreallocatedType(ArgIdx); 137 if (IsInAlloca) 138 IndirectType = Call->getParamInAllocaType(ArgIdx); 139 if (IsSRet) 140 IndirectType = Call->getParamStructRetType(ArgIdx); 141 } 142 143 /// Generate a libcall taking the given operands as arguments and returning a 144 /// result of type RetVT. 145 std::pair<SDValue, SDValue> 146 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 147 ArrayRef<SDValue> Ops, 148 MakeLibCallOptions CallOptions, 149 const SDLoc &dl, 150 SDValue InChain) const { 151 if (!InChain) 152 InChain = DAG.getEntryNode(); 153 154 TargetLowering::ArgListTy Args; 155 Args.reserve(Ops.size()); 156 157 TargetLowering::ArgListEntry Entry; 158 for (unsigned i = 0; i < Ops.size(); ++i) { 159 SDValue NewOp = Ops[i]; 160 Entry.Node = NewOp; 161 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 162 Entry.IsSExt = 163 shouldSignExtendTypeInLibCall(Entry.Ty, CallOptions.IsSigned); 164 Entry.IsZExt = !Entry.IsSExt; 165 166 if (CallOptions.IsSoften && 167 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 168 Entry.IsSExt = Entry.IsZExt = false; 169 } 170 Args.push_back(Entry); 171 } 172 173 if (LC == RTLIB::UNKNOWN_LIBCALL) 174 report_fatal_error("Unsupported library call operation!"); 175 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 176 getPointerTy(DAG.getDataLayout())); 177 178 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 179 TargetLowering::CallLoweringInfo CLI(DAG); 180 bool signExtend = shouldSignExtendTypeInLibCall(RetTy, CallOptions.IsSigned); 181 bool zeroExtend = !signExtend; 182 183 if (CallOptions.IsSoften && 184 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 185 signExtend = zeroExtend = false; 186 } 187 188 CLI.setDebugLoc(dl) 189 .setChain(InChain) 190 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 191 .setNoReturn(CallOptions.DoesNotReturn) 192 .setDiscardResult(!CallOptions.IsReturnValueUsed) 193 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 194 .setSExtResult(signExtend) 195 .setZExtResult(zeroExtend); 196 return LowerCallTo(CLI); 197 } 198 199 bool TargetLowering::findOptimalMemOpLowering( 200 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 201 unsigned SrcAS, const AttributeList &FuncAttributes) const { 202 if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() && 203 Op.getSrcAlign() < Op.getDstAlign()) 204 return false; 205 206 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 207 208 if (VT == MVT::Other) { 209 // Use the largest integer type whose alignment constraints are satisfied. 210 // We only need to check DstAlign here as SrcAlign is always greater or 211 // equal to DstAlign (or zero). 212 VT = MVT::LAST_INTEGER_VALUETYPE; 213 if (Op.isFixedDstAlign()) 214 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 215 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 216 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 217 assert(VT.isInteger()); 218 219 // Find the largest legal integer type. 220 MVT LVT = MVT::LAST_INTEGER_VALUETYPE; 221 while (!isTypeLegal(LVT)) 222 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 223 assert(LVT.isInteger()); 224 225 // If the type we've chosen is larger than the largest legal integer type 226 // then use that instead. 227 if (VT.bitsGT(LVT)) 228 VT = LVT; 229 } 230 231 unsigned NumMemOps = 0; 232 uint64_t Size = Op.size(); 233 while (Size) { 234 unsigned VTSize = VT.getSizeInBits() / 8; 235 while (VTSize > Size) { 236 // For now, only use non-vector load / store's for the left-over pieces. 237 EVT NewVT = VT; 238 unsigned NewVTSize; 239 240 bool Found = false; 241 if (VT.isVector() || VT.isFloatingPoint()) { 242 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 243 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 244 isSafeMemOpType(NewVT.getSimpleVT())) 245 Found = true; 246 else if (NewVT == MVT::i64 && 247 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 248 isSafeMemOpType(MVT::f64)) { 249 // i64 is usually not legal on 32-bit targets, but f64 may be. 250 NewVT = MVT::f64; 251 Found = true; 252 } 253 } 254 255 if (!Found) { 256 do { 257 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 258 if (NewVT == MVT::i8) 259 break; 260 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 261 } 262 NewVTSize = NewVT.getSizeInBits() / 8; 263 264 // If the new VT cannot cover all of the remaining bits, then consider 265 // issuing a (or a pair of) unaligned and overlapping load / store. 266 unsigned Fast; 267 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 268 allowsMisalignedMemoryAccesses( 269 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 270 MachineMemOperand::MONone, &Fast) && 271 Fast) 272 VTSize = Size; 273 else { 274 VT = NewVT; 275 VTSize = NewVTSize; 276 } 277 } 278 279 if (++NumMemOps > Limit) 280 return false; 281 282 MemOps.push_back(VT); 283 Size -= VTSize; 284 } 285 286 return true; 287 } 288 289 /// Soften the operands of a comparison. This code is shared among BR_CC, 290 /// SELECT_CC, and SETCC handlers. 291 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 292 SDValue &NewLHS, SDValue &NewRHS, 293 ISD::CondCode &CCCode, 294 const SDLoc &dl, const SDValue OldLHS, 295 const SDValue OldRHS) const { 296 SDValue Chain; 297 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 298 OldRHS, Chain); 299 } 300 301 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 302 SDValue &NewLHS, SDValue &NewRHS, 303 ISD::CondCode &CCCode, 304 const SDLoc &dl, const SDValue OldLHS, 305 const SDValue OldRHS, 306 SDValue &Chain, 307 bool IsSignaling) const { 308 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 309 // not supporting it. We can update this code when libgcc provides such 310 // functions. 311 312 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 313 && "Unsupported setcc type!"); 314 315 // Expand into one or more soft-fp libcall(s). 316 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 317 bool ShouldInvertCC = false; 318 switch (CCCode) { 319 case ISD::SETEQ: 320 case ISD::SETOEQ: 321 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 322 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 323 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 324 break; 325 case ISD::SETNE: 326 case ISD::SETUNE: 327 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 328 (VT == MVT::f64) ? RTLIB::UNE_F64 : 329 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 330 break; 331 case ISD::SETGE: 332 case ISD::SETOGE: 333 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 334 (VT == MVT::f64) ? RTLIB::OGE_F64 : 335 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 336 break; 337 case ISD::SETLT: 338 case ISD::SETOLT: 339 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 340 (VT == MVT::f64) ? RTLIB::OLT_F64 : 341 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 342 break; 343 case ISD::SETLE: 344 case ISD::SETOLE: 345 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 346 (VT == MVT::f64) ? RTLIB::OLE_F64 : 347 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 348 break; 349 case ISD::SETGT: 350 case ISD::SETOGT: 351 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 352 (VT == MVT::f64) ? RTLIB::OGT_F64 : 353 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 354 break; 355 case ISD::SETO: 356 ShouldInvertCC = true; 357 [[fallthrough]]; 358 case ISD::SETUO: 359 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 360 (VT == MVT::f64) ? RTLIB::UO_F64 : 361 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 362 break; 363 case ISD::SETONE: 364 // SETONE = O && UNE 365 ShouldInvertCC = true; 366 [[fallthrough]]; 367 case ISD::SETUEQ: 368 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 369 (VT == MVT::f64) ? RTLIB::UO_F64 : 370 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 371 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 372 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 373 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 374 break; 375 default: 376 // Invert CC for unordered comparisons 377 ShouldInvertCC = true; 378 switch (CCCode) { 379 case ISD::SETULT: 380 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 381 (VT == MVT::f64) ? RTLIB::OGE_F64 : 382 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 383 break; 384 case ISD::SETULE: 385 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 386 (VT == MVT::f64) ? RTLIB::OGT_F64 : 387 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 388 break; 389 case ISD::SETUGT: 390 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 391 (VT == MVT::f64) ? RTLIB::OLE_F64 : 392 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 393 break; 394 case ISD::SETUGE: 395 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 396 (VT == MVT::f64) ? RTLIB::OLT_F64 : 397 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 398 break; 399 default: llvm_unreachable("Do not know how to soften this setcc!"); 400 } 401 } 402 403 // Use the target specific return value for comparison lib calls. 404 EVT RetVT = getCmpLibcallReturnType(); 405 SDValue Ops[2] = {NewLHS, NewRHS}; 406 TargetLowering::MakeLibCallOptions CallOptions; 407 EVT OpsVT[2] = { OldLHS.getValueType(), 408 OldRHS.getValueType() }; 409 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 410 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 411 NewLHS = Call.first; 412 NewRHS = DAG.getConstant(0, dl, RetVT); 413 414 CCCode = getCmpLibcallCC(LC1); 415 if (ShouldInvertCC) { 416 assert(RetVT.isInteger()); 417 CCCode = getSetCCInverse(CCCode, RetVT); 418 } 419 420 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 421 // Update Chain. 422 Chain = Call.second; 423 } else { 424 EVT SetCCVT = 425 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 426 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 427 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 428 CCCode = getCmpLibcallCC(LC2); 429 if (ShouldInvertCC) 430 CCCode = getSetCCInverse(CCCode, RetVT); 431 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 432 if (Chain) 433 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 434 Call2.second); 435 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 436 Tmp.getValueType(), Tmp, NewLHS); 437 NewRHS = SDValue(); 438 } 439 } 440 441 /// Return the entry encoding for a jump table in the current function. The 442 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 443 unsigned TargetLowering::getJumpTableEncoding() const { 444 // In non-pic modes, just use the address of a block. 445 if (!isPositionIndependent()) 446 return MachineJumpTableInfo::EK_BlockAddress; 447 448 // In PIC mode, if the target supports a GPRel32 directive, use it. 449 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 450 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 451 452 // Otherwise, use a label difference. 453 return MachineJumpTableInfo::EK_LabelDifference32; 454 } 455 456 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 457 SelectionDAG &DAG) const { 458 // If our PIC model is GP relative, use the global offset table as the base. 459 unsigned JTEncoding = getJumpTableEncoding(); 460 461 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 462 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 463 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 464 465 return Table; 466 } 467 468 /// This returns the relocation base for the given PIC jumptable, the same as 469 /// getPICJumpTableRelocBase, but as an MCExpr. 470 const MCExpr * 471 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 472 unsigned JTI,MCContext &Ctx) const{ 473 // The normal PIC reloc base is the label at the start of the jump table. 474 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 475 } 476 477 SDValue TargetLowering::expandIndirectJTBranch(const SDLoc &dl, SDValue Value, 478 SDValue Addr, int JTI, 479 SelectionDAG &DAG) const { 480 SDValue Chain = Value; 481 // Jump table debug info is only needed if CodeView is enabled. 482 if (DAG.getTarget().getTargetTriple().isOSBinFormatCOFF()) { 483 Chain = DAG.getJumpTableDebugInfo(JTI, Chain, dl); 484 } 485 return DAG.getNode(ISD::BRIND, dl, MVT::Other, Chain, Addr); 486 } 487 488 bool 489 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 490 const TargetMachine &TM = getTargetMachine(); 491 const GlobalValue *GV = GA->getGlobal(); 492 493 // If the address is not even local to this DSO we will have to load it from 494 // a got and then add the offset. 495 if (!TM.shouldAssumeDSOLocal(GV)) 496 return false; 497 498 // If the code is position independent we will have to add a base register. 499 if (isPositionIndependent()) 500 return false; 501 502 // Otherwise we can do it. 503 return true; 504 } 505 506 //===----------------------------------------------------------------------===// 507 // Optimization Methods 508 //===----------------------------------------------------------------------===// 509 510 /// If the specified instruction has a constant integer operand and there are 511 /// bits set in that constant that are not demanded, then clear those bits and 512 /// return true. 513 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 514 const APInt &DemandedBits, 515 const APInt &DemandedElts, 516 TargetLoweringOpt &TLO) const { 517 SDLoc DL(Op); 518 unsigned Opcode = Op.getOpcode(); 519 520 // Early-out if we've ended up calling an undemanded node, leave this to 521 // constant folding. 522 if (DemandedBits.isZero() || DemandedElts.isZero()) 523 return false; 524 525 // Do target-specific constant optimization. 526 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 527 return TLO.New.getNode(); 528 529 // FIXME: ISD::SELECT, ISD::SELECT_CC 530 switch (Opcode) { 531 default: 532 break; 533 case ISD::XOR: 534 case ISD::AND: 535 case ISD::OR: { 536 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 537 if (!Op1C || Op1C->isOpaque()) 538 return false; 539 540 // If this is a 'not' op, don't touch it because that's a canonical form. 541 const APInt &C = Op1C->getAPIntValue(); 542 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 543 return false; 544 545 if (!C.isSubsetOf(DemandedBits)) { 546 EVT VT = Op.getValueType(); 547 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 548 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC, 549 Op->getFlags()); 550 return TLO.CombineTo(Op, NewOp); 551 } 552 553 break; 554 } 555 } 556 557 return false; 558 } 559 560 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 561 const APInt &DemandedBits, 562 TargetLoweringOpt &TLO) const { 563 EVT VT = Op.getValueType(); 564 APInt DemandedElts = VT.isVector() 565 ? APInt::getAllOnes(VT.getVectorNumElements()) 566 : APInt(1, 1); 567 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 568 } 569 570 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 571 /// This uses isTruncateFree/isZExtFree and ANY_EXTEND for the widening cast, 572 /// but it could be generalized for targets with other types of implicit 573 /// widening casts. 574 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 575 const APInt &DemandedBits, 576 TargetLoweringOpt &TLO) const { 577 assert(Op.getNumOperands() == 2 && 578 "ShrinkDemandedOp only supports binary operators!"); 579 assert(Op.getNode()->getNumValues() == 1 && 580 "ShrinkDemandedOp only supports nodes with one result!"); 581 582 EVT VT = Op.getValueType(); 583 SelectionDAG &DAG = TLO.DAG; 584 SDLoc dl(Op); 585 586 // Early return, as this function cannot handle vector types. 587 if (VT.isVector()) 588 return false; 589 590 assert(Op.getOperand(0).getValueType().getScalarSizeInBits() == BitWidth && 591 Op.getOperand(1).getValueType().getScalarSizeInBits() == BitWidth && 592 "ShrinkDemandedOp only supports operands that have the same size!"); 593 594 // Don't do this if the node has another user, which may require the 595 // full value. 596 if (!Op.getNode()->hasOneUse()) 597 return false; 598 599 // Search for the smallest integer type with free casts to and from 600 // Op's type. For expedience, just check power-of-2 integer types. 601 unsigned DemandedSize = DemandedBits.getActiveBits(); 602 for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize); 603 SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 604 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 605 if (isTruncateFree(VT, SmallVT) && isZExtFree(SmallVT, VT)) { 606 // We found a type with free casts. 607 608 // If the operation has the 'disjoint' flag, then the 609 // operands on the new node are also disjoint. 610 SDNodeFlags Flags(Op->getFlags().hasDisjoint() ? SDNodeFlags::Disjoint 611 : SDNodeFlags::None); 612 SDValue X = DAG.getNode( 613 Op.getOpcode(), dl, SmallVT, 614 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 615 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)), Flags); 616 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 617 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, VT, X); 618 return TLO.CombineTo(Op, Z); 619 } 620 } 621 return false; 622 } 623 624 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 625 DAGCombinerInfo &DCI) const { 626 SelectionDAG &DAG = DCI.DAG; 627 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 628 !DCI.isBeforeLegalizeOps()); 629 KnownBits Known; 630 631 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 632 if (Simplified) { 633 DCI.AddToWorklist(Op.getNode()); 634 DCI.CommitTargetLoweringOpt(TLO); 635 } 636 return Simplified; 637 } 638 639 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 640 const APInt &DemandedElts, 641 DAGCombinerInfo &DCI) const { 642 SelectionDAG &DAG = DCI.DAG; 643 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 644 !DCI.isBeforeLegalizeOps()); 645 KnownBits Known; 646 647 bool Simplified = 648 SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO); 649 if (Simplified) { 650 DCI.AddToWorklist(Op.getNode()); 651 DCI.CommitTargetLoweringOpt(TLO); 652 } 653 return Simplified; 654 } 655 656 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 657 KnownBits &Known, 658 TargetLoweringOpt &TLO, 659 unsigned Depth, 660 bool AssumeSingleUse) const { 661 EVT VT = Op.getValueType(); 662 663 // Since the number of lanes in a scalable vector is unknown at compile time, 664 // we track one bit which is implicitly broadcast to all lanes. This means 665 // that all lanes in a scalable vector are considered demanded. 666 APInt DemandedElts = VT.isFixedLengthVector() 667 ? APInt::getAllOnes(VT.getVectorNumElements()) 668 : APInt(1, 1); 669 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 670 AssumeSingleUse); 671 } 672 673 // TODO: Under what circumstances can we create nodes? Constant folding? 674 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 675 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 676 SelectionDAG &DAG, unsigned Depth) const { 677 EVT VT = Op.getValueType(); 678 679 // Limit search depth. 680 if (Depth >= SelectionDAG::MaxRecursionDepth) 681 return SDValue(); 682 683 // Ignore UNDEFs. 684 if (Op.isUndef()) 685 return SDValue(); 686 687 // Not demanding any bits/elts from Op. 688 if (DemandedBits == 0 || DemandedElts == 0) 689 return DAG.getUNDEF(VT); 690 691 bool IsLE = DAG.getDataLayout().isLittleEndian(); 692 unsigned NumElts = DemandedElts.getBitWidth(); 693 unsigned BitWidth = DemandedBits.getBitWidth(); 694 KnownBits LHSKnown, RHSKnown; 695 switch (Op.getOpcode()) { 696 case ISD::BITCAST: { 697 if (VT.isScalableVector()) 698 return SDValue(); 699 700 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 701 EVT SrcVT = Src.getValueType(); 702 EVT DstVT = Op.getValueType(); 703 if (SrcVT == DstVT) 704 return Src; 705 706 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 707 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 708 if (NumSrcEltBits == NumDstEltBits) 709 if (SDValue V = SimplifyMultipleUseDemandedBits( 710 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 711 return DAG.getBitcast(DstVT, V); 712 713 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { 714 unsigned Scale = NumDstEltBits / NumSrcEltBits; 715 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 716 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 717 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 718 for (unsigned i = 0; i != Scale; ++i) { 719 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 720 unsigned BitOffset = EltOffset * NumSrcEltBits; 721 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 722 if (!Sub.isZero()) { 723 DemandedSrcBits |= Sub; 724 for (unsigned j = 0; j != NumElts; ++j) 725 if (DemandedElts[j]) 726 DemandedSrcElts.setBit((j * Scale) + i); 727 } 728 } 729 730 if (SDValue V = SimplifyMultipleUseDemandedBits( 731 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 732 return DAG.getBitcast(DstVT, V); 733 } 734 735 // TODO - bigendian once we have test coverage. 736 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { 737 unsigned Scale = NumSrcEltBits / NumDstEltBits; 738 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 739 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 740 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 741 for (unsigned i = 0; i != NumElts; ++i) 742 if (DemandedElts[i]) { 743 unsigned Offset = (i % Scale) * NumDstEltBits; 744 DemandedSrcBits.insertBits(DemandedBits, Offset); 745 DemandedSrcElts.setBit(i / Scale); 746 } 747 748 if (SDValue V = SimplifyMultipleUseDemandedBits( 749 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 750 return DAG.getBitcast(DstVT, V); 751 } 752 753 break; 754 } 755 case ISD::FREEZE: { 756 SDValue N0 = Op.getOperand(0); 757 if (DAG.isGuaranteedNotToBeUndefOrPoison(N0, DemandedElts, 758 /*PoisonOnly=*/false)) 759 return N0; 760 break; 761 } 762 case ISD::AND: { 763 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 764 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 765 766 // If all of the demanded bits are known 1 on one side, return the other. 767 // These bits cannot contribute to the result of the 'and' in this 768 // context. 769 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 770 return Op.getOperand(0); 771 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 772 return Op.getOperand(1); 773 break; 774 } 775 case ISD::OR: { 776 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 777 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 778 779 // If all of the demanded bits are known zero on one side, return the 780 // other. These bits cannot contribute to the result of the 'or' in this 781 // context. 782 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 783 return Op.getOperand(0); 784 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 785 return Op.getOperand(1); 786 break; 787 } 788 case ISD::XOR: { 789 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 790 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 791 792 // If all of the demanded bits are known zero on one side, return the 793 // other. 794 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 795 return Op.getOperand(0); 796 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 797 return Op.getOperand(1); 798 break; 799 } 800 case ISD::ADD: { 801 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 802 if (RHSKnown.isZero()) 803 return Op.getOperand(0); 804 805 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 806 if (LHSKnown.isZero()) 807 return Op.getOperand(1); 808 break; 809 } 810 case ISD::SHL: { 811 // If we are only demanding sign bits then we can use the shift source 812 // directly. 813 if (std::optional<uint64_t> MaxSA = 814 DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) { 815 SDValue Op0 = Op.getOperand(0); 816 unsigned ShAmt = *MaxSA; 817 unsigned NumSignBits = 818 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 819 unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero(); 820 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 821 return Op0; 822 } 823 break; 824 } 825 case ISD::SRL: { 826 // If we are only demanding sign bits then we can use the shift source 827 // directly. 828 if (std::optional<uint64_t> MaxSA = 829 DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) { 830 SDValue Op0 = Op.getOperand(0); 831 unsigned ShAmt = *MaxSA; 832 // Must already be signbits in DemandedBits bounds, and can't demand any 833 // shifted in zeroes. 834 if (DemandedBits.countl_zero() >= ShAmt) { 835 unsigned NumSignBits = 836 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 837 if (DemandedBits.countr_zero() >= (BitWidth - NumSignBits)) 838 return Op0; 839 } 840 } 841 break; 842 } 843 case ISD::SETCC: { 844 SDValue Op0 = Op.getOperand(0); 845 SDValue Op1 = Op.getOperand(1); 846 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 847 // If (1) we only need the sign-bit, (2) the setcc operands are the same 848 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 849 // -1, we may be able to bypass the setcc. 850 if (DemandedBits.isSignMask() && 851 Op0.getScalarValueSizeInBits() == BitWidth && 852 getBooleanContents(Op0.getValueType()) == 853 BooleanContent::ZeroOrNegativeOneBooleanContent) { 854 // If we're testing X < 0, then this compare isn't needed - just use X! 855 // FIXME: We're limiting to integer types here, but this should also work 856 // if we don't care about FP signed-zero. The use of SETLT with FP means 857 // that we don't care about NaNs. 858 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 859 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 860 return Op0; 861 } 862 break; 863 } 864 case ISD::SIGN_EXTEND_INREG: { 865 // If none of the extended bits are demanded, eliminate the sextinreg. 866 SDValue Op0 = Op.getOperand(0); 867 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 868 unsigned ExBits = ExVT.getScalarSizeInBits(); 869 if (DemandedBits.getActiveBits() <= ExBits && 870 shouldRemoveRedundantExtend(Op)) 871 return Op0; 872 // If the input is already sign extended, just drop the extension. 873 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 874 if (NumSignBits >= (BitWidth - ExBits + 1)) 875 return Op0; 876 break; 877 } 878 case ISD::ANY_EXTEND_VECTOR_INREG: 879 case ISD::SIGN_EXTEND_VECTOR_INREG: 880 case ISD::ZERO_EXTEND_VECTOR_INREG: { 881 if (VT.isScalableVector()) 882 return SDValue(); 883 884 // If we only want the lowest element and none of extended bits, then we can 885 // return the bitcasted source vector. 886 SDValue Src = Op.getOperand(0); 887 EVT SrcVT = Src.getValueType(); 888 EVT DstVT = Op.getValueType(); 889 if (IsLE && DemandedElts == 1 && 890 DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 891 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 892 return DAG.getBitcast(DstVT, Src); 893 } 894 break; 895 } 896 case ISD::INSERT_VECTOR_ELT: { 897 if (VT.isScalableVector()) 898 return SDValue(); 899 900 // If we don't demand the inserted element, return the base vector. 901 SDValue Vec = Op.getOperand(0); 902 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 903 EVT VecVT = Vec.getValueType(); 904 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 905 !DemandedElts[CIdx->getZExtValue()]) 906 return Vec; 907 break; 908 } 909 case ISD::INSERT_SUBVECTOR: { 910 if (VT.isScalableVector()) 911 return SDValue(); 912 913 SDValue Vec = Op.getOperand(0); 914 SDValue Sub = Op.getOperand(1); 915 uint64_t Idx = Op.getConstantOperandVal(2); 916 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 917 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 918 // If we don't demand the inserted subvector, return the base vector. 919 if (DemandedSubElts == 0) 920 return Vec; 921 break; 922 } 923 case ISD::VECTOR_SHUFFLE: { 924 assert(!VT.isScalableVector()); 925 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 926 927 // If all the demanded elts are from one operand and are inline, 928 // then we can use the operand directly. 929 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 930 for (unsigned i = 0; i != NumElts; ++i) { 931 int M = ShuffleMask[i]; 932 if (M < 0 || !DemandedElts[i]) 933 continue; 934 AllUndef = false; 935 IdentityLHS &= (M == (int)i); 936 IdentityRHS &= ((M - NumElts) == i); 937 } 938 939 if (AllUndef) 940 return DAG.getUNDEF(Op.getValueType()); 941 if (IdentityLHS) 942 return Op.getOperand(0); 943 if (IdentityRHS) 944 return Op.getOperand(1); 945 break; 946 } 947 default: 948 // TODO: Probably okay to remove after audit; here to reduce change size 949 // in initial enablement patch for scalable vectors 950 if (VT.isScalableVector()) 951 return SDValue(); 952 953 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 954 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 955 Op, DemandedBits, DemandedElts, DAG, Depth)) 956 return V; 957 break; 958 } 959 return SDValue(); 960 } 961 962 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 963 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 964 unsigned Depth) const { 965 EVT VT = Op.getValueType(); 966 // Since the number of lanes in a scalable vector is unknown at compile time, 967 // we track one bit which is implicitly broadcast to all lanes. This means 968 // that all lanes in a scalable vector are considered demanded. 969 APInt DemandedElts = VT.isFixedLengthVector() 970 ? APInt::getAllOnes(VT.getVectorNumElements()) 971 : APInt(1, 1); 972 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 973 Depth); 974 } 975 976 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 977 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 978 unsigned Depth) const { 979 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 980 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 981 Depth); 982 } 983 984 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1). 985 // or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1). 986 static SDValue combineShiftToAVG(SDValue Op, 987 TargetLowering::TargetLoweringOpt &TLO, 988 const TargetLowering &TLI, 989 const APInt &DemandedBits, 990 const APInt &DemandedElts, unsigned Depth) { 991 assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) && 992 "SRL or SRA node is required here!"); 993 // Is the right shift using an immediate value of 1? 994 ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 995 if (!N1C || !N1C->isOne()) 996 return SDValue(); 997 998 // We are looking for an avgfloor 999 // add(ext, ext) 1000 // or one of these as a avgceil 1001 // add(add(ext, ext), 1) 1002 // add(add(ext, 1), ext) 1003 // add(ext, add(ext, 1)) 1004 SDValue Add = Op.getOperand(0); 1005 if (Add.getOpcode() != ISD::ADD) 1006 return SDValue(); 1007 1008 SDValue ExtOpA = Add.getOperand(0); 1009 SDValue ExtOpB = Add.getOperand(1); 1010 SDValue Add2; 1011 auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3, SDValue A) { 1012 ConstantSDNode *ConstOp; 1013 if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) && 1014 ConstOp->isOne()) { 1015 ExtOpA = Op1; 1016 ExtOpB = Op3; 1017 Add2 = A; 1018 return true; 1019 } 1020 if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) && 1021 ConstOp->isOne()) { 1022 ExtOpA = Op1; 1023 ExtOpB = Op2; 1024 Add2 = A; 1025 return true; 1026 } 1027 return false; 1028 }; 1029 bool IsCeil = 1030 (ExtOpA.getOpcode() == ISD::ADD && 1031 MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB, ExtOpA)) || 1032 (ExtOpB.getOpcode() == ISD::ADD && 1033 MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA, ExtOpB)); 1034 1035 // If the shift is signed (sra): 1036 // - Needs >= 2 sign bit for both operands. 1037 // - Needs >= 2 zero bits. 1038 // If the shift is unsigned (srl): 1039 // - Needs >= 1 zero bit for both operands. 1040 // - Needs 1 demanded bit zero and >= 2 sign bits. 1041 SelectionDAG &DAG = TLO.DAG; 1042 unsigned ShiftOpc = Op.getOpcode(); 1043 bool IsSigned = false; 1044 unsigned KnownBits; 1045 unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth); 1046 unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth); 1047 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1; 1048 unsigned NumZeroA = 1049 DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros(); 1050 unsigned NumZeroB = 1051 DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros(); 1052 unsigned NumZero = std::min(NumZeroA, NumZeroB); 1053 1054 switch (ShiftOpc) { 1055 default: 1056 llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG"); 1057 case ISD::SRA: { 1058 if (NumZero >= 2 && NumSigned < NumZero) { 1059 IsSigned = false; 1060 KnownBits = NumZero; 1061 break; 1062 } 1063 if (NumSigned >= 1) { 1064 IsSigned = true; 1065 KnownBits = NumSigned; 1066 break; 1067 } 1068 return SDValue(); 1069 } 1070 case ISD::SRL: { 1071 if (NumZero >= 1 && NumSigned < NumZero) { 1072 IsSigned = false; 1073 KnownBits = NumZero; 1074 break; 1075 } 1076 if (NumSigned >= 1 && DemandedBits.isSignBitClear()) { 1077 IsSigned = true; 1078 KnownBits = NumSigned; 1079 break; 1080 } 1081 return SDValue(); 1082 } 1083 } 1084 1085 unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU) 1086 : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU); 1087 1088 // Find the smallest power-2 type that is legal for this vector size and 1089 // operation, given the original type size and the number of known sign/zero 1090 // bits. 1091 EVT VT = Op.getValueType(); 1092 unsigned MinWidth = 1093 std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8); 1094 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_ceil(MinWidth)); 1095 if (NVT.getScalarSizeInBits() > VT.getScalarSizeInBits()) 1096 return SDValue(); 1097 if (VT.isVector()) 1098 NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount()); 1099 if (TLO.LegalTypes() && !TLI.isOperationLegal(AVGOpc, NVT)) { 1100 // If we could not transform, and (both) adds are nuw/nsw, we can use the 1101 // larger type size to do the transform. 1102 if (TLO.LegalOperations() && !TLI.isOperationLegal(AVGOpc, VT)) 1103 return SDValue(); 1104 if (DAG.willNotOverflowAdd(IsSigned, Add.getOperand(0), 1105 Add.getOperand(1)) && 1106 (!Add2 || DAG.willNotOverflowAdd(IsSigned, Add2.getOperand(0), 1107 Add2.getOperand(1)))) 1108 NVT = VT; 1109 else 1110 return SDValue(); 1111 } 1112 1113 // Don't create a AVGFLOOR node with a scalar constant unless its legal as 1114 // this is likely to stop other folds (reassociation, value tracking etc.) 1115 if (!IsCeil && !TLI.isOperationLegal(AVGOpc, NVT) && 1116 (isa<ConstantSDNode>(ExtOpA) || isa<ConstantSDNode>(ExtOpB))) 1117 return SDValue(); 1118 1119 SDLoc DL(Op); 1120 SDValue ResultAVG = 1121 DAG.getNode(AVGOpc, DL, NVT, DAG.getExtOrTrunc(IsSigned, ExtOpA, DL, NVT), 1122 DAG.getExtOrTrunc(IsSigned, ExtOpB, DL, NVT)); 1123 return DAG.getExtOrTrunc(IsSigned, ResultAVG, DL, VT); 1124 } 1125 1126 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 1127 /// result of Op are ever used downstream. If we can use this information to 1128 /// simplify Op, create a new simplified DAG node and return true, returning the 1129 /// original and new nodes in Old and New. Otherwise, analyze the expression and 1130 /// return a mask of Known bits for the expression (used to simplify the 1131 /// caller). The Known bits may only be accurate for those bits in the 1132 /// OriginalDemandedBits and OriginalDemandedElts. 1133 bool TargetLowering::SimplifyDemandedBits( 1134 SDValue Op, const APInt &OriginalDemandedBits, 1135 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 1136 unsigned Depth, bool AssumeSingleUse) const { 1137 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 1138 assert(Op.getScalarValueSizeInBits() == BitWidth && 1139 "Mask size mismatches value type size!"); 1140 1141 // Don't know anything. 1142 Known = KnownBits(BitWidth); 1143 1144 EVT VT = Op.getValueType(); 1145 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 1146 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 1147 assert((!VT.isFixedLengthVector() || NumElts == VT.getVectorNumElements()) && 1148 "Unexpected vector size"); 1149 1150 APInt DemandedBits = OriginalDemandedBits; 1151 APInt DemandedElts = OriginalDemandedElts; 1152 SDLoc dl(Op); 1153 1154 // Undef operand. 1155 if (Op.isUndef()) 1156 return false; 1157 1158 // We can't simplify target constants. 1159 if (Op.getOpcode() == ISD::TargetConstant) 1160 return false; 1161 1162 if (Op.getOpcode() == ISD::Constant) { 1163 // We know all of the bits for a constant! 1164 Known = KnownBits::makeConstant(Op->getAsAPIntVal()); 1165 return false; 1166 } 1167 1168 if (Op.getOpcode() == ISD::ConstantFP) { 1169 // We know all of the bits for a floating point constant! 1170 Known = KnownBits::makeConstant( 1171 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 1172 return false; 1173 } 1174 1175 // Other users may use these bits. 1176 bool HasMultiUse = false; 1177 if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) { 1178 if (Depth >= SelectionDAG::MaxRecursionDepth) { 1179 // Limit search depth. 1180 return false; 1181 } 1182 // Allow multiple uses, just set the DemandedBits/Elts to all bits. 1183 DemandedBits = APInt::getAllOnes(BitWidth); 1184 DemandedElts = APInt::getAllOnes(NumElts); 1185 HasMultiUse = true; 1186 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 1187 // Not demanding any bits/elts from Op. 1188 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1189 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 1190 // Limit search depth. 1191 return false; 1192 } 1193 1194 KnownBits Known2; 1195 switch (Op.getOpcode()) { 1196 case ISD::SCALAR_TO_VECTOR: { 1197 if (VT.isScalableVector()) 1198 return false; 1199 if (!DemandedElts[0]) 1200 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1201 1202 KnownBits SrcKnown; 1203 SDValue Src = Op.getOperand(0); 1204 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 1205 APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth); 1206 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 1207 return true; 1208 1209 // Upper elements are undef, so only get the knownbits if we just demand 1210 // the bottom element. 1211 if (DemandedElts == 1) 1212 Known = SrcKnown.anyextOrTrunc(BitWidth); 1213 break; 1214 } 1215 case ISD::BUILD_VECTOR: 1216 // Collect the known bits that are shared by every demanded element. 1217 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 1218 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1219 return false; // Don't fall through, will infinitely loop. 1220 case ISD::SPLAT_VECTOR: { 1221 SDValue Scl = Op.getOperand(0); 1222 APInt DemandedSclBits = DemandedBits.zextOrTrunc(Scl.getValueSizeInBits()); 1223 KnownBits KnownScl; 1224 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1225 return true; 1226 1227 // Implicitly truncate the bits to match the official semantics of 1228 // SPLAT_VECTOR. 1229 Known = KnownScl.trunc(BitWidth); 1230 break; 1231 } 1232 case ISD::LOAD: { 1233 auto *LD = cast<LoadSDNode>(Op); 1234 if (getTargetConstantFromLoad(LD)) { 1235 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1236 return false; // Don't fall through, will infinitely loop. 1237 } 1238 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 1239 // If this is a ZEXTLoad and we are looking at the loaded value. 1240 EVT MemVT = LD->getMemoryVT(); 1241 unsigned MemBits = MemVT.getScalarSizeInBits(); 1242 Known.Zero.setBitsFrom(MemBits); 1243 return false; // Don't fall through, will infinitely loop. 1244 } 1245 break; 1246 } 1247 case ISD::INSERT_VECTOR_ELT: { 1248 if (VT.isScalableVector()) 1249 return false; 1250 SDValue Vec = Op.getOperand(0); 1251 SDValue Scl = Op.getOperand(1); 1252 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1253 EVT VecVT = Vec.getValueType(); 1254 1255 // If index isn't constant, assume we need all vector elements AND the 1256 // inserted element. 1257 APInt DemandedVecElts(DemandedElts); 1258 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1259 unsigned Idx = CIdx->getZExtValue(); 1260 DemandedVecElts.clearBit(Idx); 1261 1262 // Inserted element is not required. 1263 if (!DemandedElts[Idx]) 1264 return TLO.CombineTo(Op, Vec); 1265 } 1266 1267 KnownBits KnownScl; 1268 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1269 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1270 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1271 return true; 1272 1273 Known = KnownScl.anyextOrTrunc(BitWidth); 1274 1275 KnownBits KnownVec; 1276 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1277 Depth + 1)) 1278 return true; 1279 1280 if (!!DemandedVecElts) 1281 Known = Known.intersectWith(KnownVec); 1282 1283 return false; 1284 } 1285 case ISD::INSERT_SUBVECTOR: { 1286 if (VT.isScalableVector()) 1287 return false; 1288 // Demand any elements from the subvector and the remainder from the src its 1289 // inserted into. 1290 SDValue Src = Op.getOperand(0); 1291 SDValue Sub = Op.getOperand(1); 1292 uint64_t Idx = Op.getConstantOperandVal(2); 1293 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1294 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1295 APInt DemandedSrcElts = DemandedElts; 1296 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1297 1298 KnownBits KnownSub, KnownSrc; 1299 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1300 Depth + 1)) 1301 return true; 1302 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1303 Depth + 1)) 1304 return true; 1305 1306 Known.Zero.setAllBits(); 1307 Known.One.setAllBits(); 1308 if (!!DemandedSubElts) 1309 Known = Known.intersectWith(KnownSub); 1310 if (!!DemandedSrcElts) 1311 Known = Known.intersectWith(KnownSrc); 1312 1313 // Attempt to avoid multi-use src if we don't need anything from it. 1314 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1315 !DemandedSrcElts.isAllOnes()) { 1316 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1317 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1318 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1319 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1320 if (NewSub || NewSrc) { 1321 NewSub = NewSub ? NewSub : Sub; 1322 NewSrc = NewSrc ? NewSrc : Src; 1323 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1324 Op.getOperand(2)); 1325 return TLO.CombineTo(Op, NewOp); 1326 } 1327 } 1328 break; 1329 } 1330 case ISD::EXTRACT_SUBVECTOR: { 1331 if (VT.isScalableVector()) 1332 return false; 1333 // Offset the demanded elts by the subvector index. 1334 SDValue Src = Op.getOperand(0); 1335 if (Src.getValueType().isScalableVector()) 1336 break; 1337 uint64_t Idx = Op.getConstantOperandVal(1); 1338 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1339 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 1340 1341 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1342 Depth + 1)) 1343 return true; 1344 1345 // Attempt to avoid multi-use src if we don't need anything from it. 1346 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1347 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1348 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1349 if (DemandedSrc) { 1350 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1351 Op.getOperand(1)); 1352 return TLO.CombineTo(Op, NewOp); 1353 } 1354 } 1355 break; 1356 } 1357 case ISD::CONCAT_VECTORS: { 1358 if (VT.isScalableVector()) 1359 return false; 1360 Known.Zero.setAllBits(); 1361 Known.One.setAllBits(); 1362 EVT SubVT = Op.getOperand(0).getValueType(); 1363 unsigned NumSubVecs = Op.getNumOperands(); 1364 unsigned NumSubElts = SubVT.getVectorNumElements(); 1365 for (unsigned i = 0; i != NumSubVecs; ++i) { 1366 APInt DemandedSubElts = 1367 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1368 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1369 Known2, TLO, Depth + 1)) 1370 return true; 1371 // Known bits are shared by every demanded subvector element. 1372 if (!!DemandedSubElts) 1373 Known = Known.intersectWith(Known2); 1374 } 1375 break; 1376 } 1377 case ISD::VECTOR_SHUFFLE: { 1378 assert(!VT.isScalableVector()); 1379 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1380 1381 // Collect demanded elements from shuffle operands.. 1382 APInt DemandedLHS, DemandedRHS; 1383 if (!getShuffleDemandedElts(NumElts, ShuffleMask, DemandedElts, DemandedLHS, 1384 DemandedRHS)) 1385 break; 1386 1387 if (!!DemandedLHS || !!DemandedRHS) { 1388 SDValue Op0 = Op.getOperand(0); 1389 SDValue Op1 = Op.getOperand(1); 1390 1391 Known.Zero.setAllBits(); 1392 Known.One.setAllBits(); 1393 if (!!DemandedLHS) { 1394 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1395 Depth + 1)) 1396 return true; 1397 Known = Known.intersectWith(Known2); 1398 } 1399 if (!!DemandedRHS) { 1400 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1401 Depth + 1)) 1402 return true; 1403 Known = Known.intersectWith(Known2); 1404 } 1405 1406 // Attempt to avoid multi-use ops if we don't need anything from them. 1407 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1408 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1409 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1410 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1411 if (DemandedOp0 || DemandedOp1) { 1412 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1413 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1414 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1415 return TLO.CombineTo(Op, NewOp); 1416 } 1417 } 1418 break; 1419 } 1420 case ISD::AND: { 1421 SDValue Op0 = Op.getOperand(0); 1422 SDValue Op1 = Op.getOperand(1); 1423 1424 // If the RHS is a constant, check to see if the LHS would be zero without 1425 // using the bits from the RHS. Below, we use knowledge about the RHS to 1426 // simplify the LHS, here we're using information from the LHS to simplify 1427 // the RHS. 1428 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1, DemandedElts)) { 1429 // Do not increment Depth here; that can cause an infinite loop. 1430 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1431 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1432 if ((LHSKnown.Zero & DemandedBits) == 1433 (~RHSC->getAPIntValue() & DemandedBits)) 1434 return TLO.CombineTo(Op, Op0); 1435 1436 // If any of the set bits in the RHS are known zero on the LHS, shrink 1437 // the constant. 1438 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1439 DemandedElts, TLO)) 1440 return true; 1441 1442 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1443 // constant, but if this 'and' is only clearing bits that were just set by 1444 // the xor, then this 'and' can be eliminated by shrinking the mask of 1445 // the xor. For example, for a 32-bit X: 1446 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1447 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1448 LHSKnown.One == ~RHSC->getAPIntValue()) { 1449 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1450 return TLO.CombineTo(Op, Xor); 1451 } 1452 } 1453 1454 // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I) 1455 // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits). 1456 if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR && !VT.isScalableVector() && 1457 (Op0.getOperand(0).isUndef() || 1458 ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) && 1459 Op0->hasOneUse()) { 1460 unsigned NumSubElts = 1461 Op0.getOperand(1).getValueType().getVectorNumElements(); 1462 unsigned SubIdx = Op0.getConstantOperandVal(2); 1463 APInt DemandedSub = 1464 APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts); 1465 KnownBits KnownSubMask = 1466 TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1); 1467 if (DemandedBits.isSubsetOf(KnownSubMask.One)) { 1468 SDValue NewAnd = 1469 TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1); 1470 SDValue NewInsert = 1471 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd, 1472 Op0.getOperand(1), Op0.getOperand(2)); 1473 return TLO.CombineTo(Op, NewInsert); 1474 } 1475 } 1476 1477 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1478 Depth + 1)) 1479 return true; 1480 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1481 Known2, TLO, Depth + 1)) 1482 return true; 1483 1484 // If all of the demanded bits are known one on one side, return the other. 1485 // These bits cannot contribute to the result of the 'and'. 1486 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1487 return TLO.CombineTo(Op, Op0); 1488 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1489 return TLO.CombineTo(Op, Op1); 1490 // If all of the demanded bits in the inputs are known zeros, return zero. 1491 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1492 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1493 // If the RHS is a constant, see if we can simplify it. 1494 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1495 TLO)) 1496 return true; 1497 // If the operation can be done in a smaller type, do so. 1498 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1499 return true; 1500 1501 // Attempt to avoid multi-use ops if we don't need anything from them. 1502 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1503 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1504 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1505 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1506 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1507 if (DemandedOp0 || DemandedOp1) { 1508 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1509 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1510 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1511 return TLO.CombineTo(Op, NewOp); 1512 } 1513 } 1514 1515 Known &= Known2; 1516 break; 1517 } 1518 case ISD::OR: { 1519 SDValue Op0 = Op.getOperand(0); 1520 SDValue Op1 = Op.getOperand(1); 1521 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1522 Depth + 1)) { 1523 Op->dropFlags(SDNodeFlags::Disjoint); 1524 return true; 1525 } 1526 1527 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1528 Known2, TLO, Depth + 1)) { 1529 Op->dropFlags(SDNodeFlags::Disjoint); 1530 return true; 1531 } 1532 1533 // If all of the demanded bits are known zero on one side, return the other. 1534 // These bits cannot contribute to the result of the 'or'. 1535 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1536 return TLO.CombineTo(Op, Op0); 1537 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1538 return TLO.CombineTo(Op, Op1); 1539 // If the RHS is a constant, see if we can simplify it. 1540 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1541 return true; 1542 // If the operation can be done in a smaller type, do so. 1543 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1544 return true; 1545 1546 // Attempt to avoid multi-use ops if we don't need anything from them. 1547 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1548 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1549 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1550 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1551 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1552 if (DemandedOp0 || DemandedOp1) { 1553 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1554 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1555 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1556 return TLO.CombineTo(Op, NewOp); 1557 } 1558 } 1559 1560 // (or (and X, C1), (and (or X, Y), C2)) -> (or (and X, C1|C2), (and Y, C2)) 1561 // TODO: Use SimplifyMultipleUseDemandedBits to peek through masks. 1562 if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::AND && 1563 Op0->hasOneUse() && Op1->hasOneUse()) { 1564 // Attempt to match all commutations - m_c_Or would've been useful! 1565 for (int I = 0; I != 2; ++I) { 1566 SDValue X = Op.getOperand(I).getOperand(0); 1567 SDValue C1 = Op.getOperand(I).getOperand(1); 1568 SDValue Alt = Op.getOperand(1 - I).getOperand(0); 1569 SDValue C2 = Op.getOperand(1 - I).getOperand(1); 1570 if (Alt.getOpcode() == ISD::OR) { 1571 for (int J = 0; J != 2; ++J) { 1572 if (X == Alt.getOperand(J)) { 1573 SDValue Y = Alt.getOperand(1 - J); 1574 if (SDValue C12 = TLO.DAG.FoldConstantArithmetic(ISD::OR, dl, VT, 1575 {C1, C2})) { 1576 SDValue MaskX = TLO.DAG.getNode(ISD::AND, dl, VT, X, C12); 1577 SDValue MaskY = TLO.DAG.getNode(ISD::AND, dl, VT, Y, C2); 1578 return TLO.CombineTo( 1579 Op, TLO.DAG.getNode(ISD::OR, dl, VT, MaskX, MaskY)); 1580 } 1581 } 1582 } 1583 } 1584 } 1585 } 1586 1587 Known |= Known2; 1588 break; 1589 } 1590 case ISD::XOR: { 1591 SDValue Op0 = Op.getOperand(0); 1592 SDValue Op1 = Op.getOperand(1); 1593 1594 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1595 Depth + 1)) 1596 return true; 1597 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1598 Depth + 1)) 1599 return true; 1600 1601 // If all of the demanded bits are known zero on one side, return the other. 1602 // These bits cannot contribute to the result of the 'xor'. 1603 if (DemandedBits.isSubsetOf(Known.Zero)) 1604 return TLO.CombineTo(Op, Op0); 1605 if (DemandedBits.isSubsetOf(Known2.Zero)) 1606 return TLO.CombineTo(Op, Op1); 1607 // If the operation can be done in a smaller type, do so. 1608 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1609 return true; 1610 1611 // If all of the unknown bits are known to be zero on one side or the other 1612 // turn this into an *inclusive* or. 1613 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1614 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1615 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1616 1617 ConstantSDNode *C = isConstOrConstSplat(Op1, DemandedElts); 1618 if (C) { 1619 // If one side is a constant, and all of the set bits in the constant are 1620 // also known set on the other side, turn this into an AND, as we know 1621 // the bits will be cleared. 1622 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1623 // NB: it is okay if more bits are known than are requested 1624 if (C->getAPIntValue() == Known2.One) { 1625 SDValue ANDC = 1626 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1627 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1628 } 1629 1630 // If the RHS is a constant, see if we can change it. Don't alter a -1 1631 // constant because that's a 'not' op, and that is better for combining 1632 // and codegen. 1633 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1634 // We're flipping all demanded bits. Flip the undemanded bits too. 1635 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1636 return TLO.CombineTo(Op, New); 1637 } 1638 1639 unsigned Op0Opcode = Op0.getOpcode(); 1640 if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) { 1641 if (ConstantSDNode *ShiftC = 1642 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1643 // Don't crash on an oversized shift. We can not guarantee that a 1644 // bogus shift has been simplified to undef. 1645 if (ShiftC->getAPIntValue().ult(BitWidth)) { 1646 uint64_t ShiftAmt = ShiftC->getZExtValue(); 1647 APInt Ones = APInt::getAllOnes(BitWidth); 1648 Ones = Op0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) 1649 : Ones.lshr(ShiftAmt); 1650 if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) && 1651 isDesirableToCommuteXorWithShift(Op.getNode())) { 1652 // If the xor constant is a demanded mask, do a 'not' before the 1653 // shift: 1654 // xor (X << ShiftC), XorC --> (not X) << ShiftC 1655 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC 1656 SDValue Not = TLO.DAG.getNOT(dl, Op0.getOperand(0), VT); 1657 return TLO.CombineTo(Op, TLO.DAG.getNode(Op0Opcode, dl, VT, Not, 1658 Op0.getOperand(1))); 1659 } 1660 } 1661 } 1662 } 1663 } 1664 1665 // If we can't turn this into a 'not', try to shrink the constant. 1666 if (!C || !C->isAllOnes()) 1667 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1668 return true; 1669 1670 // Attempt to avoid multi-use ops if we don't need anything from them. 1671 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1672 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1673 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1674 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1675 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1676 if (DemandedOp0 || DemandedOp1) { 1677 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1678 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1679 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1680 return TLO.CombineTo(Op, NewOp); 1681 } 1682 } 1683 1684 Known ^= Known2; 1685 break; 1686 } 1687 case ISD::SELECT: 1688 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, 1689 Known, TLO, Depth + 1)) 1690 return true; 1691 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts, 1692 Known2, TLO, Depth + 1)) 1693 return true; 1694 1695 // If the operands are constants, see if we can simplify them. 1696 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1697 return true; 1698 1699 // Only known if known in both the LHS and RHS. 1700 Known = Known.intersectWith(Known2); 1701 break; 1702 case ISD::VSELECT: 1703 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, 1704 Known, TLO, Depth + 1)) 1705 return true; 1706 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts, 1707 Known2, TLO, Depth + 1)) 1708 return true; 1709 1710 // Only known if known in both the LHS and RHS. 1711 Known = Known.intersectWith(Known2); 1712 break; 1713 case ISD::SELECT_CC: 1714 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, DemandedElts, 1715 Known, TLO, Depth + 1)) 1716 return true; 1717 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, 1718 Known2, TLO, Depth + 1)) 1719 return true; 1720 1721 // If the operands are constants, see if we can simplify them. 1722 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1723 return true; 1724 1725 // Only known if known in both the LHS and RHS. 1726 Known = Known.intersectWith(Known2); 1727 break; 1728 case ISD::SETCC: { 1729 SDValue Op0 = Op.getOperand(0); 1730 SDValue Op1 = Op.getOperand(1); 1731 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1732 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1733 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1734 // -1, we may be able to bypass the setcc. 1735 if (DemandedBits.isSignMask() && 1736 Op0.getScalarValueSizeInBits() == BitWidth && 1737 getBooleanContents(Op0.getValueType()) == 1738 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1739 // If we're testing X < 0, then this compare isn't needed - just use X! 1740 // FIXME: We're limiting to integer types here, but this should also work 1741 // if we don't care about FP signed-zero. The use of SETLT with FP means 1742 // that we don't care about NaNs. 1743 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1744 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1745 return TLO.CombineTo(Op, Op0); 1746 1747 // TODO: Should we check for other forms of sign-bit comparisons? 1748 // Examples: X <= -1, X >= 0 1749 } 1750 if (getBooleanContents(Op0.getValueType()) == 1751 TargetLowering::ZeroOrOneBooleanContent && 1752 BitWidth > 1) 1753 Known.Zero.setBitsFrom(1); 1754 break; 1755 } 1756 case ISD::SHL: { 1757 SDValue Op0 = Op.getOperand(0); 1758 SDValue Op1 = Op.getOperand(1); 1759 EVT ShiftVT = Op1.getValueType(); 1760 1761 if (std::optional<uint64_t> KnownSA = 1762 TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) { 1763 unsigned ShAmt = *KnownSA; 1764 if (ShAmt == 0) 1765 return TLO.CombineTo(Op, Op0); 1766 1767 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1768 // single shift. We can do this if the bottom bits (which are shifted 1769 // out) are never demanded. 1770 // TODO - support non-uniform vector amounts. 1771 if (Op0.getOpcode() == ISD::SRL) { 1772 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1773 if (std::optional<uint64_t> InnerSA = 1774 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) { 1775 unsigned C1 = *InnerSA; 1776 unsigned Opc = ISD::SHL; 1777 int Diff = ShAmt - C1; 1778 if (Diff < 0) { 1779 Diff = -Diff; 1780 Opc = ISD::SRL; 1781 } 1782 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1783 return TLO.CombineTo( 1784 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1785 } 1786 } 1787 } 1788 1789 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1790 // are not demanded. This will likely allow the anyext to be folded away. 1791 // TODO - support non-uniform vector amounts. 1792 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1793 SDValue InnerOp = Op0.getOperand(0); 1794 EVT InnerVT = InnerOp.getValueType(); 1795 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1796 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1797 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1798 SDValue NarrowShl = TLO.DAG.getNode( 1799 ISD::SHL, dl, InnerVT, InnerOp, 1800 TLO.DAG.getShiftAmountConstant(ShAmt, InnerVT, dl)); 1801 return TLO.CombineTo( 1802 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1803 } 1804 1805 // Repeat the SHL optimization above in cases where an extension 1806 // intervenes: (shl (anyext (shr x, c1)), c2) to 1807 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1808 // aren't demanded (as above) and that the shifted upper c1 bits of 1809 // x aren't demanded. 1810 // TODO - support non-uniform vector amounts. 1811 if (InnerOp.getOpcode() == ISD::SRL && Op0.hasOneUse() && 1812 InnerOp.hasOneUse()) { 1813 if (std::optional<uint64_t> SA2 = TLO.DAG.getValidShiftAmount( 1814 InnerOp, DemandedElts, Depth + 2)) { 1815 unsigned InnerShAmt = *SA2; 1816 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1817 DemandedBits.getActiveBits() <= 1818 (InnerBits - InnerShAmt + ShAmt) && 1819 DemandedBits.countr_zero() >= ShAmt) { 1820 SDValue NewSA = 1821 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1822 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1823 InnerOp.getOperand(0)); 1824 return TLO.CombineTo( 1825 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1826 } 1827 } 1828 } 1829 } 1830 1831 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1832 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1833 Depth + 1)) { 1834 // Disable the nsw and nuw flags. We can no longer guarantee that we 1835 // won't wrap after simplification. 1836 Op->dropFlags(SDNodeFlags::NoWrap); 1837 return true; 1838 } 1839 Known.Zero <<= ShAmt; 1840 Known.One <<= ShAmt; 1841 // low bits known zero. 1842 Known.Zero.setLowBits(ShAmt); 1843 1844 // Attempt to avoid multi-use ops if we don't need anything from them. 1845 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1846 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1847 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1848 if (DemandedOp0) { 1849 SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1); 1850 return TLO.CombineTo(Op, NewOp); 1851 } 1852 } 1853 1854 // TODO: Can we merge this fold with the one below? 1855 // Try shrinking the operation as long as the shift amount will still be 1856 // in range. 1857 if (ShAmt < DemandedBits.getActiveBits() && !VT.isVector() && 1858 Op.getNode()->hasOneUse()) { 1859 // Search for the smallest integer type with free casts to and from 1860 // Op's type. For expedience, just check power-of-2 integer types. 1861 unsigned DemandedSize = DemandedBits.getActiveBits(); 1862 for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize); 1863 SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 1864 EVT SmallVT = EVT::getIntegerVT(*TLO.DAG.getContext(), SmallVTBits); 1865 if (isNarrowingProfitable(Op.getNode(), VT, SmallVT) && 1866 isTypeDesirableForOp(ISD::SHL, SmallVT) && 1867 isTruncateFree(VT, SmallVT) && isZExtFree(SmallVT, VT) && 1868 (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, SmallVT))) { 1869 assert(DemandedSize <= SmallVTBits && 1870 "Narrowed below demanded bits?"); 1871 // We found a type with free casts. 1872 SDValue NarrowShl = TLO.DAG.getNode( 1873 ISD::SHL, dl, SmallVT, 1874 TLO.DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 1875 TLO.DAG.getShiftAmountConstant(ShAmt, SmallVT, dl)); 1876 return TLO.CombineTo( 1877 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1878 } 1879 } 1880 } 1881 1882 // Narrow shift to lower half - similar to ShrinkDemandedOp. 1883 // (shl i64:x, K) -> (i64 zero_extend (shl (i32 (trunc i64:x)), K)) 1884 // Only do this if we demand the upper half so the knownbits are correct. 1885 unsigned HalfWidth = BitWidth / 2; 1886 if ((BitWidth % 2) == 0 && !VT.isVector() && ShAmt < HalfWidth && 1887 DemandedBits.countLeadingOnes() >= HalfWidth) { 1888 EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), HalfWidth); 1889 if (isNarrowingProfitable(Op.getNode(), VT, HalfVT) && 1890 isTypeDesirableForOp(ISD::SHL, HalfVT) && 1891 isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) && 1892 (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, HalfVT))) { 1893 // If we're demanding the upper bits at all, we must ensure 1894 // that the upper bits of the shift result are known to be zero, 1895 // which is equivalent to the narrow shift being NUW. 1896 if (bool IsNUW = (Known.countMinLeadingZeros() >= HalfWidth)) { 1897 bool IsNSW = Known.countMinSignBits() > HalfWidth; 1898 SDNodeFlags Flags; 1899 Flags.setNoSignedWrap(IsNSW); 1900 Flags.setNoUnsignedWrap(IsNUW); 1901 SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0); 1902 SDValue NewShiftAmt = 1903 TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl); 1904 SDValue NewShift = TLO.DAG.getNode(ISD::SHL, dl, HalfVT, NewOp, 1905 NewShiftAmt, Flags); 1906 SDValue NewExt = 1907 TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift); 1908 return TLO.CombineTo(Op, NewExt); 1909 } 1910 } 1911 } 1912 } else { 1913 // This is a variable shift, so we can't shift the demand mask by a known 1914 // amount. But if we are not demanding high bits, then we are not 1915 // demanding those bits from the pre-shifted operand either. 1916 if (unsigned CTLZ = DemandedBits.countl_zero()) { 1917 APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ)); 1918 if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO, 1919 Depth + 1)) { 1920 // Disable the nsw and nuw flags. We can no longer guarantee that we 1921 // won't wrap after simplification. 1922 Op->dropFlags(SDNodeFlags::NoWrap); 1923 return true; 1924 } 1925 Known.resetAll(); 1926 } 1927 } 1928 1929 // If we are only demanding sign bits then we can use the shift source 1930 // directly. 1931 if (std::optional<uint64_t> MaxSA = 1932 TLO.DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) { 1933 unsigned ShAmt = *MaxSA; 1934 unsigned NumSignBits = 1935 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1936 unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero(); 1937 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1938 return TLO.CombineTo(Op, Op0); 1939 } 1940 break; 1941 } 1942 case ISD::SRL: { 1943 SDValue Op0 = Op.getOperand(0); 1944 SDValue Op1 = Op.getOperand(1); 1945 EVT ShiftVT = Op1.getValueType(); 1946 1947 if (std::optional<uint64_t> KnownSA = 1948 TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) { 1949 unsigned ShAmt = *KnownSA; 1950 if (ShAmt == 0) 1951 return TLO.CombineTo(Op, Op0); 1952 1953 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1954 // single shift. We can do this if the top bits (which are shifted out) 1955 // are never demanded. 1956 // TODO - support non-uniform vector amounts. 1957 if (Op0.getOpcode() == ISD::SHL) { 1958 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1959 if (std::optional<uint64_t> InnerSA = 1960 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) { 1961 unsigned C1 = *InnerSA; 1962 unsigned Opc = ISD::SRL; 1963 int Diff = ShAmt - C1; 1964 if (Diff < 0) { 1965 Diff = -Diff; 1966 Opc = ISD::SHL; 1967 } 1968 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1969 return TLO.CombineTo( 1970 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1971 } 1972 } 1973 } 1974 1975 // If this is (srl (sra X, C1), ShAmt), see if we can combine this into a 1976 // single sra. We can do this if the top bits are never demanded. 1977 if (Op0.getOpcode() == ISD::SRA && Op0.hasOneUse()) { 1978 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1979 if (std::optional<uint64_t> InnerSA = 1980 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) { 1981 unsigned C1 = *InnerSA; 1982 // Clamp the combined shift amount if it exceeds the bit width. 1983 unsigned Combined = std::min(C1 + ShAmt, BitWidth - 1); 1984 SDValue NewSA = TLO.DAG.getConstant(Combined, dl, ShiftVT); 1985 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRA, dl, VT, 1986 Op0.getOperand(0), NewSA)); 1987 } 1988 } 1989 } 1990 1991 APInt InDemandedMask = (DemandedBits << ShAmt); 1992 1993 // If the shift is exact, then it does demand the low bits (and knows that 1994 // they are zero). 1995 if (Op->getFlags().hasExact()) 1996 InDemandedMask.setLowBits(ShAmt); 1997 1998 // Narrow shift to lower half - similar to ShrinkDemandedOp. 1999 // (srl i64:x, K) -> (i64 zero_extend (srl (i32 (trunc i64:x)), K)) 2000 if ((BitWidth % 2) == 0 && !VT.isVector()) { 2001 APInt HiBits = APInt::getHighBitsSet(BitWidth, BitWidth / 2); 2002 EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), BitWidth / 2); 2003 if (isNarrowingProfitable(Op.getNode(), VT, HalfVT) && 2004 isTypeDesirableForOp(ISD::SRL, HalfVT) && 2005 isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) && 2006 (!TLO.LegalOperations() || isOperationLegal(ISD::SRL, HalfVT)) && 2007 ((InDemandedMask.countLeadingZeros() >= (BitWidth / 2)) || 2008 TLO.DAG.MaskedValueIsZero(Op0, HiBits))) { 2009 SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0); 2010 SDValue NewShiftAmt = 2011 TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl); 2012 SDValue NewShift = 2013 TLO.DAG.getNode(ISD::SRL, dl, HalfVT, NewOp, NewShiftAmt); 2014 return TLO.CombineTo( 2015 Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift)); 2016 } 2017 } 2018 2019 // Compute the new bits that are at the top now. 2020 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 2021 Depth + 1)) 2022 return true; 2023 Known.Zero.lshrInPlace(ShAmt); 2024 Known.One.lshrInPlace(ShAmt); 2025 // High bits known zero. 2026 Known.Zero.setHighBits(ShAmt); 2027 2028 // Attempt to avoid multi-use ops if we don't need anything from them. 2029 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2030 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2031 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 2032 if (DemandedOp0) { 2033 SDValue NewOp = TLO.DAG.getNode(ISD::SRL, dl, VT, DemandedOp0, Op1); 2034 return TLO.CombineTo(Op, NewOp); 2035 } 2036 } 2037 } else { 2038 // Use generic knownbits computation as it has support for non-uniform 2039 // shift amounts. 2040 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2041 } 2042 2043 // If we are only demanding sign bits then we can use the shift source 2044 // directly. 2045 if (std::optional<uint64_t> MaxSA = 2046 TLO.DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) { 2047 unsigned ShAmt = *MaxSA; 2048 // Must already be signbits in DemandedBits bounds, and can't demand any 2049 // shifted in zeroes. 2050 if (DemandedBits.countl_zero() >= ShAmt) { 2051 unsigned NumSignBits = 2052 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 2053 if (DemandedBits.countr_zero() >= (BitWidth - NumSignBits)) 2054 return TLO.CombineTo(Op, Op0); 2055 } 2056 } 2057 2058 // Try to match AVG patterns (after shift simplification). 2059 if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits, 2060 DemandedElts, Depth + 1)) 2061 return TLO.CombineTo(Op, AVG); 2062 2063 break; 2064 } 2065 case ISD::SRA: { 2066 SDValue Op0 = Op.getOperand(0); 2067 SDValue Op1 = Op.getOperand(1); 2068 EVT ShiftVT = Op1.getValueType(); 2069 2070 // If we only want bits that already match the signbit then we don't need 2071 // to shift. 2072 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countr_zero(); 2073 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 2074 NumHiDemandedBits) 2075 return TLO.CombineTo(Op, Op0); 2076 2077 // If this is an arithmetic shift right and only the low-bit is set, we can 2078 // always convert this into a logical shr, even if the shift amount is 2079 // variable. The low bit of the shift cannot be an input sign bit unless 2080 // the shift amount is >= the size of the datatype, which is undefined. 2081 if (DemandedBits.isOne()) 2082 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 2083 2084 if (std::optional<uint64_t> KnownSA = 2085 TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) { 2086 unsigned ShAmt = *KnownSA; 2087 if (ShAmt == 0) 2088 return TLO.CombineTo(Op, Op0); 2089 2090 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target 2091 // supports sext_inreg. 2092 if (Op0.getOpcode() == ISD::SHL) { 2093 if (std::optional<uint64_t> InnerSA = 2094 TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) { 2095 unsigned LowBits = BitWidth - ShAmt; 2096 EVT ExtVT = EVT::getIntegerVT(*TLO.DAG.getContext(), LowBits); 2097 if (VT.isVector()) 2098 ExtVT = EVT::getVectorVT(*TLO.DAG.getContext(), ExtVT, 2099 VT.getVectorElementCount()); 2100 2101 if (*InnerSA == ShAmt) { 2102 if (!TLO.LegalOperations() || 2103 getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) == Legal) 2104 return TLO.CombineTo( 2105 Op, TLO.DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, 2106 Op0.getOperand(0), 2107 TLO.DAG.getValueType(ExtVT))); 2108 2109 // Even if we can't convert to sext_inreg, we might be able to 2110 // remove this shift pair if the input is already sign extended. 2111 unsigned NumSignBits = 2112 TLO.DAG.ComputeNumSignBits(Op0.getOperand(0), DemandedElts); 2113 if (NumSignBits > ShAmt) 2114 return TLO.CombineTo(Op, Op0.getOperand(0)); 2115 } 2116 } 2117 } 2118 2119 APInt InDemandedMask = (DemandedBits << ShAmt); 2120 2121 // If the shift is exact, then it does demand the low bits (and knows that 2122 // they are zero). 2123 if (Op->getFlags().hasExact()) 2124 InDemandedMask.setLowBits(ShAmt); 2125 2126 // If any of the demanded bits are produced by the sign extension, we also 2127 // demand the input sign bit. 2128 if (DemandedBits.countl_zero() < ShAmt) 2129 InDemandedMask.setSignBit(); 2130 2131 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 2132 Depth + 1)) 2133 return true; 2134 Known.Zero.lshrInPlace(ShAmt); 2135 Known.One.lshrInPlace(ShAmt); 2136 2137 // If the input sign bit is known to be zero, or if none of the top bits 2138 // are demanded, turn this into an unsigned shift right. 2139 if (Known.Zero[BitWidth - ShAmt - 1] || 2140 DemandedBits.countl_zero() >= ShAmt) { 2141 SDNodeFlags Flags; 2142 Flags.setExact(Op->getFlags().hasExact()); 2143 return TLO.CombineTo( 2144 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 2145 } 2146 2147 int Log2 = DemandedBits.exactLogBase2(); 2148 if (Log2 >= 0) { 2149 // The bit must come from the sign. 2150 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 2151 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 2152 } 2153 2154 if (Known.One[BitWidth - ShAmt - 1]) 2155 // New bits are known one. 2156 Known.One.setHighBits(ShAmt); 2157 2158 // Attempt to avoid multi-use ops if we don't need anything from them. 2159 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2160 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2161 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 2162 if (DemandedOp0) { 2163 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 2164 return TLO.CombineTo(Op, NewOp); 2165 } 2166 } 2167 } 2168 2169 // Try to match AVG patterns (after shift simplification). 2170 if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits, 2171 DemandedElts, Depth + 1)) 2172 return TLO.CombineTo(Op, AVG); 2173 2174 break; 2175 } 2176 case ISD::FSHL: 2177 case ISD::FSHR: { 2178 SDValue Op0 = Op.getOperand(0); 2179 SDValue Op1 = Op.getOperand(1); 2180 SDValue Op2 = Op.getOperand(2); 2181 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 2182 2183 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 2184 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 2185 2186 // For fshl, 0-shift returns the 1st arg. 2187 // For fshr, 0-shift returns the 2nd arg. 2188 if (Amt == 0) { 2189 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 2190 Known, TLO, Depth + 1)) 2191 return true; 2192 break; 2193 } 2194 2195 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 2196 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 2197 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 2198 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 2199 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 2200 Depth + 1)) 2201 return true; 2202 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 2203 Depth + 1)) 2204 return true; 2205 2206 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 2207 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 2208 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 2209 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 2210 Known = Known.unionWith(Known2); 2211 2212 // Attempt to avoid multi-use ops if we don't need anything from them. 2213 if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() || 2214 !DemandedElts.isAllOnes()) { 2215 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2216 Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1); 2217 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2218 Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1); 2219 if (DemandedOp0 || DemandedOp1) { 2220 DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0; 2221 DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1; 2222 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0, 2223 DemandedOp1, Op2); 2224 return TLO.CombineTo(Op, NewOp); 2225 } 2226 } 2227 } 2228 2229 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 2230 if (isPowerOf2_32(BitWidth)) { 2231 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 2232 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 2233 Known2, TLO, Depth + 1)) 2234 return true; 2235 } 2236 break; 2237 } 2238 case ISD::ROTL: 2239 case ISD::ROTR: { 2240 SDValue Op0 = Op.getOperand(0); 2241 SDValue Op1 = Op.getOperand(1); 2242 bool IsROTL = (Op.getOpcode() == ISD::ROTL); 2243 2244 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 2245 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 2246 return TLO.CombineTo(Op, Op0); 2247 2248 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 2249 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 2250 unsigned RevAmt = BitWidth - Amt; 2251 2252 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) 2253 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) 2254 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); 2255 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 2256 Depth + 1)) 2257 return true; 2258 2259 // rot*(x, 0) --> x 2260 if (Amt == 0) 2261 return TLO.CombineTo(Op, Op0); 2262 2263 // See if we don't demand either half of the rotated bits. 2264 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && 2265 DemandedBits.countr_zero() >= (IsROTL ? Amt : RevAmt)) { 2266 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); 2267 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); 2268 } 2269 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && 2270 DemandedBits.countl_zero() >= (IsROTL ? RevAmt : Amt)) { 2271 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); 2272 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 2273 } 2274 } 2275 2276 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 2277 if (isPowerOf2_32(BitWidth)) { 2278 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 2279 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 2280 Depth + 1)) 2281 return true; 2282 } 2283 break; 2284 } 2285 case ISD::SMIN: 2286 case ISD::SMAX: 2287 case ISD::UMIN: 2288 case ISD::UMAX: { 2289 unsigned Opc = Op.getOpcode(); 2290 SDValue Op0 = Op.getOperand(0); 2291 SDValue Op1 = Op.getOperand(1); 2292 2293 // If we're only demanding signbits, then we can simplify to OR/AND node. 2294 unsigned BitOp = 2295 (Opc == ISD::SMIN || Opc == ISD::UMAX) ? ISD::OR : ISD::AND; 2296 unsigned NumSignBits = 2297 std::min(TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1), 2298 TLO.DAG.ComputeNumSignBits(Op1, DemandedElts, Depth + 1)); 2299 unsigned NumDemandedUpperBits = BitWidth - DemandedBits.countr_zero(); 2300 if (NumSignBits >= NumDemandedUpperBits) 2301 return TLO.CombineTo(Op, TLO.DAG.getNode(BitOp, SDLoc(Op), VT, Op0, Op1)); 2302 2303 // Check if one arg is always less/greater than (or equal) to the other arg. 2304 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 2305 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 2306 switch (Opc) { 2307 case ISD::SMIN: 2308 if (std::optional<bool> IsSLE = KnownBits::sle(Known0, Known1)) 2309 return TLO.CombineTo(Op, *IsSLE ? Op0 : Op1); 2310 if (std::optional<bool> IsSLT = KnownBits::slt(Known0, Known1)) 2311 return TLO.CombineTo(Op, *IsSLT ? Op0 : Op1); 2312 Known = KnownBits::smin(Known0, Known1); 2313 break; 2314 case ISD::SMAX: 2315 if (std::optional<bool> IsSGE = KnownBits::sge(Known0, Known1)) 2316 return TLO.CombineTo(Op, *IsSGE ? Op0 : Op1); 2317 if (std::optional<bool> IsSGT = KnownBits::sgt(Known0, Known1)) 2318 return TLO.CombineTo(Op, *IsSGT ? Op0 : Op1); 2319 Known = KnownBits::smax(Known0, Known1); 2320 break; 2321 case ISD::UMIN: 2322 if (std::optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 2323 return TLO.CombineTo(Op, *IsULE ? Op0 : Op1); 2324 if (std::optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 2325 return TLO.CombineTo(Op, *IsULT ? Op0 : Op1); 2326 Known = KnownBits::umin(Known0, Known1); 2327 break; 2328 case ISD::UMAX: 2329 if (std::optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 2330 return TLO.CombineTo(Op, *IsUGE ? Op0 : Op1); 2331 if (std::optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 2332 return TLO.CombineTo(Op, *IsUGT ? Op0 : Op1); 2333 Known = KnownBits::umax(Known0, Known1); 2334 break; 2335 } 2336 break; 2337 } 2338 case ISD::BITREVERSE: { 2339 SDValue Src = Op.getOperand(0); 2340 APInt DemandedSrcBits = DemandedBits.reverseBits(); 2341 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 2342 Depth + 1)) 2343 return true; 2344 Known.One = Known2.One.reverseBits(); 2345 Known.Zero = Known2.Zero.reverseBits(); 2346 break; 2347 } 2348 case ISD::BSWAP: { 2349 SDValue Src = Op.getOperand(0); 2350 2351 // If the only bits demanded come from one byte of the bswap result, 2352 // just shift the input byte into position to eliminate the bswap. 2353 unsigned NLZ = DemandedBits.countl_zero(); 2354 unsigned NTZ = DemandedBits.countr_zero(); 2355 2356 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 2357 // we need all the bits down to bit 8. Likewise, round NLZ. If we 2358 // have 14 leading zeros, round to 8. 2359 NLZ = alignDown(NLZ, 8); 2360 NTZ = alignDown(NTZ, 8); 2361 // If we need exactly one byte, we can do this transformation. 2362 if (BitWidth - NLZ - NTZ == 8) { 2363 // Replace this with either a left or right shift to get the byte into 2364 // the right place. 2365 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL; 2366 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) { 2367 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ; 2368 SDValue ShAmt = TLO.DAG.getShiftAmountConstant(ShiftAmount, VT, dl); 2369 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt); 2370 return TLO.CombineTo(Op, NewOp); 2371 } 2372 } 2373 2374 APInt DemandedSrcBits = DemandedBits.byteSwap(); 2375 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 2376 Depth + 1)) 2377 return true; 2378 Known.One = Known2.One.byteSwap(); 2379 Known.Zero = Known2.Zero.byteSwap(); 2380 break; 2381 } 2382 case ISD::CTPOP: { 2383 // If only 1 bit is demanded, replace with PARITY as long as we're before 2384 // op legalization. 2385 // FIXME: Limit to scalars for now. 2386 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 2387 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 2388 Op.getOperand(0))); 2389 2390 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2391 break; 2392 } 2393 case ISD::SIGN_EXTEND_INREG: { 2394 SDValue Op0 = Op.getOperand(0); 2395 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2396 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 2397 2398 // If we only care about the highest bit, don't bother shifting right. 2399 if (DemandedBits.isSignMask()) { 2400 unsigned MinSignedBits = 2401 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1); 2402 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 2403 // However if the input is already sign extended we expect the sign 2404 // extension to be dropped altogether later and do not simplify. 2405 if (!AlreadySignExtended) { 2406 // Compute the correct shift amount type, which must be getShiftAmountTy 2407 // for scalar types after legalization. 2408 SDValue ShiftAmt = 2409 TLO.DAG.getShiftAmountConstant(BitWidth - ExVTBits, VT, dl); 2410 return TLO.CombineTo(Op, 2411 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 2412 } 2413 } 2414 2415 // If none of the extended bits are demanded, eliminate the sextinreg. 2416 if (DemandedBits.getActiveBits() <= ExVTBits) 2417 return TLO.CombineTo(Op, Op0); 2418 2419 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 2420 2421 // Since the sign extended bits are demanded, we know that the sign 2422 // bit is demanded. 2423 InputDemandedBits.setBit(ExVTBits - 1); 2424 2425 if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO, 2426 Depth + 1)) 2427 return true; 2428 2429 // If the sign bit of the input is known set or clear, then we know the 2430 // top bits of the result. 2431 2432 // If the input sign bit is known zero, convert this into a zero extension. 2433 if (Known.Zero[ExVTBits - 1]) 2434 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 2435 2436 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 2437 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 2438 Known.One.setBitsFrom(ExVTBits); 2439 Known.Zero &= Mask; 2440 } else { // Input sign bit unknown 2441 Known.Zero &= Mask; 2442 Known.One &= Mask; 2443 } 2444 break; 2445 } 2446 case ISD::BUILD_PAIR: { 2447 EVT HalfVT = Op.getOperand(0).getValueType(); 2448 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 2449 2450 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 2451 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 2452 2453 KnownBits KnownLo, KnownHi; 2454 2455 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 2456 return true; 2457 2458 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 2459 return true; 2460 2461 Known = KnownHi.concat(KnownLo); 2462 break; 2463 } 2464 case ISD::ZERO_EXTEND_VECTOR_INREG: 2465 if (VT.isScalableVector()) 2466 return false; 2467 [[fallthrough]]; 2468 case ISD::ZERO_EXTEND: { 2469 SDValue Src = Op.getOperand(0); 2470 EVT SrcVT = Src.getValueType(); 2471 unsigned InBits = SrcVT.getScalarSizeInBits(); 2472 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; 2473 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 2474 2475 // If none of the top bits are demanded, convert this into an any_extend. 2476 if (DemandedBits.getActiveBits() <= InBits) { 2477 // If we only need the non-extended bits of the bottom element 2478 // then we can just bitcast to the result. 2479 if (IsLE && IsVecInReg && DemandedElts == 1 && 2480 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2481 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2482 2483 unsigned Opc = 2484 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2485 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2486 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2487 } 2488 2489 APInt InDemandedBits = DemandedBits.trunc(InBits); 2490 APInt InDemandedElts = DemandedElts.zext(InElts); 2491 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2492 Depth + 1)) { 2493 Op->dropFlags(SDNodeFlags::NonNeg); 2494 return true; 2495 } 2496 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2497 Known = Known.zext(BitWidth); 2498 2499 // Attempt to avoid multi-use ops if we don't need anything from them. 2500 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2501 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2502 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2503 break; 2504 } 2505 case ISD::SIGN_EXTEND_VECTOR_INREG: 2506 if (VT.isScalableVector()) 2507 return false; 2508 [[fallthrough]]; 2509 case ISD::SIGN_EXTEND: { 2510 SDValue Src = Op.getOperand(0); 2511 EVT SrcVT = Src.getValueType(); 2512 unsigned InBits = SrcVT.getScalarSizeInBits(); 2513 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; 2514 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 2515 2516 APInt InDemandedElts = DemandedElts.zext(InElts); 2517 APInt InDemandedBits = DemandedBits.trunc(InBits); 2518 2519 // Since some of the sign extended bits are demanded, we know that the sign 2520 // bit is demanded. 2521 InDemandedBits.setBit(InBits - 1); 2522 2523 // If none of the top bits are demanded, convert this into an any_extend. 2524 if (DemandedBits.getActiveBits() <= InBits) { 2525 // If we only need the non-extended bits of the bottom element 2526 // then we can just bitcast to the result. 2527 if (IsLE && IsVecInReg && DemandedElts == 1 && 2528 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2529 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2530 2531 // Don't lose an all signbits 0/-1 splat on targets with 0/-1 booleans. 2532 if (getBooleanContents(VT) != ZeroOrNegativeOneBooleanContent || 2533 TLO.DAG.ComputeNumSignBits(Src, InDemandedElts, Depth + 1) != 2534 InBits) { 2535 unsigned Opc = 2536 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2537 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2538 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2539 } 2540 } 2541 2542 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2543 Depth + 1)) 2544 return true; 2545 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2546 2547 // If the sign bit is known one, the top bits match. 2548 Known = Known.sext(BitWidth); 2549 2550 // If the sign bit is known zero, convert this to a zero extend. 2551 if (Known.isNonNegative()) { 2552 unsigned Opc = 2553 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 2554 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) { 2555 SDNodeFlags Flags; 2556 if (!IsVecInReg) 2557 Flags |= SDNodeFlags::NonNeg; 2558 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src, Flags)); 2559 } 2560 } 2561 2562 // Attempt to avoid multi-use ops if we don't need anything from them. 2563 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2564 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2565 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2566 break; 2567 } 2568 case ISD::ANY_EXTEND_VECTOR_INREG: 2569 if (VT.isScalableVector()) 2570 return false; 2571 [[fallthrough]]; 2572 case ISD::ANY_EXTEND: { 2573 SDValue Src = Op.getOperand(0); 2574 EVT SrcVT = Src.getValueType(); 2575 unsigned InBits = SrcVT.getScalarSizeInBits(); 2576 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; 2577 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 2578 2579 // If we only need the bottom element then we can just bitcast. 2580 // TODO: Handle ANY_EXTEND? 2581 if (IsLE && IsVecInReg && DemandedElts == 1 && 2582 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2583 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2584 2585 APInt InDemandedBits = DemandedBits.trunc(InBits); 2586 APInt InDemandedElts = DemandedElts.zext(InElts); 2587 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2588 Depth + 1)) 2589 return true; 2590 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2591 Known = Known.anyext(BitWidth); 2592 2593 // Attempt to avoid multi-use ops if we don't need anything from them. 2594 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2595 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2596 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2597 break; 2598 } 2599 case ISD::TRUNCATE: { 2600 SDValue Src = Op.getOperand(0); 2601 2602 // Simplify the input, using demanded bit information, and compute the known 2603 // zero/one bits live out. 2604 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2605 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2606 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2607 Depth + 1)) { 2608 // Disable the nsw and nuw flags. We can no longer guarantee that we 2609 // won't wrap after simplification. 2610 Op->dropFlags(SDNodeFlags::NoWrap); 2611 return true; 2612 } 2613 Known = Known.trunc(BitWidth); 2614 2615 // Attempt to avoid multi-use ops if we don't need anything from them. 2616 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2617 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2618 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2619 2620 // If the input is only used by this truncate, see if we can shrink it based 2621 // on the known demanded bits. 2622 switch (Src.getOpcode()) { 2623 default: 2624 break; 2625 case ISD::SRL: 2626 // Shrink SRL by a constant if none of the high bits shifted in are 2627 // demanded. 2628 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2629 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2630 // undesirable. 2631 break; 2632 2633 if (Src.getNode()->hasOneUse()) { 2634 if (isTruncateFree(Src, VT) && 2635 !isTruncateFree(Src.getValueType(), VT)) { 2636 // If truncate is only free at trunc(srl), do not turn it into 2637 // srl(trunc). The check is done by first check the truncate is free 2638 // at Src's opcode(srl), then check the truncate is not done by 2639 // referencing sub-register. In test, if both trunc(srl) and 2640 // srl(trunc)'s trunc are free, srl(trunc) performs better. If only 2641 // trunc(srl)'s trunc is free, trunc(srl) is better. 2642 break; 2643 } 2644 2645 std::optional<uint64_t> ShAmtC = 2646 TLO.DAG.getValidShiftAmount(Src, DemandedElts, Depth + 2); 2647 if (!ShAmtC || *ShAmtC >= BitWidth) 2648 break; 2649 uint64_t ShVal = *ShAmtC; 2650 2651 APInt HighBits = 2652 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2653 HighBits.lshrInPlace(ShVal); 2654 HighBits = HighBits.trunc(BitWidth); 2655 if (!(HighBits & DemandedBits)) { 2656 // None of the shifted in bits are needed. Add a truncate of the 2657 // shift input, then shift it. 2658 SDValue NewShAmt = TLO.DAG.getShiftAmountConstant(ShVal, VT, dl); 2659 SDValue NewTrunc = 2660 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2661 return TLO.CombineTo( 2662 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2663 } 2664 } 2665 break; 2666 } 2667 2668 break; 2669 } 2670 case ISD::AssertZext: { 2671 // AssertZext demands all of the high bits, plus any of the low bits 2672 // demanded by its users. 2673 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2674 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2675 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2676 TLO, Depth + 1)) 2677 return true; 2678 2679 Known.Zero |= ~InMask; 2680 Known.One &= (~Known.Zero); 2681 break; 2682 } 2683 case ISD::EXTRACT_VECTOR_ELT: { 2684 SDValue Src = Op.getOperand(0); 2685 SDValue Idx = Op.getOperand(1); 2686 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2687 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2688 2689 if (SrcEltCnt.isScalable()) 2690 return false; 2691 2692 // Demand the bits from every vector element without a constant index. 2693 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2694 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2695 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2696 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2697 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2698 2699 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2700 // anything about the extended bits. 2701 APInt DemandedSrcBits = DemandedBits; 2702 if (BitWidth > EltBitWidth) 2703 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2704 2705 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2706 Depth + 1)) 2707 return true; 2708 2709 // Attempt to avoid multi-use ops if we don't need anything from them. 2710 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2711 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2712 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2713 SDValue NewOp = 2714 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2715 return TLO.CombineTo(Op, NewOp); 2716 } 2717 } 2718 2719 Known = Known2; 2720 if (BitWidth > EltBitWidth) 2721 Known = Known.anyext(BitWidth); 2722 break; 2723 } 2724 case ISD::BITCAST: { 2725 if (VT.isScalableVector()) 2726 return false; 2727 SDValue Src = Op.getOperand(0); 2728 EVT SrcVT = Src.getValueType(); 2729 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2730 2731 // If this is an FP->Int bitcast and if the sign bit is the only 2732 // thing demanded, turn this into a FGETSIGN. 2733 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2734 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2735 SrcVT.isFloatingPoint()) { 2736 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2737 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2738 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2739 SrcVT != MVT::f128) { 2740 // Cannot eliminate/lower SHL for f128 yet. 2741 EVT Ty = OpVTLegal ? VT : MVT::i32; 2742 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2743 // place. We expect the SHL to be eliminated by other optimizations. 2744 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2745 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2746 if (!OpVTLegal && OpVTSizeInBits > 32) 2747 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2748 unsigned ShVal = Op.getValueSizeInBits() - 1; 2749 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2750 return TLO.CombineTo(Op, 2751 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2752 } 2753 } 2754 2755 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2756 // Demand the elt/bit if any of the original elts/bits are demanded. 2757 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { 2758 unsigned Scale = BitWidth / NumSrcEltBits; 2759 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2760 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2761 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2762 for (unsigned i = 0; i != Scale; ++i) { 2763 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 2764 unsigned BitOffset = EltOffset * NumSrcEltBits; 2765 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 2766 if (!Sub.isZero()) { 2767 DemandedSrcBits |= Sub; 2768 for (unsigned j = 0; j != NumElts; ++j) 2769 if (DemandedElts[j]) 2770 DemandedSrcElts.setBit((j * Scale) + i); 2771 } 2772 } 2773 2774 APInt KnownSrcUndef, KnownSrcZero; 2775 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2776 KnownSrcZero, TLO, Depth + 1)) 2777 return true; 2778 2779 KnownBits KnownSrcBits; 2780 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2781 KnownSrcBits, TLO, Depth + 1)) 2782 return true; 2783 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { 2784 // TODO - bigendian once we have test coverage. 2785 unsigned Scale = NumSrcEltBits / BitWidth; 2786 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2787 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2788 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2789 for (unsigned i = 0; i != NumElts; ++i) 2790 if (DemandedElts[i]) { 2791 unsigned Offset = (i % Scale) * BitWidth; 2792 DemandedSrcBits.insertBits(DemandedBits, Offset); 2793 DemandedSrcElts.setBit(i / Scale); 2794 } 2795 2796 if (SrcVT.isVector()) { 2797 APInt KnownSrcUndef, KnownSrcZero; 2798 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2799 KnownSrcZero, TLO, Depth + 1)) 2800 return true; 2801 } 2802 2803 KnownBits KnownSrcBits; 2804 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2805 KnownSrcBits, TLO, Depth + 1)) 2806 return true; 2807 2808 // Attempt to avoid multi-use ops if we don't need anything from them. 2809 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2810 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2811 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2812 SDValue NewOp = TLO.DAG.getBitcast(VT, DemandedSrc); 2813 return TLO.CombineTo(Op, NewOp); 2814 } 2815 } 2816 } 2817 2818 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2819 // recursive call where Known may be useful to the caller. 2820 if (Depth > 0) { 2821 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2822 return false; 2823 } 2824 break; 2825 } 2826 case ISD::MUL: 2827 if (DemandedBits.isPowerOf2()) { 2828 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 2829 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 2830 // odd (has LSB set), then the left-shifted low bit of X is the answer. 2831 unsigned CTZ = DemandedBits.countr_zero(); 2832 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 2833 if (C && C->getAPIntValue().countr_zero() == CTZ) { 2834 SDValue AmtC = TLO.DAG.getShiftAmountConstant(CTZ, VT, dl); 2835 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC); 2836 return TLO.CombineTo(Op, Shl); 2837 } 2838 } 2839 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: 2840 // X * X is odd iff X is odd. 2841 // 'Quadratic Reciprocity': X * X -> 0 for bit[1] 2842 if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) { 2843 SDValue One = TLO.DAG.getConstant(1, dl, VT); 2844 SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One); 2845 return TLO.CombineTo(Op, And1); 2846 } 2847 [[fallthrough]]; 2848 case ISD::ADD: 2849 case ISD::SUB: { 2850 // Add, Sub, and Mul don't demand any bits in positions beyond that 2851 // of the highest bit demanded of them. 2852 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2853 SDNodeFlags Flags = Op.getNode()->getFlags(); 2854 unsigned DemandedBitsLZ = DemandedBits.countl_zero(); 2855 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2856 KnownBits KnownOp0, KnownOp1; 2857 auto GetDemandedBitsLHSMask = [&](APInt Demanded, 2858 const KnownBits &KnownRHS) { 2859 if (Op.getOpcode() == ISD::MUL) 2860 Demanded.clearHighBits(KnownRHS.countMinTrailingZeros()); 2861 return Demanded; 2862 }; 2863 if (SimplifyDemandedBits(Op1, LoMask, DemandedElts, KnownOp1, TLO, 2864 Depth + 1) || 2865 SimplifyDemandedBits(Op0, GetDemandedBitsLHSMask(LoMask, KnownOp1), 2866 DemandedElts, KnownOp0, TLO, Depth + 1) || 2867 // See if the operation should be performed at a smaller bit width. 2868 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2869 // Disable the nsw and nuw flags. We can no longer guarantee that we 2870 // won't wrap after simplification. 2871 Op->dropFlags(SDNodeFlags::NoWrap); 2872 return true; 2873 } 2874 2875 // neg x with only low bit demanded is simply x. 2876 if (Op.getOpcode() == ISD::SUB && DemandedBits.isOne() && 2877 isNullConstant(Op0)) 2878 return TLO.CombineTo(Op, Op1); 2879 2880 // Attempt to avoid multi-use ops if we don't need anything from them. 2881 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2882 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2883 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2884 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2885 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2886 if (DemandedOp0 || DemandedOp1) { 2887 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2888 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2889 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, 2890 Flags & ~SDNodeFlags::NoWrap); 2891 return TLO.CombineTo(Op, NewOp); 2892 } 2893 } 2894 2895 // If we have a constant operand, we may be able to turn it into -1 if we 2896 // do not demand the high bits. This can make the constant smaller to 2897 // encode, allow more general folding, or match specialized instruction 2898 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2899 // is probably not useful (and could be detrimental). 2900 ConstantSDNode *C = isConstOrConstSplat(Op1); 2901 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2902 if (C && !C->isAllOnes() && !C->isOne() && 2903 (C->getAPIntValue() | HighMask).isAllOnes()) { 2904 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2905 // Disable the nsw and nuw flags. We can no longer guarantee that we 2906 // won't wrap after simplification. 2907 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, 2908 Flags & ~SDNodeFlags::NoWrap); 2909 return TLO.CombineTo(Op, NewOp); 2910 } 2911 2912 // Match a multiply with a disguised negated-power-of-2 and convert to a 2913 // an equivalent shift-left amount. 2914 // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2915 auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned { 2916 if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse()) 2917 return 0; 2918 2919 // Don't touch opaque constants. Also, ignore zero and power-of-2 2920 // multiplies. Those will get folded later. 2921 ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1)); 2922 if (MulC && !MulC->isOpaque() && !MulC->isZero() && 2923 !MulC->getAPIntValue().isPowerOf2()) { 2924 APInt UnmaskedC = MulC->getAPIntValue() | HighMask; 2925 if (UnmaskedC.isNegatedPowerOf2()) 2926 return (-UnmaskedC).logBase2(); 2927 } 2928 return 0; 2929 }; 2930 2931 auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, 2932 unsigned ShlAmt) { 2933 SDValue ShlAmtC = TLO.DAG.getShiftAmountConstant(ShlAmt, VT, dl); 2934 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC); 2935 SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl); 2936 return TLO.CombineTo(Op, Res); 2937 }; 2938 2939 if (isOperationLegalOrCustom(ISD::SHL, VT)) { 2940 if (Op.getOpcode() == ISD::ADD) { 2941 // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2942 if (unsigned ShAmt = getShiftLeftAmt(Op0)) 2943 return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt); 2944 // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC)) 2945 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2946 return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt); 2947 } 2948 if (Op.getOpcode() == ISD::SUB) { 2949 // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC)) 2950 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2951 return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt); 2952 } 2953 } 2954 2955 if (Op.getOpcode() == ISD::MUL) { 2956 Known = KnownBits::mul(KnownOp0, KnownOp1); 2957 } else { // Op.getOpcode() is either ISD::ADD or ISD::SUB. 2958 Known = KnownBits::computeForAddSub( 2959 Op.getOpcode() == ISD::ADD, Flags.hasNoSignedWrap(), 2960 Flags.hasNoUnsignedWrap(), KnownOp0, KnownOp1); 2961 } 2962 break; 2963 } 2964 default: 2965 // We also ask the target about intrinsics (which could be specific to it). 2966 if (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2967 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN) { 2968 // TODO: Probably okay to remove after audit; here to reduce change size 2969 // in initial enablement patch for scalable vectors 2970 if (Op.getValueType().isScalableVector()) 2971 break; 2972 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2973 Known, TLO, Depth)) 2974 return true; 2975 break; 2976 } 2977 2978 // Just use computeKnownBits to compute output bits. 2979 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2980 break; 2981 } 2982 2983 // If we know the value of all of the demanded bits, return this as a 2984 // constant. 2985 if (!isTargetCanonicalConstantNode(Op) && 2986 DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2987 // Avoid folding to a constant if any OpaqueConstant is involved. 2988 const SDNode *N = Op.getNode(); 2989 for (SDNode *Op : 2990 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2991 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 2992 if (C->isOpaque()) 2993 return false; 2994 } 2995 if (VT.isInteger()) 2996 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2997 if (VT.isFloatingPoint()) 2998 return TLO.CombineTo( 2999 Op, TLO.DAG.getConstantFP(APFloat(VT.getFltSemantics(), Known.One), 3000 dl, VT)); 3001 } 3002 3003 // A multi use 'all demanded elts' simplify failed to find any knownbits. 3004 // Try again just for the original demanded elts. 3005 // Ensure we do this AFTER constant folding above. 3006 if (HasMultiUse && Known.isUnknown() && !OriginalDemandedElts.isAllOnes()) 3007 Known = TLO.DAG.computeKnownBits(Op, OriginalDemandedElts, Depth); 3008 3009 return false; 3010 } 3011 3012 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 3013 const APInt &DemandedElts, 3014 DAGCombinerInfo &DCI) const { 3015 SelectionDAG &DAG = DCI.DAG; 3016 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 3017 !DCI.isBeforeLegalizeOps()); 3018 3019 APInt KnownUndef, KnownZero; 3020 bool Simplified = 3021 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 3022 if (Simplified) { 3023 DCI.AddToWorklist(Op.getNode()); 3024 DCI.CommitTargetLoweringOpt(TLO); 3025 } 3026 3027 return Simplified; 3028 } 3029 3030 /// Given a vector binary operation and known undefined elements for each input 3031 /// operand, compute whether each element of the output is undefined. 3032 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 3033 const APInt &UndefOp0, 3034 const APInt &UndefOp1) { 3035 EVT VT = BO.getValueType(); 3036 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 3037 "Vector binop only"); 3038 3039 EVT EltVT = VT.getVectorElementType(); 3040 unsigned NumElts = VT.isFixedLengthVector() ? VT.getVectorNumElements() : 1; 3041 assert(UndefOp0.getBitWidth() == NumElts && 3042 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 3043 3044 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 3045 const APInt &UndefVals) { 3046 if (UndefVals[Index]) 3047 return DAG.getUNDEF(EltVT); 3048 3049 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 3050 // Try hard to make sure that the getNode() call is not creating temporary 3051 // nodes. Ignore opaque integers because they do not constant fold. 3052 SDValue Elt = BV->getOperand(Index); 3053 auto *C = dyn_cast<ConstantSDNode>(Elt); 3054 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 3055 return Elt; 3056 } 3057 3058 return SDValue(); 3059 }; 3060 3061 APInt KnownUndef = APInt::getZero(NumElts); 3062 for (unsigned i = 0; i != NumElts; ++i) { 3063 // If both inputs for this element are either constant or undef and match 3064 // the element type, compute the constant/undef result for this element of 3065 // the vector. 3066 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 3067 // not handle FP constants. The code within getNode() should be refactored 3068 // to avoid the danger of creating a bogus temporary node here. 3069 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 3070 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 3071 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 3072 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 3073 KnownUndef.setBit(i); 3074 } 3075 return KnownUndef; 3076 } 3077 3078 bool TargetLowering::SimplifyDemandedVectorElts( 3079 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 3080 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 3081 bool AssumeSingleUse) const { 3082 EVT VT = Op.getValueType(); 3083 unsigned Opcode = Op.getOpcode(); 3084 APInt DemandedElts = OriginalDemandedElts; 3085 unsigned NumElts = DemandedElts.getBitWidth(); 3086 assert(VT.isVector() && "Expected vector op"); 3087 3088 KnownUndef = KnownZero = APInt::getZero(NumElts); 3089 3090 if (!shouldSimplifyDemandedVectorElts(Op, TLO)) 3091 return false; 3092 3093 // TODO: For now we assume we know nothing about scalable vectors. 3094 if (VT.isScalableVector()) 3095 return false; 3096 3097 assert(VT.getVectorNumElements() == NumElts && 3098 "Mask size mismatches value type element count!"); 3099 3100 // Undef operand. 3101 if (Op.isUndef()) { 3102 KnownUndef.setAllBits(); 3103 return false; 3104 } 3105 3106 // If Op has other users, assume that all elements are needed. 3107 if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) 3108 DemandedElts.setAllBits(); 3109 3110 // Not demanding any elements from Op. 3111 if (DemandedElts == 0) { 3112 KnownUndef.setAllBits(); 3113 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3114 } 3115 3116 // Limit search depth. 3117 if (Depth >= SelectionDAG::MaxRecursionDepth) 3118 return false; 3119 3120 SDLoc DL(Op); 3121 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 3122 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 3123 3124 // Helper for demanding the specified elements and all the bits of both binary 3125 // operands. 3126 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 3127 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 3128 TLO.DAG, Depth + 1); 3129 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 3130 TLO.DAG, Depth + 1); 3131 if (NewOp0 || NewOp1) { 3132 SDValue NewOp = 3133 TLO.DAG.getNode(Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, 3134 NewOp1 ? NewOp1 : Op1, Op->getFlags()); 3135 return TLO.CombineTo(Op, NewOp); 3136 } 3137 return false; 3138 }; 3139 3140 switch (Opcode) { 3141 case ISD::SCALAR_TO_VECTOR: { 3142 if (!DemandedElts[0]) { 3143 KnownUndef.setAllBits(); 3144 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3145 } 3146 SDValue ScalarSrc = Op.getOperand(0); 3147 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 3148 SDValue Src = ScalarSrc.getOperand(0); 3149 SDValue Idx = ScalarSrc.getOperand(1); 3150 EVT SrcVT = Src.getValueType(); 3151 3152 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 3153 3154 if (SrcEltCnt.isScalable()) 3155 return false; 3156 3157 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 3158 if (isNullConstant(Idx)) { 3159 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 3160 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 3161 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 3162 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 3163 TLO, Depth + 1)) 3164 return true; 3165 } 3166 } 3167 KnownUndef.setHighBits(NumElts - 1); 3168 break; 3169 } 3170 case ISD::BITCAST: { 3171 SDValue Src = Op.getOperand(0); 3172 EVT SrcVT = Src.getValueType(); 3173 3174 // We only handle vectors here. 3175 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 3176 if (!SrcVT.isVector()) 3177 break; 3178 3179 // Fast handling of 'identity' bitcasts. 3180 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 3181 if (NumSrcElts == NumElts) 3182 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 3183 KnownZero, TLO, Depth + 1); 3184 3185 APInt SrcDemandedElts, SrcZero, SrcUndef; 3186 3187 // Bitcast from 'large element' src vector to 'small element' vector, we 3188 // must demand a source element if any DemandedElt maps to it. 3189 if ((NumElts % NumSrcElts) == 0) { 3190 unsigned Scale = NumElts / NumSrcElts; 3191 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 3192 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 3193 TLO, Depth + 1)) 3194 return true; 3195 3196 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 3197 // of the large element. 3198 // TODO - bigendian once we have test coverage. 3199 if (IsLE) { 3200 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 3201 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 3202 for (unsigned i = 0; i != NumElts; ++i) 3203 if (DemandedElts[i]) { 3204 unsigned Ofs = (i % Scale) * EltSizeInBits; 3205 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 3206 } 3207 3208 KnownBits Known; 3209 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 3210 TLO, Depth + 1)) 3211 return true; 3212 3213 // The bitcast has split each wide element into a number of 3214 // narrow subelements. We have just computed the Known bits 3215 // for wide elements. See if element splitting results in 3216 // some subelements being zero. Only for demanded elements! 3217 for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) { 3218 if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits) 3219 .isAllOnes()) 3220 continue; 3221 for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) { 3222 unsigned Elt = Scale * SrcElt + SubElt; 3223 if (DemandedElts[Elt]) 3224 KnownZero.setBit(Elt); 3225 } 3226 } 3227 } 3228 3229 // If the src element is zero/undef then all the output elements will be - 3230 // only demanded elements are guaranteed to be correct. 3231 for (unsigned i = 0; i != NumSrcElts; ++i) { 3232 if (SrcDemandedElts[i]) { 3233 if (SrcZero[i]) 3234 KnownZero.setBits(i * Scale, (i + 1) * Scale); 3235 if (SrcUndef[i]) 3236 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 3237 } 3238 } 3239 } 3240 3241 // Bitcast from 'small element' src vector to 'large element' vector, we 3242 // demand all smaller source elements covered by the larger demanded element 3243 // of this vector. 3244 if ((NumSrcElts % NumElts) == 0) { 3245 unsigned Scale = NumSrcElts / NumElts; 3246 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 3247 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 3248 TLO, Depth + 1)) 3249 return true; 3250 3251 // If all the src elements covering an output element are zero/undef, then 3252 // the output element will be as well, assuming it was demanded. 3253 for (unsigned i = 0; i != NumElts; ++i) { 3254 if (DemandedElts[i]) { 3255 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 3256 KnownZero.setBit(i); 3257 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 3258 KnownUndef.setBit(i); 3259 } 3260 } 3261 } 3262 break; 3263 } 3264 case ISD::FREEZE: { 3265 SDValue N0 = Op.getOperand(0); 3266 if (TLO.DAG.isGuaranteedNotToBeUndefOrPoison(N0, DemandedElts, 3267 /*PoisonOnly=*/false)) 3268 return TLO.CombineTo(Op, N0); 3269 3270 // TODO: Replace this with the general fold from DAGCombiner::visitFREEZE 3271 // freeze(op(x, ...)) -> op(freeze(x), ...). 3272 if (N0.getOpcode() == ISD::SCALAR_TO_VECTOR && DemandedElts == 1) 3273 return TLO.CombineTo( 3274 Op, TLO.DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, 3275 TLO.DAG.getFreeze(N0.getOperand(0)))); 3276 break; 3277 } 3278 case ISD::BUILD_VECTOR: { 3279 // Check all elements and simplify any unused elements with UNDEF. 3280 if (!DemandedElts.isAllOnes()) { 3281 // Don't simplify BROADCASTS. 3282 if (llvm::any_of(Op->op_values(), 3283 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 3284 SmallVector<SDValue, 32> Ops(Op->ops()); 3285 bool Updated = false; 3286 for (unsigned i = 0; i != NumElts; ++i) { 3287 if (!DemandedElts[i] && !Ops[i].isUndef()) { 3288 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 3289 KnownUndef.setBit(i); 3290 Updated = true; 3291 } 3292 } 3293 if (Updated) 3294 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 3295 } 3296 } 3297 for (unsigned i = 0; i != NumElts; ++i) { 3298 SDValue SrcOp = Op.getOperand(i); 3299 if (SrcOp.isUndef()) { 3300 KnownUndef.setBit(i); 3301 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 3302 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 3303 KnownZero.setBit(i); 3304 } 3305 } 3306 break; 3307 } 3308 case ISD::CONCAT_VECTORS: { 3309 EVT SubVT = Op.getOperand(0).getValueType(); 3310 unsigned NumSubVecs = Op.getNumOperands(); 3311 unsigned NumSubElts = SubVT.getVectorNumElements(); 3312 for (unsigned i = 0; i != NumSubVecs; ++i) { 3313 SDValue SubOp = Op.getOperand(i); 3314 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 3315 APInt SubUndef, SubZero; 3316 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 3317 Depth + 1)) 3318 return true; 3319 KnownUndef.insertBits(SubUndef, i * NumSubElts); 3320 KnownZero.insertBits(SubZero, i * NumSubElts); 3321 } 3322 3323 // Attempt to avoid multi-use ops if we don't need anything from them. 3324 if (!DemandedElts.isAllOnes()) { 3325 bool FoundNewSub = false; 3326 SmallVector<SDValue, 2> DemandedSubOps; 3327 for (unsigned i = 0; i != NumSubVecs; ++i) { 3328 SDValue SubOp = Op.getOperand(i); 3329 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 3330 SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts( 3331 SubOp, SubElts, TLO.DAG, Depth + 1); 3332 DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp); 3333 FoundNewSub = NewSubOp ? true : FoundNewSub; 3334 } 3335 if (FoundNewSub) { 3336 SDValue NewOp = 3337 TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps); 3338 return TLO.CombineTo(Op, NewOp); 3339 } 3340 } 3341 break; 3342 } 3343 case ISD::INSERT_SUBVECTOR: { 3344 // Demand any elements from the subvector and the remainder from the src its 3345 // inserted into. 3346 SDValue Src = Op.getOperand(0); 3347 SDValue Sub = Op.getOperand(1); 3348 uint64_t Idx = Op.getConstantOperandVal(2); 3349 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3350 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3351 APInt DemandedSrcElts = DemandedElts; 3352 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 3353 3354 APInt SubUndef, SubZero; 3355 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 3356 Depth + 1)) 3357 return true; 3358 3359 // If none of the src operand elements are demanded, replace it with undef. 3360 if (!DemandedSrcElts && !Src.isUndef()) 3361 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 3362 TLO.DAG.getUNDEF(VT), Sub, 3363 Op.getOperand(2))); 3364 3365 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 3366 TLO, Depth + 1)) 3367 return true; 3368 KnownUndef.insertBits(SubUndef, Idx); 3369 KnownZero.insertBits(SubZero, Idx); 3370 3371 // Attempt to avoid multi-use ops if we don't need anything from them. 3372 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 3373 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 3374 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 3375 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 3376 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 3377 if (NewSrc || NewSub) { 3378 NewSrc = NewSrc ? NewSrc : Src; 3379 NewSub = NewSub ? NewSub : Sub; 3380 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 3381 NewSub, Op.getOperand(2)); 3382 return TLO.CombineTo(Op, NewOp); 3383 } 3384 } 3385 break; 3386 } 3387 case ISD::EXTRACT_SUBVECTOR: { 3388 // Offset the demanded elts by the subvector index. 3389 SDValue Src = Op.getOperand(0); 3390 if (Src.getValueType().isScalableVector()) 3391 break; 3392 uint64_t Idx = Op.getConstantOperandVal(1); 3393 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3394 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 3395 3396 APInt SrcUndef, SrcZero; 3397 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3398 Depth + 1)) 3399 return true; 3400 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 3401 KnownZero = SrcZero.extractBits(NumElts, Idx); 3402 3403 // Attempt to avoid multi-use ops if we don't need anything from them. 3404 if (!DemandedElts.isAllOnes()) { 3405 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 3406 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 3407 if (NewSrc) { 3408 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 3409 Op.getOperand(1)); 3410 return TLO.CombineTo(Op, NewOp); 3411 } 3412 } 3413 break; 3414 } 3415 case ISD::INSERT_VECTOR_ELT: { 3416 SDValue Vec = Op.getOperand(0); 3417 SDValue Scl = Op.getOperand(1); 3418 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3419 3420 // For a legal, constant insertion index, if we don't need this insertion 3421 // then strip it, else remove it from the demanded elts. 3422 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 3423 unsigned Idx = CIdx->getZExtValue(); 3424 if (!DemandedElts[Idx]) 3425 return TLO.CombineTo(Op, Vec); 3426 3427 APInt DemandedVecElts(DemandedElts); 3428 DemandedVecElts.clearBit(Idx); 3429 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 3430 KnownZero, TLO, Depth + 1)) 3431 return true; 3432 3433 KnownUndef.setBitVal(Idx, Scl.isUndef()); 3434 3435 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 3436 break; 3437 } 3438 3439 APInt VecUndef, VecZero; 3440 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 3441 Depth + 1)) 3442 return true; 3443 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 3444 break; 3445 } 3446 case ISD::VSELECT: { 3447 SDValue Sel = Op.getOperand(0); 3448 SDValue LHS = Op.getOperand(1); 3449 SDValue RHS = Op.getOperand(2); 3450 3451 // Try to transform the select condition based on the current demanded 3452 // elements. 3453 APInt UndefSel, ZeroSel; 3454 if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, ZeroSel, TLO, 3455 Depth + 1)) 3456 return true; 3457 3458 // See if we can simplify either vselect operand. 3459 APInt DemandedLHS(DemandedElts); 3460 APInt DemandedRHS(DemandedElts); 3461 APInt UndefLHS, ZeroLHS; 3462 APInt UndefRHS, ZeroRHS; 3463 if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO, 3464 Depth + 1)) 3465 return true; 3466 if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO, 3467 Depth + 1)) 3468 return true; 3469 3470 KnownUndef = UndefLHS & UndefRHS; 3471 KnownZero = ZeroLHS & ZeroRHS; 3472 3473 // If we know that the selected element is always zero, we don't need the 3474 // select value element. 3475 APInt DemandedSel = DemandedElts & ~KnownZero; 3476 if (DemandedSel != DemandedElts) 3477 if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, ZeroSel, TLO, 3478 Depth + 1)) 3479 return true; 3480 3481 break; 3482 } 3483 case ISD::VECTOR_SHUFFLE: { 3484 SDValue LHS = Op.getOperand(0); 3485 SDValue RHS = Op.getOperand(1); 3486 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 3487 3488 // Collect demanded elements from shuffle operands.. 3489 APInt DemandedLHS(NumElts, 0); 3490 APInt DemandedRHS(NumElts, 0); 3491 for (unsigned i = 0; i != NumElts; ++i) { 3492 int M = ShuffleMask[i]; 3493 if (M < 0 || !DemandedElts[i]) 3494 continue; 3495 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 3496 if (M < (int)NumElts) 3497 DemandedLHS.setBit(M); 3498 else 3499 DemandedRHS.setBit(M - NumElts); 3500 } 3501 3502 // See if we can simplify either shuffle operand. 3503 APInt UndefLHS, ZeroLHS; 3504 APInt UndefRHS, ZeroRHS; 3505 if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO, 3506 Depth + 1)) 3507 return true; 3508 if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO, 3509 Depth + 1)) 3510 return true; 3511 3512 // Simplify mask using undef elements from LHS/RHS. 3513 bool Updated = false; 3514 bool IdentityLHS = true, IdentityRHS = true; 3515 SmallVector<int, 32> NewMask(ShuffleMask); 3516 for (unsigned i = 0; i != NumElts; ++i) { 3517 int &M = NewMask[i]; 3518 if (M < 0) 3519 continue; 3520 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 3521 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 3522 Updated = true; 3523 M = -1; 3524 } 3525 IdentityLHS &= (M < 0) || (M == (int)i); 3526 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 3527 } 3528 3529 // Update legal shuffle masks based on demanded elements if it won't reduce 3530 // to Identity which can cause premature removal of the shuffle mask. 3531 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 3532 SDValue LegalShuffle = 3533 buildLegalVectorShuffle(VT, DL, LHS, RHS, NewMask, TLO.DAG); 3534 if (LegalShuffle) 3535 return TLO.CombineTo(Op, LegalShuffle); 3536 } 3537 3538 // Propagate undef/zero elements from LHS/RHS. 3539 for (unsigned i = 0; i != NumElts; ++i) { 3540 int M = ShuffleMask[i]; 3541 if (M < 0) { 3542 KnownUndef.setBit(i); 3543 } else if (M < (int)NumElts) { 3544 if (UndefLHS[M]) 3545 KnownUndef.setBit(i); 3546 if (ZeroLHS[M]) 3547 KnownZero.setBit(i); 3548 } else { 3549 if (UndefRHS[M - NumElts]) 3550 KnownUndef.setBit(i); 3551 if (ZeroRHS[M - NumElts]) 3552 KnownZero.setBit(i); 3553 } 3554 } 3555 break; 3556 } 3557 case ISD::ANY_EXTEND_VECTOR_INREG: 3558 case ISD::SIGN_EXTEND_VECTOR_INREG: 3559 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3560 APInt SrcUndef, SrcZero; 3561 SDValue Src = Op.getOperand(0); 3562 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3563 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts); 3564 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3565 Depth + 1)) 3566 return true; 3567 KnownZero = SrcZero.zextOrTrunc(NumElts); 3568 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 3569 3570 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 3571 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 3572 DemandedSrcElts == 1) { 3573 // aext - if we just need the bottom element then we can bitcast. 3574 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 3575 } 3576 3577 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 3578 // zext(undef) upper bits are guaranteed to be zero. 3579 if (DemandedElts.isSubsetOf(KnownUndef)) 3580 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3581 KnownUndef.clearAllBits(); 3582 3583 // zext - if we just need the bottom element then we can mask: 3584 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 3585 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && 3586 Op->isOnlyUserOf(Src.getNode()) && 3587 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 3588 SDLoc DL(Op); 3589 EVT SrcVT = Src.getValueType(); 3590 EVT SrcSVT = SrcVT.getScalarType(); 3591 SmallVector<SDValue> MaskElts; 3592 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 3593 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 3594 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 3595 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 3596 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 3597 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 3598 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 3599 } 3600 } 3601 } 3602 break; 3603 } 3604 3605 // TODO: There are more binop opcodes that could be handled here - MIN, 3606 // MAX, saturated math, etc. 3607 case ISD::ADD: { 3608 SDValue Op0 = Op.getOperand(0); 3609 SDValue Op1 = Op.getOperand(1); 3610 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) { 3611 APInt UndefLHS, ZeroLHS; 3612 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3613 Depth + 1, /*AssumeSingleUse*/ true)) 3614 return true; 3615 } 3616 [[fallthrough]]; 3617 } 3618 case ISD::AVGCEILS: 3619 case ISD::AVGCEILU: 3620 case ISD::AVGFLOORS: 3621 case ISD::AVGFLOORU: 3622 case ISD::OR: 3623 case ISD::XOR: 3624 case ISD::SUB: 3625 case ISD::FADD: 3626 case ISD::FSUB: 3627 case ISD::FMUL: 3628 case ISD::FDIV: 3629 case ISD::FREM: { 3630 SDValue Op0 = Op.getOperand(0); 3631 SDValue Op1 = Op.getOperand(1); 3632 3633 APInt UndefRHS, ZeroRHS; 3634 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3635 Depth + 1)) 3636 return true; 3637 APInt UndefLHS, ZeroLHS; 3638 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3639 Depth + 1)) 3640 return true; 3641 3642 KnownZero = ZeroLHS & ZeroRHS; 3643 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 3644 3645 // Attempt to avoid multi-use ops if we don't need anything from them. 3646 // TODO - use KnownUndef to relax the demandedelts? 3647 if (!DemandedElts.isAllOnes()) 3648 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3649 return true; 3650 break; 3651 } 3652 case ISD::SHL: 3653 case ISD::SRL: 3654 case ISD::SRA: 3655 case ISD::ROTL: 3656 case ISD::ROTR: { 3657 SDValue Op0 = Op.getOperand(0); 3658 SDValue Op1 = Op.getOperand(1); 3659 3660 APInt UndefRHS, ZeroRHS; 3661 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3662 Depth + 1)) 3663 return true; 3664 APInt UndefLHS, ZeroLHS; 3665 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3666 Depth + 1)) 3667 return true; 3668 3669 KnownZero = ZeroLHS; 3670 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 3671 3672 // Attempt to avoid multi-use ops if we don't need anything from them. 3673 // TODO - use KnownUndef to relax the demandedelts? 3674 if (!DemandedElts.isAllOnes()) 3675 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3676 return true; 3677 break; 3678 } 3679 case ISD::MUL: 3680 case ISD::MULHU: 3681 case ISD::MULHS: 3682 case ISD::AND: { 3683 SDValue Op0 = Op.getOperand(0); 3684 SDValue Op1 = Op.getOperand(1); 3685 3686 APInt SrcUndef, SrcZero; 3687 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 3688 Depth + 1)) 3689 return true; 3690 // If we know that a demanded element was zero in Op1 we don't need to 3691 // demand it in Op0 - its guaranteed to be zero. 3692 APInt DemandedElts0 = DemandedElts & ~SrcZero; 3693 if (SimplifyDemandedVectorElts(Op0, DemandedElts0, KnownUndef, KnownZero, 3694 TLO, Depth + 1)) 3695 return true; 3696 3697 KnownUndef &= DemandedElts0; 3698 KnownZero &= DemandedElts0; 3699 3700 // If every element pair has a zero/undef then just fold to zero. 3701 // fold (and x, undef) -> 0 / (and x, 0) -> 0 3702 // fold (mul x, undef) -> 0 / (mul x, 0) -> 0 3703 if (DemandedElts.isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef)) 3704 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3705 3706 // If either side has a zero element, then the result element is zero, even 3707 // if the other is an UNDEF. 3708 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 3709 // and then handle 'and' nodes with the rest of the binop opcodes. 3710 KnownZero |= SrcZero; 3711 KnownUndef &= SrcUndef; 3712 KnownUndef &= ~KnownZero; 3713 3714 // Attempt to avoid multi-use ops if we don't need anything from them. 3715 if (!DemandedElts.isAllOnes()) 3716 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3717 return true; 3718 break; 3719 } 3720 case ISD::TRUNCATE: 3721 case ISD::SIGN_EXTEND: 3722 case ISD::ZERO_EXTEND: 3723 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 3724 KnownZero, TLO, Depth + 1)) 3725 return true; 3726 3727 if (!DemandedElts.isAllOnes()) 3728 if (SDValue NewOp = SimplifyMultipleUseDemandedVectorElts( 3729 Op.getOperand(0), DemandedElts, TLO.DAG, Depth + 1)) 3730 return TLO.CombineTo(Op, TLO.DAG.getNode(Opcode, SDLoc(Op), VT, NewOp)); 3731 3732 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 3733 // zext(undef) upper bits are guaranteed to be zero. 3734 if (DemandedElts.isSubsetOf(KnownUndef)) 3735 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3736 KnownUndef.clearAllBits(); 3737 } 3738 break; 3739 case ISD::SINT_TO_FP: 3740 case ISD::UINT_TO_FP: 3741 case ISD::FP_TO_SINT: 3742 case ISD::FP_TO_UINT: 3743 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 3744 KnownZero, TLO, Depth + 1)) 3745 return true; 3746 // Don't fall through to generic undef -> undef handling. 3747 return false; 3748 default: { 3749 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 3750 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 3751 KnownZero, TLO, Depth)) 3752 return true; 3753 } else { 3754 KnownBits Known; 3755 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 3756 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 3757 TLO, Depth, AssumeSingleUse)) 3758 return true; 3759 } 3760 break; 3761 } 3762 } 3763 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 3764 3765 // Constant fold all undef cases. 3766 // TODO: Handle zero cases as well. 3767 if (DemandedElts.isSubsetOf(KnownUndef)) 3768 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3769 3770 return false; 3771 } 3772 3773 /// Determine which of the bits specified in Mask are known to be either zero or 3774 /// one and return them in the Known. 3775 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3776 KnownBits &Known, 3777 const APInt &DemandedElts, 3778 const SelectionDAG &DAG, 3779 unsigned Depth) const { 3780 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3781 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3782 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3783 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3784 "Should use MaskedValueIsZero if you don't know whether Op" 3785 " is a target node!"); 3786 Known.resetAll(); 3787 } 3788 3789 void TargetLowering::computeKnownBitsForTargetInstr( 3790 GISelKnownBits &Analysis, Register R, KnownBits &Known, 3791 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 3792 unsigned Depth) const { 3793 Known.resetAll(); 3794 } 3795 3796 void TargetLowering::computeKnownBitsForFrameIndex( 3797 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 3798 // The low bits are known zero if the pointer is aligned. 3799 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 3800 } 3801 3802 Align TargetLowering::computeKnownAlignForTargetInstr( 3803 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 3804 unsigned Depth) const { 3805 return Align(1); 3806 } 3807 3808 /// This method can be implemented by targets that want to expose additional 3809 /// information about sign bits to the DAG Combiner. 3810 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3811 const APInt &, 3812 const SelectionDAG &, 3813 unsigned Depth) const { 3814 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3815 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3816 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3817 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3818 "Should use ComputeNumSignBits if you don't know whether Op" 3819 " is a target node!"); 3820 return 1; 3821 } 3822 3823 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3824 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3825 const MachineRegisterInfo &MRI, unsigned Depth) const { 3826 return 1; 3827 } 3828 3829 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3830 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3831 TargetLoweringOpt &TLO, unsigned Depth) const { 3832 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3833 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3834 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3835 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3836 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3837 " is a target node!"); 3838 return false; 3839 } 3840 3841 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3842 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3843 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3844 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3845 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3846 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3847 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3848 "Should use SimplifyDemandedBits if you don't know whether Op" 3849 " is a target node!"); 3850 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3851 return false; 3852 } 3853 3854 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3855 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3856 SelectionDAG &DAG, unsigned Depth) const { 3857 assert( 3858 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3859 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3860 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3861 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3862 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3863 " is a target node!"); 3864 return SDValue(); 3865 } 3866 3867 SDValue 3868 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3869 SDValue N1, MutableArrayRef<int> Mask, 3870 SelectionDAG &DAG) const { 3871 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3872 if (!LegalMask) { 3873 std::swap(N0, N1); 3874 ShuffleVectorSDNode::commuteMask(Mask); 3875 LegalMask = isShuffleMaskLegal(Mask, VT); 3876 } 3877 3878 if (!LegalMask) 3879 return SDValue(); 3880 3881 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3882 } 3883 3884 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3885 return nullptr; 3886 } 3887 3888 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3889 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3890 bool PoisonOnly, unsigned Depth) const { 3891 assert( 3892 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3893 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3894 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3895 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3896 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3897 " is a target node!"); 3898 3899 // If Op can't create undef/poison and none of its operands are undef/poison 3900 // then Op is never undef/poison. 3901 return !canCreateUndefOrPoisonForTargetNode(Op, DemandedElts, DAG, PoisonOnly, 3902 /*ConsiderFlags*/ true, Depth) && 3903 all_of(Op->ops(), [&](SDValue V) { 3904 return DAG.isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly, 3905 Depth + 1); 3906 }); 3907 } 3908 3909 bool TargetLowering::canCreateUndefOrPoisonForTargetNode( 3910 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3911 bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const { 3912 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3913 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3914 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3915 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3916 "Should use canCreateUndefOrPoison if you don't know whether Op" 3917 " is a target node!"); 3918 // Be conservative and return true. 3919 return true; 3920 } 3921 3922 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3923 const SelectionDAG &DAG, 3924 bool SNaN, 3925 unsigned Depth) const { 3926 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3927 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3928 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3929 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3930 "Should use isKnownNeverNaN if you don't know whether Op" 3931 " is a target node!"); 3932 return false; 3933 } 3934 3935 bool TargetLowering::isSplatValueForTargetNode(SDValue Op, 3936 const APInt &DemandedElts, 3937 APInt &UndefElts, 3938 const SelectionDAG &DAG, 3939 unsigned Depth) const { 3940 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3941 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3942 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3943 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3944 "Should use isSplatValue if you don't know whether Op" 3945 " is a target node!"); 3946 return false; 3947 } 3948 3949 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3950 // work with truncating build vectors and vectors with elements of less than 3951 // 8 bits. 3952 bool TargetLowering::isConstTrueVal(SDValue N) const { 3953 if (!N) 3954 return false; 3955 3956 unsigned EltWidth; 3957 APInt CVal; 3958 if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false, 3959 /*AllowTruncation=*/true)) { 3960 CVal = CN->getAPIntValue(); 3961 EltWidth = N.getValueType().getScalarSizeInBits(); 3962 } else 3963 return false; 3964 3965 // If this is a truncating splat, truncate the splat value. 3966 // Otherwise, we may fail to match the expected values below. 3967 if (EltWidth < CVal.getBitWidth()) 3968 CVal = CVal.trunc(EltWidth); 3969 3970 switch (getBooleanContents(N.getValueType())) { 3971 case UndefinedBooleanContent: 3972 return CVal[0]; 3973 case ZeroOrOneBooleanContent: 3974 return CVal.isOne(); 3975 case ZeroOrNegativeOneBooleanContent: 3976 return CVal.isAllOnes(); 3977 } 3978 3979 llvm_unreachable("Invalid boolean contents"); 3980 } 3981 3982 bool TargetLowering::isConstFalseVal(SDValue N) const { 3983 if (!N) 3984 return false; 3985 3986 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3987 if (!CN) { 3988 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3989 if (!BV) 3990 return false; 3991 3992 // Only interested in constant splats, we don't care about undef 3993 // elements in identifying boolean constants and getConstantSplatNode 3994 // returns NULL if all ops are undef; 3995 CN = BV->getConstantSplatNode(); 3996 if (!CN) 3997 return false; 3998 } 3999 4000 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 4001 return !CN->getAPIntValue()[0]; 4002 4003 return CN->isZero(); 4004 } 4005 4006 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 4007 bool SExt) const { 4008 if (VT == MVT::i1) 4009 return N->isOne(); 4010 4011 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 4012 switch (Cnt) { 4013 case TargetLowering::ZeroOrOneBooleanContent: 4014 // An extended value of 1 is always true, unless its original type is i1, 4015 // in which case it will be sign extended to -1. 4016 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 4017 case TargetLowering::UndefinedBooleanContent: 4018 case TargetLowering::ZeroOrNegativeOneBooleanContent: 4019 return N->isAllOnes() && SExt; 4020 } 4021 llvm_unreachable("Unexpected enumeration."); 4022 } 4023 4024 /// This helper function of SimplifySetCC tries to optimize the comparison when 4025 /// either operand of the SetCC node is a bitwise-and instruction. 4026 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 4027 ISD::CondCode Cond, const SDLoc &DL, 4028 DAGCombinerInfo &DCI) const { 4029 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 4030 std::swap(N0, N1); 4031 4032 SelectionDAG &DAG = DCI.DAG; 4033 EVT OpVT = N0.getValueType(); 4034 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 4035 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 4036 return SDValue(); 4037 4038 // (X & Y) != 0 --> zextOrTrunc(X & Y) 4039 // iff everything but LSB is known zero: 4040 if (Cond == ISD::SETNE && isNullConstant(N1) && 4041 (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent || 4042 getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) { 4043 unsigned NumEltBits = OpVT.getScalarSizeInBits(); 4044 APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1); 4045 if (DAG.MaskedValueIsZero(N0, UpperBits)) 4046 return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT); 4047 } 4048 4049 // Try to eliminate a power-of-2 mask constant by converting to a signbit 4050 // test in a narrow type that we can truncate to with no cost. Examples: 4051 // (i32 X & 32768) == 0 --> (trunc X to i16) >= 0 4052 // (i32 X & 32768) != 0 --> (trunc X to i16) < 0 4053 // TODO: This conservatively checks for type legality on the source and 4054 // destination types. That may inhibit optimizations, but it also 4055 // allows setcc->shift transforms that may be more beneficial. 4056 auto *AndC = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 4057 if (AndC && isNullConstant(N1) && AndC->getAPIntValue().isPowerOf2() && 4058 isTypeLegal(OpVT) && N0.hasOneUse()) { 4059 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), 4060 AndC->getAPIntValue().getActiveBits()); 4061 if (isTruncateFree(OpVT, NarrowVT) && isTypeLegal(NarrowVT)) { 4062 SDValue Trunc = DAG.getZExtOrTrunc(N0.getOperand(0), DL, NarrowVT); 4063 SDValue Zero = DAG.getConstant(0, DL, NarrowVT); 4064 return DAG.getSetCC(DL, VT, Trunc, Zero, 4065 Cond == ISD::SETEQ ? ISD::SETGE : ISD::SETLT); 4066 } 4067 } 4068 4069 // Match these patterns in any of their permutations: 4070 // (X & Y) == Y 4071 // (X & Y) != Y 4072 SDValue X, Y; 4073 if (N0.getOperand(0) == N1) { 4074 X = N0.getOperand(1); 4075 Y = N0.getOperand(0); 4076 } else if (N0.getOperand(1) == N1) { 4077 X = N0.getOperand(0); 4078 Y = N0.getOperand(1); 4079 } else { 4080 return SDValue(); 4081 } 4082 4083 // TODO: We should invert (X & Y) eq/ne 0 -> (X & Y) ne/eq Y if 4084 // `isXAndYEqZeroPreferableToXAndYEqY` is false. This is a bit difficult as 4085 // its liable to create and infinite loop. 4086 SDValue Zero = DAG.getConstant(0, DL, OpVT); 4087 if (isXAndYEqZeroPreferableToXAndYEqY(Cond, OpVT) && 4088 DAG.isKnownToBeAPowerOfTwo(Y)) { 4089 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 4090 // Note that where Y is variable and is known to have at most one bit set 4091 // (for example, if it is Z & 1) we cannot do this; the expressions are not 4092 // equivalent when Y == 0. 4093 assert(OpVT.isInteger()); 4094 Cond = ISD::getSetCCInverse(Cond, OpVT); 4095 if (DCI.isBeforeLegalizeOps() || 4096 isCondCodeLegal(Cond, N0.getSimpleValueType())) 4097 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 4098 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 4099 // If the target supports an 'and-not' or 'and-complement' logic operation, 4100 // try to use that to make a comparison operation more efficient. 4101 // But don't do this transform if the mask is a single bit because there are 4102 // more efficient ways to deal with that case (for example, 'bt' on x86 or 4103 // 'rlwinm' on PPC). 4104 4105 // Bail out if the compare operand that we want to turn into a zero is 4106 // already a zero (otherwise, infinite loop). 4107 if (isNullConstant(Y)) 4108 return SDValue(); 4109 4110 // Transform this into: ~X & Y == 0. 4111 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 4112 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 4113 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 4114 } 4115 4116 return SDValue(); 4117 } 4118 4119 /// There are multiple IR patterns that could be checking whether certain 4120 /// truncation of a signed number would be lossy or not. The pattern which is 4121 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 4122 /// We are looking for the following pattern: (KeptBits is a constant) 4123 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 4124 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 4125 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 4126 /// We will unfold it into the natural trunc+sext pattern: 4127 /// ((%x << C) a>> C) dstcond %x 4128 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 4129 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 4130 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 4131 const SDLoc &DL) const { 4132 // We must be comparing with a constant. 4133 ConstantSDNode *C1; 4134 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 4135 return SDValue(); 4136 4137 // N0 should be: add %x, (1 << (KeptBits-1)) 4138 if (N0->getOpcode() != ISD::ADD) 4139 return SDValue(); 4140 4141 // And we must be 'add'ing a constant. 4142 ConstantSDNode *C01; 4143 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 4144 return SDValue(); 4145 4146 SDValue X = N0->getOperand(0); 4147 EVT XVT = X.getValueType(); 4148 4149 // Validate constants ... 4150 4151 APInt I1 = C1->getAPIntValue(); 4152 4153 ISD::CondCode NewCond; 4154 if (Cond == ISD::CondCode::SETULT) { 4155 NewCond = ISD::CondCode::SETEQ; 4156 } else if (Cond == ISD::CondCode::SETULE) { 4157 NewCond = ISD::CondCode::SETEQ; 4158 // But need to 'canonicalize' the constant. 4159 I1 += 1; 4160 } else if (Cond == ISD::CondCode::SETUGT) { 4161 NewCond = ISD::CondCode::SETNE; 4162 // But need to 'canonicalize' the constant. 4163 I1 += 1; 4164 } else if (Cond == ISD::CondCode::SETUGE) { 4165 NewCond = ISD::CondCode::SETNE; 4166 } else 4167 return SDValue(); 4168 4169 APInt I01 = C01->getAPIntValue(); 4170 4171 auto checkConstants = [&I1, &I01]() -> bool { 4172 // Both of them must be power-of-two, and the constant from setcc is bigger. 4173 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 4174 }; 4175 4176 if (checkConstants()) { 4177 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 4178 } else { 4179 // What if we invert constants? (and the target predicate) 4180 I1.negate(); 4181 I01.negate(); 4182 assert(XVT.isInteger()); 4183 NewCond = getSetCCInverse(NewCond, XVT); 4184 if (!checkConstants()) 4185 return SDValue(); 4186 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 4187 } 4188 4189 // They are power-of-two, so which bit is set? 4190 const unsigned KeptBits = I1.logBase2(); 4191 const unsigned KeptBitsMinusOne = I01.logBase2(); 4192 4193 // Magic! 4194 if (KeptBits != (KeptBitsMinusOne + 1)) 4195 return SDValue(); 4196 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 4197 4198 // We don't want to do this in every single case. 4199 SelectionDAG &DAG = DCI.DAG; 4200 if (!shouldTransformSignedTruncationCheck(XVT, KeptBits)) 4201 return SDValue(); 4202 4203 // Unfold into: sext_inreg(%x) cond %x 4204 // Where 'cond' will be either 'eq' or 'ne'. 4205 SDValue SExtInReg = DAG.getNode( 4206 ISD::SIGN_EXTEND_INREG, DL, XVT, X, 4207 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), KeptBits))); 4208 return DAG.getSetCC(DL, SCCVT, SExtInReg, X, NewCond); 4209 } 4210 4211 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4212 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 4213 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 4214 DAGCombinerInfo &DCI, const SDLoc &DL) const { 4215 assert(isConstOrConstSplat(N1C) && isConstOrConstSplat(N1C)->isZero() && 4216 "Should be a comparison with 0."); 4217 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4218 "Valid only for [in]equality comparisons."); 4219 4220 unsigned NewShiftOpcode; 4221 SDValue X, C, Y; 4222 4223 SelectionDAG &DAG = DCI.DAG; 4224 4225 // Look for '(C l>>/<< Y)'. 4226 auto Match = [&NewShiftOpcode, &X, &C, &Y, &DAG, this](SDValue V) { 4227 // The shift should be one-use. 4228 if (!V.hasOneUse()) 4229 return false; 4230 unsigned OldShiftOpcode = V.getOpcode(); 4231 switch (OldShiftOpcode) { 4232 case ISD::SHL: 4233 NewShiftOpcode = ISD::SRL; 4234 break; 4235 case ISD::SRL: 4236 NewShiftOpcode = ISD::SHL; 4237 break; 4238 default: 4239 return false; // must be a logical shift. 4240 } 4241 // We should be shifting a constant. 4242 // FIXME: best to use isConstantOrConstantVector(). 4243 C = V.getOperand(0); 4244 ConstantSDNode *CC = 4245 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 4246 if (!CC) 4247 return false; 4248 Y = V.getOperand(1); 4249 4250 ConstantSDNode *XC = 4251 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 4252 return shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 4253 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 4254 }; 4255 4256 // LHS of comparison should be an one-use 'and'. 4257 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 4258 return SDValue(); 4259 4260 X = N0.getOperand(0); 4261 SDValue Mask = N0.getOperand(1); 4262 4263 // 'and' is commutative! 4264 if (!Match(Mask)) { 4265 std::swap(X, Mask); 4266 if (!Match(Mask)) 4267 return SDValue(); 4268 } 4269 4270 EVT VT = X.getValueType(); 4271 4272 // Produce: 4273 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 4274 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 4275 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 4276 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 4277 return T2; 4278 } 4279 4280 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 4281 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 4282 /// handle the commuted versions of these patterns. 4283 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 4284 ISD::CondCode Cond, const SDLoc &DL, 4285 DAGCombinerInfo &DCI) const { 4286 unsigned BOpcode = N0.getOpcode(); 4287 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 4288 "Unexpected binop"); 4289 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 4290 4291 // (X + Y) == X --> Y == 0 4292 // (X - Y) == X --> Y == 0 4293 // (X ^ Y) == X --> Y == 0 4294 SelectionDAG &DAG = DCI.DAG; 4295 EVT OpVT = N0.getValueType(); 4296 SDValue X = N0.getOperand(0); 4297 SDValue Y = N0.getOperand(1); 4298 if (X == N1) 4299 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 4300 4301 if (Y != N1) 4302 return SDValue(); 4303 4304 // (X + Y) == Y --> X == 0 4305 // (X ^ Y) == Y --> X == 0 4306 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 4307 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 4308 4309 // The shift would not be valid if the operands are boolean (i1). 4310 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 4311 return SDValue(); 4312 4313 // (X - Y) == Y --> X == Y << 1 4314 SDValue One = DAG.getShiftAmountConstant(1, OpVT, DL); 4315 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 4316 if (!DCI.isCalledByLegalizer()) 4317 DCI.AddToWorklist(YShl1.getNode()); 4318 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 4319 } 4320 4321 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 4322 SDValue N0, const APInt &C1, 4323 ISD::CondCode Cond, const SDLoc &dl, 4324 SelectionDAG &DAG) { 4325 // Look through truncs that don't change the value of a ctpop. 4326 // FIXME: Add vector support? Need to be careful with setcc result type below. 4327 SDValue CTPOP = N0; 4328 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 4329 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 4330 CTPOP = N0.getOperand(0); 4331 4332 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 4333 return SDValue(); 4334 4335 EVT CTVT = CTPOP.getValueType(); 4336 SDValue CTOp = CTPOP.getOperand(0); 4337 4338 // Expand a power-of-2-or-zero comparison based on ctpop: 4339 // (ctpop x) u< 2 -> (x & x-1) == 0 4340 // (ctpop x) u> 1 -> (x & x-1) != 0 4341 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 4342 // Keep the CTPOP if it is a cheap vector op. 4343 if (CTVT.isVector() && TLI.isCtpopFast(CTVT)) 4344 return SDValue(); 4345 4346 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 4347 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 4348 return SDValue(); 4349 if (C1 == 0 && (Cond == ISD::SETULT)) 4350 return SDValue(); // This is handled elsewhere. 4351 4352 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 4353 4354 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 4355 SDValue Result = CTOp; 4356 for (unsigned i = 0; i < Passes; i++) { 4357 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 4358 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 4359 } 4360 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 4361 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 4362 } 4363 4364 // Expand a power-of-2 comparison based on ctpop 4365 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 4366 // Keep the CTPOP if it is cheap. 4367 if (TLI.isCtpopFast(CTVT)) 4368 return SDValue(); 4369 4370 SDValue Zero = DAG.getConstant(0, dl, CTVT); 4371 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 4372 assert(CTVT.isInteger()); 4373 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 4374 4375 // Its not uncommon for known-never-zero X to exist in (ctpop X) eq/ne 1, so 4376 // check before emitting a potentially unnecessary op. 4377 if (DAG.isKnownNeverZero(CTOp)) { 4378 // (ctpop x) == 1 --> (x & x-1) == 0 4379 // (ctpop x) != 1 --> (x & x-1) != 0 4380 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 4381 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 4382 return RHS; 4383 } 4384 4385 // (ctpop x) == 1 --> (x ^ x-1) > x-1 4386 // (ctpop x) != 1 --> (x ^ x-1) <= x-1 4387 SDValue Xor = DAG.getNode(ISD::XOR, dl, CTVT, CTOp, Add); 4388 ISD::CondCode CmpCond = Cond == ISD::SETEQ ? ISD::SETUGT : ISD::SETULE; 4389 return DAG.getSetCC(dl, VT, Xor, Add, CmpCond); 4390 } 4391 4392 return SDValue(); 4393 } 4394 4395 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, 4396 ISD::CondCode Cond, const SDLoc &dl, 4397 SelectionDAG &DAG) { 4398 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 4399 return SDValue(); 4400 4401 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 4402 if (!C1 || !(C1->isZero() || C1->isAllOnes())) 4403 return SDValue(); 4404 4405 auto getRotateSource = [](SDValue X) { 4406 if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR) 4407 return X.getOperand(0); 4408 return SDValue(); 4409 }; 4410 4411 // Peek through a rotated value compared against 0 or -1: 4412 // (rot X, Y) == 0/-1 --> X == 0/-1 4413 // (rot X, Y) != 0/-1 --> X != 0/-1 4414 if (SDValue R = getRotateSource(N0)) 4415 return DAG.getSetCC(dl, VT, R, N1, Cond); 4416 4417 // Peek through an 'or' of a rotated value compared against 0: 4418 // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0 4419 // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0 4420 // 4421 // TODO: Add the 'and' with -1 sibling. 4422 // TODO: Recurse through a series of 'or' ops to find the rotate. 4423 EVT OpVT = N0.getValueType(); 4424 if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) { 4425 if (SDValue R = getRotateSource(N0.getOperand(0))) { 4426 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1)); 4427 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4428 } 4429 if (SDValue R = getRotateSource(N0.getOperand(1))) { 4430 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0)); 4431 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4432 } 4433 } 4434 4435 return SDValue(); 4436 } 4437 4438 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1, 4439 ISD::CondCode Cond, const SDLoc &dl, 4440 SelectionDAG &DAG) { 4441 // If we are testing for all-bits-clear, we might be able to do that with 4442 // less shifting since bit-order does not matter. 4443 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 4444 return SDValue(); 4445 4446 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 4447 if (!C1 || !C1->isZero()) 4448 return SDValue(); 4449 4450 if (!N0.hasOneUse() || 4451 (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR)) 4452 return SDValue(); 4453 4454 unsigned BitWidth = N0.getScalarValueSizeInBits(); 4455 auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2)); 4456 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 4457 return SDValue(); 4458 4459 // Canonicalize fshr as fshl to reduce pattern-matching. 4460 unsigned ShAmt = ShAmtC->getZExtValue(); 4461 if (N0.getOpcode() == ISD::FSHR) 4462 ShAmt = BitWidth - ShAmt; 4463 4464 // Match an 'or' with a specific operand 'Other' in either commuted variant. 4465 SDValue X, Y; 4466 auto matchOr = [&X, &Y](SDValue Or, SDValue Other) { 4467 if (Or.getOpcode() != ISD::OR || !Or.hasOneUse()) 4468 return false; 4469 if (Or.getOperand(0) == Other) { 4470 X = Or.getOperand(0); 4471 Y = Or.getOperand(1); 4472 return true; 4473 } 4474 if (Or.getOperand(1) == Other) { 4475 X = Or.getOperand(1); 4476 Y = Or.getOperand(0); 4477 return true; 4478 } 4479 return false; 4480 }; 4481 4482 EVT OpVT = N0.getValueType(); 4483 EVT ShAmtVT = N0.getOperand(2).getValueType(); 4484 SDValue F0 = N0.getOperand(0); 4485 SDValue F1 = N0.getOperand(1); 4486 if (matchOr(F0, F1)) { 4487 // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0 4488 SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT); 4489 SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt); 4490 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 4491 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4492 } 4493 if (matchOr(F1, F0)) { 4494 // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0 4495 SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT); 4496 SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt); 4497 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 4498 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4499 } 4500 4501 return SDValue(); 4502 } 4503 4504 /// Try to simplify a setcc built with the specified operands and cc. If it is 4505 /// unable to simplify it, return a null SDValue. 4506 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 4507 ISD::CondCode Cond, bool foldBooleans, 4508 DAGCombinerInfo &DCI, 4509 const SDLoc &dl) const { 4510 SelectionDAG &DAG = DCI.DAG; 4511 const DataLayout &Layout = DAG.getDataLayout(); 4512 EVT OpVT = N0.getValueType(); 4513 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4514 4515 // Constant fold or commute setcc. 4516 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 4517 return Fold; 4518 4519 bool N0ConstOrSplat = 4520 isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4521 bool N1ConstOrSplat = 4522 isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4523 4524 // Canonicalize toward having the constant on the RHS. 4525 // TODO: Handle non-splat vector constants. All undef causes trouble. 4526 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 4527 // infinite loop here when we encounter one. 4528 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 4529 if (N0ConstOrSplat && !N1ConstOrSplat && 4530 (DCI.isBeforeLegalizeOps() || 4531 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 4532 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4533 4534 // If we have a subtract with the same 2 non-constant operands as this setcc 4535 // -- but in reverse order -- then try to commute the operands of this setcc 4536 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 4537 // instruction on some targets. 4538 if (!N0ConstOrSplat && !N1ConstOrSplat && 4539 (DCI.isBeforeLegalizeOps() || 4540 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 4541 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 4542 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 4543 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4544 4545 if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG)) 4546 return V; 4547 4548 if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG)) 4549 return V; 4550 4551 if (auto *N1C = isConstOrConstSplat(N1)) { 4552 const APInt &C1 = N1C->getAPIntValue(); 4553 4554 // Optimize some CTPOP cases. 4555 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 4556 return V; 4557 4558 // For equality to 0 of a no-wrap multiply, decompose and test each op: 4559 // X * Y == 0 --> (X == 0) || (Y == 0) 4560 // X * Y != 0 --> (X != 0) && (Y != 0) 4561 // TODO: This bails out if minsize is set, but if the target doesn't have a 4562 // single instruction multiply for this type, it would likely be 4563 // smaller to decompose. 4564 if (C1.isZero() && (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4565 N0.getOpcode() == ISD::MUL && N0.hasOneUse() && 4566 (N0->getFlags().hasNoUnsignedWrap() || 4567 N0->getFlags().hasNoSignedWrap()) && 4568 !Attr.hasFnAttr(Attribute::MinSize)) { 4569 SDValue IsXZero = DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4570 SDValue IsYZero = DAG.getSetCC(dl, VT, N0.getOperand(1), N1, Cond); 4571 unsigned LogicOp = Cond == ISD::SETEQ ? ISD::OR : ISD::AND; 4572 return DAG.getNode(LogicOp, dl, VT, IsXZero, IsYZero); 4573 } 4574 4575 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 4576 // equality comparison, then we're just comparing whether X itself is 4577 // zero. 4578 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 4579 N0.getOperand(0).getOpcode() == ISD::CTLZ && 4580 llvm::has_single_bit<uint32_t>(N0.getScalarValueSizeInBits())) { 4581 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 4582 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4583 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 4584 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 4585 // (srl (ctlz x), 5) == 0 -> X != 0 4586 // (srl (ctlz x), 5) != 1 -> X != 0 4587 Cond = ISD::SETNE; 4588 } else { 4589 // (srl (ctlz x), 5) != 0 -> X == 0 4590 // (srl (ctlz x), 5) == 1 -> X == 0 4591 Cond = ISD::SETEQ; 4592 } 4593 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 4594 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 4595 Cond); 4596 } 4597 } 4598 } 4599 } 4600 4601 // FIXME: Support vectors. 4602 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4603 const APInt &C1 = N1C->getAPIntValue(); 4604 4605 // (zext x) == C --> x == (trunc C) 4606 // (sext x) == C --> x == (trunc C) 4607 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4608 DCI.isBeforeLegalize() && N0->hasOneUse()) { 4609 unsigned MinBits = N0.getValueSizeInBits(); 4610 SDValue PreExt; 4611 bool Signed = false; 4612 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 4613 // ZExt 4614 MinBits = N0->getOperand(0).getValueSizeInBits(); 4615 PreExt = N0->getOperand(0); 4616 } else if (N0->getOpcode() == ISD::AND) { 4617 // DAGCombine turns costly ZExts into ANDs 4618 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 4619 if ((C->getAPIntValue()+1).isPowerOf2()) { 4620 MinBits = C->getAPIntValue().countr_one(); 4621 PreExt = N0->getOperand(0); 4622 } 4623 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 4624 // SExt 4625 MinBits = N0->getOperand(0).getValueSizeInBits(); 4626 PreExt = N0->getOperand(0); 4627 Signed = true; 4628 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 4629 // ZEXTLOAD / SEXTLOAD 4630 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 4631 MinBits = LN0->getMemoryVT().getSizeInBits(); 4632 PreExt = N0; 4633 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 4634 Signed = true; 4635 MinBits = LN0->getMemoryVT().getSizeInBits(); 4636 PreExt = N0; 4637 } 4638 } 4639 4640 // Figure out how many bits we need to preserve this constant. 4641 unsigned ReqdBits = Signed ? C1.getSignificantBits() : C1.getActiveBits(); 4642 4643 // Make sure we're not losing bits from the constant. 4644 if (MinBits > 0 && 4645 MinBits < C1.getBitWidth() && 4646 MinBits >= ReqdBits) { 4647 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 4648 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 4649 // Will get folded away. 4650 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 4651 if (MinBits == 1 && C1 == 1) 4652 // Invert the condition. 4653 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 4654 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4655 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 4656 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 4657 } 4658 4659 // If truncating the setcc operands is not desirable, we can still 4660 // simplify the expression in some cases: 4661 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 4662 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 4663 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 4664 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 4665 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 4666 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 4667 SDValue TopSetCC = N0->getOperand(0); 4668 unsigned N0Opc = N0->getOpcode(); 4669 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 4670 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 4671 TopSetCC.getOpcode() == ISD::SETCC && 4672 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 4673 (isConstFalseVal(N1) || 4674 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 4675 4676 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 4677 (!N1C->isZero() && Cond == ISD::SETNE); 4678 4679 if (!Inverse) 4680 return TopSetCC; 4681 4682 ISD::CondCode InvCond = ISD::getSetCCInverse( 4683 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 4684 TopSetCC.getOperand(0).getValueType()); 4685 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 4686 TopSetCC.getOperand(1), 4687 InvCond); 4688 } 4689 } 4690 } 4691 4692 // If the LHS is '(and load, const)', the RHS is 0, the test is for 4693 // equality or unsigned, and all 1 bits of the const are in the same 4694 // partial word, see if we can shorten the load. 4695 if (DCI.isBeforeLegalize() && 4696 !ISD::isSignedIntSetCC(Cond) && 4697 N0.getOpcode() == ISD::AND && C1 == 0 && 4698 N0.getNode()->hasOneUse() && 4699 isa<LoadSDNode>(N0.getOperand(0)) && 4700 N0.getOperand(0).getNode()->hasOneUse() && 4701 isa<ConstantSDNode>(N0.getOperand(1))) { 4702 auto *Lod = cast<LoadSDNode>(N0.getOperand(0)); 4703 APInt bestMask; 4704 unsigned bestWidth = 0, bestOffset = 0; 4705 if (Lod->isSimple() && Lod->isUnindexed() && 4706 (Lod->getMemoryVT().isByteSized() || 4707 isPaddedAtMostSignificantBitsWhenStored(Lod->getMemoryVT()))) { 4708 unsigned memWidth = Lod->getMemoryVT().getStoreSizeInBits(); 4709 unsigned origWidth = N0.getValueSizeInBits(); 4710 unsigned maskWidth = origWidth; 4711 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 4712 // 8 bits, but have to be careful... 4713 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 4714 origWidth = Lod->getMemoryVT().getSizeInBits(); 4715 const APInt &Mask = N0.getConstantOperandAPInt(1); 4716 // Only consider power-of-2 widths (and at least one byte) as candiates 4717 // for the narrowed load. 4718 for (unsigned width = 8; width < origWidth; width *= 2) { 4719 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), width); 4720 if (!shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) 4721 continue; 4722 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 4723 // Avoid accessing any padding here for now (we could use memWidth 4724 // instead of origWidth here otherwise). 4725 unsigned maxOffset = origWidth - width; 4726 for (unsigned offset = 0; offset <= maxOffset; offset += 8) { 4727 if (Mask.isSubsetOf(newMask)) { 4728 unsigned ptrOffset = 4729 Layout.isLittleEndian() ? offset : memWidth - width - offset; 4730 unsigned IsFast = 0; 4731 Align NewAlign = commonAlignment(Lod->getAlign(), ptrOffset / 8); 4732 if (allowsMemoryAccess( 4733 *DAG.getContext(), Layout, newVT, Lod->getAddressSpace(), 4734 NewAlign, Lod->getMemOperand()->getFlags(), &IsFast) && 4735 IsFast) { 4736 bestOffset = ptrOffset / 8; 4737 bestMask = Mask.lshr(offset); 4738 bestWidth = width; 4739 break; 4740 } 4741 } 4742 newMask <<= 8; 4743 } 4744 if (bestWidth) 4745 break; 4746 } 4747 } 4748 if (bestWidth) { 4749 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 4750 SDValue Ptr = Lod->getBasePtr(); 4751 if (bestOffset != 0) 4752 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(bestOffset)); 4753 SDValue NewLoad = 4754 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 4755 Lod->getPointerInfo().getWithOffset(bestOffset), 4756 Lod->getOriginalAlign()); 4757 SDValue And = 4758 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 4759 DAG.getConstant(bestMask.trunc(bestWidth), dl, newVT)); 4760 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0LL, dl, newVT), Cond); 4761 } 4762 } 4763 4764 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 4765 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 4766 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 4767 4768 // If the comparison constant has bits in the upper part, the 4769 // zero-extended value could never match. 4770 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 4771 C1.getBitWidth() - InSize))) { 4772 switch (Cond) { 4773 case ISD::SETUGT: 4774 case ISD::SETUGE: 4775 case ISD::SETEQ: 4776 return DAG.getConstant(0, dl, VT); 4777 case ISD::SETULT: 4778 case ISD::SETULE: 4779 case ISD::SETNE: 4780 return DAG.getConstant(1, dl, VT); 4781 case ISD::SETGT: 4782 case ISD::SETGE: 4783 // True if the sign bit of C1 is set. 4784 return DAG.getConstant(C1.isNegative(), dl, VT); 4785 case ISD::SETLT: 4786 case ISD::SETLE: 4787 // True if the sign bit of C1 isn't set. 4788 return DAG.getConstant(C1.isNonNegative(), dl, VT); 4789 default: 4790 break; 4791 } 4792 } 4793 4794 // Otherwise, we can perform the comparison with the low bits. 4795 switch (Cond) { 4796 case ISD::SETEQ: 4797 case ISD::SETNE: 4798 case ISD::SETUGT: 4799 case ISD::SETUGE: 4800 case ISD::SETULT: 4801 case ISD::SETULE: { 4802 EVT newVT = N0.getOperand(0).getValueType(); 4803 // FIXME: Should use isNarrowingProfitable. 4804 if (DCI.isBeforeLegalizeOps() || 4805 (isOperationLegal(ISD::SETCC, newVT) && 4806 isCondCodeLegal(Cond, newVT.getSimpleVT()) && 4807 isTypeDesirableForOp(ISD::SETCC, newVT))) { 4808 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 4809 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 4810 4811 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 4812 NewConst, Cond); 4813 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 4814 } 4815 break; 4816 } 4817 default: 4818 break; // todo, be more careful with signed comparisons 4819 } 4820 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 4821 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4822 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 4823 OpVT)) { 4824 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 4825 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 4826 EVT ExtDstTy = N0.getValueType(); 4827 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 4828 4829 // If the constant doesn't fit into the number of bits for the source of 4830 // the sign extension, it is impossible for both sides to be equal. 4831 if (C1.getSignificantBits() > ExtSrcTyBits) 4832 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 4833 4834 assert(ExtDstTy == N0.getOperand(0).getValueType() && 4835 ExtDstTy != ExtSrcTy && "Unexpected types!"); 4836 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 4837 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 4838 DAG.getConstant(Imm, dl, ExtDstTy)); 4839 if (!DCI.isCalledByLegalizer()) 4840 DCI.AddToWorklist(ZextOp.getNode()); 4841 // Otherwise, make this a use of a zext. 4842 return DAG.getSetCC(dl, VT, ZextOp, 4843 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 4844 } else if ((N1C->isZero() || N1C->isOne()) && 4845 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4846 // SETCC (X), [0|1], [EQ|NE] -> X if X is known 0/1. i1 types are 4847 // excluded as they are handled below whilst checking for foldBooleans. 4848 if ((N0.getOpcode() == ISD::SETCC || VT.getScalarType() != MVT::i1) && 4849 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 4850 (N0.getValueType() == MVT::i1 || 4851 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4852 DAG.MaskedValueIsZero( 4853 N0, APInt::getBitsSetFrom(N0.getValueSizeInBits(), 1))) { 4854 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 4855 if (TrueWhenTrue) 4856 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 4857 // Invert the condition. 4858 if (N0.getOpcode() == ISD::SETCC) { 4859 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 4860 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 4861 if (DCI.isBeforeLegalizeOps() || 4862 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 4863 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 4864 } 4865 } 4866 4867 if ((N0.getOpcode() == ISD::XOR || 4868 (N0.getOpcode() == ISD::AND && 4869 N0.getOperand(0).getOpcode() == ISD::XOR && 4870 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 4871 isOneConstant(N0.getOperand(1))) { 4872 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 4873 // can only do this if the top bits are known zero. 4874 unsigned BitWidth = N0.getValueSizeInBits(); 4875 if (DAG.MaskedValueIsZero(N0, 4876 APInt::getHighBitsSet(BitWidth, 4877 BitWidth-1))) { 4878 // Okay, get the un-inverted input value. 4879 SDValue Val; 4880 if (N0.getOpcode() == ISD::XOR) { 4881 Val = N0.getOperand(0); 4882 } else { 4883 assert(N0.getOpcode() == ISD::AND && 4884 N0.getOperand(0).getOpcode() == ISD::XOR); 4885 // ((X^1)&1)^1 -> X & 1 4886 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 4887 N0.getOperand(0).getOperand(0), 4888 N0.getOperand(1)); 4889 } 4890 4891 return DAG.getSetCC(dl, VT, Val, N1, 4892 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4893 } 4894 } else if (N1C->isOne()) { 4895 SDValue Op0 = N0; 4896 if (Op0.getOpcode() == ISD::TRUNCATE) 4897 Op0 = Op0.getOperand(0); 4898 4899 if ((Op0.getOpcode() == ISD::XOR) && 4900 Op0.getOperand(0).getOpcode() == ISD::SETCC && 4901 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 4902 SDValue XorLHS = Op0.getOperand(0); 4903 SDValue XorRHS = Op0.getOperand(1); 4904 // Ensure that the input setccs return an i1 type or 0/1 value. 4905 if (Op0.getValueType() == MVT::i1 || 4906 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 4907 ZeroOrOneBooleanContent && 4908 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 4909 ZeroOrOneBooleanContent)) { 4910 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 4911 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 4912 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 4913 } 4914 } 4915 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 4916 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 4917 if (Op0.getValueType().bitsGT(VT)) 4918 Op0 = DAG.getNode(ISD::AND, dl, VT, 4919 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 4920 DAG.getConstant(1, dl, VT)); 4921 else if (Op0.getValueType().bitsLT(VT)) 4922 Op0 = DAG.getNode(ISD::AND, dl, VT, 4923 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 4924 DAG.getConstant(1, dl, VT)); 4925 4926 return DAG.getSetCC(dl, VT, Op0, 4927 DAG.getConstant(0, dl, Op0.getValueType()), 4928 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4929 } 4930 if (Op0.getOpcode() == ISD::AssertZext && 4931 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 4932 return DAG.getSetCC(dl, VT, Op0, 4933 DAG.getConstant(0, dl, Op0.getValueType()), 4934 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4935 } 4936 } 4937 4938 // Given: 4939 // icmp eq/ne (urem %x, %y), 0 4940 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 4941 // icmp eq/ne %x, 0 4942 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 4943 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4944 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 4945 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 4946 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 4947 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4948 } 4949 4950 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 4951 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 4952 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4953 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 4954 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 4955 N1C->isAllOnes()) { 4956 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4957 DAG.getConstant(0, dl, OpVT), 4958 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 4959 } 4960 4961 if (SDValue V = 4962 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 4963 return V; 4964 } 4965 4966 // These simplifications apply to splat vectors as well. 4967 // TODO: Handle more splat vector cases. 4968 if (auto *N1C = isConstOrConstSplat(N1)) { 4969 const APInt &C1 = N1C->getAPIntValue(); 4970 4971 APInt MinVal, MaxVal; 4972 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 4973 if (ISD::isSignedIntSetCC(Cond)) { 4974 MinVal = APInt::getSignedMinValue(OperandBitSize); 4975 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 4976 } else { 4977 MinVal = APInt::getMinValue(OperandBitSize); 4978 MaxVal = APInt::getMaxValue(OperandBitSize); 4979 } 4980 4981 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 4982 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 4983 // X >= MIN --> true 4984 if (C1 == MinVal) 4985 return DAG.getBoolConstant(true, dl, VT, OpVT); 4986 4987 if (!VT.isVector()) { // TODO: Support this for vectors. 4988 // X >= C0 --> X > (C0 - 1) 4989 APInt C = C1 - 1; 4990 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 4991 if ((DCI.isBeforeLegalizeOps() || 4992 isCondCodeLegal(NewCC, OpVT.getSimpleVT())) && 4993 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4994 isLegalICmpImmediate(C.getSExtValue())))) { 4995 return DAG.getSetCC(dl, VT, N0, 4996 DAG.getConstant(C, dl, N1.getValueType()), 4997 NewCC); 4998 } 4999 } 5000 } 5001 5002 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 5003 // X <= MAX --> true 5004 if (C1 == MaxVal) 5005 return DAG.getBoolConstant(true, dl, VT, OpVT); 5006 5007 // X <= C0 --> X < (C0 + 1) 5008 if (!VT.isVector()) { // TODO: Support this for vectors. 5009 APInt C = C1 + 1; 5010 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 5011 if ((DCI.isBeforeLegalizeOps() || 5012 isCondCodeLegal(NewCC, OpVT.getSimpleVT())) && 5013 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 5014 isLegalICmpImmediate(C.getSExtValue())))) { 5015 return DAG.getSetCC(dl, VT, N0, 5016 DAG.getConstant(C, dl, N1.getValueType()), 5017 NewCC); 5018 } 5019 } 5020 } 5021 5022 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 5023 if (C1 == MinVal) 5024 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 5025 5026 // TODO: Support this for vectors after legalize ops. 5027 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 5028 // Canonicalize setlt X, Max --> setne X, Max 5029 if (C1 == MaxVal) 5030 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 5031 5032 // If we have setult X, 1, turn it into seteq X, 0 5033 if (C1 == MinVal+1) 5034 return DAG.getSetCC(dl, VT, N0, 5035 DAG.getConstant(MinVal, dl, N0.getValueType()), 5036 ISD::SETEQ); 5037 } 5038 } 5039 5040 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 5041 if (C1 == MaxVal) 5042 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 5043 5044 // TODO: Support this for vectors after legalize ops. 5045 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 5046 // Canonicalize setgt X, Min --> setne X, Min 5047 if (C1 == MinVal) 5048 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 5049 5050 // If we have setugt X, Max-1, turn it into seteq X, Max 5051 if (C1 == MaxVal-1) 5052 return DAG.getSetCC(dl, VT, N0, 5053 DAG.getConstant(MaxVal, dl, N0.getValueType()), 5054 ISD::SETEQ); 5055 } 5056 } 5057 5058 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 5059 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 5060 if (C1.isZero()) 5061 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 5062 VT, N0, N1, Cond, DCI, dl)) 5063 return CC; 5064 5065 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 5066 // For example, when high 32-bits of i64 X are known clear: 5067 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 5068 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 5069 bool CmpZero = N1C->isZero(); 5070 bool CmpNegOne = N1C->isAllOnes(); 5071 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 5072 // Match or(lo,shl(hi,bw/2)) pattern. 5073 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 5074 unsigned EltBits = V.getScalarValueSizeInBits(); 5075 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 5076 return false; 5077 SDValue LHS = V.getOperand(0); 5078 SDValue RHS = V.getOperand(1); 5079 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 5080 // Unshifted element must have zero upperbits. 5081 if (RHS.getOpcode() == ISD::SHL && 5082 isa<ConstantSDNode>(RHS.getOperand(1)) && 5083 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 5084 DAG.MaskedValueIsZero(LHS, HiBits)) { 5085 Lo = LHS; 5086 Hi = RHS.getOperand(0); 5087 return true; 5088 } 5089 if (LHS.getOpcode() == ISD::SHL && 5090 isa<ConstantSDNode>(LHS.getOperand(1)) && 5091 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 5092 DAG.MaskedValueIsZero(RHS, HiBits)) { 5093 Lo = RHS; 5094 Hi = LHS.getOperand(0); 5095 return true; 5096 } 5097 return false; 5098 }; 5099 5100 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 5101 unsigned EltBits = N0.getScalarValueSizeInBits(); 5102 unsigned HalfBits = EltBits / 2; 5103 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 5104 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 5105 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 5106 SDValue NewN0 = 5107 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 5108 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 5109 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 5110 }; 5111 5112 SDValue Lo, Hi; 5113 if (IsConcat(N0, Lo, Hi)) 5114 return MergeConcat(Lo, Hi); 5115 5116 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 5117 SDValue Lo0, Lo1, Hi0, Hi1; 5118 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 5119 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 5120 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 5121 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 5122 } 5123 } 5124 } 5125 } 5126 5127 // If we have "setcc X, C0", check to see if we can shrink the immediate 5128 // by changing cc. 5129 // TODO: Support this for vectors after legalize ops. 5130 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 5131 // SETUGT X, SINTMAX -> SETLT X, 0 5132 // SETUGE X, SINTMIN -> SETLT X, 0 5133 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 5134 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 5135 return DAG.getSetCC(dl, VT, N0, 5136 DAG.getConstant(0, dl, N1.getValueType()), 5137 ISD::SETLT); 5138 5139 // SETULT X, SINTMIN -> SETGT X, -1 5140 // SETULE X, SINTMAX -> SETGT X, -1 5141 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 5142 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 5143 return DAG.getSetCC(dl, VT, N0, 5144 DAG.getAllOnesConstant(dl, N1.getValueType()), 5145 ISD::SETGT); 5146 } 5147 } 5148 5149 // Back to non-vector simplifications. 5150 // TODO: Can we do these for vector splats? 5151 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 5152 const APInt &C1 = N1C->getAPIntValue(); 5153 EVT ShValTy = N0.getValueType(); 5154 5155 // Fold bit comparisons when we can. This will result in an 5156 // incorrect value when boolean false is negative one, unless 5157 // the bitsize is 1 in which case the false value is the same 5158 // in practice regardless of the representation. 5159 if ((VT.getSizeInBits() == 1 || 5160 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 5161 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5162 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 5163 N0.getOpcode() == ISD::AND) { 5164 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5165 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 5166 // Perform the xform if the AND RHS is a single bit. 5167 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 5168 if (AndRHS->getAPIntValue().isPowerOf2() && 5169 !shouldAvoidTransformToShift(ShValTy, ShCt)) { 5170 return DAG.getNode( 5171 ISD::TRUNCATE, dl, VT, 5172 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 5173 DAG.getShiftAmountConstant(ShCt, ShValTy, dl))); 5174 } 5175 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 5176 // (X & 8) == 8 --> (X & 8) >> 3 5177 // Perform the xform if C1 is a single bit. 5178 unsigned ShCt = C1.logBase2(); 5179 if (C1.isPowerOf2() && !shouldAvoidTransformToShift(ShValTy, ShCt)) { 5180 return DAG.getNode( 5181 ISD::TRUNCATE, dl, VT, 5182 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 5183 DAG.getShiftAmountConstant(ShCt, ShValTy, dl))); 5184 } 5185 } 5186 } 5187 } 5188 5189 if (C1.getSignificantBits() <= 64 && 5190 !isLegalICmpImmediate(C1.getSExtValue())) { 5191 // (X & -256) == 256 -> (X >> 8) == 1 5192 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5193 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 5194 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5195 const APInt &AndRHSC = AndRHS->getAPIntValue(); 5196 if (AndRHSC.isNegatedPowerOf2() && C1.isSubsetOf(AndRHSC)) { 5197 unsigned ShiftBits = AndRHSC.countr_zero(); 5198 if (!shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 5199 SDValue Shift = DAG.getNode( 5200 ISD::SRL, dl, ShValTy, N0.getOperand(0), 5201 DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl)); 5202 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 5203 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 5204 } 5205 } 5206 } 5207 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 5208 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 5209 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 5210 // X < 0x100000000 -> (X >> 32) < 1 5211 // X >= 0x100000000 -> (X >> 32) >= 1 5212 // X <= 0x0ffffffff -> (X >> 32) < 1 5213 // X > 0x0ffffffff -> (X >> 32) >= 1 5214 unsigned ShiftBits; 5215 APInt NewC = C1; 5216 ISD::CondCode NewCond = Cond; 5217 if (AdjOne) { 5218 ShiftBits = C1.countr_one(); 5219 NewC = NewC + 1; 5220 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 5221 } else { 5222 ShiftBits = C1.countr_zero(); 5223 } 5224 NewC.lshrInPlace(ShiftBits); 5225 if (ShiftBits && NewC.getSignificantBits() <= 64 && 5226 isLegalICmpImmediate(NewC.getSExtValue()) && 5227 !shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 5228 SDValue Shift = 5229 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 5230 DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl)); 5231 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 5232 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 5233 } 5234 } 5235 } 5236 } 5237 5238 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 5239 auto *CFP = cast<ConstantFPSDNode>(N1); 5240 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 5241 5242 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 5243 // constant if knowing that the operand is non-nan is enough. We prefer to 5244 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 5245 // materialize 0.0. 5246 if (Cond == ISD::SETO || Cond == ISD::SETUO) 5247 return DAG.getSetCC(dl, VT, N0, N0, Cond); 5248 5249 // setcc (fneg x), C -> setcc swap(pred) x, -C 5250 if (N0.getOpcode() == ISD::FNEG) { 5251 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 5252 if (DCI.isBeforeLegalizeOps() || 5253 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 5254 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 5255 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 5256 } 5257 } 5258 5259 // setueq/setoeq X, (fabs Inf) -> is_fpclass X, fcInf 5260 if (isOperationLegalOrCustom(ISD::IS_FPCLASS, N0.getValueType()) && 5261 !isFPImmLegal(CFP->getValueAPF(), CFP->getValueType(0))) { 5262 bool IsFabs = N0.getOpcode() == ISD::FABS; 5263 SDValue Op = IsFabs ? N0.getOperand(0) : N0; 5264 if ((Cond == ISD::SETOEQ || Cond == ISD::SETUEQ) && CFP->isInfinity()) { 5265 FPClassTest Flag = CFP->isNegative() ? (IsFabs ? fcNone : fcNegInf) 5266 : (IsFabs ? fcInf : fcPosInf); 5267 if (Cond == ISD::SETUEQ) 5268 Flag |= fcNan; 5269 return DAG.getNode(ISD::IS_FPCLASS, dl, VT, Op, 5270 DAG.getTargetConstant(Flag, dl, MVT::i32)); 5271 } 5272 } 5273 5274 // If the condition is not legal, see if we can find an equivalent one 5275 // which is legal. 5276 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 5277 // If the comparison was an awkward floating-point == or != and one of 5278 // the comparison operands is infinity or negative infinity, convert the 5279 // condition to a less-awkward <= or >=. 5280 if (CFP->getValueAPF().isInfinity()) { 5281 bool IsNegInf = CFP->getValueAPF().isNegative(); 5282 ISD::CondCode NewCond = ISD::SETCC_INVALID; 5283 switch (Cond) { 5284 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 5285 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 5286 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 5287 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 5288 default: break; 5289 } 5290 if (NewCond != ISD::SETCC_INVALID && 5291 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 5292 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 5293 } 5294 } 5295 } 5296 5297 if (N0 == N1) { 5298 // The sext(setcc()) => setcc() optimization relies on the appropriate 5299 // constant being emitted. 5300 assert(!N0.getValueType().isInteger() && 5301 "Integer types should be handled by FoldSetCC"); 5302 5303 bool EqTrue = ISD::isTrueWhenEqual(Cond); 5304 unsigned UOF = ISD::getUnorderedFlavor(Cond); 5305 if (UOF == 2) // FP operators that are undefined on NaNs. 5306 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 5307 if (UOF == unsigned(EqTrue)) 5308 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 5309 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 5310 // if it is not already. 5311 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 5312 if (NewCond != Cond && 5313 (DCI.isBeforeLegalizeOps() || 5314 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 5315 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 5316 } 5317 5318 // ~X > ~Y --> Y > X 5319 // ~X < ~Y --> Y < X 5320 // ~X < C --> X > ~C 5321 // ~X > C --> X < ~C 5322 if ((isSignedIntSetCC(Cond) || isUnsignedIntSetCC(Cond)) && 5323 N0.getValueType().isInteger()) { 5324 if (isBitwiseNot(N0)) { 5325 if (isBitwiseNot(N1)) 5326 return DAG.getSetCC(dl, VT, N1.getOperand(0), N0.getOperand(0), Cond); 5327 5328 if (DAG.isConstantIntBuildVectorOrConstantInt(N1) && 5329 !DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(0))) { 5330 SDValue Not = DAG.getNOT(dl, N1, OpVT); 5331 return DAG.getSetCC(dl, VT, Not, N0.getOperand(0), Cond); 5332 } 5333 } 5334 } 5335 5336 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5337 N0.getValueType().isInteger()) { 5338 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 5339 N0.getOpcode() == ISD::XOR) { 5340 // Simplify (X+Y) == (X+Z) --> Y == Z 5341 if (N0.getOpcode() == N1.getOpcode()) { 5342 if (N0.getOperand(0) == N1.getOperand(0)) 5343 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 5344 if (N0.getOperand(1) == N1.getOperand(1)) 5345 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 5346 if (isCommutativeBinOp(N0.getOpcode())) { 5347 // If X op Y == Y op X, try other combinations. 5348 if (N0.getOperand(0) == N1.getOperand(1)) 5349 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 5350 Cond); 5351 if (N0.getOperand(1) == N1.getOperand(0)) 5352 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 5353 Cond); 5354 } 5355 } 5356 5357 // If RHS is a legal immediate value for a compare instruction, we need 5358 // to be careful about increasing register pressure needlessly. 5359 bool LegalRHSImm = false; 5360 5361 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 5362 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5363 // Turn (X+C1) == C2 --> X == C2-C1 5364 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) 5365 return DAG.getSetCC( 5366 dl, VT, N0.getOperand(0), 5367 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(), 5368 dl, N0.getValueType()), 5369 Cond); 5370 5371 // Turn (X^C1) == C2 --> X == C1^C2 5372 if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse()) 5373 return DAG.getSetCC( 5374 dl, VT, N0.getOperand(0), 5375 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(), 5376 dl, N0.getValueType()), 5377 Cond); 5378 } 5379 5380 // Turn (C1-X) == C2 --> X == C1-C2 5381 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) 5382 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) 5383 return DAG.getSetCC( 5384 dl, VT, N0.getOperand(1), 5385 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(), 5386 dl, N0.getValueType()), 5387 Cond); 5388 5389 // Could RHSC fold directly into a compare? 5390 if (RHSC->getValueType(0).getSizeInBits() <= 64) 5391 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 5392 } 5393 5394 // (X+Y) == X --> Y == 0 and similar folds. 5395 // Don't do this if X is an immediate that can fold into a cmp 5396 // instruction and X+Y has other uses. It could be an induction variable 5397 // chain, and the transform would increase register pressure. 5398 if (!LegalRHSImm || N0.hasOneUse()) 5399 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 5400 return V; 5401 } 5402 5403 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 5404 N1.getOpcode() == ISD::XOR) 5405 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 5406 return V; 5407 5408 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 5409 return V; 5410 } 5411 5412 // Fold remainder of division by a constant. 5413 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 5414 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 5415 // When division is cheap or optimizing for minimum size, 5416 // fall through to DIVREM creation by skipping this fold. 5417 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 5418 if (N0.getOpcode() == ISD::UREM) { 5419 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 5420 return Folded; 5421 } else if (N0.getOpcode() == ISD::SREM) { 5422 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 5423 return Folded; 5424 } 5425 } 5426 } 5427 5428 // Fold away ALL boolean setcc's. 5429 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 5430 SDValue Temp; 5431 switch (Cond) { 5432 default: llvm_unreachable("Unknown integer setcc!"); 5433 case ISD::SETEQ: // X == Y -> ~(X^Y) 5434 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 5435 N0 = DAG.getNOT(dl, Temp, OpVT); 5436 if (!DCI.isCalledByLegalizer()) 5437 DCI.AddToWorklist(Temp.getNode()); 5438 break; 5439 case ISD::SETNE: // X != Y --> (X^Y) 5440 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 5441 break; 5442 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 5443 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 5444 Temp = DAG.getNOT(dl, N0, OpVT); 5445 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 5446 if (!DCI.isCalledByLegalizer()) 5447 DCI.AddToWorklist(Temp.getNode()); 5448 break; 5449 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 5450 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 5451 Temp = DAG.getNOT(dl, N1, OpVT); 5452 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 5453 if (!DCI.isCalledByLegalizer()) 5454 DCI.AddToWorklist(Temp.getNode()); 5455 break; 5456 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 5457 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 5458 Temp = DAG.getNOT(dl, N0, OpVT); 5459 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 5460 if (!DCI.isCalledByLegalizer()) 5461 DCI.AddToWorklist(Temp.getNode()); 5462 break; 5463 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 5464 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 5465 Temp = DAG.getNOT(dl, N1, OpVT); 5466 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 5467 break; 5468 } 5469 if (VT.getScalarType() != MVT::i1) { 5470 if (!DCI.isCalledByLegalizer()) 5471 DCI.AddToWorklist(N0.getNode()); 5472 // FIXME: If running after legalize, we probably can't do this. 5473 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 5474 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 5475 } 5476 return N0; 5477 } 5478 5479 // Could not fold it. 5480 return SDValue(); 5481 } 5482 5483 /// Returns true (and the GlobalValue and the offset) if the node is a 5484 /// GlobalAddress + offset. 5485 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 5486 int64_t &Offset) const { 5487 5488 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 5489 5490 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 5491 GA = GASD->getGlobal(); 5492 Offset += GASD->getOffset(); 5493 return true; 5494 } 5495 5496 if (N->getOpcode() == ISD::ADD) { 5497 SDValue N1 = N->getOperand(0); 5498 SDValue N2 = N->getOperand(1); 5499 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 5500 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 5501 Offset += V->getSExtValue(); 5502 return true; 5503 } 5504 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 5505 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 5506 Offset += V->getSExtValue(); 5507 return true; 5508 } 5509 } 5510 } 5511 5512 return false; 5513 } 5514 5515 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 5516 DAGCombinerInfo &DCI) const { 5517 // Default implementation: no optimization. 5518 return SDValue(); 5519 } 5520 5521 //===----------------------------------------------------------------------===// 5522 // Inline Assembler Implementation Methods 5523 //===----------------------------------------------------------------------===// 5524 5525 TargetLowering::ConstraintType 5526 TargetLowering::getConstraintType(StringRef Constraint) const { 5527 unsigned S = Constraint.size(); 5528 5529 if (S == 1) { 5530 switch (Constraint[0]) { 5531 default: break; 5532 case 'r': 5533 return C_RegisterClass; 5534 case 'm': // memory 5535 case 'o': // offsetable 5536 case 'V': // not offsetable 5537 return C_Memory; 5538 case 'p': // Address. 5539 return C_Address; 5540 case 'n': // Simple Integer 5541 case 'E': // Floating Point Constant 5542 case 'F': // Floating Point Constant 5543 return C_Immediate; 5544 case 'i': // Simple Integer or Relocatable Constant 5545 case 's': // Relocatable Constant 5546 case 'X': // Allow ANY value. 5547 case 'I': // Target registers. 5548 case 'J': 5549 case 'K': 5550 case 'L': 5551 case 'M': 5552 case 'N': 5553 case 'O': 5554 case 'P': 5555 case '<': 5556 case '>': 5557 return C_Other; 5558 } 5559 } 5560 5561 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 5562 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 5563 return C_Memory; 5564 return C_Register; 5565 } 5566 return C_Unknown; 5567 } 5568 5569 /// Try to replace an X constraint, which matches anything, with another that 5570 /// has more specific requirements based on the type of the corresponding 5571 /// operand. 5572 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 5573 if (ConstraintVT.isInteger()) 5574 return "r"; 5575 if (ConstraintVT.isFloatingPoint()) 5576 return "f"; // works for many targets 5577 return nullptr; 5578 } 5579 5580 SDValue TargetLowering::LowerAsmOutputForConstraint( 5581 SDValue &Chain, SDValue &Glue, const SDLoc &DL, 5582 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 5583 return SDValue(); 5584 } 5585 5586 /// Lower the specified operand into the Ops vector. 5587 /// If it is invalid, don't add anything to Ops. 5588 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 5589 StringRef Constraint, 5590 std::vector<SDValue> &Ops, 5591 SelectionDAG &DAG) const { 5592 5593 if (Constraint.size() > 1) 5594 return; 5595 5596 char ConstraintLetter = Constraint[0]; 5597 switch (ConstraintLetter) { 5598 default: break; 5599 case 'X': // Allows any operand 5600 case 'i': // Simple Integer or Relocatable Constant 5601 case 'n': // Simple Integer 5602 case 's': { // Relocatable Constant 5603 5604 ConstantSDNode *C; 5605 uint64_t Offset = 0; 5606 5607 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 5608 // etc., since getelementpointer is variadic. We can't use 5609 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 5610 // while in this case the GA may be furthest from the root node which is 5611 // likely an ISD::ADD. 5612 while (true) { 5613 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 5614 // gcc prints these as sign extended. Sign extend value to 64 bits 5615 // now; without this it would get ZExt'd later in 5616 // ScheduleDAGSDNodes::EmitNode, which is very generic. 5617 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 5618 BooleanContent BCont = getBooleanContents(MVT::i64); 5619 ISD::NodeType ExtOpc = 5620 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 5621 int64_t ExtVal = 5622 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 5623 Ops.push_back( 5624 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 5625 return; 5626 } 5627 if (ConstraintLetter != 'n') { 5628 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 5629 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 5630 GA->getValueType(0), 5631 Offset + GA->getOffset())); 5632 return; 5633 } 5634 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 5635 Ops.push_back(DAG.getTargetBlockAddress( 5636 BA->getBlockAddress(), BA->getValueType(0), 5637 Offset + BA->getOffset(), BA->getTargetFlags())); 5638 return; 5639 } 5640 if (isa<BasicBlockSDNode>(Op)) { 5641 Ops.push_back(Op); 5642 return; 5643 } 5644 } 5645 const unsigned OpCode = Op.getOpcode(); 5646 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 5647 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 5648 Op = Op.getOperand(1); 5649 // Subtraction is not commutative. 5650 else if (OpCode == ISD::ADD && 5651 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 5652 Op = Op.getOperand(0); 5653 else 5654 return; 5655 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 5656 continue; 5657 } 5658 return; 5659 } 5660 break; 5661 } 5662 } 5663 } 5664 5665 void TargetLowering::CollectTargetIntrinsicOperands( 5666 const CallInst &I, SmallVectorImpl<SDValue> &Ops, SelectionDAG &DAG) const { 5667 } 5668 5669 std::pair<unsigned, const TargetRegisterClass *> 5670 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 5671 StringRef Constraint, 5672 MVT VT) const { 5673 if (!Constraint.starts_with("{")) 5674 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 5675 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 5676 5677 // Remove the braces from around the name. 5678 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 5679 5680 std::pair<unsigned, const TargetRegisterClass *> R = 5681 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 5682 5683 // Figure out which register class contains this reg. 5684 for (const TargetRegisterClass *RC : RI->regclasses()) { 5685 // If none of the value types for this register class are valid, we 5686 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5687 if (!isLegalRC(*RI, *RC)) 5688 continue; 5689 5690 for (const MCPhysReg &PR : *RC) { 5691 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 5692 std::pair<unsigned, const TargetRegisterClass *> S = 5693 std::make_pair(PR, RC); 5694 5695 // If this register class has the requested value type, return it, 5696 // otherwise keep searching and return the first class found 5697 // if no other is found which explicitly has the requested type. 5698 if (RI->isTypeLegalForClass(*RC, VT)) 5699 return S; 5700 if (!R.second) 5701 R = S; 5702 } 5703 } 5704 } 5705 5706 return R; 5707 } 5708 5709 //===----------------------------------------------------------------------===// 5710 // Constraint Selection. 5711 5712 /// Return true of this is an input operand that is a matching constraint like 5713 /// "4". 5714 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 5715 assert(!ConstraintCode.empty() && "No known constraint!"); 5716 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 5717 } 5718 5719 /// If this is an input matching constraint, this method returns the output 5720 /// operand it matches. 5721 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 5722 assert(!ConstraintCode.empty() && "No known constraint!"); 5723 return atoi(ConstraintCode.c_str()); 5724 } 5725 5726 /// Split up the constraint string from the inline assembly value into the 5727 /// specific constraints and their prefixes, and also tie in the associated 5728 /// operand values. 5729 /// If this returns an empty vector, and if the constraint string itself 5730 /// isn't empty, there was an error parsing. 5731 TargetLowering::AsmOperandInfoVector 5732 TargetLowering::ParseConstraints(const DataLayout &DL, 5733 const TargetRegisterInfo *TRI, 5734 const CallBase &Call) const { 5735 /// Information about all of the constraints. 5736 AsmOperandInfoVector ConstraintOperands; 5737 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 5738 unsigned maCount = 0; // Largest number of multiple alternative constraints. 5739 5740 // Do a prepass over the constraints, canonicalizing them, and building up the 5741 // ConstraintOperands list. 5742 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5743 unsigned ResNo = 0; // ResNo - The result number of the next output. 5744 unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number. 5745 5746 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 5747 ConstraintOperands.emplace_back(std::move(CI)); 5748 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 5749 5750 // Update multiple alternative constraint count. 5751 if (OpInfo.multipleAlternatives.size() > maCount) 5752 maCount = OpInfo.multipleAlternatives.size(); 5753 5754 OpInfo.ConstraintVT = MVT::Other; 5755 5756 // Compute the value type for each operand. 5757 switch (OpInfo.Type) { 5758 case InlineAsm::isOutput: 5759 // Indirect outputs just consume an argument. 5760 if (OpInfo.isIndirect) { 5761 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5762 break; 5763 } 5764 5765 // The return value of the call is this value. As such, there is no 5766 // corresponding argument. 5767 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 5768 if (auto *STy = dyn_cast<StructType>(Call.getType())) { 5769 OpInfo.ConstraintVT = 5770 getAsmOperandValueType(DL, STy->getElementType(ResNo)) 5771 .getSimpleVT(); 5772 } else { 5773 assert(ResNo == 0 && "Asm only has one result!"); 5774 OpInfo.ConstraintVT = 5775 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 5776 } 5777 ++ResNo; 5778 break; 5779 case InlineAsm::isInput: 5780 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5781 break; 5782 case InlineAsm::isLabel: 5783 OpInfo.CallOperandVal = cast<CallBrInst>(&Call)->getIndirectDest(LabelNo); 5784 ++LabelNo; 5785 continue; 5786 case InlineAsm::isClobber: 5787 // Nothing to do. 5788 break; 5789 } 5790 5791 if (OpInfo.CallOperandVal) { 5792 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 5793 if (OpInfo.isIndirect) { 5794 OpTy = Call.getParamElementType(ArgNo); 5795 assert(OpTy && "Indirect operand must have elementtype attribute"); 5796 } 5797 5798 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5799 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5800 if (STy->getNumElements() == 1) 5801 OpTy = STy->getElementType(0); 5802 5803 // If OpTy is not a single value, it may be a struct/union that we 5804 // can tile with integers. 5805 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5806 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5807 switch (BitSize) { 5808 default: break; 5809 case 1: 5810 case 8: 5811 case 16: 5812 case 32: 5813 case 64: 5814 case 128: 5815 OpTy = IntegerType::get(OpTy->getContext(), BitSize); 5816 break; 5817 } 5818 } 5819 5820 EVT VT = getAsmOperandValueType(DL, OpTy, true); 5821 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; 5822 ArgNo++; 5823 } 5824 } 5825 5826 // If we have multiple alternative constraints, select the best alternative. 5827 if (!ConstraintOperands.empty()) { 5828 if (maCount) { 5829 unsigned bestMAIndex = 0; 5830 int bestWeight = -1; 5831 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 5832 int weight = -1; 5833 unsigned maIndex; 5834 // Compute the sums of the weights for each alternative, keeping track 5835 // of the best (highest weight) one so far. 5836 for (maIndex = 0; maIndex < maCount; ++maIndex) { 5837 int weightSum = 0; 5838 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5839 cIndex != eIndex; ++cIndex) { 5840 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5841 if (OpInfo.Type == InlineAsm::isClobber) 5842 continue; 5843 5844 // If this is an output operand with a matching input operand, 5845 // look up the matching input. If their types mismatch, e.g. one 5846 // is an integer, the other is floating point, or their sizes are 5847 // different, flag it as an maCantMatch. 5848 if (OpInfo.hasMatchingInput()) { 5849 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5850 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5851 if ((OpInfo.ConstraintVT.isInteger() != 5852 Input.ConstraintVT.isInteger()) || 5853 (OpInfo.ConstraintVT.getSizeInBits() != 5854 Input.ConstraintVT.getSizeInBits())) { 5855 weightSum = -1; // Can't match. 5856 break; 5857 } 5858 } 5859 } 5860 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 5861 if (weight == -1) { 5862 weightSum = -1; 5863 break; 5864 } 5865 weightSum += weight; 5866 } 5867 // Update best. 5868 if (weightSum > bestWeight) { 5869 bestWeight = weightSum; 5870 bestMAIndex = maIndex; 5871 } 5872 } 5873 5874 // Now select chosen alternative in each constraint. 5875 for (AsmOperandInfo &cInfo : ConstraintOperands) 5876 if (cInfo.Type != InlineAsm::isClobber) 5877 cInfo.selectAlternative(bestMAIndex); 5878 } 5879 } 5880 5881 // Check and hook up tied operands, choose constraint code to use. 5882 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5883 cIndex != eIndex; ++cIndex) { 5884 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5885 5886 // If this is an output operand with a matching input operand, look up the 5887 // matching input. If their types mismatch, e.g. one is an integer, the 5888 // other is floating point, or their sizes are different, flag it as an 5889 // error. 5890 if (OpInfo.hasMatchingInput()) { 5891 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5892 5893 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5894 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5895 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5896 OpInfo.ConstraintVT); 5897 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5898 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5899 Input.ConstraintVT); 5900 const bool OutOpIsIntOrFP = OpInfo.ConstraintVT.isInteger() || 5901 OpInfo.ConstraintVT.isFloatingPoint(); 5902 const bool InOpIsIntOrFP = Input.ConstraintVT.isInteger() || 5903 Input.ConstraintVT.isFloatingPoint(); 5904 if ((OutOpIsIntOrFP != InOpIsIntOrFP) || 5905 (MatchRC.second != InputRC.second)) { 5906 report_fatal_error("Unsupported asm: input constraint" 5907 " with a matching output constraint of" 5908 " incompatible type!"); 5909 } 5910 } 5911 } 5912 } 5913 5914 return ConstraintOperands; 5915 } 5916 5917 /// Return a number indicating our preference for chosing a type of constraint 5918 /// over another, for the purpose of sorting them. Immediates are almost always 5919 /// preferrable (when they can be emitted). A higher return value means a 5920 /// stronger preference for one constraint type relative to another. 5921 /// FIXME: We should prefer registers over memory but doing so may lead to 5922 /// unrecoverable register exhaustion later. 5923 /// https://github.com/llvm/llvm-project/issues/20571 5924 static unsigned getConstraintPiority(TargetLowering::ConstraintType CT) { 5925 switch (CT) { 5926 case TargetLowering::C_Immediate: 5927 case TargetLowering::C_Other: 5928 return 4; 5929 case TargetLowering::C_Memory: 5930 case TargetLowering::C_Address: 5931 return 3; 5932 case TargetLowering::C_RegisterClass: 5933 return 2; 5934 case TargetLowering::C_Register: 5935 return 1; 5936 case TargetLowering::C_Unknown: 5937 return 0; 5938 } 5939 llvm_unreachable("Invalid constraint type"); 5940 } 5941 5942 /// Examine constraint type and operand type and determine a weight value. 5943 /// This object must already have been set up with the operand type 5944 /// and the current alternative constraint selected. 5945 TargetLowering::ConstraintWeight 5946 TargetLowering::getMultipleConstraintMatchWeight( 5947 AsmOperandInfo &info, int maIndex) const { 5948 InlineAsm::ConstraintCodeVector *rCodes; 5949 if (maIndex >= (int)info.multipleAlternatives.size()) 5950 rCodes = &info.Codes; 5951 else 5952 rCodes = &info.multipleAlternatives[maIndex].Codes; 5953 ConstraintWeight BestWeight = CW_Invalid; 5954 5955 // Loop over the options, keeping track of the most general one. 5956 for (const std::string &rCode : *rCodes) { 5957 ConstraintWeight weight = 5958 getSingleConstraintMatchWeight(info, rCode.c_str()); 5959 if (weight > BestWeight) 5960 BestWeight = weight; 5961 } 5962 5963 return BestWeight; 5964 } 5965 5966 /// Examine constraint type and operand type and determine a weight value. 5967 /// This object must already have been set up with the operand type 5968 /// and the current alternative constraint selected. 5969 TargetLowering::ConstraintWeight 5970 TargetLowering::getSingleConstraintMatchWeight( 5971 AsmOperandInfo &info, const char *constraint) const { 5972 ConstraintWeight weight = CW_Invalid; 5973 Value *CallOperandVal = info.CallOperandVal; 5974 // If we don't have a value, we can't do a match, 5975 // but allow it at the lowest weight. 5976 if (!CallOperandVal) 5977 return CW_Default; 5978 // Look at the constraint type. 5979 switch (*constraint) { 5980 case 'i': // immediate integer. 5981 case 'n': // immediate integer with a known value. 5982 if (isa<ConstantInt>(CallOperandVal)) 5983 weight = CW_Constant; 5984 break; 5985 case 's': // non-explicit intregal immediate. 5986 if (isa<GlobalValue>(CallOperandVal)) 5987 weight = CW_Constant; 5988 break; 5989 case 'E': // immediate float if host format. 5990 case 'F': // immediate float. 5991 if (isa<ConstantFP>(CallOperandVal)) 5992 weight = CW_Constant; 5993 break; 5994 case '<': // memory operand with autodecrement. 5995 case '>': // memory operand with autoincrement. 5996 case 'm': // memory operand. 5997 case 'o': // offsettable memory operand 5998 case 'V': // non-offsettable memory operand 5999 weight = CW_Memory; 6000 break; 6001 case 'r': // general register. 6002 case 'g': // general register, memory operand or immediate integer. 6003 // note: Clang converts "g" to "imr". 6004 if (CallOperandVal->getType()->isIntegerTy()) 6005 weight = CW_Register; 6006 break; 6007 case 'X': // any operand. 6008 default: 6009 weight = CW_Default; 6010 break; 6011 } 6012 return weight; 6013 } 6014 6015 /// If there are multiple different constraints that we could pick for this 6016 /// operand (e.g. "imr") try to pick the 'best' one. 6017 /// This is somewhat tricky: constraints (TargetLowering::ConstraintType) fall 6018 /// into seven classes: 6019 /// Register -> one specific register 6020 /// RegisterClass -> a group of regs 6021 /// Memory -> memory 6022 /// Address -> a symbolic memory reference 6023 /// Immediate -> immediate values 6024 /// Other -> magic values (such as "Flag Output Operands") 6025 /// Unknown -> something we don't recognize yet and can't handle 6026 /// Ideally, we would pick the most specific constraint possible: if we have 6027 /// something that fits into a register, we would pick it. The problem here 6028 /// is that if we have something that could either be in a register or in 6029 /// memory that use of the register could cause selection of *other* 6030 /// operands to fail: they might only succeed if we pick memory. Because of 6031 /// this the heuristic we use is: 6032 /// 6033 /// 1) If there is an 'other' constraint, and if the operand is valid for 6034 /// that constraint, use it. This makes us take advantage of 'i' 6035 /// constraints when available. 6036 /// 2) Otherwise, pick the most general constraint present. This prefers 6037 /// 'm' over 'r', for example. 6038 /// 6039 TargetLowering::ConstraintGroup TargetLowering::getConstraintPreferences( 6040 TargetLowering::AsmOperandInfo &OpInfo) const { 6041 ConstraintGroup Ret; 6042 6043 Ret.reserve(OpInfo.Codes.size()); 6044 for (StringRef Code : OpInfo.Codes) { 6045 TargetLowering::ConstraintType CType = getConstraintType(Code); 6046 6047 // Indirect 'other' or 'immediate' constraints are not allowed. 6048 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 6049 CType == TargetLowering::C_Register || 6050 CType == TargetLowering::C_RegisterClass)) 6051 continue; 6052 6053 // Things with matching constraints can only be registers, per gcc 6054 // documentation. This mainly affects "g" constraints. 6055 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 6056 continue; 6057 6058 Ret.emplace_back(Code, CType); 6059 } 6060 6061 std::stable_sort( 6062 Ret.begin(), Ret.end(), [](ConstraintPair a, ConstraintPair b) { 6063 return getConstraintPiority(a.second) > getConstraintPiority(b.second); 6064 }); 6065 6066 return Ret; 6067 } 6068 6069 /// If we have an immediate, see if we can lower it. Return true if we can, 6070 /// false otherwise. 6071 static bool lowerImmediateIfPossible(TargetLowering::ConstraintPair &P, 6072 SDValue Op, SelectionDAG *DAG, 6073 const TargetLowering &TLI) { 6074 6075 assert((P.second == TargetLowering::C_Other || 6076 P.second == TargetLowering::C_Immediate) && 6077 "need immediate or other"); 6078 6079 if (!Op.getNode()) 6080 return false; 6081 6082 std::vector<SDValue> ResultOps; 6083 TLI.LowerAsmOperandForConstraint(Op, P.first, ResultOps, *DAG); 6084 return !ResultOps.empty(); 6085 } 6086 6087 /// Determines the constraint code and constraint type to use for the specific 6088 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 6089 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 6090 SDValue Op, 6091 SelectionDAG *DAG) const { 6092 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 6093 6094 // Single-letter constraints ('r') are very common. 6095 if (OpInfo.Codes.size() == 1) { 6096 OpInfo.ConstraintCode = OpInfo.Codes[0]; 6097 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 6098 } else { 6099 ConstraintGroup G = getConstraintPreferences(OpInfo); 6100 if (G.empty()) 6101 return; 6102 6103 unsigned BestIdx = 0; 6104 for (const unsigned E = G.size(); 6105 BestIdx < E && (G[BestIdx].second == TargetLowering::C_Other || 6106 G[BestIdx].second == TargetLowering::C_Immediate); 6107 ++BestIdx) { 6108 if (lowerImmediateIfPossible(G[BestIdx], Op, DAG, *this)) 6109 break; 6110 // If we're out of constraints, just pick the first one. 6111 if (BestIdx + 1 == E) { 6112 BestIdx = 0; 6113 break; 6114 } 6115 } 6116 6117 OpInfo.ConstraintCode = G[BestIdx].first; 6118 OpInfo.ConstraintType = G[BestIdx].second; 6119 } 6120 6121 // 'X' matches anything. 6122 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 6123 // Constants are handled elsewhere. For Functions, the type here is the 6124 // type of the result, which is not what we want to look at; leave them 6125 // alone. 6126 Value *v = OpInfo.CallOperandVal; 6127 if (isa<ConstantInt>(v) || isa<Function>(v)) { 6128 return; 6129 } 6130 6131 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) { 6132 OpInfo.ConstraintCode = "i"; 6133 return; 6134 } 6135 6136 // Otherwise, try to resolve it to something we know about by looking at 6137 // the actual operand type. 6138 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 6139 OpInfo.ConstraintCode = Repl; 6140 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 6141 } 6142 } 6143 } 6144 6145 /// Given an exact SDIV by a constant, create a multiplication 6146 /// with the multiplicative inverse of the constant. 6147 /// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242 6148 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 6149 const SDLoc &dl, SelectionDAG &DAG, 6150 SmallVectorImpl<SDNode *> &Created) { 6151 SDValue Op0 = N->getOperand(0); 6152 SDValue Op1 = N->getOperand(1); 6153 EVT VT = N->getValueType(0); 6154 EVT SVT = VT.getScalarType(); 6155 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 6156 EVT ShSVT = ShVT.getScalarType(); 6157 6158 bool UseSRA = false; 6159 SmallVector<SDValue, 16> Shifts, Factors; 6160 6161 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 6162 if (C->isZero()) 6163 return false; 6164 APInt Divisor = C->getAPIntValue(); 6165 unsigned Shift = Divisor.countr_zero(); 6166 if (Shift) { 6167 Divisor.ashrInPlace(Shift); 6168 UseSRA = true; 6169 } 6170 APInt Factor = Divisor.multiplicativeInverse(); 6171 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 6172 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 6173 return true; 6174 }; 6175 6176 // Collect all magic values from the build vector. 6177 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 6178 return SDValue(); 6179 6180 SDValue Shift, Factor; 6181 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 6182 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 6183 Factor = DAG.getBuildVector(VT, dl, Factors); 6184 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 6185 assert(Shifts.size() == 1 && Factors.size() == 1 && 6186 "Expected matchUnaryPredicate to return one element for scalable " 6187 "vectors"); 6188 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 6189 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 6190 } else { 6191 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 6192 Shift = Shifts[0]; 6193 Factor = Factors[0]; 6194 } 6195 6196 SDValue Res = Op0; 6197 if (UseSRA) { 6198 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, SDNodeFlags::Exact); 6199 Created.push_back(Res.getNode()); 6200 } 6201 6202 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 6203 } 6204 6205 /// Given an exact UDIV by a constant, create a multiplication 6206 /// with the multiplicative inverse of the constant. 6207 /// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242 6208 static SDValue BuildExactUDIV(const TargetLowering &TLI, SDNode *N, 6209 const SDLoc &dl, SelectionDAG &DAG, 6210 SmallVectorImpl<SDNode *> &Created) { 6211 EVT VT = N->getValueType(0); 6212 EVT SVT = VT.getScalarType(); 6213 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 6214 EVT ShSVT = ShVT.getScalarType(); 6215 6216 bool UseSRL = false; 6217 SmallVector<SDValue, 16> Shifts, Factors; 6218 6219 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 6220 if (C->isZero()) 6221 return false; 6222 APInt Divisor = C->getAPIntValue(); 6223 unsigned Shift = Divisor.countr_zero(); 6224 if (Shift) { 6225 Divisor.lshrInPlace(Shift); 6226 UseSRL = true; 6227 } 6228 // Calculate the multiplicative inverse modulo BW. 6229 APInt Factor = Divisor.multiplicativeInverse(); 6230 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 6231 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 6232 return true; 6233 }; 6234 6235 SDValue Op1 = N->getOperand(1); 6236 6237 // Collect all magic values from the build vector. 6238 if (!ISD::matchUnaryPredicate(Op1, BuildUDIVPattern)) 6239 return SDValue(); 6240 6241 SDValue Shift, Factor; 6242 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 6243 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 6244 Factor = DAG.getBuildVector(VT, dl, Factors); 6245 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 6246 assert(Shifts.size() == 1 && Factors.size() == 1 && 6247 "Expected matchUnaryPredicate to return one element for scalable " 6248 "vectors"); 6249 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 6250 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 6251 } else { 6252 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 6253 Shift = Shifts[0]; 6254 Factor = Factors[0]; 6255 } 6256 6257 SDValue Res = N->getOperand(0); 6258 if (UseSRL) { 6259 Res = DAG.getNode(ISD::SRL, dl, VT, Res, Shift, SDNodeFlags::Exact); 6260 Created.push_back(Res.getNode()); 6261 } 6262 6263 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 6264 } 6265 6266 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 6267 SelectionDAG &DAG, 6268 SmallVectorImpl<SDNode *> &Created) const { 6269 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 6270 if (isIntDivCheap(N->getValueType(0), Attr)) 6271 return SDValue(N, 0); // Lower SDIV as SDIV 6272 return SDValue(); 6273 } 6274 6275 SDValue 6276 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor, 6277 SelectionDAG &DAG, 6278 SmallVectorImpl<SDNode *> &Created) const { 6279 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 6280 if (isIntDivCheap(N->getValueType(0), Attr)) 6281 return SDValue(N, 0); // Lower SREM as SREM 6282 return SDValue(); 6283 } 6284 6285 /// Build sdiv by power-of-2 with conditional move instructions 6286 /// Ref: "Hacker's Delight" by Henry Warren 10-1 6287 /// If conditional move/branch is preferred, we lower sdiv x, +/-2**k into: 6288 /// bgez x, label 6289 /// add x, x, 2**k-1 6290 /// label: 6291 /// sra res, x, k 6292 /// neg res, res (when the divisor is negative) 6293 SDValue TargetLowering::buildSDIVPow2WithCMov( 6294 SDNode *N, const APInt &Divisor, SelectionDAG &DAG, 6295 SmallVectorImpl<SDNode *> &Created) const { 6296 unsigned Lg2 = Divisor.countr_zero(); 6297 EVT VT = N->getValueType(0); 6298 6299 SDLoc DL(N); 6300 SDValue N0 = N->getOperand(0); 6301 SDValue Zero = DAG.getConstant(0, DL, VT); 6302 APInt Lg2Mask = APInt::getLowBitsSet(VT.getSizeInBits(), Lg2); 6303 SDValue Pow2MinusOne = DAG.getConstant(Lg2Mask, DL, VT); 6304 6305 // If N0 is negative, we need to add (Pow2 - 1) to it before shifting right. 6306 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6307 SDValue Cmp = DAG.getSetCC(DL, CCVT, N0, Zero, ISD::SETLT); 6308 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 6309 SDValue CMov = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 6310 6311 Created.push_back(Cmp.getNode()); 6312 Created.push_back(Add.getNode()); 6313 Created.push_back(CMov.getNode()); 6314 6315 // Divide by pow2. 6316 SDValue SRA = 6317 DAG.getNode(ISD::SRA, DL, VT, CMov, DAG.getConstant(Lg2, DL, VT)); 6318 6319 // If we're dividing by a positive value, we're done. Otherwise, we must 6320 // negate the result. 6321 if (Divisor.isNonNegative()) 6322 return SRA; 6323 6324 Created.push_back(SRA.getNode()); 6325 return DAG.getNode(ISD::SUB, DL, VT, Zero, SRA); 6326 } 6327 6328 /// Given an ISD::SDIV node expressing a divide by constant, 6329 /// return a DAG expression to select that will generate the same value by 6330 /// multiplying by a magic number. 6331 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 6332 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 6333 bool IsAfterLegalization, 6334 bool IsAfterLegalTypes, 6335 SmallVectorImpl<SDNode *> &Created) const { 6336 SDLoc dl(N); 6337 EVT VT = N->getValueType(0); 6338 EVT SVT = VT.getScalarType(); 6339 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6340 EVT ShSVT = ShVT.getScalarType(); 6341 unsigned EltBits = VT.getScalarSizeInBits(); 6342 EVT MulVT; 6343 6344 // Check to see if we can do this. 6345 // FIXME: We should be more aggressive here. 6346 if (!isTypeLegal(VT)) { 6347 // Limit this to simple scalars for now. 6348 if (VT.isVector() || !VT.isSimple()) 6349 return SDValue(); 6350 6351 // If this type will be promoted to a large enough type with a legal 6352 // multiply operation, we can go ahead and do this transform. 6353 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 6354 return SDValue(); 6355 6356 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 6357 if (MulVT.getSizeInBits() < (2 * EltBits) || 6358 !isOperationLegal(ISD::MUL, MulVT)) 6359 return SDValue(); 6360 } 6361 6362 // If the sdiv has an 'exact' bit we can use a simpler lowering. 6363 if (N->getFlags().hasExact()) 6364 return BuildExactSDIV(*this, N, dl, DAG, Created); 6365 6366 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 6367 6368 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 6369 if (C->isZero()) 6370 return false; 6371 6372 const APInt &Divisor = C->getAPIntValue(); 6373 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 6374 int NumeratorFactor = 0; 6375 int ShiftMask = -1; 6376 6377 if (Divisor.isOne() || Divisor.isAllOnes()) { 6378 // If d is +1/-1, we just multiply the numerator by +1/-1. 6379 NumeratorFactor = Divisor.getSExtValue(); 6380 magics.Magic = 0; 6381 magics.ShiftAmount = 0; 6382 ShiftMask = 0; 6383 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 6384 // If d > 0 and m < 0, add the numerator. 6385 NumeratorFactor = 1; 6386 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 6387 // If d < 0 and m > 0, subtract the numerator. 6388 NumeratorFactor = -1; 6389 } 6390 6391 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 6392 Factors.push_back(DAG.getSignedConstant(NumeratorFactor, dl, SVT)); 6393 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 6394 ShiftMasks.push_back(DAG.getSignedConstant(ShiftMask, dl, SVT)); 6395 return true; 6396 }; 6397 6398 SDValue N0 = N->getOperand(0); 6399 SDValue N1 = N->getOperand(1); 6400 6401 // Collect the shifts / magic values from each element. 6402 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 6403 return SDValue(); 6404 6405 SDValue MagicFactor, Factor, Shift, ShiftMask; 6406 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 6407 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 6408 Factor = DAG.getBuildVector(VT, dl, Factors); 6409 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 6410 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 6411 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 6412 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 6413 Shifts.size() == 1 && ShiftMasks.size() == 1 && 6414 "Expected matchUnaryPredicate to return one element for scalable " 6415 "vectors"); 6416 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 6417 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 6418 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 6419 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 6420 } else { 6421 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 6422 MagicFactor = MagicFactors[0]; 6423 Factor = Factors[0]; 6424 Shift = Shifts[0]; 6425 ShiftMask = ShiftMasks[0]; 6426 } 6427 6428 // Multiply the numerator (operand 0) by the magic value. 6429 // FIXME: We should support doing a MUL in a wider type. 6430 auto GetMULHS = [&](SDValue X, SDValue Y) { 6431 // If the type isn't legal, use a wider mul of the type calculated 6432 // earlier. 6433 if (!isTypeLegal(VT)) { 6434 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 6435 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 6436 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 6437 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 6438 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 6439 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6440 } 6441 6442 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 6443 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 6444 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 6445 SDValue LoHi = 6446 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 6447 return SDValue(LoHi.getNode(), 1); 6448 } 6449 // If type twice as wide legal, widen and use a mul plus a shift. 6450 unsigned Size = VT.getScalarSizeInBits(); 6451 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2); 6452 if (VT.isVector()) 6453 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 6454 VT.getVectorElementCount()); 6455 // Some targets like AMDGPU try to go from SDIV to SDIVREM which is then 6456 // custom lowered. This is very expensive so avoid it at all costs for 6457 // constant divisors. 6458 if ((!IsAfterLegalTypes && isOperationExpand(ISD::SDIV, VT) && 6459 isOperationCustom(ISD::SDIVREM, VT.getScalarType())) || 6460 isOperationLegalOrCustom(ISD::MUL, WideVT)) { 6461 X = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, X); 6462 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, Y); 6463 Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y); 6464 Y = DAG.getNode(ISD::SRL, dl, WideVT, Y, 6465 DAG.getShiftAmountConstant(EltBits, WideVT, dl)); 6466 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6467 } 6468 return SDValue(); 6469 }; 6470 6471 SDValue Q = GetMULHS(N0, MagicFactor); 6472 if (!Q) 6473 return SDValue(); 6474 6475 Created.push_back(Q.getNode()); 6476 6477 // (Optionally) Add/subtract the numerator using Factor. 6478 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 6479 Created.push_back(Factor.getNode()); 6480 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 6481 Created.push_back(Q.getNode()); 6482 6483 // Shift right algebraic by shift value. 6484 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 6485 Created.push_back(Q.getNode()); 6486 6487 // Extract the sign bit, mask it and add it to the quotient. 6488 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 6489 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 6490 Created.push_back(T.getNode()); 6491 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 6492 Created.push_back(T.getNode()); 6493 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 6494 } 6495 6496 /// Given an ISD::UDIV node expressing a divide by constant, 6497 /// return a DAG expression to select that will generate the same value by 6498 /// multiplying by a magic number. 6499 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 6500 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 6501 bool IsAfterLegalization, 6502 bool IsAfterLegalTypes, 6503 SmallVectorImpl<SDNode *> &Created) const { 6504 SDLoc dl(N); 6505 EVT VT = N->getValueType(0); 6506 EVT SVT = VT.getScalarType(); 6507 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6508 EVT ShSVT = ShVT.getScalarType(); 6509 unsigned EltBits = VT.getScalarSizeInBits(); 6510 EVT MulVT; 6511 6512 // Check to see if we can do this. 6513 // FIXME: We should be more aggressive here. 6514 if (!isTypeLegal(VT)) { 6515 // Limit this to simple scalars for now. 6516 if (VT.isVector() || !VT.isSimple()) 6517 return SDValue(); 6518 6519 // If this type will be promoted to a large enough type with a legal 6520 // multiply operation, we can go ahead and do this transform. 6521 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 6522 return SDValue(); 6523 6524 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 6525 if (MulVT.getSizeInBits() < (2 * EltBits) || 6526 !isOperationLegal(ISD::MUL, MulVT)) 6527 return SDValue(); 6528 } 6529 6530 // If the udiv has an 'exact' bit we can use a simpler lowering. 6531 if (N->getFlags().hasExact()) 6532 return BuildExactUDIV(*this, N, dl, DAG, Created); 6533 6534 SDValue N0 = N->getOperand(0); 6535 SDValue N1 = N->getOperand(1); 6536 6537 // Try to use leading zeros of the dividend to reduce the multiplier and 6538 // avoid expensive fixups. 6539 unsigned KnownLeadingZeros = DAG.computeKnownBits(N0).countMinLeadingZeros(); 6540 6541 bool UseNPQ = false, UsePreShift = false, UsePostShift = false; 6542 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 6543 6544 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 6545 if (C->isZero()) 6546 return false; 6547 const APInt& Divisor = C->getAPIntValue(); 6548 6549 SDValue PreShift, MagicFactor, NPQFactor, PostShift; 6550 6551 // Magic algorithm doesn't work for division by 1. We need to emit a select 6552 // at the end. 6553 if (Divisor.isOne()) { 6554 PreShift = PostShift = DAG.getUNDEF(ShSVT); 6555 MagicFactor = NPQFactor = DAG.getUNDEF(SVT); 6556 } else { 6557 UnsignedDivisionByConstantInfo magics = 6558 UnsignedDivisionByConstantInfo::get( 6559 Divisor, std::min(KnownLeadingZeros, Divisor.countl_zero())); 6560 6561 MagicFactor = DAG.getConstant(magics.Magic, dl, SVT); 6562 6563 assert(magics.PreShift < Divisor.getBitWidth() && 6564 "We shouldn't generate an undefined shift!"); 6565 assert(magics.PostShift < Divisor.getBitWidth() && 6566 "We shouldn't generate an undefined shift!"); 6567 assert((!magics.IsAdd || magics.PreShift == 0) && 6568 "Unexpected pre-shift"); 6569 PreShift = DAG.getConstant(magics.PreShift, dl, ShSVT); 6570 PostShift = DAG.getConstant(magics.PostShift, dl, ShSVT); 6571 NPQFactor = DAG.getConstant( 6572 magics.IsAdd ? APInt::getOneBitSet(EltBits, EltBits - 1) 6573 : APInt::getZero(EltBits), 6574 dl, SVT); 6575 UseNPQ |= magics.IsAdd; 6576 UsePreShift |= magics.PreShift != 0; 6577 UsePostShift |= magics.PostShift != 0; 6578 } 6579 6580 PreShifts.push_back(PreShift); 6581 MagicFactors.push_back(MagicFactor); 6582 NPQFactors.push_back(NPQFactor); 6583 PostShifts.push_back(PostShift); 6584 return true; 6585 }; 6586 6587 // Collect the shifts/magic values from each element. 6588 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 6589 return SDValue(); 6590 6591 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 6592 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 6593 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 6594 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 6595 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 6596 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 6597 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 6598 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 6599 NPQFactors.size() == 1 && PostShifts.size() == 1 && 6600 "Expected matchUnaryPredicate to return one for scalable vectors"); 6601 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 6602 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 6603 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 6604 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 6605 } else { 6606 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 6607 PreShift = PreShifts[0]; 6608 MagicFactor = MagicFactors[0]; 6609 PostShift = PostShifts[0]; 6610 } 6611 6612 SDValue Q = N0; 6613 if (UsePreShift) { 6614 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 6615 Created.push_back(Q.getNode()); 6616 } 6617 6618 // FIXME: We should support doing a MUL in a wider type. 6619 auto GetMULHU = [&](SDValue X, SDValue Y) { 6620 // If the type isn't legal, use a wider mul of the type calculated 6621 // earlier. 6622 if (!isTypeLegal(VT)) { 6623 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 6624 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 6625 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 6626 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 6627 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 6628 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6629 } 6630 6631 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 6632 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 6633 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 6634 SDValue LoHi = 6635 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 6636 return SDValue(LoHi.getNode(), 1); 6637 } 6638 // If type twice as wide legal, widen and use a mul plus a shift. 6639 unsigned Size = VT.getScalarSizeInBits(); 6640 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2); 6641 if (VT.isVector()) 6642 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 6643 VT.getVectorElementCount()); 6644 // Some targets like AMDGPU try to go from UDIV to UDIVREM which is then 6645 // custom lowered. This is very expensive so avoid it at all costs for 6646 // constant divisors. 6647 if ((!IsAfterLegalTypes && isOperationExpand(ISD::UDIV, VT) && 6648 isOperationCustom(ISD::UDIVREM, VT.getScalarType())) || 6649 isOperationLegalOrCustom(ISD::MUL, WideVT)) { 6650 X = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, X); 6651 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, Y); 6652 Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y); 6653 Y = DAG.getNode(ISD::SRL, dl, WideVT, Y, 6654 DAG.getShiftAmountConstant(EltBits, WideVT, dl)); 6655 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6656 } 6657 return SDValue(); // No mulhu or equivalent 6658 }; 6659 6660 // Multiply the numerator (operand 0) by the magic value. 6661 Q = GetMULHU(Q, MagicFactor); 6662 if (!Q) 6663 return SDValue(); 6664 6665 Created.push_back(Q.getNode()); 6666 6667 if (UseNPQ) { 6668 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 6669 Created.push_back(NPQ.getNode()); 6670 6671 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 6672 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 6673 if (VT.isVector()) 6674 NPQ = GetMULHU(NPQ, NPQFactor); 6675 else 6676 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 6677 6678 Created.push_back(NPQ.getNode()); 6679 6680 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 6681 Created.push_back(Q.getNode()); 6682 } 6683 6684 if (UsePostShift) { 6685 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 6686 Created.push_back(Q.getNode()); 6687 } 6688 6689 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6690 6691 SDValue One = DAG.getConstant(1, dl, VT); 6692 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 6693 return DAG.getSelect(dl, VT, IsOne, N0, Q); 6694 } 6695 6696 /// If all values in Values that *don't* match the predicate are same 'splat' 6697 /// value, then replace all values with that splat value. 6698 /// Else, if AlternativeReplacement was provided, then replace all values that 6699 /// do match predicate with AlternativeReplacement value. 6700 static void 6701 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 6702 std::function<bool(SDValue)> Predicate, 6703 SDValue AlternativeReplacement = SDValue()) { 6704 SDValue Replacement; 6705 // Is there a value for which the Predicate does *NOT* match? What is it? 6706 auto SplatValue = llvm::find_if_not(Values, Predicate); 6707 if (SplatValue != Values.end()) { 6708 // Does Values consist only of SplatValue's and values matching Predicate? 6709 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 6710 return Value == *SplatValue || Predicate(Value); 6711 })) // Then we shall replace values matching predicate with SplatValue. 6712 Replacement = *SplatValue; 6713 } 6714 if (!Replacement) { 6715 // Oops, we did not find the "baseline" splat value. 6716 if (!AlternativeReplacement) 6717 return; // Nothing to do. 6718 // Let's replace with provided value then. 6719 Replacement = AlternativeReplacement; 6720 } 6721 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 6722 } 6723 6724 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 6725 /// where the divisor is constant and the comparison target is zero, 6726 /// return a DAG expression that will generate the same comparison result 6727 /// using only multiplications, additions and shifts/rotations. 6728 /// Ref: "Hacker's Delight" 10-17. 6729 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 6730 SDValue CompTargetNode, 6731 ISD::CondCode Cond, 6732 DAGCombinerInfo &DCI, 6733 const SDLoc &DL) const { 6734 SmallVector<SDNode *, 5> Built; 6735 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6736 DCI, DL, Built)) { 6737 for (SDNode *N : Built) 6738 DCI.AddToWorklist(N); 6739 return Folded; 6740 } 6741 6742 return SDValue(); 6743 } 6744 6745 SDValue 6746 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 6747 SDValue CompTargetNode, ISD::CondCode Cond, 6748 DAGCombinerInfo &DCI, const SDLoc &DL, 6749 SmallVectorImpl<SDNode *> &Created) const { 6750 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 6751 // - D must be constant, with D = D0 * 2^K where D0 is odd 6752 // - P is the multiplicative inverse of D0 modulo 2^W 6753 // - Q = floor(((2^W) - 1) / D) 6754 // where W is the width of the common type of N and D. 6755 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6756 "Only applicable for (in)equality comparisons."); 6757 6758 SelectionDAG &DAG = DCI.DAG; 6759 6760 EVT VT = REMNode.getValueType(); 6761 EVT SVT = VT.getScalarType(); 6762 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6763 EVT ShSVT = ShVT.getScalarType(); 6764 6765 // If MUL is unavailable, we cannot proceed in any case. 6766 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6767 return SDValue(); 6768 6769 bool ComparingWithAllZeros = true; 6770 bool AllComparisonsWithNonZerosAreTautological = true; 6771 bool HadTautologicalLanes = false; 6772 bool AllLanesAreTautological = true; 6773 bool HadEvenDivisor = false; 6774 bool AllDivisorsArePowerOfTwo = true; 6775 bool HadTautologicalInvertedLanes = false; 6776 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 6777 6778 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 6779 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6780 if (CDiv->isZero()) 6781 return false; 6782 6783 const APInt &D = CDiv->getAPIntValue(); 6784 const APInt &Cmp = CCmp->getAPIntValue(); 6785 6786 ComparingWithAllZeros &= Cmp.isZero(); 6787 6788 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6789 // if C2 is not less than C1, the comparison is always false. 6790 // But we will only be able to produce the comparison that will give the 6791 // opposive tautological answer. So this lane would need to be fixed up. 6792 bool TautologicalInvertedLane = D.ule(Cmp); 6793 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 6794 6795 // If all lanes are tautological (either all divisors are ones, or divisor 6796 // is not greater than the constant we are comparing with), 6797 // we will prefer to avoid the fold. 6798 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 6799 HadTautologicalLanes |= TautologicalLane; 6800 AllLanesAreTautological &= TautologicalLane; 6801 6802 // If we are comparing with non-zero, we need'll need to subtract said 6803 // comparison value from the LHS. But there is no point in doing that if 6804 // every lane where we are comparing with non-zero is tautological.. 6805 if (!Cmp.isZero()) 6806 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 6807 6808 // Decompose D into D0 * 2^K 6809 unsigned K = D.countr_zero(); 6810 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6811 APInt D0 = D.lshr(K); 6812 6813 // D is even if it has trailing zeros. 6814 HadEvenDivisor |= (K != 0); 6815 // D is a power-of-two if D0 is one. 6816 // If all divisors are power-of-two, we will prefer to avoid the fold. 6817 AllDivisorsArePowerOfTwo &= D0.isOne(); 6818 6819 // P = inv(D0, 2^W) 6820 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6821 unsigned W = D.getBitWidth(); 6822 APInt P = D0.multiplicativeInverse(); 6823 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6824 6825 // Q = floor((2^W - 1) u/ D) 6826 // R = ((2^W - 1) u% D) 6827 APInt Q, R; 6828 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 6829 6830 // If we are comparing with zero, then that comparison constant is okay, 6831 // else it may need to be one less than that. 6832 if (Cmp.ugt(R)) 6833 Q -= 1; 6834 6835 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6836 "We are expecting that K is always less than all-ones for ShSVT"); 6837 6838 // If the lane is tautological the result can be constant-folded. 6839 if (TautologicalLane) { 6840 // Set P and K amount to a bogus values so we can try to splat them. 6841 P = 0; 6842 K = -1; 6843 // And ensure that comparison constant is tautological, 6844 // it will always compare true/false. 6845 Q = -1; 6846 } 6847 6848 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6849 KAmts.push_back( 6850 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K, /*isSigned=*/false, 6851 /*implicitTrunc=*/true), 6852 DL, ShSVT)); 6853 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6854 return true; 6855 }; 6856 6857 SDValue N = REMNode.getOperand(0); 6858 SDValue D = REMNode.getOperand(1); 6859 6860 // Collect the values from each element. 6861 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 6862 return SDValue(); 6863 6864 // If all lanes are tautological, the result can be constant-folded. 6865 if (AllLanesAreTautological) 6866 return SDValue(); 6867 6868 // If this is a urem by a powers-of-two, avoid the fold since it can be 6869 // best implemented as a bit test. 6870 if (AllDivisorsArePowerOfTwo) 6871 return SDValue(); 6872 6873 SDValue PVal, KVal, QVal; 6874 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6875 if (HadTautologicalLanes) { 6876 // Try to turn PAmts into a splat, since we don't care about the values 6877 // that are currently '0'. If we can't, just keep '0'`s. 6878 turnVectorIntoSplatVector(PAmts, isNullConstant); 6879 // Try to turn KAmts into a splat, since we don't care about the values 6880 // that are currently '-1'. If we can't, change them to '0'`s. 6881 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6882 DAG.getConstant(0, DL, ShSVT)); 6883 } 6884 6885 PVal = DAG.getBuildVector(VT, DL, PAmts); 6886 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6887 QVal = DAG.getBuildVector(VT, DL, QAmts); 6888 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6889 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 6890 "Expected matchBinaryPredicate to return one element for " 6891 "SPLAT_VECTORs"); 6892 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6893 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6894 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6895 } else { 6896 PVal = PAmts[0]; 6897 KVal = KAmts[0]; 6898 QVal = QAmts[0]; 6899 } 6900 6901 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 6902 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 6903 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 6904 assert(CompTargetNode.getValueType() == N.getValueType() && 6905 "Expecting that the types on LHS and RHS of comparisons match."); 6906 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 6907 } 6908 6909 // (mul N, P) 6910 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6911 Created.push_back(Op0.getNode()); 6912 6913 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6914 // divisors as a performance improvement, since rotating by 0 is a no-op. 6915 if (HadEvenDivisor) { 6916 // We need ROTR to do this. 6917 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6918 return SDValue(); 6919 // UREM: (rotr (mul N, P), K) 6920 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6921 Created.push_back(Op0.getNode()); 6922 } 6923 6924 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 6925 SDValue NewCC = 6926 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6927 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6928 if (!HadTautologicalInvertedLanes) 6929 return NewCC; 6930 6931 // If any lanes previously compared always-false, the NewCC will give 6932 // always-true result for them, so we need to fixup those lanes. 6933 // Or the other way around for inequality predicate. 6934 assert(VT.isVector() && "Can/should only get here for vectors."); 6935 Created.push_back(NewCC.getNode()); 6936 6937 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6938 // if C2 is not less than C1, the comparison is always false. 6939 // But we have produced the comparison that will give the 6940 // opposive tautological answer. So these lanes would need to be fixed up. 6941 SDValue TautologicalInvertedChannels = 6942 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 6943 Created.push_back(TautologicalInvertedChannels.getNode()); 6944 6945 // NOTE: we avoid letting illegal types through even if we're before legalize 6946 // ops – legalization has a hard time producing good code for this. 6947 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 6948 // If we have a vector select, let's replace the comparison results in the 6949 // affected lanes with the correct tautological result. 6950 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 6951 DL, SETCCVT, SETCCVT); 6952 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 6953 Replacement, NewCC); 6954 } 6955 6956 // Else, we can just invert the comparison result in the appropriate lanes. 6957 // 6958 // NOTE: see the note above VSELECT above. 6959 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 6960 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 6961 TautologicalInvertedChannels); 6962 6963 return SDValue(); // Don't know how to lower. 6964 } 6965 6966 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 6967 /// where the divisor is constant and the comparison target is zero, 6968 /// return a DAG expression that will generate the same comparison result 6969 /// using only multiplications, additions and shifts/rotations. 6970 /// Ref: "Hacker's Delight" 10-17. 6971 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 6972 SDValue CompTargetNode, 6973 ISD::CondCode Cond, 6974 DAGCombinerInfo &DCI, 6975 const SDLoc &DL) const { 6976 SmallVector<SDNode *, 7> Built; 6977 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6978 DCI, DL, Built)) { 6979 assert(Built.size() <= 7 && "Max size prediction failed."); 6980 for (SDNode *N : Built) 6981 DCI.AddToWorklist(N); 6982 return Folded; 6983 } 6984 6985 return SDValue(); 6986 } 6987 6988 SDValue 6989 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 6990 SDValue CompTargetNode, ISD::CondCode Cond, 6991 DAGCombinerInfo &DCI, const SDLoc &DL, 6992 SmallVectorImpl<SDNode *> &Created) const { 6993 // Derived from Hacker's Delight, 2nd Edition, by Hank Warren. Section 10-17. 6994 // Fold: 6995 // (seteq/ne (srem N, D), 0) 6996 // To: 6997 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 6998 // 6999 // - D must be constant, with D = D0 * 2^K where D0 is odd 7000 // - P is the multiplicative inverse of D0 modulo 2^W 7001 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 7002 // - Q = floor((2 * A) / (2^K)) 7003 // where W is the width of the common type of N and D. 7004 // 7005 // When D is a power of two (and thus D0 is 1), the normal 7006 // formula for A and Q don't apply, because the derivation 7007 // depends on D not dividing 2^(W-1), and thus theorem ZRS 7008 // does not apply. This specifically fails when N = INT_MIN. 7009 // 7010 // Instead, for power-of-two D, we use: 7011 // - A = 2^(W-1) 7012 // |-> Order-preserving map from [-2^(W-1), 2^(W-1) - 1] to [0,2^W - 1]) 7013 // - Q = 2^(W-K) - 1 7014 // |-> Test that the top K bits are zero after rotation 7015 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 7016 "Only applicable for (in)equality comparisons."); 7017 7018 SelectionDAG &DAG = DCI.DAG; 7019 7020 EVT VT = REMNode.getValueType(); 7021 EVT SVT = VT.getScalarType(); 7022 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7023 EVT ShSVT = ShVT.getScalarType(); 7024 7025 // If we are after ops legalization, and MUL is unavailable, we can not 7026 // proceed. 7027 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 7028 return SDValue(); 7029 7030 // TODO: Could support comparing with non-zero too. 7031 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 7032 if (!CompTarget || !CompTarget->isZero()) 7033 return SDValue(); 7034 7035 bool HadIntMinDivisor = false; 7036 bool HadOneDivisor = false; 7037 bool AllDivisorsAreOnes = true; 7038 bool HadEvenDivisor = false; 7039 bool NeedToApplyOffset = false; 7040 bool AllDivisorsArePowerOfTwo = true; 7041 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 7042 7043 auto BuildSREMPattern = [&](ConstantSDNode *C) { 7044 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 7045 if (C->isZero()) 7046 return false; 7047 7048 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 7049 7050 // WARNING: this fold is only valid for positive divisors! 7051 APInt D = C->getAPIntValue(); 7052 if (D.isNegative()) 7053 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 7054 7055 HadIntMinDivisor |= D.isMinSignedValue(); 7056 7057 // If all divisors are ones, we will prefer to avoid the fold. 7058 HadOneDivisor |= D.isOne(); 7059 AllDivisorsAreOnes &= D.isOne(); 7060 7061 // Decompose D into D0 * 2^K 7062 unsigned K = D.countr_zero(); 7063 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 7064 APInt D0 = D.lshr(K); 7065 7066 if (!D.isMinSignedValue()) { 7067 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 7068 // we don't care about this lane in this fold, we'll special-handle it. 7069 HadEvenDivisor |= (K != 0); 7070 } 7071 7072 // D is a power-of-two if D0 is one. This includes INT_MIN. 7073 // If all divisors are power-of-two, we will prefer to avoid the fold. 7074 AllDivisorsArePowerOfTwo &= D0.isOne(); 7075 7076 // P = inv(D0, 2^W) 7077 // 2^W requires W + 1 bits, so we have to extend and then truncate. 7078 unsigned W = D.getBitWidth(); 7079 APInt P = D0.multiplicativeInverse(); 7080 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 7081 7082 // A = floor((2^(W - 1) - 1) / D0) & -2^K 7083 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 7084 A.clearLowBits(K); 7085 7086 if (!D.isMinSignedValue()) { 7087 // If divisor INT_MIN, then we don't care about this lane in this fold, 7088 // we'll special-handle it. 7089 NeedToApplyOffset |= A != 0; 7090 } 7091 7092 // Q = floor((2 * A) / (2^K)) 7093 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 7094 7095 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 7096 "We are expecting that A is always less than all-ones for SVT"); 7097 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 7098 "We are expecting that K is always less than all-ones for ShSVT"); 7099 7100 // If D was a power of two, apply the alternate constant derivation. 7101 if (D0.isOne()) { 7102 // A = 2^(W-1) 7103 A = APInt::getSignedMinValue(W); 7104 // - Q = 2^(W-K) - 1 7105 Q = APInt::getAllOnes(W - K).zext(W); 7106 } 7107 7108 // If the divisor is 1 the result can be constant-folded. Likewise, we 7109 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 7110 if (D.isOne()) { 7111 // Set P, A and K to a bogus values so we can try to splat them. 7112 P = 0; 7113 A = -1; 7114 K = -1; 7115 7116 // x ?% 1 == 0 <--> true <--> x u<= -1 7117 Q = -1; 7118 } 7119 7120 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 7121 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 7122 KAmts.push_back( 7123 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K, /*isSigned=*/false, 7124 /*implicitTrunc=*/true), 7125 DL, ShSVT)); 7126 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 7127 return true; 7128 }; 7129 7130 SDValue N = REMNode.getOperand(0); 7131 SDValue D = REMNode.getOperand(1); 7132 7133 // Collect the values from each element. 7134 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 7135 return SDValue(); 7136 7137 // If this is a srem by a one, avoid the fold since it can be constant-folded. 7138 if (AllDivisorsAreOnes) 7139 return SDValue(); 7140 7141 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 7142 // since it can be best implemented as a bit test. 7143 if (AllDivisorsArePowerOfTwo) 7144 return SDValue(); 7145 7146 SDValue PVal, AVal, KVal, QVal; 7147 if (D.getOpcode() == ISD::BUILD_VECTOR) { 7148 if (HadOneDivisor) { 7149 // Try to turn PAmts into a splat, since we don't care about the values 7150 // that are currently '0'. If we can't, just keep '0'`s. 7151 turnVectorIntoSplatVector(PAmts, isNullConstant); 7152 // Try to turn AAmts into a splat, since we don't care about the 7153 // values that are currently '-1'. If we can't, change them to '0'`s. 7154 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 7155 DAG.getConstant(0, DL, SVT)); 7156 // Try to turn KAmts into a splat, since we don't care about the values 7157 // that are currently '-1'. If we can't, change them to '0'`s. 7158 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 7159 DAG.getConstant(0, DL, ShSVT)); 7160 } 7161 7162 PVal = DAG.getBuildVector(VT, DL, PAmts); 7163 AVal = DAG.getBuildVector(VT, DL, AAmts); 7164 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 7165 QVal = DAG.getBuildVector(VT, DL, QAmts); 7166 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 7167 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 7168 QAmts.size() == 1 && 7169 "Expected matchUnaryPredicate to return one element for scalable " 7170 "vectors"); 7171 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 7172 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 7173 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 7174 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 7175 } else { 7176 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 7177 PVal = PAmts[0]; 7178 AVal = AAmts[0]; 7179 KVal = KAmts[0]; 7180 QVal = QAmts[0]; 7181 } 7182 7183 // (mul N, P) 7184 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 7185 Created.push_back(Op0.getNode()); 7186 7187 if (NeedToApplyOffset) { 7188 // We need ADD to do this. 7189 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 7190 return SDValue(); 7191 7192 // (add (mul N, P), A) 7193 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 7194 Created.push_back(Op0.getNode()); 7195 } 7196 7197 // Rotate right only if any divisor was even. We avoid rotates for all-odd 7198 // divisors as a performance improvement, since rotating by 0 is a no-op. 7199 if (HadEvenDivisor) { 7200 // We need ROTR to do this. 7201 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 7202 return SDValue(); 7203 // SREM: (rotr (add (mul N, P), A), K) 7204 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 7205 Created.push_back(Op0.getNode()); 7206 } 7207 7208 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 7209 SDValue Fold = 7210 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 7211 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 7212 7213 // If we didn't have lanes with INT_MIN divisor, then we're done. 7214 if (!HadIntMinDivisor) 7215 return Fold; 7216 7217 // That fold is only valid for positive divisors. Which effectively means, 7218 // it is invalid for INT_MIN divisors. So if we have such a lane, 7219 // we must fix-up results for said lanes. 7220 assert(VT.isVector() && "Can/should only get here for vectors."); 7221 7222 // NOTE: we avoid letting illegal types through even if we're before legalize 7223 // ops – legalization has a hard time producing good code for the code that 7224 // follows. 7225 if (!isOperationLegalOrCustom(ISD::SETCC, SETCCVT) || 7226 !isOperationLegalOrCustom(ISD::AND, VT) || 7227 !isCondCodeLegalOrCustom(Cond, VT.getSimpleVT()) || 7228 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 7229 return SDValue(); 7230 7231 Created.push_back(Fold.getNode()); 7232 7233 SDValue IntMin = DAG.getConstant( 7234 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 7235 SDValue IntMax = DAG.getConstant( 7236 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 7237 SDValue Zero = 7238 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 7239 7240 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 7241 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 7242 Created.push_back(DivisorIsIntMin.getNode()); 7243 7244 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 7245 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 7246 Created.push_back(Masked.getNode()); 7247 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 7248 Created.push_back(MaskedIsZero.getNode()); 7249 7250 // To produce final result we need to blend 2 vectors: 'SetCC' and 7251 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 7252 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 7253 // constant-folded, select can get lowered to a shuffle with constant mask. 7254 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 7255 MaskedIsZero, Fold); 7256 7257 return Blended; 7258 } 7259 7260 bool TargetLowering:: 7261 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 7262 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 7263 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 7264 "be a constant integer"); 7265 return true; 7266 } 7267 7268 return false; 7269 } 7270 7271 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 7272 const DenormalMode &Mode) const { 7273 SDLoc DL(Op); 7274 EVT VT = Op.getValueType(); 7275 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7276 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 7277 7278 // This is specifically a check for the handling of denormal inputs, not the 7279 // result. 7280 if (Mode.Input == DenormalMode::PreserveSign || 7281 Mode.Input == DenormalMode::PositiveZero) { 7282 // Test = X == 0.0 7283 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 7284 } 7285 7286 // Testing it with denormal inputs to avoid wrong estimate. 7287 // 7288 // Test = fabs(X) < SmallestNormal 7289 const fltSemantics &FltSem = VT.getFltSemantics(); 7290 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 7291 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 7292 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 7293 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 7294 } 7295 7296 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 7297 bool LegalOps, bool OptForSize, 7298 NegatibleCost &Cost, 7299 unsigned Depth) const { 7300 // fneg is removable even if it has multiple uses. 7301 if (Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::VP_FNEG) { 7302 Cost = NegatibleCost::Cheaper; 7303 return Op.getOperand(0); 7304 } 7305 7306 // Don't recurse exponentially. 7307 if (Depth > SelectionDAG::MaxRecursionDepth) 7308 return SDValue(); 7309 7310 // Pre-increment recursion depth for use in recursive calls. 7311 ++Depth; 7312 const SDNodeFlags Flags = Op->getFlags(); 7313 const TargetOptions &Options = DAG.getTarget().Options; 7314 EVT VT = Op.getValueType(); 7315 unsigned Opcode = Op.getOpcode(); 7316 7317 // Don't allow anything with multiple uses unless we know it is free. 7318 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 7319 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 7320 isFPExtFree(VT, Op.getOperand(0).getValueType()); 7321 if (!IsFreeExtend) 7322 return SDValue(); 7323 } 7324 7325 auto RemoveDeadNode = [&](SDValue N) { 7326 if (N && N.getNode()->use_empty()) 7327 DAG.RemoveDeadNode(N.getNode()); 7328 }; 7329 7330 SDLoc DL(Op); 7331 7332 // Because getNegatedExpression can delete nodes we need a handle to keep 7333 // temporary nodes alive in case the recursion manages to create an identical 7334 // node. 7335 std::list<HandleSDNode> Handles; 7336 7337 switch (Opcode) { 7338 case ISD::ConstantFP: { 7339 // Don't invert constant FP values after legalization unless the target says 7340 // the negated constant is legal. 7341 bool IsOpLegal = 7342 isOperationLegal(ISD::ConstantFP, VT) || 7343 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 7344 OptForSize); 7345 7346 if (LegalOps && !IsOpLegal) 7347 break; 7348 7349 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 7350 V.changeSign(); 7351 SDValue CFP = DAG.getConstantFP(V, DL, VT); 7352 7353 // If we already have the use of the negated floating constant, it is free 7354 // to negate it even it has multiple uses. 7355 if (!Op.hasOneUse() && CFP.use_empty()) 7356 break; 7357 Cost = NegatibleCost::Neutral; 7358 return CFP; 7359 } 7360 case ISD::BUILD_VECTOR: { 7361 // Only permit BUILD_VECTOR of constants. 7362 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 7363 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 7364 })) 7365 break; 7366 7367 bool IsOpLegal = 7368 (isOperationLegal(ISD::ConstantFP, VT) && 7369 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 7370 llvm::all_of(Op->op_values(), [&](SDValue N) { 7371 return N.isUndef() || 7372 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 7373 OptForSize); 7374 }); 7375 7376 if (LegalOps && !IsOpLegal) 7377 break; 7378 7379 SmallVector<SDValue, 4> Ops; 7380 for (SDValue C : Op->op_values()) { 7381 if (C.isUndef()) { 7382 Ops.push_back(C); 7383 continue; 7384 } 7385 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 7386 V.changeSign(); 7387 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 7388 } 7389 Cost = NegatibleCost::Neutral; 7390 return DAG.getBuildVector(VT, DL, Ops); 7391 } 7392 case ISD::FADD: { 7393 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 7394 break; 7395 7396 // After operation legalization, it might not be legal to create new FSUBs. 7397 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 7398 break; 7399 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 7400 7401 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 7402 NegatibleCost CostX = NegatibleCost::Expensive; 7403 SDValue NegX = 7404 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 7405 // Prevent this node from being deleted by the next call. 7406 if (NegX) 7407 Handles.emplace_back(NegX); 7408 7409 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 7410 NegatibleCost CostY = NegatibleCost::Expensive; 7411 SDValue NegY = 7412 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 7413 7414 // We're done with the handles. 7415 Handles.clear(); 7416 7417 // Negate the X if its cost is less or equal than Y. 7418 if (NegX && (CostX <= CostY)) { 7419 Cost = CostX; 7420 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 7421 if (NegY != N) 7422 RemoveDeadNode(NegY); 7423 return N; 7424 } 7425 7426 // Negate the Y if it is not expensive. 7427 if (NegY) { 7428 Cost = CostY; 7429 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 7430 if (NegX != N) 7431 RemoveDeadNode(NegX); 7432 return N; 7433 } 7434 break; 7435 } 7436 case ISD::FSUB: { 7437 // We can't turn -(A-B) into B-A when we honor signed zeros. 7438 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 7439 break; 7440 7441 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 7442 // fold (fneg (fsub 0, Y)) -> Y 7443 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 7444 if (C->isZero()) { 7445 Cost = NegatibleCost::Cheaper; 7446 return Y; 7447 } 7448 7449 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 7450 Cost = NegatibleCost::Neutral; 7451 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 7452 } 7453 case ISD::FMUL: 7454 case ISD::FDIV: { 7455 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 7456 7457 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 7458 NegatibleCost CostX = NegatibleCost::Expensive; 7459 SDValue NegX = 7460 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 7461 // Prevent this node from being deleted by the next call. 7462 if (NegX) 7463 Handles.emplace_back(NegX); 7464 7465 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 7466 NegatibleCost CostY = NegatibleCost::Expensive; 7467 SDValue NegY = 7468 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 7469 7470 // We're done with the handles. 7471 Handles.clear(); 7472 7473 // Negate the X if its cost is less or equal than Y. 7474 if (NegX && (CostX <= CostY)) { 7475 Cost = CostX; 7476 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 7477 if (NegY != N) 7478 RemoveDeadNode(NegY); 7479 return N; 7480 } 7481 7482 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 7483 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 7484 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 7485 break; 7486 7487 // Negate the Y if it is not expensive. 7488 if (NegY) { 7489 Cost = CostY; 7490 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 7491 if (NegX != N) 7492 RemoveDeadNode(NegX); 7493 return N; 7494 } 7495 break; 7496 } 7497 case ISD::FMA: 7498 case ISD::FMAD: { 7499 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 7500 break; 7501 7502 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 7503 NegatibleCost CostZ = NegatibleCost::Expensive; 7504 SDValue NegZ = 7505 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 7506 // Give up if fail to negate the Z. 7507 if (!NegZ) 7508 break; 7509 7510 // Prevent this node from being deleted by the next two calls. 7511 Handles.emplace_back(NegZ); 7512 7513 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 7514 NegatibleCost CostX = NegatibleCost::Expensive; 7515 SDValue NegX = 7516 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 7517 // Prevent this node from being deleted by the next call. 7518 if (NegX) 7519 Handles.emplace_back(NegX); 7520 7521 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 7522 NegatibleCost CostY = NegatibleCost::Expensive; 7523 SDValue NegY = 7524 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 7525 7526 // We're done with the handles. 7527 Handles.clear(); 7528 7529 // Negate the X if its cost is less or equal than Y. 7530 if (NegX && (CostX <= CostY)) { 7531 Cost = std::min(CostX, CostZ); 7532 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 7533 if (NegY != N) 7534 RemoveDeadNode(NegY); 7535 return N; 7536 } 7537 7538 // Negate the Y if it is not expensive. 7539 if (NegY) { 7540 Cost = std::min(CostY, CostZ); 7541 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 7542 if (NegX != N) 7543 RemoveDeadNode(NegX); 7544 return N; 7545 } 7546 break; 7547 } 7548 7549 case ISD::FP_EXTEND: 7550 case ISD::FSIN: 7551 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 7552 OptForSize, Cost, Depth)) 7553 return DAG.getNode(Opcode, DL, VT, NegV); 7554 break; 7555 case ISD::FP_ROUND: 7556 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 7557 OptForSize, Cost, Depth)) 7558 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 7559 break; 7560 case ISD::SELECT: 7561 case ISD::VSELECT: { 7562 // fold (fneg (select C, LHS, RHS)) -> (select C, (fneg LHS), (fneg RHS)) 7563 // iff at least one cost is cheaper and the other is neutral/cheaper 7564 SDValue LHS = Op.getOperand(1); 7565 NegatibleCost CostLHS = NegatibleCost::Expensive; 7566 SDValue NegLHS = 7567 getNegatedExpression(LHS, DAG, LegalOps, OptForSize, CostLHS, Depth); 7568 if (!NegLHS || CostLHS > NegatibleCost::Neutral) { 7569 RemoveDeadNode(NegLHS); 7570 break; 7571 } 7572 7573 // Prevent this node from being deleted by the next call. 7574 Handles.emplace_back(NegLHS); 7575 7576 SDValue RHS = Op.getOperand(2); 7577 NegatibleCost CostRHS = NegatibleCost::Expensive; 7578 SDValue NegRHS = 7579 getNegatedExpression(RHS, DAG, LegalOps, OptForSize, CostRHS, Depth); 7580 7581 // We're done with the handles. 7582 Handles.clear(); 7583 7584 if (!NegRHS || CostRHS > NegatibleCost::Neutral || 7585 (CostLHS != NegatibleCost::Cheaper && 7586 CostRHS != NegatibleCost::Cheaper)) { 7587 RemoveDeadNode(NegLHS); 7588 RemoveDeadNode(NegRHS); 7589 break; 7590 } 7591 7592 Cost = std::min(CostLHS, CostRHS); 7593 return DAG.getSelect(DL, VT, Op.getOperand(0), NegLHS, NegRHS); 7594 } 7595 } 7596 7597 return SDValue(); 7598 } 7599 7600 //===----------------------------------------------------------------------===// 7601 // Legalization Utilities 7602 //===----------------------------------------------------------------------===// 7603 7604 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 7605 SDValue LHS, SDValue RHS, 7606 SmallVectorImpl<SDValue> &Result, 7607 EVT HiLoVT, SelectionDAG &DAG, 7608 MulExpansionKind Kind, SDValue LL, 7609 SDValue LH, SDValue RL, SDValue RH) const { 7610 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 7611 Opcode == ISD::SMUL_LOHI); 7612 7613 bool HasMULHS = (Kind == MulExpansionKind::Always) || 7614 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 7615 bool HasMULHU = (Kind == MulExpansionKind::Always) || 7616 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 7617 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 7618 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 7619 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 7620 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 7621 7622 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 7623 return false; 7624 7625 unsigned OuterBitSize = VT.getScalarSizeInBits(); 7626 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 7627 7628 // LL, LH, RL, and RH must be either all NULL or all set to a value. 7629 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 7630 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 7631 7632 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 7633 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 7634 bool Signed) -> bool { 7635 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 7636 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 7637 Hi = SDValue(Lo.getNode(), 1); 7638 return true; 7639 } 7640 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 7641 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 7642 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 7643 return true; 7644 } 7645 return false; 7646 }; 7647 7648 SDValue Lo, Hi; 7649 7650 if (!LL.getNode() && !RL.getNode() && 7651 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 7652 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 7653 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 7654 } 7655 7656 if (!LL.getNode()) 7657 return false; 7658 7659 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 7660 if (DAG.MaskedValueIsZero(LHS, HighMask) && 7661 DAG.MaskedValueIsZero(RHS, HighMask)) { 7662 // The inputs are both zero-extended. 7663 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 7664 Result.push_back(Lo); 7665 Result.push_back(Hi); 7666 if (Opcode != ISD::MUL) { 7667 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 7668 Result.push_back(Zero); 7669 Result.push_back(Zero); 7670 } 7671 return true; 7672 } 7673 } 7674 7675 if (!VT.isVector() && Opcode == ISD::MUL && 7676 DAG.ComputeMaxSignificantBits(LHS) <= InnerBitSize && 7677 DAG.ComputeMaxSignificantBits(RHS) <= InnerBitSize) { 7678 // The input values are both sign-extended. 7679 // TODO non-MUL case? 7680 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 7681 Result.push_back(Lo); 7682 Result.push_back(Hi); 7683 return true; 7684 } 7685 } 7686 7687 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 7688 SDValue Shift = DAG.getShiftAmountConstant(ShiftAmount, VT, dl); 7689 7690 if (!LH.getNode() && !RH.getNode() && 7691 isOperationLegalOrCustom(ISD::SRL, VT) && 7692 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 7693 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 7694 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 7695 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 7696 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 7697 } 7698 7699 if (!LH.getNode()) 7700 return false; 7701 7702 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 7703 return false; 7704 7705 Result.push_back(Lo); 7706 7707 if (Opcode == ISD::MUL) { 7708 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 7709 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 7710 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 7711 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 7712 Result.push_back(Hi); 7713 return true; 7714 } 7715 7716 // Compute the full width result. 7717 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 7718 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 7719 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 7720 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 7721 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 7722 }; 7723 7724 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 7725 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 7726 return false; 7727 7728 // This is effectively the add part of a multiply-add of half-sized operands, 7729 // so it cannot overflow. 7730 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 7731 7732 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 7733 return false; 7734 7735 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 7736 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7737 7738 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 7739 isOperationLegalOrCustom(ISD::ADDE, VT)); 7740 if (UseGlue) 7741 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 7742 Merge(Lo, Hi)); 7743 else 7744 Next = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(VT, BoolType), Next, 7745 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 7746 7747 SDValue Carry = Next.getValue(1); 7748 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7749 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 7750 7751 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 7752 return false; 7753 7754 if (UseGlue) 7755 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 7756 Carry); 7757 else 7758 Hi = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 7759 Zero, Carry); 7760 7761 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 7762 7763 if (Opcode == ISD::SMUL_LOHI) { 7764 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 7765 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 7766 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 7767 7768 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 7769 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 7770 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 7771 } 7772 7773 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7774 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 7775 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7776 return true; 7777 } 7778 7779 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 7780 SelectionDAG &DAG, MulExpansionKind Kind, 7781 SDValue LL, SDValue LH, SDValue RL, 7782 SDValue RH) const { 7783 SmallVector<SDValue, 2> Result; 7784 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 7785 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 7786 DAG, Kind, LL, LH, RL, RH); 7787 if (Ok) { 7788 assert(Result.size() == 2); 7789 Lo = Result[0]; 7790 Hi = Result[1]; 7791 } 7792 return Ok; 7793 } 7794 7795 // Optimize unsigned division or remainder by constants for types twice as large 7796 // as a legal VT. 7797 // 7798 // If (1 << (BitWidth / 2)) % Constant == 1, then the remainder 7799 // can be computed 7800 // as: 7801 // Sum += __builtin_uadd_overflow(Lo, High, &Sum); 7802 // Remainder = Sum % Constant 7803 // This is based on "Remainder by Summing Digits" from Hacker's Delight. 7804 // 7805 // For division, we can compute the remainder using the algorithm described 7806 // above, subtract it from the dividend to get an exact multiple of Constant. 7807 // Then multiply that exact multiply by the multiplicative inverse modulo 7808 // (1 << (BitWidth / 2)) to get the quotient. 7809 7810 // If Constant is even, we can shift right the dividend and the divisor by the 7811 // number of trailing zeros in Constant before applying the remainder algorithm. 7812 // If we're after the quotient, we can subtract this value from the shifted 7813 // dividend and multiply by the multiplicative inverse of the shifted divisor. 7814 // If we want the remainder, we shift the value left by the number of trailing 7815 // zeros and add the bits that were shifted out of the dividend. 7816 bool TargetLowering::expandDIVREMByConstant(SDNode *N, 7817 SmallVectorImpl<SDValue> &Result, 7818 EVT HiLoVT, SelectionDAG &DAG, 7819 SDValue LL, SDValue LH) const { 7820 unsigned Opcode = N->getOpcode(); 7821 EVT VT = N->getValueType(0); 7822 7823 // TODO: Support signed division/remainder. 7824 if (Opcode == ISD::SREM || Opcode == ISD::SDIV || Opcode == ISD::SDIVREM) 7825 return false; 7826 assert( 7827 (Opcode == ISD::UREM || Opcode == ISD::UDIV || Opcode == ISD::UDIVREM) && 7828 "Unexpected opcode"); 7829 7830 auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7831 if (!CN) 7832 return false; 7833 7834 APInt Divisor = CN->getAPIntValue(); 7835 unsigned BitWidth = Divisor.getBitWidth(); 7836 unsigned HBitWidth = BitWidth / 2; 7837 assert(VT.getScalarSizeInBits() == BitWidth && 7838 HiLoVT.getScalarSizeInBits() == HBitWidth && "Unexpected VTs"); 7839 7840 // Divisor needs to less than (1 << HBitWidth). 7841 APInt HalfMaxPlus1 = APInt::getOneBitSet(BitWidth, HBitWidth); 7842 if (Divisor.uge(HalfMaxPlus1)) 7843 return false; 7844 7845 // We depend on the UREM by constant optimization in DAGCombiner that requires 7846 // high multiply. 7847 if (!isOperationLegalOrCustom(ISD::MULHU, HiLoVT) && 7848 !isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT)) 7849 return false; 7850 7851 // Don't expand if optimizing for size. 7852 if (DAG.shouldOptForSize()) 7853 return false; 7854 7855 // Early out for 0 or 1 divisors. 7856 if (Divisor.ule(1)) 7857 return false; 7858 7859 // If the divisor is even, shift it until it becomes odd. 7860 unsigned TrailingZeros = 0; 7861 if (!Divisor[0]) { 7862 TrailingZeros = Divisor.countr_zero(); 7863 Divisor.lshrInPlace(TrailingZeros); 7864 } 7865 7866 SDLoc dl(N); 7867 SDValue Sum; 7868 SDValue PartialRem; 7869 7870 // If (1 << HBitWidth) % divisor == 1, we can add the two halves together and 7871 // then add in the carry. 7872 // TODO: If we can't split it in half, we might be able to split into 3 or 7873 // more pieces using a smaller bit width. 7874 if (HalfMaxPlus1.urem(Divisor).isOne()) { 7875 assert(!LL == !LH && "Expected both input halves or no input halves!"); 7876 if (!LL) 7877 std::tie(LL, LH) = DAG.SplitScalar(N->getOperand(0), dl, HiLoVT, HiLoVT); 7878 7879 // Shift the input by the number of TrailingZeros in the divisor. The 7880 // shifted out bits will be added to the remainder later. 7881 if (TrailingZeros) { 7882 // Save the shifted off bits if we need the remainder. 7883 if (Opcode != ISD::UDIV) { 7884 APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros); 7885 PartialRem = DAG.getNode(ISD::AND, dl, HiLoVT, LL, 7886 DAG.getConstant(Mask, dl, HiLoVT)); 7887 } 7888 7889 LL = DAG.getNode( 7890 ISD::OR, dl, HiLoVT, 7891 DAG.getNode(ISD::SRL, dl, HiLoVT, LL, 7892 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)), 7893 DAG.getNode(ISD::SHL, dl, HiLoVT, LH, 7894 DAG.getShiftAmountConstant(HBitWidth - TrailingZeros, 7895 HiLoVT, dl))); 7896 LH = DAG.getNode(ISD::SRL, dl, HiLoVT, LH, 7897 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)); 7898 } 7899 7900 // Use uaddo_carry if we can, otherwise use a compare to detect overflow. 7901 EVT SetCCType = 7902 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), HiLoVT); 7903 if (isOperationLegalOrCustom(ISD::UADDO_CARRY, HiLoVT)) { 7904 SDVTList VTList = DAG.getVTList(HiLoVT, SetCCType); 7905 Sum = DAG.getNode(ISD::UADDO, dl, VTList, LL, LH); 7906 Sum = DAG.getNode(ISD::UADDO_CARRY, dl, VTList, Sum, 7907 DAG.getConstant(0, dl, HiLoVT), Sum.getValue(1)); 7908 } else { 7909 Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, LL, LH); 7910 SDValue Carry = DAG.getSetCC(dl, SetCCType, Sum, LL, ISD::SETULT); 7911 // If the boolean for the target is 0 or 1, we can add the setcc result 7912 // directly. 7913 if (getBooleanContents(HiLoVT) == 7914 TargetLoweringBase::ZeroOrOneBooleanContent) 7915 Carry = DAG.getZExtOrTrunc(Carry, dl, HiLoVT); 7916 else 7917 Carry = DAG.getSelect(dl, HiLoVT, Carry, DAG.getConstant(1, dl, HiLoVT), 7918 DAG.getConstant(0, dl, HiLoVT)); 7919 Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, Sum, Carry); 7920 } 7921 } 7922 7923 // If we didn't find a sum, we can't do the expansion. 7924 if (!Sum) 7925 return false; 7926 7927 // Perform a HiLoVT urem on the Sum using truncated divisor. 7928 SDValue RemL = 7929 DAG.getNode(ISD::UREM, dl, HiLoVT, Sum, 7930 DAG.getConstant(Divisor.trunc(HBitWidth), dl, HiLoVT)); 7931 SDValue RemH = DAG.getConstant(0, dl, HiLoVT); 7932 7933 if (Opcode != ISD::UREM) { 7934 // Subtract the remainder from the shifted dividend. 7935 SDValue Dividend = DAG.getNode(ISD::BUILD_PAIR, dl, VT, LL, LH); 7936 SDValue Rem = DAG.getNode(ISD::BUILD_PAIR, dl, VT, RemL, RemH); 7937 7938 Dividend = DAG.getNode(ISD::SUB, dl, VT, Dividend, Rem); 7939 7940 // Multiply by the multiplicative inverse of the divisor modulo 7941 // (1 << BitWidth). 7942 APInt MulFactor = Divisor.multiplicativeInverse(); 7943 7944 SDValue Quotient = DAG.getNode(ISD::MUL, dl, VT, Dividend, 7945 DAG.getConstant(MulFactor, dl, VT)); 7946 7947 // Split the quotient into low and high parts. 7948 SDValue QuotL, QuotH; 7949 std::tie(QuotL, QuotH) = DAG.SplitScalar(Quotient, dl, HiLoVT, HiLoVT); 7950 Result.push_back(QuotL); 7951 Result.push_back(QuotH); 7952 } 7953 7954 if (Opcode != ISD::UDIV) { 7955 // If we shifted the input, shift the remainder left and add the bits we 7956 // shifted off the input. 7957 if (TrailingZeros) { 7958 APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros); 7959 RemL = DAG.getNode(ISD::SHL, dl, HiLoVT, RemL, 7960 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)); 7961 RemL = DAG.getNode(ISD::ADD, dl, HiLoVT, RemL, PartialRem); 7962 } 7963 Result.push_back(RemL); 7964 Result.push_back(DAG.getConstant(0, dl, HiLoVT)); 7965 } 7966 7967 return true; 7968 } 7969 7970 // Check that (every element of) Z is undef or not an exact multiple of BW. 7971 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 7972 return ISD::matchUnaryPredicate( 7973 Z, 7974 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 7975 true); 7976 } 7977 7978 static SDValue expandVPFunnelShift(SDNode *Node, SelectionDAG &DAG) { 7979 EVT VT = Node->getValueType(0); 7980 SDValue ShX, ShY; 7981 SDValue ShAmt, InvShAmt; 7982 SDValue X = Node->getOperand(0); 7983 SDValue Y = Node->getOperand(1); 7984 SDValue Z = Node->getOperand(2); 7985 SDValue Mask = Node->getOperand(3); 7986 SDValue VL = Node->getOperand(4); 7987 7988 unsigned BW = VT.getScalarSizeInBits(); 7989 bool IsFSHL = Node->getOpcode() == ISD::VP_FSHL; 7990 SDLoc DL(SDValue(Node, 0)); 7991 7992 EVT ShVT = Z.getValueType(); 7993 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7994 // fshl: X << C | Y >> (BW - C) 7995 // fshr: X << (BW - C) | Y >> C 7996 // where C = Z % BW is not zero 7997 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7998 ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL); 7999 InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitWidthC, ShAmt, Mask, VL); 8000 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt, Mask, 8001 VL); 8002 ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt, Mask, 8003 VL); 8004 } else { 8005 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 8006 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 8007 SDValue BitMask = DAG.getConstant(BW - 1, DL, ShVT); 8008 if (isPowerOf2_32(BW)) { 8009 // Z % BW -> Z & (BW - 1) 8010 ShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, Z, BitMask, Mask, VL); 8011 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 8012 SDValue NotZ = DAG.getNode(ISD::VP_XOR, DL, ShVT, Z, 8013 DAG.getAllOnesConstant(DL, ShVT), Mask, VL); 8014 InvShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, NotZ, BitMask, Mask, VL); 8015 } else { 8016 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 8017 ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL); 8018 InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitMask, ShAmt, Mask, VL); 8019 } 8020 8021 SDValue One = DAG.getConstant(1, DL, ShVT); 8022 if (IsFSHL) { 8023 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, ShAmt, Mask, VL); 8024 SDValue ShY1 = DAG.getNode(ISD::VP_SRL, DL, VT, Y, One, Mask, VL); 8025 ShY = DAG.getNode(ISD::VP_SRL, DL, VT, ShY1, InvShAmt, Mask, VL); 8026 } else { 8027 SDValue ShX1 = DAG.getNode(ISD::VP_SHL, DL, VT, X, One, Mask, VL); 8028 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, ShX1, InvShAmt, Mask, VL); 8029 ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, ShAmt, Mask, VL); 8030 } 8031 } 8032 return DAG.getNode(ISD::VP_OR, DL, VT, ShX, ShY, Mask, VL); 8033 } 8034 8035 SDValue TargetLowering::expandFunnelShift(SDNode *Node, 8036 SelectionDAG &DAG) const { 8037 if (Node->isVPOpcode()) 8038 return expandVPFunnelShift(Node, DAG); 8039 8040 EVT VT = Node->getValueType(0); 8041 8042 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 8043 !isOperationLegalOrCustom(ISD::SRL, VT) || 8044 !isOperationLegalOrCustom(ISD::SUB, VT) || 8045 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 8046 return SDValue(); 8047 8048 SDValue X = Node->getOperand(0); 8049 SDValue Y = Node->getOperand(1); 8050 SDValue Z = Node->getOperand(2); 8051 8052 unsigned BW = VT.getScalarSizeInBits(); 8053 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 8054 SDLoc DL(SDValue(Node, 0)); 8055 8056 EVT ShVT = Z.getValueType(); 8057 8058 // If a funnel shift in the other direction is more supported, use it. 8059 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 8060 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 8061 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 8062 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 8063 // fshl X, Y, Z -> fshr X, Y, -Z 8064 // fshr X, Y, Z -> fshl X, Y, -Z 8065 SDValue Zero = DAG.getConstant(0, DL, ShVT); 8066 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 8067 } else { 8068 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 8069 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 8070 SDValue One = DAG.getConstant(1, DL, ShVT); 8071 if (IsFSHL) { 8072 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 8073 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 8074 } else { 8075 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 8076 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 8077 } 8078 Z = DAG.getNOT(DL, Z, ShVT); 8079 } 8080 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 8081 } 8082 8083 SDValue ShX, ShY; 8084 SDValue ShAmt, InvShAmt; 8085 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 8086 // fshl: X << C | Y >> (BW - C) 8087 // fshr: X << (BW - C) | Y >> C 8088 // where C = Z % BW is not zero 8089 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 8090 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 8091 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 8092 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 8093 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 8094 } else { 8095 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 8096 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 8097 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 8098 if (isPowerOf2_32(BW)) { 8099 // Z % BW -> Z & (BW - 1) 8100 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 8101 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 8102 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 8103 } else { 8104 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 8105 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 8106 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 8107 } 8108 8109 SDValue One = DAG.getConstant(1, DL, ShVT); 8110 if (IsFSHL) { 8111 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 8112 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 8113 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 8114 } else { 8115 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 8116 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 8117 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 8118 } 8119 } 8120 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 8121 } 8122 8123 // TODO: Merge with expandFunnelShift. 8124 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 8125 SelectionDAG &DAG) const { 8126 EVT VT = Node->getValueType(0); 8127 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 8128 bool IsLeft = Node->getOpcode() == ISD::ROTL; 8129 SDValue Op0 = Node->getOperand(0); 8130 SDValue Op1 = Node->getOperand(1); 8131 SDLoc DL(SDValue(Node, 0)); 8132 8133 EVT ShVT = Op1.getValueType(); 8134 SDValue Zero = DAG.getConstant(0, DL, ShVT); 8135 8136 // If a rotate in the other direction is more supported, use it. 8137 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 8138 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 8139 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 8140 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 8141 return DAG.getNode(RevRot, DL, VT, Op0, Sub); 8142 } 8143 8144 if (!AllowVectorOps && VT.isVector() && 8145 (!isOperationLegalOrCustom(ISD::SHL, VT) || 8146 !isOperationLegalOrCustom(ISD::SRL, VT) || 8147 !isOperationLegalOrCustom(ISD::SUB, VT) || 8148 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 8149 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 8150 return SDValue(); 8151 8152 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 8153 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 8154 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 8155 SDValue ShVal; 8156 SDValue HsVal; 8157 if (isPowerOf2_32(EltSizeInBits)) { 8158 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 8159 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 8160 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 8161 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 8162 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 8163 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 8164 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 8165 } else { 8166 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 8167 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 8168 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 8169 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 8170 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 8171 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 8172 SDValue One = DAG.getConstant(1, DL, ShVT); 8173 HsVal = 8174 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 8175 } 8176 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 8177 } 8178 8179 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 8180 SelectionDAG &DAG) const { 8181 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 8182 EVT VT = Node->getValueType(0); 8183 unsigned VTBits = VT.getScalarSizeInBits(); 8184 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 8185 8186 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 8187 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 8188 SDValue ShOpLo = Node->getOperand(0); 8189 SDValue ShOpHi = Node->getOperand(1); 8190 SDValue ShAmt = Node->getOperand(2); 8191 EVT ShAmtVT = ShAmt.getValueType(); 8192 EVT ShAmtCCVT = 8193 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 8194 SDLoc dl(Node); 8195 8196 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 8197 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 8198 // away during isel. 8199 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 8200 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 8201 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 8202 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 8203 : DAG.getConstant(0, dl, VT); 8204 8205 SDValue Tmp2, Tmp3; 8206 if (IsSHL) { 8207 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 8208 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 8209 } else { 8210 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 8211 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 8212 } 8213 8214 // If the shift amount is larger or equal than the width of a part we don't 8215 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 8216 // values for large shift amounts. 8217 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 8218 DAG.getConstant(VTBits, dl, ShAmtVT)); 8219 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 8220 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 8221 8222 if (IsSHL) { 8223 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 8224 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 8225 } else { 8226 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 8227 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 8228 } 8229 } 8230 8231 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 8232 SelectionDAG &DAG) const { 8233 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 8234 SDValue Src = Node->getOperand(OpNo); 8235 EVT SrcVT = Src.getValueType(); 8236 EVT DstVT = Node->getValueType(0); 8237 SDLoc dl(SDValue(Node, 0)); 8238 8239 // FIXME: Only f32 to i64 conversions are supported. 8240 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 8241 return false; 8242 8243 if (Node->isStrictFPOpcode()) 8244 // When a NaN is converted to an integer a trap is allowed. We can't 8245 // use this expansion here because it would eliminate that trap. Other 8246 // traps are also allowed and cannot be eliminated. See 8247 // IEEE 754-2008 sec 5.8. 8248 return false; 8249 8250 // Expand f32 -> i64 conversion 8251 // This algorithm comes from compiler-rt's implementation of fixsfdi: 8252 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 8253 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 8254 EVT IntVT = SrcVT.changeTypeToInteger(); 8255 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 8256 8257 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 8258 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 8259 SDValue Bias = DAG.getConstant(127, dl, IntVT); 8260 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 8261 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 8262 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 8263 8264 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 8265 8266 SDValue ExponentBits = DAG.getNode( 8267 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 8268 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 8269 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 8270 8271 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 8272 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 8273 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 8274 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 8275 8276 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 8277 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 8278 DAG.getConstant(0x00800000, dl, IntVT)); 8279 8280 R = DAG.getZExtOrTrunc(R, dl, DstVT); 8281 8282 R = DAG.getSelectCC( 8283 dl, Exponent, ExponentLoBit, 8284 DAG.getNode(ISD::SHL, dl, DstVT, R, 8285 DAG.getZExtOrTrunc( 8286 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 8287 dl, IntShVT)), 8288 DAG.getNode(ISD::SRL, dl, DstVT, R, 8289 DAG.getZExtOrTrunc( 8290 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 8291 dl, IntShVT)), 8292 ISD::SETGT); 8293 8294 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 8295 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 8296 8297 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 8298 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 8299 return true; 8300 } 8301 8302 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 8303 SDValue &Chain, 8304 SelectionDAG &DAG) const { 8305 SDLoc dl(SDValue(Node, 0)); 8306 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 8307 SDValue Src = Node->getOperand(OpNo); 8308 8309 EVT SrcVT = Src.getValueType(); 8310 EVT DstVT = Node->getValueType(0); 8311 EVT SetCCVT = 8312 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 8313 EVT DstSetCCVT = 8314 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 8315 8316 // Only expand vector types if we have the appropriate vector bit operations. 8317 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 8318 ISD::FP_TO_SINT; 8319 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 8320 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 8321 return false; 8322 8323 // If the maximum float value is smaller then the signed integer range, 8324 // the destination signmask can't be represented by the float, so we can 8325 // just use FP_TO_SINT directly. 8326 const fltSemantics &APFSem = SrcVT.getFltSemantics(); 8327 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 8328 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 8329 if (APFloat::opOverflow & 8330 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 8331 if (Node->isStrictFPOpcode()) { 8332 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 8333 { Node->getOperand(0), Src }); 8334 Chain = Result.getValue(1); 8335 } else 8336 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 8337 return true; 8338 } 8339 8340 // Don't expand it if there isn't cheap fsub instruction. 8341 if (!isOperationLegalOrCustom( 8342 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 8343 return false; 8344 8345 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 8346 SDValue Sel; 8347 8348 if (Node->isStrictFPOpcode()) { 8349 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 8350 Node->getOperand(0), /*IsSignaling*/ true); 8351 Chain = Sel.getValue(1); 8352 } else { 8353 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 8354 } 8355 8356 bool Strict = Node->isStrictFPOpcode() || 8357 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 8358 8359 if (Strict) { 8360 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 8361 // signmask then offset (the result of which should be fully representable). 8362 // Sel = Src < 0x8000000000000000 8363 // FltOfs = select Sel, 0, 0x8000000000000000 8364 // IntOfs = select Sel, 0, 0x8000000000000000 8365 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 8366 8367 // TODO: Should any fast-math-flags be set for the FSUB? 8368 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 8369 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 8370 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8371 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 8372 DAG.getConstant(0, dl, DstVT), 8373 DAG.getConstant(SignMask, dl, DstVT)); 8374 SDValue SInt; 8375 if (Node->isStrictFPOpcode()) { 8376 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 8377 { Chain, Src, FltOfs }); 8378 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 8379 { Val.getValue(1), Val }); 8380 Chain = SInt.getValue(1); 8381 } else { 8382 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 8383 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 8384 } 8385 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 8386 } else { 8387 // Expand based on maximum range of FP_TO_SINT: 8388 // True = fp_to_sint(Src) 8389 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 8390 // Result = select (Src < 0x8000000000000000), True, False 8391 8392 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 8393 // TODO: Should any fast-math-flags be set for the FSUB? 8394 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 8395 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 8396 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 8397 DAG.getConstant(SignMask, dl, DstVT)); 8398 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8399 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 8400 } 8401 return true; 8402 } 8403 8404 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 8405 SDValue &Chain, SelectionDAG &DAG) const { 8406 // This transform is not correct for converting 0 when rounding mode is set 8407 // to round toward negative infinity which will produce -0.0. So disable 8408 // under strictfp. 8409 if (Node->isStrictFPOpcode()) 8410 return false; 8411 8412 SDValue Src = Node->getOperand(0); 8413 EVT SrcVT = Src.getValueType(); 8414 EVT DstVT = Node->getValueType(0); 8415 8416 // If the input is known to be non-negative and SINT_TO_FP is legal then use 8417 // it. 8418 if (Node->getFlags().hasNonNeg() && 8419 isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT)) { 8420 Result = 8421 DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), DstVT, Node->getOperand(0)); 8422 return true; 8423 } 8424 8425 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 8426 return false; 8427 8428 // Only expand vector types if we have the appropriate vector bit 8429 // operations. 8430 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 8431 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 8432 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 8433 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 8434 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 8435 return false; 8436 8437 SDLoc dl(SDValue(Node, 0)); 8438 8439 // Implementation of unsigned i64 to f64 following the algorithm in 8440 // __floatundidf in compiler_rt. This implementation performs rounding 8441 // correctly in all rounding modes with the exception of converting 0 8442 // when rounding toward negative infinity. In that case the fsub will 8443 // produce -0.0. This will be added to +0.0 and produce -0.0 which is 8444 // incorrect. 8445 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 8446 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 8447 llvm::bit_cast<double>(UINT64_C(0x4530000000100000)), dl, DstVT); 8448 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 8449 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 8450 SDValue HiShift = DAG.getShiftAmountConstant(32, SrcVT, dl); 8451 8452 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 8453 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 8454 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 8455 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 8456 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 8457 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 8458 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 8459 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 8460 return true; 8461 } 8462 8463 SDValue 8464 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node, 8465 SelectionDAG &DAG) const { 8466 unsigned Opcode = Node->getOpcode(); 8467 assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM || 8468 Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) && 8469 "Wrong opcode"); 8470 8471 if (Node->getFlags().hasNoNaNs()) { 8472 ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 8473 EVT VT = Node->getValueType(0); 8474 if ((!isCondCodeLegal(Pred, VT.getSimpleVT()) || 8475 !isOperationLegalOrCustom(ISD::VSELECT, VT)) && 8476 VT.isVector()) 8477 return SDValue(); 8478 SDValue Op1 = Node->getOperand(0); 8479 SDValue Op2 = Node->getOperand(1); 8480 SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred); 8481 // Copy FMF flags, but always set the no-signed-zeros flag 8482 // as this is implied by the FMINNUM/FMAXNUM semantics. 8483 SelCC->setFlags(Node->getFlags() | SDNodeFlags::NoSignedZeros); 8484 return SelCC; 8485 } 8486 8487 return SDValue(); 8488 } 8489 8490 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 8491 SelectionDAG &DAG) const { 8492 if (SDValue Expanded = expandVectorNaryOpBySplitting(Node, DAG)) 8493 return Expanded; 8494 8495 EVT VT = Node->getValueType(0); 8496 if (VT.isScalableVector()) 8497 report_fatal_error( 8498 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 8499 8500 SDLoc dl(Node); 8501 unsigned NewOp = 8502 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 8503 8504 if (isOperationLegalOrCustom(NewOp, VT)) { 8505 SDValue Quiet0 = Node->getOperand(0); 8506 SDValue Quiet1 = Node->getOperand(1); 8507 8508 if (!Node->getFlags().hasNoNaNs()) { 8509 // Insert canonicalizes if it's possible we need to quiet to get correct 8510 // sNaN behavior. 8511 if (!DAG.isKnownNeverSNaN(Quiet0)) { 8512 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 8513 Node->getFlags()); 8514 } 8515 if (!DAG.isKnownNeverSNaN(Quiet1)) { 8516 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 8517 Node->getFlags()); 8518 } 8519 } 8520 8521 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 8522 } 8523 8524 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 8525 // instead if there are no NaNs and there can't be an incompatible zero 8526 // compare: at least one operand isn't +/-0, or there are no signed-zeros. 8527 if ((Node->getFlags().hasNoNaNs() || 8528 (DAG.isKnownNeverNaN(Node->getOperand(0)) && 8529 DAG.isKnownNeverNaN(Node->getOperand(1)))) && 8530 (Node->getFlags().hasNoSignedZeros() || 8531 DAG.isKnownNeverZeroFloat(Node->getOperand(0)) || 8532 DAG.isKnownNeverZeroFloat(Node->getOperand(1)))) { 8533 unsigned IEEE2018Op = 8534 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 8535 if (isOperationLegalOrCustom(IEEE2018Op, VT)) 8536 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 8537 Node->getOperand(1), Node->getFlags()); 8538 } 8539 8540 if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG)) 8541 return SelCC; 8542 8543 return SDValue(); 8544 } 8545 8546 SDValue TargetLowering::expandFMINIMUM_FMAXIMUM(SDNode *N, 8547 SelectionDAG &DAG) const { 8548 if (SDValue Expanded = expandVectorNaryOpBySplitting(N, DAG)) 8549 return Expanded; 8550 8551 SDLoc DL(N); 8552 SDValue LHS = N->getOperand(0); 8553 SDValue RHS = N->getOperand(1); 8554 unsigned Opc = N->getOpcode(); 8555 EVT VT = N->getValueType(0); 8556 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8557 bool IsMax = Opc == ISD::FMAXIMUM; 8558 SDNodeFlags Flags = N->getFlags(); 8559 8560 // First, implement comparison not propagating NaN. If no native fmin or fmax 8561 // available, use plain select with setcc instead. 8562 SDValue MinMax; 8563 unsigned CompOpcIeee = IsMax ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE; 8564 unsigned CompOpc = IsMax ? ISD::FMAXNUM : ISD::FMINNUM; 8565 8566 // FIXME: We should probably define fminnum/fmaxnum variants with correct 8567 // signed zero behavior. 8568 bool MinMaxMustRespectOrderedZero = false; 8569 8570 if (isOperationLegalOrCustom(CompOpcIeee, VT)) { 8571 MinMax = DAG.getNode(CompOpcIeee, DL, VT, LHS, RHS, Flags); 8572 MinMaxMustRespectOrderedZero = true; 8573 } else if (isOperationLegalOrCustom(CompOpc, VT)) { 8574 MinMax = DAG.getNode(CompOpc, DL, VT, LHS, RHS, Flags); 8575 } else { 8576 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8577 return DAG.UnrollVectorOp(N); 8578 8579 // NaN (if exists) will be propagated later, so orderness doesn't matter. 8580 SDValue Compare = 8581 DAG.getSetCC(DL, CCVT, LHS, RHS, IsMax ? ISD::SETOGT : ISD::SETOLT); 8582 MinMax = DAG.getSelect(DL, VT, Compare, LHS, RHS, Flags); 8583 } 8584 8585 // Propagate any NaN of both operands 8586 if (!N->getFlags().hasNoNaNs() && 8587 (!DAG.isKnownNeverNaN(RHS) || !DAG.isKnownNeverNaN(LHS))) { 8588 ConstantFP *FPNaN = ConstantFP::get(*DAG.getContext(), 8589 APFloat::getNaN(VT.getFltSemantics())); 8590 MinMax = DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, LHS, RHS, ISD::SETUO), 8591 DAG.getConstantFP(*FPNaN, DL, VT), MinMax, Flags); 8592 } 8593 8594 // fminimum/fmaximum requires -0.0 less than +0.0 8595 if (!MinMaxMustRespectOrderedZero && !N->getFlags().hasNoSignedZeros() && 8596 !DAG.isKnownNeverZeroFloat(RHS) && !DAG.isKnownNeverZeroFloat(LHS)) { 8597 SDValue IsZero = DAG.getSetCC(DL, CCVT, MinMax, 8598 DAG.getConstantFP(0.0, DL, VT), ISD::SETOEQ); 8599 SDValue TestZero = 8600 DAG.getTargetConstant(IsMax ? fcPosZero : fcNegZero, DL, MVT::i32); 8601 SDValue LCmp = DAG.getSelect( 8602 DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, LHS, TestZero), LHS, 8603 MinMax, Flags); 8604 SDValue RCmp = DAG.getSelect( 8605 DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, RHS, TestZero), RHS, 8606 LCmp, Flags); 8607 MinMax = DAG.getSelect(DL, VT, IsZero, RCmp, MinMax, Flags); 8608 } 8609 8610 return MinMax; 8611 } 8612 8613 SDValue TargetLowering::expandFMINIMUMNUM_FMAXIMUMNUM(SDNode *Node, 8614 SelectionDAG &DAG) const { 8615 SDLoc DL(Node); 8616 SDValue LHS = Node->getOperand(0); 8617 SDValue RHS = Node->getOperand(1); 8618 unsigned Opc = Node->getOpcode(); 8619 EVT VT = Node->getValueType(0); 8620 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8621 bool IsMax = Opc == ISD::FMAXIMUMNUM; 8622 const TargetOptions &Options = DAG.getTarget().Options; 8623 SDNodeFlags Flags = Node->getFlags(); 8624 8625 unsigned NewOp = 8626 Opc == ISD::FMINIMUMNUM ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 8627 8628 if (isOperationLegalOrCustom(NewOp, VT)) { 8629 if (!Flags.hasNoNaNs()) { 8630 // Insert canonicalizes if it's possible we need to quiet to get correct 8631 // sNaN behavior. 8632 if (!DAG.isKnownNeverSNaN(LHS)) { 8633 LHS = DAG.getNode(ISD::FCANONICALIZE, DL, VT, LHS, Flags); 8634 } 8635 if (!DAG.isKnownNeverSNaN(RHS)) { 8636 RHS = DAG.getNode(ISD::FCANONICALIZE, DL, VT, RHS, Flags); 8637 } 8638 } 8639 8640 return DAG.getNode(NewOp, DL, VT, LHS, RHS, Flags); 8641 } 8642 8643 // We can use FMINIMUM/FMAXIMUM if there is no NaN, since it has 8644 // same behaviors for all of other cases: +0.0 vs -0.0 included. 8645 if (Flags.hasNoNaNs() || 8646 (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS))) { 8647 unsigned IEEE2019Op = 8648 Opc == ISD::FMINIMUMNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 8649 if (isOperationLegalOrCustom(IEEE2019Op, VT)) 8650 return DAG.getNode(IEEE2019Op, DL, VT, LHS, RHS, Flags); 8651 } 8652 8653 // FMINNUM/FMAXMUM returns qNaN if either operand is sNaN, and it may return 8654 // either one for +0.0 vs -0.0. 8655 if ((Flags.hasNoNaNs() || 8656 (DAG.isKnownNeverSNaN(LHS) && DAG.isKnownNeverSNaN(RHS))) && 8657 (Flags.hasNoSignedZeros() || DAG.isKnownNeverZeroFloat(LHS) || 8658 DAG.isKnownNeverZeroFloat(RHS))) { 8659 unsigned IEEE2008Op = Opc == ISD::FMINIMUMNUM ? ISD::FMINNUM : ISD::FMAXNUM; 8660 if (isOperationLegalOrCustom(IEEE2008Op, VT)) 8661 return DAG.getNode(IEEE2008Op, DL, VT, LHS, RHS, Flags); 8662 } 8663 8664 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8665 return DAG.UnrollVectorOp(Node); 8666 8667 // If only one operand is NaN, override it with another operand. 8668 if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(LHS)) { 8669 LHS = DAG.getSelectCC(DL, LHS, LHS, RHS, LHS, ISD::SETUO); 8670 } 8671 if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(RHS)) { 8672 RHS = DAG.getSelectCC(DL, RHS, RHS, LHS, RHS, ISD::SETUO); 8673 } 8674 8675 SDValue MinMax = 8676 DAG.getSelectCC(DL, LHS, RHS, LHS, RHS, IsMax ? ISD::SETGT : ISD::SETLT); 8677 // If MinMax is NaN, let's quiet it. 8678 if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(LHS) && 8679 !DAG.isKnownNeverNaN(RHS)) { 8680 MinMax = DAG.getNode(ISD::FCANONICALIZE, DL, VT, MinMax, Flags); 8681 } 8682 8683 // Fixup signed zero behavior. 8684 if (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros() || 8685 DAG.isKnownNeverZeroFloat(LHS) || DAG.isKnownNeverZeroFloat(RHS)) { 8686 return MinMax; 8687 } 8688 SDValue TestZero = 8689 DAG.getTargetConstant(IsMax ? fcPosZero : fcNegZero, DL, MVT::i32); 8690 SDValue IsZero = DAG.getSetCC(DL, CCVT, MinMax, 8691 DAG.getConstantFP(0.0, DL, VT), ISD::SETEQ); 8692 SDValue LCmp = DAG.getSelect( 8693 DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, LHS, TestZero), LHS, 8694 MinMax, Flags); 8695 SDValue RCmp = DAG.getSelect( 8696 DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, RHS, TestZero), RHS, LCmp, 8697 Flags); 8698 return DAG.getSelect(DL, VT, IsZero, RCmp, MinMax, Flags); 8699 } 8700 8701 /// Returns a true value if if this FPClassTest can be performed with an ordered 8702 /// fcmp to 0, and a false value if it's an unordered fcmp to 0. Returns 8703 /// std::nullopt if it cannot be performed as a compare with 0. 8704 static std::optional<bool> isFCmpEqualZero(FPClassTest Test, 8705 const fltSemantics &Semantics, 8706 const MachineFunction &MF) { 8707 FPClassTest OrderedMask = Test & ~fcNan; 8708 FPClassTest NanTest = Test & fcNan; 8709 bool IsOrdered = NanTest == fcNone; 8710 bool IsUnordered = NanTest == fcNan; 8711 8712 // Skip cases that are testing for only a qnan or snan. 8713 if (!IsOrdered && !IsUnordered) 8714 return std::nullopt; 8715 8716 if (OrderedMask == fcZero && 8717 MF.getDenormalMode(Semantics).Input == DenormalMode::IEEE) 8718 return IsOrdered; 8719 if (OrderedMask == (fcZero | fcSubnormal) && 8720 MF.getDenormalMode(Semantics).inputsAreZero()) 8721 return IsOrdered; 8722 return std::nullopt; 8723 } 8724 8725 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op, 8726 const FPClassTest OrigTestMask, 8727 SDNodeFlags Flags, const SDLoc &DL, 8728 SelectionDAG &DAG) const { 8729 EVT OperandVT = Op.getValueType(); 8730 assert(OperandVT.isFloatingPoint()); 8731 FPClassTest Test = OrigTestMask; 8732 8733 // Degenerated cases. 8734 if (Test == fcNone) 8735 return DAG.getBoolConstant(false, DL, ResultVT, OperandVT); 8736 if (Test == fcAllFlags) 8737 return DAG.getBoolConstant(true, DL, ResultVT, OperandVT); 8738 8739 // PPC double double is a pair of doubles, of which the higher part determines 8740 // the value class. 8741 if (OperandVT == MVT::ppcf128) { 8742 Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op, 8743 DAG.getConstant(1, DL, MVT::i32)); 8744 OperandVT = MVT::f64; 8745 } 8746 8747 // Floating-point type properties. 8748 EVT ScalarFloatVT = OperandVT.getScalarType(); 8749 const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext()); 8750 const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics(); 8751 bool IsF80 = (ScalarFloatVT == MVT::f80); 8752 8753 // Some checks can be implemented using float comparisons, if floating point 8754 // exceptions are ignored. 8755 if (Flags.hasNoFPExcept() && 8756 isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) { 8757 FPClassTest FPTestMask = Test; 8758 bool IsInvertedFP = false; 8759 8760 if (FPClassTest InvertedFPCheck = 8761 invertFPClassTestIfSimpler(FPTestMask, true)) { 8762 FPTestMask = InvertedFPCheck; 8763 IsInvertedFP = true; 8764 } 8765 8766 ISD::CondCode OrderedCmpOpcode = IsInvertedFP ? ISD::SETUNE : ISD::SETOEQ; 8767 ISD::CondCode UnorderedCmpOpcode = IsInvertedFP ? ISD::SETONE : ISD::SETUEQ; 8768 8769 // See if we can fold an | fcNan into an unordered compare. 8770 FPClassTest OrderedFPTestMask = FPTestMask & ~fcNan; 8771 8772 // Can't fold the ordered check if we're only testing for snan or qnan 8773 // individually. 8774 if ((FPTestMask & fcNan) != fcNan) 8775 OrderedFPTestMask = FPTestMask; 8776 8777 const bool IsOrdered = FPTestMask == OrderedFPTestMask; 8778 8779 if (std::optional<bool> IsCmp0 = 8780 isFCmpEqualZero(FPTestMask, Semantics, DAG.getMachineFunction()); 8781 IsCmp0 && (isCondCodeLegalOrCustom( 8782 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode, 8783 OperandVT.getScalarType().getSimpleVT()))) { 8784 8785 // If denormals could be implicitly treated as 0, this is not equivalent 8786 // to a compare with 0 since it will also be true for denormals. 8787 return DAG.getSetCC(DL, ResultVT, Op, 8788 DAG.getConstantFP(0.0, DL, OperandVT), 8789 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode); 8790 } 8791 8792 if (FPTestMask == fcNan && 8793 isCondCodeLegalOrCustom(IsInvertedFP ? ISD::SETO : ISD::SETUO, 8794 OperandVT.getScalarType().getSimpleVT())) 8795 return DAG.getSetCC(DL, ResultVT, Op, Op, 8796 IsInvertedFP ? ISD::SETO : ISD::SETUO); 8797 8798 bool IsOrderedInf = FPTestMask == fcInf; 8799 if ((FPTestMask == fcInf || FPTestMask == (fcInf | fcNan)) && 8800 isCondCodeLegalOrCustom(IsOrderedInf ? OrderedCmpOpcode 8801 : UnorderedCmpOpcode, 8802 OperandVT.getScalarType().getSimpleVT()) && 8803 isOperationLegalOrCustom(ISD::FABS, OperandVT.getScalarType()) && 8804 (isOperationLegal(ISD::ConstantFP, OperandVT.getScalarType()) || 8805 (OperandVT.isVector() && 8806 isOperationLegalOrCustom(ISD::BUILD_VECTOR, OperandVT)))) { 8807 // isinf(x) --> fabs(x) == inf 8808 SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op); 8809 SDValue Inf = 8810 DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT); 8811 return DAG.getSetCC(DL, ResultVT, Abs, Inf, 8812 IsOrderedInf ? OrderedCmpOpcode : UnorderedCmpOpcode); 8813 } 8814 8815 if ((OrderedFPTestMask == fcPosInf || OrderedFPTestMask == fcNegInf) && 8816 isCondCodeLegalOrCustom(IsOrdered ? OrderedCmpOpcode 8817 : UnorderedCmpOpcode, 8818 OperandVT.getSimpleVT())) { 8819 // isposinf(x) --> x == inf 8820 // isneginf(x) --> x == -inf 8821 // isposinf(x) || nan --> x u== inf 8822 // isneginf(x) || nan --> x u== -inf 8823 8824 SDValue Inf = DAG.getConstantFP( 8825 APFloat::getInf(Semantics, OrderedFPTestMask == fcNegInf), DL, 8826 OperandVT); 8827 return DAG.getSetCC(DL, ResultVT, Op, Inf, 8828 IsOrdered ? OrderedCmpOpcode : UnorderedCmpOpcode); 8829 } 8830 8831 if (OrderedFPTestMask == (fcSubnormal | fcZero) && !IsOrdered) { 8832 // TODO: Could handle ordered case, but it produces worse code for 8833 // x86. Maybe handle ordered if fabs is free? 8834 8835 ISD::CondCode OrderedOp = IsInvertedFP ? ISD::SETUGE : ISD::SETOLT; 8836 ISD::CondCode UnorderedOp = IsInvertedFP ? ISD::SETOGE : ISD::SETULT; 8837 8838 if (isCondCodeLegalOrCustom(IsOrdered ? OrderedOp : UnorderedOp, 8839 OperandVT.getScalarType().getSimpleVT())) { 8840 // (issubnormal(x) || iszero(x)) --> fabs(x) < smallest_normal 8841 8842 // TODO: Maybe only makes sense if fabs is free. Integer test of 8843 // exponent bits seems better for x86. 8844 SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op); 8845 SDValue SmallestNormal = DAG.getConstantFP( 8846 APFloat::getSmallestNormalized(Semantics), DL, OperandVT); 8847 return DAG.getSetCC(DL, ResultVT, Abs, SmallestNormal, 8848 IsOrdered ? OrderedOp : UnorderedOp); 8849 } 8850 } 8851 8852 if (FPTestMask == fcNormal) { 8853 // TODO: Handle unordered 8854 ISD::CondCode IsFiniteOp = IsInvertedFP ? ISD::SETUGE : ISD::SETOLT; 8855 ISD::CondCode IsNormalOp = IsInvertedFP ? ISD::SETOLT : ISD::SETUGE; 8856 8857 if (isCondCodeLegalOrCustom(IsFiniteOp, 8858 OperandVT.getScalarType().getSimpleVT()) && 8859 isCondCodeLegalOrCustom(IsNormalOp, 8860 OperandVT.getScalarType().getSimpleVT()) && 8861 isFAbsFree(OperandVT)) { 8862 // isnormal(x) --> fabs(x) < infinity && !(fabs(x) < smallest_normal) 8863 SDValue Inf = 8864 DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT); 8865 SDValue SmallestNormal = DAG.getConstantFP( 8866 APFloat::getSmallestNormalized(Semantics), DL, OperandVT); 8867 8868 SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op); 8869 SDValue IsFinite = DAG.getSetCC(DL, ResultVT, Abs, Inf, IsFiniteOp); 8870 SDValue IsNormal = 8871 DAG.getSetCC(DL, ResultVT, Abs, SmallestNormal, IsNormalOp); 8872 unsigned LogicOp = IsInvertedFP ? ISD::OR : ISD::AND; 8873 return DAG.getNode(LogicOp, DL, ResultVT, IsFinite, IsNormal); 8874 } 8875 } 8876 } 8877 8878 // Some checks may be represented as inversion of simpler check, for example 8879 // "inf|normal|subnormal|zero" => !"nan". 8880 bool IsInverted = false; 8881 8882 if (FPClassTest InvertedCheck = invertFPClassTestIfSimpler(Test, false)) { 8883 Test = InvertedCheck; 8884 IsInverted = true; 8885 } 8886 8887 // In the general case use integer operations. 8888 unsigned BitSize = OperandVT.getScalarSizeInBits(); 8889 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize); 8890 if (OperandVT.isVector()) 8891 IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT, 8892 OperandVT.getVectorElementCount()); 8893 SDValue OpAsInt = DAG.getBitcast(IntVT, Op); 8894 8895 // Various masks. 8896 APInt SignBit = APInt::getSignMask(BitSize); 8897 APInt ValueMask = APInt::getSignedMaxValue(BitSize); // All bits but sign. 8898 APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit. 8899 const unsigned ExplicitIntBitInF80 = 63; 8900 APInt ExpMask = Inf; 8901 if (IsF80) 8902 ExpMask.clearBit(ExplicitIntBitInF80); 8903 APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf; 8904 APInt QNaNBitMask = 8905 APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1); 8906 APInt InvertionMask = APInt::getAllOnes(ResultVT.getScalarSizeInBits()); 8907 8908 SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT); 8909 SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT); 8910 SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT); 8911 SDValue ZeroV = DAG.getConstant(0, DL, IntVT); 8912 SDValue InfV = DAG.getConstant(Inf, DL, IntVT); 8913 SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT); 8914 8915 SDValue Res; 8916 const auto appendResult = [&](SDValue PartialRes) { 8917 if (PartialRes) { 8918 if (Res) 8919 Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes); 8920 else 8921 Res = PartialRes; 8922 } 8923 }; 8924 8925 SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set. 8926 const auto getIntBitIsSet = [&]() -> SDValue { 8927 if (!IntBitIsSetV) { 8928 APInt IntBitMask(BitSize, 0); 8929 IntBitMask.setBit(ExplicitIntBitInF80); 8930 SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT); 8931 SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV); 8932 IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE); 8933 } 8934 return IntBitIsSetV; 8935 }; 8936 8937 // Split the value into sign bit and absolute value. 8938 SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV); 8939 SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt, 8940 DAG.getConstant(0, DL, IntVT), ISD::SETLT); 8941 8942 // Tests that involve more than one class should be processed first. 8943 SDValue PartialRes; 8944 8945 if (IsF80) 8946 ; // Detect finite numbers of f80 by checking individual classes because 8947 // they have different settings of the explicit integer bit. 8948 else if ((Test & fcFinite) == fcFinite) { 8949 // finite(V) ==> abs(V) < exp_mask 8950 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 8951 Test &= ~fcFinite; 8952 } else if ((Test & fcFinite) == fcPosFinite) { 8953 // finite(V) && V > 0 ==> V < exp_mask 8954 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT); 8955 Test &= ~fcPosFinite; 8956 } else if ((Test & fcFinite) == fcNegFinite) { 8957 // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1 8958 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 8959 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 8960 Test &= ~fcNegFinite; 8961 } 8962 appendResult(PartialRes); 8963 8964 if (FPClassTest PartialCheck = Test & (fcZero | fcSubnormal)) { 8965 // fcZero | fcSubnormal => test all exponent bits are 0 8966 // TODO: Handle sign bit specific cases 8967 if (PartialCheck == (fcZero | fcSubnormal)) { 8968 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ExpMaskV); 8969 SDValue ExpIsZero = 8970 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ); 8971 appendResult(ExpIsZero); 8972 Test &= ~PartialCheck & fcAllFlags; 8973 } 8974 } 8975 8976 // Check for individual classes. 8977 8978 if (unsigned PartialCheck = Test & fcZero) { 8979 if (PartialCheck == fcPosZero) 8980 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ); 8981 else if (PartialCheck == fcZero) 8982 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ); 8983 else // ISD::fcNegZero 8984 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ); 8985 appendResult(PartialRes); 8986 } 8987 8988 if (unsigned PartialCheck = Test & fcSubnormal) { 8989 // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set) 8990 // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set) 8991 SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV; 8992 SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT); 8993 SDValue VMinusOneV = 8994 DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT)); 8995 PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT); 8996 if (PartialCheck == fcNegSubnormal) 8997 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 8998 appendResult(PartialRes); 8999 } 9000 9001 if (unsigned PartialCheck = Test & fcInf) { 9002 if (PartialCheck == fcPosInf) 9003 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ); 9004 else if (PartialCheck == fcInf) 9005 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ); 9006 else { // ISD::fcNegInf 9007 APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt(); 9008 SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT); 9009 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ); 9010 } 9011 appendResult(PartialRes); 9012 } 9013 9014 if (unsigned PartialCheck = Test & fcNan) { 9015 APInt InfWithQnanBit = Inf | QNaNBitMask; 9016 SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT); 9017 if (PartialCheck == fcNan) { 9018 // isnan(V) ==> abs(V) > int(inf) 9019 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 9020 if (IsF80) { 9021 // Recognize unsupported values as NaNs for compatibility with glibc. 9022 // In them (exp(V)==0) == int_bit. 9023 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV); 9024 SDValue ExpIsZero = 9025 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ); 9026 SDValue IsPseudo = 9027 DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ); 9028 PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo); 9029 } 9030 } else if (PartialCheck == fcQNan) { 9031 // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit) 9032 PartialRes = 9033 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE); 9034 } else { // ISD::fcSNan 9035 // issignaling(V) ==> abs(V) > unsigned(Inf) && 9036 // abs(V) < (unsigned(Inf) | quiet_bit) 9037 SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 9038 SDValue IsNotQnan = 9039 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT); 9040 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan); 9041 } 9042 appendResult(PartialRes); 9043 } 9044 9045 if (unsigned PartialCheck = Test & fcNormal) { 9046 // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1)) 9047 APInt ExpLSB = ExpMask & ~(ExpMask.shl(1)); 9048 SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT); 9049 SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV); 9050 APInt ExpLimit = ExpMask - ExpLSB; 9051 SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT); 9052 PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT); 9053 if (PartialCheck == fcNegNormal) 9054 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 9055 else if (PartialCheck == fcPosNormal) { 9056 SDValue PosSignV = 9057 DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask); 9058 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV); 9059 } 9060 if (IsF80) 9061 PartialRes = 9062 DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet()); 9063 appendResult(PartialRes); 9064 } 9065 9066 if (!Res) 9067 return DAG.getConstant(IsInverted, DL, ResultVT); 9068 if (IsInverted) 9069 Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask); 9070 return Res; 9071 } 9072 9073 // Only expand vector types if we have the appropriate vector bit operations. 9074 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 9075 assert(VT.isVector() && "Expected vector type"); 9076 unsigned Len = VT.getScalarSizeInBits(); 9077 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 9078 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 9079 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 9080 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 9081 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 9082 } 9083 9084 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 9085 SDLoc dl(Node); 9086 EVT VT = Node->getValueType(0); 9087 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9088 SDValue Op = Node->getOperand(0); 9089 unsigned Len = VT.getScalarSizeInBits(); 9090 assert(VT.isInteger() && "CTPOP not implemented for this type."); 9091 9092 // TODO: Add support for irregular type lengths. 9093 if (!(Len <= 128 && Len % 8 == 0)) 9094 return SDValue(); 9095 9096 // Only expand vector types if we have the appropriate vector bit operations. 9097 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 9098 return SDValue(); 9099 9100 // This is the "best" algorithm from 9101 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 9102 SDValue Mask55 = 9103 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 9104 SDValue Mask33 = 9105 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 9106 SDValue Mask0F = 9107 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 9108 9109 // v = v - ((v >> 1) & 0x55555555...) 9110 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 9111 DAG.getNode(ISD::AND, dl, VT, 9112 DAG.getNode(ISD::SRL, dl, VT, Op, 9113 DAG.getConstant(1, dl, ShVT)), 9114 Mask55)); 9115 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 9116 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 9117 DAG.getNode(ISD::AND, dl, VT, 9118 DAG.getNode(ISD::SRL, dl, VT, Op, 9119 DAG.getConstant(2, dl, ShVT)), 9120 Mask33)); 9121 // v = (v + (v >> 4)) & 0x0F0F0F0F... 9122 Op = DAG.getNode(ISD::AND, dl, VT, 9123 DAG.getNode(ISD::ADD, dl, VT, Op, 9124 DAG.getNode(ISD::SRL, dl, VT, Op, 9125 DAG.getConstant(4, dl, ShVT))), 9126 Mask0F); 9127 9128 if (Len <= 8) 9129 return Op; 9130 9131 // Avoid the multiply if we only have 2 bytes to add. 9132 // TODO: Only doing this for scalars because vectors weren't as obviously 9133 // improved. 9134 if (Len == 16 && !VT.isVector()) { 9135 // v = (v + (v >> 8)) & 0x00FF; 9136 return DAG.getNode(ISD::AND, dl, VT, 9137 DAG.getNode(ISD::ADD, dl, VT, Op, 9138 DAG.getNode(ISD::SRL, dl, VT, Op, 9139 DAG.getConstant(8, dl, ShVT))), 9140 DAG.getConstant(0xFF, dl, VT)); 9141 } 9142 9143 // v = (v * 0x01010101...) >> (Len - 8) 9144 SDValue V; 9145 if (isOperationLegalOrCustomOrPromote( 9146 ISD::MUL, getTypeToTransformTo(*DAG.getContext(), VT))) { 9147 SDValue Mask01 = 9148 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 9149 V = DAG.getNode(ISD::MUL, dl, VT, Op, Mask01); 9150 } else { 9151 V = Op; 9152 for (unsigned Shift = 8; Shift < Len; Shift *= 2) { 9153 SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl); 9154 V = DAG.getNode(ISD::ADD, dl, VT, V, 9155 DAG.getNode(ISD::SHL, dl, VT, V, ShiftC)); 9156 } 9157 } 9158 return DAG.getNode(ISD::SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT)); 9159 } 9160 9161 SDValue TargetLowering::expandVPCTPOP(SDNode *Node, SelectionDAG &DAG) const { 9162 SDLoc dl(Node); 9163 EVT VT = Node->getValueType(0); 9164 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9165 SDValue Op = Node->getOperand(0); 9166 SDValue Mask = Node->getOperand(1); 9167 SDValue VL = Node->getOperand(2); 9168 unsigned Len = VT.getScalarSizeInBits(); 9169 assert(VT.isInteger() && "VP_CTPOP not implemented for this type."); 9170 9171 // TODO: Add support for irregular type lengths. 9172 if (!(Len <= 128 && Len % 8 == 0)) 9173 return SDValue(); 9174 9175 // This is same algorithm of expandCTPOP from 9176 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 9177 SDValue Mask55 = 9178 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 9179 SDValue Mask33 = 9180 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 9181 SDValue Mask0F = 9182 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 9183 9184 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5; 9185 9186 // v = v - ((v >> 1) & 0x55555555...) 9187 Tmp1 = DAG.getNode(ISD::VP_AND, dl, VT, 9188 DAG.getNode(ISD::VP_SRL, dl, VT, Op, 9189 DAG.getConstant(1, dl, ShVT), Mask, VL), 9190 Mask55, Mask, VL); 9191 Op = DAG.getNode(ISD::VP_SUB, dl, VT, Op, Tmp1, Mask, VL); 9192 9193 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 9194 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Op, Mask33, Mask, VL); 9195 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, 9196 DAG.getNode(ISD::VP_SRL, dl, VT, Op, 9197 DAG.getConstant(2, dl, ShVT), Mask, VL), 9198 Mask33, Mask, VL); 9199 Op = DAG.getNode(ISD::VP_ADD, dl, VT, Tmp2, Tmp3, Mask, VL); 9200 9201 // v = (v + (v >> 4)) & 0x0F0F0F0F... 9202 Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(4, dl, ShVT), 9203 Mask, VL), 9204 Tmp5 = DAG.getNode(ISD::VP_ADD, dl, VT, Op, Tmp4, Mask, VL); 9205 Op = DAG.getNode(ISD::VP_AND, dl, VT, Tmp5, Mask0F, Mask, VL); 9206 9207 if (Len <= 8) 9208 return Op; 9209 9210 // v = (v * 0x01010101...) >> (Len - 8) 9211 SDValue V; 9212 if (isOperationLegalOrCustomOrPromote( 9213 ISD::VP_MUL, getTypeToTransformTo(*DAG.getContext(), VT))) { 9214 SDValue Mask01 = 9215 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 9216 V = DAG.getNode(ISD::VP_MUL, dl, VT, Op, Mask01, Mask, VL); 9217 } else { 9218 V = Op; 9219 for (unsigned Shift = 8; Shift < Len; Shift *= 2) { 9220 SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl); 9221 V = DAG.getNode(ISD::VP_ADD, dl, VT, V, 9222 DAG.getNode(ISD::VP_SHL, dl, VT, V, ShiftC, Mask, VL), 9223 Mask, VL); 9224 } 9225 } 9226 return DAG.getNode(ISD::VP_SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT), 9227 Mask, VL); 9228 } 9229 9230 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 9231 SDLoc dl(Node); 9232 EVT VT = Node->getValueType(0); 9233 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9234 SDValue Op = Node->getOperand(0); 9235 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 9236 9237 // If the non-ZERO_UNDEF version is supported we can use that instead. 9238 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 9239 isOperationLegalOrCustom(ISD::CTLZ, VT)) 9240 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 9241 9242 // If the ZERO_UNDEF version is supported use that and handle the zero case. 9243 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 9244 EVT SetCCVT = 9245 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9246 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 9247 SDValue Zero = DAG.getConstant(0, dl, VT); 9248 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 9249 return DAG.getSelect(dl, VT, SrcIsZero, 9250 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 9251 } 9252 9253 // Only expand vector types if we have the appropriate vector bit operations. 9254 // This includes the operations needed to expand CTPOP if it isn't supported. 9255 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 9256 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 9257 !canExpandVectorCTPOP(*this, VT)) || 9258 !isOperationLegalOrCustom(ISD::SRL, VT) || 9259 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 9260 return SDValue(); 9261 9262 // for now, we do this: 9263 // x = x | (x >> 1); 9264 // x = x | (x >> 2); 9265 // ... 9266 // x = x | (x >>16); 9267 // x = x | (x >>32); // for 64-bit input 9268 // return popcount(~x); 9269 // 9270 // Ref: "Hacker's Delight" by Henry Warren 9271 for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) { 9272 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 9273 Op = DAG.getNode(ISD::OR, dl, VT, Op, 9274 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 9275 } 9276 Op = DAG.getNOT(dl, Op, VT); 9277 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 9278 } 9279 9280 SDValue TargetLowering::expandVPCTLZ(SDNode *Node, SelectionDAG &DAG) const { 9281 SDLoc dl(Node); 9282 EVT VT = Node->getValueType(0); 9283 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9284 SDValue Op = Node->getOperand(0); 9285 SDValue Mask = Node->getOperand(1); 9286 SDValue VL = Node->getOperand(2); 9287 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 9288 9289 // do this: 9290 // x = x | (x >> 1); 9291 // x = x | (x >> 2); 9292 // ... 9293 // x = x | (x >>16); 9294 // x = x | (x >>32); // for 64-bit input 9295 // return popcount(~x); 9296 for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) { 9297 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 9298 Op = DAG.getNode(ISD::VP_OR, dl, VT, Op, 9299 DAG.getNode(ISD::VP_SRL, dl, VT, Op, Tmp, Mask, VL), Mask, 9300 VL); 9301 } 9302 Op = DAG.getNode(ISD::VP_XOR, dl, VT, Op, DAG.getAllOnesConstant(dl, VT), 9303 Mask, VL); 9304 return DAG.getNode(ISD::VP_CTPOP, dl, VT, Op, Mask, VL); 9305 } 9306 9307 SDValue TargetLowering::CTTZTableLookup(SDNode *Node, SelectionDAG &DAG, 9308 const SDLoc &DL, EVT VT, SDValue Op, 9309 unsigned BitWidth) const { 9310 if (BitWidth != 32 && BitWidth != 64) 9311 return SDValue(); 9312 APInt DeBruijn = BitWidth == 32 ? APInt(32, 0x077CB531U) 9313 : APInt(64, 0x0218A392CD3D5DBFULL); 9314 const DataLayout &TD = DAG.getDataLayout(); 9315 MachinePointerInfo PtrInfo = 9316 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()); 9317 unsigned ShiftAmt = BitWidth - Log2_32(BitWidth); 9318 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 9319 SDValue Lookup = DAG.getNode( 9320 ISD::SRL, DL, VT, 9321 DAG.getNode(ISD::MUL, DL, VT, DAG.getNode(ISD::AND, DL, VT, Op, Neg), 9322 DAG.getConstant(DeBruijn, DL, VT)), 9323 DAG.getConstant(ShiftAmt, DL, VT)); 9324 Lookup = DAG.getSExtOrTrunc(Lookup, DL, getPointerTy(TD)); 9325 9326 SmallVector<uint8_t> Table(BitWidth, 0); 9327 for (unsigned i = 0; i < BitWidth; i++) { 9328 APInt Shl = DeBruijn.shl(i); 9329 APInt Lshr = Shl.lshr(ShiftAmt); 9330 Table[Lshr.getZExtValue()] = i; 9331 } 9332 9333 // Create a ConstantArray in Constant Pool 9334 auto *CA = ConstantDataArray::get(*DAG.getContext(), Table); 9335 SDValue CPIdx = DAG.getConstantPool(CA, getPointerTy(TD), 9336 TD.getPrefTypeAlign(CA->getType())); 9337 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, VT, DAG.getEntryNode(), 9338 DAG.getMemBasePlusOffset(CPIdx, Lookup, DL), 9339 PtrInfo, MVT::i8); 9340 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) 9341 return ExtLoad; 9342 9343 EVT SetCCVT = 9344 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9345 SDValue Zero = DAG.getConstant(0, DL, VT); 9346 SDValue SrcIsZero = DAG.getSetCC(DL, SetCCVT, Op, Zero, ISD::SETEQ); 9347 return DAG.getSelect(DL, VT, SrcIsZero, 9348 DAG.getConstant(BitWidth, DL, VT), ExtLoad); 9349 } 9350 9351 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 9352 SDLoc dl(Node); 9353 EVT VT = Node->getValueType(0); 9354 SDValue Op = Node->getOperand(0); 9355 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 9356 9357 // If the non-ZERO_UNDEF version is supported we can use that instead. 9358 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 9359 isOperationLegalOrCustom(ISD::CTTZ, VT)) 9360 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 9361 9362 // If the ZERO_UNDEF version is supported use that and handle the zero case. 9363 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 9364 EVT SetCCVT = 9365 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9366 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 9367 SDValue Zero = DAG.getConstant(0, dl, VT); 9368 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 9369 return DAG.getSelect(dl, VT, SrcIsZero, 9370 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 9371 } 9372 9373 // Only expand vector types if we have the appropriate vector bit operations. 9374 // This includes the operations needed to expand CTPOP if it isn't supported. 9375 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 9376 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 9377 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 9378 !canExpandVectorCTPOP(*this, VT)) || 9379 !isOperationLegalOrCustom(ISD::SUB, VT) || 9380 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 9381 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 9382 return SDValue(); 9383 9384 // Emit Table Lookup if ISD::CTLZ and ISD::CTPOP are not legal. 9385 if (!VT.isVector() && isOperationExpand(ISD::CTPOP, VT) && 9386 !isOperationLegal(ISD::CTLZ, VT)) 9387 if (SDValue V = CTTZTableLookup(Node, DAG, dl, VT, Op, NumBitsPerElt)) 9388 return V; 9389 9390 // for now, we use: { return popcount(~x & (x - 1)); } 9391 // unless the target has ctlz but not ctpop, in which case we use: 9392 // { return 32 - nlz(~x & (x-1)); } 9393 // Ref: "Hacker's Delight" by Henry Warren 9394 SDValue Tmp = DAG.getNode( 9395 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 9396 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 9397 9398 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 9399 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 9400 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 9401 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 9402 } 9403 9404 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 9405 } 9406 9407 SDValue TargetLowering::expandVPCTTZ(SDNode *Node, SelectionDAG &DAG) const { 9408 SDValue Op = Node->getOperand(0); 9409 SDValue Mask = Node->getOperand(1); 9410 SDValue VL = Node->getOperand(2); 9411 SDLoc dl(Node); 9412 EVT VT = Node->getValueType(0); 9413 9414 // Same as the vector part of expandCTTZ, use: popcount(~x & (x - 1)) 9415 SDValue Not = DAG.getNode(ISD::VP_XOR, dl, VT, Op, 9416 DAG.getAllOnesConstant(dl, VT), Mask, VL); 9417 SDValue MinusOne = DAG.getNode(ISD::VP_SUB, dl, VT, Op, 9418 DAG.getConstant(1, dl, VT), Mask, VL); 9419 SDValue Tmp = DAG.getNode(ISD::VP_AND, dl, VT, Not, MinusOne, Mask, VL); 9420 return DAG.getNode(ISD::VP_CTPOP, dl, VT, Tmp, Mask, VL); 9421 } 9422 9423 SDValue TargetLowering::expandVPCTTZElements(SDNode *N, 9424 SelectionDAG &DAG) const { 9425 // %cond = to_bool_vec %source 9426 // %splat = splat /*val=*/VL 9427 // %tz = step_vector 9428 // %v = vp.select %cond, /*true=*/tz, /*false=*/%splat 9429 // %r = vp.reduce.umin %v 9430 SDLoc DL(N); 9431 SDValue Source = N->getOperand(0); 9432 SDValue Mask = N->getOperand(1); 9433 SDValue EVL = N->getOperand(2); 9434 EVT SrcVT = Source.getValueType(); 9435 EVT ResVT = N->getValueType(0); 9436 EVT ResVecVT = 9437 EVT::getVectorVT(*DAG.getContext(), ResVT, SrcVT.getVectorElementCount()); 9438 9439 // Convert to boolean vector. 9440 if (SrcVT.getScalarType() != MVT::i1) { 9441 SDValue AllZero = DAG.getConstant(0, DL, SrcVT); 9442 SrcVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 9443 SrcVT.getVectorElementCount()); 9444 Source = DAG.getNode(ISD::VP_SETCC, DL, SrcVT, Source, AllZero, 9445 DAG.getCondCode(ISD::SETNE), Mask, EVL); 9446 } 9447 9448 SDValue ExtEVL = DAG.getZExtOrTrunc(EVL, DL, ResVT); 9449 SDValue Splat = DAG.getSplat(ResVecVT, DL, ExtEVL); 9450 SDValue StepVec = DAG.getStepVector(DL, ResVecVT); 9451 SDValue Select = 9452 DAG.getNode(ISD::VP_SELECT, DL, ResVecVT, Source, StepVec, Splat, EVL); 9453 return DAG.getNode(ISD::VP_REDUCE_UMIN, DL, ResVT, ExtEVL, Select, Mask, EVL); 9454 } 9455 9456 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 9457 bool IsNegative) const { 9458 SDLoc dl(N); 9459 EVT VT = N->getValueType(0); 9460 SDValue Op = N->getOperand(0); 9461 9462 // abs(x) -> smax(x,sub(0,x)) 9463 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 9464 isOperationLegal(ISD::SMAX, VT)) { 9465 SDValue Zero = DAG.getConstant(0, dl, VT); 9466 Op = DAG.getFreeze(Op); 9467 return DAG.getNode(ISD::SMAX, dl, VT, Op, 9468 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 9469 } 9470 9471 // abs(x) -> umin(x,sub(0,x)) 9472 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 9473 isOperationLegal(ISD::UMIN, VT)) { 9474 SDValue Zero = DAG.getConstant(0, dl, VT); 9475 Op = DAG.getFreeze(Op); 9476 return DAG.getNode(ISD::UMIN, dl, VT, Op, 9477 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 9478 } 9479 9480 // 0 - abs(x) -> smin(x, sub(0,x)) 9481 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 9482 isOperationLegal(ISD::SMIN, VT)) { 9483 SDValue Zero = DAG.getConstant(0, dl, VT); 9484 Op = DAG.getFreeze(Op); 9485 return DAG.getNode(ISD::SMIN, dl, VT, Op, 9486 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 9487 } 9488 9489 // Only expand vector types if we have the appropriate vector operations. 9490 if (VT.isVector() && 9491 (!isOperationLegalOrCustom(ISD::SRA, VT) || 9492 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 9493 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 9494 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 9495 return SDValue(); 9496 9497 Op = DAG.getFreeze(Op); 9498 SDValue Shift = DAG.getNode( 9499 ISD::SRA, dl, VT, Op, 9500 DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, dl)); 9501 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 9502 9503 // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y) 9504 if (!IsNegative) 9505 return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift); 9506 9507 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 9508 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 9509 } 9510 9511 SDValue TargetLowering::expandABD(SDNode *N, SelectionDAG &DAG) const { 9512 SDLoc dl(N); 9513 EVT VT = N->getValueType(0); 9514 SDValue LHS = DAG.getFreeze(N->getOperand(0)); 9515 SDValue RHS = DAG.getFreeze(N->getOperand(1)); 9516 bool IsSigned = N->getOpcode() == ISD::ABDS; 9517 9518 // abds(lhs, rhs) -> sub(smax(lhs,rhs), smin(lhs,rhs)) 9519 // abdu(lhs, rhs) -> sub(umax(lhs,rhs), umin(lhs,rhs)) 9520 unsigned MaxOpc = IsSigned ? ISD::SMAX : ISD::UMAX; 9521 unsigned MinOpc = IsSigned ? ISD::SMIN : ISD::UMIN; 9522 if (isOperationLegal(MaxOpc, VT) && isOperationLegal(MinOpc, VT)) { 9523 SDValue Max = DAG.getNode(MaxOpc, dl, VT, LHS, RHS); 9524 SDValue Min = DAG.getNode(MinOpc, dl, VT, LHS, RHS); 9525 return DAG.getNode(ISD::SUB, dl, VT, Max, Min); 9526 } 9527 9528 // abdu(lhs, rhs) -> or(usubsat(lhs,rhs), usubsat(rhs,lhs)) 9529 if (!IsSigned && isOperationLegal(ISD::USUBSAT, VT)) 9530 return DAG.getNode(ISD::OR, dl, VT, 9531 DAG.getNode(ISD::USUBSAT, dl, VT, LHS, RHS), 9532 DAG.getNode(ISD::USUBSAT, dl, VT, RHS, LHS)); 9533 9534 // If the subtract doesn't overflow then just use abs(sub()) 9535 // NOTE: don't use frozen operands for value tracking. 9536 bool IsNonNegative = DAG.SignBitIsZero(N->getOperand(1)) && 9537 DAG.SignBitIsZero(N->getOperand(0)); 9538 9539 if (DAG.willNotOverflowSub(IsSigned || IsNonNegative, N->getOperand(0), 9540 N->getOperand(1))) 9541 return DAG.getNode(ISD::ABS, dl, VT, 9542 DAG.getNode(ISD::SUB, dl, VT, LHS, RHS)); 9543 9544 if (DAG.willNotOverflowSub(IsSigned || IsNonNegative, N->getOperand(1), 9545 N->getOperand(0))) 9546 return DAG.getNode(ISD::ABS, dl, VT, 9547 DAG.getNode(ISD::SUB, dl, VT, RHS, LHS)); 9548 9549 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9550 ISD::CondCode CC = IsSigned ? ISD::CondCode::SETGT : ISD::CondCode::SETUGT; 9551 SDValue Cmp = DAG.getSetCC(dl, CCVT, LHS, RHS, CC); 9552 9553 // Branchless expansion iff cmp result is allbits: 9554 // abds(lhs, rhs) -> sub(sgt(lhs, rhs), xor(sgt(lhs, rhs), sub(lhs, rhs))) 9555 // abdu(lhs, rhs) -> sub(ugt(lhs, rhs), xor(ugt(lhs, rhs), sub(lhs, rhs))) 9556 if (CCVT == VT && getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 9557 SDValue Diff = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS); 9558 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Diff, Cmp); 9559 return DAG.getNode(ISD::SUB, dl, VT, Cmp, Xor); 9560 } 9561 9562 // Similar to the branchless expansion, use the (sign-extended) usubo overflow 9563 // flag if the (scalar) type is illegal as this is more likely to legalize 9564 // cleanly: 9565 // abdu(lhs, rhs) -> sub(xor(sub(lhs, rhs), uof(lhs, rhs)), uof(lhs, rhs)) 9566 if (!IsSigned && VT.isScalarInteger() && !isTypeLegal(VT)) { 9567 SDValue USubO = 9568 DAG.getNode(ISD::USUBO, dl, DAG.getVTList(VT, MVT::i1), {LHS, RHS}); 9569 SDValue Cmp = DAG.getNode(ISD::SIGN_EXTEND, dl, VT, USubO.getValue(1)); 9570 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, USubO.getValue(0), Cmp); 9571 return DAG.getNode(ISD::SUB, dl, VT, Xor, Cmp); 9572 } 9573 9574 // FIXME: Should really try to split the vector in case it's legal on a 9575 // subvector. 9576 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 9577 return DAG.UnrollVectorOp(N); 9578 9579 // abds(lhs, rhs) -> select(sgt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs)) 9580 // abdu(lhs, rhs) -> select(ugt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs)) 9581 return DAG.getSelect(dl, VT, Cmp, DAG.getNode(ISD::SUB, dl, VT, LHS, RHS), 9582 DAG.getNode(ISD::SUB, dl, VT, RHS, LHS)); 9583 } 9584 9585 SDValue TargetLowering::expandAVG(SDNode *N, SelectionDAG &DAG) const { 9586 SDLoc dl(N); 9587 EVT VT = N->getValueType(0); 9588 SDValue LHS = N->getOperand(0); 9589 SDValue RHS = N->getOperand(1); 9590 9591 unsigned Opc = N->getOpcode(); 9592 bool IsFloor = Opc == ISD::AVGFLOORS || Opc == ISD::AVGFLOORU; 9593 bool IsSigned = Opc == ISD::AVGCEILS || Opc == ISD::AVGFLOORS; 9594 unsigned SumOpc = IsFloor ? ISD::ADD : ISD::SUB; 9595 unsigned SignOpc = IsFloor ? ISD::AND : ISD::OR; 9596 unsigned ShiftOpc = IsSigned ? ISD::SRA : ISD::SRL; 9597 unsigned ExtOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 9598 assert((Opc == ISD::AVGFLOORS || Opc == ISD::AVGCEILS || 9599 Opc == ISD::AVGFLOORU || Opc == ISD::AVGCEILU) && 9600 "Unknown AVG node"); 9601 9602 // If the operands are already extended, we can add+shift. 9603 bool IsExt = 9604 (IsSigned && DAG.ComputeNumSignBits(LHS) >= 2 && 9605 DAG.ComputeNumSignBits(RHS) >= 2) || 9606 (!IsSigned && DAG.computeKnownBits(LHS).countMinLeadingZeros() >= 1 && 9607 DAG.computeKnownBits(RHS).countMinLeadingZeros() >= 1); 9608 if (IsExt) { 9609 SDValue Sum = DAG.getNode(ISD::ADD, dl, VT, LHS, RHS); 9610 if (!IsFloor) 9611 Sum = DAG.getNode(ISD::ADD, dl, VT, Sum, DAG.getConstant(1, dl, VT)); 9612 return DAG.getNode(ShiftOpc, dl, VT, Sum, 9613 DAG.getShiftAmountConstant(1, VT, dl)); 9614 } 9615 9616 // For scalars, see if we can efficiently extend/truncate to use add+shift. 9617 if (VT.isScalarInteger()) { 9618 unsigned BW = VT.getScalarSizeInBits(); 9619 EVT ExtVT = VT.getIntegerVT(*DAG.getContext(), 2 * BW); 9620 if (isTypeLegal(ExtVT) && isTruncateFree(ExtVT, VT)) { 9621 LHS = DAG.getNode(ExtOpc, dl, ExtVT, LHS); 9622 RHS = DAG.getNode(ExtOpc, dl, ExtVT, RHS); 9623 SDValue Avg = DAG.getNode(ISD::ADD, dl, ExtVT, LHS, RHS); 9624 if (!IsFloor) 9625 Avg = DAG.getNode(ISD::ADD, dl, ExtVT, Avg, 9626 DAG.getConstant(1, dl, ExtVT)); 9627 // Just use SRL as we will be truncating away the extended sign bits. 9628 Avg = DAG.getNode(ISD::SRL, dl, ExtVT, Avg, 9629 DAG.getShiftAmountConstant(1, ExtVT, dl)); 9630 return DAG.getNode(ISD::TRUNCATE, dl, VT, Avg); 9631 } 9632 } 9633 9634 // avgflooru(lhs, rhs) -> or(lshr(add(lhs, rhs),1),shl(overflow, typesize-1)) 9635 if (Opc == ISD::AVGFLOORU && VT.isScalarInteger() && !isTypeLegal(VT)) { 9636 SDValue UAddWithOverflow = 9637 DAG.getNode(ISD::UADDO, dl, DAG.getVTList(VT, MVT::i1), {RHS, LHS}); 9638 9639 SDValue Sum = UAddWithOverflow.getValue(0); 9640 SDValue Overflow = UAddWithOverflow.getValue(1); 9641 9642 // Right shift the sum by 1 9643 SDValue LShrVal = DAG.getNode(ISD::SRL, dl, VT, Sum, 9644 DAG.getShiftAmountConstant(1, VT, dl)); 9645 9646 SDValue ZeroExtOverflow = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Overflow); 9647 SDValue OverflowShl = DAG.getNode( 9648 ISD::SHL, dl, VT, ZeroExtOverflow, 9649 DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, dl)); 9650 9651 return DAG.getNode(ISD::OR, dl, VT, LShrVal, OverflowShl); 9652 } 9653 9654 // avgceils(lhs, rhs) -> sub(or(lhs,rhs),ashr(xor(lhs,rhs),1)) 9655 // avgceilu(lhs, rhs) -> sub(or(lhs,rhs),lshr(xor(lhs,rhs),1)) 9656 // avgfloors(lhs, rhs) -> add(and(lhs,rhs),ashr(xor(lhs,rhs),1)) 9657 // avgflooru(lhs, rhs) -> add(and(lhs,rhs),lshr(xor(lhs,rhs),1)) 9658 LHS = DAG.getFreeze(LHS); 9659 RHS = DAG.getFreeze(RHS); 9660 SDValue Sign = DAG.getNode(SignOpc, dl, VT, LHS, RHS); 9661 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 9662 SDValue Shift = 9663 DAG.getNode(ShiftOpc, dl, VT, Xor, DAG.getShiftAmountConstant(1, VT, dl)); 9664 return DAG.getNode(SumOpc, dl, VT, Sign, Shift); 9665 } 9666 9667 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 9668 SDLoc dl(N); 9669 EVT VT = N->getValueType(0); 9670 SDValue Op = N->getOperand(0); 9671 9672 if (!VT.isSimple()) 9673 return SDValue(); 9674 9675 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9676 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 9677 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 9678 default: 9679 return SDValue(); 9680 case MVT::i16: 9681 // Use a rotate by 8. This can be further expanded if necessary. 9682 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 9683 case MVT::i32: 9684 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 9685 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Op, 9686 DAG.getConstant(0xFF00, dl, VT)); 9687 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT)); 9688 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 9689 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 9690 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 9691 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 9692 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 9693 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 9694 case MVT::i64: 9695 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 9696 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Op, 9697 DAG.getConstant(255ULL<<8, dl, VT)); 9698 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT)); 9699 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Op, 9700 DAG.getConstant(255ULL<<16, dl, VT)); 9701 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT)); 9702 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Op, 9703 DAG.getConstant(255ULL<<24, dl, VT)); 9704 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT)); 9705 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 9706 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 9707 DAG.getConstant(255ULL<<24, dl, VT)); 9708 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 9709 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 9710 DAG.getConstant(255ULL<<16, dl, VT)); 9711 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 9712 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 9713 DAG.getConstant(255ULL<<8, dl, VT)); 9714 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 9715 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 9716 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 9717 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 9718 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 9719 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 9720 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 9721 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 9722 } 9723 } 9724 9725 SDValue TargetLowering::expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const { 9726 SDLoc dl(N); 9727 EVT VT = N->getValueType(0); 9728 SDValue Op = N->getOperand(0); 9729 SDValue Mask = N->getOperand(1); 9730 SDValue EVL = N->getOperand(2); 9731 9732 if (!VT.isSimple()) 9733 return SDValue(); 9734 9735 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9736 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 9737 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 9738 default: 9739 return SDValue(); 9740 case MVT::i16: 9741 Tmp1 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 9742 Mask, EVL); 9743 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 9744 Mask, EVL); 9745 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp1, Tmp2, Mask, EVL); 9746 case MVT::i32: 9747 Tmp4 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT), 9748 Mask, EVL); 9749 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Op, DAG.getConstant(0xFF00, dl, VT), 9750 Mask, EVL); 9751 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT), 9752 Mask, EVL); 9753 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 9754 Mask, EVL); 9755 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9756 DAG.getConstant(0xFF00, dl, VT), Mask, EVL); 9757 Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT), 9758 Mask, EVL); 9759 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL); 9760 Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL); 9761 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL); 9762 case MVT::i64: 9763 Tmp8 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT), 9764 Mask, EVL); 9765 Tmp7 = DAG.getNode(ISD::VP_AND, dl, VT, Op, 9766 DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL); 9767 Tmp7 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT), 9768 Mask, EVL); 9769 Tmp6 = DAG.getNode(ISD::VP_AND, dl, VT, Op, 9770 DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL); 9771 Tmp6 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT), 9772 Mask, EVL); 9773 Tmp5 = DAG.getNode(ISD::VP_AND, dl, VT, Op, 9774 DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL); 9775 Tmp5 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT), 9776 Mask, EVL); 9777 Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 9778 Mask, EVL); 9779 Tmp4 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp4, 9780 DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL); 9781 Tmp3 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT), 9782 Mask, EVL); 9783 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp3, 9784 DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL); 9785 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT), 9786 Mask, EVL); 9787 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9788 DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL); 9789 Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT), 9790 Mask, EVL); 9791 Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp7, Mask, EVL); 9792 Tmp6 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp6, Tmp5, Mask, EVL); 9793 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL); 9794 Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL); 9795 Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp6, Mask, EVL); 9796 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL); 9797 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp4, Mask, EVL); 9798 } 9799 } 9800 9801 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 9802 SDLoc dl(N); 9803 EVT VT = N->getValueType(0); 9804 SDValue Op = N->getOperand(0); 9805 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9806 unsigned Sz = VT.getScalarSizeInBits(); 9807 9808 SDValue Tmp, Tmp2, Tmp3; 9809 9810 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 9811 // and finally the i1 pairs. 9812 // TODO: We can easily support i4/i2 legal types if any target ever does. 9813 if (Sz >= 8 && isPowerOf2_32(Sz)) { 9814 // Create the masks - repeating the pattern every byte. 9815 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 9816 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 9817 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 9818 9819 // BSWAP if the type is wider than a single byte. 9820 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 9821 9822 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 9823 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 9824 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 9825 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 9826 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 9827 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 9828 9829 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 9830 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 9831 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 9832 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 9833 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 9834 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 9835 9836 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 9837 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 9838 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 9839 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 9840 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 9841 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 9842 return Tmp; 9843 } 9844 9845 Tmp = DAG.getConstant(0, dl, VT); 9846 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 9847 if (I < J) 9848 Tmp2 = 9849 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 9850 else 9851 Tmp2 = 9852 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 9853 9854 APInt Shift = APInt::getOneBitSet(Sz, J); 9855 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 9856 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 9857 } 9858 9859 return Tmp; 9860 } 9861 9862 SDValue TargetLowering::expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 9863 assert(N->getOpcode() == ISD::VP_BITREVERSE); 9864 9865 SDLoc dl(N); 9866 EVT VT = N->getValueType(0); 9867 SDValue Op = N->getOperand(0); 9868 SDValue Mask = N->getOperand(1); 9869 SDValue EVL = N->getOperand(2); 9870 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9871 unsigned Sz = VT.getScalarSizeInBits(); 9872 9873 SDValue Tmp, Tmp2, Tmp3; 9874 9875 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 9876 // and finally the i1 pairs. 9877 // TODO: We can easily support i4/i2 legal types if any target ever does. 9878 if (Sz >= 8 && isPowerOf2_32(Sz)) { 9879 // Create the masks - repeating the pattern every byte. 9880 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 9881 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 9882 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 9883 9884 // BSWAP if the type is wider than a single byte. 9885 Tmp = (Sz > 8 ? DAG.getNode(ISD::VP_BSWAP, dl, VT, Op, Mask, EVL) : Op); 9886 9887 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 9888 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT), 9889 Mask, EVL); 9890 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9891 DAG.getConstant(Mask4, dl, VT), Mask, EVL); 9892 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT), 9893 Mask, EVL); 9894 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT), 9895 Mask, EVL); 9896 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL); 9897 9898 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 9899 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT), 9900 Mask, EVL); 9901 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9902 DAG.getConstant(Mask2, dl, VT), Mask, EVL); 9903 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT), 9904 Mask, EVL); 9905 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT), 9906 Mask, EVL); 9907 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL); 9908 9909 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 9910 Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT), 9911 Mask, EVL); 9912 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9913 DAG.getConstant(Mask1, dl, VT), Mask, EVL); 9914 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT), 9915 Mask, EVL); 9916 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT), 9917 Mask, EVL); 9918 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL); 9919 return Tmp; 9920 } 9921 return SDValue(); 9922 } 9923 9924 std::pair<SDValue, SDValue> 9925 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 9926 SelectionDAG &DAG) const { 9927 SDLoc SL(LD); 9928 SDValue Chain = LD->getChain(); 9929 SDValue BasePTR = LD->getBasePtr(); 9930 EVT SrcVT = LD->getMemoryVT(); 9931 EVT DstVT = LD->getValueType(0); 9932 ISD::LoadExtType ExtType = LD->getExtensionType(); 9933 9934 if (SrcVT.isScalableVector()) 9935 report_fatal_error("Cannot scalarize scalable vector loads"); 9936 9937 unsigned NumElem = SrcVT.getVectorNumElements(); 9938 9939 EVT SrcEltVT = SrcVT.getScalarType(); 9940 EVT DstEltVT = DstVT.getScalarType(); 9941 9942 // A vector must always be stored in memory as-is, i.e. without any padding 9943 // between the elements, since various code depend on it, e.g. in the 9944 // handling of a bitcast of a vector type to int, which may be done with a 9945 // vector store followed by an integer load. A vector that does not have 9946 // elements that are byte-sized must therefore be stored as an integer 9947 // built out of the extracted vector elements. 9948 if (!SrcEltVT.isByteSized()) { 9949 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 9950 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 9951 9952 unsigned NumSrcBits = SrcVT.getSizeInBits(); 9953 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 9954 9955 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 9956 SDValue SrcEltBitMask = DAG.getConstant( 9957 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 9958 9959 // Load the whole vector and avoid masking off the top bits as it makes 9960 // the codegen worse. 9961 SDValue Load = 9962 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 9963 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 9964 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 9965 9966 SmallVector<SDValue, 8> Vals; 9967 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 9968 unsigned ShiftIntoIdx = 9969 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 9970 SDValue ShiftAmount = DAG.getShiftAmountConstant( 9971 ShiftIntoIdx * SrcEltVT.getSizeInBits(), LoadVT, SL); 9972 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 9973 SDValue Elt = 9974 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 9975 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 9976 9977 if (ExtType != ISD::NON_EXTLOAD) { 9978 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 9979 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 9980 } 9981 9982 Vals.push_back(Scalar); 9983 } 9984 9985 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 9986 return std::make_pair(Value, Load.getValue(1)); 9987 } 9988 9989 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 9990 assert(SrcEltVT.isByteSized()); 9991 9992 SmallVector<SDValue, 8> Vals; 9993 SmallVector<SDValue, 8> LoadChains; 9994 9995 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 9996 SDValue ScalarLoad = 9997 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 9998 LD->getPointerInfo().getWithOffset(Idx * Stride), 9999 SrcEltVT, LD->getOriginalAlign(), 10000 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 10001 10002 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::getFixed(Stride)); 10003 10004 Vals.push_back(ScalarLoad.getValue(0)); 10005 LoadChains.push_back(ScalarLoad.getValue(1)); 10006 } 10007 10008 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 10009 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 10010 10011 return std::make_pair(Value, NewChain); 10012 } 10013 10014 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 10015 SelectionDAG &DAG) const { 10016 SDLoc SL(ST); 10017 10018 SDValue Chain = ST->getChain(); 10019 SDValue BasePtr = ST->getBasePtr(); 10020 SDValue Value = ST->getValue(); 10021 EVT StVT = ST->getMemoryVT(); 10022 10023 if (StVT.isScalableVector()) 10024 report_fatal_error("Cannot scalarize scalable vector stores"); 10025 10026 // The type of the data we want to save 10027 EVT RegVT = Value.getValueType(); 10028 EVT RegSclVT = RegVT.getScalarType(); 10029 10030 // The type of data as saved in memory. 10031 EVT MemSclVT = StVT.getScalarType(); 10032 10033 unsigned NumElem = StVT.getVectorNumElements(); 10034 10035 // A vector must always be stored in memory as-is, i.e. without any padding 10036 // between the elements, since various code depend on it, e.g. in the 10037 // handling of a bitcast of a vector type to int, which may be done with a 10038 // vector store followed by an integer load. A vector that does not have 10039 // elements that are byte-sized must therefore be stored as an integer 10040 // built out of the extracted vector elements. 10041 if (!MemSclVT.isByteSized()) { 10042 unsigned NumBits = StVT.getSizeInBits(); 10043 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 10044 10045 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 10046 10047 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 10048 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 10049 DAG.getVectorIdxConstant(Idx, SL)); 10050 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 10051 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 10052 unsigned ShiftIntoIdx = 10053 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 10054 SDValue ShiftAmount = 10055 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 10056 SDValue ShiftedElt = 10057 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 10058 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 10059 } 10060 10061 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 10062 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 10063 ST->getAAInfo()); 10064 } 10065 10066 // Store Stride in bytes 10067 unsigned Stride = MemSclVT.getSizeInBits() / 8; 10068 assert(Stride && "Zero stride!"); 10069 // Extract each of the elements from the original vector and save them into 10070 // memory individually. 10071 SmallVector<SDValue, 8> Stores; 10072 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 10073 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 10074 DAG.getVectorIdxConstant(Idx, SL)); 10075 10076 SDValue Ptr = 10077 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::getFixed(Idx * Stride)); 10078 10079 // This scalar TruncStore may be illegal, but we legalize it later. 10080 SDValue Store = DAG.getTruncStore( 10081 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 10082 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 10083 ST->getAAInfo()); 10084 10085 Stores.push_back(Store); 10086 } 10087 10088 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 10089 } 10090 10091 std::pair<SDValue, SDValue> 10092 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 10093 assert(LD->getAddressingMode() == ISD::UNINDEXED && 10094 "unaligned indexed loads not implemented!"); 10095 SDValue Chain = LD->getChain(); 10096 SDValue Ptr = LD->getBasePtr(); 10097 EVT VT = LD->getValueType(0); 10098 EVT LoadedVT = LD->getMemoryVT(); 10099 SDLoc dl(LD); 10100 auto &MF = DAG.getMachineFunction(); 10101 10102 if (VT.isFloatingPoint() || VT.isVector()) { 10103 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 10104 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 10105 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 10106 LoadedVT.isVector()) { 10107 // Scalarize the load and let the individual components be handled. 10108 return scalarizeVectorLoad(LD, DAG); 10109 } 10110 10111 // Expand to a (misaligned) integer load of the same size, 10112 // then bitconvert to floating point or vector. 10113 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 10114 LD->getMemOperand()); 10115 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 10116 if (LoadedVT != VT) 10117 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 10118 ISD::ANY_EXTEND, dl, VT, Result); 10119 10120 return std::make_pair(Result, newLoad.getValue(1)); 10121 } 10122 10123 // Copy the value to a (aligned) stack slot using (unaligned) integer 10124 // loads and stores, then do a (aligned) load from the stack slot. 10125 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 10126 unsigned LoadedBytes = LoadedVT.getStoreSize(); 10127 unsigned RegBytes = RegVT.getSizeInBits() / 8; 10128 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 10129 10130 // Make sure the stack slot is also aligned for the register type. 10131 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 10132 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 10133 SmallVector<SDValue, 8> Stores; 10134 SDValue StackPtr = StackBase; 10135 unsigned Offset = 0; 10136 10137 EVT PtrVT = Ptr.getValueType(); 10138 EVT StackPtrVT = StackPtr.getValueType(); 10139 10140 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 10141 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 10142 10143 // Do all but one copies using the full register width. 10144 for (unsigned i = 1; i < NumRegs; i++) { 10145 // Load one integer register's worth from the original location. 10146 SDValue Load = DAG.getLoad( 10147 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 10148 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 10149 LD->getAAInfo()); 10150 // Follow the load with a store to the stack slot. Remember the store. 10151 Stores.push_back(DAG.getStore( 10152 Load.getValue(1), dl, Load, StackPtr, 10153 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 10154 // Increment the pointers. 10155 Offset += RegBytes; 10156 10157 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 10158 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 10159 } 10160 10161 // The last copy may be partial. Do an extending load. 10162 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 10163 8 * (LoadedBytes - Offset)); 10164 SDValue Load = 10165 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 10166 LD->getPointerInfo().getWithOffset(Offset), MemVT, 10167 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 10168 LD->getAAInfo()); 10169 // Follow the load with a store to the stack slot. Remember the store. 10170 // On big-endian machines this requires a truncating store to ensure 10171 // that the bits end up in the right place. 10172 Stores.push_back(DAG.getTruncStore( 10173 Load.getValue(1), dl, Load, StackPtr, 10174 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 10175 10176 // The order of the stores doesn't matter - say it with a TokenFactor. 10177 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10178 10179 // Finally, perform the original load only redirected to the stack slot. 10180 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 10181 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 10182 LoadedVT); 10183 10184 // Callers expect a MERGE_VALUES node. 10185 return std::make_pair(Load, TF); 10186 } 10187 10188 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 10189 "Unaligned load of unsupported type."); 10190 10191 // Compute the new VT that is half the size of the old one. This is an 10192 // integer MVT. 10193 unsigned NumBits = LoadedVT.getSizeInBits(); 10194 EVT NewLoadedVT; 10195 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 10196 NumBits >>= 1; 10197 10198 Align Alignment = LD->getOriginalAlign(); 10199 unsigned IncrementSize = NumBits / 8; 10200 ISD::LoadExtType HiExtType = LD->getExtensionType(); 10201 10202 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 10203 if (HiExtType == ISD::NON_EXTLOAD) 10204 HiExtType = ISD::ZEXTLOAD; 10205 10206 // Load the value in two parts 10207 SDValue Lo, Hi; 10208 if (DAG.getDataLayout().isLittleEndian()) { 10209 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 10210 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 10211 LD->getAAInfo()); 10212 10213 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize)); 10214 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 10215 LD->getPointerInfo().getWithOffset(IncrementSize), 10216 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 10217 LD->getAAInfo()); 10218 } else { 10219 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 10220 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 10221 LD->getAAInfo()); 10222 10223 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize)); 10224 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 10225 LD->getPointerInfo().getWithOffset(IncrementSize), 10226 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 10227 LD->getAAInfo()); 10228 } 10229 10230 // aggregate the two parts 10231 SDValue ShiftAmount = DAG.getShiftAmountConstant(NumBits, VT, dl); 10232 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 10233 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 10234 10235 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 10236 Hi.getValue(1)); 10237 10238 return std::make_pair(Result, TF); 10239 } 10240 10241 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 10242 SelectionDAG &DAG) const { 10243 assert(ST->getAddressingMode() == ISD::UNINDEXED && 10244 "unaligned indexed stores not implemented!"); 10245 SDValue Chain = ST->getChain(); 10246 SDValue Ptr = ST->getBasePtr(); 10247 SDValue Val = ST->getValue(); 10248 EVT VT = Val.getValueType(); 10249 Align Alignment = ST->getOriginalAlign(); 10250 auto &MF = DAG.getMachineFunction(); 10251 EVT StoreMemVT = ST->getMemoryVT(); 10252 10253 SDLoc dl(ST); 10254 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 10255 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 10256 if (isTypeLegal(intVT)) { 10257 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 10258 StoreMemVT.isVector()) { 10259 // Scalarize the store and let the individual components be handled. 10260 SDValue Result = scalarizeVectorStore(ST, DAG); 10261 return Result; 10262 } 10263 // Expand to a bitconvert of the value to the integer type of the 10264 // same size, then a (misaligned) int store. 10265 // FIXME: Does not handle truncating floating point stores! 10266 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 10267 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 10268 Alignment, ST->getMemOperand()->getFlags()); 10269 return Result; 10270 } 10271 // Do a (aligned) store to a stack slot, then copy from the stack slot 10272 // to the final destination using (unaligned) integer loads and stores. 10273 MVT RegVT = getRegisterType( 10274 *DAG.getContext(), 10275 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 10276 EVT PtrVT = Ptr.getValueType(); 10277 unsigned StoredBytes = StoreMemVT.getStoreSize(); 10278 unsigned RegBytes = RegVT.getSizeInBits() / 8; 10279 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 10280 10281 // Make sure the stack slot is also aligned for the register type. 10282 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 10283 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 10284 10285 // Perform the original store, only redirected to the stack slot. 10286 SDValue Store = DAG.getTruncStore( 10287 Chain, dl, Val, StackPtr, 10288 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 10289 10290 EVT StackPtrVT = StackPtr.getValueType(); 10291 10292 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 10293 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 10294 SmallVector<SDValue, 8> Stores; 10295 unsigned Offset = 0; 10296 10297 // Do all but one copies using the full register width. 10298 for (unsigned i = 1; i < NumRegs; i++) { 10299 // Load one integer register's worth from the stack slot. 10300 SDValue Load = DAG.getLoad( 10301 RegVT, dl, Store, StackPtr, 10302 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 10303 // Store it to the final location. Remember the store. 10304 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 10305 ST->getPointerInfo().getWithOffset(Offset), 10306 ST->getOriginalAlign(), 10307 ST->getMemOperand()->getFlags())); 10308 // Increment the pointers. 10309 Offset += RegBytes; 10310 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 10311 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 10312 } 10313 10314 // The last store may be partial. Do a truncating store. On big-endian 10315 // machines this requires an extending load from the stack slot to ensure 10316 // that the bits are in the right place. 10317 EVT LoadMemVT = 10318 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 10319 10320 // Load from the stack slot. 10321 SDValue Load = DAG.getExtLoad( 10322 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 10323 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 10324 10325 Stores.push_back( 10326 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 10327 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 10328 ST->getOriginalAlign(), 10329 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 10330 // The order of the stores doesn't matter - say it with a TokenFactor. 10331 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10332 return Result; 10333 } 10334 10335 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 10336 "Unaligned store of unknown type."); 10337 // Get the half-size VT 10338 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 10339 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 10340 unsigned IncrementSize = NumBits / 8; 10341 10342 // Divide the stored value in two parts. 10343 SDValue ShiftAmount = 10344 DAG.getShiftAmountConstant(NumBits, Val.getValueType(), dl); 10345 SDValue Lo = Val; 10346 // If Val is a constant, replace the upper bits with 0. The SRL will constant 10347 // fold and not use the upper bits. A smaller constant may be easier to 10348 // materialize. 10349 if (auto *C = dyn_cast<ConstantSDNode>(Lo); C && !C->isOpaque()) 10350 Lo = DAG.getNode( 10351 ISD::AND, dl, VT, Lo, 10352 DAG.getConstant(APInt::getLowBitsSet(VT.getSizeInBits(), NumBits), dl, 10353 VT)); 10354 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 10355 10356 // Store the two parts 10357 SDValue Store1, Store2; 10358 Store1 = DAG.getTruncStore(Chain, dl, 10359 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 10360 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 10361 ST->getMemOperand()->getFlags()); 10362 10363 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize)); 10364 Store2 = DAG.getTruncStore( 10365 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 10366 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 10367 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 10368 10369 SDValue Result = 10370 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 10371 return Result; 10372 } 10373 10374 SDValue 10375 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 10376 const SDLoc &DL, EVT DataVT, 10377 SelectionDAG &DAG, 10378 bool IsCompressedMemory) const { 10379 SDValue Increment; 10380 EVT AddrVT = Addr.getValueType(); 10381 EVT MaskVT = Mask.getValueType(); 10382 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 10383 "Incompatible types of Data and Mask"); 10384 if (IsCompressedMemory) { 10385 if (DataVT.isScalableVector()) 10386 report_fatal_error( 10387 "Cannot currently handle compressed memory with scalable vectors"); 10388 // Incrementing the pointer according to number of '1's in the mask. 10389 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 10390 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 10391 if (MaskIntVT.getSizeInBits() < 32) { 10392 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 10393 MaskIntVT = MVT::i32; 10394 } 10395 10396 // Count '1's with POPCNT. 10397 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 10398 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 10399 // Scale is an element size in bytes. 10400 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 10401 AddrVT); 10402 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 10403 } else if (DataVT.isScalableVector()) { 10404 Increment = DAG.getVScale(DL, AddrVT, 10405 APInt(AddrVT.getFixedSizeInBits(), 10406 DataVT.getStoreSize().getKnownMinValue())); 10407 } else 10408 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 10409 10410 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 10411 } 10412 10413 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 10414 EVT VecVT, const SDLoc &dl, 10415 ElementCount SubEC) { 10416 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 10417 "Cannot index a scalable vector within a fixed-width vector"); 10418 10419 unsigned NElts = VecVT.getVectorMinNumElements(); 10420 unsigned NumSubElts = SubEC.getKnownMinValue(); 10421 EVT IdxVT = Idx.getValueType(); 10422 10423 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 10424 // If this is a constant index and we know the value plus the number of the 10425 // elements in the subvector minus one is less than the minimum number of 10426 // elements then it's safe to return Idx. 10427 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 10428 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 10429 return Idx; 10430 SDValue VS = 10431 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 10432 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 10433 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 10434 DAG.getConstant(NumSubElts, dl, IdxVT)); 10435 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 10436 } 10437 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 10438 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 10439 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 10440 DAG.getConstant(Imm, dl, IdxVT)); 10441 } 10442 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 10443 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 10444 DAG.getConstant(MaxIndex, dl, IdxVT)); 10445 } 10446 10447 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 10448 SDValue VecPtr, EVT VecVT, 10449 SDValue Index) const { 10450 return getVectorSubVecPointer( 10451 DAG, VecPtr, VecVT, 10452 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 10453 Index); 10454 } 10455 10456 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 10457 SDValue VecPtr, EVT VecVT, 10458 EVT SubVecVT, 10459 SDValue Index) const { 10460 SDLoc dl(Index); 10461 // Make sure the index type is big enough to compute in. 10462 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 10463 10464 EVT EltVT = VecVT.getVectorElementType(); 10465 10466 // Calculate the element offset and add it to the pointer. 10467 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 10468 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 10469 "Converting bits to bytes lost precision"); 10470 assert(SubVecVT.getVectorElementType() == EltVT && 10471 "Sub-vector must be a vector with matching element type"); 10472 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 10473 SubVecVT.getVectorElementCount()); 10474 10475 EVT IdxVT = Index.getValueType(); 10476 if (SubVecVT.isScalableVector()) 10477 Index = 10478 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 10479 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 10480 10481 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 10482 DAG.getConstant(EltSize, dl, IdxVT)); 10483 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 10484 } 10485 10486 //===----------------------------------------------------------------------===// 10487 // Implementation of Emulated TLS Model 10488 //===----------------------------------------------------------------------===// 10489 10490 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 10491 SelectionDAG &DAG) const { 10492 // Access to address of TLS varialbe xyz is lowered to a function call: 10493 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 10494 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10495 PointerType *VoidPtrType = PointerType::get(*DAG.getContext(), 0); 10496 SDLoc dl(GA); 10497 10498 ArgListTy Args; 10499 ArgListEntry Entry; 10500 const GlobalValue *GV = 10501 cast<GlobalValue>(GA->getGlobal()->stripPointerCastsAndAliases()); 10502 SmallString<32> NameString("__emutls_v."); 10503 NameString += GV->getName(); 10504 StringRef EmuTlsVarName(NameString); 10505 const GlobalVariable *EmuTlsVar = 10506 GV->getParent()->getNamedGlobal(EmuTlsVarName); 10507 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 10508 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 10509 Entry.Ty = VoidPtrType; 10510 Args.push_back(Entry); 10511 10512 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 10513 10514 TargetLowering::CallLoweringInfo CLI(DAG); 10515 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 10516 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 10517 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 10518 10519 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 10520 // At last for X86 targets, maybe good for other targets too? 10521 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10522 MFI.setAdjustsStack(true); // Is this only for X86 target? 10523 MFI.setHasCalls(true); 10524 10525 assert((GA->getOffset() == 0) && 10526 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 10527 return CallResult.first; 10528 } 10529 10530 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 10531 SelectionDAG &DAG) const { 10532 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 10533 if (!isCtlzFast()) 10534 return SDValue(); 10535 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 10536 SDLoc dl(Op); 10537 if (isNullConstant(Op.getOperand(1)) && CC == ISD::SETEQ) { 10538 EVT VT = Op.getOperand(0).getValueType(); 10539 SDValue Zext = Op.getOperand(0); 10540 if (VT.bitsLT(MVT::i32)) { 10541 VT = MVT::i32; 10542 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 10543 } 10544 unsigned Log2b = Log2_32(VT.getSizeInBits()); 10545 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 10546 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 10547 DAG.getConstant(Log2b, dl, MVT::i32)); 10548 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 10549 } 10550 return SDValue(); 10551 } 10552 10553 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 10554 SDValue Op0 = Node->getOperand(0); 10555 SDValue Op1 = Node->getOperand(1); 10556 EVT VT = Op0.getValueType(); 10557 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10558 unsigned Opcode = Node->getOpcode(); 10559 SDLoc DL(Node); 10560 10561 // umax(x,1) --> sub(x,cmpeq(x,0)) iff cmp result is allbits 10562 if (Opcode == ISD::UMAX && llvm::isOneOrOneSplat(Op1, true) && BoolVT == VT && 10563 getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 10564 Op0 = DAG.getFreeze(Op0); 10565 SDValue Zero = DAG.getConstant(0, DL, VT); 10566 return DAG.getNode(ISD::SUB, DL, VT, Op0, 10567 DAG.getSetCC(DL, VT, Op0, Zero, ISD::SETEQ)); 10568 } 10569 10570 // umin(x,y) -> sub(x,usubsat(x,y)) 10571 // TODO: Missing freeze(Op0)? 10572 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 10573 isOperationLegal(ISD::USUBSAT, VT)) { 10574 return DAG.getNode(ISD::SUB, DL, VT, Op0, 10575 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 10576 } 10577 10578 // umax(x,y) -> add(x,usubsat(y,x)) 10579 // TODO: Missing freeze(Op0)? 10580 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 10581 isOperationLegal(ISD::USUBSAT, VT)) { 10582 return DAG.getNode(ISD::ADD, DL, VT, Op0, 10583 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 10584 } 10585 10586 // FIXME: Should really try to split the vector in case it's legal on a 10587 // subvector. 10588 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 10589 return DAG.UnrollVectorOp(Node); 10590 10591 // Attempt to find an existing SETCC node that we can reuse. 10592 // TODO: Do we need a generic doesSETCCNodeExist? 10593 // TODO: Missing freeze(Op0)/freeze(Op1)? 10594 auto buildMinMax = [&](ISD::CondCode PrefCC, ISD::CondCode AltCC, 10595 ISD::CondCode PrefCommuteCC, 10596 ISD::CondCode AltCommuteCC) { 10597 SDVTList BoolVTList = DAG.getVTList(BoolVT); 10598 for (ISD::CondCode CC : {PrefCC, AltCC}) { 10599 if (DAG.doesNodeExist(ISD::SETCC, BoolVTList, 10600 {Op0, Op1, DAG.getCondCode(CC)})) { 10601 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 10602 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 10603 } 10604 } 10605 for (ISD::CondCode CC : {PrefCommuteCC, AltCommuteCC}) { 10606 if (DAG.doesNodeExist(ISD::SETCC, BoolVTList, 10607 {Op0, Op1, DAG.getCondCode(CC)})) { 10608 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 10609 return DAG.getSelect(DL, VT, Cond, Op1, Op0); 10610 } 10611 } 10612 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, PrefCC); 10613 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 10614 }; 10615 10616 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 10617 // -> Y = (A < B) ? B : A 10618 // -> Y = (A >= B) ? A : B 10619 // -> Y = (A <= B) ? B : A 10620 switch (Opcode) { 10621 case ISD::SMAX: 10622 return buildMinMax(ISD::SETGT, ISD::SETGE, ISD::SETLT, ISD::SETLE); 10623 case ISD::SMIN: 10624 return buildMinMax(ISD::SETLT, ISD::SETLE, ISD::SETGT, ISD::SETGE); 10625 case ISD::UMAX: 10626 return buildMinMax(ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE); 10627 case ISD::UMIN: 10628 return buildMinMax(ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE); 10629 } 10630 10631 llvm_unreachable("How did we get here?"); 10632 } 10633 10634 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 10635 unsigned Opcode = Node->getOpcode(); 10636 SDValue LHS = Node->getOperand(0); 10637 SDValue RHS = Node->getOperand(1); 10638 EVT VT = LHS.getValueType(); 10639 SDLoc dl(Node); 10640 10641 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 10642 assert(VT.isInteger() && "Expected operands to be integers"); 10643 10644 // usub.sat(a, b) -> umax(a, b) - b 10645 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 10646 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 10647 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 10648 } 10649 10650 // uadd.sat(a, b) -> umin(a, ~b) + b 10651 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 10652 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 10653 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 10654 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 10655 } 10656 10657 unsigned OverflowOp; 10658 switch (Opcode) { 10659 case ISD::SADDSAT: 10660 OverflowOp = ISD::SADDO; 10661 break; 10662 case ISD::UADDSAT: 10663 OverflowOp = ISD::UADDO; 10664 break; 10665 case ISD::SSUBSAT: 10666 OverflowOp = ISD::SSUBO; 10667 break; 10668 case ISD::USUBSAT: 10669 OverflowOp = ISD::USUBO; 10670 break; 10671 default: 10672 llvm_unreachable("Expected method to receive signed or unsigned saturation " 10673 "addition or subtraction node."); 10674 } 10675 10676 // FIXME: Should really try to split the vector in case it's legal on a 10677 // subvector. 10678 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 10679 return DAG.UnrollVectorOp(Node); 10680 10681 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 10682 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10683 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 10684 SDValue SumDiff = Result.getValue(0); 10685 SDValue Overflow = Result.getValue(1); 10686 SDValue Zero = DAG.getConstant(0, dl, VT); 10687 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 10688 10689 if (Opcode == ISD::UADDSAT) { 10690 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 10691 // (LHS + RHS) | OverflowMask 10692 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 10693 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 10694 } 10695 // Overflow ? 0xffff.... : (LHS + RHS) 10696 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 10697 } 10698 10699 if (Opcode == ISD::USUBSAT) { 10700 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 10701 // (LHS - RHS) & ~OverflowMask 10702 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 10703 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 10704 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 10705 } 10706 // Overflow ? 0 : (LHS - RHS) 10707 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 10708 } 10709 10710 if (Opcode == ISD::SADDSAT || Opcode == ISD::SSUBSAT) { 10711 APInt MinVal = APInt::getSignedMinValue(BitWidth); 10712 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 10713 10714 KnownBits KnownLHS = DAG.computeKnownBits(LHS); 10715 KnownBits KnownRHS = DAG.computeKnownBits(RHS); 10716 10717 // If either of the operand signs are known, then they are guaranteed to 10718 // only saturate in one direction. If non-negative they will saturate 10719 // towards SIGNED_MAX, if negative they will saturate towards SIGNED_MIN. 10720 // 10721 // In the case of ISD::SSUBSAT, 'x - y' is equivalent to 'x + (-y)', so the 10722 // sign of 'y' has to be flipped. 10723 10724 bool LHSIsNonNegative = KnownLHS.isNonNegative(); 10725 bool RHSIsNonNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNonNegative() 10726 : KnownRHS.isNegative(); 10727 if (LHSIsNonNegative || RHSIsNonNegative) { 10728 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 10729 return DAG.getSelect(dl, VT, Overflow, SatMax, SumDiff); 10730 } 10731 10732 bool LHSIsNegative = KnownLHS.isNegative(); 10733 bool RHSIsNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNegative() 10734 : KnownRHS.isNonNegative(); 10735 if (LHSIsNegative || RHSIsNegative) { 10736 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 10737 return DAG.getSelect(dl, VT, Overflow, SatMin, SumDiff); 10738 } 10739 } 10740 10741 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 10742 APInt MinVal = APInt::getSignedMinValue(BitWidth); 10743 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 10744 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 10745 DAG.getConstant(BitWidth - 1, dl, VT)); 10746 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 10747 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 10748 } 10749 10750 SDValue TargetLowering::expandCMP(SDNode *Node, SelectionDAG &DAG) const { 10751 unsigned Opcode = Node->getOpcode(); 10752 SDValue LHS = Node->getOperand(0); 10753 SDValue RHS = Node->getOperand(1); 10754 EVT VT = LHS.getValueType(); 10755 EVT ResVT = Node->getValueType(0); 10756 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10757 SDLoc dl(Node); 10758 10759 auto LTPredicate = (Opcode == ISD::UCMP ? ISD::SETULT : ISD::SETLT); 10760 auto GTPredicate = (Opcode == ISD::UCMP ? ISD::SETUGT : ISD::SETGT); 10761 SDValue IsLT = DAG.getSetCC(dl, BoolVT, LHS, RHS, LTPredicate); 10762 SDValue IsGT = DAG.getSetCC(dl, BoolVT, LHS, RHS, GTPredicate); 10763 10764 // We can't perform arithmetic on i1 values. Extending them would 10765 // probably result in worse codegen, so let's just use two selects instead. 10766 // Some targets are also just better off using selects rather than subtraction 10767 // because one of the conditions can be merged with one of the selects. 10768 // And finally, if we don't know the contents of high bits of a boolean value 10769 // we can't perform any arithmetic either. 10770 if (shouldExpandCmpUsingSelects(VT) || BoolVT.getScalarSizeInBits() == 1 || 10771 getBooleanContents(BoolVT) == UndefinedBooleanContent) { 10772 SDValue SelectZeroOrOne = 10773 DAG.getSelect(dl, ResVT, IsGT, DAG.getConstant(1, dl, ResVT), 10774 DAG.getConstant(0, dl, ResVT)); 10775 return DAG.getSelect(dl, ResVT, IsLT, DAG.getAllOnesConstant(dl, ResVT), 10776 SelectZeroOrOne); 10777 } 10778 10779 if (getBooleanContents(BoolVT) == ZeroOrNegativeOneBooleanContent) 10780 std::swap(IsGT, IsLT); 10781 return DAG.getSExtOrTrunc(DAG.getNode(ISD::SUB, dl, BoolVT, IsGT, IsLT), dl, 10782 ResVT); 10783 } 10784 10785 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 10786 unsigned Opcode = Node->getOpcode(); 10787 bool IsSigned = Opcode == ISD::SSHLSAT; 10788 SDValue LHS = Node->getOperand(0); 10789 SDValue RHS = Node->getOperand(1); 10790 EVT VT = LHS.getValueType(); 10791 SDLoc dl(Node); 10792 10793 assert((Node->getOpcode() == ISD::SSHLSAT || 10794 Node->getOpcode() == ISD::USHLSAT) && 10795 "Expected a SHLSAT opcode"); 10796 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 10797 assert(VT.isInteger() && "Expected operands to be integers"); 10798 10799 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 10800 return DAG.UnrollVectorOp(Node); 10801 10802 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 10803 10804 unsigned BW = VT.getScalarSizeInBits(); 10805 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10806 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 10807 SDValue Orig = 10808 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 10809 10810 SDValue SatVal; 10811 if (IsSigned) { 10812 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 10813 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 10814 SDValue Cond = 10815 DAG.getSetCC(dl, BoolVT, LHS, DAG.getConstant(0, dl, VT), ISD::SETLT); 10816 SatVal = DAG.getSelect(dl, VT, Cond, SatMin, SatMax); 10817 } else { 10818 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 10819 } 10820 SDValue Cond = DAG.getSetCC(dl, BoolVT, LHS, Orig, ISD::SETNE); 10821 return DAG.getSelect(dl, VT, Cond, SatVal, Result); 10822 } 10823 10824 void TargetLowering::forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, 10825 bool Signed, EVT WideVT, 10826 const SDValue LL, const SDValue LH, 10827 const SDValue RL, const SDValue RH, 10828 SDValue &Lo, SDValue &Hi) const { 10829 // We can fall back to a libcall with an illegal type for the MUL if we 10830 // have a libcall big enough. 10831 // Also, we can fall back to a division in some cases, but that's a big 10832 // performance hit in the general case. 10833 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 10834 if (WideVT == MVT::i16) 10835 LC = RTLIB::MUL_I16; 10836 else if (WideVT == MVT::i32) 10837 LC = RTLIB::MUL_I32; 10838 else if (WideVT == MVT::i64) 10839 LC = RTLIB::MUL_I64; 10840 else if (WideVT == MVT::i128) 10841 LC = RTLIB::MUL_I128; 10842 10843 if (LC == RTLIB::UNKNOWN_LIBCALL || !getLibcallName(LC)) { 10844 // We'll expand the multiplication by brute force because we have no other 10845 // options. This is a trivially-generalized version of the code from 10846 // Hacker's Delight (itself derived from Knuth's Algorithm M from section 10847 // 4.3.1). 10848 EVT VT = LL.getValueType(); 10849 unsigned Bits = VT.getSizeInBits(); 10850 unsigned HalfBits = Bits >> 1; 10851 SDValue Mask = 10852 DAG.getConstant(APInt::getLowBitsSet(Bits, HalfBits), dl, VT); 10853 SDValue LLL = DAG.getNode(ISD::AND, dl, VT, LL, Mask); 10854 SDValue RLL = DAG.getNode(ISD::AND, dl, VT, RL, Mask); 10855 10856 SDValue T = DAG.getNode(ISD::MUL, dl, VT, LLL, RLL); 10857 SDValue TL = DAG.getNode(ISD::AND, dl, VT, T, Mask); 10858 10859 SDValue Shift = DAG.getShiftAmountConstant(HalfBits, VT, dl); 10860 SDValue TH = DAG.getNode(ISD::SRL, dl, VT, T, Shift); 10861 SDValue LLH = DAG.getNode(ISD::SRL, dl, VT, LL, Shift); 10862 SDValue RLH = DAG.getNode(ISD::SRL, dl, VT, RL, Shift); 10863 10864 SDValue U = DAG.getNode(ISD::ADD, dl, VT, 10865 DAG.getNode(ISD::MUL, dl, VT, LLH, RLL), TH); 10866 SDValue UL = DAG.getNode(ISD::AND, dl, VT, U, Mask); 10867 SDValue UH = DAG.getNode(ISD::SRL, dl, VT, U, Shift); 10868 10869 SDValue V = DAG.getNode(ISD::ADD, dl, VT, 10870 DAG.getNode(ISD::MUL, dl, VT, LLL, RLH), UL); 10871 SDValue VH = DAG.getNode(ISD::SRL, dl, VT, V, Shift); 10872 10873 SDValue W = 10874 DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::MUL, dl, VT, LLH, RLH), 10875 DAG.getNode(ISD::ADD, dl, VT, UH, VH)); 10876 Lo = DAG.getNode(ISD::ADD, dl, VT, TL, 10877 DAG.getNode(ISD::SHL, dl, VT, V, Shift)); 10878 10879 Hi = DAG.getNode(ISD::ADD, dl, VT, W, 10880 DAG.getNode(ISD::ADD, dl, VT, 10881 DAG.getNode(ISD::MUL, dl, VT, RH, LL), 10882 DAG.getNode(ISD::MUL, dl, VT, RL, LH))); 10883 } else { 10884 // Attempt a libcall. 10885 SDValue Ret; 10886 TargetLowering::MakeLibCallOptions CallOptions; 10887 CallOptions.setIsSigned(Signed); 10888 CallOptions.setIsPostTypeLegalization(true); 10889 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 10890 // Halves of WideVT are packed into registers in different order 10891 // depending on platform endianness. This is usually handled by 10892 // the C calling convention, but we can't defer to it in 10893 // the legalizer. 10894 SDValue Args[] = {LL, LH, RL, RH}; 10895 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 10896 } else { 10897 SDValue Args[] = {LH, LL, RH, RL}; 10898 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 10899 } 10900 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 10901 "Ret value is a collection of constituent nodes holding result."); 10902 if (DAG.getDataLayout().isLittleEndian()) { 10903 // Same as above. 10904 Lo = Ret.getOperand(0); 10905 Hi = Ret.getOperand(1); 10906 } else { 10907 Lo = Ret.getOperand(1); 10908 Hi = Ret.getOperand(0); 10909 } 10910 } 10911 } 10912 10913 void TargetLowering::forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, 10914 bool Signed, const SDValue LHS, 10915 const SDValue RHS, SDValue &Lo, 10916 SDValue &Hi) const { 10917 EVT VT = LHS.getValueType(); 10918 assert(RHS.getValueType() == VT && "Mismatching operand types"); 10919 10920 SDValue HiLHS; 10921 SDValue HiRHS; 10922 if (Signed) { 10923 // The high part is obtained by SRA'ing all but one of the bits of low 10924 // part. 10925 unsigned LoSize = VT.getFixedSizeInBits(); 10926 HiLHS = DAG.getNode( 10927 ISD::SRA, dl, VT, LHS, 10928 DAG.getConstant(LoSize - 1, dl, getPointerTy(DAG.getDataLayout()))); 10929 HiRHS = DAG.getNode( 10930 ISD::SRA, dl, VT, RHS, 10931 DAG.getConstant(LoSize - 1, dl, getPointerTy(DAG.getDataLayout()))); 10932 } else { 10933 HiLHS = DAG.getConstant(0, dl, VT); 10934 HiRHS = DAG.getConstant(0, dl, VT); 10935 } 10936 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); 10937 forceExpandWideMUL(DAG, dl, Signed, WideVT, LHS, HiLHS, RHS, HiRHS, Lo, Hi); 10938 } 10939 10940 SDValue 10941 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 10942 assert((Node->getOpcode() == ISD::SMULFIX || 10943 Node->getOpcode() == ISD::UMULFIX || 10944 Node->getOpcode() == ISD::SMULFIXSAT || 10945 Node->getOpcode() == ISD::UMULFIXSAT) && 10946 "Expected a fixed point multiplication opcode"); 10947 10948 SDLoc dl(Node); 10949 SDValue LHS = Node->getOperand(0); 10950 SDValue RHS = Node->getOperand(1); 10951 EVT VT = LHS.getValueType(); 10952 unsigned Scale = Node->getConstantOperandVal(2); 10953 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 10954 Node->getOpcode() == ISD::UMULFIXSAT); 10955 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 10956 Node->getOpcode() == ISD::SMULFIXSAT); 10957 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10958 unsigned VTSize = VT.getScalarSizeInBits(); 10959 10960 if (!Scale) { 10961 // [us]mul.fix(a, b, 0) -> mul(a, b) 10962 if (!Saturating) { 10963 if (isOperationLegalOrCustom(ISD::MUL, VT)) 10964 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 10965 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 10966 SDValue Result = 10967 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 10968 SDValue Product = Result.getValue(0); 10969 SDValue Overflow = Result.getValue(1); 10970 SDValue Zero = DAG.getConstant(0, dl, VT); 10971 10972 APInt MinVal = APInt::getSignedMinValue(VTSize); 10973 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 10974 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 10975 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 10976 // Xor the inputs, if resulting sign bit is 0 the product will be 10977 // positive, else negative. 10978 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 10979 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 10980 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 10981 return DAG.getSelect(dl, VT, Overflow, Result, Product); 10982 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 10983 SDValue Result = 10984 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 10985 SDValue Product = Result.getValue(0); 10986 SDValue Overflow = Result.getValue(1); 10987 10988 APInt MaxVal = APInt::getMaxValue(VTSize); 10989 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 10990 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 10991 } 10992 } 10993 10994 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 10995 "Expected scale to be less than the number of bits if signed or at " 10996 "most the number of bits if unsigned."); 10997 assert(LHS.getValueType() == RHS.getValueType() && 10998 "Expected both operands to be the same type"); 10999 11000 // Get the upper and lower bits of the result. 11001 SDValue Lo, Hi; 11002 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 11003 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 11004 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VTSize * 2); 11005 if (VT.isVector()) 11006 WideVT = 11007 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 11008 if (isOperationLegalOrCustom(LoHiOp, VT)) { 11009 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 11010 Lo = Result.getValue(0); 11011 Hi = Result.getValue(1); 11012 } else if (isOperationLegalOrCustom(HiOp, VT)) { 11013 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 11014 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 11015 } else if (isOperationLegalOrCustom(ISD::MUL, WideVT)) { 11016 // Try for a multiplication using a wider type. 11017 unsigned Ext = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 11018 SDValue LHSExt = DAG.getNode(Ext, dl, WideVT, LHS); 11019 SDValue RHSExt = DAG.getNode(Ext, dl, WideVT, RHS); 11020 SDValue Res = DAG.getNode(ISD::MUL, dl, WideVT, LHSExt, RHSExt); 11021 Lo = DAG.getNode(ISD::TRUNCATE, dl, VT, Res); 11022 SDValue Shifted = 11023 DAG.getNode(ISD::SRA, dl, WideVT, Res, 11024 DAG.getShiftAmountConstant(VTSize, WideVT, dl)); 11025 Hi = DAG.getNode(ISD::TRUNCATE, dl, VT, Shifted); 11026 } else if (VT.isVector()) { 11027 return SDValue(); 11028 } else { 11029 forceExpandWideMUL(DAG, dl, Signed, LHS, RHS, Lo, Hi); 11030 } 11031 11032 if (Scale == VTSize) 11033 // Result is just the top half since we'd be shifting by the width of the 11034 // operand. Overflow impossible so this works for both UMULFIX and 11035 // UMULFIXSAT. 11036 return Hi; 11037 11038 // The result will need to be shifted right by the scale since both operands 11039 // are scaled. The result is given to us in 2 halves, so we only want part of 11040 // both in the result. 11041 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 11042 DAG.getShiftAmountConstant(Scale, VT, dl)); 11043 if (!Saturating) 11044 return Result; 11045 11046 if (!Signed) { 11047 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 11048 // widened multiplication) aren't all zeroes. 11049 11050 // Saturate to max if ((Hi >> Scale) != 0), 11051 // which is the same as if (Hi > ((1 << Scale) - 1)) 11052 APInt MaxVal = APInt::getMaxValue(VTSize); 11053 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 11054 dl, VT); 11055 Result = DAG.getSelectCC(dl, Hi, LowMask, 11056 DAG.getConstant(MaxVal, dl, VT), Result, 11057 ISD::SETUGT); 11058 11059 return Result; 11060 } 11061 11062 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 11063 // widened multiplication) aren't all ones or all zeroes. 11064 11065 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 11066 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 11067 11068 if (Scale == 0) { 11069 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 11070 DAG.getShiftAmountConstant(VTSize - 1, VT, dl)); 11071 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 11072 // Saturated to SatMin if wide product is negative, and SatMax if wide 11073 // product is positive ... 11074 SDValue Zero = DAG.getConstant(0, dl, VT); 11075 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 11076 ISD::SETLT); 11077 // ... but only if we overflowed. 11078 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 11079 } 11080 11081 // We handled Scale==0 above so all the bits to examine is in Hi. 11082 11083 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 11084 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 11085 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 11086 dl, VT); 11087 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 11088 // Saturate to min if (Hi >> (Scale - 1)) < -1), 11089 // which is the same as if (HI < (-1 << (Scale - 1)) 11090 SDValue HighMask = 11091 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 11092 dl, VT); 11093 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 11094 return Result; 11095 } 11096 11097 SDValue 11098 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 11099 SDValue LHS, SDValue RHS, 11100 unsigned Scale, SelectionDAG &DAG) const { 11101 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 11102 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 11103 "Expected a fixed point division opcode"); 11104 11105 EVT VT = LHS.getValueType(); 11106 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 11107 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 11108 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 11109 11110 // If there is enough room in the type to upscale the LHS or downscale the 11111 // RHS before the division, we can perform it in this type without having to 11112 // resize. For signed operations, the LHS headroom is the number of 11113 // redundant sign bits, and for unsigned ones it is the number of zeroes. 11114 // The headroom for the RHS is the number of trailing zeroes. 11115 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 11116 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 11117 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 11118 11119 // For signed saturating operations, we need to be able to detect true integer 11120 // division overflow; that is, when you have MIN / -EPS. However, this 11121 // is undefined behavior and if we emit divisions that could take such 11122 // values it may cause undesired behavior (arithmetic exceptions on x86, for 11123 // example). 11124 // Avoid this by requiring an extra bit so that we never get this case. 11125 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 11126 // signed saturating division, we need to emit a whopping 32-bit division. 11127 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 11128 return SDValue(); 11129 11130 unsigned LHSShift = std::min(LHSLead, Scale); 11131 unsigned RHSShift = Scale - LHSShift; 11132 11133 // At this point, we know that if we shift the LHS up by LHSShift and the 11134 // RHS down by RHSShift, we can emit a regular division with a final scaling 11135 // factor of Scale. 11136 11137 if (LHSShift) 11138 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 11139 DAG.getShiftAmountConstant(LHSShift, VT, dl)); 11140 if (RHSShift) 11141 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 11142 DAG.getShiftAmountConstant(RHSShift, VT, dl)); 11143 11144 SDValue Quot; 11145 if (Signed) { 11146 // For signed operations, if the resulting quotient is negative and the 11147 // remainder is nonzero, subtract 1 from the quotient to round towards 11148 // negative infinity. 11149 SDValue Rem; 11150 // FIXME: Ideally we would always produce an SDIVREM here, but if the 11151 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 11152 // we couldn't just form a libcall, but the type legalizer doesn't do it. 11153 if (isTypeLegal(VT) && 11154 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 11155 Quot = DAG.getNode(ISD::SDIVREM, dl, 11156 DAG.getVTList(VT, VT), 11157 LHS, RHS); 11158 Rem = Quot.getValue(1); 11159 Quot = Quot.getValue(0); 11160 } else { 11161 Quot = DAG.getNode(ISD::SDIV, dl, VT, 11162 LHS, RHS); 11163 Rem = DAG.getNode(ISD::SREM, dl, VT, 11164 LHS, RHS); 11165 } 11166 SDValue Zero = DAG.getConstant(0, dl, VT); 11167 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 11168 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 11169 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 11170 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 11171 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 11172 DAG.getConstant(1, dl, VT)); 11173 Quot = DAG.getSelect(dl, VT, 11174 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 11175 Sub1, Quot); 11176 } else 11177 Quot = DAG.getNode(ISD::UDIV, dl, VT, 11178 LHS, RHS); 11179 11180 return Quot; 11181 } 11182 11183 void TargetLowering::expandUADDSUBO( 11184 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 11185 SDLoc dl(Node); 11186 SDValue LHS = Node->getOperand(0); 11187 SDValue RHS = Node->getOperand(1); 11188 bool IsAdd = Node->getOpcode() == ISD::UADDO; 11189 11190 // If UADDO_CARRY/SUBO_CARRY is legal, use that instead. 11191 unsigned OpcCarry = IsAdd ? ISD::UADDO_CARRY : ISD::USUBO_CARRY; 11192 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 11193 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 11194 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 11195 { LHS, RHS, CarryIn }); 11196 Result = SDValue(NodeCarry.getNode(), 0); 11197 Overflow = SDValue(NodeCarry.getNode(), 1); 11198 return; 11199 } 11200 11201 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 11202 LHS.getValueType(), LHS, RHS); 11203 11204 EVT ResultType = Node->getValueType(1); 11205 EVT SetCCType = getSetCCResultType( 11206 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 11207 SDValue SetCC; 11208 if (IsAdd && isOneConstant(RHS)) { 11209 // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces 11210 // the live range of X. We assume comparing with 0 is cheap. 11211 // The general case (X + C) < C is not necessarily beneficial. Although we 11212 // reduce the live range of X, we may introduce the materialization of 11213 // constant C. 11214 SetCC = 11215 DAG.getSetCC(dl, SetCCType, Result, 11216 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ); 11217 } else if (IsAdd && isAllOnesConstant(RHS)) { 11218 // Special case: uaddo X, -1 overflows if X != 0. 11219 SetCC = 11220 DAG.getSetCC(dl, SetCCType, LHS, 11221 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETNE); 11222 } else { 11223 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 11224 SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 11225 } 11226 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 11227 } 11228 11229 void TargetLowering::expandSADDSUBO( 11230 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 11231 SDLoc dl(Node); 11232 SDValue LHS = Node->getOperand(0); 11233 SDValue RHS = Node->getOperand(1); 11234 bool IsAdd = Node->getOpcode() == ISD::SADDO; 11235 11236 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 11237 LHS.getValueType(), LHS, RHS); 11238 11239 EVT ResultType = Node->getValueType(1); 11240 EVT OType = getSetCCResultType( 11241 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 11242 11243 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 11244 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 11245 if (isOperationLegal(OpcSat, LHS.getValueType())) { 11246 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 11247 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 11248 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 11249 return; 11250 } 11251 11252 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 11253 11254 // For an addition, the result should be less than one of the operands (LHS) 11255 // if and only if the other operand (RHS) is negative, otherwise there will 11256 // be overflow. 11257 // For a subtraction, the result should be less than one of the operands 11258 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 11259 // otherwise there will be overflow. 11260 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 11261 SDValue ConditionRHS = 11262 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 11263 11264 Overflow = DAG.getBoolExtOrTrunc( 11265 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 11266 ResultType, ResultType); 11267 } 11268 11269 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 11270 SDValue &Overflow, SelectionDAG &DAG) const { 11271 SDLoc dl(Node); 11272 EVT VT = Node->getValueType(0); 11273 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 11274 SDValue LHS = Node->getOperand(0); 11275 SDValue RHS = Node->getOperand(1); 11276 bool isSigned = Node->getOpcode() == ISD::SMULO; 11277 11278 // For power-of-two multiplications we can use a simpler shift expansion. 11279 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 11280 const APInt &C = RHSC->getAPIntValue(); 11281 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 11282 if (C.isPowerOf2()) { 11283 // smulo(x, signed_min) is same as umulo(x, signed_min). 11284 bool UseArithShift = isSigned && !C.isMinSignedValue(); 11285 SDValue ShiftAmt = DAG.getShiftAmountConstant(C.logBase2(), VT, dl); 11286 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 11287 Overflow = DAG.getSetCC(dl, SetCCVT, 11288 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 11289 dl, VT, Result, ShiftAmt), 11290 LHS, ISD::SETNE); 11291 return true; 11292 } 11293 } 11294 11295 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 11296 if (VT.isVector()) 11297 WideVT = 11298 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 11299 11300 SDValue BottomHalf; 11301 SDValue TopHalf; 11302 static const unsigned Ops[2][3] = 11303 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 11304 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 11305 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 11306 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 11307 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 11308 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 11309 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 11310 RHS); 11311 TopHalf = BottomHalf.getValue(1); 11312 } else if (isTypeLegal(WideVT)) { 11313 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 11314 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 11315 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 11316 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 11317 SDValue ShiftAmt = 11318 DAG.getShiftAmountConstant(VT.getScalarSizeInBits(), WideVT, dl); 11319 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 11320 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 11321 } else { 11322 if (VT.isVector()) 11323 return false; 11324 11325 forceExpandWideMUL(DAG, dl, isSigned, LHS, RHS, BottomHalf, TopHalf); 11326 } 11327 11328 Result = BottomHalf; 11329 if (isSigned) { 11330 SDValue ShiftAmt = DAG.getShiftAmountConstant( 11331 VT.getScalarSizeInBits() - 1, BottomHalf.getValueType(), dl); 11332 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 11333 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 11334 } else { 11335 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 11336 DAG.getConstant(0, dl, VT), ISD::SETNE); 11337 } 11338 11339 // Truncate the result if SetCC returns a larger type than needed. 11340 EVT RType = Node->getValueType(1); 11341 if (RType.bitsLT(Overflow.getValueType())) 11342 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 11343 11344 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 11345 "Unexpected result type for S/UMULO legalization"); 11346 return true; 11347 } 11348 11349 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 11350 SDLoc dl(Node); 11351 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 11352 SDValue Op = Node->getOperand(0); 11353 EVT VT = Op.getValueType(); 11354 11355 if (VT.isScalableVector()) 11356 report_fatal_error( 11357 "Expanding reductions for scalable vectors is undefined."); 11358 11359 // Try to use a shuffle reduction for power of two vectors. 11360 if (VT.isPow2VectorType()) { 11361 while (VT.getVectorNumElements() > 1) { 11362 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 11363 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 11364 break; 11365 11366 SDValue Lo, Hi; 11367 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 11368 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi, Node->getFlags()); 11369 VT = HalfVT; 11370 } 11371 } 11372 11373 EVT EltVT = VT.getVectorElementType(); 11374 unsigned NumElts = VT.getVectorNumElements(); 11375 11376 SmallVector<SDValue, 8> Ops; 11377 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 11378 11379 SDValue Res = Ops[0]; 11380 for (unsigned i = 1; i < NumElts; i++) 11381 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 11382 11383 // Result type may be wider than element type. 11384 if (EltVT != Node->getValueType(0)) 11385 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 11386 return Res; 11387 } 11388 11389 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 11390 SDLoc dl(Node); 11391 SDValue AccOp = Node->getOperand(0); 11392 SDValue VecOp = Node->getOperand(1); 11393 SDNodeFlags Flags = Node->getFlags(); 11394 11395 EVT VT = VecOp.getValueType(); 11396 EVT EltVT = VT.getVectorElementType(); 11397 11398 if (VT.isScalableVector()) 11399 report_fatal_error( 11400 "Expanding reductions for scalable vectors is undefined."); 11401 11402 unsigned NumElts = VT.getVectorNumElements(); 11403 11404 SmallVector<SDValue, 8> Ops; 11405 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 11406 11407 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 11408 11409 SDValue Res = AccOp; 11410 for (unsigned i = 0; i < NumElts; i++) 11411 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 11412 11413 return Res; 11414 } 11415 11416 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 11417 SelectionDAG &DAG) const { 11418 EVT VT = Node->getValueType(0); 11419 SDLoc dl(Node); 11420 bool isSigned = Node->getOpcode() == ISD::SREM; 11421 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 11422 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 11423 SDValue Dividend = Node->getOperand(0); 11424 SDValue Divisor = Node->getOperand(1); 11425 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 11426 SDVTList VTs = DAG.getVTList(VT, VT); 11427 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 11428 return true; 11429 } 11430 if (isOperationLegalOrCustom(DivOpc, VT)) { 11431 // X % Y -> X-X/Y*Y 11432 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 11433 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 11434 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 11435 return true; 11436 } 11437 return false; 11438 } 11439 11440 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 11441 SelectionDAG &DAG) const { 11442 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 11443 SDLoc dl(SDValue(Node, 0)); 11444 SDValue Src = Node->getOperand(0); 11445 11446 // DstVT is the result type, while SatVT is the size to which we saturate 11447 EVT SrcVT = Src.getValueType(); 11448 EVT DstVT = Node->getValueType(0); 11449 11450 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 11451 unsigned SatWidth = SatVT.getScalarSizeInBits(); 11452 unsigned DstWidth = DstVT.getScalarSizeInBits(); 11453 assert(SatWidth <= DstWidth && 11454 "Expected saturation width smaller than result width"); 11455 11456 // Determine minimum and maximum integer values and their corresponding 11457 // floating-point values. 11458 APInt MinInt, MaxInt; 11459 if (IsSigned) { 11460 MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth); 11461 MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth); 11462 } else { 11463 MinInt = APInt::getMinValue(SatWidth).zext(DstWidth); 11464 MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth); 11465 } 11466 11467 // We cannot risk emitting FP_TO_XINT nodes with a source VT of [b]f16, as 11468 // libcall emission cannot handle this. Large result types will fail. 11469 if (SrcVT == MVT::f16 || SrcVT == MVT::bf16) { 11470 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 11471 SrcVT = Src.getValueType(); 11472 } 11473 11474 const fltSemantics &Sem = SrcVT.getFltSemantics(); 11475 APFloat MinFloat(Sem); 11476 APFloat MaxFloat(Sem); 11477 11478 APFloat::opStatus MinStatus = 11479 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 11480 APFloat::opStatus MaxStatus = 11481 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 11482 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 11483 !(MaxStatus & APFloat::opStatus::opInexact); 11484 11485 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 11486 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 11487 11488 // If the integer bounds are exactly representable as floats and min/max are 11489 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 11490 // of comparisons and selects. 11491 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 11492 isOperationLegal(ISD::FMAXNUM, SrcVT); 11493 if (AreExactFloatBounds && MinMaxLegal) { 11494 SDValue Clamped = Src; 11495 11496 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 11497 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 11498 // Clamp by MaxFloat from above. NaN cannot occur. 11499 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 11500 // Convert clamped value to integer. 11501 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 11502 dl, DstVT, Clamped); 11503 11504 // In the unsigned case we're done, because we mapped NaN to MinFloat, 11505 // which will cast to zero. 11506 if (!IsSigned) 11507 return FpToInt; 11508 11509 // Otherwise, select 0 if Src is NaN. 11510 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 11511 EVT SetCCVT = 11512 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 11513 SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO); 11514 return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, FpToInt); 11515 } 11516 11517 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 11518 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 11519 11520 // Result of direct conversion. The assumption here is that the operation is 11521 // non-trapping and it's fine to apply it to an out-of-range value if we 11522 // select it away later. 11523 SDValue FpToInt = 11524 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 11525 11526 SDValue Select = FpToInt; 11527 11528 EVT SetCCVT = 11529 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 11530 11531 // If Src ULT MinFloat, select MinInt. In particular, this also selects 11532 // MinInt if Src is NaN. 11533 SDValue ULT = DAG.getSetCC(dl, SetCCVT, Src, MinFloatNode, ISD::SETULT); 11534 Select = DAG.getSelect(dl, DstVT, ULT, MinIntNode, Select); 11535 // If Src OGT MaxFloat, select MaxInt. 11536 SDValue OGT = DAG.getSetCC(dl, SetCCVT, Src, MaxFloatNode, ISD::SETOGT); 11537 Select = DAG.getSelect(dl, DstVT, OGT, MaxIntNode, Select); 11538 11539 // In the unsigned case we are done, because we mapped NaN to MinInt, which 11540 // is already zero. 11541 if (!IsSigned) 11542 return Select; 11543 11544 // Otherwise, select 0 if Src is NaN. 11545 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 11546 SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO); 11547 return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, Select); 11548 } 11549 11550 SDValue TargetLowering::expandRoundInexactToOdd(EVT ResultVT, SDValue Op, 11551 const SDLoc &dl, 11552 SelectionDAG &DAG) const { 11553 EVT OperandVT = Op.getValueType(); 11554 if (OperandVT.getScalarType() == ResultVT.getScalarType()) 11555 return Op; 11556 EVT ResultIntVT = ResultVT.changeTypeToInteger(); 11557 // We are rounding binary64/binary128 -> binary32 -> bfloat16. This 11558 // can induce double-rounding which may alter the results. We can 11559 // correct for this using a trick explained in: Boldo, Sylvie, and 11560 // Guillaume Melquiond. "When double rounding is odd." 17th IMACS 11561 // World Congress. 2005. 11562 unsigned BitSize = OperandVT.getScalarSizeInBits(); 11563 EVT WideIntVT = OperandVT.changeTypeToInteger(); 11564 SDValue OpAsInt = DAG.getBitcast(WideIntVT, Op); 11565 SDValue SignBit = 11566 DAG.getNode(ISD::AND, dl, WideIntVT, OpAsInt, 11567 DAG.getConstant(APInt::getSignMask(BitSize), dl, WideIntVT)); 11568 SDValue AbsWide; 11569 if (isOperationLegalOrCustom(ISD::FABS, OperandVT)) { 11570 AbsWide = DAG.getNode(ISD::FABS, dl, OperandVT, Op); 11571 } else { 11572 SDValue ClearedSign = DAG.getNode( 11573 ISD::AND, dl, WideIntVT, OpAsInt, 11574 DAG.getConstant(APInt::getSignedMaxValue(BitSize), dl, WideIntVT)); 11575 AbsWide = DAG.getBitcast(OperandVT, ClearedSign); 11576 } 11577 SDValue AbsNarrow = DAG.getFPExtendOrRound(AbsWide, dl, ResultVT); 11578 SDValue AbsNarrowAsWide = DAG.getFPExtendOrRound(AbsNarrow, dl, OperandVT); 11579 11580 // We can keep the narrow value as-is if narrowing was exact (no 11581 // rounding error), the wide value was NaN (the narrow value is also 11582 // NaN and should be preserved) or if we rounded to the odd value. 11583 SDValue NarrowBits = DAG.getNode(ISD::BITCAST, dl, ResultIntVT, AbsNarrow); 11584 SDValue One = DAG.getConstant(1, dl, ResultIntVT); 11585 SDValue NegativeOne = DAG.getAllOnesConstant(dl, ResultIntVT); 11586 SDValue And = DAG.getNode(ISD::AND, dl, ResultIntVT, NarrowBits, One); 11587 EVT ResultIntVTCCVT = getSetCCResultType( 11588 DAG.getDataLayout(), *DAG.getContext(), And.getValueType()); 11589 SDValue Zero = DAG.getConstant(0, dl, ResultIntVT); 11590 // The result is already odd so we don't need to do anything. 11591 SDValue AlreadyOdd = DAG.getSetCC(dl, ResultIntVTCCVT, And, Zero, ISD::SETNE); 11592 11593 EVT WideSetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 11594 AbsWide.getValueType()); 11595 // We keep results which are exact, odd or NaN. 11596 SDValue KeepNarrow = 11597 DAG.getSetCC(dl, WideSetCCVT, AbsWide, AbsNarrowAsWide, ISD::SETUEQ); 11598 KeepNarrow = DAG.getNode(ISD::OR, dl, WideSetCCVT, KeepNarrow, AlreadyOdd); 11599 // We morally performed a round-down if AbsNarrow is smaller than 11600 // AbsWide. 11601 SDValue NarrowIsRd = 11602 DAG.getSetCC(dl, WideSetCCVT, AbsWide, AbsNarrowAsWide, ISD::SETOGT); 11603 // If the narrow value is odd or exact, pick it. 11604 // Otherwise, narrow is even and corresponds to either the rounded-up 11605 // or rounded-down value. If narrow is the rounded-down value, we want 11606 // the rounded-up value as it will be odd. 11607 SDValue Adjust = DAG.getSelect(dl, ResultIntVT, NarrowIsRd, One, NegativeOne); 11608 SDValue Adjusted = DAG.getNode(ISD::ADD, dl, ResultIntVT, NarrowBits, Adjust); 11609 Op = DAG.getSelect(dl, ResultIntVT, KeepNarrow, NarrowBits, Adjusted); 11610 int ShiftAmount = BitSize - ResultVT.getScalarSizeInBits(); 11611 SDValue ShiftCnst = DAG.getShiftAmountConstant(ShiftAmount, WideIntVT, dl); 11612 SignBit = DAG.getNode(ISD::SRL, dl, WideIntVT, SignBit, ShiftCnst); 11613 SignBit = DAG.getNode(ISD::TRUNCATE, dl, ResultIntVT, SignBit); 11614 Op = DAG.getNode(ISD::OR, dl, ResultIntVT, Op, SignBit); 11615 return DAG.getNode(ISD::BITCAST, dl, ResultVT, Op); 11616 } 11617 11618 SDValue TargetLowering::expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const { 11619 assert(Node->getOpcode() == ISD::FP_ROUND && "Unexpected opcode!"); 11620 SDValue Op = Node->getOperand(0); 11621 EVT VT = Node->getValueType(0); 11622 SDLoc dl(Node); 11623 if (VT.getScalarType() == MVT::bf16) { 11624 if (Node->getConstantOperandVal(1) == 1) { 11625 return DAG.getNode(ISD::FP_TO_BF16, dl, VT, Node->getOperand(0)); 11626 } 11627 EVT OperandVT = Op.getValueType(); 11628 SDValue IsNaN = DAG.getSetCC( 11629 dl, 11630 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), OperandVT), 11631 Op, Op, ISD::SETUO); 11632 11633 // We are rounding binary64/binary128 -> binary32 -> bfloat16. This 11634 // can induce double-rounding which may alter the results. We can 11635 // correct for this using a trick explained in: Boldo, Sylvie, and 11636 // Guillaume Melquiond. "When double rounding is odd." 17th IMACS 11637 // World Congress. 2005. 11638 EVT F32 = VT.isVector() ? VT.changeVectorElementType(MVT::f32) : MVT::f32; 11639 EVT I32 = F32.changeTypeToInteger(); 11640 Op = expandRoundInexactToOdd(F32, Op, dl, DAG); 11641 Op = DAG.getNode(ISD::BITCAST, dl, I32, Op); 11642 11643 // Conversions should set NaN's quiet bit. This also prevents NaNs from 11644 // turning into infinities. 11645 SDValue NaN = 11646 DAG.getNode(ISD::OR, dl, I32, Op, DAG.getConstant(0x400000, dl, I32)); 11647 11648 // Factor in the contribution of the low 16 bits. 11649 SDValue One = DAG.getConstant(1, dl, I32); 11650 SDValue Lsb = DAG.getNode(ISD::SRL, dl, I32, Op, 11651 DAG.getShiftAmountConstant(16, I32, dl)); 11652 Lsb = DAG.getNode(ISD::AND, dl, I32, Lsb, One); 11653 SDValue RoundingBias = 11654 DAG.getNode(ISD::ADD, dl, I32, DAG.getConstant(0x7fff, dl, I32), Lsb); 11655 SDValue Add = DAG.getNode(ISD::ADD, dl, I32, Op, RoundingBias); 11656 11657 // Don't round if we had a NaN, we don't want to turn 0x7fffffff into 11658 // 0x80000000. 11659 Op = DAG.getSelect(dl, I32, IsNaN, NaN, Add); 11660 11661 // Now that we have rounded, shift the bits into position. 11662 Op = DAG.getNode(ISD::SRL, dl, I32, Op, 11663 DAG.getShiftAmountConstant(16, I32, dl)); 11664 Op = DAG.getNode(ISD::BITCAST, dl, I32, Op); 11665 EVT I16 = I32.isVector() ? I32.changeVectorElementType(MVT::i16) : MVT::i16; 11666 Op = DAG.getNode(ISD::TRUNCATE, dl, I16, Op); 11667 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 11668 } 11669 return SDValue(); 11670 } 11671 11672 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 11673 SelectionDAG &DAG) const { 11674 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 11675 assert(Node->getValueType(0).isScalableVector() && 11676 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 11677 11678 EVT VT = Node->getValueType(0); 11679 SDValue V1 = Node->getOperand(0); 11680 SDValue V2 = Node->getOperand(1); 11681 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 11682 SDLoc DL(Node); 11683 11684 // Expand through memory thusly: 11685 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 11686 // Store V1, Ptr 11687 // Store V2, Ptr + sizeof(V1) 11688 // If (Imm < 0) 11689 // TrailingElts = -Imm 11690 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 11691 // else 11692 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 11693 // Res = Load Ptr 11694 11695 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 11696 11697 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 11698 VT.getVectorElementCount() * 2); 11699 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 11700 EVT PtrVT = StackPtr.getValueType(); 11701 auto &MF = DAG.getMachineFunction(); 11702 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 11703 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 11704 11705 // Store the lo part of CONCAT_VECTORS(V1, V2) 11706 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 11707 // Store the hi part of CONCAT_VECTORS(V1, V2) 11708 SDValue OffsetToV2 = DAG.getVScale( 11709 DL, PtrVT, 11710 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinValue())); 11711 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 11712 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 11713 11714 if (Imm >= 0) { 11715 // Load back the required element. getVectorElementPointer takes care of 11716 // clamping the index if it's out-of-bounds. 11717 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 11718 // Load the spliced result 11719 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 11720 MachinePointerInfo::getUnknownStack(MF)); 11721 } 11722 11723 uint64_t TrailingElts = -Imm; 11724 11725 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 11726 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 11727 SDValue TrailingBytes = 11728 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 11729 11730 if (TrailingElts > VT.getVectorMinNumElements()) { 11731 SDValue VLBytes = 11732 DAG.getVScale(DL, PtrVT, 11733 APInt(PtrVT.getFixedSizeInBits(), 11734 VT.getStoreSize().getKnownMinValue())); 11735 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 11736 } 11737 11738 // Calculate the start address of the spliced result. 11739 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 11740 11741 // Load the spliced result 11742 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 11743 MachinePointerInfo::getUnknownStack(MF)); 11744 } 11745 11746 SDValue TargetLowering::expandVECTOR_COMPRESS(SDNode *Node, 11747 SelectionDAG &DAG) const { 11748 SDLoc DL(Node); 11749 SDValue Vec = Node->getOperand(0); 11750 SDValue Mask = Node->getOperand(1); 11751 SDValue Passthru = Node->getOperand(2); 11752 11753 EVT VecVT = Vec.getValueType(); 11754 EVT ScalarVT = VecVT.getScalarType(); 11755 EVT MaskVT = Mask.getValueType(); 11756 EVT MaskScalarVT = MaskVT.getScalarType(); 11757 11758 // Needs to be handled by targets that have scalable vector types. 11759 if (VecVT.isScalableVector()) 11760 report_fatal_error("Cannot expand masked_compress for scalable vectors."); 11761 11762 SDValue StackPtr = DAG.CreateStackTemporary( 11763 VecVT.getStoreSize(), DAG.getReducedAlign(VecVT, /*UseABI=*/false)); 11764 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 11765 MachinePointerInfo PtrInfo = 11766 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 11767 11768 MVT PositionVT = getVectorIdxTy(DAG.getDataLayout()); 11769 SDValue Chain = DAG.getEntryNode(); 11770 SDValue OutPos = DAG.getConstant(0, DL, PositionVT); 11771 11772 bool HasPassthru = !Passthru.isUndef(); 11773 11774 // If we have a passthru vector, store it on the stack, overwrite the matching 11775 // positions and then re-write the last element that was potentially 11776 // overwritten even though mask[i] = false. 11777 if (HasPassthru) 11778 Chain = DAG.getStore(Chain, DL, Passthru, StackPtr, PtrInfo); 11779 11780 SDValue LastWriteVal; 11781 APInt PassthruSplatVal; 11782 bool IsSplatPassthru = 11783 ISD::isConstantSplatVector(Passthru.getNode(), PassthruSplatVal); 11784 11785 if (IsSplatPassthru) { 11786 // As we do not know which position we wrote to last, we cannot simply 11787 // access that index from the passthru vector. So we first check if passthru 11788 // is a splat vector, to use any element ... 11789 LastWriteVal = DAG.getConstant(PassthruSplatVal, DL, ScalarVT); 11790 } else if (HasPassthru) { 11791 // ... if it is not a splat vector, we need to get the passthru value at 11792 // position = popcount(mask) and re-load it from the stack before it is 11793 // overwritten in the loop below. 11794 EVT PopcountVT = ScalarVT.changeTypeToInteger(); 11795 SDValue Popcount = DAG.getNode( 11796 ISD::TRUNCATE, DL, MaskVT.changeVectorElementType(MVT::i1), Mask); 11797 Popcount = 11798 DAG.getNode(ISD::ZERO_EXTEND, DL, 11799 MaskVT.changeVectorElementType(PopcountVT), Popcount); 11800 Popcount = DAG.getNode(ISD::VECREDUCE_ADD, DL, PopcountVT, Popcount); 11801 SDValue LastElmtPtr = 11802 getVectorElementPointer(DAG, StackPtr, VecVT, Popcount); 11803 LastWriteVal = DAG.getLoad( 11804 ScalarVT, DL, Chain, LastElmtPtr, 11805 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 11806 Chain = LastWriteVal.getValue(1); 11807 } 11808 11809 unsigned NumElms = VecVT.getVectorNumElements(); 11810 for (unsigned I = 0; I < NumElms; I++) { 11811 SDValue Idx = DAG.getVectorIdxConstant(I, DL); 11812 11813 SDValue ValI = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, Vec, Idx); 11814 SDValue OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos); 11815 Chain = DAG.getStore( 11816 Chain, DL, ValI, OutPtr, 11817 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 11818 11819 // Get the mask value and add it to the current output position. This 11820 // either increments by 1 if MaskI is true or adds 0 otherwise. 11821 // Freeze in case we have poison/undef mask entries. 11822 SDValue MaskI = DAG.getFreeze( 11823 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskScalarVT, Mask, Idx)); 11824 MaskI = DAG.getFreeze(MaskI); 11825 MaskI = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, MaskI); 11826 MaskI = DAG.getNode(ISD::ZERO_EXTEND, DL, PositionVT, MaskI); 11827 OutPos = DAG.getNode(ISD::ADD, DL, PositionVT, OutPos, MaskI); 11828 11829 if (HasPassthru && I == NumElms - 1) { 11830 SDValue EndOfVector = 11831 DAG.getConstant(VecVT.getVectorNumElements() - 1, DL, PositionVT); 11832 SDValue AllLanesSelected = 11833 DAG.getSetCC(DL, MVT::i1, OutPos, EndOfVector, ISD::CondCode::SETUGT); 11834 OutPos = DAG.getNode(ISD::UMIN, DL, PositionVT, OutPos, EndOfVector); 11835 OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos); 11836 11837 // Re-write the last ValI if all lanes were selected. Otherwise, 11838 // overwrite the last write it with the passthru value. 11839 LastWriteVal = DAG.getSelect(DL, ScalarVT, AllLanesSelected, ValI, 11840 LastWriteVal, SDNodeFlags::Unpredictable); 11841 Chain = DAG.getStore( 11842 Chain, DL, LastWriteVal, OutPtr, 11843 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 11844 } 11845 } 11846 11847 return DAG.getLoad(VecVT, DL, Chain, StackPtr, PtrInfo); 11848 } 11849 11850 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 11851 SDValue &LHS, SDValue &RHS, 11852 SDValue &CC, SDValue Mask, 11853 SDValue EVL, bool &NeedInvert, 11854 const SDLoc &dl, SDValue &Chain, 11855 bool IsSignaling) const { 11856 MVT OpVT = LHS.getSimpleValueType(); 11857 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 11858 NeedInvert = false; 11859 assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset"); 11860 bool IsNonVP = !EVL; 11861 switch (getCondCodeAction(CCCode, OpVT)) { 11862 default: 11863 llvm_unreachable("Unknown condition code action!"); 11864 case TargetLowering::Legal: 11865 // Nothing to do. 11866 break; 11867 case TargetLowering::Expand: { 11868 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 11869 if (isCondCodeLegalOrCustom(InvCC, OpVT)) { 11870 std::swap(LHS, RHS); 11871 CC = DAG.getCondCode(InvCC); 11872 return true; 11873 } 11874 // Swapping operands didn't work. Try inverting the condition. 11875 bool NeedSwap = false; 11876 InvCC = getSetCCInverse(CCCode, OpVT); 11877 if (!isCondCodeLegalOrCustom(InvCC, OpVT)) { 11878 // If inverting the condition is not enough, try swapping operands 11879 // on top of it. 11880 InvCC = ISD::getSetCCSwappedOperands(InvCC); 11881 NeedSwap = true; 11882 } 11883 if (isCondCodeLegalOrCustom(InvCC, OpVT)) { 11884 CC = DAG.getCondCode(InvCC); 11885 NeedInvert = true; 11886 if (NeedSwap) 11887 std::swap(LHS, RHS); 11888 return true; 11889 } 11890 11891 // Special case: expand i1 comparisons using logical operations. 11892 if (OpVT == MVT::i1) { 11893 SDValue Ret; 11894 switch (CCCode) { 11895 default: 11896 llvm_unreachable("Unknown integer setcc!"); 11897 case ISD::SETEQ: // X == Y --> ~(X ^ Y) 11898 Ret = DAG.getNOT(dl, DAG.getNode(ISD::XOR, dl, MVT::i1, LHS, RHS), 11899 MVT::i1); 11900 break; 11901 case ISD::SETNE: // X != Y --> (X ^ Y) 11902 Ret = DAG.getNode(ISD::XOR, dl, MVT::i1, LHS, RHS); 11903 break; 11904 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 11905 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 11906 Ret = DAG.getNode(ISD::AND, dl, MVT::i1, RHS, 11907 DAG.getNOT(dl, LHS, MVT::i1)); 11908 break; 11909 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 11910 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 11911 Ret = DAG.getNode(ISD::AND, dl, MVT::i1, LHS, 11912 DAG.getNOT(dl, RHS, MVT::i1)); 11913 break; 11914 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 11915 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 11916 Ret = DAG.getNode(ISD::OR, dl, MVT::i1, RHS, 11917 DAG.getNOT(dl, LHS, MVT::i1)); 11918 break; 11919 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 11920 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 11921 Ret = DAG.getNode(ISD::OR, dl, MVT::i1, LHS, 11922 DAG.getNOT(dl, RHS, MVT::i1)); 11923 break; 11924 } 11925 11926 LHS = DAG.getZExtOrTrunc(Ret, dl, VT); 11927 RHS = SDValue(); 11928 CC = SDValue(); 11929 return true; 11930 } 11931 11932 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 11933 unsigned Opc = 0; 11934 switch (CCCode) { 11935 default: 11936 llvm_unreachable("Don't know how to expand this condition!"); 11937 case ISD::SETUO: 11938 if (isCondCodeLegal(ISD::SETUNE, OpVT)) { 11939 CC1 = ISD::SETUNE; 11940 CC2 = ISD::SETUNE; 11941 Opc = ISD::OR; 11942 break; 11943 } 11944 assert(isCondCodeLegal(ISD::SETOEQ, OpVT) && 11945 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 11946 NeedInvert = true; 11947 [[fallthrough]]; 11948 case ISD::SETO: 11949 assert(isCondCodeLegal(ISD::SETOEQ, OpVT) && 11950 "If SETO is expanded, SETOEQ must be legal!"); 11951 CC1 = ISD::SETOEQ; 11952 CC2 = ISD::SETOEQ; 11953 Opc = ISD::AND; 11954 break; 11955 case ISD::SETONE: 11956 case ISD::SETUEQ: 11957 // If the SETUO or SETO CC isn't legal, we might be able to use 11958 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 11959 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 11960 // the operands. 11961 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 11962 if (!isCondCodeLegal(CC2, OpVT) && (isCondCodeLegal(ISD::SETOGT, OpVT) || 11963 isCondCodeLegal(ISD::SETOLT, OpVT))) { 11964 CC1 = ISD::SETOGT; 11965 CC2 = ISD::SETOLT; 11966 Opc = ISD::OR; 11967 NeedInvert = ((unsigned)CCCode & 0x8U); 11968 break; 11969 } 11970 [[fallthrough]]; 11971 case ISD::SETOEQ: 11972 case ISD::SETOGT: 11973 case ISD::SETOGE: 11974 case ISD::SETOLT: 11975 case ISD::SETOLE: 11976 case ISD::SETUNE: 11977 case ISD::SETUGT: 11978 case ISD::SETUGE: 11979 case ISD::SETULT: 11980 case ISD::SETULE: 11981 // If we are floating point, assign and break, otherwise fall through. 11982 if (!OpVT.isInteger()) { 11983 // We can use the 4th bit to tell if we are the unordered 11984 // or ordered version of the opcode. 11985 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 11986 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 11987 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 11988 break; 11989 } 11990 // Fallthrough if we are unsigned integer. 11991 [[fallthrough]]; 11992 case ISD::SETLE: 11993 case ISD::SETGT: 11994 case ISD::SETGE: 11995 case ISD::SETLT: 11996 case ISD::SETNE: 11997 case ISD::SETEQ: 11998 // If all combinations of inverting the condition and swapping operands 11999 // didn't work then we have no means to expand the condition. 12000 llvm_unreachable("Don't know how to expand this condition!"); 12001 } 12002 12003 SDValue SetCC1, SetCC2; 12004 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 12005 // If we aren't the ordered or unorder operation, 12006 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 12007 if (IsNonVP) { 12008 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 12009 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 12010 } else { 12011 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL); 12012 SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL); 12013 } 12014 } else { 12015 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 12016 if (IsNonVP) { 12017 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 12018 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 12019 } else { 12020 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL); 12021 SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL); 12022 } 12023 } 12024 if (Chain) 12025 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 12026 SetCC2.getValue(1)); 12027 if (IsNonVP) 12028 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 12029 else { 12030 // Transform the binary opcode to the VP equivalent. 12031 assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode"); 12032 Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND; 12033 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL); 12034 } 12035 RHS = SDValue(); 12036 CC = SDValue(); 12037 return true; 12038 } 12039 } 12040 return false; 12041 } 12042 12043 SDValue TargetLowering::expandVectorNaryOpBySplitting(SDNode *Node, 12044 SelectionDAG &DAG) const { 12045 EVT VT = Node->getValueType(0); 12046 // Despite its documentation, GetSplitDestVTs will assert if VT cannot be 12047 // split into two equal parts. 12048 if (!VT.isVector() || !VT.getVectorElementCount().isKnownMultipleOf(2)) 12049 return SDValue(); 12050 12051 // Restrict expansion to cases where both parts can be concatenated. 12052 auto [LoVT, HiVT] = DAG.GetSplitDestVTs(VT); 12053 if (LoVT != HiVT || !isTypeLegal(LoVT)) 12054 return SDValue(); 12055 12056 SDLoc DL(Node); 12057 unsigned Opcode = Node->getOpcode(); 12058 12059 // Don't expand if the result is likely to be unrolled anyway. 12060 if (!isOperationLegalOrCustomOrPromote(Opcode, LoVT)) 12061 return SDValue(); 12062 12063 SmallVector<SDValue, 4> LoOps, HiOps; 12064 for (const SDValue &V : Node->op_values()) { 12065 auto [Lo, Hi] = DAG.SplitVector(V, DL, LoVT, HiVT); 12066 LoOps.push_back(Lo); 12067 HiOps.push_back(Hi); 12068 } 12069 12070 SDValue SplitOpLo = DAG.getNode(Opcode, DL, LoVT, LoOps); 12071 SDValue SplitOpHi = DAG.getNode(Opcode, DL, HiVT, HiOps); 12072 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, SplitOpLo, SplitOpHi); 12073 } 12074