1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass eliminates machine instruction PHI nodes by inserting copy 10 // instructions. This destroys SSA information, but is the desired input for 11 // some register allocators. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "PHIEliminationUtils.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/CodeGen/LiveInterval.h" 21 #include "llvm/CodeGen/LiveIntervals.h" 22 #include "llvm/CodeGen/LiveVariables.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineDominators.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineLoopInfo.h" 30 #include "llvm/CodeGen/MachineOperand.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/SlotIndexes.h" 33 #include "llvm/CodeGen/TargetInstrInfo.h" 34 #include "llvm/CodeGen/TargetOpcodes.h" 35 #include "llvm/CodeGen/TargetRegisterInfo.h" 36 #include "llvm/CodeGen/TargetSubtargetInfo.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include <cassert> 42 #include <iterator> 43 #include <utility> 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "phi-node-elimination" 48 49 static cl::opt<bool> 50 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false), 51 cl::Hidden, 52 cl::desc("Disable critical edge splitting " 53 "during PHI elimination")); 54 55 static cl::opt<bool> 56 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false), 57 cl::Hidden, 58 cl::desc("Split all critical edges during " 59 "PHI elimination")); 60 61 static cl::opt<bool> NoPhiElimLiveOutEarlyExit( 62 "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden, 63 cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true.")); 64 65 namespace { 66 67 class PHIElimination : public MachineFunctionPass { 68 MachineRegisterInfo *MRI = nullptr; // Machine register information 69 LiveVariables *LV = nullptr; 70 LiveIntervals *LIS = nullptr; 71 72 public: 73 static char ID; // Pass identification, replacement for typeid 74 75 PHIElimination() : MachineFunctionPass(ID) { 76 initializePHIEliminationPass(*PassRegistry::getPassRegistry()); 77 } 78 79 bool runOnMachineFunction(MachineFunction &MF) override; 80 void getAnalysisUsage(AnalysisUsage &AU) const override; 81 82 private: 83 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions 84 /// in predecessor basic blocks. 85 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); 86 87 void LowerPHINode(MachineBasicBlock &MBB, 88 MachineBasicBlock::iterator LastPHIIt, 89 bool AllEdgesCritical); 90 91 /// analyzePHINodes - Gather information about the PHI nodes in 92 /// here. In particular, we want to map the number of uses of a virtual 93 /// register which is used in a PHI node. We map that to the BB the 94 /// vreg is coming from. This is used later to determine when the vreg 95 /// is killed in the BB. 96 void analyzePHINodes(const MachineFunction &MF); 97 98 /// Split critical edges where necessary for good coalescer performance. 99 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, 100 MachineLoopInfo *MLI, 101 std::vector<SparseBitVector<>> *LiveInSets); 102 103 // These functions are temporary abstractions around LiveVariables and 104 // LiveIntervals, so they can go away when LiveVariables does. 105 bool isLiveIn(Register Reg, const MachineBasicBlock *MBB); 106 bool isLiveOutPastPHIs(Register Reg, const MachineBasicBlock *MBB); 107 108 using BBVRegPair = std::pair<unsigned, Register>; 109 using VRegPHIUse = DenseMap<BBVRegPair, unsigned>; 110 111 // Count the number of non-undef PHI uses of each register in each BB. 112 VRegPHIUse VRegPHIUseCount; 113 114 // Defs of PHI sources which are implicit_def. 115 SmallPtrSet<MachineInstr *, 4> ImpDefs; 116 117 // Map reusable lowered PHI node -> incoming join register. 118 using LoweredPHIMap = 119 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>; 120 LoweredPHIMap LoweredPHIs; 121 }; 122 123 } // end anonymous namespace 124 125 STATISTIC(NumLowered, "Number of phis lowered"); 126 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split"); 127 STATISTIC(NumReused, "Number of reused lowered phis"); 128 129 char PHIElimination::ID = 0; 130 131 char &llvm::PHIEliminationID = PHIElimination::ID; 132 133 INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE, 134 "Eliminate PHI nodes for register allocation", false, 135 false) 136 INITIALIZE_PASS_DEPENDENCY(LiveVariablesWrapperPass) 137 INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE, 138 "Eliminate PHI nodes for register allocation", false, false) 139 140 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { 141 AU.addUsedIfAvailable<LiveVariablesWrapperPass>(); 142 AU.addPreserved<LiveVariablesWrapperPass>(); 143 AU.addPreserved<SlotIndexesWrapperPass>(); 144 AU.addPreserved<LiveIntervalsWrapperPass>(); 145 AU.addPreserved<MachineDominatorTreeWrapperPass>(); 146 AU.addPreserved<MachineLoopInfoWrapperPass>(); 147 MachineFunctionPass::getAnalysisUsage(AU); 148 } 149 150 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) { 151 MRI = &MF.getRegInfo(); 152 auto *LVWrapper = getAnalysisIfAvailable<LiveVariablesWrapperPass>(); 153 LV = LVWrapper ? &LVWrapper->getLV() : nullptr; 154 auto *LISWrapper = getAnalysisIfAvailable<LiveIntervalsWrapperPass>(); 155 LIS = LISWrapper ? &LISWrapper->getLIS() : nullptr; 156 157 bool Changed = false; 158 159 // Split critical edges to help the coalescer. 160 if (!DisableEdgeSplitting && (LV || LIS)) { 161 // A set of live-in regs for each MBB which is used to update LV 162 // efficiently also with large functions. 163 std::vector<SparseBitVector<>> LiveInSets; 164 if (LV) { 165 LiveInSets.resize(MF.size()); 166 for (unsigned Index = 0, e = MRI->getNumVirtRegs(); Index != e; ++Index) { 167 // Set the bit for this register for each MBB where it is 168 // live-through or live-in (killed). 169 Register VirtReg = Register::index2VirtReg(Index); 170 MachineInstr *DefMI = MRI->getVRegDef(VirtReg); 171 if (!DefMI) 172 continue; 173 LiveVariables::VarInfo &VI = LV->getVarInfo(VirtReg); 174 SparseBitVector<>::iterator AliveBlockItr = VI.AliveBlocks.begin(); 175 SparseBitVector<>::iterator EndItr = VI.AliveBlocks.end(); 176 while (AliveBlockItr != EndItr) { 177 unsigned BlockNum = *(AliveBlockItr++); 178 LiveInSets[BlockNum].set(Index); 179 } 180 // The register is live into an MBB in which it is killed but not 181 // defined. See comment for VarInfo in LiveVariables.h. 182 MachineBasicBlock *DefMBB = DefMI->getParent(); 183 if (VI.Kills.size() > 1 || 184 (!VI.Kills.empty() && VI.Kills.front()->getParent() != DefMBB)) 185 for (auto *MI : VI.Kills) 186 LiveInSets[MI->getParent()->getNumber()].set(Index); 187 } 188 } 189 190 MachineLoopInfoWrapperPass *MLIWrapper = 191 getAnalysisIfAvailable<MachineLoopInfoWrapperPass>(); 192 MachineLoopInfo *MLI = MLIWrapper ? &MLIWrapper->getLI() : nullptr; 193 for (auto &MBB : MF) 194 Changed |= SplitPHIEdges(MF, MBB, MLI, (LV ? &LiveInSets : nullptr)); 195 } 196 197 // This pass takes the function out of SSA form. 198 MRI->leaveSSA(); 199 200 // Populate VRegPHIUseCount 201 if (LV || LIS) 202 analyzePHINodes(MF); 203 204 // Eliminate PHI instructions by inserting copies into predecessor blocks. 205 for (auto &MBB : MF) 206 Changed |= EliminatePHINodes(MF, MBB); 207 208 // Remove dead IMPLICIT_DEF instructions. 209 for (MachineInstr *DefMI : ImpDefs) { 210 Register DefReg = DefMI->getOperand(0).getReg(); 211 if (MRI->use_nodbg_empty(DefReg)) { 212 if (LIS) 213 LIS->RemoveMachineInstrFromMaps(*DefMI); 214 DefMI->eraseFromParent(); 215 } 216 } 217 218 // Clean up the lowered PHI instructions. 219 for (auto &I : LoweredPHIs) { 220 if (LIS) 221 LIS->RemoveMachineInstrFromMaps(*I.first); 222 MF.deleteMachineInstr(I.first); 223 } 224 225 // TODO: we should use the incremental DomTree updater here. 226 if (Changed) 227 if (auto *MDT = getAnalysisIfAvailable<MachineDominatorTreeWrapperPass>()) 228 MDT->getDomTree().getBase().recalculate(MF); 229 230 LoweredPHIs.clear(); 231 ImpDefs.clear(); 232 VRegPHIUseCount.clear(); 233 234 MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs); 235 236 return Changed; 237 } 238 239 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in 240 /// predecessor basic blocks. 241 bool PHIElimination::EliminatePHINodes(MachineFunction &MF, 242 MachineBasicBlock &MBB) { 243 if (MBB.empty() || !MBB.front().isPHI()) 244 return false; // Quick exit for basic blocks without PHIs. 245 246 // Get an iterator to the last PHI node. 247 MachineBasicBlock::iterator LastPHIIt = 248 std::prev(MBB.SkipPHIsAndLabels(MBB.begin())); 249 250 // If all incoming edges are critical, we try to deduplicate identical PHIs so 251 // that we generate fewer copies. If at any edge is non-critical, we either 252 // have less than two predecessors (=> no PHIs) or a predecessor has only us 253 // as a successor (=> identical PHI node can't occur in different block). 254 bool AllEdgesCritical = MBB.pred_size() >= 2; 255 for (MachineBasicBlock *Pred : MBB.predecessors()) { 256 if (Pred->succ_size() < 2) { 257 AllEdgesCritical = false; 258 break; 259 } 260 } 261 262 while (MBB.front().isPHI()) 263 LowerPHINode(MBB, LastPHIIt, AllEdgesCritical); 264 265 return true; 266 } 267 268 /// Return true if all defs of VirtReg are implicit-defs. 269 /// This includes registers with no defs. 270 static bool isImplicitlyDefined(unsigned VirtReg, 271 const MachineRegisterInfo &MRI) { 272 for (MachineInstr &DI : MRI.def_instructions(VirtReg)) 273 if (!DI.isImplicitDef()) 274 return false; 275 return true; 276 } 277 278 /// Return true if all sources of the phi node are implicit_def's, or undef's. 279 static bool allPhiOperandsUndefined(const MachineInstr &MPhi, 280 const MachineRegisterInfo &MRI) { 281 for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) { 282 const MachineOperand &MO = MPhi.getOperand(I); 283 if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef()) 284 return false; 285 } 286 return true; 287 } 288 /// LowerPHINode - Lower the PHI node at the top of the specified block. 289 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB, 290 MachineBasicBlock::iterator LastPHIIt, 291 bool AllEdgesCritical) { 292 ++NumLowered; 293 294 MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt); 295 296 // Unlink the PHI node from the basic block, but don't delete the PHI yet. 297 MachineInstr *MPhi = MBB.remove(&*MBB.begin()); 298 299 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; 300 Register DestReg = MPhi->getOperand(0).getReg(); 301 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs"); 302 bool isDead = MPhi->getOperand(0).isDead(); 303 304 // Create a new register for the incoming PHI arguments. 305 MachineFunction &MF = *MBB.getParent(); 306 unsigned IncomingReg = 0; 307 bool EliminateNow = true; // delay elimination of nodes in LoweredPHIs 308 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI? 309 310 // Insert a register to register copy at the top of the current block (but 311 // after any remaining phi nodes) which copies the new incoming register 312 // into the phi node destination. 313 MachineInstr *PHICopy = nullptr; 314 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 315 if (allPhiOperandsUndefined(*MPhi, *MRI)) 316 // If all sources of a PHI node are implicit_def or undef uses, just emit an 317 // implicit_def instead of a copy. 318 PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 319 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); 320 else { 321 // Can we reuse an earlier PHI node? This only happens for critical edges, 322 // typically those created by tail duplication. Typically, an identical PHI 323 // node can't occur, so avoid hashing/storing such PHIs, which is somewhat 324 // expensive. 325 unsigned *Entry = nullptr; 326 if (AllEdgesCritical) 327 Entry = &LoweredPHIs[MPhi]; 328 if (Entry && *Entry) { 329 // An identical PHI node was already lowered. Reuse the incoming register. 330 IncomingReg = *Entry; 331 reusedIncoming = true; 332 ++NumReused; 333 LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for " 334 << *MPhi); 335 } else { 336 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); 337 IncomingReg = MF.getRegInfo().createVirtualRegister(RC); 338 if (Entry) { 339 EliminateNow = false; 340 *Entry = IncomingReg; 341 } 342 } 343 344 // Give the target possiblity to handle special cases fallthrough otherwise 345 PHICopy = TII->createPHIDestinationCopy( 346 MBB, AfterPHIsIt, MPhi->getDebugLoc(), IncomingReg, DestReg); 347 } 348 349 if (MPhi->peekDebugInstrNum()) { 350 // If referred to by debug-info, store where this PHI was. 351 MachineFunction *MF = MBB.getParent(); 352 unsigned ID = MPhi->peekDebugInstrNum(); 353 auto P = MachineFunction::DebugPHIRegallocPos(&MBB, IncomingReg, 0); 354 auto Res = MF->DebugPHIPositions.insert({ID, P}); 355 assert(Res.second); 356 (void)Res; 357 } 358 359 // Update live variable information if there is any. 360 if (LV) { 361 if (IncomingReg) { 362 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg); 363 364 MachineInstr *OldKill = nullptr; 365 bool IsPHICopyAfterOldKill = false; 366 367 if (reusedIncoming && (OldKill = VI.findKill(&MBB))) { 368 // Calculate whether the PHICopy is after the OldKill. 369 // In general, the PHICopy is inserted as the first non-phi instruction 370 // by default, so it's before the OldKill. But some Target hooks for 371 // createPHIDestinationCopy() may modify the default insert position of 372 // PHICopy. 373 for (auto I = MBB.SkipPHIsAndLabels(MBB.begin()), E = MBB.end(); I != E; 374 ++I) { 375 if (I == PHICopy) 376 break; 377 378 if (I == OldKill) { 379 IsPHICopyAfterOldKill = true; 380 break; 381 } 382 } 383 } 384 385 // When we are reusing the incoming register and it has been marked killed 386 // by OldKill, if the PHICopy is after the OldKill, we should remove the 387 // killed flag from OldKill. 388 if (IsPHICopyAfterOldKill) { 389 LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill); 390 LV->removeVirtualRegisterKilled(IncomingReg, *OldKill); 391 LLVM_DEBUG(MBB.dump()); 392 } 393 394 // Add information to LiveVariables to know that the first used incoming 395 // value or the resued incoming value whose PHICopy is after the OldKIll 396 // is killed. Note that because the value is defined in several places 397 // (once each for each incoming block), the "def" block and instruction 398 // fields for the VarInfo is not filled in. 399 if (!OldKill || IsPHICopyAfterOldKill) 400 LV->addVirtualRegisterKilled(IncomingReg, *PHICopy); 401 } 402 403 // Since we are going to be deleting the PHI node, if it is the last use of 404 // any registers, or if the value itself is dead, we need to move this 405 // information over to the new copy we just inserted. 406 LV->removeVirtualRegistersKilled(*MPhi); 407 408 // If the result is dead, update LV. 409 if (isDead) { 410 LV->addVirtualRegisterDead(DestReg, *PHICopy); 411 LV->removeVirtualRegisterDead(DestReg, *MPhi); 412 } 413 } 414 415 // Update LiveIntervals for the new copy or implicit def. 416 if (LIS) { 417 SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy); 418 419 SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB); 420 if (IncomingReg) { 421 // Add the region from the beginning of MBB to the copy instruction to 422 // IncomingReg's live interval. 423 LiveInterval &IncomingLI = LIS->getOrCreateEmptyInterval(IncomingReg); 424 VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex); 425 if (!IncomingVNI) 426 IncomingVNI = 427 IncomingLI.getNextValue(MBBStartIndex, LIS->getVNInfoAllocator()); 428 IncomingLI.addSegment(LiveInterval::Segment( 429 MBBStartIndex, DestCopyIndex.getRegSlot(), IncomingVNI)); 430 } 431 432 LiveInterval &DestLI = LIS->getInterval(DestReg); 433 assert(!DestLI.empty() && "PHIs should have non-empty LiveIntervals."); 434 435 SlotIndex NewStart = DestCopyIndex.getRegSlot(); 436 437 SmallVector<LiveRange *> ToUpdate({&DestLI}); 438 for (auto &SR : DestLI.subranges()) 439 ToUpdate.push_back(&SR); 440 441 for (auto LR : ToUpdate) { 442 auto DestSegment = LR->find(MBBStartIndex); 443 assert(DestSegment != LR->end() && 444 "PHI destination must be live in block"); 445 446 if (LR->endIndex().isDead()) { 447 // A dead PHI's live range begins and ends at the start of the MBB, but 448 // the lowered copy, which will still be dead, needs to begin and end at 449 // the copy instruction. 450 VNInfo *OrigDestVNI = LR->getVNInfoAt(DestSegment->start); 451 assert(OrigDestVNI && "PHI destination should be live at block entry."); 452 LR->removeSegment(DestSegment->start, DestSegment->start.getDeadSlot()); 453 LR->createDeadDef(NewStart, LIS->getVNInfoAllocator()); 454 LR->removeValNo(OrigDestVNI); 455 continue; 456 } 457 458 // Destination copies are not inserted in the same order as the PHI nodes 459 // they replace. Hence the start of the live range may need to be adjusted 460 // to match the actual slot index of the copy. 461 if (DestSegment->start > NewStart) { 462 VNInfo *VNI = LR->getVNInfoAt(DestSegment->start); 463 assert(VNI && "value should be defined for known segment"); 464 LR->addSegment( 465 LiveInterval::Segment(NewStart, DestSegment->start, VNI)); 466 } else if (DestSegment->start < NewStart) { 467 assert(DestSegment->start >= MBBStartIndex); 468 assert(DestSegment->end >= DestCopyIndex.getRegSlot()); 469 LR->removeSegment(DestSegment->start, NewStart); 470 } 471 VNInfo *DestVNI = LR->getVNInfoAt(NewStart); 472 assert(DestVNI && "PHI destination should be live at its definition."); 473 DestVNI->def = NewStart; 474 } 475 } 476 477 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. 478 if (LV || LIS) { 479 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) { 480 if (!MPhi->getOperand(i).isUndef()) { 481 --VRegPHIUseCount[BBVRegPair( 482 MPhi->getOperand(i + 1).getMBB()->getNumber(), 483 MPhi->getOperand(i).getReg())]; 484 } 485 } 486 } 487 488 // Now loop over all of the incoming arguments, changing them to copy into the 489 // IncomingReg register in the corresponding predecessor basic block. 490 SmallPtrSet<MachineBasicBlock *, 8> MBBsInsertedInto; 491 for (int i = NumSrcs - 1; i >= 0; --i) { 492 Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg(); 493 unsigned SrcSubReg = MPhi->getOperand(i * 2 + 1).getSubReg(); 494 bool SrcUndef = MPhi->getOperand(i * 2 + 1).isUndef() || 495 isImplicitlyDefined(SrcReg, *MRI); 496 assert(SrcReg.isVirtual() && 497 "Machine PHI Operands must all be virtual registers!"); 498 499 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source 500 // path the PHI. 501 MachineBasicBlock &opBlock = *MPhi->getOperand(i * 2 + 2).getMBB(); 502 503 // Check to make sure we haven't already emitted the copy for this block. 504 // This can happen because PHI nodes may have multiple entries for the same 505 // basic block. 506 if (!MBBsInsertedInto.insert(&opBlock).second) 507 continue; // If the copy has already been emitted, we're done. 508 509 MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg); 510 if (SrcRegDef && TII->isUnspillableTerminator(SrcRegDef)) { 511 assert(SrcRegDef->getOperand(0).isReg() && 512 SrcRegDef->getOperand(0).isDef() && 513 "Expected operand 0 to be a reg def!"); 514 // Now that the PHI's use has been removed (as the instruction was 515 // removed) there should be no other uses of the SrcReg. 516 assert(MRI->use_empty(SrcReg) && 517 "Expected a single use from UnspillableTerminator"); 518 SrcRegDef->getOperand(0).setReg(IncomingReg); 519 520 // Update LiveVariables. 521 if (LV) { 522 LiveVariables::VarInfo &SrcVI = LV->getVarInfo(SrcReg); 523 LiveVariables::VarInfo &IncomingVI = LV->getVarInfo(IncomingReg); 524 IncomingVI.AliveBlocks = std::move(SrcVI.AliveBlocks); 525 SrcVI.AliveBlocks.clear(); 526 } 527 528 continue; 529 } 530 531 // Find a safe location to insert the copy, this may be the first terminator 532 // in the block (or end()). 533 MachineBasicBlock::iterator InsertPos = 534 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg); 535 536 // Insert the copy. 537 MachineInstr *NewSrcInstr = nullptr; 538 if (!reusedIncoming && IncomingReg) { 539 if (SrcUndef) { 540 // The source register is undefined, so there is no need for a real 541 // COPY, but we still need to ensure joint dominance by defs. 542 // Insert an IMPLICIT_DEF instruction. 543 NewSrcInstr = 544 BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 545 TII->get(TargetOpcode::IMPLICIT_DEF), IncomingReg); 546 547 // Clean up the old implicit-def, if there even was one. 548 if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg)) 549 if (DefMI->isImplicitDef()) 550 ImpDefs.insert(DefMI); 551 } else { 552 // Delete the debug location, since the copy is inserted into a 553 // different basic block. 554 NewSrcInstr = TII->createPHISourceCopy(opBlock, InsertPos, nullptr, 555 SrcReg, SrcSubReg, IncomingReg); 556 } 557 } 558 559 // We only need to update the LiveVariables kill of SrcReg if this was the 560 // last PHI use of SrcReg to be lowered on this CFG edge and it is not live 561 // out of the predecessor. We can also ignore undef sources. 562 if (LV && !SrcUndef && 563 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] && 564 !LV->isLiveOut(SrcReg, opBlock)) { 565 // We want to be able to insert a kill of the register if this PHI (aka, 566 // the copy we just inserted) is the last use of the source value. Live 567 // variable analysis conservatively handles this by saying that the value 568 // is live until the end of the block the PHI entry lives in. If the value 569 // really is dead at the PHI copy, there will be no successor blocks which 570 // have the value live-in. 571 572 // Okay, if we now know that the value is not live out of the block, we 573 // can add a kill marker in this block saying that it kills the incoming 574 // value! 575 576 // In our final twist, we have to decide which instruction kills the 577 // register. In most cases this is the copy, however, terminator 578 // instructions at the end of the block may also use the value. In this 579 // case, we should mark the last such terminator as being the killing 580 // block, not the copy. 581 MachineBasicBlock::iterator KillInst = opBlock.end(); 582 for (MachineBasicBlock::iterator Term = InsertPos; Term != opBlock.end(); 583 ++Term) { 584 if (Term->readsRegister(SrcReg, /*TRI=*/nullptr)) 585 KillInst = Term; 586 } 587 588 if (KillInst == opBlock.end()) { 589 // No terminator uses the register. 590 591 if (reusedIncoming || !IncomingReg) { 592 // We may have to rewind a bit if we didn't insert a copy this time. 593 KillInst = InsertPos; 594 while (KillInst != opBlock.begin()) { 595 --KillInst; 596 if (KillInst->isDebugInstr()) 597 continue; 598 if (KillInst->readsRegister(SrcReg, /*TRI=*/nullptr)) 599 break; 600 } 601 } else { 602 // We just inserted this copy. 603 KillInst = NewSrcInstr; 604 } 605 } 606 assert(KillInst->readsRegister(SrcReg, /*TRI=*/nullptr) && 607 "Cannot find kill instruction"); 608 609 // Finally, mark it killed. 610 LV->addVirtualRegisterKilled(SrcReg, *KillInst); 611 612 // This vreg no longer lives all of the way through opBlock. 613 unsigned opBlockNum = opBlock.getNumber(); 614 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum); 615 } 616 617 if (LIS) { 618 if (NewSrcInstr) { 619 LIS->InsertMachineInstrInMaps(*NewSrcInstr); 620 LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr); 621 } 622 623 if (!SrcUndef && 624 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) { 625 LiveInterval &SrcLI = LIS->getInterval(SrcReg); 626 627 bool isLiveOut = false; 628 for (MachineBasicBlock *Succ : opBlock.successors()) { 629 SlotIndex startIdx = LIS->getMBBStartIdx(Succ); 630 VNInfo *VNI = SrcLI.getVNInfoAt(startIdx); 631 632 // Definitions by other PHIs are not truly live-in for our purposes. 633 if (VNI && VNI->def != startIdx) { 634 isLiveOut = true; 635 break; 636 } 637 } 638 639 if (!isLiveOut) { 640 MachineBasicBlock::iterator KillInst = opBlock.end(); 641 for (MachineBasicBlock::iterator Term = InsertPos; 642 Term != opBlock.end(); ++Term) { 643 if (Term->readsRegister(SrcReg, /*TRI=*/nullptr)) 644 KillInst = Term; 645 } 646 647 if (KillInst == opBlock.end()) { 648 // No terminator uses the register. 649 650 if (reusedIncoming || !IncomingReg) { 651 // We may have to rewind a bit if we didn't just insert a copy. 652 KillInst = InsertPos; 653 while (KillInst != opBlock.begin()) { 654 --KillInst; 655 if (KillInst->isDebugInstr()) 656 continue; 657 if (KillInst->readsRegister(SrcReg, /*TRI=*/nullptr)) 658 break; 659 } 660 } else { 661 // We just inserted this copy. 662 KillInst = std::prev(InsertPos); 663 } 664 } 665 assert(KillInst->readsRegister(SrcReg, /*TRI=*/nullptr) && 666 "Cannot find kill instruction"); 667 668 SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst); 669 SrcLI.removeSegment(LastUseIndex.getRegSlot(), 670 LIS->getMBBEndIdx(&opBlock)); 671 for (auto &SR : SrcLI.subranges()) { 672 SR.removeSegment(LastUseIndex.getRegSlot(), 673 LIS->getMBBEndIdx(&opBlock)); 674 } 675 } 676 } 677 } 678 } 679 680 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map. 681 if (EliminateNow) { 682 if (LIS) 683 LIS->RemoveMachineInstrFromMaps(*MPhi); 684 MF.deleteMachineInstr(MPhi); 685 } 686 } 687 688 /// analyzePHINodes - Gather information about the PHI nodes in here. In 689 /// particular, we want to map the number of uses of a virtual register which is 690 /// used in a PHI node. We map that to the BB the vreg is coming from. This is 691 /// used later to determine when the vreg is killed in the BB. 692 void PHIElimination::analyzePHINodes(const MachineFunction &MF) { 693 for (const auto &MBB : MF) { 694 for (const auto &BBI : MBB) { 695 if (!BBI.isPHI()) 696 break; 697 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) { 698 if (!BBI.getOperand(i).isUndef()) { 699 ++VRegPHIUseCount[BBVRegPair( 700 BBI.getOperand(i + 1).getMBB()->getNumber(), 701 BBI.getOperand(i).getReg())]; 702 } 703 } 704 } 705 } 706 } 707 708 bool PHIElimination::SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, 709 MachineLoopInfo *MLI, 710 std::vector<SparseBitVector<>> *LiveInSets) { 711 if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad()) 712 return false; // Quick exit for basic blocks without PHIs. 713 714 const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr; 715 bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader(); 716 717 bool Changed = false; 718 for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end(); 719 BBI != BBE && BBI->isPHI(); ++BBI) { 720 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { 721 Register Reg = BBI->getOperand(i).getReg(); 722 MachineBasicBlock *PreMBB = BBI->getOperand(i + 1).getMBB(); 723 // Is there a critical edge from PreMBB to MBB? 724 if (PreMBB->succ_size() == 1) 725 continue; 726 727 // Avoid splitting backedges of loops. It would introduce small 728 // out-of-line blocks into the loop which is very bad for code placement. 729 if (PreMBB == &MBB && !SplitAllCriticalEdges) 730 continue; 731 const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr; 732 if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges) 733 continue; 734 735 // LV doesn't consider a phi use live-out, so isLiveOut only returns true 736 // when the source register is live-out for some other reason than a phi 737 // use. That means the copy we will insert in PreMBB won't be a kill, and 738 // there is a risk it may not be coalesced away. 739 // 740 // If the copy would be a kill, there is no need to split the edge. 741 bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB); 742 if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit) 743 continue; 744 if (ShouldSplit) { 745 LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge " 746 << printMBBReference(*PreMBB) << " -> " 747 << printMBBReference(MBB) << ": " << *BBI); 748 } 749 750 // If Reg is not live-in to MBB, it means it must be live-in to some 751 // other PreMBB successor, and we can avoid the interference by splitting 752 // the edge. 753 // 754 // If Reg *is* live-in to MBB, the interference is inevitable and a copy 755 // is likely to be left after coalescing. If we are looking at a loop 756 // exiting edge, split it so we won't insert code in the loop, otherwise 757 // don't bother. 758 ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB); 759 760 // Check for a loop exiting edge. 761 if (!ShouldSplit && CurLoop != PreLoop) { 762 LLVM_DEBUG({ 763 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n"; 764 if (PreLoop) 765 dbgs() << "PreLoop: " << *PreLoop; 766 if (CurLoop) 767 dbgs() << "CurLoop: " << *CurLoop; 768 }); 769 // This edge could be entering a loop, exiting a loop, or it could be 770 // both: Jumping directly form one loop to the header of a sibling 771 // loop. 772 // Split unless this edge is entering CurLoop from an outer loop. 773 ShouldSplit = PreLoop && !PreLoop->contains(CurLoop); 774 } 775 if (!ShouldSplit && !SplitAllCriticalEdges) 776 continue; 777 if (!PreMBB->SplitCriticalEdge(&MBB, *this, LiveInSets)) { 778 LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n"); 779 continue; 780 } 781 Changed = true; 782 ++NumCriticalEdgesSplit; 783 } 784 } 785 return Changed; 786 } 787 788 bool PHIElimination::isLiveIn(Register Reg, const MachineBasicBlock *MBB) { 789 assert((LV || LIS) && 790 "isLiveIn() requires either LiveVariables or LiveIntervals"); 791 if (LIS) 792 return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB); 793 else 794 return LV->isLiveIn(Reg, *MBB); 795 } 796 797 bool PHIElimination::isLiveOutPastPHIs(Register Reg, 798 const MachineBasicBlock *MBB) { 799 assert((LV || LIS) && 800 "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals"); 801 // LiveVariables considers uses in PHIs to be in the predecessor basic block, 802 // so that a register used only in a PHI is not live out of the block. In 803 // contrast, LiveIntervals considers uses in PHIs to be on the edge rather 804 // than in the predecessor basic block, so that a register used only in a PHI 805 // is live out of the block. 806 if (LIS) { 807 const LiveInterval &LI = LIS->getInterval(Reg); 808 for (const MachineBasicBlock *SI : MBB->successors()) 809 if (LI.liveAt(LIS->getMBBStartIdx(SI))) 810 return true; 811 return false; 812 } else { 813 return LV->isLiveOut(Reg, *MBB); 814 } 815 } 816