xref: /llvm-project/llvm/lib/CodeGen/PHIElimination.cpp (revision bb260eb87d9bebd93e64051b574fbce0eebbad30)
1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass eliminates machine instruction PHI nodes by inserting copy
10 // instructions.  This destroys SSA information, but is the desired input for
11 // some register allocators.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "PHIEliminationUtils.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/CodeGen/LiveInterval.h"
21 #include "llvm/CodeGen/LiveIntervals.h"
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineLoopInfo.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/SlotIndexes.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetOpcodes.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/TargetSubtargetInfo.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include <cassert>
42 #include <iterator>
43 #include <utility>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "phi-node-elimination"
48 
49 static cl::opt<bool>
50 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
51                      cl::Hidden, cl::desc("Disable critical edge splitting "
52                                           "during PHI elimination"));
53 
54 static cl::opt<bool>
55 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
56                       cl::Hidden, cl::desc("Split all critical edges during "
57                                            "PHI elimination"));
58 
59 static cl::opt<bool> NoPhiElimLiveOutEarlyExit(
60     "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden,
61     cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
62 
63 namespace {
64 
65   class PHIElimination : public MachineFunctionPass {
66     MachineRegisterInfo *MRI = nullptr; // Machine register information
67     LiveVariables *LV = nullptr;
68     LiveIntervals *LIS = nullptr;
69 
70   public:
71     static char ID; // Pass identification, replacement for typeid
72 
73     PHIElimination() : MachineFunctionPass(ID) {
74       initializePHIEliminationPass(*PassRegistry::getPassRegistry());
75     }
76 
77     bool runOnMachineFunction(MachineFunction &MF) override;
78     void getAnalysisUsage(AnalysisUsage &AU) const override;
79 
80   private:
81     /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
82     /// in predecessor basic blocks.
83     bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
84 
85     void LowerPHINode(MachineBasicBlock &MBB,
86                       MachineBasicBlock::iterator LastPHIIt,
87                       bool AllEdgesCritical);
88 
89     /// analyzePHINodes - Gather information about the PHI nodes in
90     /// here. In particular, we want to map the number of uses of a virtual
91     /// register which is used in a PHI node. We map that to the BB the
92     /// vreg is coming from. This is used later to determine when the vreg
93     /// is killed in the BB.
94     void analyzePHINodes(const MachineFunction& MF);
95 
96     /// Split critical edges where necessary for good coalescer performance.
97     bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
98                        MachineLoopInfo *MLI,
99                        std::vector<SparseBitVector<>> *LiveInSets);
100 
101     // These functions are temporary abstractions around LiveVariables and
102     // LiveIntervals, so they can go away when LiveVariables does.
103     bool isLiveIn(Register Reg, const MachineBasicBlock *MBB);
104     bool isLiveOutPastPHIs(Register Reg, const MachineBasicBlock *MBB);
105 
106     using BBVRegPair = std::pair<unsigned, Register>;
107     using VRegPHIUse = DenseMap<BBVRegPair, unsigned>;
108 
109     // Count the number of non-undef PHI uses of each register in each BB.
110     VRegPHIUse VRegPHIUseCount;
111 
112     // Defs of PHI sources which are implicit_def.
113     SmallPtrSet<MachineInstr*, 4> ImpDefs;
114 
115     // Map reusable lowered PHI node -> incoming join register.
116     using LoweredPHIMap =
117         DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>;
118     LoweredPHIMap LoweredPHIs;
119   };
120 
121 } // end anonymous namespace
122 
123 STATISTIC(NumLowered, "Number of phis lowered");
124 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
125 STATISTIC(NumReused, "Number of reused lowered phis");
126 
127 char PHIElimination::ID = 0;
128 
129 char& llvm::PHIEliminationID = PHIElimination::ID;
130 
131 INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE,
132                       "Eliminate PHI nodes for register allocation",
133                       false, false)
134 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
135 INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE,
136                     "Eliminate PHI nodes for register allocation", false, false)
137 
138 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
139   AU.addUsedIfAvailable<LiveVariables>();
140   AU.addPreserved<LiveVariables>();
141   AU.addPreserved<SlotIndexes>();
142   AU.addPreserved<LiveIntervals>();
143   AU.addPreserved<MachineDominatorTreeWrapperPass>();
144   AU.addPreserved<MachineLoopInfo>();
145   MachineFunctionPass::getAnalysisUsage(AU);
146 }
147 
148 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
149   MRI = &MF.getRegInfo();
150   LV = getAnalysisIfAvailable<LiveVariables>();
151   LIS = getAnalysisIfAvailable<LiveIntervals>();
152 
153   bool Changed = false;
154 
155   // Split critical edges to help the coalescer.
156   if (!DisableEdgeSplitting && (LV || LIS)) {
157     // A set of live-in regs for each MBB which is used to update LV
158     // efficiently also with large functions.
159     std::vector<SparseBitVector<>> LiveInSets;
160     if (LV) {
161       LiveInSets.resize(MF.size());
162       for (unsigned Index = 0, e = MRI->getNumVirtRegs(); Index != e; ++Index) {
163         // Set the bit for this register for each MBB where it is
164         // live-through or live-in (killed).
165         Register VirtReg = Register::index2VirtReg(Index);
166         MachineInstr *DefMI = MRI->getVRegDef(VirtReg);
167         if (!DefMI)
168           continue;
169         LiveVariables::VarInfo &VI = LV->getVarInfo(VirtReg);
170         SparseBitVector<>::iterator AliveBlockItr = VI.AliveBlocks.begin();
171         SparseBitVector<>::iterator EndItr = VI.AliveBlocks.end();
172         while (AliveBlockItr != EndItr) {
173           unsigned BlockNum = *(AliveBlockItr++);
174           LiveInSets[BlockNum].set(Index);
175         }
176         // The register is live into an MBB in which it is killed but not
177         // defined. See comment for VarInfo in LiveVariables.h.
178         MachineBasicBlock *DefMBB = DefMI->getParent();
179         if (VI.Kills.size() > 1 ||
180             (!VI.Kills.empty() && VI.Kills.front()->getParent() != DefMBB))
181           for (auto *MI : VI.Kills)
182             LiveInSets[MI->getParent()->getNumber()].set(Index);
183       }
184     }
185 
186     MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
187     for (auto &MBB : MF)
188       Changed |= SplitPHIEdges(MF, MBB, MLI, (LV ? &LiveInSets : nullptr));
189   }
190 
191   // This pass takes the function out of SSA form.
192   MRI->leaveSSA();
193 
194   // Populate VRegPHIUseCount
195   if (LV || LIS)
196     analyzePHINodes(MF);
197 
198   // Eliminate PHI instructions by inserting copies into predecessor blocks.
199   for (auto &MBB : MF)
200     Changed |= EliminatePHINodes(MF, MBB);
201 
202   // Remove dead IMPLICIT_DEF instructions.
203   for (MachineInstr *DefMI : ImpDefs) {
204     Register DefReg = DefMI->getOperand(0).getReg();
205     if (MRI->use_nodbg_empty(DefReg)) {
206       if (LIS)
207         LIS->RemoveMachineInstrFromMaps(*DefMI);
208       DefMI->eraseFromParent();
209     }
210   }
211 
212   // Clean up the lowered PHI instructions.
213   for (auto &I : LoweredPHIs) {
214     if (LIS)
215       LIS->RemoveMachineInstrFromMaps(*I.first);
216     MF.deleteMachineInstr(I.first);
217   }
218 
219   // TODO: we should use the incremental DomTree updater here.
220   if (Changed)
221     if (auto *MDT = getAnalysisIfAvailable<MachineDominatorTreeWrapperPass>())
222       MDT->getDomTree().getBase().recalculate(MF);
223 
224   LoweredPHIs.clear();
225   ImpDefs.clear();
226   VRegPHIUseCount.clear();
227 
228   MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs);
229 
230   return Changed;
231 }
232 
233 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
234 /// predecessor basic blocks.
235 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
236                                        MachineBasicBlock &MBB) {
237   if (MBB.empty() || !MBB.front().isPHI())
238     return false;   // Quick exit for basic blocks without PHIs.
239 
240   // Get an iterator to the last PHI node.
241   MachineBasicBlock::iterator LastPHIIt =
242     std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
243 
244   // If all incoming edges are critical, we try to deduplicate identical PHIs so
245   // that we generate fewer copies. If at any edge is non-critical, we either
246   // have less than two predecessors (=> no PHIs) or a predecessor has only us
247   // as a successor (=> identical PHI node can't occur in different block).
248   bool AllEdgesCritical = MBB.pred_size() >= 2;
249   for (MachineBasicBlock *Pred : MBB.predecessors()) {
250     if (Pred->succ_size() < 2) {
251       AllEdgesCritical = false;
252       break;
253     }
254   }
255 
256   while (MBB.front().isPHI())
257     LowerPHINode(MBB, LastPHIIt, AllEdgesCritical);
258 
259   return true;
260 }
261 
262 /// Return true if all defs of VirtReg are implicit-defs.
263 /// This includes registers with no defs.
264 static bool isImplicitlyDefined(unsigned VirtReg,
265                                 const MachineRegisterInfo &MRI) {
266   for (MachineInstr &DI : MRI.def_instructions(VirtReg))
267     if (!DI.isImplicitDef())
268       return false;
269   return true;
270 }
271 
272 /// Return true if all sources of the phi node are implicit_def's, or undef's.
273 static bool allPhiOperandsUndefined(const MachineInstr &MPhi,
274                                     const MachineRegisterInfo &MRI) {
275   for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) {
276     const MachineOperand &MO = MPhi.getOperand(I);
277     if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef())
278       return false;
279   }
280   return true;
281 }
282 /// LowerPHINode - Lower the PHI node at the top of the specified block.
283 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
284                                   MachineBasicBlock::iterator LastPHIIt,
285                                   bool AllEdgesCritical) {
286   ++NumLowered;
287 
288   MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
289 
290   // Unlink the PHI node from the basic block, but don't delete the PHI yet.
291   MachineInstr *MPhi = MBB.remove(&*MBB.begin());
292 
293   unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
294   Register DestReg = MPhi->getOperand(0).getReg();
295   assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
296   bool isDead = MPhi->getOperand(0).isDead();
297 
298   // Create a new register for the incoming PHI arguments.
299   MachineFunction &MF = *MBB.getParent();
300   unsigned IncomingReg = 0;
301   bool EliminateNow = true;     // delay elimination of nodes in LoweredPHIs
302   bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
303 
304   // Insert a register to register copy at the top of the current block (but
305   // after any remaining phi nodes) which copies the new incoming register
306   // into the phi node destination.
307   MachineInstr *PHICopy = nullptr;
308   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
309   if (allPhiOperandsUndefined(*MPhi, *MRI))
310     // If all sources of a PHI node are implicit_def or undef uses, just emit an
311     // implicit_def instead of a copy.
312     PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
313             TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
314   else {
315     // Can we reuse an earlier PHI node? This only happens for critical edges,
316     // typically those created by tail duplication. Typically, an identical PHI
317     // node can't occur, so avoid hashing/storing such PHIs, which is somewhat
318     // expensive.
319     unsigned *Entry = nullptr;
320     if (AllEdgesCritical)
321       Entry = &LoweredPHIs[MPhi];
322     if (Entry && *Entry) {
323       // An identical PHI node was already lowered. Reuse the incoming register.
324       IncomingReg = *Entry;
325       reusedIncoming = true;
326       ++NumReused;
327       LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for "
328                         << *MPhi);
329     } else {
330       const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
331       IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
332       if (Entry) {
333         EliminateNow = false;
334         *Entry = IncomingReg;
335       }
336     }
337 
338     // Give the target possiblity to handle special cases fallthrough otherwise
339     PHICopy = TII->createPHIDestinationCopy(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
340                                   IncomingReg, DestReg);
341   }
342 
343   if (MPhi->peekDebugInstrNum()) {
344     // If referred to by debug-info, store where this PHI was.
345     MachineFunction *MF = MBB.getParent();
346     unsigned ID = MPhi->peekDebugInstrNum();
347     auto P = MachineFunction::DebugPHIRegallocPos(&MBB, IncomingReg, 0);
348     auto Res = MF->DebugPHIPositions.insert({ID, P});
349     assert(Res.second);
350     (void)Res;
351   }
352 
353   // Update live variable information if there is any.
354   if (LV) {
355     if (IncomingReg) {
356       LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
357 
358       MachineInstr *OldKill = nullptr;
359       bool IsPHICopyAfterOldKill = false;
360 
361       if (reusedIncoming && (OldKill = VI.findKill(&MBB))) {
362         // Calculate whether the PHICopy is after the OldKill.
363         // In general, the PHICopy is inserted as the first non-phi instruction
364         // by default, so it's before the OldKill. But some Target hooks for
365         // createPHIDestinationCopy() may modify the default insert position of
366         // PHICopy.
367         for (auto I = MBB.SkipPHIsAndLabels(MBB.begin()), E = MBB.end();
368              I != E; ++I) {
369           if (I == PHICopy)
370             break;
371 
372           if (I == OldKill) {
373             IsPHICopyAfterOldKill = true;
374             break;
375           }
376         }
377       }
378 
379       // When we are reusing the incoming register and it has been marked killed
380       // by OldKill, if the PHICopy is after the OldKill, we should remove the
381       // killed flag from OldKill.
382       if (IsPHICopyAfterOldKill) {
383         LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill);
384         LV->removeVirtualRegisterKilled(IncomingReg, *OldKill);
385         LLVM_DEBUG(MBB.dump());
386       }
387 
388       // Add information to LiveVariables to know that the first used incoming
389       // value or the resued incoming value whose PHICopy is after the OldKIll
390       // is killed. Note that because the value is defined in several places
391       // (once each for each incoming block), the "def" block and instruction
392       // fields for the VarInfo is not filled in.
393       if (!OldKill || IsPHICopyAfterOldKill)
394         LV->addVirtualRegisterKilled(IncomingReg, *PHICopy);
395     }
396 
397     // Since we are going to be deleting the PHI node, if it is the last use of
398     // any registers, or if the value itself is dead, we need to move this
399     // information over to the new copy we just inserted.
400     LV->removeVirtualRegistersKilled(*MPhi);
401 
402     // If the result is dead, update LV.
403     if (isDead) {
404       LV->addVirtualRegisterDead(DestReg, *PHICopy);
405       LV->removeVirtualRegisterDead(DestReg, *MPhi);
406     }
407   }
408 
409   // Update LiveIntervals for the new copy or implicit def.
410   if (LIS) {
411     SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy);
412 
413     SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
414     if (IncomingReg) {
415       // Add the region from the beginning of MBB to the copy instruction to
416       // IncomingReg's live interval.
417       LiveInterval &IncomingLI = LIS->getOrCreateEmptyInterval(IncomingReg);
418       VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
419       if (!IncomingVNI)
420         IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
421                                               LIS->getVNInfoAllocator());
422       IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
423                                                   DestCopyIndex.getRegSlot(),
424                                                   IncomingVNI));
425     }
426 
427     LiveInterval &DestLI = LIS->getInterval(DestReg);
428     assert(!DestLI.empty() && "PHIs should have non-empty LiveIntervals.");
429 
430     SlotIndex NewStart = DestCopyIndex.getRegSlot();
431 
432     SmallVector<LiveRange *> ToUpdate({&DestLI});
433     for (auto &SR : DestLI.subranges())
434       ToUpdate.push_back(&SR);
435 
436     for (auto LR : ToUpdate) {
437       auto DestSegment = LR->find(MBBStartIndex);
438       assert(DestSegment != LR->end() &&
439              "PHI destination must be live in block");
440 
441       if (LR->endIndex().isDead()) {
442         // A dead PHI's live range begins and ends at the start of the MBB, but
443         // the lowered copy, which will still be dead, needs to begin and end at
444         // the copy instruction.
445         VNInfo *OrigDestVNI = LR->getVNInfoAt(DestSegment->start);
446         assert(OrigDestVNI && "PHI destination should be live at block entry.");
447         LR->removeSegment(DestSegment->start, DestSegment->start.getDeadSlot());
448         LR->createDeadDef(NewStart, LIS->getVNInfoAllocator());
449         LR->removeValNo(OrigDestVNI);
450         continue;
451       }
452 
453       // Destination copies are not inserted in the same order as the PHI nodes
454       // they replace. Hence the start of the live range may need to be adjusted
455       // to match the actual slot index of the copy.
456       if (DestSegment->start > NewStart) {
457         VNInfo *VNI = LR->getVNInfoAt(DestSegment->start);
458         assert(VNI && "value should be defined for known segment");
459         LR->addSegment(
460             LiveInterval::Segment(NewStart, DestSegment->start, VNI));
461       } else if (DestSegment->start < NewStart) {
462         assert(DestSegment->start >= MBBStartIndex);
463         assert(DestSegment->end >= DestCopyIndex.getRegSlot());
464         LR->removeSegment(DestSegment->start, NewStart);
465       }
466       VNInfo *DestVNI = LR->getVNInfoAt(NewStart);
467       assert(DestVNI && "PHI destination should be live at its definition.");
468       DestVNI->def = NewStart;
469     }
470   }
471 
472   // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
473   if (LV || LIS) {
474     for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
475       if (!MPhi->getOperand(i).isUndef()) {
476         --VRegPHIUseCount[BBVRegPair(
477             MPhi->getOperand(i + 1).getMBB()->getNumber(),
478             MPhi->getOperand(i).getReg())];
479       }
480     }
481   }
482 
483   // Now loop over all of the incoming arguments, changing them to copy into the
484   // IncomingReg register in the corresponding predecessor basic block.
485   SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
486   for (int i = NumSrcs - 1; i >= 0; --i) {
487     Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg();
488     unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
489     bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
490       isImplicitlyDefined(SrcReg, *MRI);
491     assert(SrcReg.isVirtual() &&
492            "Machine PHI Operands must all be virtual registers!");
493 
494     // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
495     // path the PHI.
496     MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
497 
498     // Check to make sure we haven't already emitted the copy for this block.
499     // This can happen because PHI nodes may have multiple entries for the same
500     // basic block.
501     if (!MBBsInsertedInto.insert(&opBlock).second)
502       continue;  // If the copy has already been emitted, we're done.
503 
504     MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg);
505     if (SrcRegDef && TII->isUnspillableTerminator(SrcRegDef)) {
506       assert(SrcRegDef->getOperand(0).isReg() &&
507              SrcRegDef->getOperand(0).isDef() &&
508              "Expected operand 0 to be a reg def!");
509       // Now that the PHI's use has been removed (as the instruction was
510       // removed) there should be no other uses of the SrcReg.
511       assert(MRI->use_empty(SrcReg) &&
512              "Expected a single use from UnspillableTerminator");
513       SrcRegDef->getOperand(0).setReg(IncomingReg);
514 
515       // Update LiveVariables.
516       if (LV) {
517         LiveVariables::VarInfo &SrcVI = LV->getVarInfo(SrcReg);
518         LiveVariables::VarInfo &IncomingVI = LV->getVarInfo(IncomingReg);
519         IncomingVI.AliveBlocks = std::move(SrcVI.AliveBlocks);
520         SrcVI.AliveBlocks.clear();
521       }
522 
523       continue;
524     }
525 
526     // Find a safe location to insert the copy, this may be the first terminator
527     // in the block (or end()).
528     MachineBasicBlock::iterator InsertPos =
529       findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
530 
531     // Insert the copy.
532     MachineInstr *NewSrcInstr = nullptr;
533     if (!reusedIncoming && IncomingReg) {
534       if (SrcUndef) {
535         // The source register is undefined, so there is no need for a real
536         // COPY, but we still need to ensure joint dominance by defs.
537         // Insert an IMPLICIT_DEF instruction.
538         NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
539                               TII->get(TargetOpcode::IMPLICIT_DEF),
540                               IncomingReg);
541 
542         // Clean up the old implicit-def, if there even was one.
543         if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
544           if (DefMI->isImplicitDef())
545             ImpDefs.insert(DefMI);
546       } else {
547         // Delete the debug location, since the copy is inserted into a
548         // different basic block.
549         NewSrcInstr = TII->createPHISourceCopy(opBlock, InsertPos, nullptr,
550                                                SrcReg, SrcSubReg, IncomingReg);
551       }
552     }
553 
554     // We only need to update the LiveVariables kill of SrcReg if this was the
555     // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
556     // out of the predecessor. We can also ignore undef sources.
557     if (LV && !SrcUndef &&
558         !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
559         !LV->isLiveOut(SrcReg, opBlock)) {
560       // We want to be able to insert a kill of the register if this PHI (aka,
561       // the copy we just inserted) is the last use of the source value. Live
562       // variable analysis conservatively handles this by saying that the value
563       // is live until the end of the block the PHI entry lives in. If the value
564       // really is dead at the PHI copy, there will be no successor blocks which
565       // have the value live-in.
566 
567       // Okay, if we now know that the value is not live out of the block, we
568       // can add a kill marker in this block saying that it kills the incoming
569       // value!
570 
571       // In our final twist, we have to decide which instruction kills the
572       // register.  In most cases this is the copy, however, terminator
573       // instructions at the end of the block may also use the value. In this
574       // case, we should mark the last such terminator as being the killing
575       // block, not the copy.
576       MachineBasicBlock::iterator KillInst = opBlock.end();
577       for (MachineBasicBlock::iterator Term = InsertPos; Term != opBlock.end();
578            ++Term) {
579         if (Term->readsRegister(SrcReg, /*TRI=*/nullptr))
580           KillInst = Term;
581       }
582 
583       if (KillInst == opBlock.end()) {
584         // No terminator uses the register.
585 
586         if (reusedIncoming || !IncomingReg) {
587           // We may have to rewind a bit if we didn't insert a copy this time.
588           KillInst = InsertPos;
589           while (KillInst != opBlock.begin()) {
590             --KillInst;
591             if (KillInst->isDebugInstr())
592               continue;
593             if (KillInst->readsRegister(SrcReg, /*TRI=*/nullptr))
594               break;
595           }
596         } else {
597           // We just inserted this copy.
598           KillInst = NewSrcInstr;
599         }
600       }
601       assert(KillInst->readsRegister(SrcReg, /*TRI=*/nullptr) &&
602              "Cannot find kill instruction");
603 
604       // Finally, mark it killed.
605       LV->addVirtualRegisterKilled(SrcReg, *KillInst);
606 
607       // This vreg no longer lives all of the way through opBlock.
608       unsigned opBlockNum = opBlock.getNumber();
609       LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
610     }
611 
612     if (LIS) {
613       if (NewSrcInstr) {
614         LIS->InsertMachineInstrInMaps(*NewSrcInstr);
615         LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr);
616       }
617 
618       if (!SrcUndef &&
619           !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
620         LiveInterval &SrcLI = LIS->getInterval(SrcReg);
621 
622         bool isLiveOut = false;
623         for (MachineBasicBlock *Succ : opBlock.successors()) {
624           SlotIndex startIdx = LIS->getMBBStartIdx(Succ);
625           VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
626 
627           // Definitions by other PHIs are not truly live-in for our purposes.
628           if (VNI && VNI->def != startIdx) {
629             isLiveOut = true;
630             break;
631           }
632         }
633 
634         if (!isLiveOut) {
635           MachineBasicBlock::iterator KillInst = opBlock.end();
636           for (MachineBasicBlock::iterator Term = InsertPos;
637                Term != opBlock.end(); ++Term) {
638             if (Term->readsRegister(SrcReg, /*TRI=*/nullptr))
639               KillInst = Term;
640           }
641 
642           if (KillInst == opBlock.end()) {
643             // No terminator uses the register.
644 
645             if (reusedIncoming || !IncomingReg) {
646               // We may have to rewind a bit if we didn't just insert a copy.
647               KillInst = InsertPos;
648               while (KillInst != opBlock.begin()) {
649                 --KillInst;
650                 if (KillInst->isDebugInstr())
651                   continue;
652                 if (KillInst->readsRegister(SrcReg, /*TRI=*/nullptr))
653                   break;
654               }
655             } else {
656               // We just inserted this copy.
657               KillInst = std::prev(InsertPos);
658             }
659           }
660           assert(KillInst->readsRegister(SrcReg, /*TRI=*/nullptr) &&
661                  "Cannot find kill instruction");
662 
663           SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst);
664           SrcLI.removeSegment(LastUseIndex.getRegSlot(),
665                               LIS->getMBBEndIdx(&opBlock));
666           for (auto &SR : SrcLI.subranges()) {
667             SR.removeSegment(LastUseIndex.getRegSlot(),
668                              LIS->getMBBEndIdx(&opBlock));
669           }
670         }
671       }
672     }
673   }
674 
675   // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
676   if (EliminateNow) {
677     if (LIS)
678       LIS->RemoveMachineInstrFromMaps(*MPhi);
679     MF.deleteMachineInstr(MPhi);
680   }
681 }
682 
683 /// analyzePHINodes - Gather information about the PHI nodes in here. In
684 /// particular, we want to map the number of uses of a virtual register which is
685 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
686 /// used later to determine when the vreg is killed in the BB.
687 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
688   for (const auto &MBB : MF) {
689     for (const auto &BBI : MBB) {
690       if (!BBI.isPHI())
691         break;
692       for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) {
693         if (!BBI.getOperand(i).isUndef()) {
694           ++VRegPHIUseCount[BBVRegPair(
695               BBI.getOperand(i + 1).getMBB()->getNumber(),
696               BBI.getOperand(i).getReg())];
697         }
698       }
699     }
700   }
701 }
702 
703 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
704                                    MachineBasicBlock &MBB,
705                                    MachineLoopInfo *MLI,
706                                    std::vector<SparseBitVector<>> *LiveInSets) {
707   if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad())
708     return false;   // Quick exit for basic blocks without PHIs.
709 
710   const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
711   bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
712 
713   bool Changed = false;
714   for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
715        BBI != BBE && BBI->isPHI(); ++BBI) {
716     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
717       Register Reg = BBI->getOperand(i).getReg();
718       MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
719       // Is there a critical edge from PreMBB to MBB?
720       if (PreMBB->succ_size() == 1)
721         continue;
722 
723       // Avoid splitting backedges of loops. It would introduce small
724       // out-of-line blocks into the loop which is very bad for code placement.
725       if (PreMBB == &MBB && !SplitAllCriticalEdges)
726         continue;
727       const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
728       if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
729         continue;
730 
731       // LV doesn't consider a phi use live-out, so isLiveOut only returns true
732       // when the source register is live-out for some other reason than a phi
733       // use. That means the copy we will insert in PreMBB won't be a kill, and
734       // there is a risk it may not be coalesced away.
735       //
736       // If the copy would be a kill, there is no need to split the edge.
737       bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB);
738       if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit)
739         continue;
740       if (ShouldSplit) {
741         LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge "
742                           << printMBBReference(*PreMBB) << " -> "
743                           << printMBBReference(MBB) << ": " << *BBI);
744       }
745 
746       // If Reg is not live-in to MBB, it means it must be live-in to some
747       // other PreMBB successor, and we can avoid the interference by splitting
748       // the edge.
749       //
750       // If Reg *is* live-in to MBB, the interference is inevitable and a copy
751       // is likely to be left after coalescing. If we are looking at a loop
752       // exiting edge, split it so we won't insert code in the loop, otherwise
753       // don't bother.
754       ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB);
755 
756       // Check for a loop exiting edge.
757       if (!ShouldSplit && CurLoop != PreLoop) {
758         LLVM_DEBUG({
759           dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
760           if (PreLoop)
761             dbgs() << "PreLoop: " << *PreLoop;
762           if (CurLoop)
763             dbgs() << "CurLoop: " << *CurLoop;
764         });
765         // This edge could be entering a loop, exiting a loop, or it could be
766         // both: Jumping directly form one loop to the header of a sibling
767         // loop.
768         // Split unless this edge is entering CurLoop from an outer loop.
769         ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
770       }
771       if (!ShouldSplit && !SplitAllCriticalEdges)
772         continue;
773       if (!PreMBB->SplitCriticalEdge(&MBB, *this, LiveInSets)) {
774         LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n");
775         continue;
776       }
777       Changed = true;
778       ++NumCriticalEdgesSplit;
779     }
780   }
781   return Changed;
782 }
783 
784 bool PHIElimination::isLiveIn(Register Reg, const MachineBasicBlock *MBB) {
785   assert((LV || LIS) &&
786          "isLiveIn() requires either LiveVariables or LiveIntervals");
787   if (LIS)
788     return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
789   else
790     return LV->isLiveIn(Reg, *MBB);
791 }
792 
793 bool PHIElimination::isLiveOutPastPHIs(Register Reg,
794                                        const MachineBasicBlock *MBB) {
795   assert((LV || LIS) &&
796          "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
797   // LiveVariables considers uses in PHIs to be in the predecessor basic block,
798   // so that a register used only in a PHI is not live out of the block. In
799   // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
800   // in the predecessor basic block, so that a register used only in a PHI is live
801   // out of the block.
802   if (LIS) {
803     const LiveInterval &LI = LIS->getInterval(Reg);
804     for (const MachineBasicBlock *SI : MBB->successors())
805       if (LI.liveAt(LIS->getMBBStartIdx(SI)))
806         return true;
807     return false;
808   } else {
809     return LV->isLiveOut(Reg, *MBB);
810   }
811 }
812