xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp (revision a588e20280435a880c730602c3bf0a7f78e599f2)
1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file includes support code use by SelectionDAGBuilder when lowering a
10 // statepoint sequence in SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "StatepointLowering.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallBitVector.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/FunctionLoweringInfo.h"
24 #include "llvm/CodeGen/GCMetadata.h"
25 #include "llvm/CodeGen/ISDOpcodes.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/SelectionDAG.h"
30 #include "llvm/CodeGen/SelectionDAGNodes.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/CodeGen/TargetLowering.h"
33 #include "llvm/CodeGen/TargetOpcodes.h"
34 #include "llvm/CodeGenTypes/MachineValueType.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/GCStrategy.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/Statepoint.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Target/TargetMachine.h"
46 #include "llvm/Target/TargetOptions.h"
47 #include <cassert>
48 #include <cstddef>
49 #include <cstdint>
50 #include <iterator>
51 #include <tuple>
52 #include <utility>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "statepoint-lowering"
57 
58 STATISTIC(NumSlotsAllocatedForStatepoints,
59           "Number of stack slots allocated for statepoints");
60 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
61 STATISTIC(StatepointMaxSlotsRequired,
62           "Maximum number of stack slots required for a singe statepoint");
63 
64 static cl::opt<bool> UseRegistersForDeoptValues(
65     "use-registers-for-deopt-values", cl::Hidden, cl::init(false),
66     cl::desc("Allow using registers for non pointer deopt args"));
67 
68 static cl::opt<bool> UseRegistersForGCPointersInLandingPad(
69     "use-registers-for-gc-values-in-landing-pad", cl::Hidden, cl::init(false),
70     cl::desc("Allow using registers for gc pointer in landing pad"));
71 
72 static cl::opt<unsigned> MaxRegistersForGCPointers(
73     "max-registers-for-gc-values", cl::Hidden, cl::init(0),
74     cl::desc("Max number of VRegs allowed to pass GC pointer meta args in"));
75 
76 typedef FunctionLoweringInfo::StatepointRelocationRecord RecordType;
77 
78 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
79                                  SelectionDAGBuilder &Builder, uint64_t Value) {
80   SDLoc L = Builder.getCurSDLoc();
81   Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
82                                               MVT::i64));
83   Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
84 }
85 
86 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
87   // Consistency check
88   assert(PendingGCRelocateCalls.empty() &&
89          "Trying to visit statepoint before finished processing previous one");
90   Locations.clear();
91   NextSlotToAllocate = 0;
92   // Need to resize this on each safepoint - we need the two to stay in sync and
93   // the clear patterns of a SelectionDAGBuilder have no relation to
94   // FunctionLoweringInfo.  Also need to ensure used bits get cleared.
95   AllocatedStackSlots.clear();
96   AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
97 }
98 
99 void StatepointLoweringState::clear() {
100   Locations.clear();
101   AllocatedStackSlots.clear();
102   assert(PendingGCRelocateCalls.empty() &&
103          "cleared before statepoint sequence completed");
104 }
105 
106 SDValue
107 StatepointLoweringState::allocateStackSlot(EVT ValueType,
108                                            SelectionDAGBuilder &Builder) {
109   NumSlotsAllocatedForStatepoints++;
110   MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
111 
112   unsigned SpillSize = ValueType.getStoreSize();
113   assert((SpillSize * 8) ==
114              (-8u & (7 + ValueType.getSizeInBits())) && // Round up modulo 8.
115          "Size not in bytes?");
116 
117   // First look for a previously created stack slot which is not in
118   // use (accounting for the fact arbitrary slots may already be
119   // reserved), or to create a new stack slot and use it.
120 
121   const size_t NumSlots = AllocatedStackSlots.size();
122   assert(NextSlotToAllocate <= NumSlots && "Broken invariant");
123 
124   assert(AllocatedStackSlots.size() ==
125          Builder.FuncInfo.StatepointStackSlots.size() &&
126          "Broken invariant");
127 
128   for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) {
129     if (!AllocatedStackSlots.test(NextSlotToAllocate)) {
130       const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
131       if (MFI.getObjectSize(FI) == SpillSize) {
132         AllocatedStackSlots.set(NextSlotToAllocate);
133         // TODO: Is ValueType the right thing to use here?
134         return Builder.DAG.getFrameIndex(FI, ValueType);
135       }
136     }
137   }
138 
139   // Couldn't find a free slot, so create a new one:
140 
141   SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
142   const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
143   MFI.markAsStatepointSpillSlotObjectIndex(FI);
144 
145   Builder.FuncInfo.StatepointStackSlots.push_back(FI);
146   AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true);
147   assert(AllocatedStackSlots.size() ==
148          Builder.FuncInfo.StatepointStackSlots.size() &&
149          "Broken invariant");
150 
151   StatepointMaxSlotsRequired.updateMax(
152       Builder.FuncInfo.StatepointStackSlots.size());
153 
154   return SpillSlot;
155 }
156 
157 /// Utility function for reservePreviousStackSlotForValue. Tries to find
158 /// stack slot index to which we have spilled value for previous statepoints.
159 /// LookUpDepth specifies maximum DFS depth this function is allowed to look.
160 static std::optional<int> findPreviousSpillSlot(const Value *Val,
161                                                 SelectionDAGBuilder &Builder,
162                                                 int LookUpDepth) {
163   // Can not look any further - give up now
164   if (LookUpDepth <= 0)
165     return std::nullopt;
166 
167   // Spill location is known for gc relocates
168   if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) {
169     const Value *Statepoint = Relocate->getStatepoint();
170     assert((isa<GCStatepointInst>(Statepoint) || isa<UndefValue>(Statepoint)) &&
171            "GetStatepoint must return one of two types");
172     if (isa<UndefValue>(Statepoint))
173       return std::nullopt;
174 
175     const auto &RelocationMap = Builder.FuncInfo.StatepointRelocationMaps
176                                     [cast<GCStatepointInst>(Statepoint)];
177 
178     auto It = RelocationMap.find(Relocate);
179     if (It == RelocationMap.end())
180       return std::nullopt;
181 
182     auto &Record = It->second;
183     if (Record.type != RecordType::Spill)
184       return std::nullopt;
185 
186     return Record.payload.FI;
187   }
188 
189   // Look through bitcast instructions.
190   if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val))
191     return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);
192 
193   // Look through phi nodes
194   // All incoming values should have same known stack slot, otherwise result
195   // is unknown.
196   if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
197     std::optional<int> MergedResult;
198 
199     for (const auto &IncomingValue : Phi->incoming_values()) {
200       std::optional<int> SpillSlot =
201           findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
202       if (!SpillSlot)
203         return std::nullopt;
204 
205       if (MergedResult && *MergedResult != *SpillSlot)
206         return std::nullopt;
207 
208       MergedResult = SpillSlot;
209     }
210     return MergedResult;
211   }
212 
213   // TODO: We can do better for PHI nodes. In cases like this:
214   //   ptr = phi(relocated_pointer, not_relocated_pointer)
215   //   statepoint(ptr)
216   // We will return that stack slot for ptr is unknown. And later we might
217   // assign different stack slots for ptr and relocated_pointer. This limits
218   // llvm's ability to remove redundant stores.
219   // Unfortunately it's hard to accomplish in current infrastructure.
220   // We use this function to eliminate spill store completely, while
221   // in example we still need to emit store, but instead of any location
222   // we need to use special "preferred" location.
223 
224   // TODO: handle simple updates.  If a value is modified and the original
225   // value is no longer live, it would be nice to put the modified value in the
226   // same slot.  This allows folding of the memory accesses for some
227   // instructions types (like an increment).
228   //   statepoint (i)
229   //   i1 = i+1
230   //   statepoint (i1)
231   // However we need to be careful for cases like this:
232   //   statepoint(i)
233   //   i1 = i+1
234   //   statepoint(i, i1)
235   // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
236   // put handling of simple modifications in this function like it's done
237   // for bitcasts we might end up reserving i's slot for 'i+1' because order in
238   // which we visit values is unspecified.
239 
240   // Don't know any information about this instruction
241   return std::nullopt;
242 }
243 
244 /// Return true if-and-only-if the given SDValue can be lowered as either a
245 /// constant argument or a stack reference.  The key point is that the value
246 /// doesn't need to be spilled or tracked as a vreg use.
247 static bool willLowerDirectly(SDValue Incoming) {
248   // We are making an unchecked assumption that the frame size <= 2^16 as that
249   // is the largest offset which can be encoded in the stackmap format.
250   if (isa<FrameIndexSDNode>(Incoming))
251     return true;
252 
253   // The largest constant describeable in the StackMap format is 64 bits.
254   // Potential Optimization:  Constants values are sign extended by consumer,
255   // and thus there are many constants of static type > 64 bits whose value
256   // happens to be sext(Con64) and could thus be lowered directly.
257   if (Incoming.getValueType().getSizeInBits() > 64)
258     return false;
259 
260   return isIntOrFPConstant(Incoming) || Incoming.isUndef();
261 }
262 
263 /// Try to find existing copies of the incoming values in stack slots used for
264 /// statepoint spilling.  If we can find a spill slot for the incoming value,
265 /// mark that slot as allocated, and reuse the same slot for this safepoint.
266 /// This helps to avoid series of loads and stores that only serve to reshuffle
267 /// values on the stack between calls.
268 static void reservePreviousStackSlotForValue(const Value *IncomingValue,
269                                              SelectionDAGBuilder &Builder) {
270   SDValue Incoming = Builder.getValue(IncomingValue);
271 
272   // If we won't spill this, we don't need to check for previously allocated
273   // stack slots.
274   if (willLowerDirectly(Incoming))
275     return;
276 
277   SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
278   if (OldLocation.getNode())
279     // Duplicates in input
280     return;
281 
282   const int LookUpDepth = 6;
283   std::optional<int> Index =
284       findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
285   if (!Index)
286     return;
287 
288   const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots;
289 
290   auto SlotIt = find(StatepointSlots, *Index);
291   assert(SlotIt != StatepointSlots.end() &&
292          "Value spilled to the unknown stack slot");
293 
294   // This is one of our dedicated lowering slots
295   const int Offset = std::distance(StatepointSlots.begin(), SlotIt);
296   if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
297     // stack slot already assigned to someone else, can't use it!
298     // TODO: currently we reserve space for gc arguments after doing
299     // normal allocation for deopt arguments.  We should reserve for
300     // _all_ deopt and gc arguments, then start allocating.  This
301     // will prevent some moves being inserted when vm state changes,
302     // but gc state doesn't between two calls.
303     return;
304   }
305   // Reserve this stack slot
306   Builder.StatepointLowering.reserveStackSlot(Offset);
307 
308   // Cache this slot so we find it when going through the normal
309   // assignment loop.
310   SDValue Loc =
311       Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy());
312   Builder.StatepointLowering.setLocation(Incoming, Loc);
313 }
314 
315 /// Extract call from statepoint, lower it and return pointer to the
316 /// call node. Also update NodeMap so that getValue(statepoint) will
317 /// reference lowered call result
318 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo(
319     SelectionDAGBuilder::StatepointLoweringInfo &SI,
320     SelectionDAGBuilder &Builder) {
321   SDValue ReturnValue, CallEndVal;
322   std::tie(ReturnValue, CallEndVal) =
323       Builder.lowerInvokable(SI.CLI, SI.EHPadBB);
324   SDNode *CallEnd = CallEndVal.getNode();
325 
326   // Get a call instruction from the call sequence chain.  Tail calls are not
327   // allowed.  The following code is essentially reverse engineering X86's
328   // LowerCallTo.
329   //
330   // We are expecting DAG to have the following form:
331   //
332   // ch = eh_label (only in case of invoke statepoint)
333   //   ch, glue = callseq_start ch
334   //   ch, glue = X86::Call ch, glue
335   //   ch, glue = callseq_end ch, glue
336   //   get_return_value ch, glue
337   //
338   // get_return_value can either be a sequence of CopyFromReg instructions
339   // to grab the return value from the return register(s), or it can be a LOAD
340   // to load a value returned by reference via a stack slot.
341 
342   if (CallEnd->getOpcode() == ISD::EH_LABEL)
343     CallEnd = CallEnd->getOperand(0).getNode();
344 
345   bool HasDef = !SI.CLI.RetTy->isVoidTy();
346   if (HasDef) {
347     if (CallEnd->getOpcode() == ISD::LOAD)
348       CallEnd = CallEnd->getOperand(0).getNode();
349     else
350       while (CallEnd->getOpcode() == ISD::CopyFromReg)
351         CallEnd = CallEnd->getOperand(0).getNode();
352   }
353 
354   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
355   return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode());
356 }
357 
358 static MachineMemOperand* getMachineMemOperand(MachineFunction &MF,
359                                                FrameIndexSDNode &FI) {
360   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex());
361   auto MMOFlags = MachineMemOperand::MOStore |
362     MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
363   auto &MFI = MF.getFrameInfo();
364   return MF.getMachineMemOperand(PtrInfo, MMOFlags,
365                                  MFI.getObjectSize(FI.getIndex()),
366                                  MFI.getObjectAlign(FI.getIndex()));
367 }
368 
369 /// Spill a value incoming to the statepoint. It might be either part of
370 /// vmstate
371 /// or gcstate. In both cases unconditionally spill it on the stack unless it
372 /// is a null constant. Return pair with first element being frame index
373 /// containing saved value and second element with outgoing chain from the
374 /// emitted store
375 static std::tuple<SDValue, SDValue, MachineMemOperand*>
376 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
377                              SelectionDAGBuilder &Builder) {
378   SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
379   MachineMemOperand* MMO = nullptr;
380 
381   // Emit new store if we didn't do it for this ptr before
382   if (!Loc.getNode()) {
383     Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
384                                                        Builder);
385     int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
386     // We use TargetFrameIndex so that isel will not select it into LEA
387     Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy());
388 
389     // Right now we always allocate spill slots that are of the same
390     // size as the value we're about to spill (the size of spillee can
391     // vary since we spill vectors of pointers too).  At some point we
392     // can consider allowing spills of smaller values to larger slots
393     // (i.e. change the '==' in the assert below to a '>=').
394     MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
395     assert((MFI.getObjectSize(Index) * 8) ==
396                (-8 & (7 + // Round up modulo 8.
397                       (int64_t)Incoming.getValueSizeInBits())) &&
398            "Bad spill:  stack slot does not match!");
399 
400     // Note: Using the alignment of the spill slot (rather than the abi or
401     // preferred alignment) is required for correctness when dealing with spill
402     // slots with preferred alignments larger than frame alignment..
403     auto &MF = Builder.DAG.getMachineFunction();
404     auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
405     auto *StoreMMO = MF.getMachineMemOperand(
406         PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(Index),
407         MFI.getObjectAlign(Index));
408     Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
409                                  StoreMMO);
410 
411     MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc));
412 
413     Builder.StatepointLowering.setLocation(Incoming, Loc);
414   }
415 
416   assert(Loc.getNode());
417   return std::make_tuple(Loc, Chain, MMO);
418 }
419 
420 /// Lower a single value incoming to a statepoint node.  This value can be
421 /// either a deopt value or a gc value, the handling is the same.  We special
422 /// case constants and allocas, then fall back to spilling if required.
423 static void
424 lowerIncomingStatepointValue(SDValue Incoming, bool RequireSpillSlot,
425                              SmallVectorImpl<SDValue> &Ops,
426                              SmallVectorImpl<MachineMemOperand *> &MemRefs,
427                              SelectionDAGBuilder &Builder) {
428 
429   if (willLowerDirectly(Incoming)) {
430     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
431       // This handles allocas as arguments to the statepoint (this is only
432       // really meaningful for a deopt value.  For GC, we'd be trying to
433       // relocate the address of the alloca itself?)
434       assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
435              "Incoming value is a frame index!");
436       Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
437                                                     Builder.getFrameIndexTy()));
438 
439       auto &MF = Builder.DAG.getMachineFunction();
440       auto *MMO = getMachineMemOperand(MF, *FI);
441       MemRefs.push_back(MMO);
442       return;
443     }
444 
445     assert(Incoming.getValueType().getSizeInBits() <= 64);
446 
447     if (Incoming.isUndef()) {
448       // Put an easily recognized constant that's unlikely to be a valid
449       // value so that uses of undef by the consumer of the stackmap is
450       // easily recognized. This is legal since the compiler is always
451       // allowed to chose an arbitrary value for undef.
452       pushStackMapConstant(Ops, Builder, 0xFEFEFEFE);
453       return;
454     }
455 
456     // If the original value was a constant, make sure it gets recorded as
457     // such in the stackmap.  This is required so that the consumer can
458     // parse any internal format to the deopt state.  It also handles null
459     // pointers and other constant pointers in GC states.
460     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
461       pushStackMapConstant(Ops, Builder, C->getSExtValue());
462       return;
463     } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Incoming)) {
464       pushStackMapConstant(Ops, Builder,
465                            C->getValueAPF().bitcastToAPInt().getZExtValue());
466       return;
467     }
468 
469     llvm_unreachable("unhandled direct lowering case");
470   }
471 
472 
473 
474   if (!RequireSpillSlot) {
475     // If this value is live in (not live-on-return, or live-through), we can
476     // treat it the same way patchpoint treats it's "live in" values.  We'll
477     // end up folding some of these into stack references, but they'll be
478     // handled by the register allocator.  Note that we do not have the notion
479     // of a late use so these values might be placed in registers which are
480     // clobbered by the call.  This is fine for live-in. For live-through
481     // fix-up pass should be executed to force spilling of such registers.
482     Ops.push_back(Incoming);
483   } else {
484     // Otherwise, locate a spill slot and explicitly spill it so it can be
485     // found by the runtime later.  Note: We know all of these spills are
486     // independent, but don't bother to exploit that chain wise.  DAGCombine
487     // will happily do so as needed, so doing it here would be a small compile
488     // time win at most.
489     SDValue Chain = Builder.getRoot();
490     auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder);
491     Ops.push_back(std::get<0>(Res));
492     if (auto *MMO = std::get<2>(Res))
493       MemRefs.push_back(MMO);
494     Chain = std::get<1>(Res);
495     Builder.DAG.setRoot(Chain);
496   }
497 
498 }
499 
500 /// Return true if value V represents the GC value. The behavior is conservative
501 /// in case it is not sure that value is not GC the function returns true.
502 static bool isGCValue(const Value *V, SelectionDAGBuilder &Builder) {
503   auto *Ty = V->getType();
504   if (!Ty->isPtrOrPtrVectorTy())
505     return false;
506   if (auto *GFI = Builder.GFI)
507     if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
508       return *IsManaged;
509   return true; // conservative
510 }
511 
512 /// Lower deopt state and gc pointer arguments of the statepoint.  The actual
513 /// lowering is described in lowerIncomingStatepointValue.  This function is
514 /// responsible for lowering everything in the right position and playing some
515 /// tricks to avoid redundant stack manipulation where possible.  On
516 /// completion, 'Ops' will contain ready to use operands for machine code
517 /// statepoint. The chain nodes will have already been created and the DAG root
518 /// will be set to the last value spilled (if any were).
519 static void
520 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
521                         SmallVectorImpl<MachineMemOperand *> &MemRefs,
522                         SmallVectorImpl<SDValue> &GCPtrs,
523                         DenseMap<SDValue, int> &LowerAsVReg,
524                         SelectionDAGBuilder::StatepointLoweringInfo &SI,
525                         SelectionDAGBuilder &Builder) {
526   // Lower the deopt and gc arguments for this statepoint.  Layout will be:
527   // deopt argument length, deopt arguments.., gc arguments...
528 
529   // Figure out what lowering strategy we're going to use for each part
530   // Note: It is conservatively correct to lower both "live-in" and "live-out"
531   // as "live-through". A "live-through" variable is one which is "live-in",
532   // "live-out", and live throughout the lifetime of the call (i.e. we can find
533   // it from any PC within the transitive callee of the statepoint).  In
534   // particular, if the callee spills callee preserved registers we may not
535   // be able to find a value placed in that register during the call.  This is
536   // fine for live-out, but not for live-through.  If we were willing to make
537   // assumptions about the code generator producing the callee, we could
538   // potentially allow live-through values in callee saved registers.
539   const bool LiveInDeopt =
540     SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn;
541 
542   // Decide which deriver pointers will go on VRegs
543   unsigned MaxVRegPtrs = MaxRegistersForGCPointers.getValue();
544 
545   // Pointers used on exceptional path of invoke statepoint.
546   // We cannot assing them to VRegs.
547   SmallSet<SDValue, 8> LPadPointers;
548   if (!UseRegistersForGCPointersInLandingPad)
549     if (const auto *StInvoke =
550             dyn_cast_or_null<InvokeInst>(SI.StatepointInstr)) {
551       LandingPadInst *LPI = StInvoke->getLandingPadInst();
552       for (const auto *Relocate : SI.GCRelocates)
553         if (Relocate->getOperand(0) == LPI) {
554           LPadPointers.insert(Builder.getValue(Relocate->getBasePtr()));
555           LPadPointers.insert(Builder.getValue(Relocate->getDerivedPtr()));
556         }
557     }
558 
559   LLVM_DEBUG(dbgs() << "Deciding how to lower GC Pointers:\n");
560 
561   // List of unique lowered GC Pointer values.
562   SmallSetVector<SDValue, 16> LoweredGCPtrs;
563   // Map lowered GC Pointer value to the index in above vector
564   DenseMap<SDValue, unsigned> GCPtrIndexMap;
565 
566   unsigned CurNumVRegs = 0;
567 
568   auto canPassGCPtrOnVReg = [&](SDValue SD) {
569     if (SD.getValueType().isVector())
570       return false;
571     if (LPadPointers.count(SD))
572       return false;
573     return !willLowerDirectly(SD);
574   };
575 
576   auto processGCPtr = [&](const Value *V) {
577     SDValue PtrSD = Builder.getValue(V);
578     if (!LoweredGCPtrs.insert(PtrSD))
579       return; // skip duplicates
580     GCPtrIndexMap[PtrSD] = LoweredGCPtrs.size() - 1;
581 
582     assert(!LowerAsVReg.count(PtrSD) && "must not have been seen");
583     if (LowerAsVReg.size() == MaxVRegPtrs)
584       return;
585     assert(V->getType()->isVectorTy() == PtrSD.getValueType().isVector() &&
586            "IR and SD types disagree");
587     if (!canPassGCPtrOnVReg(PtrSD)) {
588       LLVM_DEBUG(dbgs() << "direct/spill "; PtrSD.dump(&Builder.DAG));
589       return;
590     }
591     LLVM_DEBUG(dbgs() << "vreg "; PtrSD.dump(&Builder.DAG));
592     LowerAsVReg[PtrSD] = CurNumVRegs++;
593   };
594 
595   // Process derived pointers first to give them more chance to go on VReg.
596   for (const Value *V : SI.Ptrs)
597     processGCPtr(V);
598   for (const Value *V : SI.Bases)
599     processGCPtr(V);
600 
601   LLVM_DEBUG(dbgs() << LowerAsVReg.size() << " pointers will go in vregs\n");
602 
603   auto requireSpillSlot = [&](const Value *V) {
604     if (!Builder.DAG.getTargetLoweringInfo().isTypeLegal(
605              Builder.getValue(V).getValueType()))
606       return true;
607     if (isGCValue(V, Builder))
608       return !LowerAsVReg.count(Builder.getValue(V));
609     return !(LiveInDeopt || UseRegistersForDeoptValues);
610   };
611 
612   // Before we actually start lowering (and allocating spill slots for values),
613   // reserve any stack slots which we judge to be profitable to reuse for a
614   // particular value.  This is purely an optimization over the code below and
615   // doesn't change semantics at all.  It is important for performance that we
616   // reserve slots for both deopt and gc values before lowering either.
617   for (const Value *V : SI.DeoptState) {
618     if (requireSpillSlot(V))
619       reservePreviousStackSlotForValue(V, Builder);
620   }
621 
622   for (const Value *V : SI.Ptrs) {
623     SDValue SDV = Builder.getValue(V);
624     if (!LowerAsVReg.count(SDV))
625       reservePreviousStackSlotForValue(V, Builder);
626   }
627 
628   for (const Value *V : SI.Bases) {
629     SDValue SDV = Builder.getValue(V);
630     if (!LowerAsVReg.count(SDV))
631       reservePreviousStackSlotForValue(V, Builder);
632   }
633 
634   // First, prefix the list with the number of unique values to be
635   // lowered.  Note that this is the number of *Values* not the
636   // number of SDValues required to lower them.
637   const int NumVMSArgs = SI.DeoptState.size();
638   pushStackMapConstant(Ops, Builder, NumVMSArgs);
639 
640   // The vm state arguments are lowered in an opaque manner.  We do not know
641   // what type of values are contained within.
642   LLVM_DEBUG(dbgs() << "Lowering deopt state\n");
643   for (const Value *V : SI.DeoptState) {
644     SDValue Incoming;
645     // If this is a function argument at a static frame index, generate it as
646     // the frame index.
647     if (const Argument *Arg = dyn_cast<Argument>(V)) {
648       int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg);
649       if (FI != INT_MAX)
650         Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy());
651     }
652     if (!Incoming.getNode())
653       Incoming = Builder.getValue(V);
654     LLVM_DEBUG(dbgs() << "Value " << *V
655                       << " requireSpillSlot = " << requireSpillSlot(V) << "\n");
656     lowerIncomingStatepointValue(Incoming, requireSpillSlot(V), Ops, MemRefs,
657                                  Builder);
658   }
659 
660   // Finally, go ahead and lower all the gc arguments.
661   pushStackMapConstant(Ops, Builder, LoweredGCPtrs.size());
662   for (SDValue SDV : LoweredGCPtrs)
663     lowerIncomingStatepointValue(SDV, !LowerAsVReg.count(SDV), Ops, MemRefs,
664                                  Builder);
665 
666   // Copy to out vector. LoweredGCPtrs will be empty after this point.
667   GCPtrs = LoweredGCPtrs.takeVector();
668 
669   // If there are any explicit spill slots passed to the statepoint, record
670   // them, but otherwise do not do anything special.  These are user provided
671   // allocas and give control over placement to the consumer.  In this case,
672   // it is the contents of the slot which may get updated, not the pointer to
673   // the alloca
674   SmallVector<SDValue, 4> Allocas;
675   for (Value *V : SI.GCLives) {
676     SDValue Incoming = Builder.getValue(V);
677     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
678       // This handles allocas as arguments to the statepoint
679       assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
680              "Incoming value is a frame index!");
681       Allocas.push_back(Builder.DAG.getTargetFrameIndex(
682           FI->getIndex(), Builder.getFrameIndexTy()));
683 
684       auto &MF = Builder.DAG.getMachineFunction();
685       auto *MMO = getMachineMemOperand(MF, *FI);
686       MemRefs.push_back(MMO);
687     }
688   }
689   pushStackMapConstant(Ops, Builder, Allocas.size());
690   Ops.append(Allocas.begin(), Allocas.end());
691 
692   // Now construct GC base/derived map;
693   pushStackMapConstant(Ops, Builder, SI.Ptrs.size());
694   SDLoc L = Builder.getCurSDLoc();
695   for (unsigned i = 0; i < SI.Ptrs.size(); ++i) {
696     SDValue Base = Builder.getValue(SI.Bases[i]);
697     assert(GCPtrIndexMap.count(Base) && "base not found in index map");
698     Ops.push_back(
699         Builder.DAG.getTargetConstant(GCPtrIndexMap[Base], L, MVT::i64));
700     SDValue Derived = Builder.getValue(SI.Ptrs[i]);
701     assert(GCPtrIndexMap.count(Derived) && "derived not found in index map");
702     Ops.push_back(
703         Builder.DAG.getTargetConstant(GCPtrIndexMap[Derived], L, MVT::i64));
704   }
705 }
706 
707 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT(
708     SelectionDAGBuilder::StatepointLoweringInfo &SI) {
709   // The basic scheme here is that information about both the original call and
710   // the safepoint is encoded in the CallInst.  We create a temporary call and
711   // lower it, then reverse engineer the calling sequence.
712 
713   NumOfStatepoints++;
714   // Clear state
715   StatepointLowering.startNewStatepoint(*this);
716   assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!");
717   assert((GFI || SI.Bases.empty()) &&
718          "No gc specified, so cannot relocate pointers!");
719 
720   LLVM_DEBUG(if (SI.StatepointInstr) dbgs()
721              << "Lowering statepoint " << *SI.StatepointInstr << "\n");
722 #ifndef NDEBUG
723   for (const auto *Reloc : SI.GCRelocates)
724     if (Reloc->getParent() == SI.StatepointInstr->getParent())
725       StatepointLowering.scheduleRelocCall(*Reloc);
726 #endif
727 
728   // Lower statepoint vmstate and gcstate arguments
729 
730   // All lowered meta args.
731   SmallVector<SDValue, 10> LoweredMetaArgs;
732   // Lowered GC pointers (subset of above).
733   SmallVector<SDValue, 16> LoweredGCArgs;
734   SmallVector<MachineMemOperand*, 16> MemRefs;
735   // Maps derived pointer SDValue to statepoint result of relocated pointer.
736   DenseMap<SDValue, int> LowerAsVReg;
737   lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, LoweredGCArgs, LowerAsVReg,
738                           SI, *this);
739 
740   // Now that we've emitted the spills, we need to update the root so that the
741   // call sequence is ordered correctly.
742   SI.CLI.setChain(getRoot());
743 
744   // Get call node, we will replace it later with statepoint
745   SDValue ReturnVal;
746   SDNode *CallNode;
747   std::tie(ReturnVal, CallNode) = lowerCallFromStatepointLoweringInfo(SI, *this);
748 
749   // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
750   // nodes with all the appropriate arguments and return values.
751 
752   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
753   SDValue Chain = CallNode->getOperand(0);
754 
755   SDValue Glue;
756   bool CallHasIncomingGlue = CallNode->getGluedNode();
757   if (CallHasIncomingGlue) {
758     // Glue is always last operand
759     Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
760   }
761 
762   // Build the GC_TRANSITION_START node if necessary.
763   //
764   // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
765   // order in which they appear in the call to the statepoint intrinsic. If
766   // any of the operands is a pointer-typed, that operand is immediately
767   // followed by a SRCVALUE for the pointer that may be used during lowering
768   // (e.g. to form MachinePointerInfo values for loads/stores).
769   const bool IsGCTransition =
770       (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) ==
771       (uint64_t)StatepointFlags::GCTransition;
772   if (IsGCTransition) {
773     SmallVector<SDValue, 8> TSOps;
774 
775     // Add chain
776     TSOps.push_back(Chain);
777 
778     // Add GC transition arguments
779     for (const Value *V : SI.GCTransitionArgs) {
780       TSOps.push_back(getValue(V));
781       if (V->getType()->isPointerTy())
782         TSOps.push_back(DAG.getSrcValue(V));
783     }
784 
785     // Add glue if necessary
786     if (CallHasIncomingGlue)
787       TSOps.push_back(Glue);
788 
789     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
790 
791     SDValue GCTransitionStart =
792         DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);
793 
794     Chain = GCTransitionStart.getValue(0);
795     Glue = GCTransitionStart.getValue(1);
796   }
797 
798   // TODO: Currently, all of these operands are being marked as read/write in
799   // PrologEpilougeInserter.cpp, we should special case the VMState arguments
800   // and flags to be read-only.
801   SmallVector<SDValue, 40> Ops;
802 
803   // Add the <id> and <numBytes> constants.
804   Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64));
805   Ops.push_back(
806       DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32));
807 
808   // Calculate and push starting position of vmstate arguments
809   // Get number of arguments incoming directly into call node
810   unsigned NumCallRegArgs =
811       CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
812   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));
813 
814   // Add call target
815   SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
816   Ops.push_back(CallTarget);
817 
818   // Add call arguments
819   // Get position of register mask in the call
820   SDNode::op_iterator RegMaskIt;
821   if (CallHasIncomingGlue)
822     RegMaskIt = CallNode->op_end() - 2;
823   else
824     RegMaskIt = CallNode->op_end() - 1;
825   Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
826 
827   // Add a constant argument for the calling convention
828   pushStackMapConstant(Ops, *this, SI.CLI.CallConv);
829 
830   // Add a constant argument for the flags
831   uint64_t Flags = SI.StatepointFlags;
832   assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) &&
833          "Unknown flag used");
834   pushStackMapConstant(Ops, *this, Flags);
835 
836   // Insert all vmstate and gcstate arguments
837   llvm::append_range(Ops, LoweredMetaArgs);
838 
839   // Add register mask from call node
840   Ops.push_back(*RegMaskIt);
841 
842   // Add chain
843   Ops.push_back(Chain);
844 
845   // Same for the glue, but we add it only if original call had it
846   if (Glue.getNode())
847     Ops.push_back(Glue);
848 
849   // Compute return values.  Provide a glue output since we consume one as
850   // input.  This allows someone else to chain off us as needed.
851   SmallVector<EVT, 8> NodeTys;
852   for (auto SD : LoweredGCArgs) {
853     if (!LowerAsVReg.count(SD))
854       continue;
855     NodeTys.push_back(SD.getValueType());
856   }
857   LLVM_DEBUG(dbgs() << "Statepoint has " << NodeTys.size() << " results\n");
858   assert(NodeTys.size() == LowerAsVReg.size() && "Inconsistent GC Ptr lowering");
859   NodeTys.push_back(MVT::Other);
860   NodeTys.push_back(MVT::Glue);
861 
862   unsigned NumResults = NodeTys.size();
863   MachineSDNode *StatepointMCNode =
864     DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
865   DAG.setNodeMemRefs(StatepointMCNode, MemRefs);
866 
867   // For values lowered to tied-defs, create the virtual registers if used
868   // in other blocks. For local gc.relocate record appropriate statepoint
869   // result in StatepointLoweringState.
870   DenseMap<SDValue, Register> VirtRegs;
871   for (const auto *Relocate : SI.GCRelocates) {
872     Value *Derived = Relocate->getDerivedPtr();
873     SDValue SD = getValue(Derived);
874     auto It = LowerAsVReg.find(SD);
875     if (It == LowerAsVReg.end())
876       continue;
877 
878     SDValue Relocated = SDValue(StatepointMCNode, It->second);
879 
880     // Handle local relocate. Note that different relocates might
881     // map to the same SDValue.
882     if (SI.StatepointInstr->getParent() == Relocate->getParent()) {
883       SDValue Res = StatepointLowering.getLocation(SD);
884       if (Res)
885         assert(Res == Relocated);
886       else
887         StatepointLowering.setLocation(SD, Relocated);
888       continue;
889     }
890 
891     // Handle multiple gc.relocates of the same input efficiently.
892     if (VirtRegs.count(SD))
893       continue;
894 
895     auto *RetTy = Relocate->getType();
896     Register Reg = FuncInfo.CreateRegs(RetTy);
897     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
898                      DAG.getDataLayout(), Reg, RetTy, std::nullopt);
899     SDValue Chain = DAG.getRoot();
900     RFV.getCopyToRegs(Relocated, DAG, getCurSDLoc(), Chain, nullptr);
901     PendingExports.push_back(Chain);
902 
903     VirtRegs[SD] = Reg;
904   }
905 
906   // Record for later use how each relocation was lowered.  This is needed to
907   // allow later gc.relocates to mirror the lowering chosen.
908   const Instruction *StatepointInstr = SI.StatepointInstr;
909   auto &RelocationMap = FuncInfo.StatepointRelocationMaps[StatepointInstr];
910   for (const GCRelocateInst *Relocate : SI.GCRelocates) {
911     const Value *V = Relocate->getDerivedPtr();
912     SDValue SDV = getValue(V);
913     SDValue Loc = StatepointLowering.getLocation(SDV);
914 
915     bool IsLocal = (Relocate->getParent() == StatepointInstr->getParent());
916 
917     RecordType Record;
918     if (IsLocal && LowerAsVReg.count(SDV)) {
919       // Result is already stored in StatepointLowering
920       Record.type = RecordType::SDValueNode;
921     } else if (LowerAsVReg.count(SDV)) {
922       Record.type = RecordType::VReg;
923       assert(VirtRegs.count(SDV));
924       Record.payload.Reg = VirtRegs[SDV];
925     } else if (Loc.getNode()) {
926       Record.type = RecordType::Spill;
927       Record.payload.FI = cast<FrameIndexSDNode>(Loc)->getIndex();
928     } else {
929       Record.type = RecordType::NoRelocate;
930       // If we didn't relocate a value, we'll essentialy end up inserting an
931       // additional use of the original value when lowering the gc.relocate.
932       // We need to make sure the value is available at the new use, which
933       // might be in another block.
934       if (Relocate->getParent() != StatepointInstr->getParent())
935         ExportFromCurrentBlock(V);
936     }
937     RelocationMap[Relocate] = Record;
938   }
939 
940 
941 
942   SDNode *SinkNode = StatepointMCNode;
943 
944   // Build the GC_TRANSITION_END node if necessary.
945   //
946   // See the comment above regarding GC_TRANSITION_START for the layout of
947   // the operands to the GC_TRANSITION_END node.
948   if (IsGCTransition) {
949     SmallVector<SDValue, 8> TEOps;
950 
951     // Add chain
952     TEOps.push_back(SDValue(StatepointMCNode, NumResults - 2));
953 
954     // Add GC transition arguments
955     for (const Value *V : SI.GCTransitionArgs) {
956       TEOps.push_back(getValue(V));
957       if (V->getType()->isPointerTy())
958         TEOps.push_back(DAG.getSrcValue(V));
959     }
960 
961     // Add glue
962     TEOps.push_back(SDValue(StatepointMCNode, NumResults - 1));
963 
964     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
965 
966     SDValue GCTransitionStart =
967         DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);
968 
969     SinkNode = GCTransitionStart.getNode();
970   }
971 
972   // Replace original call
973   // Call: ch,glue = CALL ...
974   // Statepoint: [gc relocates],ch,glue = STATEPOINT ...
975   unsigned NumSinkValues = SinkNode->getNumValues();
976   SDValue StatepointValues[2] = {SDValue(SinkNode, NumSinkValues - 2),
977                                  SDValue(SinkNode, NumSinkValues - 1)};
978   DAG.ReplaceAllUsesWith(CallNode, StatepointValues);
979   // Remove original call node
980   DAG.DeleteNode(CallNode);
981 
982   // Since we always emit CopyToRegs (even for local relocates), we must
983   // update root, so that they are emitted before any local uses.
984   (void)getControlRoot();
985 
986   // TODO: A better future implementation would be to emit a single variable
987   // argument, variable return value STATEPOINT node here and then hookup the
988   // return value of each gc.relocate to the respective output of the
989   // previously emitted STATEPOINT value.  Unfortunately, this doesn't appear
990   // to actually be possible today.
991 
992   return ReturnVal;
993 }
994 
995 /// Return two gc.results if present.  First result is a block local
996 /// gc.result, second result is a non-block local gc.result.  Corresponding
997 /// entry will be nullptr if not present.
998 static std::pair<const GCResultInst*, const GCResultInst*>
999 getGCResultLocality(const GCStatepointInst &S) {
1000   std::pair<const GCResultInst *, const GCResultInst*> Res(nullptr, nullptr);
1001   for (const auto *U : S.users()) {
1002     auto *GRI = dyn_cast<GCResultInst>(U);
1003     if (!GRI)
1004       continue;
1005     if (GRI->getParent() == S.getParent())
1006       Res.first = GRI;
1007     else
1008       Res.second = GRI;
1009   }
1010   return Res;
1011 }
1012 
1013 void
1014 SelectionDAGBuilder::LowerStatepoint(const GCStatepointInst &I,
1015                                      const BasicBlock *EHPadBB /*= nullptr*/) {
1016   assert(I.getCallingConv() != CallingConv::AnyReg &&
1017          "anyregcc is not supported on statepoints!");
1018 
1019 #ifndef NDEBUG
1020   // Check that the associated GCStrategy expects to encounter statepoints.
1021   assert(GFI->getStrategy().useStatepoints() &&
1022          "GCStrategy does not expect to encounter statepoints");
1023 #endif
1024 
1025   SDValue ActualCallee;
1026   SDValue Callee = getValue(I.getActualCalledOperand());
1027 
1028   if (I.getNumPatchBytes() > 0) {
1029     // If we've been asked to emit a nop sequence instead of a call instruction
1030     // for this statepoint then don't lower the call target, but use a constant
1031     // `undef` instead.  Not lowering the call target lets statepoint clients
1032     // get away without providing a physical address for the symbolic call
1033     // target at link time.
1034     ActualCallee = DAG.getUNDEF(Callee.getValueType());
1035   } else {
1036     ActualCallee = Callee;
1037   }
1038 
1039   const auto GCResultLocality = getGCResultLocality(I);
1040   AttributeSet retAttrs;
1041   if (GCResultLocality.first)
1042     retAttrs = GCResultLocality.first->getAttributes().getRetAttrs();
1043 
1044   StatepointLoweringInfo SI(DAG);
1045   populateCallLoweringInfo(SI.CLI, &I, GCStatepointInst::CallArgsBeginPos,
1046                            I.getNumCallArgs(), ActualCallee,
1047                            I.getActualReturnType(), retAttrs,
1048                            /*IsPatchPoint=*/false);
1049 
1050   // There may be duplication in the gc.relocate list; such as two copies of
1051   // each relocation on normal and exceptional path for an invoke.  We only
1052   // need to spill once and record one copy in the stackmap, but we need to
1053   // reload once per gc.relocate.  (Dedupping gc.relocates is trickier and best
1054   // handled as a CSE problem elsewhere.)
1055   // TODO: There a couple of major stackmap size optimizations we could do
1056   // here if we wished.
1057   // 1) If we've encountered a derived pair {B, D}, we don't need to actually
1058   // record {B,B} if it's seen later.
1059   // 2) Due to rematerialization, actual derived pointers are somewhat rare;
1060   // given that, we could change the format to record base pointer relocations
1061   // separately with half the space. This would require a format rev and a
1062   // fairly major rework of the STATEPOINT node though.
1063   SmallSet<SDValue, 8> Seen;
1064   for (const GCRelocateInst *Relocate : I.getGCRelocates()) {
1065     SI.GCRelocates.push_back(Relocate);
1066 
1067     SDValue DerivedSD = getValue(Relocate->getDerivedPtr());
1068     if (Seen.insert(DerivedSD).second) {
1069       SI.Bases.push_back(Relocate->getBasePtr());
1070       SI.Ptrs.push_back(Relocate->getDerivedPtr());
1071     }
1072   }
1073 
1074   // If we find a deopt value which isn't explicitly added, we need to
1075   // ensure it gets lowered such that gc cycles occurring before the
1076   // deoptimization event during the lifetime of the call don't invalidate
1077   // the pointer we're deopting with.  Note that we assume that all
1078   // pointers passed to deopt are base pointers; relaxing that assumption
1079   // would require relatively large changes to how we represent relocations.
1080   for (Value *V : I.deopt_operands()) {
1081     if (!isGCValue(V, *this))
1082       continue;
1083     if (Seen.insert(getValue(V)).second) {
1084       SI.Bases.push_back(V);
1085       SI.Ptrs.push_back(V);
1086     }
1087   }
1088 
1089   SI.GCLives = ArrayRef<const Use>(I.gc_live_begin(), I.gc_live_end());
1090   SI.StatepointInstr = &I;
1091   SI.ID = I.getID();
1092 
1093   SI.DeoptState = ArrayRef<const Use>(I.deopt_begin(), I.deopt_end());
1094   SI.GCTransitionArgs = ArrayRef<const Use>(I.gc_transition_args_begin(),
1095                                             I.gc_transition_args_end());
1096 
1097   SI.StatepointFlags = I.getFlags();
1098   SI.NumPatchBytes = I.getNumPatchBytes();
1099   SI.EHPadBB = EHPadBB;
1100 
1101   SDValue ReturnValue = LowerAsSTATEPOINT(SI);
1102 
1103   // Export the result value if needed
1104   if (!GCResultLocality.first && !GCResultLocality.second) {
1105     // The return value is not needed, just generate a poison value.
1106     // Note: This covers the void return case.
1107     setValue(&I, DAG.getIntPtrConstant(-1, getCurSDLoc()));
1108     return;
1109   }
1110 
1111   if (GCResultLocality.first) {
1112     // Result value will be used in a same basic block. Don't export it or
1113     // perform any explicit register copies. The gc_result will simply grab
1114     // this value.
1115     setValue(&I, ReturnValue);
1116   }
1117 
1118   if (!GCResultLocality.second)
1119     return;
1120   // Result value will be used in a different basic block so we need to export
1121   // it now.  Default exporting mechanism will not work here because statepoint
1122   // call has a different type than the actual call. It means that by default
1123   // llvm will create export register of the wrong type (always i32 in our
1124   // case). So instead we need to create export register with correct type
1125   // manually.
1126   // TODO: To eliminate this problem we can remove gc.result intrinsics
1127   //       completely and make statepoint call to return a tuple.
1128   Type *RetTy = GCResultLocality.second->getType();
1129   Register Reg = FuncInfo.CreateRegs(RetTy);
1130   RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1131                    DAG.getDataLayout(), Reg, RetTy,
1132                    I.getCallingConv());
1133   SDValue Chain = DAG.getEntryNode();
1134 
1135   RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr);
1136   PendingExports.push_back(Chain);
1137   FuncInfo.ValueMap[&I] = Reg;
1138 }
1139 
1140 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl(
1141     const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB,
1142     bool VarArgDisallowed, bool ForceVoidReturnTy) {
1143   StatepointLoweringInfo SI(DAG);
1144   unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin();
1145   populateCallLoweringInfo(
1146       SI.CLI, Call, ArgBeginIndex, Call->arg_size(), Callee,
1147       ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(),
1148       Call->getAttributes().getRetAttrs(), /*IsPatchPoint=*/false);
1149   if (!VarArgDisallowed)
1150     SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg();
1151 
1152   auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt);
1153 
1154   unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID;
1155 
1156   auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes());
1157   SI.ID = SD.StatepointID.value_or(DefaultID);
1158   SI.NumPatchBytes = SD.NumPatchBytes.value_or(0);
1159 
1160   SI.DeoptState =
1161       ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end());
1162   SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None);
1163   SI.EHPadBB = EHPadBB;
1164 
1165   // NB! The GC arguments are deliberately left empty.
1166 
1167   LLVM_DEBUG(dbgs() << "Lowering call with deopt bundle " << *Call << "\n");
1168   if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) {
1169     ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal);
1170     setValue(Call, ReturnVal);
1171   }
1172 }
1173 
1174 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle(
1175     const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) {
1176   LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB,
1177                                    /* VarArgDisallowed = */ false,
1178                                    /* ForceVoidReturnTy  = */ false);
1179 }
1180 
1181 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) {
1182   // The result value of the gc_result is simply the result of the actual
1183   // call.  We've already emitted this, so just grab the value.
1184   const Value *SI = CI.getStatepoint();
1185   assert((isa<GCStatepointInst>(SI) || isa<UndefValue>(SI)) &&
1186          "GetStatepoint must return one of two types");
1187   if (isa<UndefValue>(SI))
1188     return;
1189 
1190   if (cast<GCStatepointInst>(SI)->getParent() == CI.getParent()) {
1191     setValue(&CI, getValue(SI));
1192     return;
1193   }
1194   // Statepoint is in different basic block so we should have stored call
1195   // result in a virtual register.
1196   // We can not use default getValue() functionality to copy value from this
1197   // register because statepoint and actual call return types can be
1198   // different, and getValue() will use CopyFromReg of the wrong type,
1199   // which is always i32 in our case.
1200   Type *RetTy = CI.getType();
1201   SDValue CopyFromReg = getCopyFromRegs(SI, RetTy);
1202 
1203   assert(CopyFromReg.getNode());
1204   setValue(&CI, CopyFromReg);
1205 }
1206 
1207 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) {
1208   const Value *Statepoint = Relocate.getStatepoint();
1209 #ifndef NDEBUG
1210   // Consistency check
1211   // We skip this check for relocates not in the same basic block as their
1212   // statepoint. It would be too expensive to preserve validation info through
1213   // different basic blocks.
1214   assert((isa<GCStatepointInst>(Statepoint) || isa<UndefValue>(Statepoint)) &&
1215          "GetStatepoint must return one of two types");
1216   if (isa<UndefValue>(Statepoint))
1217     return;
1218 
1219   if (cast<GCStatepointInst>(Statepoint)->getParent() == Relocate.getParent())
1220     StatepointLowering.relocCallVisited(Relocate);
1221 #endif
1222 
1223   const Value *DerivedPtr = Relocate.getDerivedPtr();
1224   auto &RelocationMap =
1225       FuncInfo.StatepointRelocationMaps[cast<GCStatepointInst>(Statepoint)];
1226   auto SlotIt = RelocationMap.find(&Relocate);
1227   assert(SlotIt != RelocationMap.end() && "Relocating not lowered gc value");
1228   const RecordType &Record = SlotIt->second;
1229 
1230   // If relocation was done via virtual register..
1231   if (Record.type == RecordType::SDValueNode) {
1232     assert(cast<GCStatepointInst>(Statepoint)->getParent() ==
1233                Relocate.getParent() &&
1234            "Nonlocal gc.relocate mapped via SDValue");
1235     SDValue SDV = StatepointLowering.getLocation(getValue(DerivedPtr));
1236     assert(SDV.getNode() && "empty SDValue");
1237     setValue(&Relocate, SDV);
1238     return;
1239   }
1240   if (Record.type == RecordType::VReg) {
1241     Register InReg = Record.payload.Reg;
1242     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1243                      DAG.getDataLayout(), InReg, Relocate.getType(),
1244                      std::nullopt); // This is not an ABI copy.
1245     // We generate copy to/from regs even for local uses, hence we must
1246     // chain with current root to ensure proper ordering of copies w.r.t.
1247     // statepoint.
1248     SDValue Chain = DAG.getRoot();
1249     SDValue Relocation = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
1250                                              Chain, nullptr, nullptr);
1251     setValue(&Relocate, Relocation);
1252     return;
1253   }
1254 
1255   if (Record.type == RecordType::Spill) {
1256     unsigned Index = Record.payload.FI;
1257     SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy());
1258 
1259     // All the reloads are independent and are reading memory only modified by
1260     // statepoints (i.e. no other aliasing stores); informing SelectionDAG of
1261     // this lets CSE kick in for free and allows reordering of
1262     // instructions if possible.  The lowering for statepoint sets the root,
1263     // so this is ordering all reloads with the either
1264     // a) the statepoint node itself, or
1265     // b) the entry of the current block for an invoke statepoint.
1266     const SDValue Chain = DAG.getRoot(); // != Builder.getRoot()
1267 
1268     auto &MF = DAG.getMachineFunction();
1269     auto &MFI = MF.getFrameInfo();
1270     auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
1271     auto *LoadMMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
1272                                             MFI.getObjectSize(Index),
1273                                             MFI.getObjectAlign(Index));
1274 
1275     auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
1276                                                            Relocate.getType());
1277 
1278     SDValue SpillLoad =
1279         DAG.getLoad(LoadVT, getCurSDLoc(), Chain, SpillSlot, LoadMMO);
1280     PendingLoads.push_back(SpillLoad.getValue(1));
1281 
1282     assert(SpillLoad.getNode());
1283     setValue(&Relocate, SpillLoad);
1284     return;
1285   }
1286 
1287   assert(Record.type == RecordType::NoRelocate);
1288   SDValue SD = getValue(DerivedPtr);
1289 
1290   if (SD.isUndef() && SD.getValueType().getSizeInBits() <= 64) {
1291     // Lowering relocate(undef) as arbitrary constant. Current constant value
1292     // is chosen such that it's unlikely to be a valid pointer.
1293     setValue(&Relocate, DAG.getConstant(0xFEFEFEFE, SDLoc(SD), MVT::i64));
1294     return;
1295   }
1296 
1297   // We didn't need to spill these special cases (constants and allocas).
1298   // See the handling in spillIncomingValueForStatepoint for detail.
1299   setValue(&Relocate, SD);
1300 }
1301 
1302 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) {
1303   const auto &TLI = DAG.getTargetLoweringInfo();
1304   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE),
1305                                          TLI.getPointerTy(DAG.getDataLayout()));
1306 
1307   // We don't lower calls to __llvm_deoptimize as varargs, but as a regular
1308   // call.  We also do not lower the return value to any virtual register, and
1309   // change the immediately following return to a trap instruction.
1310   LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr,
1311                                    /* VarArgDisallowed = */ true,
1312                                    /* ForceVoidReturnTy = */ true);
1313 }
1314 
1315 void SelectionDAGBuilder::LowerDeoptimizingReturn() {
1316   // We do not lower the return value from llvm.deoptimize to any virtual
1317   // register, and change the immediately following return to a trap
1318   // instruction.
1319   if (DAG.getTarget().Options.TrapUnreachable)
1320     DAG.setRoot(
1321         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
1322 }
1323