1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass eliminates machine instruction PHI nodes by inserting copy 10 // instructions. This destroys SSA information, but is the desired input for 11 // some register allocators. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/PHIElimination.h" 16 #include "PHIEliminationUtils.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/CodeGen/LiveInterval.h" 22 #include "llvm/CodeGen/LiveIntervals.h" 23 #include "llvm/CodeGen/LiveVariables.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineDomTreeUpdater.h" 26 #include "llvm/CodeGen/MachineDominators.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineFunctionPass.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineLoopInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/SlotIndexes.h" 35 #include "llvm/CodeGen/TargetInstrInfo.h" 36 #include "llvm/CodeGen/TargetOpcodes.h" 37 #include "llvm/CodeGen/TargetRegisterInfo.h" 38 #include "llvm/CodeGen/TargetSubtargetInfo.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <cassert> 44 #include <iterator> 45 #include <utility> 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "phi-node-elimination" 50 51 static cl::opt<bool> 52 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false), 53 cl::Hidden, 54 cl::desc("Disable critical edge splitting " 55 "during PHI elimination")); 56 57 static cl::opt<bool> 58 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false), 59 cl::Hidden, 60 cl::desc("Split all critical edges during " 61 "PHI elimination")); 62 63 static cl::opt<bool> NoPhiElimLiveOutEarlyExit( 64 "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden, 65 cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true.")); 66 67 namespace { 68 69 class PHIEliminationImpl { 70 MachineRegisterInfo *MRI = nullptr; // Machine register information 71 LiveVariables *LV = nullptr; 72 LiveIntervals *LIS = nullptr; 73 MachineLoopInfo *MLI = nullptr; 74 MachineDominatorTree *MDT = nullptr; 75 76 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions 77 /// in predecessor basic blocks. 78 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); 79 80 void LowerPHINode(MachineBasicBlock &MBB, 81 MachineBasicBlock::iterator LastPHIIt, 82 bool AllEdgesCritical); 83 84 /// analyzePHINodes - Gather information about the PHI nodes in 85 /// here. In particular, we want to map the number of uses of a virtual 86 /// register which is used in a PHI node. We map that to the BB the 87 /// vreg is coming from. This is used later to determine when the vreg 88 /// is killed in the BB. 89 void analyzePHINodes(const MachineFunction &MF); 90 91 /// Split critical edges where necessary for good coalescer performance. 92 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, 93 MachineLoopInfo *MLI, 94 std::vector<SparseBitVector<>> *LiveInSets, 95 MachineDomTreeUpdater &MDTU); 96 97 // These functions are temporary abstractions around LiveVariables and 98 // LiveIntervals, so they can go away when LiveVariables does. 99 bool isLiveIn(Register Reg, const MachineBasicBlock *MBB); 100 bool isLiveOutPastPHIs(Register Reg, const MachineBasicBlock *MBB); 101 102 using BBVRegPair = std::pair<unsigned, Register>; 103 using VRegPHIUse = DenseMap<BBVRegPair, unsigned>; 104 105 // Count the number of non-undef PHI uses of each register in each BB. 106 VRegPHIUse VRegPHIUseCount; 107 108 // Defs of PHI sources which are implicit_def. 109 SmallPtrSet<MachineInstr *, 4> ImpDefs; 110 111 // Map reusable lowered PHI node -> incoming join register. 112 using LoweredPHIMap = 113 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>; 114 LoweredPHIMap LoweredPHIs; 115 116 MachineFunctionPass *P = nullptr; 117 MachineFunctionAnalysisManager *MFAM = nullptr; 118 119 public: 120 PHIEliminationImpl(MachineFunctionPass *P) : P(P) { 121 auto *LVWrapper = P->getAnalysisIfAvailable<LiveVariablesWrapperPass>(); 122 auto *LISWrapper = P->getAnalysisIfAvailable<LiveIntervalsWrapperPass>(); 123 auto *MLIWrapper = P->getAnalysisIfAvailable<MachineLoopInfoWrapperPass>(); 124 auto *MDTWrapper = 125 P->getAnalysisIfAvailable<MachineDominatorTreeWrapperPass>(); 126 LV = LVWrapper ? &LVWrapper->getLV() : nullptr; 127 LIS = LISWrapper ? &LISWrapper->getLIS() : nullptr; 128 MLI = MLIWrapper ? &MLIWrapper->getLI() : nullptr; 129 MDT = MDTWrapper ? &MDTWrapper->getDomTree() : nullptr; 130 } 131 132 PHIEliminationImpl(MachineFunction &MF, MachineFunctionAnalysisManager &AM) 133 : LV(AM.getCachedResult<LiveVariablesAnalysis>(MF)), 134 LIS(AM.getCachedResult<LiveIntervalsAnalysis>(MF)), 135 MLI(AM.getCachedResult<MachineLoopAnalysis>(MF)), 136 MDT(AM.getCachedResult<MachineDominatorTreeAnalysis>(MF)), MFAM(&AM) {} 137 138 bool run(MachineFunction &MF); 139 }; 140 141 class PHIElimination : public MachineFunctionPass { 142 public: 143 static char ID; // Pass identification, replacement for typeid 144 145 PHIElimination() : MachineFunctionPass(ID) { 146 initializePHIEliminationPass(*PassRegistry::getPassRegistry()); 147 } 148 149 bool runOnMachineFunction(MachineFunction &MF) override { 150 PHIEliminationImpl Impl(this); 151 return Impl.run(MF); 152 } 153 154 MachineFunctionProperties getSetProperties() const override { 155 return MachineFunctionProperties().set( 156 MachineFunctionProperties::Property::NoPHIs); 157 } 158 159 void getAnalysisUsage(AnalysisUsage &AU) const override; 160 }; 161 162 } // end anonymous namespace 163 164 PreservedAnalyses 165 PHIEliminationPass::run(MachineFunction &MF, 166 MachineFunctionAnalysisManager &MFAM) { 167 PHIEliminationImpl Impl(MF, MFAM); 168 bool Changed = Impl.run(MF); 169 if (!Changed) 170 return PreservedAnalyses::all(); 171 auto PA = getMachineFunctionPassPreservedAnalyses(); 172 PA.preserve<LiveIntervalsAnalysis>(); 173 PA.preserve<LiveVariablesAnalysis>(); 174 PA.preserve<SlotIndexesAnalysis>(); 175 PA.preserve<MachineDominatorTreeAnalysis>(); 176 PA.preserve<MachineLoopAnalysis>(); 177 return PA; 178 } 179 180 STATISTIC(NumLowered, "Number of phis lowered"); 181 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split"); 182 STATISTIC(NumReused, "Number of reused lowered phis"); 183 184 char PHIElimination::ID = 0; 185 186 char &llvm::PHIEliminationID = PHIElimination::ID; 187 188 INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE, 189 "Eliminate PHI nodes for register allocation", false, 190 false) 191 INITIALIZE_PASS_DEPENDENCY(LiveVariablesWrapperPass) 192 INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE, 193 "Eliminate PHI nodes for register allocation", false, false) 194 195 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { 196 AU.addUsedIfAvailable<LiveVariablesWrapperPass>(); 197 AU.addPreserved<LiveVariablesWrapperPass>(); 198 AU.addPreserved<SlotIndexesWrapperPass>(); 199 AU.addPreserved<LiveIntervalsWrapperPass>(); 200 AU.addPreserved<MachineDominatorTreeWrapperPass>(); 201 AU.addPreserved<MachineLoopInfoWrapperPass>(); 202 MachineFunctionPass::getAnalysisUsage(AU); 203 } 204 205 bool PHIEliminationImpl::run(MachineFunction &MF) { 206 MRI = &MF.getRegInfo(); 207 208 MachineDominatorTree *MDT = nullptr; 209 if (P) { 210 auto *MDTWrapper = 211 P->getAnalysisIfAvailable<MachineDominatorTreeWrapperPass>(); 212 MDT = MDTWrapper ? &MDTWrapper->getDomTree() : nullptr; 213 } else { 214 MDT = MFAM->getCachedResult<MachineDominatorTreeAnalysis>(MF); 215 } 216 MachineDomTreeUpdater MDTU(MDT, MachineDomTreeUpdater::UpdateStrategy::Lazy); 217 218 bool Changed = false; 219 220 // Split critical edges to help the coalescer. 221 if (!DisableEdgeSplitting && (LV || LIS)) { 222 // A set of live-in regs for each MBB which is used to update LV 223 // efficiently also with large functions. 224 std::vector<SparseBitVector<>> LiveInSets; 225 if (LV) { 226 LiveInSets.resize(MF.size()); 227 for (unsigned Index = 0, e = MRI->getNumVirtRegs(); Index != e; ++Index) { 228 // Set the bit for this register for each MBB where it is 229 // live-through or live-in (killed). 230 Register VirtReg = Register::index2VirtReg(Index); 231 MachineInstr *DefMI = MRI->getVRegDef(VirtReg); 232 if (!DefMI) 233 continue; 234 LiveVariables::VarInfo &VI = LV->getVarInfo(VirtReg); 235 SparseBitVector<>::iterator AliveBlockItr = VI.AliveBlocks.begin(); 236 SparseBitVector<>::iterator EndItr = VI.AliveBlocks.end(); 237 while (AliveBlockItr != EndItr) { 238 unsigned BlockNum = *(AliveBlockItr++); 239 LiveInSets[BlockNum].set(Index); 240 } 241 // The register is live into an MBB in which it is killed but not 242 // defined. See comment for VarInfo in LiveVariables.h. 243 MachineBasicBlock *DefMBB = DefMI->getParent(); 244 if (VI.Kills.size() > 1 || 245 (!VI.Kills.empty() && VI.Kills.front()->getParent() != DefMBB)) 246 for (auto *MI : VI.Kills) 247 LiveInSets[MI->getParent()->getNumber()].set(Index); 248 } 249 } 250 251 for (auto &MBB : MF) 252 Changed |= 253 SplitPHIEdges(MF, MBB, MLI, (LV ? &LiveInSets : nullptr), MDTU); 254 } 255 256 // This pass takes the function out of SSA form. 257 MRI->leaveSSA(); 258 259 // Populate VRegPHIUseCount 260 if (LV || LIS) 261 analyzePHINodes(MF); 262 263 // Eliminate PHI instructions by inserting copies into predecessor blocks. 264 for (auto &MBB : MF) 265 Changed |= EliminatePHINodes(MF, MBB); 266 267 // Remove dead IMPLICIT_DEF instructions. 268 for (MachineInstr *DefMI : ImpDefs) { 269 Register DefReg = DefMI->getOperand(0).getReg(); 270 if (MRI->use_nodbg_empty(DefReg)) { 271 if (LIS) 272 LIS->RemoveMachineInstrFromMaps(*DefMI); 273 DefMI->eraseFromParent(); 274 } 275 } 276 277 // Clean up the lowered PHI instructions. 278 for (auto &I : LoweredPHIs) { 279 if (LIS) 280 LIS->RemoveMachineInstrFromMaps(*I.first); 281 MF.deleteMachineInstr(I.first); 282 } 283 284 LoweredPHIs.clear(); 285 ImpDefs.clear(); 286 VRegPHIUseCount.clear(); 287 288 MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs); 289 290 return Changed; 291 } 292 293 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in 294 /// predecessor basic blocks. 295 bool PHIEliminationImpl::EliminatePHINodes(MachineFunction &MF, 296 MachineBasicBlock &MBB) { 297 if (MBB.empty() || !MBB.front().isPHI()) 298 return false; // Quick exit for basic blocks without PHIs. 299 300 // Get an iterator to the last PHI node. 301 MachineBasicBlock::iterator LastPHIIt = 302 std::prev(MBB.SkipPHIsAndLabels(MBB.begin())); 303 304 // If all incoming edges are critical, we try to deduplicate identical PHIs so 305 // that we generate fewer copies. If at any edge is non-critical, we either 306 // have less than two predecessors (=> no PHIs) or a predecessor has only us 307 // as a successor (=> identical PHI node can't occur in different block). 308 bool AllEdgesCritical = MBB.pred_size() >= 2; 309 for (MachineBasicBlock *Pred : MBB.predecessors()) { 310 if (Pred->succ_size() < 2) { 311 AllEdgesCritical = false; 312 break; 313 } 314 } 315 316 while (MBB.front().isPHI()) 317 LowerPHINode(MBB, LastPHIIt, AllEdgesCritical); 318 319 return true; 320 } 321 322 /// Return true if all defs of VirtReg are implicit-defs. 323 /// This includes registers with no defs. 324 static bool isImplicitlyDefined(unsigned VirtReg, 325 const MachineRegisterInfo &MRI) { 326 for (MachineInstr &DI : MRI.def_instructions(VirtReg)) 327 if (!DI.isImplicitDef()) 328 return false; 329 return true; 330 } 331 332 /// Return true if all sources of the phi node are implicit_def's, or undef's. 333 static bool allPhiOperandsUndefined(const MachineInstr &MPhi, 334 const MachineRegisterInfo &MRI) { 335 for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) { 336 const MachineOperand &MO = MPhi.getOperand(I); 337 if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef()) 338 return false; 339 } 340 return true; 341 } 342 /// LowerPHINode - Lower the PHI node at the top of the specified block. 343 void PHIEliminationImpl::LowerPHINode(MachineBasicBlock &MBB, 344 MachineBasicBlock::iterator LastPHIIt, 345 bool AllEdgesCritical) { 346 ++NumLowered; 347 348 MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt); 349 350 // Unlink the PHI node from the basic block, but don't delete the PHI yet. 351 MachineInstr *MPhi = MBB.remove(&*MBB.begin()); 352 353 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; 354 Register DestReg = MPhi->getOperand(0).getReg(); 355 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs"); 356 bool isDead = MPhi->getOperand(0).isDead(); 357 358 // Create a new register for the incoming PHI arguments. 359 MachineFunction &MF = *MBB.getParent(); 360 unsigned IncomingReg = 0; 361 bool EliminateNow = true; // delay elimination of nodes in LoweredPHIs 362 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI? 363 364 // Insert a register to register copy at the top of the current block (but 365 // after any remaining phi nodes) which copies the new incoming register 366 // into the phi node destination. 367 MachineInstr *PHICopy = nullptr; 368 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 369 if (allPhiOperandsUndefined(*MPhi, *MRI)) 370 // If all sources of a PHI node are implicit_def or undef uses, just emit an 371 // implicit_def instead of a copy. 372 PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 373 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); 374 else { 375 // Can we reuse an earlier PHI node? This only happens for critical edges, 376 // typically those created by tail duplication. Typically, an identical PHI 377 // node can't occur, so avoid hashing/storing such PHIs, which is somewhat 378 // expensive. 379 unsigned *Entry = nullptr; 380 if (AllEdgesCritical) 381 Entry = &LoweredPHIs[MPhi]; 382 if (Entry && *Entry) { 383 // An identical PHI node was already lowered. Reuse the incoming register. 384 IncomingReg = *Entry; 385 reusedIncoming = true; 386 ++NumReused; 387 LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for " 388 << *MPhi); 389 } else { 390 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); 391 IncomingReg = MF.getRegInfo().createVirtualRegister(RC); 392 if (Entry) { 393 EliminateNow = false; 394 *Entry = IncomingReg; 395 } 396 } 397 398 // Give the target possiblity to handle special cases fallthrough otherwise 399 PHICopy = TII->createPHIDestinationCopy( 400 MBB, AfterPHIsIt, MPhi->getDebugLoc(), IncomingReg, DestReg); 401 } 402 403 if (MPhi->peekDebugInstrNum()) { 404 // If referred to by debug-info, store where this PHI was. 405 MachineFunction *MF = MBB.getParent(); 406 unsigned ID = MPhi->peekDebugInstrNum(); 407 auto P = MachineFunction::DebugPHIRegallocPos(&MBB, IncomingReg, 0); 408 auto Res = MF->DebugPHIPositions.insert({ID, P}); 409 assert(Res.second); 410 (void)Res; 411 } 412 413 // Update live variable information if there is any. 414 if (LV) { 415 if (IncomingReg) { 416 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg); 417 418 MachineInstr *OldKill = nullptr; 419 bool IsPHICopyAfterOldKill = false; 420 421 if (reusedIncoming && (OldKill = VI.findKill(&MBB))) { 422 // Calculate whether the PHICopy is after the OldKill. 423 // In general, the PHICopy is inserted as the first non-phi instruction 424 // by default, so it's before the OldKill. But some Target hooks for 425 // createPHIDestinationCopy() may modify the default insert position of 426 // PHICopy. 427 for (auto I = MBB.SkipPHIsAndLabels(MBB.begin()), E = MBB.end(); I != E; 428 ++I) { 429 if (I == PHICopy) 430 break; 431 432 if (I == OldKill) { 433 IsPHICopyAfterOldKill = true; 434 break; 435 } 436 } 437 } 438 439 // When we are reusing the incoming register and it has been marked killed 440 // by OldKill, if the PHICopy is after the OldKill, we should remove the 441 // killed flag from OldKill. 442 if (IsPHICopyAfterOldKill) { 443 LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill); 444 LV->removeVirtualRegisterKilled(IncomingReg, *OldKill); 445 LLVM_DEBUG(MBB.dump()); 446 } 447 448 // Add information to LiveVariables to know that the first used incoming 449 // value or the resued incoming value whose PHICopy is after the OldKIll 450 // is killed. Note that because the value is defined in several places 451 // (once each for each incoming block), the "def" block and instruction 452 // fields for the VarInfo is not filled in. 453 if (!OldKill || IsPHICopyAfterOldKill) 454 LV->addVirtualRegisterKilled(IncomingReg, *PHICopy); 455 } 456 457 // Since we are going to be deleting the PHI node, if it is the last use of 458 // any registers, or if the value itself is dead, we need to move this 459 // information over to the new copy we just inserted. 460 LV->removeVirtualRegistersKilled(*MPhi); 461 462 // If the result is dead, update LV. 463 if (isDead) { 464 LV->addVirtualRegisterDead(DestReg, *PHICopy); 465 LV->removeVirtualRegisterDead(DestReg, *MPhi); 466 } 467 } 468 469 // Update LiveIntervals for the new copy or implicit def. 470 if (LIS) { 471 SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy); 472 473 SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB); 474 if (IncomingReg) { 475 // Add the region from the beginning of MBB to the copy instruction to 476 // IncomingReg's live interval. 477 LiveInterval &IncomingLI = LIS->getOrCreateEmptyInterval(IncomingReg); 478 VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex); 479 if (!IncomingVNI) 480 IncomingVNI = 481 IncomingLI.getNextValue(MBBStartIndex, LIS->getVNInfoAllocator()); 482 IncomingLI.addSegment(LiveInterval::Segment( 483 MBBStartIndex, DestCopyIndex.getRegSlot(), IncomingVNI)); 484 } 485 486 LiveInterval &DestLI = LIS->getInterval(DestReg); 487 assert(!DestLI.empty() && "PHIs should have non-empty LiveIntervals."); 488 489 SlotIndex NewStart = DestCopyIndex.getRegSlot(); 490 491 SmallVector<LiveRange *> ToUpdate({&DestLI}); 492 for (auto &SR : DestLI.subranges()) 493 ToUpdate.push_back(&SR); 494 495 for (auto LR : ToUpdate) { 496 auto DestSegment = LR->find(MBBStartIndex); 497 assert(DestSegment != LR->end() && 498 "PHI destination must be live in block"); 499 500 if (LR->endIndex().isDead()) { 501 // A dead PHI's live range begins and ends at the start of the MBB, but 502 // the lowered copy, which will still be dead, needs to begin and end at 503 // the copy instruction. 504 VNInfo *OrigDestVNI = LR->getVNInfoAt(DestSegment->start); 505 assert(OrigDestVNI && "PHI destination should be live at block entry."); 506 LR->removeSegment(DestSegment->start, DestSegment->start.getDeadSlot()); 507 LR->createDeadDef(NewStart, LIS->getVNInfoAllocator()); 508 LR->removeValNo(OrigDestVNI); 509 continue; 510 } 511 512 // Destination copies are not inserted in the same order as the PHI nodes 513 // they replace. Hence the start of the live range may need to be adjusted 514 // to match the actual slot index of the copy. 515 if (DestSegment->start > NewStart) { 516 VNInfo *VNI = LR->getVNInfoAt(DestSegment->start); 517 assert(VNI && "value should be defined for known segment"); 518 LR->addSegment( 519 LiveInterval::Segment(NewStart, DestSegment->start, VNI)); 520 } else if (DestSegment->start < NewStart) { 521 assert(DestSegment->start >= MBBStartIndex); 522 assert(DestSegment->end >= DestCopyIndex.getRegSlot()); 523 LR->removeSegment(DestSegment->start, NewStart); 524 } 525 VNInfo *DestVNI = LR->getVNInfoAt(NewStart); 526 assert(DestVNI && "PHI destination should be live at its definition."); 527 DestVNI->def = NewStart; 528 } 529 } 530 531 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. 532 if (LV || LIS) { 533 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) { 534 if (!MPhi->getOperand(i).isUndef()) { 535 --VRegPHIUseCount[BBVRegPair( 536 MPhi->getOperand(i + 1).getMBB()->getNumber(), 537 MPhi->getOperand(i).getReg())]; 538 } 539 } 540 } 541 542 // Now loop over all of the incoming arguments, changing them to copy into the 543 // IncomingReg register in the corresponding predecessor basic block. 544 SmallPtrSet<MachineBasicBlock *, 8> MBBsInsertedInto; 545 for (int i = NumSrcs - 1; i >= 0; --i) { 546 Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg(); 547 unsigned SrcSubReg = MPhi->getOperand(i * 2 + 1).getSubReg(); 548 bool SrcUndef = MPhi->getOperand(i * 2 + 1).isUndef() || 549 isImplicitlyDefined(SrcReg, *MRI); 550 assert(SrcReg.isVirtual() && 551 "Machine PHI Operands must all be virtual registers!"); 552 553 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source 554 // path the PHI. 555 MachineBasicBlock &opBlock = *MPhi->getOperand(i * 2 + 2).getMBB(); 556 557 // Check to make sure we haven't already emitted the copy for this block. 558 // This can happen because PHI nodes may have multiple entries for the same 559 // basic block. 560 if (!MBBsInsertedInto.insert(&opBlock).second) 561 continue; // If the copy has already been emitted, we're done. 562 563 MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg); 564 if (SrcRegDef && TII->isUnspillableTerminator(SrcRegDef)) { 565 assert(SrcRegDef->getOperand(0).isReg() && 566 SrcRegDef->getOperand(0).isDef() && 567 "Expected operand 0 to be a reg def!"); 568 // Now that the PHI's use has been removed (as the instruction was 569 // removed) there should be no other uses of the SrcReg. 570 assert(MRI->use_empty(SrcReg) && 571 "Expected a single use from UnspillableTerminator"); 572 SrcRegDef->getOperand(0).setReg(IncomingReg); 573 574 // Update LiveVariables. 575 if (LV) { 576 LiveVariables::VarInfo &SrcVI = LV->getVarInfo(SrcReg); 577 LiveVariables::VarInfo &IncomingVI = LV->getVarInfo(IncomingReg); 578 IncomingVI.AliveBlocks = std::move(SrcVI.AliveBlocks); 579 SrcVI.AliveBlocks.clear(); 580 } 581 582 continue; 583 } 584 585 // Find a safe location to insert the copy, this may be the first terminator 586 // in the block (or end()). 587 MachineBasicBlock::iterator InsertPos = 588 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg); 589 590 // Insert the copy. 591 MachineInstr *NewSrcInstr = nullptr; 592 if (!reusedIncoming && IncomingReg) { 593 if (SrcUndef) { 594 // The source register is undefined, so there is no need for a real 595 // COPY, but we still need to ensure joint dominance by defs. 596 // Insert an IMPLICIT_DEF instruction. 597 NewSrcInstr = 598 BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 599 TII->get(TargetOpcode::IMPLICIT_DEF), IncomingReg); 600 601 // Clean up the old implicit-def, if there even was one. 602 if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg)) 603 if (DefMI->isImplicitDef()) 604 ImpDefs.insert(DefMI); 605 } else { 606 // Delete the debug location, since the copy is inserted into a 607 // different basic block. 608 NewSrcInstr = TII->createPHISourceCopy(opBlock, InsertPos, nullptr, 609 SrcReg, SrcSubReg, IncomingReg); 610 } 611 } 612 613 // We only need to update the LiveVariables kill of SrcReg if this was the 614 // last PHI use of SrcReg to be lowered on this CFG edge and it is not live 615 // out of the predecessor. We can also ignore undef sources. 616 if (LV && !SrcUndef && 617 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] && 618 !LV->isLiveOut(SrcReg, opBlock)) { 619 // We want to be able to insert a kill of the register if this PHI (aka, 620 // the copy we just inserted) is the last use of the source value. Live 621 // variable analysis conservatively handles this by saying that the value 622 // is live until the end of the block the PHI entry lives in. If the value 623 // really is dead at the PHI copy, there will be no successor blocks which 624 // have the value live-in. 625 626 // Okay, if we now know that the value is not live out of the block, we 627 // can add a kill marker in this block saying that it kills the incoming 628 // value! 629 630 // In our final twist, we have to decide which instruction kills the 631 // register. In most cases this is the copy, however, terminator 632 // instructions at the end of the block may also use the value. In this 633 // case, we should mark the last such terminator as being the killing 634 // block, not the copy. 635 MachineBasicBlock::iterator KillInst = opBlock.end(); 636 for (MachineBasicBlock::iterator Term = InsertPos; Term != opBlock.end(); 637 ++Term) { 638 if (Term->readsRegister(SrcReg, /*TRI=*/nullptr)) 639 KillInst = Term; 640 } 641 642 if (KillInst == opBlock.end()) { 643 // No terminator uses the register. 644 645 if (reusedIncoming || !IncomingReg) { 646 // We may have to rewind a bit if we didn't insert a copy this time. 647 KillInst = InsertPos; 648 while (KillInst != opBlock.begin()) { 649 --KillInst; 650 if (KillInst->isDebugInstr()) 651 continue; 652 if (KillInst->readsRegister(SrcReg, /*TRI=*/nullptr)) 653 break; 654 } 655 } else { 656 // We just inserted this copy. 657 KillInst = NewSrcInstr; 658 } 659 } 660 assert(KillInst->readsRegister(SrcReg, /*TRI=*/nullptr) && 661 "Cannot find kill instruction"); 662 663 // Finally, mark it killed. 664 LV->addVirtualRegisterKilled(SrcReg, *KillInst); 665 666 // This vreg no longer lives all of the way through opBlock. 667 unsigned opBlockNum = opBlock.getNumber(); 668 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum); 669 } 670 671 if (LIS) { 672 if (NewSrcInstr) { 673 LIS->InsertMachineInstrInMaps(*NewSrcInstr); 674 LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr); 675 } 676 677 if (!SrcUndef && 678 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) { 679 LiveInterval &SrcLI = LIS->getInterval(SrcReg); 680 681 bool isLiveOut = false; 682 for (MachineBasicBlock *Succ : opBlock.successors()) { 683 SlotIndex startIdx = LIS->getMBBStartIdx(Succ); 684 VNInfo *VNI = SrcLI.getVNInfoAt(startIdx); 685 686 // Definitions by other PHIs are not truly live-in for our purposes. 687 if (VNI && VNI->def != startIdx) { 688 isLiveOut = true; 689 break; 690 } 691 } 692 693 if (!isLiveOut) { 694 MachineBasicBlock::iterator KillInst = opBlock.end(); 695 for (MachineBasicBlock::iterator Term = InsertPos; 696 Term != opBlock.end(); ++Term) { 697 if (Term->readsRegister(SrcReg, /*TRI=*/nullptr)) 698 KillInst = Term; 699 } 700 701 if (KillInst == opBlock.end()) { 702 // No terminator uses the register. 703 704 if (reusedIncoming || !IncomingReg) { 705 // We may have to rewind a bit if we didn't just insert a copy. 706 KillInst = InsertPos; 707 while (KillInst != opBlock.begin()) { 708 --KillInst; 709 if (KillInst->isDebugInstr()) 710 continue; 711 if (KillInst->readsRegister(SrcReg, /*TRI=*/nullptr)) 712 break; 713 } 714 } else { 715 // We just inserted this copy. 716 KillInst = std::prev(InsertPos); 717 } 718 } 719 assert(KillInst->readsRegister(SrcReg, /*TRI=*/nullptr) && 720 "Cannot find kill instruction"); 721 722 SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst); 723 SrcLI.removeSegment(LastUseIndex.getRegSlot(), 724 LIS->getMBBEndIdx(&opBlock)); 725 for (auto &SR : SrcLI.subranges()) { 726 SR.removeSegment(LastUseIndex.getRegSlot(), 727 LIS->getMBBEndIdx(&opBlock)); 728 } 729 } 730 } 731 } 732 } 733 734 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map. 735 if (EliminateNow) { 736 if (LIS) 737 LIS->RemoveMachineInstrFromMaps(*MPhi); 738 MF.deleteMachineInstr(MPhi); 739 } 740 } 741 742 /// analyzePHINodes - Gather information about the PHI nodes in here. In 743 /// particular, we want to map the number of uses of a virtual register which is 744 /// used in a PHI node. We map that to the BB the vreg is coming from. This is 745 /// used later to determine when the vreg is killed in the BB. 746 void PHIEliminationImpl::analyzePHINodes(const MachineFunction &MF) { 747 for (const auto &MBB : MF) { 748 for (const auto &BBI : MBB) { 749 if (!BBI.isPHI()) 750 break; 751 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) { 752 if (!BBI.getOperand(i).isUndef()) { 753 ++VRegPHIUseCount[BBVRegPair( 754 BBI.getOperand(i + 1).getMBB()->getNumber(), 755 BBI.getOperand(i).getReg())]; 756 } 757 } 758 } 759 } 760 } 761 762 bool PHIEliminationImpl::SplitPHIEdges( 763 MachineFunction &MF, MachineBasicBlock &MBB, MachineLoopInfo *MLI, 764 std::vector<SparseBitVector<>> *LiveInSets, MachineDomTreeUpdater &MDTU) { 765 if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad()) 766 return false; // Quick exit for basic blocks without PHIs. 767 768 const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr; 769 bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader(); 770 771 bool Changed = false; 772 for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end(); 773 BBI != BBE && BBI->isPHI(); ++BBI) { 774 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { 775 Register Reg = BBI->getOperand(i).getReg(); 776 MachineBasicBlock *PreMBB = BBI->getOperand(i + 1).getMBB(); 777 // Is there a critical edge from PreMBB to MBB? 778 if (PreMBB->succ_size() == 1) 779 continue; 780 781 // Avoid splitting backedges of loops. It would introduce small 782 // out-of-line blocks into the loop which is very bad for code placement. 783 if (PreMBB == &MBB && !SplitAllCriticalEdges) 784 continue; 785 const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr; 786 if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges) 787 continue; 788 789 // LV doesn't consider a phi use live-out, so isLiveOut only returns true 790 // when the source register is live-out for some other reason than a phi 791 // use. That means the copy we will insert in PreMBB won't be a kill, and 792 // there is a risk it may not be coalesced away. 793 // 794 // If the copy would be a kill, there is no need to split the edge. 795 bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB); 796 if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit) 797 continue; 798 if (ShouldSplit) { 799 LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge " 800 << printMBBReference(*PreMBB) << " -> " 801 << printMBBReference(MBB) << ": " << *BBI); 802 } 803 804 // If Reg is not live-in to MBB, it means it must be live-in to some 805 // other PreMBB successor, and we can avoid the interference by splitting 806 // the edge. 807 // 808 // If Reg *is* live-in to MBB, the interference is inevitable and a copy 809 // is likely to be left after coalescing. If we are looking at a loop 810 // exiting edge, split it so we won't insert code in the loop, otherwise 811 // don't bother. 812 ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB); 813 814 // Check for a loop exiting edge. 815 if (!ShouldSplit && CurLoop != PreLoop) { 816 LLVM_DEBUG({ 817 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n"; 818 if (PreLoop) 819 dbgs() << "PreLoop: " << *PreLoop; 820 if (CurLoop) 821 dbgs() << "CurLoop: " << *CurLoop; 822 }); 823 // This edge could be entering a loop, exiting a loop, or it could be 824 // both: Jumping directly form one loop to the header of a sibling 825 // loop. 826 // Split unless this edge is entering CurLoop from an outer loop. 827 ShouldSplit = PreLoop && !PreLoop->contains(CurLoop); 828 } 829 if (!ShouldSplit && !SplitAllCriticalEdges) 830 continue; 831 if (!(P ? PreMBB->SplitCriticalEdge(&MBB, *P, LiveInSets, &MDTU) 832 : PreMBB->SplitCriticalEdge(&MBB, *MFAM, LiveInSets, &MDTU))) { 833 LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n"); 834 continue; 835 } 836 Changed = true; 837 ++NumCriticalEdgesSplit; 838 } 839 } 840 return Changed; 841 } 842 843 bool PHIEliminationImpl::isLiveIn(Register Reg, const MachineBasicBlock *MBB) { 844 assert((LV || LIS) && 845 "isLiveIn() requires either LiveVariables or LiveIntervals"); 846 if (LIS) 847 return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB); 848 else 849 return LV->isLiveIn(Reg, *MBB); 850 } 851 852 bool PHIEliminationImpl::isLiveOutPastPHIs(Register Reg, 853 const MachineBasicBlock *MBB) { 854 assert((LV || LIS) && 855 "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals"); 856 // LiveVariables considers uses in PHIs to be in the predecessor basic block, 857 // so that a register used only in a PHI is not live out of the block. In 858 // contrast, LiveIntervals considers uses in PHIs to be on the edge rather 859 // than in the predecessor basic block, so that a register used only in a PHI 860 // is live out of the block. 861 if (LIS) { 862 const LiveInterval &LI = LIS->getInterval(Reg); 863 for (const MachineBasicBlock *SI : MBB->successors()) 864 if (LI.liveAt(LIS->getMBBStartIdx(SI))) 865 return true; 866 return false; 867 } else { 868 return LV->isLiveOut(Reg, *MBB); 869 } 870 } 871