1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the RAGreedy function pass for register allocation in 10 // optimized builds. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RegAllocGreedy.h" 15 #include "AllocationOrder.h" 16 #include "InterferenceCache.h" 17 #include "RegAllocBase.h" 18 #include "RegAllocEvictionAdvisor.h" 19 #include "RegAllocPriorityAdvisor.h" 20 #include "SplitKit.h" 21 #include "llvm/ADT/ArrayRef.h" 22 #include "llvm/ADT/BitVector.h" 23 #include "llvm/ADT/IndexedMap.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 29 #include "llvm/CodeGen/CalcSpillWeights.h" 30 #include "llvm/CodeGen/EdgeBundles.h" 31 #include "llvm/CodeGen/LiveDebugVariables.h" 32 #include "llvm/CodeGen/LiveInterval.h" 33 #include "llvm/CodeGen/LiveIntervalUnion.h" 34 #include "llvm/CodeGen/LiveIntervals.h" 35 #include "llvm/CodeGen/LiveRangeEdit.h" 36 #include "llvm/CodeGen/LiveRegMatrix.h" 37 #include "llvm/CodeGen/LiveStacks.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 40 #include "llvm/CodeGen/MachineDominators.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineFunctionPass.h" 44 #include "llvm/CodeGen/MachineInstr.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineOperand.h" 47 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 48 #include "llvm/CodeGen/MachineRegisterInfo.h" 49 #include "llvm/CodeGen/RegAllocRegistry.h" 50 #include "llvm/CodeGen/RegisterClassInfo.h" 51 #include "llvm/CodeGen/SlotIndexes.h" 52 #include "llvm/CodeGen/SpillPlacement.h" 53 #include "llvm/CodeGen/Spiller.h" 54 #include "llvm/CodeGen/TargetInstrInfo.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/CodeGen/VirtRegMap.h" 58 #include "llvm/IR/DebugInfoMetadata.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/LLVMContext.h" 61 #include "llvm/Pass.h" 62 #include "llvm/Support/BlockFrequency.h" 63 #include "llvm/Support/BranchProbability.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/Timer.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstdint> 72 #include <utility> 73 74 using namespace llvm; 75 76 #define DEBUG_TYPE "regalloc" 77 78 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 79 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 80 STATISTIC(NumEvicted, "Number of interferences evicted"); 81 82 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 83 "split-spill-mode", cl::Hidden, 84 cl::desc("Spill mode for splitting live ranges"), 85 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 86 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 87 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 88 cl::init(SplitEditor::SM_Speed)); 89 90 static cl::opt<unsigned> 91 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 92 cl::desc("Last chance recoloring max depth"), 93 cl::init(5)); 94 95 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 96 "lcr-max-interf", cl::Hidden, 97 cl::desc("Last chance recoloring maximum number of considered" 98 " interference at a time"), 99 cl::init(8)); 100 101 static cl::opt<bool> ExhaustiveSearch( 102 "exhaustive-register-search", cl::NotHidden, 103 cl::desc("Exhaustive Search for registers bypassing the depth " 104 "and interference cutoffs of last chance recoloring"), 105 cl::Hidden); 106 107 static cl::opt<bool> EnableDeferredSpilling( 108 "enable-deferred-spilling", cl::Hidden, 109 cl::desc("Instead of spilling a variable right away, defer the actual " 110 "code insertion to the end of the allocation. That way the " 111 "allocator might still find a suitable coloring for this " 112 "variable because of other evicted variables."), 113 cl::init(false)); 114 115 // FIXME: Find a good default for this flag and remove the flag. 116 static cl::opt<unsigned> 117 CSRFirstTimeCost("regalloc-csr-first-time-cost", 118 cl::desc("Cost for first time use of callee-saved register."), 119 cl::init(0), cl::Hidden); 120 121 static cl::opt<unsigned long> GrowRegionComplexityBudget( 122 "grow-region-complexity-budget", 123 cl::desc("growRegion() does not scale with the number of BB edges, so " 124 "limit its budget and bail out once we reach the limit."), 125 cl::init(10000), cl::Hidden); 126 127 static cl::opt<bool> GreedyRegClassPriorityTrumpsGlobalness( 128 "greedy-regclass-priority-trumps-globalness", 129 cl::desc("Change the greedy register allocator's live range priority " 130 "calculation to make the AllocationPriority of the register class " 131 "more important then whether the range is global"), 132 cl::Hidden); 133 134 static cl::opt<bool> GreedyReverseLocalAssignment( 135 "greedy-reverse-local-assignment", 136 cl::desc("Reverse allocation order of local live ranges, such that " 137 "shorter local live ranges will tend to be allocated first"), 138 cl::Hidden); 139 140 static cl::opt<unsigned> SplitThresholdForRegWithHint( 141 "split-threshold-for-reg-with-hint", 142 cl::desc("The threshold for splitting a virtual register with a hint, in " 143 "percentage"), 144 cl::init(75), cl::Hidden); 145 146 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 147 createGreedyRegisterAllocator); 148 149 char RAGreedy::ID = 0; 150 char &llvm::RAGreedyID = RAGreedy::ID; 151 152 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 153 "Greedy Register Allocator", false, false) 154 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariablesWrapperLegacy) 155 INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass) 156 INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass) 157 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 158 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 159 INITIALIZE_PASS_DEPENDENCY(LiveStacksWrapperLegacy) 160 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 161 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 162 INITIALIZE_PASS_DEPENDENCY(VirtRegMapWrapperLegacy) 163 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrixWrapperLegacy) 164 INITIALIZE_PASS_DEPENDENCY(EdgeBundlesWrapperLegacy) 165 INITIALIZE_PASS_DEPENDENCY(SpillPlacementWrapperLegacy) 166 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 167 INITIALIZE_PASS_DEPENDENCY(RegAllocEvictionAdvisorAnalysis) 168 INITIALIZE_PASS_DEPENDENCY(RegAllocPriorityAdvisorAnalysis) 169 INITIALIZE_PASS_END(RAGreedy, "greedy", 170 "Greedy Register Allocator", false, false) 171 172 #ifndef NDEBUG 173 const char *const RAGreedy::StageName[] = { 174 "RS_New", 175 "RS_Assign", 176 "RS_Split", 177 "RS_Split2", 178 "RS_Spill", 179 "RS_Memory", 180 "RS_Done" 181 }; 182 #endif 183 184 // Hysteresis to use when comparing floats. 185 // This helps stabilize decisions based on float comparisons. 186 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 187 188 FunctionPass* llvm::createGreedyRegisterAllocator() { 189 return new RAGreedy(); 190 } 191 192 FunctionPass *llvm::createGreedyRegisterAllocator(RegAllocFilterFunc Ftor) { 193 return new RAGreedy(Ftor); 194 } 195 196 RAGreedy::RAGreedy(RegAllocFilterFunc F) 197 : MachineFunctionPass(ID), RegAllocBase(F) {} 198 199 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 200 AU.setPreservesCFG(); 201 AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); 202 AU.addPreserved<MachineBlockFrequencyInfoWrapperPass>(); 203 AU.addRequired<LiveIntervalsWrapperPass>(); 204 AU.addPreserved<LiveIntervalsWrapperPass>(); 205 AU.addRequired<SlotIndexesWrapperPass>(); 206 AU.addPreserved<SlotIndexesWrapperPass>(); 207 AU.addRequired<LiveDebugVariablesWrapperLegacy>(); 208 AU.addPreserved<LiveDebugVariablesWrapperLegacy>(); 209 AU.addRequired<LiveStacksWrapperLegacy>(); 210 AU.addPreserved<LiveStacksWrapperLegacy>(); 211 AU.addRequired<MachineDominatorTreeWrapperPass>(); 212 AU.addPreserved<MachineDominatorTreeWrapperPass>(); 213 AU.addRequired<MachineLoopInfoWrapperPass>(); 214 AU.addPreserved<MachineLoopInfoWrapperPass>(); 215 AU.addRequired<VirtRegMapWrapperLegacy>(); 216 AU.addPreserved<VirtRegMapWrapperLegacy>(); 217 AU.addRequired<LiveRegMatrixWrapperLegacy>(); 218 AU.addPreserved<LiveRegMatrixWrapperLegacy>(); 219 AU.addRequired<EdgeBundlesWrapperLegacy>(); 220 AU.addRequired<SpillPlacementWrapperLegacy>(); 221 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 222 AU.addRequired<RegAllocEvictionAdvisorAnalysis>(); 223 AU.addRequired<RegAllocPriorityAdvisorAnalysis>(); 224 MachineFunctionPass::getAnalysisUsage(AU); 225 } 226 227 //===----------------------------------------------------------------------===// 228 // LiveRangeEdit delegate methods 229 //===----------------------------------------------------------------------===// 230 231 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) { 232 LiveInterval &LI = LIS->getInterval(VirtReg); 233 if (VRM->hasPhys(VirtReg)) { 234 Matrix->unassign(LI); 235 aboutToRemoveInterval(LI); 236 return true; 237 } 238 // Unassigned virtreg is probably in the priority queue. 239 // RegAllocBase will erase it after dequeueing. 240 // Nonetheless, clear the live-range so that the debug 241 // dump will show the right state for that VirtReg. 242 LI.clear(); 243 return false; 244 } 245 246 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) { 247 if (!VRM->hasPhys(VirtReg)) 248 return; 249 250 // Register is assigned, put it back on the queue for reassignment. 251 LiveInterval &LI = LIS->getInterval(VirtReg); 252 Matrix->unassign(LI); 253 RegAllocBase::enqueue(&LI); 254 } 255 256 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) { 257 ExtraInfo->LRE_DidCloneVirtReg(New, Old); 258 } 259 260 void RAGreedy::ExtraRegInfo::LRE_DidCloneVirtReg(Register New, Register Old) { 261 // Cloning a register we haven't even heard about yet? Just ignore it. 262 if (!Info.inBounds(Old)) 263 return; 264 265 // LRE may clone a virtual register because dead code elimination causes it to 266 // be split into connected components. The new components are much smaller 267 // than the original, so they should get a new chance at being assigned. 268 // same stage as the parent. 269 Info[Old].Stage = RS_Assign; 270 Info.grow(New.id()); 271 Info[New] = Info[Old]; 272 } 273 274 void RAGreedy::releaseMemory() { 275 SpillerInstance.reset(); 276 GlobalCand.clear(); 277 } 278 279 void RAGreedy::enqueueImpl(const LiveInterval *LI) { enqueue(Queue, LI); } 280 281 void RAGreedy::enqueue(PQueue &CurQueue, const LiveInterval *LI) { 282 // Prioritize live ranges by size, assigning larger ranges first. 283 // The queue holds (size, reg) pairs. 284 const Register Reg = LI->reg(); 285 assert(Reg.isVirtual() && "Can only enqueue virtual registers"); 286 287 auto Stage = ExtraInfo->getOrInitStage(Reg); 288 if (Stage == RS_New) { 289 Stage = RS_Assign; 290 ExtraInfo->setStage(Reg, Stage); 291 } 292 293 unsigned Ret = PriorityAdvisor->getPriority(*LI); 294 295 // The virtual register number is a tie breaker for same-sized ranges. 296 // Give lower vreg numbers higher priority to assign them first. 297 CurQueue.push(std::make_pair(Ret, ~Reg)); 298 } 299 300 unsigned DefaultPriorityAdvisor::getPriority(const LiveInterval &LI) const { 301 const unsigned Size = LI.getSize(); 302 const Register Reg = LI.reg(); 303 unsigned Prio; 304 LiveRangeStage Stage = RA.getExtraInfo().getStage(LI); 305 306 if (Stage == RS_Split) { 307 // Unsplit ranges that couldn't be allocated immediately are deferred until 308 // everything else has been allocated. 309 Prio = Size; 310 } else if (Stage == RS_Memory) { 311 // Memory operand should be considered last. 312 // Change the priority such that Memory operand are assigned in 313 // the reverse order that they came in. 314 // TODO: Make this a member variable and probably do something about hints. 315 static unsigned MemOp = 0; 316 Prio = MemOp++; 317 } else { 318 // Giant live ranges fall back to the global assignment heuristic, which 319 // prevents excessive spilling in pathological cases. 320 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 321 bool ForceGlobal = RC.GlobalPriority || 322 (!ReverseLocalAssignment && 323 (Size / SlotIndex::InstrDist) > 324 (2 * RegClassInfo.getNumAllocatableRegs(&RC))); 325 unsigned GlobalBit = 0; 326 327 if (Stage == RS_Assign && !ForceGlobal && !LI.empty() && 328 LIS->intervalIsInOneMBB(LI)) { 329 // Allocate original local ranges in linear instruction order. Since they 330 // are singly defined, this produces optimal coloring in the absence of 331 // global interference and other constraints. 332 if (!ReverseLocalAssignment) 333 Prio = LI.beginIndex().getApproxInstrDistance(Indexes->getLastIndex()); 334 else { 335 // Allocating bottom up may allow many short LRGs to be assigned first 336 // to one of the cheap registers. This could be much faster for very 337 // large blocks on targets with many physical registers. 338 Prio = Indexes->getZeroIndex().getApproxInstrDistance(LI.endIndex()); 339 } 340 } else { 341 // Allocate global and split ranges in long->short order. Long ranges that 342 // don't fit should be spilled (or split) ASAP so they don't create 343 // interference. Mark a bit to prioritize global above local ranges. 344 Prio = Size; 345 GlobalBit = 1; 346 } 347 348 // Priority bit layout: 349 // 31 RS_Assign priority 350 // 30 Preference priority 351 // if (RegClassPriorityTrumpsGlobalness) 352 // 29-25 AllocPriority 353 // 24 GlobalBit 354 // else 355 // 29 Global bit 356 // 28-24 AllocPriority 357 // 0-23 Size/Instr distance 358 359 // Clamp the size to fit with the priority masking scheme 360 Prio = std::min(Prio, (unsigned)maxUIntN(24)); 361 assert(isUInt<5>(RC.AllocationPriority) && "allocation priority overflow"); 362 363 if (RegClassPriorityTrumpsGlobalness) 364 Prio |= RC.AllocationPriority << 25 | GlobalBit << 24; 365 else 366 Prio |= GlobalBit << 29 | RC.AllocationPriority << 24; 367 368 // Mark a higher bit to prioritize global and local above RS_Split. 369 Prio |= (1u << 31); 370 371 // Boost ranges that have a physical register hint. 372 if (VRM->hasKnownPreference(Reg)) 373 Prio |= (1u << 30); 374 } 375 376 return Prio; 377 } 378 379 unsigned DummyPriorityAdvisor::getPriority(const LiveInterval &LI) const { 380 // Prioritize by virtual register number, lowest first. 381 Register Reg = LI.reg(); 382 return ~Reg.virtRegIndex(); 383 } 384 385 const LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 386 387 const LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 388 if (CurQueue.empty()) 389 return nullptr; 390 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 391 CurQueue.pop(); 392 return LI; 393 } 394 395 //===----------------------------------------------------------------------===// 396 // Direct Assignment 397 //===----------------------------------------------------------------------===// 398 399 /// tryAssign - Try to assign VirtReg to an available register. 400 MCRegister RAGreedy::tryAssign(const LiveInterval &VirtReg, 401 AllocationOrder &Order, 402 SmallVectorImpl<Register> &NewVRegs, 403 const SmallVirtRegSet &FixedRegisters) { 404 MCRegister PhysReg; 405 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 406 assert(*I); 407 if (!Matrix->checkInterference(VirtReg, *I)) { 408 if (I.isHint()) 409 return *I; 410 else 411 PhysReg = *I; 412 } 413 } 414 if (!PhysReg.isValid()) 415 return PhysReg; 416 417 // PhysReg is available, but there may be a better choice. 418 419 // If we missed a simple hint, try to cheaply evict interference from the 420 // preferred register. 421 if (Register Hint = MRI->getSimpleHint(VirtReg.reg())) 422 if (Order.isHint(Hint)) { 423 MCRegister PhysHint = Hint.asMCReg(); 424 LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n'); 425 426 if (EvictAdvisor->canEvictHintInterference(VirtReg, PhysHint, 427 FixedRegisters)) { 428 evictInterference(VirtReg, PhysHint, NewVRegs); 429 return PhysHint; 430 } 431 432 // We can also split the virtual register in cold blocks. 433 if (trySplitAroundHintReg(PhysHint, VirtReg, NewVRegs, Order)) 434 return 0; 435 436 // Record the missed hint, we may be able to recover 437 // at the end if the surrounding allocation changed. 438 SetOfBrokenHints.insert(&VirtReg); 439 } 440 441 // Try to evict interference from a cheaper alternative. 442 uint8_t Cost = RegCosts[PhysReg.id()]; 443 444 // Most registers have 0 additional cost. 445 if (!Cost) 446 return PhysReg; 447 448 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " 449 << (unsigned)Cost << '\n'); 450 MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters); 451 return CheapReg ? CheapReg : PhysReg; 452 } 453 454 //===----------------------------------------------------------------------===// 455 // Interference eviction 456 //===----------------------------------------------------------------------===// 457 458 bool RegAllocEvictionAdvisor::canReassign(const LiveInterval &VirtReg, 459 MCRegister FromReg) const { 460 auto HasRegUnitInterference = [&](MCRegUnit Unit) { 461 // Instantiate a "subquery", not to be confused with the Queries array. 462 LiveIntervalUnion::Query SubQ(VirtReg, Matrix->getLiveUnions()[Unit]); 463 return SubQ.checkInterference(); 464 }; 465 466 for (MCRegister Reg : 467 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix)) { 468 if (Reg == FromReg) 469 continue; 470 // If no units have interference, reassignment is possible. 471 if (none_of(TRI->regunits(Reg), HasRegUnitInterference)) { 472 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 473 << printReg(FromReg, TRI) << " to " 474 << printReg(Reg, TRI) << '\n'); 475 return true; 476 } 477 } 478 return false; 479 } 480 481 /// evictInterference - Evict any interferring registers that prevent VirtReg 482 /// from being assigned to Physreg. This assumes that canEvictInterference 483 /// returned true. 484 void RAGreedy::evictInterference(const LiveInterval &VirtReg, 485 MCRegister PhysReg, 486 SmallVectorImpl<Register> &NewVRegs) { 487 // Make sure that VirtReg has a cascade number, and assign that cascade 488 // number to every evicted register. These live ranges than then only be 489 // evicted by a newer cascade, preventing infinite loops. 490 unsigned Cascade = ExtraInfo->getOrAssignNewCascade(VirtReg.reg()); 491 492 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) 493 << " interference: Cascade " << Cascade << '\n'); 494 495 // Collect all interfering virtregs first. 496 SmallVector<const LiveInterval *, 8> Intfs; 497 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 498 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, Unit); 499 // We usually have the interfering VRegs cached so collectInterferingVRegs() 500 // should be fast, we may need to recalculate if when different physregs 501 // overlap the same register unit so we had different SubRanges queried 502 // against it. 503 ArrayRef<const LiveInterval *> IVR = Q.interferingVRegs(); 504 Intfs.append(IVR.begin(), IVR.end()); 505 } 506 507 // Evict them second. This will invalidate the queries. 508 for (const LiveInterval *Intf : Intfs) { 509 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 510 if (!VRM->hasPhys(Intf->reg())) 511 continue; 512 513 Matrix->unassign(*Intf); 514 assert((ExtraInfo->getCascade(Intf->reg()) < Cascade || 515 VirtReg.isSpillable() < Intf->isSpillable()) && 516 "Cannot decrease cascade number, illegal eviction"); 517 ExtraInfo->setCascade(Intf->reg(), Cascade); 518 ++NumEvicted; 519 NewVRegs.push_back(Intf->reg()); 520 } 521 } 522 523 /// Returns true if the given \p PhysReg is a callee saved register and has not 524 /// been used for allocation yet. 525 bool RegAllocEvictionAdvisor::isUnusedCalleeSavedReg(MCRegister PhysReg) const { 526 MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 527 if (!CSR) 528 return false; 529 530 return !Matrix->isPhysRegUsed(PhysReg); 531 } 532 533 std::optional<unsigned> 534 RegAllocEvictionAdvisor::getOrderLimit(const LiveInterval &VirtReg, 535 const AllocationOrder &Order, 536 unsigned CostPerUseLimit) const { 537 unsigned OrderLimit = Order.getOrder().size(); 538 539 if (CostPerUseLimit < uint8_t(~0u)) { 540 // Check of any registers in RC are below CostPerUseLimit. 541 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg()); 542 uint8_t MinCost = RegClassInfo.getMinCost(RC); 543 if (MinCost >= CostPerUseLimit) { 544 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " 545 << MinCost << ", no cheaper registers to be found.\n"); 546 return std::nullopt; 547 } 548 549 // It is normal for register classes to have a long tail of registers with 550 // the same cost. We don't need to look at them if they're too expensive. 551 if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) { 552 OrderLimit = RegClassInfo.getLastCostChange(RC); 553 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit 554 << " regs.\n"); 555 } 556 } 557 return OrderLimit; 558 } 559 560 bool RegAllocEvictionAdvisor::canAllocatePhysReg(unsigned CostPerUseLimit, 561 MCRegister PhysReg) const { 562 if (RegCosts[PhysReg.id()] >= CostPerUseLimit) 563 return false; 564 // The first use of a callee-saved register in a function has cost 1. 565 // Don't start using a CSR when the CostPerUseLimit is low. 566 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 567 LLVM_DEBUG( 568 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " 569 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 570 << '\n'); 571 return false; 572 } 573 return true; 574 } 575 576 /// tryEvict - Try to evict all interferences for a physreg. 577 /// @param VirtReg Currently unassigned virtual register. 578 /// @param Order Physregs to try. 579 /// @return Physreg to assign VirtReg, or 0. 580 MCRegister RAGreedy::tryEvict(const LiveInterval &VirtReg, 581 AllocationOrder &Order, 582 SmallVectorImpl<Register> &NewVRegs, 583 uint8_t CostPerUseLimit, 584 const SmallVirtRegSet &FixedRegisters) { 585 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 586 TimePassesIsEnabled); 587 588 MCRegister BestPhys = EvictAdvisor->tryFindEvictionCandidate( 589 VirtReg, Order, CostPerUseLimit, FixedRegisters); 590 if (BestPhys.isValid()) 591 evictInterference(VirtReg, BestPhys, NewVRegs); 592 return BestPhys; 593 } 594 595 //===----------------------------------------------------------------------===// 596 // Region Splitting 597 //===----------------------------------------------------------------------===// 598 599 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 600 /// interference pattern in Physreg and its aliases. Add the constraints to 601 /// SpillPlacement and return the static cost of this split in Cost, assuming 602 /// that all preferences in SplitConstraints are met. 603 /// Return false if there are no bundles with positive bias. 604 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 605 BlockFrequency &Cost) { 606 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 607 608 // Reset interference dependent info. 609 SplitConstraints.resize(UseBlocks.size()); 610 BlockFrequency StaticCost = BlockFrequency(0); 611 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 612 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 613 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 614 615 BC.Number = BI.MBB->getNumber(); 616 Intf.moveToBlock(BC.Number); 617 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 618 BC.Exit = (BI.LiveOut && 619 !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef()) 620 ? SpillPlacement::PrefReg 621 : SpillPlacement::DontCare; 622 BC.ChangesValue = BI.FirstDef.isValid(); 623 624 if (!Intf.hasInterference()) 625 continue; 626 627 // Number of spill code instructions to insert. 628 unsigned Ins = 0; 629 630 // Interference for the live-in value. 631 if (BI.LiveIn) { 632 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 633 BC.Entry = SpillPlacement::MustSpill; 634 ++Ins; 635 } else if (Intf.first() < BI.FirstInstr) { 636 BC.Entry = SpillPlacement::PrefSpill; 637 ++Ins; 638 } else if (Intf.first() < BI.LastInstr) { 639 ++Ins; 640 } 641 642 // Abort if the spill cannot be inserted at the MBB' start 643 if (((BC.Entry == SpillPlacement::MustSpill) || 644 (BC.Entry == SpillPlacement::PrefSpill)) && 645 SlotIndex::isEarlierInstr(BI.FirstInstr, 646 SA->getFirstSplitPoint(BC.Number))) 647 return false; 648 } 649 650 // Interference for the live-out value. 651 if (BI.LiveOut) { 652 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 653 BC.Exit = SpillPlacement::MustSpill; 654 ++Ins; 655 } else if (Intf.last() > BI.LastInstr) { 656 BC.Exit = SpillPlacement::PrefSpill; 657 ++Ins; 658 } else if (Intf.last() > BI.FirstInstr) { 659 ++Ins; 660 } 661 } 662 663 // Accumulate the total frequency of inserted spill code. 664 while (Ins--) 665 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 666 } 667 Cost = StaticCost; 668 669 // Add constraints for use-blocks. Note that these are the only constraints 670 // that may add a positive bias, it is downhill from here. 671 SpillPlacer->addConstraints(SplitConstraints); 672 return SpillPlacer->scanActiveBundles(); 673 } 674 675 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 676 /// live-through blocks in Blocks. 677 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 678 ArrayRef<unsigned> Blocks) { 679 const unsigned GroupSize = 8; 680 SpillPlacement::BlockConstraint BCS[GroupSize]; 681 unsigned TBS[GroupSize]; 682 unsigned B = 0, T = 0; 683 684 for (unsigned Number : Blocks) { 685 Intf.moveToBlock(Number); 686 687 if (!Intf.hasInterference()) { 688 assert(T < GroupSize && "Array overflow"); 689 TBS[T] = Number; 690 if (++T == GroupSize) { 691 SpillPlacer->addLinks(ArrayRef(TBS, T)); 692 T = 0; 693 } 694 continue; 695 } 696 697 assert(B < GroupSize && "Array overflow"); 698 BCS[B].Number = Number; 699 700 // Abort if the spill cannot be inserted at the MBB' start 701 MachineBasicBlock *MBB = MF->getBlockNumbered(Number); 702 auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr(); 703 if (FirstNonDebugInstr != MBB->end() && 704 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr), 705 SA->getFirstSplitPoint(Number))) 706 return false; 707 // Interference for the live-in value. 708 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 709 BCS[B].Entry = SpillPlacement::MustSpill; 710 else 711 BCS[B].Entry = SpillPlacement::PrefSpill; 712 713 // Interference for the live-out value. 714 if (Intf.last() >= SA->getLastSplitPoint(Number)) 715 BCS[B].Exit = SpillPlacement::MustSpill; 716 else 717 BCS[B].Exit = SpillPlacement::PrefSpill; 718 719 if (++B == GroupSize) { 720 SpillPlacer->addConstraints(ArrayRef(BCS, B)); 721 B = 0; 722 } 723 } 724 725 SpillPlacer->addConstraints(ArrayRef(BCS, B)); 726 SpillPlacer->addLinks(ArrayRef(TBS, T)); 727 return true; 728 } 729 730 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 731 // Keep track of through blocks that have not been added to SpillPlacer. 732 BitVector Todo = SA->getThroughBlocks(); 733 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 734 unsigned AddedTo = 0; 735 #ifndef NDEBUG 736 unsigned Visited = 0; 737 #endif 738 739 unsigned long Budget = GrowRegionComplexityBudget; 740 while (true) { 741 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 742 // Find new through blocks in the periphery of PrefRegBundles. 743 for (unsigned Bundle : NewBundles) { 744 // Look at all blocks connected to Bundle in the full graph. 745 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 746 // Limit compilation time by bailing out after we use all our budget. 747 if (Blocks.size() >= Budget) 748 return false; 749 Budget -= Blocks.size(); 750 for (unsigned Block : Blocks) { 751 if (!Todo.test(Block)) 752 continue; 753 Todo.reset(Block); 754 // This is a new through block. Add it to SpillPlacer later. 755 ActiveBlocks.push_back(Block); 756 #ifndef NDEBUG 757 ++Visited; 758 #endif 759 } 760 } 761 // Any new blocks to add? 762 if (ActiveBlocks.size() == AddedTo) 763 break; 764 765 // Compute through constraints from the interference, or assume that all 766 // through blocks prefer spilling when forming compact regions. 767 auto NewBlocks = ArrayRef(ActiveBlocks).slice(AddedTo); 768 if (Cand.PhysReg) { 769 if (!addThroughConstraints(Cand.Intf, NewBlocks)) 770 return false; 771 } else { 772 // Providing that the variable being spilled does not look like a loop 773 // induction variable, which is expensive to spill around and better 774 // pushed into a condition inside the loop if possible, provide a strong 775 // negative bias on through blocks to prevent unwanted liveness on loop 776 // backedges. 777 bool PrefSpill = true; 778 if (SA->looksLikeLoopIV() && NewBlocks.size() >= 2) { 779 // Check that the current bundle is adding a Header + start+end of 780 // loop-internal blocks. If the block is indeed a header, don't make 781 // the NewBlocks as PrefSpill to allow the variable to be live in 782 // Header<->Latch. 783 MachineLoop *L = Loops->getLoopFor(MF->getBlockNumbered(NewBlocks[0])); 784 if (L && L->getHeader()->getNumber() == (int)NewBlocks[0] && 785 all_of(NewBlocks.drop_front(), [&](unsigned Block) { 786 return L == Loops->getLoopFor(MF->getBlockNumbered(Block)); 787 })) 788 PrefSpill = false; 789 } 790 if (PrefSpill) 791 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 792 } 793 AddedTo = ActiveBlocks.size(); 794 795 // Perhaps iterating can enable more bundles? 796 SpillPlacer->iterate(); 797 } 798 LLVM_DEBUG(dbgs() << ", v=" << Visited); 799 return true; 800 } 801 802 /// calcCompactRegion - Compute the set of edge bundles that should be live 803 /// when splitting the current live range into compact regions. Compact 804 /// regions can be computed without looking at interference. They are the 805 /// regions formed by removing all the live-through blocks from the live range. 806 /// 807 /// Returns false if the current live range is already compact, or if the 808 /// compact regions would form single block regions anyway. 809 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 810 // Without any through blocks, the live range is already compact. 811 if (!SA->getNumThroughBlocks()) 812 return false; 813 814 // Compact regions don't correspond to any physreg. 815 Cand.reset(IntfCache, MCRegister::NoRegister); 816 817 LLVM_DEBUG(dbgs() << "Compact region bundles"); 818 819 // Use the spill placer to determine the live bundles. GrowRegion pretends 820 // that all the through blocks have interference when PhysReg is unset. 821 SpillPlacer->prepare(Cand.LiveBundles); 822 823 // The static split cost will be zero since Cand.Intf reports no interference. 824 BlockFrequency Cost; 825 if (!addSplitConstraints(Cand.Intf, Cost)) { 826 LLVM_DEBUG(dbgs() << ", none.\n"); 827 return false; 828 } 829 830 if (!growRegion(Cand)) { 831 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 832 return false; 833 } 834 835 SpillPlacer->finish(); 836 837 if (!Cand.LiveBundles.any()) { 838 LLVM_DEBUG(dbgs() << ", none.\n"); 839 return false; 840 } 841 842 LLVM_DEBUG({ 843 for (int I : Cand.LiveBundles.set_bits()) 844 dbgs() << " EB#" << I; 845 dbgs() << ".\n"; 846 }); 847 return true; 848 } 849 850 /// calcSpillCost - Compute how expensive it would be to split the live range in 851 /// SA around all use blocks instead of forming bundle regions. 852 BlockFrequency RAGreedy::calcSpillCost() { 853 BlockFrequency Cost = BlockFrequency(0); 854 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 855 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 856 unsigned Number = BI.MBB->getNumber(); 857 // We normally only need one spill instruction - a load or a store. 858 Cost += SpillPlacer->getBlockFrequency(Number); 859 860 // Unless the value is redefined in the block. 861 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 862 Cost += SpillPlacer->getBlockFrequency(Number); 863 } 864 return Cost; 865 } 866 867 /// calcGlobalSplitCost - Return the global split cost of following the split 868 /// pattern in LiveBundles. This cost should be added to the local cost of the 869 /// interference pattern in SplitConstraints. 870 /// 871 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, 872 const AllocationOrder &Order) { 873 BlockFrequency GlobalCost = BlockFrequency(0); 874 const BitVector &LiveBundles = Cand.LiveBundles; 875 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 876 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 877 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 878 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 879 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 880 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 881 unsigned Ins = 0; 882 883 Cand.Intf.moveToBlock(BC.Number); 884 885 if (BI.LiveIn) 886 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 887 if (BI.LiveOut) 888 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 889 while (Ins--) 890 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 891 } 892 893 for (unsigned Number : Cand.ActiveBlocks) { 894 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 895 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 896 if (!RegIn && !RegOut) 897 continue; 898 if (RegIn && RegOut) { 899 // We need double spill code if this block has interference. 900 Cand.Intf.moveToBlock(Number); 901 if (Cand.Intf.hasInterference()) { 902 GlobalCost += SpillPlacer->getBlockFrequency(Number); 903 GlobalCost += SpillPlacer->getBlockFrequency(Number); 904 } 905 continue; 906 } 907 // live-in / stack-out or stack-in live-out. 908 GlobalCost += SpillPlacer->getBlockFrequency(Number); 909 } 910 return GlobalCost; 911 } 912 913 /// splitAroundRegion - Split the current live range around the regions 914 /// determined by BundleCand and GlobalCand. 915 /// 916 /// Before calling this function, GlobalCand and BundleCand must be initialized 917 /// so each bundle is assigned to a valid candidate, or NoCand for the 918 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 919 /// objects must be initialized for the current live range, and intervals 920 /// created for the used candidates. 921 /// 922 /// @param LREdit The LiveRangeEdit object handling the current split. 923 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 924 /// must appear in this list. 925 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 926 ArrayRef<unsigned> UsedCands) { 927 // These are the intervals created for new global ranges. We may create more 928 // intervals for local ranges. 929 const unsigned NumGlobalIntvs = LREdit.size(); 930 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs 931 << " globals.\n"); 932 assert(NumGlobalIntvs && "No global intervals configured"); 933 934 // Isolate even single instructions when dealing with a proper sub-class. 935 // That guarantees register class inflation for the stack interval because it 936 // is all copies. 937 Register Reg = SA->getParent().reg(); 938 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 939 940 // First handle all the blocks with uses. 941 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 942 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 943 unsigned Number = BI.MBB->getNumber(); 944 unsigned IntvIn = 0, IntvOut = 0; 945 SlotIndex IntfIn, IntfOut; 946 if (BI.LiveIn) { 947 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 948 if (CandIn != NoCand) { 949 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 950 IntvIn = Cand.IntvIdx; 951 Cand.Intf.moveToBlock(Number); 952 IntfIn = Cand.Intf.first(); 953 } 954 } 955 if (BI.LiveOut) { 956 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 957 if (CandOut != NoCand) { 958 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 959 IntvOut = Cand.IntvIdx; 960 Cand.Intf.moveToBlock(Number); 961 IntfOut = Cand.Intf.last(); 962 } 963 } 964 965 // Create separate intervals for isolated blocks with multiple uses. 966 if (!IntvIn && !IntvOut) { 967 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); 968 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 969 SE->splitSingleBlock(BI); 970 continue; 971 } 972 973 if (IntvIn && IntvOut) 974 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 975 else if (IntvIn) 976 SE->splitRegInBlock(BI, IntvIn, IntfIn); 977 else 978 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 979 } 980 981 // Handle live-through blocks. The relevant live-through blocks are stored in 982 // the ActiveBlocks list with each candidate. We need to filter out 983 // duplicates. 984 BitVector Todo = SA->getThroughBlocks(); 985 for (unsigned UsedCand : UsedCands) { 986 ArrayRef<unsigned> Blocks = GlobalCand[UsedCand].ActiveBlocks; 987 for (unsigned Number : Blocks) { 988 if (!Todo.test(Number)) 989 continue; 990 Todo.reset(Number); 991 992 unsigned IntvIn = 0, IntvOut = 0; 993 SlotIndex IntfIn, IntfOut; 994 995 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 996 if (CandIn != NoCand) { 997 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 998 IntvIn = Cand.IntvIdx; 999 Cand.Intf.moveToBlock(Number); 1000 IntfIn = Cand.Intf.first(); 1001 } 1002 1003 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1004 if (CandOut != NoCand) { 1005 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1006 IntvOut = Cand.IntvIdx; 1007 Cand.Intf.moveToBlock(Number); 1008 IntfOut = Cand.Intf.last(); 1009 } 1010 if (!IntvIn && !IntvOut) 1011 continue; 1012 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1013 } 1014 } 1015 1016 ++NumGlobalSplits; 1017 1018 SmallVector<unsigned, 8> IntvMap; 1019 SE->finish(&IntvMap); 1020 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1021 1022 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1023 1024 // Sort out the new intervals created by splitting. We get four kinds: 1025 // - Remainder intervals should not be split again. 1026 // - Candidate intervals can be assigned to Cand.PhysReg. 1027 // - Block-local splits are candidates for local splitting. 1028 // - DCE leftovers should go back on the queue. 1029 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 1030 const LiveInterval &Reg = LIS->getInterval(LREdit.get(I)); 1031 1032 // Ignore old intervals from DCE. 1033 if (ExtraInfo->getOrInitStage(Reg.reg()) != RS_New) 1034 continue; 1035 1036 // Remainder interval. Don't try splitting again, spill if it doesn't 1037 // allocate. 1038 if (IntvMap[I] == 0) { 1039 ExtraInfo->setStage(Reg, RS_Spill); 1040 continue; 1041 } 1042 1043 // Global intervals. Allow repeated splitting as long as the number of live 1044 // blocks is strictly decreasing. 1045 if (IntvMap[I] < NumGlobalIntvs) { 1046 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1047 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1048 << " blocks as original.\n"); 1049 // Don't allow repeated splitting as a safe guard against looping. 1050 ExtraInfo->setStage(Reg, RS_Split2); 1051 } 1052 continue; 1053 } 1054 1055 // Other intervals are treated as new. This includes local intervals created 1056 // for blocks with multiple uses, and anything created by DCE. 1057 } 1058 1059 if (VerifyEnabled) 1060 MF->verify(this, "After splitting live range around region", &errs()); 1061 } 1062 1063 MCRegister RAGreedy::tryRegionSplit(const LiveInterval &VirtReg, 1064 AllocationOrder &Order, 1065 SmallVectorImpl<Register> &NewVRegs) { 1066 if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg)) 1067 return MCRegister::NoRegister; 1068 unsigned NumCands = 0; 1069 BlockFrequency SpillCost = calcSpillCost(); 1070 BlockFrequency BestCost; 1071 1072 // Check if we can split this live range around a compact region. 1073 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1074 if (HasCompact) { 1075 // Yes, keep GlobalCand[0] as the compact region candidate. 1076 NumCands = 1; 1077 BestCost = BlockFrequency::max(); 1078 } else { 1079 // No benefit from the compact region, our fallback will be per-block 1080 // splitting. Make sure we find a solution that is cheaper than spilling. 1081 BestCost = SpillCost; 1082 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = " 1083 << printBlockFreq(*MBFI, BestCost) << '\n'); 1084 } 1085 1086 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 1087 NumCands, false /*IgnoreCSR*/); 1088 1089 // No solutions found, fall back to single block splitting. 1090 if (!HasCompact && BestCand == NoCand) 1091 return MCRegister::NoRegister; 1092 1093 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1094 } 1095 1096 unsigned 1097 RAGreedy::calculateRegionSplitCostAroundReg(MCPhysReg PhysReg, 1098 AllocationOrder &Order, 1099 BlockFrequency &BestCost, 1100 unsigned &NumCands, 1101 unsigned &BestCand) { 1102 // Discard bad candidates before we run out of interference cache cursors. 1103 // This will only affect register classes with a lot of registers (>32). 1104 if (NumCands == IntfCache.getMaxCursors()) { 1105 unsigned WorstCount = ~0u; 1106 unsigned Worst = 0; 1107 for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) { 1108 if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg) 1109 continue; 1110 unsigned Count = GlobalCand[CandIndex].LiveBundles.count(); 1111 if (Count < WorstCount) { 1112 Worst = CandIndex; 1113 WorstCount = Count; 1114 } 1115 } 1116 --NumCands; 1117 GlobalCand[Worst] = GlobalCand[NumCands]; 1118 if (BestCand == NumCands) 1119 BestCand = Worst; 1120 } 1121 1122 if (GlobalCand.size() <= NumCands) 1123 GlobalCand.resize(NumCands+1); 1124 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1125 Cand.reset(IntfCache, PhysReg); 1126 1127 SpillPlacer->prepare(Cand.LiveBundles); 1128 BlockFrequency Cost; 1129 if (!addSplitConstraints(Cand.Intf, Cost)) { 1130 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); 1131 return BestCand; 1132 } 1133 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) 1134 << "\tstatic = " << printBlockFreq(*MBFI, Cost)); 1135 if (Cost >= BestCost) { 1136 LLVM_DEBUG({ 1137 if (BestCand == NoCand) 1138 dbgs() << " worse than no bundles\n"; 1139 else 1140 dbgs() << " worse than " 1141 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1142 }); 1143 return BestCand; 1144 } 1145 if (!growRegion(Cand)) { 1146 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1147 return BestCand; 1148 } 1149 1150 SpillPlacer->finish(); 1151 1152 // No live bundles, defer to splitSingleBlocks(). 1153 if (!Cand.LiveBundles.any()) { 1154 LLVM_DEBUG(dbgs() << " no bundles.\n"); 1155 return BestCand; 1156 } 1157 1158 Cost += calcGlobalSplitCost(Cand, Order); 1159 LLVM_DEBUG({ 1160 dbgs() << ", total = " << printBlockFreq(*MBFI, Cost) << " with bundles"; 1161 for (int I : Cand.LiveBundles.set_bits()) 1162 dbgs() << " EB#" << I; 1163 dbgs() << ".\n"; 1164 }); 1165 if (Cost < BestCost) { 1166 BestCand = NumCands; 1167 BestCost = Cost; 1168 } 1169 ++NumCands; 1170 1171 return BestCand; 1172 } 1173 1174 unsigned RAGreedy::calculateRegionSplitCost(const LiveInterval &VirtReg, 1175 AllocationOrder &Order, 1176 BlockFrequency &BestCost, 1177 unsigned &NumCands, 1178 bool IgnoreCSR) { 1179 unsigned BestCand = NoCand; 1180 for (MCPhysReg PhysReg : Order) { 1181 assert(PhysReg); 1182 if (IgnoreCSR && EvictAdvisor->isUnusedCalleeSavedReg(PhysReg)) 1183 continue; 1184 1185 calculateRegionSplitCostAroundReg(PhysReg, Order, BestCost, NumCands, 1186 BestCand); 1187 } 1188 1189 return BestCand; 1190 } 1191 1192 unsigned RAGreedy::doRegionSplit(const LiveInterval &VirtReg, unsigned BestCand, 1193 bool HasCompact, 1194 SmallVectorImpl<Register> &NewVRegs) { 1195 SmallVector<unsigned, 8> UsedCands; 1196 // Prepare split editor. 1197 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1198 SE->reset(LREdit, SplitSpillMode); 1199 1200 // Assign all edge bundles to the preferred candidate, or NoCand. 1201 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1202 1203 // Assign bundles for the best candidate region. 1204 if (BestCand != NoCand) { 1205 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1206 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1207 UsedCands.push_back(BestCand); 1208 Cand.IntvIdx = SE->openIntv(); 1209 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " 1210 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1211 (void)B; 1212 } 1213 } 1214 1215 // Assign bundles for the compact region. 1216 if (HasCompact) { 1217 GlobalSplitCandidate &Cand = GlobalCand.front(); 1218 assert(!Cand.PhysReg && "Compact region has no physreg"); 1219 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1220 UsedCands.push_back(0); 1221 Cand.IntvIdx = SE->openIntv(); 1222 LLVM_DEBUG(dbgs() << "Split for compact region in " << B 1223 << " bundles, intv " << Cand.IntvIdx << ".\n"); 1224 (void)B; 1225 } 1226 } 1227 1228 splitAroundRegion(LREdit, UsedCands); 1229 return 0; 1230 } 1231 1232 // VirtReg has a physical Hint, this function tries to split VirtReg around 1233 // Hint if we can place new COPY instructions in cold blocks. 1234 bool RAGreedy::trySplitAroundHintReg(MCPhysReg Hint, 1235 const LiveInterval &VirtReg, 1236 SmallVectorImpl<Register> &NewVRegs, 1237 AllocationOrder &Order) { 1238 // Split the VirtReg may generate COPY instructions in multiple cold basic 1239 // blocks, and increase code size. So we avoid it when the function is 1240 // optimized for size. 1241 if (MF->getFunction().hasOptSize()) 1242 return false; 1243 1244 // Don't allow repeated splitting as a safe guard against looping. 1245 if (ExtraInfo->getStage(VirtReg) >= RS_Split2) 1246 return false; 1247 1248 BlockFrequency Cost = BlockFrequency(0); 1249 Register Reg = VirtReg.reg(); 1250 1251 // Compute the cost of assigning a non Hint physical register to VirtReg. 1252 // We define it as the total frequency of broken COPY instructions to/from 1253 // Hint register, and after split, they can be deleted. 1254 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 1255 if (!TII->isFullCopyInstr(Instr)) 1256 continue; 1257 Register OtherReg = Instr.getOperand(1).getReg(); 1258 if (OtherReg == Reg) { 1259 OtherReg = Instr.getOperand(0).getReg(); 1260 if (OtherReg == Reg) 1261 continue; 1262 // Check if VirtReg interferes with OtherReg after this COPY instruction. 1263 if (VirtReg.liveAt(LIS->getInstructionIndex(Instr).getRegSlot())) 1264 continue; 1265 } 1266 MCRegister OtherPhysReg = 1267 OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg); 1268 if (OtherPhysReg == Hint) 1269 Cost += MBFI->getBlockFreq(Instr.getParent()); 1270 } 1271 1272 // Decrease the cost so it will be split in colder blocks. 1273 BranchProbability Threshold(SplitThresholdForRegWithHint, 100); 1274 Cost *= Threshold; 1275 if (Cost == BlockFrequency(0)) 1276 return false; 1277 1278 unsigned NumCands = 0; 1279 unsigned BestCand = NoCand; 1280 SA->analyze(&VirtReg); 1281 calculateRegionSplitCostAroundReg(Hint, Order, Cost, NumCands, BestCand); 1282 if (BestCand == NoCand) 1283 return false; 1284 1285 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 1286 return true; 1287 } 1288 1289 //===----------------------------------------------------------------------===// 1290 // Per-Block Splitting 1291 //===----------------------------------------------------------------------===// 1292 1293 /// tryBlockSplit - Split a global live range around every block with uses. This 1294 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 1295 /// they don't allocate. 1296 unsigned RAGreedy::tryBlockSplit(const LiveInterval &VirtReg, 1297 AllocationOrder &Order, 1298 SmallVectorImpl<Register> &NewVRegs) { 1299 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 1300 Register Reg = VirtReg.reg(); 1301 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1302 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1303 SE->reset(LREdit, SplitSpillMode); 1304 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1305 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1306 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1307 SE->splitSingleBlock(BI); 1308 } 1309 // No blocks were split. 1310 if (LREdit.empty()) 1311 return 0; 1312 1313 // We did split for some blocks. 1314 SmallVector<unsigned, 8> IntvMap; 1315 SE->finish(&IntvMap); 1316 1317 // Tell LiveDebugVariables about the new ranges. 1318 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1319 1320 // Sort out the new intervals created by splitting. The remainder interval 1321 // goes straight to spilling, the new local ranges get to stay RS_New. 1322 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 1323 const LiveInterval &LI = LIS->getInterval(LREdit.get(I)); 1324 if (ExtraInfo->getOrInitStage(LI.reg()) == RS_New && IntvMap[I] == 0) 1325 ExtraInfo->setStage(LI, RS_Spill); 1326 } 1327 1328 if (VerifyEnabled) 1329 MF->verify(this, "After splitting live range around basic blocks", &errs()); 1330 return 0; 1331 } 1332 1333 //===----------------------------------------------------------------------===// 1334 // Per-Instruction Splitting 1335 //===----------------------------------------------------------------------===// 1336 1337 /// Get the number of allocatable registers that match the constraints of \p Reg 1338 /// on \p MI and that are also in \p SuperRC. 1339 static unsigned getNumAllocatableRegsForConstraints( 1340 const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC, 1341 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 1342 const RegisterClassInfo &RCI) { 1343 assert(SuperRC && "Invalid register class"); 1344 1345 const TargetRegisterClass *ConstrainedRC = 1346 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 1347 /* ExploreBundle */ true); 1348 if (!ConstrainedRC) 1349 return 0; 1350 return RCI.getNumAllocatableRegs(ConstrainedRC); 1351 } 1352 1353 static LaneBitmask getInstReadLaneMask(const MachineRegisterInfo &MRI, 1354 const TargetRegisterInfo &TRI, 1355 const MachineInstr &FirstMI, 1356 Register Reg) { 1357 LaneBitmask Mask; 1358 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops; 1359 (void)AnalyzeVirtRegInBundle(const_cast<MachineInstr &>(FirstMI), Reg, &Ops); 1360 1361 for (auto [MI, OpIdx] : Ops) { 1362 const MachineOperand &MO = MI->getOperand(OpIdx); 1363 assert(MO.isReg() && MO.getReg() == Reg); 1364 unsigned SubReg = MO.getSubReg(); 1365 if (SubReg == 0 && MO.isUse()) { 1366 if (MO.isUndef()) 1367 continue; 1368 return MRI.getMaxLaneMaskForVReg(Reg); 1369 } 1370 1371 LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(SubReg); 1372 if (MO.isDef()) { 1373 if (!MO.isUndef()) 1374 Mask |= ~SubRegMask; 1375 } else 1376 Mask |= SubRegMask; 1377 } 1378 1379 return Mask; 1380 } 1381 1382 /// Return true if \p MI at \P Use reads a subset of the lanes live in \p 1383 /// VirtReg. 1384 static bool readsLaneSubset(const MachineRegisterInfo &MRI, 1385 const MachineInstr *MI, const LiveInterval &VirtReg, 1386 const TargetRegisterInfo *TRI, SlotIndex Use, 1387 const TargetInstrInfo *TII) { 1388 // Early check the common case. Beware of the semi-formed bundles SplitKit 1389 // creates by setting the bundle flag on copies without a matching BUNDLE. 1390 1391 auto DestSrc = TII->isCopyInstr(*MI); 1392 if (DestSrc && !MI->isBundled() && 1393 DestSrc->Destination->getSubReg() == DestSrc->Source->getSubReg()) 1394 return false; 1395 1396 // FIXME: We're only considering uses, but should be consider defs too? 1397 LaneBitmask ReadMask = getInstReadLaneMask(MRI, *TRI, *MI, VirtReg.reg()); 1398 1399 LaneBitmask LiveAtMask; 1400 for (const LiveInterval::SubRange &S : VirtReg.subranges()) { 1401 if (S.liveAt(Use)) 1402 LiveAtMask |= S.LaneMask; 1403 } 1404 1405 // If the live lanes aren't different from the lanes used by the instruction, 1406 // this doesn't help. 1407 return (ReadMask & ~(LiveAtMask & TRI->getCoveringLanes())).any(); 1408 } 1409 1410 /// tryInstructionSplit - Split a live range around individual instructions. 1411 /// This is normally not worthwhile since the spiller is doing essentially the 1412 /// same thing. However, when the live range is in a constrained register 1413 /// class, it may help to insert copies such that parts of the live range can 1414 /// be moved to a larger register class. 1415 /// 1416 /// This is similar to spilling to a larger register class. 1417 unsigned RAGreedy::tryInstructionSplit(const LiveInterval &VirtReg, 1418 AllocationOrder &Order, 1419 SmallVectorImpl<Register> &NewVRegs) { 1420 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 1421 // There is no point to this if there are no larger sub-classes. 1422 1423 bool SplitSubClass = true; 1424 if (!RegClassInfo.isProperSubClass(CurRC)) { 1425 if (!VirtReg.hasSubRanges()) 1426 return 0; 1427 SplitSubClass = false; 1428 } 1429 1430 // Always enable split spill mode, since we're effectively spilling to a 1431 // register. 1432 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1433 SE->reset(LREdit, SplitEditor::SM_Size); 1434 1435 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1436 if (Uses.size() <= 1) 1437 return 0; 1438 1439 LLVM_DEBUG(dbgs() << "Split around " << Uses.size() 1440 << " individual instrs.\n"); 1441 1442 const TargetRegisterClass *SuperRC = 1443 TRI->getLargestLegalSuperClass(CurRC, *MF); 1444 unsigned SuperRCNumAllocatableRegs = 1445 RegClassInfo.getNumAllocatableRegs(SuperRC); 1446 // Split around every non-copy instruction if this split will relax 1447 // the constraints on the virtual register. 1448 // Otherwise, splitting just inserts uncoalescable copies that do not help 1449 // the allocation. 1450 for (const SlotIndex Use : Uses) { 1451 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use)) { 1452 if (TII->isFullCopyInstr(*MI) || 1453 (SplitSubClass && 1454 SuperRCNumAllocatableRegs == 1455 getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC, 1456 TII, TRI, RegClassInfo)) || 1457 // TODO: Handle split for subranges with subclass constraints? 1458 (!SplitSubClass && VirtReg.hasSubRanges() && 1459 !readsLaneSubset(*MRI, MI, VirtReg, TRI, Use, TII))) { 1460 LLVM_DEBUG(dbgs() << " skip:\t" << Use << '\t' << *MI); 1461 continue; 1462 } 1463 } 1464 SE->openIntv(); 1465 SlotIndex SegStart = SE->enterIntvBefore(Use); 1466 SlotIndex SegStop = SE->leaveIntvAfter(Use); 1467 SE->useIntv(SegStart, SegStop); 1468 } 1469 1470 if (LREdit.empty()) { 1471 LLVM_DEBUG(dbgs() << "All uses were copies.\n"); 1472 return 0; 1473 } 1474 1475 SmallVector<unsigned, 8> IntvMap; 1476 SE->finish(&IntvMap); 1477 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 1478 // Assign all new registers to RS_Spill. This was the last chance. 1479 ExtraInfo->setStage(LREdit.begin(), LREdit.end(), RS_Spill); 1480 return 0; 1481 } 1482 1483 //===----------------------------------------------------------------------===// 1484 // Local Splitting 1485 //===----------------------------------------------------------------------===// 1486 1487 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 1488 /// in order to use PhysReg between two entries in SA->UseSlots. 1489 /// 1490 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1]. 1491 /// 1492 void RAGreedy::calcGapWeights(MCRegister PhysReg, 1493 SmallVectorImpl<float> &GapWeight) { 1494 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1495 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1496 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1497 const unsigned NumGaps = Uses.size()-1; 1498 1499 // Start and end points for the interference check. 1500 SlotIndex StartIdx = 1501 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 1502 SlotIndex StopIdx = 1503 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 1504 1505 GapWeight.assign(NumGaps, 0.0f); 1506 1507 // Add interference from each overlapping register. 1508 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 1509 if (!Matrix->query(const_cast<LiveInterval &>(SA->getParent()), Unit) 1510 .checkInterference()) 1511 continue; 1512 1513 // We know that VirtReg is a continuous interval from FirstInstr to 1514 // LastInstr, so we don't need InterferenceQuery. 1515 // 1516 // Interference that overlaps an instruction is counted in both gaps 1517 // surrounding the instruction. The exception is interference before 1518 // StartIdx and after StopIdx. 1519 // 1520 LiveIntervalUnion::SegmentIter IntI = 1521 Matrix->getLiveUnions()[Unit].find(StartIdx); 1522 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 1523 // Skip the gaps before IntI. 1524 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 1525 if (++Gap == NumGaps) 1526 break; 1527 if (Gap == NumGaps) 1528 break; 1529 1530 // Update the gaps covered by IntI. 1531 const float weight = IntI.value()->weight(); 1532 for (; Gap != NumGaps; ++Gap) { 1533 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 1534 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 1535 break; 1536 } 1537 if (Gap == NumGaps) 1538 break; 1539 } 1540 } 1541 1542 // Add fixed interference. 1543 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 1544 const LiveRange &LR = LIS->getRegUnit(Unit); 1545 LiveRange::const_iterator I = LR.find(StartIdx); 1546 LiveRange::const_iterator E = LR.end(); 1547 1548 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 1549 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 1550 while (Uses[Gap+1].getBoundaryIndex() < I->start) 1551 if (++Gap == NumGaps) 1552 break; 1553 if (Gap == NumGaps) 1554 break; 1555 1556 for (; Gap != NumGaps; ++Gap) { 1557 GapWeight[Gap] = huge_valf; 1558 if (Uses[Gap+1].getBaseIndex() >= I->end) 1559 break; 1560 } 1561 if (Gap == NumGaps) 1562 break; 1563 } 1564 } 1565 } 1566 1567 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 1568 /// basic block. 1569 /// 1570 unsigned RAGreedy::tryLocalSplit(const LiveInterval &VirtReg, 1571 AllocationOrder &Order, 1572 SmallVectorImpl<Register> &NewVRegs) { 1573 // TODO: the function currently only handles a single UseBlock; it should be 1574 // possible to generalize. 1575 if (SA->getUseBlocks().size() != 1) 1576 return 0; 1577 1578 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1579 1580 // Note that it is possible to have an interval that is live-in or live-out 1581 // while only covering a single block - A phi-def can use undef values from 1582 // predecessors, and the block could be a single-block loop. 1583 // We don't bother doing anything clever about such a case, we simply assume 1584 // that the interval is continuous from FirstInstr to LastInstr. We should 1585 // make sure that we don't do anything illegal to such an interval, though. 1586 1587 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1588 if (Uses.size() <= 2) 1589 return 0; 1590 const unsigned NumGaps = Uses.size()-1; 1591 1592 LLVM_DEBUG({ 1593 dbgs() << "tryLocalSplit: "; 1594 for (const auto &Use : Uses) 1595 dbgs() << ' ' << Use; 1596 dbgs() << '\n'; 1597 }); 1598 1599 // If VirtReg is live across any register mask operands, compute a list of 1600 // gaps with register masks. 1601 SmallVector<unsigned, 8> RegMaskGaps; 1602 if (Matrix->checkRegMaskInterference(VirtReg)) { 1603 // Get regmask slots for the whole block. 1604 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 1605 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 1606 // Constrain to VirtReg's live range. 1607 unsigned RI = 1608 llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin(); 1609 unsigned RE = RMS.size(); 1610 for (unsigned I = 0; I != NumGaps && RI != RE; ++I) { 1611 // Look for Uses[I] <= RMS <= Uses[I + 1]. 1612 assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I])); 1613 if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI])) 1614 continue; 1615 // Skip a regmask on the same instruction as the last use. It doesn't 1616 // overlap the live range. 1617 if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps) 1618 break; 1619 LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-' 1620 << Uses[I + 1]); 1621 RegMaskGaps.push_back(I); 1622 // Advance ri to the next gap. A regmask on one of the uses counts in 1623 // both gaps. 1624 while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1])) 1625 ++RI; 1626 } 1627 LLVM_DEBUG(dbgs() << '\n'); 1628 } 1629 1630 // Since we allow local split results to be split again, there is a risk of 1631 // creating infinite loops. It is tempting to require that the new live 1632 // ranges have less instructions than the original. That would guarantee 1633 // convergence, but it is too strict. A live range with 3 instructions can be 1634 // split 2+3 (including the COPY), and we want to allow that. 1635 // 1636 // Instead we use these rules: 1637 // 1638 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 1639 // noop split, of course). 1640 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 1641 // the new ranges must have fewer instructions than before the split. 1642 // 3. New ranges with the same number of instructions are marked RS_Split2, 1643 // smaller ranges are marked RS_New. 1644 // 1645 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 1646 // excessive splitting and infinite loops. 1647 // 1648 bool ProgressRequired = ExtraInfo->getStage(VirtReg) >= RS_Split2; 1649 1650 // Best split candidate. 1651 unsigned BestBefore = NumGaps; 1652 unsigned BestAfter = 0; 1653 float BestDiff = 0; 1654 1655 const float blockFreq = 1656 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 1657 (1.0f / MBFI->getEntryFreq().getFrequency()); 1658 SmallVector<float, 8> GapWeight; 1659 1660 for (MCPhysReg PhysReg : Order) { 1661 assert(PhysReg); 1662 // Keep track of the largest spill weight that would need to be evicted in 1663 // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1]. 1664 calcGapWeights(PhysReg, GapWeight); 1665 1666 // Remove any gaps with regmask clobbers. 1667 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 1668 for (unsigned Gap : RegMaskGaps) 1669 GapWeight[Gap] = huge_valf; 1670 1671 // Try to find the best sequence of gaps to close. 1672 // The new spill weight must be larger than any gap interference. 1673 1674 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 1675 unsigned SplitBefore = 0, SplitAfter = 1; 1676 1677 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 1678 // It is the spill weight that needs to be evicted. 1679 float MaxGap = GapWeight[0]; 1680 1681 while (true) { 1682 // Live before/after split? 1683 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 1684 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 1685 1686 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] 1687 << '-' << Uses[SplitAfter] << " I=" << MaxGap); 1688 1689 // Stop before the interval gets so big we wouldn't be making progress. 1690 if (!LiveBefore && !LiveAfter) { 1691 LLVM_DEBUG(dbgs() << " all\n"); 1692 break; 1693 } 1694 // Should the interval be extended or shrunk? 1695 bool Shrink = true; 1696 1697 // How many gaps would the new range have? 1698 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 1699 1700 // Legally, without causing looping? 1701 bool Legal = !ProgressRequired || NewGaps < NumGaps; 1702 1703 if (Legal && MaxGap < huge_valf) { 1704 // Estimate the new spill weight. Each instruction reads or writes the 1705 // register. Conservatively assume there are no read-modify-write 1706 // instructions. 1707 // 1708 // Try to guess the size of the new interval. 1709 const float EstWeight = normalizeSpillWeight( 1710 blockFreq * (NewGaps + 1), 1711 Uses[SplitBefore].distance(Uses[SplitAfter]) + 1712 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 1713 1); 1714 // Would this split be possible to allocate? 1715 // Never allocate all gaps, we wouldn't be making progress. 1716 LLVM_DEBUG(dbgs() << " w=" << EstWeight); 1717 if (EstWeight * Hysteresis >= MaxGap) { 1718 Shrink = false; 1719 float Diff = EstWeight - MaxGap; 1720 if (Diff > BestDiff) { 1721 LLVM_DEBUG(dbgs() << " (best)"); 1722 BestDiff = Hysteresis * Diff; 1723 BestBefore = SplitBefore; 1724 BestAfter = SplitAfter; 1725 } 1726 } 1727 } 1728 1729 // Try to shrink. 1730 if (Shrink) { 1731 if (++SplitBefore < SplitAfter) { 1732 LLVM_DEBUG(dbgs() << " shrink\n"); 1733 // Recompute the max when necessary. 1734 if (GapWeight[SplitBefore - 1] >= MaxGap) { 1735 MaxGap = GapWeight[SplitBefore]; 1736 for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I) 1737 MaxGap = std::max(MaxGap, GapWeight[I]); 1738 } 1739 continue; 1740 } 1741 MaxGap = 0; 1742 } 1743 1744 // Try to extend the interval. 1745 if (SplitAfter >= NumGaps) { 1746 LLVM_DEBUG(dbgs() << " end\n"); 1747 break; 1748 } 1749 1750 LLVM_DEBUG(dbgs() << " extend\n"); 1751 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 1752 } 1753 } 1754 1755 // Didn't find any candidates? 1756 if (BestBefore == NumGaps) 1757 return 0; 1758 1759 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' 1760 << Uses[BestAfter] << ", " << BestDiff << ", " 1761 << (BestAfter - BestBefore + 1) << " instrs\n"); 1762 1763 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1764 SE->reset(LREdit); 1765 1766 SE->openIntv(); 1767 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 1768 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 1769 SE->useIntv(SegStart, SegStop); 1770 SmallVector<unsigned, 8> IntvMap; 1771 SE->finish(&IntvMap); 1772 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 1773 // If the new range has the same number of instructions as before, mark it as 1774 // RS_Split2 so the next split will be forced to make progress. Otherwise, 1775 // leave the new intervals as RS_New so they can compete. 1776 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 1777 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 1778 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 1779 if (NewGaps >= NumGaps) { 1780 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:"); 1781 assert(!ProgressRequired && "Didn't make progress when it was required."); 1782 for (unsigned I = 0, E = IntvMap.size(); I != E; ++I) 1783 if (IntvMap[I] == 1) { 1784 ExtraInfo->setStage(LIS->getInterval(LREdit.get(I)), RS_Split2); 1785 LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I))); 1786 } 1787 LLVM_DEBUG(dbgs() << '\n'); 1788 } 1789 ++NumLocalSplits; 1790 1791 return 0; 1792 } 1793 1794 //===----------------------------------------------------------------------===// 1795 // Live Range Splitting 1796 //===----------------------------------------------------------------------===// 1797 1798 /// trySplit - Try to split VirtReg or one of its interferences, making it 1799 /// assignable. 1800 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 1801 unsigned RAGreedy::trySplit(const LiveInterval &VirtReg, AllocationOrder &Order, 1802 SmallVectorImpl<Register> &NewVRegs, 1803 const SmallVirtRegSet &FixedRegisters) { 1804 // Ranges must be Split2 or less. 1805 if (ExtraInfo->getStage(VirtReg) >= RS_Spill) 1806 return 0; 1807 1808 // Local intervals are handled separately. 1809 if (LIS->intervalIsInOneMBB(VirtReg)) { 1810 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 1811 TimerGroupDescription, TimePassesIsEnabled); 1812 SA->analyze(&VirtReg); 1813 Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 1814 if (PhysReg || !NewVRegs.empty()) 1815 return PhysReg; 1816 return tryInstructionSplit(VirtReg, Order, NewVRegs); 1817 } 1818 1819 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 1820 TimerGroupDescription, TimePassesIsEnabled); 1821 1822 SA->analyze(&VirtReg); 1823 1824 // First try to split around a region spanning multiple blocks. RS_Split2 1825 // ranges already made dubious progress with region splitting, so they go 1826 // straight to single block splitting. 1827 if (ExtraInfo->getStage(VirtReg) < RS_Split2) { 1828 MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 1829 if (PhysReg || !NewVRegs.empty()) 1830 return PhysReg; 1831 } 1832 1833 // Then isolate blocks. 1834 return tryBlockSplit(VirtReg, Order, NewVRegs); 1835 } 1836 1837 //===----------------------------------------------------------------------===// 1838 // Last Chance Recoloring 1839 //===----------------------------------------------------------------------===// 1840 1841 /// Return true if \p reg has any tied def operand. 1842 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { 1843 for (const MachineOperand &MO : MRI->def_operands(reg)) 1844 if (MO.isTied()) 1845 return true; 1846 1847 return false; 1848 } 1849 1850 /// Return true if the existing assignment of \p Intf overlaps, but is not the 1851 /// same, as \p PhysReg. 1852 static bool assignedRegPartiallyOverlaps(const TargetRegisterInfo &TRI, 1853 const VirtRegMap &VRM, 1854 MCRegister PhysReg, 1855 const LiveInterval &Intf) { 1856 MCRegister AssignedReg = VRM.getPhys(Intf.reg()); 1857 if (PhysReg == AssignedReg) 1858 return false; 1859 return TRI.regsOverlap(PhysReg, AssignedReg); 1860 } 1861 1862 /// mayRecolorAllInterferences - Check if the virtual registers that 1863 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 1864 /// recolored to free \p PhysReg. 1865 /// When true is returned, \p RecoloringCandidates has been augmented with all 1866 /// the live intervals that need to be recolored in order to free \p PhysReg 1867 /// for \p VirtReg. 1868 /// \p FixedRegisters contains all the virtual registers that cannot be 1869 /// recolored. 1870 bool RAGreedy::mayRecolorAllInterferences( 1871 MCRegister PhysReg, const LiveInterval &VirtReg, 1872 SmallLISet &RecoloringCandidates, const SmallVirtRegSet &FixedRegisters) { 1873 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 1874 1875 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 1876 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, Unit); 1877 // If there is LastChanceRecoloringMaxInterference or more interferences, 1878 // chances are one would not be recolorable. 1879 if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >= 1880 LastChanceRecoloringMaxInterference && 1881 !ExhaustiveSearch) { 1882 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n"); 1883 CutOffInfo |= CO_Interf; 1884 return false; 1885 } 1886 for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) { 1887 // If Intf is done and sits on the same register class as VirtReg, it 1888 // would not be recolorable as it is in the same state as 1889 // VirtReg. However there are at least two exceptions. 1890 // 1891 // If VirtReg has tied defs and Intf doesn't, then 1892 // there is still a point in examining if it can be recolorable. 1893 // 1894 // Additionally, if the register class has overlapping tuple members, it 1895 // may still be recolorable using a different tuple. This is more likely 1896 // if the existing assignment aliases with the candidate. 1897 // 1898 if (((ExtraInfo->getStage(*Intf) == RS_Done && 1899 MRI->getRegClass(Intf->reg()) == CurRC && 1900 !assignedRegPartiallyOverlaps(*TRI, *VRM, PhysReg, *Intf)) && 1901 !(hasTiedDef(MRI, VirtReg.reg()) && 1902 !hasTiedDef(MRI, Intf->reg()))) || 1903 FixedRegisters.count(Intf->reg())) { 1904 LLVM_DEBUG( 1905 dbgs() << "Early abort: the interference is not recolorable.\n"); 1906 return false; 1907 } 1908 RecoloringCandidates.insert(Intf); 1909 } 1910 } 1911 return true; 1912 } 1913 1914 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 1915 /// its interferences. 1916 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 1917 /// virtual register that was using it. The recoloring process may recursively 1918 /// use the last chance recoloring. Therefore, when a virtual register has been 1919 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 1920 /// be last-chance-recolored again during this recoloring "session". 1921 /// E.g., 1922 /// Let 1923 /// vA can use {R1, R2 } 1924 /// vB can use { R2, R3} 1925 /// vC can use {R1 } 1926 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 1927 /// instance) and they all interfere. 1928 /// 1929 /// vA is assigned R1 1930 /// vB is assigned R2 1931 /// vC tries to evict vA but vA is already done. 1932 /// Regular register allocation fails. 1933 /// 1934 /// Last chance recoloring kicks in: 1935 /// vC does as if vA was evicted => vC uses R1. 1936 /// vC is marked as fixed. 1937 /// vA needs to find a color. 1938 /// None are available. 1939 /// vA cannot evict vC: vC is a fixed virtual register now. 1940 /// vA does as if vB was evicted => vA uses R2. 1941 /// vB needs to find a color. 1942 /// R3 is available. 1943 /// Recoloring => vC = R1, vA = R2, vB = R3 1944 /// 1945 /// \p Order defines the preferred allocation order for \p VirtReg. 1946 /// \p NewRegs will contain any new virtual register that have been created 1947 /// (split, spill) during the process and that must be assigned. 1948 /// \p FixedRegisters contains all the virtual registers that cannot be 1949 /// recolored. 1950 /// 1951 /// \p RecolorStack tracks the original assignments of successfully recolored 1952 /// registers. 1953 /// 1954 /// \p Depth gives the current depth of the last chance recoloring. 1955 /// \return a physical register that can be used for VirtReg or ~0u if none 1956 /// exists. 1957 unsigned RAGreedy::tryLastChanceRecoloring(const LiveInterval &VirtReg, 1958 AllocationOrder &Order, 1959 SmallVectorImpl<Register> &NewVRegs, 1960 SmallVirtRegSet &FixedRegisters, 1961 RecoloringStack &RecolorStack, 1962 unsigned Depth) { 1963 if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg)) 1964 return ~0u; 1965 1966 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 1967 1968 const ssize_t EntryStackSize = RecolorStack.size(); 1969 1970 // Ranges must be Done. 1971 assert((ExtraInfo->getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 1972 "Last chance recoloring should really be last chance"); 1973 // Set the max depth to LastChanceRecoloringMaxDepth. 1974 // We may want to reconsider that if we end up with a too large search space 1975 // for target with hundreds of registers. 1976 // Indeed, in that case we may want to cut the search space earlier. 1977 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 1978 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 1979 CutOffInfo |= CO_Depth; 1980 return ~0u; 1981 } 1982 1983 // Set of Live intervals that will need to be recolored. 1984 SmallLISet RecoloringCandidates; 1985 1986 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 1987 // this recoloring "session". 1988 assert(!FixedRegisters.count(VirtReg.reg())); 1989 FixedRegisters.insert(VirtReg.reg()); 1990 SmallVector<Register, 4> CurrentNewVRegs; 1991 1992 for (MCRegister PhysReg : Order) { 1993 assert(PhysReg.isValid()); 1994 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 1995 << printReg(PhysReg, TRI) << '\n'); 1996 RecoloringCandidates.clear(); 1997 CurrentNewVRegs.clear(); 1998 1999 // It is only possible to recolor virtual register interference. 2000 if (Matrix->checkInterference(VirtReg, PhysReg) > 2001 LiveRegMatrix::IK_VirtReg) { 2002 LLVM_DEBUG( 2003 dbgs() << "Some interferences are not with virtual registers.\n"); 2004 2005 continue; 2006 } 2007 2008 // Early give up on this PhysReg if it is obvious we cannot recolor all 2009 // the interferences. 2010 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2011 FixedRegisters)) { 2012 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); 2013 continue; 2014 } 2015 2016 // RecoloringCandidates contains all the virtual registers that interfere 2017 // with VirtReg on PhysReg (or one of its aliases). Enqueue them for 2018 // recoloring and perform the actual recoloring. 2019 PQueue RecoloringQueue; 2020 for (const LiveInterval *RC : RecoloringCandidates) { 2021 Register ItVirtReg = RC->reg(); 2022 enqueue(RecoloringQueue, RC); 2023 assert(VRM->hasPhys(ItVirtReg) && 2024 "Interferences are supposed to be with allocated variables"); 2025 2026 // Record the current allocation. 2027 RecolorStack.push_back(std::make_pair(RC, VRM->getPhys(ItVirtReg))); 2028 2029 // unset the related struct. 2030 Matrix->unassign(*RC); 2031 } 2032 2033 // Do as if VirtReg was assigned to PhysReg so that the underlying 2034 // recoloring has the right information about the interferes and 2035 // available colors. 2036 Matrix->assign(VirtReg, PhysReg); 2037 2038 // VirtReg may be deleted during tryRecoloringCandidates, save a copy. 2039 Register ThisVirtReg = VirtReg.reg(); 2040 2041 // Save the current recoloring state. 2042 // If we cannot recolor all the interferences, we will have to start again 2043 // at this point for the next physical register. 2044 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2045 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2046 FixedRegisters, RecolorStack, Depth)) { 2047 // Push the queued vregs into the main queue. 2048 for (Register NewVReg : CurrentNewVRegs) 2049 NewVRegs.push_back(NewVReg); 2050 // Do not mess up with the global assignment process. 2051 // I.e., VirtReg must be unassigned. 2052 if (VRM->hasPhys(ThisVirtReg)) { 2053 Matrix->unassign(VirtReg); 2054 return PhysReg; 2055 } 2056 2057 // It is possible VirtReg will be deleted during tryRecoloringCandidates. 2058 LLVM_DEBUG(dbgs() << "tryRecoloringCandidates deleted a fixed register " 2059 << printReg(ThisVirtReg) << '\n'); 2060 FixedRegisters.erase(ThisVirtReg); 2061 return 0; 2062 } 2063 2064 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2065 << printReg(PhysReg, TRI) << '\n'); 2066 2067 // The recoloring attempt failed, undo the changes. 2068 FixedRegisters = SaveFixedRegisters; 2069 Matrix->unassign(VirtReg); 2070 2071 // For a newly created vreg which is also in RecoloringCandidates, 2072 // don't add it to NewVRegs because its physical register will be restored 2073 // below. Other vregs in CurrentNewVRegs are created by calling 2074 // selectOrSplit and should be added into NewVRegs. 2075 for (Register R : CurrentNewVRegs) { 2076 if (RecoloringCandidates.count(&LIS->getInterval(R))) 2077 continue; 2078 NewVRegs.push_back(R); 2079 } 2080 2081 // Roll back our unsuccessful recoloring. Also roll back any successful 2082 // recolorings in any recursive recoloring attempts, since it's possible 2083 // they would have introduced conflicts with assignments we will be 2084 // restoring further up the stack. Perform all unassignments prior to 2085 // reassigning, since sub-recolorings may have conflicted with the registers 2086 // we are going to restore to their original assignments. 2087 for (ssize_t I = RecolorStack.size() - 1; I >= EntryStackSize; --I) { 2088 const LiveInterval *LI; 2089 MCRegister PhysReg; 2090 std::tie(LI, PhysReg) = RecolorStack[I]; 2091 2092 if (VRM->hasPhys(LI->reg())) 2093 Matrix->unassign(*LI); 2094 } 2095 2096 for (size_t I = EntryStackSize; I != RecolorStack.size(); ++I) { 2097 const LiveInterval *LI; 2098 MCRegister PhysReg; 2099 std::tie(LI, PhysReg) = RecolorStack[I]; 2100 if (!LI->empty() && !MRI->reg_nodbg_empty(LI->reg())) 2101 Matrix->assign(*LI, PhysReg); 2102 } 2103 2104 // Pop the stack of recoloring attempts. 2105 RecolorStack.resize(EntryStackSize); 2106 } 2107 2108 // Last chance recoloring did not worked either, give up. 2109 return ~0u; 2110 } 2111 2112 /// tryRecoloringCandidates - Try to assign a new color to every register 2113 /// in \RecoloringQueue. 2114 /// \p NewRegs will contain any new virtual register created during the 2115 /// recoloring process. 2116 /// \p FixedRegisters[in/out] contains all the registers that have been 2117 /// recolored. 2118 /// \return true if all virtual registers in RecoloringQueue were successfully 2119 /// recolored, false otherwise. 2120 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2121 SmallVectorImpl<Register> &NewVRegs, 2122 SmallVirtRegSet &FixedRegisters, 2123 RecoloringStack &RecolorStack, 2124 unsigned Depth) { 2125 while (!RecoloringQueue.empty()) { 2126 const LiveInterval *LI = dequeue(RecoloringQueue); 2127 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2128 MCRegister PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, 2129 RecolorStack, Depth + 1); 2130 // When splitting happens, the live-range may actually be empty. 2131 // In that case, this is okay to continue the recoloring even 2132 // if we did not find an alternative color for it. Indeed, 2133 // there will not be anything to color for LI in the end. 2134 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 2135 return false; 2136 2137 if (!PhysReg) { 2138 assert(LI->empty() && "Only empty live-range do not require a register"); 2139 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2140 << " succeeded. Empty LI.\n"); 2141 continue; 2142 } 2143 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2144 << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); 2145 2146 Matrix->assign(*LI, PhysReg); 2147 FixedRegisters.insert(LI->reg()); 2148 } 2149 return true; 2150 } 2151 2152 //===----------------------------------------------------------------------===// 2153 // Main Entry Point 2154 //===----------------------------------------------------------------------===// 2155 2156 MCRegister RAGreedy::selectOrSplit(const LiveInterval &VirtReg, 2157 SmallVectorImpl<Register> &NewVRegs) { 2158 CutOffInfo = CO_None; 2159 LLVMContext &Ctx = MF->getFunction().getContext(); 2160 SmallVirtRegSet FixedRegisters; 2161 RecoloringStack RecolorStack; 2162 MCRegister Reg = 2163 selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters, RecolorStack); 2164 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2165 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2166 if (CutOffEncountered == CO_Depth) 2167 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2168 "reached. Use -fexhaustive-register-search to skip " 2169 "cutoffs"); 2170 else if (CutOffEncountered == CO_Interf) 2171 Ctx.emitError("register allocation failed: maximum interference for " 2172 "recoloring reached. Use -fexhaustive-register-search " 2173 "to skip cutoffs"); 2174 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2175 Ctx.emitError("register allocation failed: maximum interference and " 2176 "depth for recoloring reached. Use " 2177 "-fexhaustive-register-search to skip cutoffs"); 2178 } 2179 return Reg; 2180 } 2181 2182 /// Using a CSR for the first time has a cost because it causes push|pop 2183 /// to be added to prologue|epilogue. Splitting a cold section of the live 2184 /// range can have lower cost than using the CSR for the first time; 2185 /// Spilling a live range in the cold path can have lower cost than using 2186 /// the CSR for the first time. Returns the physical register if we decide 2187 /// to use the CSR; otherwise return 0. 2188 MCRegister RAGreedy::tryAssignCSRFirstTime( 2189 const LiveInterval &VirtReg, AllocationOrder &Order, MCRegister PhysReg, 2190 uint8_t &CostPerUseLimit, SmallVectorImpl<Register> &NewVRegs) { 2191 if (ExtraInfo->getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2192 // We choose spill over using the CSR for the first time if the spill cost 2193 // is lower than CSRCost. 2194 SA->analyze(&VirtReg); 2195 if (calcSpillCost() >= CSRCost) 2196 return PhysReg; 2197 2198 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2199 // we will not use a callee-saved register in tryEvict. 2200 CostPerUseLimit = 1; 2201 return 0; 2202 } 2203 if (ExtraInfo->getStage(VirtReg) < RS_Split) { 2204 // We choose pre-splitting over using the CSR for the first time if 2205 // the cost of splitting is lower than CSRCost. 2206 SA->analyze(&VirtReg); 2207 unsigned NumCands = 0; 2208 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2209 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2210 NumCands, true /*IgnoreCSR*/); 2211 if (BestCand == NoCand) 2212 // Use the CSR if we can't find a region split below CSRCost. 2213 return PhysReg; 2214 2215 // Perform the actual pre-splitting. 2216 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2217 return 0; 2218 } 2219 return PhysReg; 2220 } 2221 2222 void RAGreedy::aboutToRemoveInterval(const LiveInterval &LI) { 2223 // Do not keep invalid information around. 2224 SetOfBrokenHints.remove(&LI); 2225 } 2226 2227 void RAGreedy::initializeCSRCost() { 2228 // We use the larger one out of the command-line option and the value report 2229 // by TRI. 2230 CSRCost = BlockFrequency( 2231 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2232 if (!CSRCost.getFrequency()) 2233 return; 2234 2235 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2236 uint64_t ActualEntry = MBFI->getEntryFreq().getFrequency(); 2237 if (!ActualEntry) { 2238 CSRCost = BlockFrequency(0); 2239 return; 2240 } 2241 uint64_t FixedEntry = 1 << 14; 2242 if (ActualEntry < FixedEntry) 2243 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2244 else if (ActualEntry <= UINT32_MAX) 2245 // Invert the fraction and divide. 2246 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2247 else 2248 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2249 CSRCost = 2250 BlockFrequency(CSRCost.getFrequency() * (ActualEntry / FixedEntry)); 2251 } 2252 2253 /// Collect the hint info for \p Reg. 2254 /// The results are stored into \p Out. 2255 /// \p Out is not cleared before being populated. 2256 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) { 2257 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2258 if (!TII->isFullCopyInstr(Instr)) 2259 continue; 2260 // Look for the other end of the copy. 2261 Register OtherReg = Instr.getOperand(0).getReg(); 2262 if (OtherReg == Reg) { 2263 OtherReg = Instr.getOperand(1).getReg(); 2264 if (OtherReg == Reg) 2265 continue; 2266 } 2267 // Get the current assignment. 2268 MCRegister OtherPhysReg = 2269 OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg); 2270 // Push the collected information. 2271 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2272 OtherPhysReg)); 2273 } 2274 } 2275 2276 /// Using the given \p List, compute the cost of the broken hints if 2277 /// \p PhysReg was used. 2278 /// \return The cost of \p List for \p PhysReg. 2279 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2280 MCRegister PhysReg) { 2281 BlockFrequency Cost = BlockFrequency(0); 2282 for (const HintInfo &Info : List) { 2283 if (Info.PhysReg != PhysReg) 2284 Cost += Info.Freq; 2285 } 2286 return Cost; 2287 } 2288 2289 /// Using the register assigned to \p VirtReg, try to recolor 2290 /// all the live ranges that are copy-related with \p VirtReg. 2291 /// The recoloring is then propagated to all the live-ranges that have 2292 /// been recolored and so on, until no more copies can be coalesced or 2293 /// it is not profitable. 2294 /// For a given live range, profitability is determined by the sum of the 2295 /// frequencies of the non-identity copies it would introduce with the old 2296 /// and new register. 2297 void RAGreedy::tryHintRecoloring(const LiveInterval &VirtReg) { 2298 // We have a broken hint, check if it is possible to fix it by 2299 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2300 // some register and PhysReg may be available for the other live-ranges. 2301 SmallSet<Register, 4> Visited; 2302 SmallVector<unsigned, 2> RecoloringCandidates; 2303 HintsInfo Info; 2304 Register Reg = VirtReg.reg(); 2305 MCRegister PhysReg = VRM->getPhys(Reg); 2306 // Start the recoloring algorithm from the input live-interval, then 2307 // it will propagate to the ones that are copy-related with it. 2308 Visited.insert(Reg); 2309 RecoloringCandidates.push_back(Reg); 2310 2311 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) 2312 << '(' << printReg(PhysReg, TRI) << ")\n"); 2313 2314 do { 2315 Reg = RecoloringCandidates.pop_back_val(); 2316 2317 // We cannot recolor physical register. 2318 if (Reg.isPhysical()) 2319 continue; 2320 2321 // This may be a skipped register. 2322 if (!VRM->hasPhys(Reg)) { 2323 assert(!shouldAllocateRegister(Reg) && 2324 "We have an unallocated variable which should have been handled"); 2325 continue; 2326 } 2327 2328 // Get the live interval mapped with this virtual register to be able 2329 // to check for the interference with the new color. 2330 LiveInterval &LI = LIS->getInterval(Reg); 2331 MCRegister CurrPhys = VRM->getPhys(Reg); 2332 // Check that the new color matches the register class constraints and 2333 // that it is free for this live range. 2334 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2335 Matrix->checkInterference(LI, PhysReg))) 2336 continue; 2337 2338 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) 2339 << ") is recolorable.\n"); 2340 2341 // Gather the hint info. 2342 Info.clear(); 2343 collectHintInfo(Reg, Info); 2344 // Check if recoloring the live-range will increase the cost of the 2345 // non-identity copies. 2346 if (CurrPhys != PhysReg) { 2347 LLVM_DEBUG(dbgs() << "Checking profitability:\n"); 2348 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2349 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2350 LLVM_DEBUG(dbgs() << "Old Cost: " << printBlockFreq(*MBFI, OldCopiesCost) 2351 << "\nNew Cost: " 2352 << printBlockFreq(*MBFI, NewCopiesCost) << '\n'); 2353 if (OldCopiesCost < NewCopiesCost) { 2354 LLVM_DEBUG(dbgs() << "=> Not profitable.\n"); 2355 continue; 2356 } 2357 // At this point, the cost is either cheaper or equal. If it is 2358 // equal, we consider this is profitable because it may expose 2359 // more recoloring opportunities. 2360 LLVM_DEBUG(dbgs() << "=> Profitable.\n"); 2361 // Recolor the live-range. 2362 Matrix->unassign(LI); 2363 Matrix->assign(LI, PhysReg); 2364 } 2365 // Push all copy-related live-ranges to keep reconciling the broken 2366 // hints. 2367 for (const HintInfo &HI : Info) { 2368 if (Visited.insert(HI.Reg).second) 2369 RecoloringCandidates.push_back(HI.Reg); 2370 } 2371 } while (!RecoloringCandidates.empty()); 2372 } 2373 2374 /// Try to recolor broken hints. 2375 /// Broken hints may be repaired by recoloring when an evicted variable 2376 /// freed up a register for a larger live-range. 2377 /// Consider the following example: 2378 /// BB1: 2379 /// a = 2380 /// b = 2381 /// BB2: 2382 /// ... 2383 /// = b 2384 /// = a 2385 /// Let us assume b gets split: 2386 /// BB1: 2387 /// a = 2388 /// b = 2389 /// BB2: 2390 /// c = b 2391 /// ... 2392 /// d = c 2393 /// = d 2394 /// = a 2395 /// Because of how the allocation work, b, c, and d may be assigned different 2396 /// colors. Now, if a gets evicted later: 2397 /// BB1: 2398 /// a = 2399 /// st a, SpillSlot 2400 /// b = 2401 /// BB2: 2402 /// c = b 2403 /// ... 2404 /// d = c 2405 /// = d 2406 /// e = ld SpillSlot 2407 /// = e 2408 /// This is likely that we can assign the same register for b, c, and d, 2409 /// getting rid of 2 copies. 2410 void RAGreedy::tryHintsRecoloring() { 2411 for (const LiveInterval *LI : SetOfBrokenHints) { 2412 assert(LI->reg().isVirtual() && 2413 "Recoloring is possible only for virtual registers"); 2414 // Some dead defs may be around (e.g., because of debug uses). 2415 // Ignore those. 2416 if (!VRM->hasPhys(LI->reg())) 2417 continue; 2418 tryHintRecoloring(*LI); 2419 } 2420 } 2421 2422 MCRegister RAGreedy::selectOrSplitImpl(const LiveInterval &VirtReg, 2423 SmallVectorImpl<Register> &NewVRegs, 2424 SmallVirtRegSet &FixedRegisters, 2425 RecoloringStack &RecolorStack, 2426 unsigned Depth) { 2427 uint8_t CostPerUseLimit = uint8_t(~0u); 2428 // First try assigning a free register. 2429 auto Order = 2430 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 2431 if (MCRegister PhysReg = 2432 tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) { 2433 // When NewVRegs is not empty, we may have made decisions such as evicting 2434 // a virtual register, go with the earlier decisions and use the physical 2435 // register. 2436 if (CSRCost.getFrequency() && 2437 EvictAdvisor->isUnusedCalleeSavedReg(PhysReg) && NewVRegs.empty()) { 2438 MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 2439 CostPerUseLimit, NewVRegs); 2440 if (CSRReg || !NewVRegs.empty()) 2441 // Return now if we decide to use a CSR or create new vregs due to 2442 // pre-splitting. 2443 return CSRReg; 2444 } else 2445 return PhysReg; 2446 } 2447 // Non empty NewVRegs means VirtReg has been split. 2448 if (!NewVRegs.empty()) 2449 return 0; 2450 2451 LiveRangeStage Stage = ExtraInfo->getStage(VirtReg); 2452 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade " 2453 << ExtraInfo->getCascade(VirtReg.reg()) << '\n'); 2454 2455 // Try to evict a less worthy live range, but only for ranges from the primary 2456 // queue. The RS_Split ranges already failed to do this, and they should not 2457 // get a second chance until they have been split. 2458 if (Stage != RS_Split) 2459 if (Register PhysReg = 2460 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit, 2461 FixedRegisters)) { 2462 Register Hint = MRI->getSimpleHint(VirtReg.reg()); 2463 // If VirtReg has a hint and that hint is broken record this 2464 // virtual register as a recoloring candidate for broken hint. 2465 // Indeed, since we evicted a variable in its neighborhood it is 2466 // likely we can at least partially recolor some of the 2467 // copy-related live-ranges. 2468 if (Hint && Hint != PhysReg) 2469 SetOfBrokenHints.insert(&VirtReg); 2470 return PhysReg; 2471 } 2472 2473 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 2474 2475 // The first time we see a live range, don't try to split or spill. 2476 // Wait until the second time, when all smaller ranges have been allocated. 2477 // This gives a better picture of the interference to split around. 2478 if (Stage < RS_Split) { 2479 ExtraInfo->setStage(VirtReg, RS_Split); 2480 LLVM_DEBUG(dbgs() << "wait for second round\n"); 2481 NewVRegs.push_back(VirtReg.reg()); 2482 return 0; 2483 } 2484 2485 if (Stage < RS_Spill && !VirtReg.empty()) { 2486 // Try splitting VirtReg or interferences. 2487 unsigned NewVRegSizeBefore = NewVRegs.size(); 2488 Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters); 2489 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) 2490 return PhysReg; 2491 } 2492 2493 // If we couldn't allocate a register from spilling, there is probably some 2494 // invalid inline assembly. The base class will report it. 2495 if (Stage >= RS_Done || !VirtReg.isSpillable()) { 2496 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 2497 RecolorStack, Depth); 2498 } 2499 2500 // Finally spill VirtReg itself. 2501 if ((EnableDeferredSpilling || 2502 TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) && 2503 ExtraInfo->getStage(VirtReg) < RS_Memory) { 2504 // TODO: This is experimental and in particular, we do not model 2505 // the live range splitting done by spilling correctly. 2506 // We would need a deep integration with the spiller to do the 2507 // right thing here. Anyway, that is still good for early testing. 2508 ExtraInfo->setStage(VirtReg, RS_Memory); 2509 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n"); 2510 NewVRegs.push_back(VirtReg.reg()); 2511 } else { 2512 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 2513 TimerGroupDescription, TimePassesIsEnabled); 2514 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2515 spiller().spill(LRE); 2516 ExtraInfo->setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 2517 2518 // Tell LiveDebugVariables about the new ranges. Ranges not being covered by 2519 // the new regs are kept in LDV (still mapping to the old register), until 2520 // we rewrite spilled locations in LDV at a later stage. 2521 for (Register r : spiller().getSpilledRegs()) 2522 DebugVars->splitRegister(r, LRE.regs(), *LIS); 2523 for (Register r : spiller().getReplacedRegs()) 2524 DebugVars->splitRegister(r, LRE.regs(), *LIS); 2525 2526 if (VerifyEnabled) 2527 MF->verify(this, "After spilling", &errs()); 2528 } 2529 2530 // The live virtual register requesting allocation was spilled, so tell 2531 // the caller not to allocate anything during this round. 2532 return 0; 2533 } 2534 2535 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) { 2536 using namespace ore; 2537 if (Spills) { 2538 R << NV("NumSpills", Spills) << " spills "; 2539 R << NV("TotalSpillsCost", SpillsCost) << " total spills cost "; 2540 } 2541 if (FoldedSpills) { 2542 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 2543 R << NV("TotalFoldedSpillsCost", FoldedSpillsCost) 2544 << " total folded spills cost "; 2545 } 2546 if (Reloads) { 2547 R << NV("NumReloads", Reloads) << " reloads "; 2548 R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost "; 2549 } 2550 if (FoldedReloads) { 2551 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 2552 R << NV("TotalFoldedReloadsCost", FoldedReloadsCost) 2553 << " total folded reloads cost "; 2554 } 2555 if (ZeroCostFoldedReloads) 2556 R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads) 2557 << " zero cost folded reloads "; 2558 if (Copies) { 2559 R << NV("NumVRCopies", Copies) << " virtual registers copies "; 2560 R << NV("TotalCopiesCost", CopiesCost) << " total copies cost "; 2561 } 2562 } 2563 2564 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) { 2565 RAGreedyStats Stats; 2566 const MachineFrameInfo &MFI = MF->getFrameInfo(); 2567 int FI; 2568 2569 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) { 2570 return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>( 2571 A->getPseudoValue())->getFrameIndex()); 2572 }; 2573 auto isPatchpointInstr = [](const MachineInstr &MI) { 2574 return MI.getOpcode() == TargetOpcode::PATCHPOINT || 2575 MI.getOpcode() == TargetOpcode::STACKMAP || 2576 MI.getOpcode() == TargetOpcode::STATEPOINT; 2577 }; 2578 for (MachineInstr &MI : MBB) { 2579 auto DestSrc = TII->isCopyInstr(MI); 2580 if (DestSrc) { 2581 const MachineOperand &Dest = *DestSrc->Destination; 2582 const MachineOperand &Src = *DestSrc->Source; 2583 Register SrcReg = Src.getReg(); 2584 Register DestReg = Dest.getReg(); 2585 // Only count `COPY`s with a virtual register as source or destination. 2586 if (SrcReg.isVirtual() || DestReg.isVirtual()) { 2587 if (SrcReg.isVirtual()) { 2588 SrcReg = VRM->getPhys(SrcReg); 2589 if (SrcReg && Src.getSubReg()) 2590 SrcReg = TRI->getSubReg(SrcReg, Src.getSubReg()); 2591 } 2592 if (DestReg.isVirtual()) { 2593 DestReg = VRM->getPhys(DestReg); 2594 if (DestReg && Dest.getSubReg()) 2595 DestReg = TRI->getSubReg(DestReg, Dest.getSubReg()); 2596 } 2597 if (SrcReg != DestReg) 2598 ++Stats.Copies; 2599 } 2600 continue; 2601 } 2602 2603 SmallVector<const MachineMemOperand *, 2> Accesses; 2604 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 2605 ++Stats.Reloads; 2606 continue; 2607 } 2608 if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 2609 ++Stats.Spills; 2610 continue; 2611 } 2612 if (TII->hasLoadFromStackSlot(MI, Accesses) && 2613 llvm::any_of(Accesses, isSpillSlotAccess)) { 2614 if (!isPatchpointInstr(MI)) { 2615 Stats.FoldedReloads += Accesses.size(); 2616 continue; 2617 } 2618 // For statepoint there may be folded and zero cost folded stack reloads. 2619 std::pair<unsigned, unsigned> NonZeroCostRange = 2620 TII->getPatchpointUnfoldableRange(MI); 2621 SmallSet<unsigned, 16> FoldedReloads; 2622 SmallSet<unsigned, 16> ZeroCostFoldedReloads; 2623 for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) { 2624 MachineOperand &MO = MI.getOperand(Idx); 2625 if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex())) 2626 continue; 2627 if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second) 2628 FoldedReloads.insert(MO.getIndex()); 2629 else 2630 ZeroCostFoldedReloads.insert(MO.getIndex()); 2631 } 2632 // If stack slot is used in folded reload it is not zero cost then. 2633 for (unsigned Slot : FoldedReloads) 2634 ZeroCostFoldedReloads.erase(Slot); 2635 Stats.FoldedReloads += FoldedReloads.size(); 2636 Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size(); 2637 continue; 2638 } 2639 Accesses.clear(); 2640 if (TII->hasStoreToStackSlot(MI, Accesses) && 2641 llvm::any_of(Accesses, isSpillSlotAccess)) { 2642 Stats.FoldedSpills += Accesses.size(); 2643 } 2644 } 2645 // Set cost of collected statistic by multiplication to relative frequency of 2646 // this basic block. 2647 float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB); 2648 Stats.ReloadsCost = RelFreq * Stats.Reloads; 2649 Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads; 2650 Stats.SpillsCost = RelFreq * Stats.Spills; 2651 Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills; 2652 Stats.CopiesCost = RelFreq * Stats.Copies; 2653 return Stats; 2654 } 2655 2656 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) { 2657 RAGreedyStats Stats; 2658 2659 // Sum up the spill and reloads in subloops. 2660 for (MachineLoop *SubLoop : *L) 2661 Stats.add(reportStats(SubLoop)); 2662 2663 for (MachineBasicBlock *MBB : L->getBlocks()) 2664 // Handle blocks that were not included in subloops. 2665 if (Loops->getLoopFor(MBB) == L) 2666 Stats.add(computeStats(*MBB)); 2667 2668 if (!Stats.isEmpty()) { 2669 using namespace ore; 2670 2671 ORE->emit([&]() { 2672 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies", 2673 L->getStartLoc(), L->getHeader()); 2674 Stats.report(R); 2675 R << "generated in loop"; 2676 return R; 2677 }); 2678 } 2679 return Stats; 2680 } 2681 2682 void RAGreedy::reportStats() { 2683 if (!ORE->allowExtraAnalysis(DEBUG_TYPE)) 2684 return; 2685 RAGreedyStats Stats; 2686 for (MachineLoop *L : *Loops) 2687 Stats.add(reportStats(L)); 2688 // Process non-loop blocks. 2689 for (MachineBasicBlock &MBB : *MF) 2690 if (!Loops->getLoopFor(&MBB)) 2691 Stats.add(computeStats(MBB)); 2692 if (!Stats.isEmpty()) { 2693 using namespace ore; 2694 2695 ORE->emit([&]() { 2696 DebugLoc Loc; 2697 if (auto *SP = MF->getFunction().getSubprogram()) 2698 Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP); 2699 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc, 2700 &MF->front()); 2701 Stats.report(R); 2702 R << "generated in function"; 2703 return R; 2704 }); 2705 } 2706 } 2707 2708 bool RAGreedy::hasVirtRegAlloc() { 2709 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 2710 Register Reg = Register::index2VirtReg(I); 2711 if (MRI->reg_nodbg_empty(Reg)) 2712 continue; 2713 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 2714 if (!RC) 2715 continue; 2716 if (shouldAllocateRegister(Reg)) 2717 return true; 2718 } 2719 2720 return false; 2721 } 2722 2723 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 2724 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 2725 << "********** Function: " << mf.getName() << '\n'); 2726 2727 MF = &mf; 2728 TII = MF->getSubtarget().getInstrInfo(); 2729 2730 if (VerifyEnabled) 2731 MF->verify(this, "Before greedy register allocator", &errs()); 2732 2733 RegAllocBase::init(getAnalysis<VirtRegMapWrapperLegacy>().getVRM(), 2734 getAnalysis<LiveIntervalsWrapperPass>().getLIS(), 2735 getAnalysis<LiveRegMatrixWrapperLegacy>().getLRM()); 2736 2737 // Early return if there is no virtual register to be allocated to a 2738 // physical register. 2739 if (!hasVirtRegAlloc()) 2740 return false; 2741 2742 Indexes = &getAnalysis<SlotIndexesWrapperPass>().getSI(); 2743 // Renumber to get accurate and consistent results from 2744 // SlotIndexes::getApproxInstrDistance. 2745 Indexes->packIndexes(); 2746 MBFI = &getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI(); 2747 DomTree = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 2748 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 2749 Loops = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 2750 Bundles = &getAnalysis<EdgeBundlesWrapperLegacy>().getEdgeBundles(); 2751 SpillPlacer = &getAnalysis<SpillPlacementWrapperLegacy>().getResult(); 2752 DebugVars = &getAnalysis<LiveDebugVariablesWrapperLegacy>().getLDV(); 2753 auto &LSS = getAnalysis<LiveStacksWrapperLegacy>().getLS(); 2754 2755 initializeCSRCost(); 2756 2757 RegCosts = TRI->getRegisterCosts(*MF); 2758 RegClassPriorityTrumpsGlobalness = 2759 GreedyRegClassPriorityTrumpsGlobalness.getNumOccurrences() 2760 ? GreedyRegClassPriorityTrumpsGlobalness 2761 : TRI->regClassPriorityTrumpsGlobalness(*MF); 2762 2763 ReverseLocalAssignment = GreedyReverseLocalAssignment.getNumOccurrences() 2764 ? GreedyReverseLocalAssignment 2765 : TRI->reverseLocalAssignment(); 2766 2767 ExtraInfo.emplace(); 2768 EvictAdvisor = 2769 getAnalysis<RegAllocEvictionAdvisorAnalysis>().getAdvisor(*MF, *this); 2770 PriorityAdvisor = 2771 getAnalysis<RegAllocPriorityAdvisorAnalysis>().getAdvisor(*MF, *this); 2772 2773 VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI); 2774 SpillerInstance.reset( 2775 createInlineSpiller({*LIS, LSS, *DomTree, *MBFI}, *MF, *VRM, *VRAI)); 2776 2777 VRAI->calculateSpillWeightsAndHints(); 2778 2779 LLVM_DEBUG(LIS->dump()); 2780 2781 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 2782 SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree, *MBFI, *VRAI)); 2783 2784 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 2785 GlobalCand.resize(32); // This will grow as needed. 2786 SetOfBrokenHints.clear(); 2787 2788 allocatePhysRegs(); 2789 tryHintsRecoloring(); 2790 2791 if (VerifyEnabled) 2792 MF->verify(this, "Before post optimization", &errs()); 2793 postOptimization(); 2794 reportStats(); 2795 2796 releaseMemory(); 2797 return true; 2798 } 2799