1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass eliminates machine instruction PHI nodes by inserting copy 10 // instructions. This destroys SSA information, but is the desired input for 11 // some register allocators. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "PHIEliminationUtils.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/CodeGen/LiveInterval.h" 21 #include "llvm/CodeGen/LiveIntervals.h" 22 #include "llvm/CodeGen/LiveVariables.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineDominators.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineLoopInfo.h" 30 #include "llvm/CodeGen/MachineOperand.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/SlotIndexes.h" 33 #include "llvm/CodeGen/TargetInstrInfo.h" 34 #include "llvm/CodeGen/TargetOpcodes.h" 35 #include "llvm/CodeGen/TargetRegisterInfo.h" 36 #include "llvm/CodeGen/TargetSubtargetInfo.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include <cassert> 42 #include <iterator> 43 #include <utility> 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "phi-node-elimination" 48 49 static cl::opt<bool> 50 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false), 51 cl::Hidden, cl::desc("Disable critical edge splitting " 52 "during PHI elimination")); 53 54 static cl::opt<bool> 55 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false), 56 cl::Hidden, cl::desc("Split all critical edges during " 57 "PHI elimination")); 58 59 static cl::opt<bool> NoPhiElimLiveOutEarlyExit( 60 "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden, 61 cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true.")); 62 63 namespace { 64 65 class PHIElimination : public MachineFunctionPass { 66 MachineRegisterInfo *MRI = nullptr; // Machine register information 67 LiveVariables *LV = nullptr; 68 LiveIntervals *LIS = nullptr; 69 70 public: 71 static char ID; // Pass identification, replacement for typeid 72 73 PHIElimination() : MachineFunctionPass(ID) { 74 initializePHIEliminationPass(*PassRegistry::getPassRegistry()); 75 } 76 77 bool runOnMachineFunction(MachineFunction &MF) override; 78 void getAnalysisUsage(AnalysisUsage &AU) const override; 79 80 private: 81 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions 82 /// in predecessor basic blocks. 83 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); 84 85 void LowerPHINode(MachineBasicBlock &MBB, 86 MachineBasicBlock::iterator LastPHIIt, 87 bool AllEdgesCritical); 88 89 /// analyzePHINodes - Gather information about the PHI nodes in 90 /// here. In particular, we want to map the number of uses of a virtual 91 /// register which is used in a PHI node. We map that to the BB the 92 /// vreg is coming from. This is used later to determine when the vreg 93 /// is killed in the BB. 94 void analyzePHINodes(const MachineFunction& MF); 95 96 /// Split critical edges where necessary for good coalescer performance. 97 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, 98 MachineLoopInfo *MLI, 99 std::vector<SparseBitVector<>> *LiveInSets); 100 101 // These functions are temporary abstractions around LiveVariables and 102 // LiveIntervals, so they can go away when LiveVariables does. 103 bool isLiveIn(Register Reg, const MachineBasicBlock *MBB); 104 bool isLiveOutPastPHIs(Register Reg, const MachineBasicBlock *MBB); 105 106 using BBVRegPair = std::pair<unsigned, Register>; 107 using VRegPHIUse = DenseMap<BBVRegPair, unsigned>; 108 109 // Count the number of non-undef PHI uses of each register in each BB. 110 VRegPHIUse VRegPHIUseCount; 111 112 // Defs of PHI sources which are implicit_def. 113 SmallPtrSet<MachineInstr*, 4> ImpDefs; 114 115 // Map reusable lowered PHI node -> incoming join register. 116 using LoweredPHIMap = 117 DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>; 118 LoweredPHIMap LoweredPHIs; 119 }; 120 121 } // end anonymous namespace 122 123 STATISTIC(NumLowered, "Number of phis lowered"); 124 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split"); 125 STATISTIC(NumReused, "Number of reused lowered phis"); 126 127 char PHIElimination::ID = 0; 128 129 char& llvm::PHIEliminationID = PHIElimination::ID; 130 131 INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE, 132 "Eliminate PHI nodes for register allocation", 133 false, false) 134 INITIALIZE_PASS_DEPENDENCY(LiveVariables) 135 INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE, 136 "Eliminate PHI nodes for register allocation", false, false) 137 138 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { 139 AU.addUsedIfAvailable<LiveVariables>(); 140 AU.addPreserved<LiveVariables>(); 141 AU.addPreserved<SlotIndexes>(); 142 AU.addPreserved<LiveIntervals>(); 143 AU.addPreserved<MachineDominatorTreeWrapperPass>(); 144 AU.addPreserved<MachineLoopInfo>(); 145 MachineFunctionPass::getAnalysisUsage(AU); 146 } 147 148 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) { 149 MRI = &MF.getRegInfo(); 150 LV = getAnalysisIfAvailable<LiveVariables>(); 151 LIS = getAnalysisIfAvailable<LiveIntervals>(); 152 153 bool Changed = false; 154 155 // Split critical edges to help the coalescer. 156 if (!DisableEdgeSplitting && (LV || LIS)) { 157 // A set of live-in regs for each MBB which is used to update LV 158 // efficiently also with large functions. 159 std::vector<SparseBitVector<>> LiveInSets; 160 if (LV) { 161 LiveInSets.resize(MF.size()); 162 for (unsigned Index = 0, e = MRI->getNumVirtRegs(); Index != e; ++Index) { 163 // Set the bit for this register for each MBB where it is 164 // live-through or live-in (killed). 165 Register VirtReg = Register::index2VirtReg(Index); 166 MachineInstr *DefMI = MRI->getVRegDef(VirtReg); 167 if (!DefMI) 168 continue; 169 LiveVariables::VarInfo &VI = LV->getVarInfo(VirtReg); 170 SparseBitVector<>::iterator AliveBlockItr = VI.AliveBlocks.begin(); 171 SparseBitVector<>::iterator EndItr = VI.AliveBlocks.end(); 172 while (AliveBlockItr != EndItr) { 173 unsigned BlockNum = *(AliveBlockItr++); 174 LiveInSets[BlockNum].set(Index); 175 } 176 // The register is live into an MBB in which it is killed but not 177 // defined. See comment for VarInfo in LiveVariables.h. 178 MachineBasicBlock *DefMBB = DefMI->getParent(); 179 if (VI.Kills.size() > 1 || 180 (!VI.Kills.empty() && VI.Kills.front()->getParent() != DefMBB)) 181 for (auto *MI : VI.Kills) 182 LiveInSets[MI->getParent()->getNumber()].set(Index); 183 } 184 } 185 186 MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 187 for (auto &MBB : MF) 188 Changed |= SplitPHIEdges(MF, MBB, MLI, (LV ? &LiveInSets : nullptr)); 189 } 190 191 // This pass takes the function out of SSA form. 192 MRI->leaveSSA(); 193 194 // Populate VRegPHIUseCount 195 if (LV || LIS) 196 analyzePHINodes(MF); 197 198 // Eliminate PHI instructions by inserting copies into predecessor blocks. 199 for (auto &MBB : MF) 200 Changed |= EliminatePHINodes(MF, MBB); 201 202 // Remove dead IMPLICIT_DEF instructions. 203 for (MachineInstr *DefMI : ImpDefs) { 204 Register DefReg = DefMI->getOperand(0).getReg(); 205 if (MRI->use_nodbg_empty(DefReg)) { 206 if (LIS) 207 LIS->RemoveMachineInstrFromMaps(*DefMI); 208 DefMI->eraseFromParent(); 209 } 210 } 211 212 // Clean up the lowered PHI instructions. 213 for (auto &I : LoweredPHIs) { 214 if (LIS) 215 LIS->RemoveMachineInstrFromMaps(*I.first); 216 MF.deleteMachineInstr(I.first); 217 } 218 219 // TODO: we should use the incremental DomTree updater here. 220 if (Changed) 221 if (auto *MDT = getAnalysisIfAvailable<MachineDominatorTreeWrapperPass>()) 222 MDT->getDomTree().getBase().recalculate(MF); 223 224 LoweredPHIs.clear(); 225 ImpDefs.clear(); 226 VRegPHIUseCount.clear(); 227 228 MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs); 229 230 return Changed; 231 } 232 233 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in 234 /// predecessor basic blocks. 235 bool PHIElimination::EliminatePHINodes(MachineFunction &MF, 236 MachineBasicBlock &MBB) { 237 if (MBB.empty() || !MBB.front().isPHI()) 238 return false; // Quick exit for basic blocks without PHIs. 239 240 // Get an iterator to the last PHI node. 241 MachineBasicBlock::iterator LastPHIIt = 242 std::prev(MBB.SkipPHIsAndLabels(MBB.begin())); 243 244 // If all incoming edges are critical, we try to deduplicate identical PHIs so 245 // that we generate fewer copies. If at any edge is non-critical, we either 246 // have less than two predecessors (=> no PHIs) or a predecessor has only us 247 // as a successor (=> identical PHI node can't occur in different block). 248 bool AllEdgesCritical = MBB.pred_size() >= 2; 249 for (MachineBasicBlock *Pred : MBB.predecessors()) { 250 if (Pred->succ_size() < 2) { 251 AllEdgesCritical = false; 252 break; 253 } 254 } 255 256 while (MBB.front().isPHI()) 257 LowerPHINode(MBB, LastPHIIt, AllEdgesCritical); 258 259 return true; 260 } 261 262 /// Return true if all defs of VirtReg are implicit-defs. 263 /// This includes registers with no defs. 264 static bool isImplicitlyDefined(unsigned VirtReg, 265 const MachineRegisterInfo &MRI) { 266 for (MachineInstr &DI : MRI.def_instructions(VirtReg)) 267 if (!DI.isImplicitDef()) 268 return false; 269 return true; 270 } 271 272 /// Return true if all sources of the phi node are implicit_def's, or undef's. 273 static bool allPhiOperandsUndefined(const MachineInstr &MPhi, 274 const MachineRegisterInfo &MRI) { 275 for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) { 276 const MachineOperand &MO = MPhi.getOperand(I); 277 if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef()) 278 return false; 279 } 280 return true; 281 } 282 /// LowerPHINode - Lower the PHI node at the top of the specified block. 283 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB, 284 MachineBasicBlock::iterator LastPHIIt, 285 bool AllEdgesCritical) { 286 ++NumLowered; 287 288 MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt); 289 290 // Unlink the PHI node from the basic block, but don't delete the PHI yet. 291 MachineInstr *MPhi = MBB.remove(&*MBB.begin()); 292 293 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; 294 Register DestReg = MPhi->getOperand(0).getReg(); 295 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs"); 296 bool isDead = MPhi->getOperand(0).isDead(); 297 298 // Create a new register for the incoming PHI arguments. 299 MachineFunction &MF = *MBB.getParent(); 300 unsigned IncomingReg = 0; 301 bool EliminateNow = true; // delay elimination of nodes in LoweredPHIs 302 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI? 303 304 // Insert a register to register copy at the top of the current block (but 305 // after any remaining phi nodes) which copies the new incoming register 306 // into the phi node destination. 307 MachineInstr *PHICopy = nullptr; 308 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 309 if (allPhiOperandsUndefined(*MPhi, *MRI)) 310 // If all sources of a PHI node are implicit_def or undef uses, just emit an 311 // implicit_def instead of a copy. 312 PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 313 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); 314 else { 315 // Can we reuse an earlier PHI node? This only happens for critical edges, 316 // typically those created by tail duplication. Typically, an identical PHI 317 // node can't occur, so avoid hashing/storing such PHIs, which is somewhat 318 // expensive. 319 unsigned *Entry = nullptr; 320 if (AllEdgesCritical) 321 Entry = &LoweredPHIs[MPhi]; 322 if (Entry && *Entry) { 323 // An identical PHI node was already lowered. Reuse the incoming register. 324 IncomingReg = *Entry; 325 reusedIncoming = true; 326 ++NumReused; 327 LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for " 328 << *MPhi); 329 } else { 330 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); 331 IncomingReg = MF.getRegInfo().createVirtualRegister(RC); 332 if (Entry) { 333 EliminateNow = false; 334 *Entry = IncomingReg; 335 } 336 } 337 338 // Give the target possiblity to handle special cases fallthrough otherwise 339 PHICopy = TII->createPHIDestinationCopy(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 340 IncomingReg, DestReg); 341 } 342 343 if (MPhi->peekDebugInstrNum()) { 344 // If referred to by debug-info, store where this PHI was. 345 MachineFunction *MF = MBB.getParent(); 346 unsigned ID = MPhi->peekDebugInstrNum(); 347 auto P = MachineFunction::DebugPHIRegallocPos(&MBB, IncomingReg, 0); 348 auto Res = MF->DebugPHIPositions.insert({ID, P}); 349 assert(Res.second); 350 (void)Res; 351 } 352 353 // Update live variable information if there is any. 354 if (LV) { 355 if (IncomingReg) { 356 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg); 357 358 MachineInstr *OldKill = nullptr; 359 bool IsPHICopyAfterOldKill = false; 360 361 if (reusedIncoming && (OldKill = VI.findKill(&MBB))) { 362 // Calculate whether the PHICopy is after the OldKill. 363 // In general, the PHICopy is inserted as the first non-phi instruction 364 // by default, so it's before the OldKill. But some Target hooks for 365 // createPHIDestinationCopy() may modify the default insert position of 366 // PHICopy. 367 for (auto I = MBB.SkipPHIsAndLabels(MBB.begin()), E = MBB.end(); 368 I != E; ++I) { 369 if (I == PHICopy) 370 break; 371 372 if (I == OldKill) { 373 IsPHICopyAfterOldKill = true; 374 break; 375 } 376 } 377 } 378 379 // When we are reusing the incoming register and it has been marked killed 380 // by OldKill, if the PHICopy is after the OldKill, we should remove the 381 // killed flag from OldKill. 382 if (IsPHICopyAfterOldKill) { 383 LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill); 384 LV->removeVirtualRegisterKilled(IncomingReg, *OldKill); 385 LLVM_DEBUG(MBB.dump()); 386 } 387 388 // Add information to LiveVariables to know that the first used incoming 389 // value or the resued incoming value whose PHICopy is after the OldKIll 390 // is killed. Note that because the value is defined in several places 391 // (once each for each incoming block), the "def" block and instruction 392 // fields for the VarInfo is not filled in. 393 if (!OldKill || IsPHICopyAfterOldKill) 394 LV->addVirtualRegisterKilled(IncomingReg, *PHICopy); 395 } 396 397 // Since we are going to be deleting the PHI node, if it is the last use of 398 // any registers, or if the value itself is dead, we need to move this 399 // information over to the new copy we just inserted. 400 LV->removeVirtualRegistersKilled(*MPhi); 401 402 // If the result is dead, update LV. 403 if (isDead) { 404 LV->addVirtualRegisterDead(DestReg, *PHICopy); 405 LV->removeVirtualRegisterDead(DestReg, *MPhi); 406 } 407 } 408 409 // Update LiveIntervals for the new copy or implicit def. 410 if (LIS) { 411 SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy); 412 413 SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB); 414 if (IncomingReg) { 415 // Add the region from the beginning of MBB to the copy instruction to 416 // IncomingReg's live interval. 417 LiveInterval &IncomingLI = LIS->getOrCreateEmptyInterval(IncomingReg); 418 VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex); 419 if (!IncomingVNI) 420 IncomingVNI = IncomingLI.getNextValue(MBBStartIndex, 421 LIS->getVNInfoAllocator()); 422 IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex, 423 DestCopyIndex.getRegSlot(), 424 IncomingVNI)); 425 } 426 427 LiveInterval &DestLI = LIS->getInterval(DestReg); 428 assert(!DestLI.empty() && "PHIs should have non-empty LiveIntervals."); 429 430 SlotIndex NewStart = DestCopyIndex.getRegSlot(); 431 432 SmallVector<LiveRange *> ToUpdate({&DestLI}); 433 for (auto &SR : DestLI.subranges()) 434 ToUpdate.push_back(&SR); 435 436 for (auto LR : ToUpdate) { 437 auto DestSegment = LR->find(MBBStartIndex); 438 assert(DestSegment != LR->end() && 439 "PHI destination must be live in block"); 440 441 if (LR->endIndex().isDead()) { 442 // A dead PHI's live range begins and ends at the start of the MBB, but 443 // the lowered copy, which will still be dead, needs to begin and end at 444 // the copy instruction. 445 VNInfo *OrigDestVNI = LR->getVNInfoAt(DestSegment->start); 446 assert(OrigDestVNI && "PHI destination should be live at block entry."); 447 LR->removeSegment(DestSegment->start, DestSegment->start.getDeadSlot()); 448 LR->createDeadDef(NewStart, LIS->getVNInfoAllocator()); 449 LR->removeValNo(OrigDestVNI); 450 continue; 451 } 452 453 // Destination copies are not inserted in the same order as the PHI nodes 454 // they replace. Hence the start of the live range may need to be adjusted 455 // to match the actual slot index of the copy. 456 if (DestSegment->start > NewStart) { 457 VNInfo *VNI = LR->getVNInfoAt(DestSegment->start); 458 assert(VNI && "value should be defined for known segment"); 459 LR->addSegment( 460 LiveInterval::Segment(NewStart, DestSegment->start, VNI)); 461 } else if (DestSegment->start < NewStart) { 462 assert(DestSegment->start >= MBBStartIndex); 463 assert(DestSegment->end >= DestCopyIndex.getRegSlot()); 464 LR->removeSegment(DestSegment->start, NewStart); 465 } 466 VNInfo *DestVNI = LR->getVNInfoAt(NewStart); 467 assert(DestVNI && "PHI destination should be live at its definition."); 468 DestVNI->def = NewStart; 469 } 470 } 471 472 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. 473 if (LV || LIS) { 474 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) { 475 if (!MPhi->getOperand(i).isUndef()) { 476 --VRegPHIUseCount[BBVRegPair( 477 MPhi->getOperand(i + 1).getMBB()->getNumber(), 478 MPhi->getOperand(i).getReg())]; 479 } 480 } 481 } 482 483 // Now loop over all of the incoming arguments, changing them to copy into the 484 // IncomingReg register in the corresponding predecessor basic block. 485 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto; 486 for (int i = NumSrcs - 1; i >= 0; --i) { 487 Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg(); 488 unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg(); 489 bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() || 490 isImplicitlyDefined(SrcReg, *MRI); 491 assert(SrcReg.isVirtual() && 492 "Machine PHI Operands must all be virtual registers!"); 493 494 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source 495 // path the PHI. 496 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB(); 497 498 // Check to make sure we haven't already emitted the copy for this block. 499 // This can happen because PHI nodes may have multiple entries for the same 500 // basic block. 501 if (!MBBsInsertedInto.insert(&opBlock).second) 502 continue; // If the copy has already been emitted, we're done. 503 504 MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg); 505 if (SrcRegDef && TII->isUnspillableTerminator(SrcRegDef)) { 506 assert(SrcRegDef->getOperand(0).isReg() && 507 SrcRegDef->getOperand(0).isDef() && 508 "Expected operand 0 to be a reg def!"); 509 // Now that the PHI's use has been removed (as the instruction was 510 // removed) there should be no other uses of the SrcReg. 511 assert(MRI->use_empty(SrcReg) && 512 "Expected a single use from UnspillableTerminator"); 513 SrcRegDef->getOperand(0).setReg(IncomingReg); 514 515 // Update LiveVariables. 516 if (LV) { 517 LiveVariables::VarInfo &SrcVI = LV->getVarInfo(SrcReg); 518 LiveVariables::VarInfo &IncomingVI = LV->getVarInfo(IncomingReg); 519 IncomingVI.AliveBlocks = std::move(SrcVI.AliveBlocks); 520 SrcVI.AliveBlocks.clear(); 521 } 522 523 continue; 524 } 525 526 // Find a safe location to insert the copy, this may be the first terminator 527 // in the block (or end()). 528 MachineBasicBlock::iterator InsertPos = 529 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg); 530 531 // Insert the copy. 532 MachineInstr *NewSrcInstr = nullptr; 533 if (!reusedIncoming && IncomingReg) { 534 if (SrcUndef) { 535 // The source register is undefined, so there is no need for a real 536 // COPY, but we still need to ensure joint dominance by defs. 537 // Insert an IMPLICIT_DEF instruction. 538 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 539 TII->get(TargetOpcode::IMPLICIT_DEF), 540 IncomingReg); 541 542 // Clean up the old implicit-def, if there even was one. 543 if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg)) 544 if (DefMI->isImplicitDef()) 545 ImpDefs.insert(DefMI); 546 } else { 547 // Delete the debug location, since the copy is inserted into a 548 // different basic block. 549 NewSrcInstr = TII->createPHISourceCopy(opBlock, InsertPos, nullptr, 550 SrcReg, SrcSubReg, IncomingReg); 551 } 552 } 553 554 // We only need to update the LiveVariables kill of SrcReg if this was the 555 // last PHI use of SrcReg to be lowered on this CFG edge and it is not live 556 // out of the predecessor. We can also ignore undef sources. 557 if (LV && !SrcUndef && 558 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] && 559 !LV->isLiveOut(SrcReg, opBlock)) { 560 // We want to be able to insert a kill of the register if this PHI (aka, 561 // the copy we just inserted) is the last use of the source value. Live 562 // variable analysis conservatively handles this by saying that the value 563 // is live until the end of the block the PHI entry lives in. If the value 564 // really is dead at the PHI copy, there will be no successor blocks which 565 // have the value live-in. 566 567 // Okay, if we now know that the value is not live out of the block, we 568 // can add a kill marker in this block saying that it kills the incoming 569 // value! 570 571 // In our final twist, we have to decide which instruction kills the 572 // register. In most cases this is the copy, however, terminator 573 // instructions at the end of the block may also use the value. In this 574 // case, we should mark the last such terminator as being the killing 575 // block, not the copy. 576 MachineBasicBlock::iterator KillInst = opBlock.end(); 577 for (MachineBasicBlock::iterator Term = InsertPos; Term != opBlock.end(); 578 ++Term) { 579 if (Term->readsRegister(SrcReg, /*TRI=*/nullptr)) 580 KillInst = Term; 581 } 582 583 if (KillInst == opBlock.end()) { 584 // No terminator uses the register. 585 586 if (reusedIncoming || !IncomingReg) { 587 // We may have to rewind a bit if we didn't insert a copy this time. 588 KillInst = InsertPos; 589 while (KillInst != opBlock.begin()) { 590 --KillInst; 591 if (KillInst->isDebugInstr()) 592 continue; 593 if (KillInst->readsRegister(SrcReg, /*TRI=*/nullptr)) 594 break; 595 } 596 } else { 597 // We just inserted this copy. 598 KillInst = NewSrcInstr; 599 } 600 } 601 assert(KillInst->readsRegister(SrcReg, /*TRI=*/nullptr) && 602 "Cannot find kill instruction"); 603 604 // Finally, mark it killed. 605 LV->addVirtualRegisterKilled(SrcReg, *KillInst); 606 607 // This vreg no longer lives all of the way through opBlock. 608 unsigned opBlockNum = opBlock.getNumber(); 609 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum); 610 } 611 612 if (LIS) { 613 if (NewSrcInstr) { 614 LIS->InsertMachineInstrInMaps(*NewSrcInstr); 615 LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr); 616 } 617 618 if (!SrcUndef && 619 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) { 620 LiveInterval &SrcLI = LIS->getInterval(SrcReg); 621 622 bool isLiveOut = false; 623 for (MachineBasicBlock *Succ : opBlock.successors()) { 624 SlotIndex startIdx = LIS->getMBBStartIdx(Succ); 625 VNInfo *VNI = SrcLI.getVNInfoAt(startIdx); 626 627 // Definitions by other PHIs are not truly live-in for our purposes. 628 if (VNI && VNI->def != startIdx) { 629 isLiveOut = true; 630 break; 631 } 632 } 633 634 if (!isLiveOut) { 635 MachineBasicBlock::iterator KillInst = opBlock.end(); 636 for (MachineBasicBlock::iterator Term = InsertPos; 637 Term != opBlock.end(); ++Term) { 638 if (Term->readsRegister(SrcReg, /*TRI=*/nullptr)) 639 KillInst = Term; 640 } 641 642 if (KillInst == opBlock.end()) { 643 // No terminator uses the register. 644 645 if (reusedIncoming || !IncomingReg) { 646 // We may have to rewind a bit if we didn't just insert a copy. 647 KillInst = InsertPos; 648 while (KillInst != opBlock.begin()) { 649 --KillInst; 650 if (KillInst->isDebugInstr()) 651 continue; 652 if (KillInst->readsRegister(SrcReg, /*TRI=*/nullptr)) 653 break; 654 } 655 } else { 656 // We just inserted this copy. 657 KillInst = std::prev(InsertPos); 658 } 659 } 660 assert(KillInst->readsRegister(SrcReg, /*TRI=*/nullptr) && 661 "Cannot find kill instruction"); 662 663 SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst); 664 SrcLI.removeSegment(LastUseIndex.getRegSlot(), 665 LIS->getMBBEndIdx(&opBlock)); 666 for (auto &SR : SrcLI.subranges()) { 667 SR.removeSegment(LastUseIndex.getRegSlot(), 668 LIS->getMBBEndIdx(&opBlock)); 669 } 670 } 671 } 672 } 673 } 674 675 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map. 676 if (EliminateNow) { 677 if (LIS) 678 LIS->RemoveMachineInstrFromMaps(*MPhi); 679 MF.deleteMachineInstr(MPhi); 680 } 681 } 682 683 /// analyzePHINodes - Gather information about the PHI nodes in here. In 684 /// particular, we want to map the number of uses of a virtual register which is 685 /// used in a PHI node. We map that to the BB the vreg is coming from. This is 686 /// used later to determine when the vreg is killed in the BB. 687 void PHIElimination::analyzePHINodes(const MachineFunction& MF) { 688 for (const auto &MBB : MF) { 689 for (const auto &BBI : MBB) { 690 if (!BBI.isPHI()) 691 break; 692 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) { 693 if (!BBI.getOperand(i).isUndef()) { 694 ++VRegPHIUseCount[BBVRegPair( 695 BBI.getOperand(i + 1).getMBB()->getNumber(), 696 BBI.getOperand(i).getReg())]; 697 } 698 } 699 } 700 } 701 } 702 703 bool PHIElimination::SplitPHIEdges(MachineFunction &MF, 704 MachineBasicBlock &MBB, 705 MachineLoopInfo *MLI, 706 std::vector<SparseBitVector<>> *LiveInSets) { 707 if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad()) 708 return false; // Quick exit for basic blocks without PHIs. 709 710 const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr; 711 bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader(); 712 713 bool Changed = false; 714 for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end(); 715 BBI != BBE && BBI->isPHI(); ++BBI) { 716 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { 717 Register Reg = BBI->getOperand(i).getReg(); 718 MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB(); 719 // Is there a critical edge from PreMBB to MBB? 720 if (PreMBB->succ_size() == 1) 721 continue; 722 723 // Avoid splitting backedges of loops. It would introduce small 724 // out-of-line blocks into the loop which is very bad for code placement. 725 if (PreMBB == &MBB && !SplitAllCriticalEdges) 726 continue; 727 const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr; 728 if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges) 729 continue; 730 731 // LV doesn't consider a phi use live-out, so isLiveOut only returns true 732 // when the source register is live-out for some other reason than a phi 733 // use. That means the copy we will insert in PreMBB won't be a kill, and 734 // there is a risk it may not be coalesced away. 735 // 736 // If the copy would be a kill, there is no need to split the edge. 737 bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB); 738 if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit) 739 continue; 740 if (ShouldSplit) { 741 LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge " 742 << printMBBReference(*PreMBB) << " -> " 743 << printMBBReference(MBB) << ": " << *BBI); 744 } 745 746 // If Reg is not live-in to MBB, it means it must be live-in to some 747 // other PreMBB successor, and we can avoid the interference by splitting 748 // the edge. 749 // 750 // If Reg *is* live-in to MBB, the interference is inevitable and a copy 751 // is likely to be left after coalescing. If we are looking at a loop 752 // exiting edge, split it so we won't insert code in the loop, otherwise 753 // don't bother. 754 ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB); 755 756 // Check for a loop exiting edge. 757 if (!ShouldSplit && CurLoop != PreLoop) { 758 LLVM_DEBUG({ 759 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n"; 760 if (PreLoop) 761 dbgs() << "PreLoop: " << *PreLoop; 762 if (CurLoop) 763 dbgs() << "CurLoop: " << *CurLoop; 764 }); 765 // This edge could be entering a loop, exiting a loop, or it could be 766 // both: Jumping directly form one loop to the header of a sibling 767 // loop. 768 // Split unless this edge is entering CurLoop from an outer loop. 769 ShouldSplit = PreLoop && !PreLoop->contains(CurLoop); 770 } 771 if (!ShouldSplit && !SplitAllCriticalEdges) 772 continue; 773 if (!PreMBB->SplitCriticalEdge(&MBB, *this, LiveInSets)) { 774 LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n"); 775 continue; 776 } 777 Changed = true; 778 ++NumCriticalEdgesSplit; 779 } 780 } 781 return Changed; 782 } 783 784 bool PHIElimination::isLiveIn(Register Reg, const MachineBasicBlock *MBB) { 785 assert((LV || LIS) && 786 "isLiveIn() requires either LiveVariables or LiveIntervals"); 787 if (LIS) 788 return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB); 789 else 790 return LV->isLiveIn(Reg, *MBB); 791 } 792 793 bool PHIElimination::isLiveOutPastPHIs(Register Reg, 794 const MachineBasicBlock *MBB) { 795 assert((LV || LIS) && 796 "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals"); 797 // LiveVariables considers uses in PHIs to be in the predecessor basic block, 798 // so that a register used only in a PHI is not live out of the block. In 799 // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than 800 // in the predecessor basic block, so that a register used only in a PHI is live 801 // out of the block. 802 if (LIS) { 803 const LiveInterval &LI = LIS->getInterval(Reg); 804 for (const MachineBasicBlock *SI : MBB->successors()) 805 if (LI.liveAt(LIS->getMBBStartIdx(SI))) 806 return true; 807 return false; 808 } else { 809 return LV->isLiveOut(Reg, *MBB); 810 } 811 } 812