1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the FastISel class. 10 // 11 // "Fast" instruction selection is designed to emit very poor code quickly. 12 // Also, it is not designed to be able to do much lowering, so most illegal 13 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 14 // also not intended to be able to do much optimization, except in a few cases 15 // where doing optimizations reduces overall compile time. For example, folding 16 // constants into immediate fields is often done, because it's cheap and it 17 // reduces the number of instructions later phases have to examine. 18 // 19 // "Fast" instruction selection is able to fail gracefully and transfer 20 // control to the SelectionDAG selector for operations that it doesn't 21 // support. In many cases, this allows us to avoid duplicating a lot of 22 // the complicated lowering logic that SelectionDAG currently has. 23 // 24 // The intended use for "fast" instruction selection is "-O0" mode 25 // compilation, where the quality of the generated code is irrelevant when 26 // weighed against the speed at which the code can be generated. Also, 27 // at -O0, the LLVM optimizers are not running, and this makes the 28 // compile time of codegen a much higher portion of the overall compile 29 // time. Despite its limitations, "fast" instruction selection is able to 30 // handle enough code on its own to provide noticeable overall speedups 31 // in -O0 compiles. 32 // 33 // Basic operations are supported in a target-independent way, by reading 34 // the same instruction descriptions that the SelectionDAG selector reads, 35 // and identifying simple arithmetic operations that can be directly selected 36 // from simple operators. More complicated operations currently require 37 // target-specific code. 38 // 39 //===----------------------------------------------------------------------===// 40 41 #include "llvm/CodeGen/FastISel.h" 42 #include "llvm/ADT/APFloat.h" 43 #include "llvm/ADT/APSInt.h" 44 #include "llvm/ADT/DenseMap.h" 45 #include "llvm/ADT/SmallPtrSet.h" 46 #include "llvm/ADT/SmallString.h" 47 #include "llvm/ADT/SmallVector.h" 48 #include "llvm/ADT/Statistic.h" 49 #include "llvm/Analysis/BranchProbabilityInfo.h" 50 #include "llvm/Analysis/TargetLibraryInfo.h" 51 #include "llvm/CodeGen/Analysis.h" 52 #include "llvm/CodeGen/FunctionLoweringInfo.h" 53 #include "llvm/CodeGen/ISDOpcodes.h" 54 #include "llvm/CodeGen/MachineBasicBlock.h" 55 #include "llvm/CodeGen/MachineFrameInfo.h" 56 #include "llvm/CodeGen/MachineInstr.h" 57 #include "llvm/CodeGen/MachineInstrBuilder.h" 58 #include "llvm/CodeGen/MachineMemOperand.h" 59 #include "llvm/CodeGen/MachineModuleInfo.h" 60 #include "llvm/CodeGen/MachineOperand.h" 61 #include "llvm/CodeGen/MachineRegisterInfo.h" 62 #include "llvm/CodeGen/StackMaps.h" 63 #include "llvm/CodeGen/TargetInstrInfo.h" 64 #include "llvm/CodeGen/TargetLowering.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/CodeGen/ValueTypes.h" 67 #include "llvm/CodeGenTypes/MachineValueType.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/Constants.h" 74 #include "llvm/IR/DataLayout.h" 75 #include "llvm/IR/DebugLoc.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/DiagnosticInfo.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GetElementPtrTypeIterator.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/LLVMContext.h" 87 #include "llvm/IR/Mangler.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Module.h" 90 #include "llvm/IR/Operator.h" 91 #include "llvm/IR/PatternMatch.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/User.h" 94 #include "llvm/IR/Value.h" 95 #include "llvm/MC/MCContext.h" 96 #include "llvm/MC/MCInstrDesc.h" 97 #include "llvm/Support/Casting.h" 98 #include "llvm/Support/Debug.h" 99 #include "llvm/Support/ErrorHandling.h" 100 #include "llvm/Support/MathExtras.h" 101 #include "llvm/Support/raw_ostream.h" 102 #include "llvm/Target/TargetMachine.h" 103 #include "llvm/Target/TargetOptions.h" 104 #include <cassert> 105 #include <cstdint> 106 #include <iterator> 107 #include <optional> 108 #include <utility> 109 110 using namespace llvm; 111 using namespace PatternMatch; 112 113 #define DEBUG_TYPE "isel" 114 115 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 116 "target-independent selector"); 117 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 118 "target-specific selector"); 119 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 120 121 /// Set the current block to which generated machine instructions will be 122 /// appended. 123 void FastISel::startNewBlock() { 124 assert(LocalValueMap.empty() && 125 "local values should be cleared after finishing a BB"); 126 127 // Instructions are appended to FuncInfo.MBB. If the basic block already 128 // contains labels or copies, use the last instruction as the last local 129 // value. 130 EmitStartPt = nullptr; 131 if (!FuncInfo.MBB->empty()) 132 EmitStartPt = &FuncInfo.MBB->back(); 133 LastLocalValue = EmitStartPt; 134 } 135 136 void FastISel::finishBasicBlock() { flushLocalValueMap(); } 137 138 bool FastISel::lowerArguments() { 139 if (!FuncInfo.CanLowerReturn) 140 // Fallback to SDISel argument lowering code to deal with sret pointer 141 // parameter. 142 return false; 143 144 if (!fastLowerArguments()) 145 return false; 146 147 // Enter arguments into ValueMap for uses in non-entry BBs. 148 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 149 E = FuncInfo.Fn->arg_end(); 150 I != E; ++I) { 151 DenseMap<const Value *, Register>::iterator VI = LocalValueMap.find(&*I); 152 assert(VI != LocalValueMap.end() && "Missed an argument?"); 153 FuncInfo.ValueMap[&*I] = VI->second; 154 } 155 return true; 156 } 157 158 /// Return the defined register if this instruction defines exactly one 159 /// virtual register and uses no other virtual registers. Otherwise return 0. 160 static Register findLocalRegDef(MachineInstr &MI) { 161 Register RegDef; 162 for (const MachineOperand &MO : MI.operands()) { 163 if (!MO.isReg()) 164 continue; 165 if (MO.isDef()) { 166 if (RegDef) 167 return Register(); 168 RegDef = MO.getReg(); 169 } else if (MO.getReg().isVirtual()) { 170 // This is another use of a vreg. Don't delete it. 171 return Register(); 172 } 173 } 174 return RegDef; 175 } 176 177 static bool isRegUsedByPhiNodes(Register DefReg, 178 FunctionLoweringInfo &FuncInfo) { 179 for (auto &P : FuncInfo.PHINodesToUpdate) 180 if (P.second == DefReg) 181 return true; 182 return false; 183 } 184 185 void FastISel::flushLocalValueMap() { 186 // If FastISel bails out, it could leave local value instructions behind 187 // that aren't used for anything. Detect and erase those. 188 if (LastLocalValue != EmitStartPt) { 189 // Save the first instruction after local values, for later. 190 MachineBasicBlock::iterator FirstNonValue(LastLocalValue); 191 ++FirstNonValue; 192 193 MachineBasicBlock::reverse_iterator RE = 194 EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt) 195 : FuncInfo.MBB->rend(); 196 MachineBasicBlock::reverse_iterator RI(LastLocalValue); 197 for (MachineInstr &LocalMI : 198 llvm::make_early_inc_range(llvm::make_range(RI, RE))) { 199 Register DefReg = findLocalRegDef(LocalMI); 200 if (!DefReg) 201 continue; 202 if (FuncInfo.RegsWithFixups.count(DefReg)) 203 continue; 204 bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo); 205 if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) { 206 if (EmitStartPt == &LocalMI) 207 EmitStartPt = EmitStartPt->getPrevNode(); 208 LLVM_DEBUG(dbgs() << "removing dead local value materialization" 209 << LocalMI); 210 LocalMI.eraseFromParent(); 211 } 212 } 213 214 if (FirstNonValue != FuncInfo.MBB->end()) { 215 // See if there are any local value instructions left. If so, we want to 216 // make sure the first one has a debug location; if it doesn't, use the 217 // first non-value instruction's debug location. 218 219 // If EmitStartPt is non-null, this block had copies at the top before 220 // FastISel started doing anything; it points to the last one, so the 221 // first local value instruction is the one after EmitStartPt. 222 // If EmitStartPt is null, the first local value instruction is at the 223 // top of the block. 224 MachineBasicBlock::iterator FirstLocalValue = 225 EmitStartPt ? ++MachineBasicBlock::iterator(EmitStartPt) 226 : FuncInfo.MBB->begin(); 227 if (FirstLocalValue != FirstNonValue && !FirstLocalValue->getDebugLoc()) 228 FirstLocalValue->setDebugLoc(FirstNonValue->getDebugLoc()); 229 } 230 } 231 232 LocalValueMap.clear(); 233 LastLocalValue = EmitStartPt; 234 recomputeInsertPt(); 235 SavedInsertPt = FuncInfo.InsertPt; 236 } 237 238 Register FastISel::getRegForValue(const Value *V) { 239 EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true); 240 // Don't handle non-simple values in FastISel. 241 if (!RealVT.isSimple()) 242 return Register(); 243 244 // Ignore illegal types. We must do this before looking up the value 245 // in ValueMap because Arguments are given virtual registers regardless 246 // of whether FastISel can handle them. 247 MVT VT = RealVT.getSimpleVT(); 248 if (!TLI.isTypeLegal(VT)) { 249 // Handle integer promotions, though, because they're common and easy. 250 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 251 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 252 else 253 return Register(); 254 } 255 256 // Look up the value to see if we already have a register for it. 257 Register Reg = lookUpRegForValue(V); 258 if (Reg) 259 return Reg; 260 261 // In bottom-up mode, just create the virtual register which will be used 262 // to hold the value. It will be materialized later. 263 if (isa<Instruction>(V) && 264 (!isa<AllocaInst>(V) || 265 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 266 return FuncInfo.InitializeRegForValue(V); 267 268 SavePoint SaveInsertPt = enterLocalValueArea(); 269 270 // Materialize the value in a register. Emit any instructions in the 271 // local value area. 272 Reg = materializeRegForValue(V, VT); 273 274 leaveLocalValueArea(SaveInsertPt); 275 276 return Reg; 277 } 278 279 Register FastISel::materializeConstant(const Value *V, MVT VT) { 280 Register Reg; 281 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 282 if (CI->getValue().getActiveBits() <= 64) 283 Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 284 } else if (isa<AllocaInst>(V)) 285 Reg = fastMaterializeAlloca(cast<AllocaInst>(V)); 286 else if (isa<ConstantPointerNull>(V)) 287 // Translate this as an integer zero so that it can be 288 // local-CSE'd with actual integer zeros. 289 Reg = 290 getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getType()))); 291 else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 292 if (CF->isNullValue()) 293 Reg = fastMaterializeFloatZero(CF); 294 else 295 // Try to emit the constant directly. 296 Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF); 297 298 if (!Reg) { 299 // Try to emit the constant by using an integer constant with a cast. 300 const APFloat &Flt = CF->getValueAPF(); 301 EVT IntVT = TLI.getPointerTy(DL); 302 uint32_t IntBitWidth = IntVT.getSizeInBits(); 303 APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false); 304 bool isExact; 305 (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact); 306 if (isExact) { 307 Register IntegerReg = 308 getRegForValue(ConstantInt::get(V->getContext(), SIntVal)); 309 if (IntegerReg) 310 Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, 311 IntegerReg); 312 } 313 } 314 } else if (const auto *Op = dyn_cast<Operator>(V)) { 315 if (!selectOperator(Op, Op->getOpcode())) 316 if (!isa<Instruction>(Op) || 317 !fastSelectInstruction(cast<Instruction>(Op))) 318 return 0; 319 Reg = lookUpRegForValue(Op); 320 } else if (isa<UndefValue>(V)) { 321 Reg = createResultReg(TLI.getRegClassFor(VT)); 322 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 323 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 324 } 325 return Reg; 326 } 327 328 /// Helper for getRegForValue. This function is called when the value isn't 329 /// already available in a register and must be materialized with new 330 /// instructions. 331 Register FastISel::materializeRegForValue(const Value *V, MVT VT) { 332 Register Reg; 333 // Give the target-specific code a try first. 334 if (isa<Constant>(V)) 335 Reg = fastMaterializeConstant(cast<Constant>(V)); 336 337 // If target-specific code couldn't or didn't want to handle the value, then 338 // give target-independent code a try. 339 if (!Reg) 340 Reg = materializeConstant(V, VT); 341 342 // Don't cache constant materializations in the general ValueMap. 343 // To do so would require tracking what uses they dominate. 344 if (Reg) { 345 LocalValueMap[V] = Reg; 346 LastLocalValue = MRI.getVRegDef(Reg); 347 } 348 return Reg; 349 } 350 351 Register FastISel::lookUpRegForValue(const Value *V) { 352 // Look up the value to see if we already have a register for it. We 353 // cache values defined by Instructions across blocks, and other values 354 // only locally. This is because Instructions already have the SSA 355 // def-dominates-use requirement enforced. 356 DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(V); 357 if (I != FuncInfo.ValueMap.end()) 358 return I->second; 359 return LocalValueMap[V]; 360 } 361 362 void FastISel::updateValueMap(const Value *I, Register Reg, unsigned NumRegs) { 363 if (!isa<Instruction>(I)) { 364 LocalValueMap[I] = Reg; 365 return; 366 } 367 368 Register &AssignedReg = FuncInfo.ValueMap[I]; 369 if (!AssignedReg) 370 // Use the new register. 371 AssignedReg = Reg; 372 else if (Reg != AssignedReg) { 373 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 374 for (unsigned i = 0; i < NumRegs; i++) { 375 FuncInfo.RegFixups[AssignedReg + i] = Reg + i; 376 FuncInfo.RegsWithFixups.insert(Reg + i); 377 } 378 379 AssignedReg = Reg; 380 } 381 } 382 383 Register FastISel::getRegForGEPIndex(MVT PtrVT, const Value *Idx) { 384 Register IdxN = getRegForValue(Idx); 385 if (!IdxN) 386 // Unhandled operand. Halt "fast" selection and bail. 387 return Register(); 388 389 // If the index is smaller or larger than intptr_t, truncate or extend it. 390 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 391 if (IdxVT.bitsLT(PtrVT)) { 392 IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN); 393 } else if (IdxVT.bitsGT(PtrVT)) { 394 IdxN = 395 fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN); 396 } 397 return IdxN; 398 } 399 400 void FastISel::recomputeInsertPt() { 401 if (getLastLocalValue()) { 402 FuncInfo.InsertPt = getLastLocalValue(); 403 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 404 ++FuncInfo.InsertPt; 405 } else 406 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 407 } 408 409 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 410 MachineBasicBlock::iterator E) { 411 assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 && 412 "Invalid iterator!"); 413 while (I != E) { 414 if (SavedInsertPt == I) 415 SavedInsertPt = E; 416 if (EmitStartPt == I) 417 EmitStartPt = E.isValid() ? &*E : nullptr; 418 if (LastLocalValue == I) 419 LastLocalValue = E.isValid() ? &*E : nullptr; 420 421 MachineInstr *Dead = &*I; 422 ++I; 423 Dead->eraseFromParent(); 424 ++NumFastIselDead; 425 } 426 recomputeInsertPt(); 427 } 428 429 FastISel::SavePoint FastISel::enterLocalValueArea() { 430 SavePoint OldInsertPt = FuncInfo.InsertPt; 431 recomputeInsertPt(); 432 return OldInsertPt; 433 } 434 435 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 436 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 437 LastLocalValue = &*std::prev(FuncInfo.InsertPt); 438 439 // Restore the previous insert position. 440 FuncInfo.InsertPt = OldInsertPt; 441 } 442 443 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) { 444 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 445 if (VT == MVT::Other || !VT.isSimple()) 446 // Unhandled type. Halt "fast" selection and bail. 447 return false; 448 449 // We only handle legal types. For example, on x86-32 the instruction 450 // selector contains all of the 64-bit instructions from x86-64, 451 // under the assumption that i64 won't be used if the target doesn't 452 // support it. 453 if (!TLI.isTypeLegal(VT)) { 454 // MVT::i1 is special. Allow AND, OR, or XOR because they 455 // don't require additional zeroing, which makes them easy. 456 if (VT == MVT::i1 && ISD::isBitwiseLogicOp(ISDOpcode)) 457 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 458 else 459 return false; 460 } 461 462 // Check if the first operand is a constant, and handle it as "ri". At -O0, 463 // we don't have anything that canonicalizes operand order. 464 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 465 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 466 Register Op1 = getRegForValue(I->getOperand(1)); 467 if (!Op1) 468 return false; 469 470 Register ResultReg = 471 fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, CI->getZExtValue(), 472 VT.getSimpleVT()); 473 if (!ResultReg) 474 return false; 475 476 // We successfully emitted code for the given LLVM Instruction. 477 updateValueMap(I, ResultReg); 478 return true; 479 } 480 481 Register Op0 = getRegForValue(I->getOperand(0)); 482 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 483 return false; 484 485 // Check if the second operand is a constant and handle it appropriately. 486 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 487 uint64_t Imm = CI->getSExtValue(); 488 489 // Transform "sdiv exact X, 8" -> "sra X, 3". 490 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 491 cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) { 492 Imm = Log2_64(Imm); 493 ISDOpcode = ISD::SRA; 494 } 495 496 // Transform "urem x, pow2" -> "and x, pow2-1". 497 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 498 isPowerOf2_64(Imm)) { 499 --Imm; 500 ISDOpcode = ISD::AND; 501 } 502 503 Register ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, Imm, 504 VT.getSimpleVT()); 505 if (!ResultReg) 506 return false; 507 508 // We successfully emitted code for the given LLVM Instruction. 509 updateValueMap(I, ResultReg); 510 return true; 511 } 512 513 Register Op1 = getRegForValue(I->getOperand(1)); 514 if (!Op1) // Unhandled operand. Halt "fast" selection and bail. 515 return false; 516 517 // Now we have both operands in registers. Emit the instruction. 518 Register ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 519 ISDOpcode, Op0, Op1); 520 if (!ResultReg) 521 // Target-specific code wasn't able to find a machine opcode for 522 // the given ISD opcode and type. Halt "fast" selection and bail. 523 return false; 524 525 // We successfully emitted code for the given LLVM Instruction. 526 updateValueMap(I, ResultReg); 527 return true; 528 } 529 530 bool FastISel::selectGetElementPtr(const User *I) { 531 Register N = getRegForValue(I->getOperand(0)); 532 if (!N) // Unhandled operand. Halt "fast" selection and bail. 533 return false; 534 535 // FIXME: The code below does not handle vector GEPs. Halt "fast" selection 536 // and bail. 537 if (isa<VectorType>(I->getType())) 538 return false; 539 540 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 541 // into a single N = N + TotalOffset. 542 uint64_t TotalOffs = 0; 543 // FIXME: What's a good SWAG number for MaxOffs? 544 uint64_t MaxOffs = 2048; 545 MVT VT = TLI.getValueType(DL, I->getType()).getSimpleVT(); 546 547 for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I); 548 GTI != E; ++GTI) { 549 const Value *Idx = GTI.getOperand(); 550 if (StructType *StTy = GTI.getStructTypeOrNull()) { 551 uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue(); 552 if (Field) { 553 // N = N + Offset 554 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); 555 if (TotalOffs >= MaxOffs) { 556 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); 557 if (!N) // Unhandled operand. Halt "fast" selection and bail. 558 return false; 559 TotalOffs = 0; 560 } 561 } 562 } else { 563 // If this is a constant subscript, handle it quickly. 564 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 565 if (CI->isZero()) 566 continue; 567 // N = N + Offset 568 uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue(); 569 TotalOffs += GTI.getSequentialElementStride(DL) * IdxN; 570 if (TotalOffs >= MaxOffs) { 571 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); 572 if (!N) // Unhandled operand. Halt "fast" selection and bail. 573 return false; 574 TotalOffs = 0; 575 } 576 continue; 577 } 578 if (TotalOffs) { 579 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); 580 if (!N) // Unhandled operand. Halt "fast" selection and bail. 581 return false; 582 TotalOffs = 0; 583 } 584 585 // N = N + Idx * ElementSize; 586 uint64_t ElementSize = GTI.getSequentialElementStride(DL); 587 Register IdxN = getRegForGEPIndex(VT, Idx); 588 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 589 return false; 590 591 if (ElementSize != 1) { 592 IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT); 593 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 594 return false; 595 } 596 N = fastEmit_rr(VT, VT, ISD::ADD, N, IdxN); 597 if (!N) // Unhandled operand. Halt "fast" selection and bail. 598 return false; 599 } 600 } 601 if (TotalOffs) { 602 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); 603 if (!N) // Unhandled operand. Halt "fast" selection and bail. 604 return false; 605 } 606 607 // We successfully emitted code for the given LLVM Instruction. 608 updateValueMap(I, N); 609 return true; 610 } 611 612 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, 613 const CallInst *CI, unsigned StartIdx) { 614 for (unsigned i = StartIdx, e = CI->arg_size(); i != e; ++i) { 615 Value *Val = CI->getArgOperand(i); 616 // Check for constants and encode them with a StackMaps::ConstantOp prefix. 617 if (const auto *C = dyn_cast<ConstantInt>(Val)) { 618 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 619 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); 620 } else if (isa<ConstantPointerNull>(Val)) { 621 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 622 Ops.push_back(MachineOperand::CreateImm(0)); 623 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { 624 // Values coming from a stack location also require a special encoding, 625 // but that is added later on by the target specific frame index 626 // elimination implementation. 627 auto SI = FuncInfo.StaticAllocaMap.find(AI); 628 if (SI != FuncInfo.StaticAllocaMap.end()) 629 Ops.push_back(MachineOperand::CreateFI(SI->second)); 630 else 631 return false; 632 } else { 633 Register Reg = getRegForValue(Val); 634 if (!Reg) 635 return false; 636 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 637 } 638 } 639 return true; 640 } 641 642 bool FastISel::selectStackmap(const CallInst *I) { 643 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 644 // [live variables...]) 645 assert(I->getCalledFunction()->getReturnType()->isVoidTy() && 646 "Stackmap cannot return a value."); 647 648 // The stackmap intrinsic only records the live variables (the arguments 649 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 650 // intrinsic, this won't be lowered to a function call. This means we don't 651 // have to worry about calling conventions and target-specific lowering code. 652 // Instead we perform the call lowering right here. 653 // 654 // CALLSEQ_START(0, 0...) 655 // STACKMAP(id, nbytes, ...) 656 // CALLSEQ_END(0, 0) 657 // 658 SmallVector<MachineOperand, 32> Ops; 659 660 // Add the <id> and <numBytes> constants. 661 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 662 "Expected a constant integer."); 663 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 664 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 665 666 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 667 "Expected a constant integer."); 668 const auto *NumBytes = 669 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 670 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 671 672 // Push live variables for the stack map (skipping the first two arguments 673 // <id> and <numBytes>). 674 if (!addStackMapLiveVars(Ops, I, 2)) 675 return false; 676 677 // We are not adding any register mask info here, because the stackmap doesn't 678 // clobber anything. 679 680 // Add scratch registers as implicit def and early clobber. 681 CallingConv::ID CC = I->getCallingConv(); 682 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 683 for (unsigned i = 0; ScratchRegs[i]; ++i) 684 Ops.push_back(MachineOperand::CreateReg( 685 ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false, 686 /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true)); 687 688 // Issue CALLSEQ_START 689 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 690 auto Builder = 691 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackDown)); 692 const MCInstrDesc &MCID = Builder.getInstr()->getDesc(); 693 for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I) 694 Builder.addImm(0); 695 696 // Issue STACKMAP. 697 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 698 TII.get(TargetOpcode::STACKMAP)); 699 for (auto const &MO : Ops) 700 MIB.add(MO); 701 702 // Issue CALLSEQ_END 703 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 704 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackUp)) 705 .addImm(0) 706 .addImm(0); 707 708 // Inform the Frame Information that we have a stackmap in this function. 709 FuncInfo.MF->getFrameInfo().setHasStackMap(); 710 711 return true; 712 } 713 714 /// Lower an argument list according to the target calling convention. 715 /// 716 /// This is a helper for lowering intrinsics that follow a target calling 717 /// convention or require stack pointer adjustment. Only a subset of the 718 /// intrinsic's operands need to participate in the calling convention. 719 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, 720 unsigned NumArgs, const Value *Callee, 721 bool ForceRetVoidTy, CallLoweringInfo &CLI) { 722 ArgListTy Args; 723 Args.reserve(NumArgs); 724 725 // Populate the argument list. 726 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) { 727 Value *V = CI->getOperand(ArgI); 728 729 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 730 731 ArgListEntry Entry; 732 Entry.Val = V; 733 Entry.Ty = V->getType(); 734 Entry.setAttributes(CI, ArgI); 735 Args.push_back(Entry); 736 } 737 738 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) 739 : CI->getType(); 740 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); 741 742 return lowerCallTo(CLI); 743 } 744 745 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee( 746 const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy, 747 StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) { 748 SmallString<32> MangledName; 749 Mangler::getNameWithPrefix(MangledName, Target, DL); 750 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 751 return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs); 752 } 753 754 bool FastISel::selectPatchpoint(const CallInst *I) { 755 // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>, 756 // i32 <numBytes>, 757 // i8* <target>, 758 // i32 <numArgs>, 759 // [Args...], 760 // [live variables...]) 761 CallingConv::ID CC = I->getCallingConv(); 762 bool IsAnyRegCC = CC == CallingConv::AnyReg; 763 bool HasDef = !I->getType()->isVoidTy(); 764 Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts(); 765 766 // Check if we can lower the return type when using anyregcc. 767 MVT ValueType; 768 if (IsAnyRegCC && HasDef) { 769 ValueType = TLI.getSimpleValueType(DL, I->getType(), /*AllowUnknown=*/true); 770 if (ValueType == MVT::Other) 771 return false; 772 } 773 774 // Get the real number of arguments participating in the call <numArgs> 775 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && 776 "Expected a constant integer."); 777 const auto *NumArgsVal = 778 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); 779 unsigned NumArgs = NumArgsVal->getZExtValue(); 780 781 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 782 // This includes all meta-operands up to but not including CC. 783 unsigned NumMetaOpers = PatchPointOpers::CCPos; 784 assert(I->arg_size() >= NumMetaOpers + NumArgs && 785 "Not enough arguments provided to the patchpoint intrinsic"); 786 787 // For AnyRegCC the arguments are lowered later on manually. 788 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 789 CallLoweringInfo CLI; 790 CLI.setIsPatchPoint(); 791 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) 792 return false; 793 794 assert(CLI.Call && "No call instruction specified."); 795 796 SmallVector<MachineOperand, 32> Ops; 797 798 // Add an explicit result reg if we use the anyreg calling convention. 799 if (IsAnyRegCC && HasDef) { 800 assert(CLI.NumResultRegs == 0 && "Unexpected result register."); 801 assert(ValueType.isValid()); 802 CLI.ResultReg = createResultReg(TLI.getRegClassFor(ValueType)); 803 CLI.NumResultRegs = 1; 804 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*isDef=*/true)); 805 } 806 807 // Add the <id> and <numBytes> constants. 808 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 809 "Expected a constant integer."); 810 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 811 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 812 813 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 814 "Expected a constant integer."); 815 const auto *NumBytes = 816 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 817 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 818 819 // Add the call target. 820 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) { 821 uint64_t CalleeConstAddr = 822 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 823 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 824 } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { 825 if (C->getOpcode() == Instruction::IntToPtr) { 826 uint64_t CalleeConstAddr = 827 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 828 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 829 } else 830 llvm_unreachable("Unsupported ConstantExpr."); 831 } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) { 832 Ops.push_back(MachineOperand::CreateGA(GV, 0)); 833 } else if (isa<ConstantPointerNull>(Callee)) 834 Ops.push_back(MachineOperand::CreateImm(0)); 835 else 836 llvm_unreachable("Unsupported callee address."); 837 838 // Adjust <numArgs> to account for any arguments that have been passed on 839 // the stack instead. 840 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); 841 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); 842 843 // Add the calling convention 844 Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); 845 846 // Add the arguments we omitted previously. The register allocator should 847 // place these in any free register. 848 if (IsAnyRegCC) { 849 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { 850 Register Reg = getRegForValue(I->getArgOperand(i)); 851 if (!Reg) 852 return false; 853 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 854 } 855 } 856 857 // Push the arguments from the call instruction. 858 for (auto Reg : CLI.OutRegs) 859 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 860 861 // Push live variables for the stack map. 862 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) 863 return false; 864 865 // Push the register mask info. 866 Ops.push_back(MachineOperand::CreateRegMask( 867 TRI.getCallPreservedMask(*FuncInfo.MF, CC))); 868 869 // Add scratch registers as implicit def and early clobber. 870 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 871 for (unsigned i = 0; ScratchRegs[i]; ++i) 872 Ops.push_back(MachineOperand::CreateReg( 873 ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false, 874 /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true)); 875 876 // Add implicit defs (return values). 877 for (auto Reg : CLI.InRegs) 878 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/true, 879 /*isImp=*/true)); 880 881 // Insert the patchpoint instruction before the call generated by the target. 882 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, MIMD, 883 TII.get(TargetOpcode::PATCHPOINT)); 884 885 for (auto &MO : Ops) 886 MIB.add(MO); 887 888 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); 889 890 // Delete the original call instruction. 891 CLI.Call->eraseFromParent(); 892 893 // Inform the Frame Information that we have a patchpoint in this function. 894 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 895 896 if (CLI.NumResultRegs) 897 updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); 898 return true; 899 } 900 901 bool FastISel::selectXRayCustomEvent(const CallInst *I) { 902 const auto &Triple = TM.getTargetTriple(); 903 if (Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 904 return true; // don't do anything to this instruction. 905 SmallVector<MachineOperand, 8> Ops; 906 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), 907 /*isDef=*/false)); 908 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), 909 /*isDef=*/false)); 910 MachineInstrBuilder MIB = 911 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 912 TII.get(TargetOpcode::PATCHABLE_EVENT_CALL)); 913 for (auto &MO : Ops) 914 MIB.add(MO); 915 916 // Insert the Patchable Event Call instruction, that gets lowered properly. 917 return true; 918 } 919 920 bool FastISel::selectXRayTypedEvent(const CallInst *I) { 921 const auto &Triple = TM.getTargetTriple(); 922 if (Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 923 return true; // don't do anything to this instruction. 924 SmallVector<MachineOperand, 8> Ops; 925 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), 926 /*isDef=*/false)); 927 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), 928 /*isDef=*/false)); 929 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)), 930 /*isDef=*/false)); 931 MachineInstrBuilder MIB = 932 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 933 TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL)); 934 for (auto &MO : Ops) 935 MIB.add(MO); 936 937 // Insert the Patchable Typed Event Call instruction, that gets lowered properly. 938 return true; 939 } 940 941 /// Returns an AttributeList representing the attributes applied to the return 942 /// value of the given call. 943 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) { 944 SmallVector<Attribute::AttrKind, 2> Attrs; 945 if (CLI.RetSExt) 946 Attrs.push_back(Attribute::SExt); 947 if (CLI.RetZExt) 948 Attrs.push_back(Attribute::ZExt); 949 if (CLI.IsInReg) 950 Attrs.push_back(Attribute::InReg); 951 952 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 953 Attrs); 954 } 955 956 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName, 957 unsigned NumArgs) { 958 MCContext &Ctx = MF->getContext(); 959 SmallString<32> MangledName; 960 Mangler::getNameWithPrefix(MangledName, SymName, DL); 961 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 962 return lowerCallTo(CI, Sym, NumArgs); 963 } 964 965 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol, 966 unsigned NumArgs) { 967 FunctionType *FTy = CI->getFunctionType(); 968 Type *RetTy = CI->getType(); 969 970 ArgListTy Args; 971 Args.reserve(NumArgs); 972 973 // Populate the argument list. 974 // Attributes for args start at offset 1, after the return attribute. 975 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { 976 Value *V = CI->getOperand(ArgI); 977 978 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 979 980 ArgListEntry Entry; 981 Entry.Val = V; 982 Entry.Ty = V->getType(); 983 Entry.setAttributes(CI, ArgI); 984 Args.push_back(Entry); 985 } 986 TLI.markLibCallAttributes(MF, CI->getCallingConv(), Args); 987 988 CallLoweringInfo CLI; 989 CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), *CI, NumArgs); 990 991 return lowerCallTo(CLI); 992 } 993 994 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) { 995 // Handle the incoming return values from the call. 996 CLI.clearIns(); 997 SmallVector<EVT, 4> RetTys; 998 ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys); 999 1000 SmallVector<ISD::OutputArg, 4> Outs; 1001 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL); 1002 1003 bool CanLowerReturn = TLI.CanLowerReturn( 1004 CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext(), CLI.RetTy); 1005 1006 // FIXME: sret demotion isn't supported yet - bail out. 1007 if (!CanLowerReturn) 1008 return false; 1009 1010 for (EVT VT : RetTys) { 1011 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); 1012 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); 1013 for (unsigned i = 0; i != NumRegs; ++i) { 1014 ISD::InputArg MyFlags; 1015 MyFlags.VT = RegisterVT; 1016 MyFlags.ArgVT = VT; 1017 MyFlags.Used = CLI.IsReturnValueUsed; 1018 if (CLI.RetSExt) 1019 MyFlags.Flags.setSExt(); 1020 if (CLI.RetZExt) 1021 MyFlags.Flags.setZExt(); 1022 if (CLI.IsInReg) 1023 MyFlags.Flags.setInReg(); 1024 CLI.Ins.push_back(MyFlags); 1025 } 1026 } 1027 1028 // Handle all of the outgoing arguments. 1029 CLI.clearOuts(); 1030 for (auto &Arg : CLI.getArgs()) { 1031 Type *FinalType = Arg.Ty; 1032 if (Arg.IsByVal) 1033 FinalType = Arg.IndirectType; 1034 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1035 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 1036 1037 ISD::ArgFlagsTy Flags; 1038 if (Arg.IsZExt) 1039 Flags.setZExt(); 1040 if (Arg.IsSExt) 1041 Flags.setSExt(); 1042 if (Arg.IsInReg) 1043 Flags.setInReg(); 1044 if (Arg.IsSRet) 1045 Flags.setSRet(); 1046 if (Arg.IsSwiftSelf) 1047 Flags.setSwiftSelf(); 1048 if (Arg.IsSwiftAsync) 1049 Flags.setSwiftAsync(); 1050 if (Arg.IsSwiftError) 1051 Flags.setSwiftError(); 1052 if (Arg.IsCFGuardTarget) 1053 Flags.setCFGuardTarget(); 1054 if (Arg.IsByVal) 1055 Flags.setByVal(); 1056 if (Arg.IsInAlloca) { 1057 Flags.setInAlloca(); 1058 // Set the byval flag for CCAssignFn callbacks that don't know about 1059 // inalloca. This way we can know how many bytes we should've allocated 1060 // and how many bytes a callee cleanup function will pop. If we port 1061 // inalloca to more targets, we'll have to add custom inalloca handling in 1062 // the various CC lowering callbacks. 1063 Flags.setByVal(); 1064 } 1065 if (Arg.IsPreallocated) { 1066 Flags.setPreallocated(); 1067 // Set the byval flag for CCAssignFn callbacks that don't know about 1068 // preallocated. This way we can know how many bytes we should've 1069 // allocated and how many bytes a callee cleanup function will pop. If we 1070 // port preallocated to more targets, we'll have to add custom 1071 // preallocated handling in the various CC lowering callbacks. 1072 Flags.setByVal(); 1073 } 1074 MaybeAlign MemAlign = Arg.Alignment; 1075 if (Arg.IsByVal || Arg.IsInAlloca || Arg.IsPreallocated) { 1076 unsigned FrameSize = DL.getTypeAllocSize(Arg.IndirectType); 1077 1078 // For ByVal, alignment should come from FE. BE will guess if this info 1079 // is not there, but there are cases it cannot get right. 1080 if (!MemAlign) 1081 MemAlign = TLI.getByValTypeAlignment(Arg.IndirectType, DL); 1082 Flags.setByValSize(FrameSize); 1083 } else if (!MemAlign) { 1084 MemAlign = DL.getABITypeAlign(Arg.Ty); 1085 } 1086 Flags.setMemAlign(*MemAlign); 1087 if (Arg.IsNest) 1088 Flags.setNest(); 1089 if (NeedsRegBlock) 1090 Flags.setInConsecutiveRegs(); 1091 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 1092 CLI.OutVals.push_back(Arg.Val); 1093 CLI.OutFlags.push_back(Flags); 1094 } 1095 1096 if (!fastLowerCall(CLI)) 1097 return false; 1098 1099 // Set all unused physreg defs as dead. 1100 assert(CLI.Call && "No call instruction specified."); 1101 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); 1102 1103 if (CLI.NumResultRegs && CLI.CB) 1104 updateValueMap(CLI.CB, CLI.ResultReg, CLI.NumResultRegs); 1105 1106 // Set labels for heapallocsite call. 1107 if (CLI.CB) 1108 if (MDNode *MD = CLI.CB->getMetadata("heapallocsite")) 1109 CLI.Call->setHeapAllocMarker(*MF, MD); 1110 1111 return true; 1112 } 1113 1114 bool FastISel::lowerCall(const CallInst *CI) { 1115 FunctionType *FuncTy = CI->getFunctionType(); 1116 Type *RetTy = CI->getType(); 1117 1118 ArgListTy Args; 1119 ArgListEntry Entry; 1120 Args.reserve(CI->arg_size()); 1121 1122 for (auto i = CI->arg_begin(), e = CI->arg_end(); i != e; ++i) { 1123 Value *V = *i; 1124 1125 // Skip empty types 1126 if (V->getType()->isEmptyTy()) 1127 continue; 1128 1129 Entry.Val = V; 1130 Entry.Ty = V->getType(); 1131 1132 // Skip the first return-type Attribute to get to params. 1133 Entry.setAttributes(CI, i - CI->arg_begin()); 1134 Args.push_back(Entry); 1135 } 1136 1137 // Check if target-independent constraints permit a tail call here. 1138 // Target-dependent constraints are checked within fastLowerCall. 1139 bool IsTailCall = CI->isTailCall(); 1140 if (IsTailCall && !isInTailCallPosition(*CI, TM)) 1141 IsTailCall = false; 1142 if (IsTailCall && !CI->isMustTailCall() && 1143 MF->getFunction().getFnAttribute("disable-tail-calls").getValueAsBool()) 1144 IsTailCall = false; 1145 1146 CallLoweringInfo CLI; 1147 CLI.setCallee(RetTy, FuncTy, CI->getCalledOperand(), std::move(Args), *CI) 1148 .setTailCall(IsTailCall); 1149 1150 diagnoseDontCall(*CI); 1151 1152 return lowerCallTo(CLI); 1153 } 1154 1155 bool FastISel::selectCall(const User *I) { 1156 const CallInst *Call = cast<CallInst>(I); 1157 1158 // Handle simple inline asms. 1159 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledOperand())) { 1160 // Don't attempt to handle constraints. 1161 if (!IA->getConstraintString().empty()) 1162 return false; 1163 1164 unsigned ExtraInfo = 0; 1165 if (IA->hasSideEffects()) 1166 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1167 if (IA->isAlignStack()) 1168 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 1169 if (Call->isConvergent()) 1170 ExtraInfo |= InlineAsm::Extra_IsConvergent; 1171 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 1172 1173 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1174 TII.get(TargetOpcode::INLINEASM)); 1175 MIB.addExternalSymbol(IA->getAsmString().c_str()); 1176 MIB.addImm(ExtraInfo); 1177 1178 const MDNode *SrcLoc = Call->getMetadata("srcloc"); 1179 if (SrcLoc) 1180 MIB.addMetadata(SrcLoc); 1181 1182 return true; 1183 } 1184 1185 // Handle intrinsic function calls. 1186 if (const auto *II = dyn_cast<IntrinsicInst>(Call)) 1187 return selectIntrinsicCall(II); 1188 1189 return lowerCall(Call); 1190 } 1191 1192 void FastISel::handleDbgInfo(const Instruction *II) { 1193 if (!II->hasDbgRecords()) 1194 return; 1195 1196 // Clear any metadata. 1197 MIMD = MIMetadata(); 1198 1199 // Reverse order of debug records, because fast-isel walks through backwards. 1200 for (DbgRecord &DR : llvm::reverse(II->getDbgRecordRange())) { 1201 flushLocalValueMap(); 1202 recomputeInsertPt(); 1203 1204 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 1205 assert(DLR->getLabel() && "Missing label"); 1206 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DLR->getDebugLoc(), 1207 TII.get(TargetOpcode::DBG_LABEL)) 1208 .addMetadata(DLR->getLabel()); 1209 continue; 1210 } 1211 1212 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 1213 1214 Value *V = nullptr; 1215 if (!DVR.hasArgList()) 1216 V = DVR.getVariableLocationOp(0); 1217 1218 bool Res = false; 1219 if (DVR.getType() == DbgVariableRecord::LocationType::Value || 1220 DVR.getType() == DbgVariableRecord::LocationType::Assign) { 1221 Res = lowerDbgValue(V, DVR.getExpression(), DVR.getVariable(), 1222 DVR.getDebugLoc()); 1223 } else { 1224 assert(DVR.getType() == DbgVariableRecord::LocationType::Declare); 1225 if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR)) 1226 continue; 1227 Res = lowerDbgDeclare(V, DVR.getExpression(), DVR.getVariable(), 1228 DVR.getDebugLoc()); 1229 } 1230 1231 if (!Res) 1232 LLVM_DEBUG(dbgs() << "Dropping debug-info for " << DVR << "\n"); 1233 } 1234 } 1235 1236 bool FastISel::lowerDbgValue(const Value *V, DIExpression *Expr, 1237 DILocalVariable *Var, const DebugLoc &DL) { 1238 // This form of DBG_VALUE is target-independent. 1239 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 1240 if (!V || isa<UndefValue>(V)) { 1241 // DI is either undef or cannot produce a valid DBG_VALUE, so produce an 1242 // undef DBG_VALUE to terminate any prior location. 1243 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, false, 0U, Var, Expr); 1244 return true; 1245 } 1246 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 1247 // See if there's an expression to constant-fold. 1248 if (Expr) 1249 std::tie(Expr, CI) = Expr->constantFold(CI); 1250 if (CI->getBitWidth() > 64) 1251 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1252 .addCImm(CI) 1253 .addImm(0U) 1254 .addMetadata(Var) 1255 .addMetadata(Expr); 1256 else 1257 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1258 .addImm(CI->getZExtValue()) 1259 .addImm(0U) 1260 .addMetadata(Var) 1261 .addMetadata(Expr); 1262 return true; 1263 } 1264 if (const auto *CF = dyn_cast<ConstantFP>(V)) { 1265 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1266 .addFPImm(CF) 1267 .addImm(0U) 1268 .addMetadata(Var) 1269 .addMetadata(Expr); 1270 return true; 1271 } 1272 if (const auto *Arg = dyn_cast<Argument>(V); 1273 Arg && Expr && Expr->isEntryValue()) { 1274 // As per the Verifier, this case is only valid for swift async Args. 1275 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 1276 1277 Register Reg = getRegForValue(Arg); 1278 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 1279 if (Reg == VirtReg || Reg == PhysReg) { 1280 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, false /*IsIndirect*/, 1281 PhysReg, Var, Expr); 1282 return true; 1283 } 1284 1285 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 1286 "couldn't find a physical register\n"); 1287 return false; 1288 } 1289 if (auto SI = FuncInfo.StaticAllocaMap.find(dyn_cast<AllocaInst>(V)); 1290 SI != FuncInfo.StaticAllocaMap.end()) { 1291 MachineOperand FrameIndexOp = MachineOperand::CreateFI(SI->second); 1292 bool IsIndirect = false; 1293 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, IsIndirect, FrameIndexOp, 1294 Var, Expr); 1295 return true; 1296 } 1297 if (Register Reg = lookUpRegForValue(V)) { 1298 // FIXME: This does not handle register-indirect values at offset 0. 1299 if (!FuncInfo.MF->useDebugInstrRef()) { 1300 bool IsIndirect = false; 1301 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, IsIndirect, Reg, Var, 1302 Expr); 1303 return true; 1304 } 1305 // If using instruction referencing, produce this as a DBG_INSTR_REF, 1306 // to be later patched up by finalizeDebugInstrRefs. 1307 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 1308 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 1309 /* isKill */ false, /* isDead */ false, 1310 /* isUndef */ false, /* isEarlyClobber */ false, 1311 /* SubReg */ 0, /* isDebug */ true)}); 1312 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 1313 auto *NewExpr = DIExpression::prependOpcodes(Expr, Ops); 1314 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1315 TII.get(TargetOpcode::DBG_INSTR_REF), /*IsIndirect*/ false, MOs, 1316 Var, NewExpr); 1317 return true; 1318 } 1319 return false; 1320 } 1321 1322 bool FastISel::lowerDbgDeclare(const Value *Address, DIExpression *Expr, 1323 DILocalVariable *Var, const DebugLoc &DL) { 1324 if (!Address || isa<UndefValue>(Address)) { 1325 LLVM_DEBUG(dbgs() << "Dropping debug info (bad/undef address)\n"); 1326 return false; 1327 } 1328 1329 std::optional<MachineOperand> Op; 1330 if (Register Reg = lookUpRegForValue(Address)) 1331 Op = MachineOperand::CreateReg(Reg, false); 1332 1333 // If we have a VLA that has a "use" in a metadata node that's then used 1334 // here but it has no other uses, then we have a problem. E.g., 1335 // 1336 // int foo (const int *x) { 1337 // char a[*x]; 1338 // return 0; 1339 // } 1340 // 1341 // If we assign 'a' a vreg and fast isel later on has to use the selection 1342 // DAG isel, it will want to copy the value to the vreg. However, there are 1343 // no uses, which goes counter to what selection DAG isel expects. 1344 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 1345 (!isa<AllocaInst>(Address) || 1346 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 1347 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 1348 false); 1349 1350 if (Op) { 1351 assert(Var->isValidLocationForIntrinsic(DL) && 1352 "Expected inlined-at fields to agree"); 1353 if (FuncInfo.MF->useDebugInstrRef() && Op->isReg()) { 1354 // If using instruction referencing, produce this as a DBG_INSTR_REF, 1355 // to be later patched up by finalizeDebugInstrRefs. Tack a deref onto 1356 // the expression, we don't have an "indirect" flag in DBG_INSTR_REF. 1357 SmallVector<uint64_t, 3> Ops( 1358 {dwarf::DW_OP_LLVM_arg, 0, dwarf::DW_OP_deref}); 1359 auto *NewExpr = DIExpression::prependOpcodes(Expr, Ops); 1360 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1361 TII.get(TargetOpcode::DBG_INSTR_REF), /*IsIndirect*/ false, *Op, 1362 Var, NewExpr); 1363 return true; 1364 } 1365 1366 // A dbg.declare describes the address of a source variable, so lower it 1367 // into an indirect DBG_VALUE. 1368 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1369 TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true, *Op, Var, 1370 Expr); 1371 return true; 1372 } 1373 1374 // We can't yet handle anything else here because it would require 1375 // generating code, thus altering codegen because of debug info. 1376 LLVM_DEBUG( 1377 dbgs() << "Dropping debug info (no materialized reg for address)\n"); 1378 return false; 1379 } 1380 1381 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) { 1382 switch (II->getIntrinsicID()) { 1383 default: 1384 break; 1385 // At -O0 we don't care about the lifetime intrinsics. 1386 case Intrinsic::lifetime_start: 1387 case Intrinsic::lifetime_end: 1388 // The donothing intrinsic does, well, nothing. 1389 case Intrinsic::donothing: 1390 // Neither does the sideeffect intrinsic. 1391 case Intrinsic::sideeffect: 1392 // Neither does the assume intrinsic; it's also OK not to codegen its operand. 1393 case Intrinsic::assume: 1394 // Neither does the llvm.experimental.noalias.scope.decl intrinsic 1395 case Intrinsic::experimental_noalias_scope_decl: 1396 return true; 1397 case Intrinsic::dbg_declare: { 1398 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 1399 assert(DI->getVariable() && "Missing variable"); 1400 if (FuncInfo.PreprocessedDbgDeclares.contains(DI)) 1401 return true; 1402 1403 const Value *Address = DI->getAddress(); 1404 if (!lowerDbgDeclare(Address, DI->getExpression(), DI->getVariable(), 1405 MIMD.getDL())) 1406 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI); 1407 1408 return true; 1409 } 1410 case Intrinsic::dbg_assign: 1411 // A dbg.assign is a dbg.value with more information, typically produced 1412 // during optimisation. If one reaches fastisel then something odd has 1413 // happened (such as an optimised function being always-inlined into an 1414 // optnone function). We will not be using the extra information in the 1415 // dbg.assign in that case, just use its dbg.value fields. 1416 [[fallthrough]]; 1417 case Intrinsic::dbg_value: { 1418 // This form of DBG_VALUE is target-independent. 1419 const DbgValueInst *DI = cast<DbgValueInst>(II); 1420 const Value *V = DI->getValue(); 1421 DIExpression *Expr = DI->getExpression(); 1422 DILocalVariable *Var = DI->getVariable(); 1423 if (DI->hasArgList()) 1424 // Signal that we don't have a location for this. 1425 V = nullptr; 1426 1427 assert(Var->isValidLocationForIntrinsic(MIMD.getDL()) && 1428 "Expected inlined-at fields to agree"); 1429 1430 if (!lowerDbgValue(V, Expr, Var, MIMD.getDL())) 1431 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1432 1433 return true; 1434 } 1435 case Intrinsic::dbg_label: { 1436 const DbgLabelInst *DI = cast<DbgLabelInst>(II); 1437 assert(DI->getLabel() && "Missing label"); 1438 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1439 TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel()); 1440 return true; 1441 } 1442 case Intrinsic::objectsize: 1443 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1444 1445 case Intrinsic::is_constant: 1446 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1447 1448 case Intrinsic::allow_runtime_check: 1449 case Intrinsic::allow_ubsan_check: { 1450 Register ResultReg = getRegForValue(ConstantInt::getTrue(II->getType())); 1451 if (!ResultReg) 1452 return false; 1453 updateValueMap(II, ResultReg); 1454 return true; 1455 } 1456 1457 case Intrinsic::launder_invariant_group: 1458 case Intrinsic::strip_invariant_group: 1459 case Intrinsic::expect: 1460 case Intrinsic::expect_with_probability: { 1461 Register ResultReg = getRegForValue(II->getArgOperand(0)); 1462 if (!ResultReg) 1463 return false; 1464 updateValueMap(II, ResultReg); 1465 return true; 1466 } 1467 case Intrinsic::fake_use: 1468 // At -O0, we don't need fake use, so just ignore it. 1469 return true; 1470 case Intrinsic::experimental_stackmap: 1471 return selectStackmap(II); 1472 case Intrinsic::experimental_patchpoint_void: 1473 case Intrinsic::experimental_patchpoint: 1474 return selectPatchpoint(II); 1475 1476 case Intrinsic::xray_customevent: 1477 return selectXRayCustomEvent(II); 1478 case Intrinsic::xray_typedevent: 1479 return selectXRayTypedEvent(II); 1480 } 1481 1482 return fastLowerIntrinsicCall(II); 1483 } 1484 1485 bool FastISel::selectCast(const User *I, unsigned Opcode) { 1486 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1487 EVT DstVT = TLI.getValueType(DL, I->getType()); 1488 1489 if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || 1490 !DstVT.isSimple()) 1491 // Unhandled type. Halt "fast" selection and bail. 1492 return false; 1493 1494 // Check if the destination type is legal. 1495 if (!TLI.isTypeLegal(DstVT)) 1496 return false; 1497 1498 // Check if the source operand is legal. 1499 if (!TLI.isTypeLegal(SrcVT)) 1500 return false; 1501 1502 Register InputReg = getRegForValue(I->getOperand(0)); 1503 if (!InputReg) 1504 // Unhandled operand. Halt "fast" selection and bail. 1505 return false; 1506 1507 Register ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), 1508 Opcode, InputReg); 1509 if (!ResultReg) 1510 return false; 1511 1512 updateValueMap(I, ResultReg); 1513 return true; 1514 } 1515 1516 bool FastISel::selectBitCast(const User *I) { 1517 EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1518 EVT DstEVT = TLI.getValueType(DL, I->getType()); 1519 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 1520 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 1521 // Unhandled type. Halt "fast" selection and bail. 1522 return false; 1523 1524 MVT SrcVT = SrcEVT.getSimpleVT(); 1525 MVT DstVT = DstEVT.getSimpleVT(); 1526 Register Op0 = getRegForValue(I->getOperand(0)); 1527 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 1528 return false; 1529 1530 // If the bitcast doesn't change the type, just use the operand value. 1531 if (SrcVT == DstVT) { 1532 updateValueMap(I, Op0); 1533 return true; 1534 } 1535 1536 // Otherwise, select a BITCAST opcode. 1537 Register ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0); 1538 if (!ResultReg) 1539 return false; 1540 1541 updateValueMap(I, ResultReg); 1542 return true; 1543 } 1544 1545 bool FastISel::selectFreeze(const User *I) { 1546 Register Reg = getRegForValue(I->getOperand(0)); 1547 if (!Reg) 1548 // Unhandled operand. 1549 return false; 1550 1551 EVT ETy = TLI.getValueType(DL, I->getOperand(0)->getType()); 1552 if (ETy == MVT::Other || !TLI.isTypeLegal(ETy)) 1553 // Unhandled type, bail out. 1554 return false; 1555 1556 MVT Ty = ETy.getSimpleVT(); 1557 const TargetRegisterClass *TyRegClass = TLI.getRegClassFor(Ty); 1558 Register ResultReg = createResultReg(TyRegClass); 1559 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1560 TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg); 1561 1562 updateValueMap(I, ResultReg); 1563 return true; 1564 } 1565 1566 // Remove local value instructions starting from the instruction after 1567 // SavedLastLocalValue to the current function insert point. 1568 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue) 1569 { 1570 MachineInstr *CurLastLocalValue = getLastLocalValue(); 1571 if (CurLastLocalValue != SavedLastLocalValue) { 1572 // Find the first local value instruction to be deleted. 1573 // This is the instruction after SavedLastLocalValue if it is non-NULL. 1574 // Otherwise it's the first instruction in the block. 1575 MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue); 1576 if (SavedLastLocalValue) 1577 ++FirstDeadInst; 1578 else 1579 FirstDeadInst = FuncInfo.MBB->getFirstNonPHI(); 1580 setLastLocalValue(SavedLastLocalValue); 1581 removeDeadCode(FirstDeadInst, FuncInfo.InsertPt); 1582 } 1583 } 1584 1585 bool FastISel::selectInstruction(const Instruction *I) { 1586 // Flush the local value map before starting each instruction. 1587 // This improves locality and debugging, and can reduce spills. 1588 // Reuse of values across IR instructions is relatively uncommon. 1589 flushLocalValueMap(); 1590 1591 MachineInstr *SavedLastLocalValue = getLastLocalValue(); 1592 // Just before the terminator instruction, insert instructions to 1593 // feed PHI nodes in successor blocks. 1594 if (I->isTerminator()) { 1595 if (!handlePHINodesInSuccessorBlocks(I->getParent())) { 1596 // PHI node handling may have generated local value instructions, 1597 // even though it failed to handle all PHI nodes. 1598 // We remove these instructions because SelectionDAGISel will generate 1599 // them again. 1600 removeDeadLocalValueCode(SavedLastLocalValue); 1601 return false; 1602 } 1603 } 1604 1605 // FastISel does not handle any operand bundles except OB_funclet. 1606 if (auto *Call = dyn_cast<CallBase>(I)) 1607 for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) 1608 if (Call->getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet) 1609 return false; 1610 1611 MIMD = MIMetadata(*I); 1612 1613 SavedInsertPt = FuncInfo.InsertPt; 1614 1615 if (const auto *Call = dyn_cast<CallInst>(I)) { 1616 const Function *F = Call->getCalledFunction(); 1617 LibFunc Func; 1618 1619 // As a special case, don't handle calls to builtin library functions that 1620 // may be translated directly to target instructions. 1621 if (F && !F->hasLocalLinkage() && F->hasName() && 1622 LibInfo->getLibFunc(F->getName(), Func) && 1623 LibInfo->hasOptimizedCodeGen(Func)) 1624 return false; 1625 1626 // Don't handle Intrinsic::trap if a trap function is specified. 1627 if (F && F->getIntrinsicID() == Intrinsic::trap && 1628 Call->hasFnAttr("trap-func-name")) 1629 return false; 1630 } 1631 1632 // First, try doing target-independent selection. 1633 if (!SkipTargetIndependentISel) { 1634 if (selectOperator(I, I->getOpcode())) { 1635 ++NumFastIselSuccessIndependent; 1636 MIMD = {}; 1637 return true; 1638 } 1639 // Remove dead code. 1640 recomputeInsertPt(); 1641 if (SavedInsertPt != FuncInfo.InsertPt) 1642 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1643 SavedInsertPt = FuncInfo.InsertPt; 1644 } 1645 // Next, try calling the target to attempt to handle the instruction. 1646 if (fastSelectInstruction(I)) { 1647 ++NumFastIselSuccessTarget; 1648 MIMD = {}; 1649 return true; 1650 } 1651 // Remove dead code. 1652 recomputeInsertPt(); 1653 if (SavedInsertPt != FuncInfo.InsertPt) 1654 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1655 1656 MIMD = {}; 1657 // Undo phi node updates, because they will be added again by SelectionDAG. 1658 if (I->isTerminator()) { 1659 // PHI node handling may have generated local value instructions. 1660 // We remove them because SelectionDAGISel will generate them again. 1661 removeDeadLocalValueCode(SavedLastLocalValue); 1662 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 1663 } 1664 return false; 1665 } 1666 1667 /// Emit an unconditional branch to the given block, unless it is the immediate 1668 /// (fall-through) successor, and update the CFG. 1669 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, 1670 const DebugLoc &DbgLoc) { 1671 const BasicBlock *BB = FuncInfo.MBB->getBasicBlock(); 1672 bool BlockHasMultipleInstrs = &BB->front() != &BB->back(); 1673 // Handle legacy case of debug intrinsics 1674 if (BlockHasMultipleInstrs && !BB->getModule()->IsNewDbgInfoFormat) 1675 BlockHasMultipleInstrs = BB->sizeWithoutDebug() > 1; 1676 if (BlockHasMultipleInstrs && FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 1677 // For more accurate line information if this is the only non-debug 1678 // instruction in the block then emit it, otherwise we have the 1679 // unconditional fall-through case, which needs no instructions. 1680 } else { 1681 // The unconditional branch case. 1682 TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr, 1683 SmallVector<MachineOperand, 0>(), DbgLoc); 1684 } 1685 if (FuncInfo.BPI) { 1686 auto BranchProbability = FuncInfo.BPI->getEdgeProbability( 1687 FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock()); 1688 FuncInfo.MBB->addSuccessor(MSucc, BranchProbability); 1689 } else 1690 FuncInfo.MBB->addSuccessorWithoutProb(MSucc); 1691 } 1692 1693 void FastISel::finishCondBranch(const BasicBlock *BranchBB, 1694 MachineBasicBlock *TrueMBB, 1695 MachineBasicBlock *FalseMBB) { 1696 // Add TrueMBB as successor unless it is equal to the FalseMBB: This can 1697 // happen in degenerate IR and MachineIR forbids to have a block twice in the 1698 // successor/predecessor lists. 1699 if (TrueMBB != FalseMBB) { 1700 if (FuncInfo.BPI) { 1701 auto BranchProbability = 1702 FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock()); 1703 FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability); 1704 } else 1705 FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB); 1706 } 1707 1708 fastEmitBranch(FalseMBB, MIMD.getDL()); 1709 } 1710 1711 /// Emit an FNeg operation. 1712 bool FastISel::selectFNeg(const User *I, const Value *In) { 1713 Register OpReg = getRegForValue(In); 1714 if (!OpReg) 1715 return false; 1716 1717 // If the target has ISD::FNEG, use it. 1718 EVT VT = TLI.getValueType(DL, I->getType()); 1719 Register ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG, 1720 OpReg); 1721 if (ResultReg) { 1722 updateValueMap(I, ResultReg); 1723 return true; 1724 } 1725 1726 // Bitcast the value to integer, twiddle the sign bit with xor, 1727 // and then bitcast it back to floating-point. 1728 if (VT.getSizeInBits() > 64) 1729 return false; 1730 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 1731 if (!TLI.isTypeLegal(IntVT)) 1732 return false; 1733 1734 Register IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 1735 ISD::BITCAST, OpReg); 1736 if (!IntReg) 1737 return false; 1738 1739 Register IntResultReg = fastEmit_ri_( 1740 IntVT.getSimpleVT(), ISD::XOR, IntReg, 1741 UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT()); 1742 if (!IntResultReg) 1743 return false; 1744 1745 ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST, 1746 IntResultReg); 1747 if (!ResultReg) 1748 return false; 1749 1750 updateValueMap(I, ResultReg); 1751 return true; 1752 } 1753 1754 bool FastISel::selectExtractValue(const User *U) { 1755 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 1756 if (!EVI) 1757 return false; 1758 1759 // Make sure we only try to handle extracts with a legal result. But also 1760 // allow i1 because it's easy. 1761 EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true); 1762 if (!RealVT.isSimple()) 1763 return false; 1764 MVT VT = RealVT.getSimpleVT(); 1765 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 1766 return false; 1767 1768 const Value *Op0 = EVI->getOperand(0); 1769 Type *AggTy = Op0->getType(); 1770 1771 // Get the base result register. 1772 unsigned ResultReg; 1773 DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(Op0); 1774 if (I != FuncInfo.ValueMap.end()) 1775 ResultReg = I->second; 1776 else if (isa<Instruction>(Op0)) 1777 ResultReg = FuncInfo.InitializeRegForValue(Op0); 1778 else 1779 return false; // fast-isel can't handle aggregate constants at the moment 1780 1781 // Get the actual result register, which is an offset from the base register. 1782 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 1783 1784 SmallVector<EVT, 4> AggValueVTs; 1785 ComputeValueVTs(TLI, DL, AggTy, AggValueVTs); 1786 1787 for (unsigned i = 0; i < VTIndex; i++) 1788 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 1789 1790 updateValueMap(EVI, ResultReg); 1791 return true; 1792 } 1793 1794 bool FastISel::selectOperator(const User *I, unsigned Opcode) { 1795 switch (Opcode) { 1796 case Instruction::Add: 1797 return selectBinaryOp(I, ISD::ADD); 1798 case Instruction::FAdd: 1799 return selectBinaryOp(I, ISD::FADD); 1800 case Instruction::Sub: 1801 return selectBinaryOp(I, ISD::SUB); 1802 case Instruction::FSub: 1803 return selectBinaryOp(I, ISD::FSUB); 1804 case Instruction::Mul: 1805 return selectBinaryOp(I, ISD::MUL); 1806 case Instruction::FMul: 1807 return selectBinaryOp(I, ISD::FMUL); 1808 case Instruction::SDiv: 1809 return selectBinaryOp(I, ISD::SDIV); 1810 case Instruction::UDiv: 1811 return selectBinaryOp(I, ISD::UDIV); 1812 case Instruction::FDiv: 1813 return selectBinaryOp(I, ISD::FDIV); 1814 case Instruction::SRem: 1815 return selectBinaryOp(I, ISD::SREM); 1816 case Instruction::URem: 1817 return selectBinaryOp(I, ISD::UREM); 1818 case Instruction::FRem: 1819 return selectBinaryOp(I, ISD::FREM); 1820 case Instruction::Shl: 1821 return selectBinaryOp(I, ISD::SHL); 1822 case Instruction::LShr: 1823 return selectBinaryOp(I, ISD::SRL); 1824 case Instruction::AShr: 1825 return selectBinaryOp(I, ISD::SRA); 1826 case Instruction::And: 1827 return selectBinaryOp(I, ISD::AND); 1828 case Instruction::Or: 1829 return selectBinaryOp(I, ISD::OR); 1830 case Instruction::Xor: 1831 return selectBinaryOp(I, ISD::XOR); 1832 1833 case Instruction::FNeg: 1834 return selectFNeg(I, I->getOperand(0)); 1835 1836 case Instruction::GetElementPtr: 1837 return selectGetElementPtr(I); 1838 1839 case Instruction::Br: { 1840 const BranchInst *BI = cast<BranchInst>(I); 1841 1842 if (BI->isUnconditional()) { 1843 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1844 MachineBasicBlock *MSucc = FuncInfo.getMBB(LLVMSucc); 1845 fastEmitBranch(MSucc, BI->getDebugLoc()); 1846 return true; 1847 } 1848 1849 // Conditional branches are not handed yet. 1850 // Halt "fast" selection and bail. 1851 return false; 1852 } 1853 1854 case Instruction::Unreachable: { 1855 if (TM.Options.TrapUnreachable) { 1856 if (TM.Options.NoTrapAfterNoreturn) { 1857 const auto *Call = 1858 dyn_cast_or_null<CallInst>(cast<Instruction>(I)->getPrevNode()); 1859 if (Call && Call->doesNotReturn()) 1860 return true; 1861 } 1862 1863 return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; 1864 } 1865 return true; 1866 } 1867 1868 case Instruction::Alloca: 1869 // FunctionLowering has the static-sized case covered. 1870 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1871 return true; 1872 1873 // Dynamic-sized alloca is not handled yet. 1874 return false; 1875 1876 case Instruction::Call: 1877 // On AIX, normal call lowering uses the DAG-ISEL path currently so that the 1878 // callee of the direct function call instruction will be mapped to the 1879 // symbol for the function's entry point, which is distinct from the 1880 // function descriptor symbol. The latter is the symbol whose XCOFF symbol 1881 // name is the C-linkage name of the source level function. 1882 // But fast isel still has the ability to do selection for intrinsics. 1883 if (TM.getTargetTriple().isOSAIX() && !isa<IntrinsicInst>(I)) 1884 return false; 1885 return selectCall(I); 1886 1887 case Instruction::BitCast: 1888 return selectBitCast(I); 1889 1890 case Instruction::FPToSI: 1891 return selectCast(I, ISD::FP_TO_SINT); 1892 case Instruction::ZExt: 1893 return selectCast(I, ISD::ZERO_EXTEND); 1894 case Instruction::SExt: 1895 return selectCast(I, ISD::SIGN_EXTEND); 1896 case Instruction::Trunc: 1897 return selectCast(I, ISD::TRUNCATE); 1898 case Instruction::SIToFP: 1899 return selectCast(I, ISD::SINT_TO_FP); 1900 1901 case Instruction::IntToPtr: // Deliberate fall-through. 1902 case Instruction::PtrToInt: { 1903 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1904 EVT DstVT = TLI.getValueType(DL, I->getType()); 1905 if (DstVT.bitsGT(SrcVT)) 1906 return selectCast(I, ISD::ZERO_EXTEND); 1907 if (DstVT.bitsLT(SrcVT)) 1908 return selectCast(I, ISD::TRUNCATE); 1909 Register Reg = getRegForValue(I->getOperand(0)); 1910 if (!Reg) 1911 return false; 1912 updateValueMap(I, Reg); 1913 return true; 1914 } 1915 1916 case Instruction::ExtractValue: 1917 return selectExtractValue(I); 1918 1919 case Instruction::Freeze: 1920 return selectFreeze(I); 1921 1922 case Instruction::PHI: 1923 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1924 1925 default: 1926 // Unhandled instruction. Halt "fast" selection and bail. 1927 return false; 1928 } 1929 } 1930 1931 FastISel::FastISel(FunctionLoweringInfo &FuncInfo, 1932 const TargetLibraryInfo *LibInfo, 1933 bool SkipTargetIndependentISel) 1934 : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()), 1935 MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), 1936 TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()), 1937 TII(*MF->getSubtarget().getInstrInfo()), 1938 TLI(*MF->getSubtarget().getTargetLowering()), 1939 TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo), 1940 SkipTargetIndependentISel(SkipTargetIndependentISel) {} 1941 1942 FastISel::~FastISel() = default; 1943 1944 bool FastISel::fastLowerArguments() { return false; } 1945 1946 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; } 1947 1948 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { 1949 return false; 1950 } 1951 1952 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; } 1953 1954 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/) { 1955 return 0; 1956 } 1957 1958 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/, 1959 unsigned /*Op1*/) { 1960 return 0; 1961 } 1962 1963 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1964 return 0; 1965 } 1966 1967 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned, 1968 const ConstantFP * /*FPImm*/) { 1969 return 0; 1970 } 1971 1972 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/, 1973 uint64_t /*Imm*/) { 1974 return 0; 1975 } 1976 1977 /// This method is a wrapper of fastEmit_ri. It first tries to emit an 1978 /// instruction with an immediate operand using fastEmit_ri. 1979 /// If that fails, it materializes the immediate into a register and try 1980 /// fastEmit_rr instead. 1981 Register FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, 1982 uint64_t Imm, MVT ImmType) { 1983 // If this is a multiply by a power of two, emit this as a shift left. 1984 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1985 Opcode = ISD::SHL; 1986 Imm = Log2_64(Imm); 1987 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1988 // div x, 8 -> srl x, 3 1989 Opcode = ISD::SRL; 1990 Imm = Log2_64(Imm); 1991 } 1992 1993 // Horrible hack (to be removed), check to make sure shift amounts are 1994 // in-range. 1995 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1996 Imm >= VT.getSizeInBits()) 1997 return 0; 1998 1999 // First check if immediate type is legal. If not, we can't use the ri form. 2000 Register ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Imm); 2001 if (ResultReg) 2002 return ResultReg; 2003 Register MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 2004 if (!MaterialReg) { 2005 // This is a bit ugly/slow, but failing here means falling out of 2006 // fast-isel, which would be very slow. 2007 IntegerType *ITy = 2008 IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits()); 2009 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 2010 if (!MaterialReg) 2011 return 0; 2012 } 2013 return fastEmit_rr(VT, VT, Opcode, Op0, MaterialReg); 2014 } 2015 2016 Register FastISel::createResultReg(const TargetRegisterClass *RC) { 2017 return MRI.createVirtualRegister(RC); 2018 } 2019 2020 Register FastISel::constrainOperandRegClass(const MCInstrDesc &II, Register Op, 2021 unsigned OpNum) { 2022 if (Op.isVirtual()) { 2023 const TargetRegisterClass *RegClass = 2024 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 2025 if (!MRI.constrainRegClass(Op, RegClass)) { 2026 // If it's not legal to COPY between the register classes, something 2027 // has gone very wrong before we got here. 2028 Register NewOp = createResultReg(RegClass); 2029 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2030 TII.get(TargetOpcode::COPY), NewOp).addReg(Op); 2031 return NewOp; 2032 } 2033 } 2034 return Op; 2035 } 2036 2037 Register FastISel::fastEmitInst_(unsigned MachineInstOpcode, 2038 const TargetRegisterClass *RC) { 2039 Register ResultReg = createResultReg(RC); 2040 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2041 2042 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg); 2043 return ResultReg; 2044 } 2045 2046 Register FastISel::fastEmitInst_r(unsigned MachineInstOpcode, 2047 const TargetRegisterClass *RC, unsigned Op0) { 2048 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2049 2050 Register ResultReg = createResultReg(RC); 2051 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2052 2053 if (II.getNumDefs() >= 1) 2054 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 2055 .addReg(Op0); 2056 else { 2057 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 2058 .addReg(Op0); 2059 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 2060 ResultReg) 2061 .addReg(II.implicit_defs()[0]); 2062 } 2063 2064 return ResultReg; 2065 } 2066 2067 Register FastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2068 const TargetRegisterClass *RC, unsigned Op0, 2069 unsigned Op1) { 2070 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2071 2072 Register ResultReg = createResultReg(RC); 2073 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2074 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2075 2076 if (II.getNumDefs() >= 1) 2077 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 2078 .addReg(Op0) 2079 .addReg(Op1); 2080 else { 2081 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 2082 .addReg(Op0) 2083 .addReg(Op1); 2084 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 2085 ResultReg) 2086 .addReg(II.implicit_defs()[0]); 2087 } 2088 return ResultReg; 2089 } 2090 2091 Register FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, 2092 const TargetRegisterClass *RC, unsigned Op0, 2093 unsigned Op1, unsigned Op2) { 2094 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2095 2096 Register ResultReg = createResultReg(RC); 2097 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2098 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2099 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 2100 2101 if (II.getNumDefs() >= 1) 2102 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 2103 .addReg(Op0) 2104 .addReg(Op1) 2105 .addReg(Op2); 2106 else { 2107 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 2108 .addReg(Op0) 2109 .addReg(Op1) 2110 .addReg(Op2); 2111 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 2112 ResultReg) 2113 .addReg(II.implicit_defs()[0]); 2114 } 2115 return ResultReg; 2116 } 2117 2118 Register FastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 2119 const TargetRegisterClass *RC, unsigned Op0, 2120 uint64_t Imm) { 2121 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2122 2123 Register ResultReg = createResultReg(RC); 2124 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2125 2126 if (II.getNumDefs() >= 1) 2127 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 2128 .addReg(Op0) 2129 .addImm(Imm); 2130 else { 2131 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 2132 .addReg(Op0) 2133 .addImm(Imm); 2134 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 2135 ResultReg) 2136 .addReg(II.implicit_defs()[0]); 2137 } 2138 return ResultReg; 2139 } 2140 2141 Register FastISel::fastEmitInst_rii(unsigned MachineInstOpcode, 2142 const TargetRegisterClass *RC, unsigned Op0, 2143 uint64_t Imm1, uint64_t Imm2) { 2144 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2145 2146 Register ResultReg = createResultReg(RC); 2147 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2148 2149 if (II.getNumDefs() >= 1) 2150 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 2151 .addReg(Op0) 2152 .addImm(Imm1) 2153 .addImm(Imm2); 2154 else { 2155 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 2156 .addReg(Op0) 2157 .addImm(Imm1) 2158 .addImm(Imm2); 2159 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 2160 ResultReg) 2161 .addReg(II.implicit_defs()[0]); 2162 } 2163 return ResultReg; 2164 } 2165 2166 Register FastISel::fastEmitInst_f(unsigned MachineInstOpcode, 2167 const TargetRegisterClass *RC, 2168 const ConstantFP *FPImm) { 2169 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2170 2171 Register ResultReg = createResultReg(RC); 2172 2173 if (II.getNumDefs() >= 1) 2174 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 2175 .addFPImm(FPImm); 2176 else { 2177 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 2178 .addFPImm(FPImm); 2179 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 2180 ResultReg) 2181 .addReg(II.implicit_defs()[0]); 2182 } 2183 return ResultReg; 2184 } 2185 2186 Register FastISel::fastEmitInst_rri(unsigned MachineInstOpcode, 2187 const TargetRegisterClass *RC, unsigned Op0, 2188 unsigned Op1, uint64_t Imm) { 2189 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2190 2191 Register ResultReg = createResultReg(RC); 2192 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2193 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2194 2195 if (II.getNumDefs() >= 1) 2196 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 2197 .addReg(Op0) 2198 .addReg(Op1) 2199 .addImm(Imm); 2200 else { 2201 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 2202 .addReg(Op0) 2203 .addReg(Op1) 2204 .addImm(Imm); 2205 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 2206 ResultReg) 2207 .addReg(II.implicit_defs()[0]); 2208 } 2209 return ResultReg; 2210 } 2211 2212 Register FastISel::fastEmitInst_i(unsigned MachineInstOpcode, 2213 const TargetRegisterClass *RC, uint64_t Imm) { 2214 Register ResultReg = createResultReg(RC); 2215 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2216 2217 if (II.getNumDefs() >= 1) 2218 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 2219 .addImm(Imm); 2220 else { 2221 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II).addImm(Imm); 2222 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 2223 ResultReg) 2224 .addReg(II.implicit_defs()[0]); 2225 } 2226 return ResultReg; 2227 } 2228 2229 Register FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, 2230 uint32_t Idx) { 2231 Register ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 2232 assert(Register::isVirtualRegister(Op0) && 2233 "Cannot yet extract from physregs"); 2234 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 2235 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 2236 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 2237 ResultReg).addReg(Op0, 0, Idx); 2238 return ResultReg; 2239 } 2240 2241 /// Emit MachineInstrs to compute the value of Op with all but the least 2242 /// significant bit set to zero. 2243 Register FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0) { 2244 return fastEmit_ri(VT, VT, ISD::AND, Op0, 1); 2245 } 2246 2247 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 2248 /// Emit code to ensure constants are copied into registers when needed. 2249 /// Remember the virtual registers that need to be added to the Machine PHI 2250 /// nodes as input. We cannot just directly add them, because expansion 2251 /// might result in multiple MBB's for one BB. As such, the start of the 2252 /// BB might correspond to a different MBB than the end. 2253 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 2254 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 2255 FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 2256 2257 // Check successor nodes' PHI nodes that expect a constant to be available 2258 // from this block. 2259 for (const BasicBlock *SuccBB : successors(LLVMBB)) { 2260 if (!isa<PHINode>(SuccBB->begin())) 2261 continue; 2262 MachineBasicBlock *SuccMBB = FuncInfo.getMBB(SuccBB); 2263 2264 // If this terminator has multiple identical successors (common for 2265 // switches), only handle each succ once. 2266 if (!SuccsHandled.insert(SuccMBB).second) 2267 continue; 2268 2269 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 2270 2271 // At this point we know that there is a 1-1 correspondence between LLVM PHI 2272 // nodes and Machine PHI nodes, but the incoming operands have not been 2273 // emitted yet. 2274 for (const PHINode &PN : SuccBB->phis()) { 2275 // Ignore dead phi's. 2276 if (PN.use_empty()) 2277 continue; 2278 2279 // Only handle legal types. Two interesting things to note here. First, 2280 // by bailing out early, we may leave behind some dead instructions, 2281 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 2282 // own moves. Second, this check is necessary because FastISel doesn't 2283 // use CreateRegs to create registers, so it always creates 2284 // exactly one register for each non-void instruction. 2285 EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true); 2286 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 2287 // Handle integer promotions, though, because they're common and easy. 2288 if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) { 2289 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2290 return false; 2291 } 2292 } 2293 2294 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 2295 2296 // Set the DebugLoc for the copy. Use the location of the operand if 2297 // there is one; otherwise no location, flushLocalValueMap will fix it. 2298 MIMD = {}; 2299 if (const auto *Inst = dyn_cast<Instruction>(PHIOp)) 2300 MIMD = MIMetadata(*Inst); 2301 2302 Register Reg = getRegForValue(PHIOp); 2303 if (!Reg) { 2304 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2305 return false; 2306 } 2307 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg)); 2308 MIMD = {}; 2309 } 2310 } 2311 2312 return true; 2313 } 2314 2315 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 2316 assert(LI->hasOneUse() && 2317 "tryToFoldLoad expected a LoadInst with a single use"); 2318 // We know that the load has a single use, but don't know what it is. If it 2319 // isn't one of the folded instructions, then we can't succeed here. Handle 2320 // this by scanning the single-use users of the load until we get to FoldInst. 2321 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 2322 2323 const Instruction *TheUser = LI->user_back(); 2324 while (TheUser != FoldInst && // Scan up until we find FoldInst. 2325 // Stay in the right block. 2326 TheUser->getParent() == FoldInst->getParent() && 2327 --MaxUsers) { // Don't scan too far. 2328 // If there are multiple or no uses of this instruction, then bail out. 2329 if (!TheUser->hasOneUse()) 2330 return false; 2331 2332 TheUser = TheUser->user_back(); 2333 } 2334 2335 // If we didn't find the fold instruction, then we failed to collapse the 2336 // sequence. 2337 if (TheUser != FoldInst) 2338 return false; 2339 2340 // Don't try to fold volatile loads. Target has to deal with alignment 2341 // constraints. 2342 if (LI->isVolatile()) 2343 return false; 2344 2345 // Figure out which vreg this is going into. If there is no assigned vreg yet 2346 // then there actually was no reference to it. Perhaps the load is referenced 2347 // by a dead instruction. 2348 Register LoadReg = getRegForValue(LI); 2349 if (!LoadReg) 2350 return false; 2351 2352 // We can't fold if this vreg has no uses or more than one use. Multiple uses 2353 // may mean that the instruction got lowered to multiple MIs, or the use of 2354 // the loaded value ended up being multiple operands of the result. 2355 if (!MRI.hasOneUse(LoadReg)) 2356 return false; 2357 2358 // If the register has fixups, there may be additional uses through a 2359 // different alias of the register. 2360 if (FuncInfo.RegsWithFixups.contains(LoadReg)) 2361 return false; 2362 2363 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 2364 MachineInstr *User = RI->getParent(); 2365 2366 // Set the insertion point properly. Folding the load can cause generation of 2367 // other random instructions (like sign extends) for addressing modes; make 2368 // sure they get inserted in a logical place before the new instruction. 2369 FuncInfo.InsertPt = User; 2370 FuncInfo.MBB = User->getParent(); 2371 2372 // Ask the target to try folding the load. 2373 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 2374 } 2375 2376 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { 2377 // Must be an add. 2378 if (!isa<AddOperator>(Add)) 2379 return false; 2380 // Type size needs to match. 2381 if (DL.getTypeSizeInBits(GEP->getType()) != 2382 DL.getTypeSizeInBits(Add->getType())) 2383 return false; 2384 // Must be in the same basic block. 2385 if (isa<Instruction>(Add) && 2386 FuncInfo.getMBB(cast<Instruction>(Add)->getParent()) != FuncInfo.MBB) 2387 return false; 2388 // Must have a constant operand. 2389 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); 2390 } 2391 2392 MachineMemOperand * 2393 FastISel::createMachineMemOperandFor(const Instruction *I) const { 2394 const Value *Ptr; 2395 Type *ValTy; 2396 MaybeAlign Alignment; 2397 MachineMemOperand::Flags Flags; 2398 bool IsVolatile; 2399 2400 if (const auto *LI = dyn_cast<LoadInst>(I)) { 2401 Alignment = LI->getAlign(); 2402 IsVolatile = LI->isVolatile(); 2403 Flags = MachineMemOperand::MOLoad; 2404 Ptr = LI->getPointerOperand(); 2405 ValTy = LI->getType(); 2406 } else if (const auto *SI = dyn_cast<StoreInst>(I)) { 2407 Alignment = SI->getAlign(); 2408 IsVolatile = SI->isVolatile(); 2409 Flags = MachineMemOperand::MOStore; 2410 Ptr = SI->getPointerOperand(); 2411 ValTy = SI->getValueOperand()->getType(); 2412 } else 2413 return nullptr; 2414 2415 bool IsNonTemporal = I->hasMetadata(LLVMContext::MD_nontemporal); 2416 bool IsInvariant = I->hasMetadata(LLVMContext::MD_invariant_load); 2417 bool IsDereferenceable = I->hasMetadata(LLVMContext::MD_dereferenceable); 2418 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); 2419 2420 AAMDNodes AAInfo = I->getAAMetadata(); 2421 2422 if (!Alignment) // Ensure that codegen never sees alignment 0. 2423 Alignment = DL.getABITypeAlign(ValTy); 2424 2425 unsigned Size = DL.getTypeStoreSize(ValTy); 2426 2427 if (IsVolatile) 2428 Flags |= MachineMemOperand::MOVolatile; 2429 if (IsNonTemporal) 2430 Flags |= MachineMemOperand::MONonTemporal; 2431 if (IsDereferenceable) 2432 Flags |= MachineMemOperand::MODereferenceable; 2433 if (IsInvariant) 2434 Flags |= MachineMemOperand::MOInvariant; 2435 2436 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, 2437 *Alignment, AAInfo, Ranges); 2438 } 2439 2440 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const { 2441 // If both operands are the same, then try to optimize or fold the cmp. 2442 CmpInst::Predicate Predicate = CI->getPredicate(); 2443 if (CI->getOperand(0) != CI->getOperand(1)) 2444 return Predicate; 2445 2446 switch (Predicate) { 2447 default: llvm_unreachable("Invalid predicate!"); 2448 case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break; 2449 case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break; 2450 case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break; 2451 case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break; 2452 case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break; 2453 case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break; 2454 case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break; 2455 case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break; 2456 case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break; 2457 case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break; 2458 case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break; 2459 case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2460 case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break; 2461 case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2462 case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break; 2463 case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break; 2464 2465 case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break; 2466 case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break; 2467 case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break; 2468 case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2469 case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break; 2470 case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2471 case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break; 2472 case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break; 2473 case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break; 2474 case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break; 2475 } 2476 2477 return Predicate; 2478 } 2479