1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass eliminates machine instruction PHI nodes by inserting copy 10 // instructions. This destroys SSA information, but is the desired input for 11 // some register allocators. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "PHIEliminationUtils.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/CodeGen/LiveInterval.h" 21 #include "llvm/CodeGen/LiveIntervals.h" 22 #include "llvm/CodeGen/LiveVariables.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineDominators.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineLoopInfo.h" 30 #include "llvm/CodeGen/MachineOperand.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/SlotIndexes.h" 33 #include "llvm/CodeGen/TargetInstrInfo.h" 34 #include "llvm/CodeGen/TargetOpcodes.h" 35 #include "llvm/CodeGen/TargetRegisterInfo.h" 36 #include "llvm/CodeGen/TargetSubtargetInfo.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include <cassert> 42 #include <iterator> 43 #include <utility> 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "phi-node-elimination" 48 49 static cl::opt<bool> 50 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false), 51 cl::Hidden, cl::desc("Disable critical edge splitting " 52 "during PHI elimination")); 53 54 static cl::opt<bool> 55 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false), 56 cl::Hidden, cl::desc("Split all critical edges during " 57 "PHI elimination")); 58 59 static cl::opt<bool> NoPhiElimLiveOutEarlyExit( 60 "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden, 61 cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true.")); 62 63 namespace { 64 65 class PHIElimination : public MachineFunctionPass { 66 MachineRegisterInfo *MRI = nullptr; // Machine register information 67 LiveVariables *LV = nullptr; 68 LiveIntervals *LIS = nullptr; 69 70 public: 71 static char ID; // Pass identification, replacement for typeid 72 73 PHIElimination() : MachineFunctionPass(ID) { 74 initializePHIEliminationPass(*PassRegistry::getPassRegistry()); 75 } 76 77 bool runOnMachineFunction(MachineFunction &MF) override; 78 void getAnalysisUsage(AnalysisUsage &AU) const override; 79 80 private: 81 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions 82 /// in predecessor basic blocks. 83 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); 84 85 void LowerPHINode(MachineBasicBlock &MBB, 86 MachineBasicBlock::iterator LastPHIIt, 87 bool AllEdgesCritical); 88 89 /// analyzePHINodes - Gather information about the PHI nodes in 90 /// here. In particular, we want to map the number of uses of a virtual 91 /// register which is used in a PHI node. We map that to the BB the 92 /// vreg is coming from. This is used later to determine when the vreg 93 /// is killed in the BB. 94 void analyzePHINodes(const MachineFunction& MF); 95 96 /// Split critical edges where necessary for good coalescer performance. 97 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, 98 MachineLoopInfo *MLI, 99 std::vector<SparseBitVector<>> *LiveInSets); 100 101 // These functions are temporary abstractions around LiveVariables and 102 // LiveIntervals, so they can go away when LiveVariables does. 103 bool isLiveIn(Register Reg, const MachineBasicBlock *MBB); 104 bool isLiveOutPastPHIs(Register Reg, const MachineBasicBlock *MBB); 105 106 using BBVRegPair = std::pair<unsigned, Register>; 107 using VRegPHIUse = DenseMap<BBVRegPair, unsigned>; 108 109 // Count the number of non-undef PHI uses of each register in each BB. 110 VRegPHIUse VRegPHIUseCount; 111 112 // Defs of PHI sources which are implicit_def. 113 SmallPtrSet<MachineInstr*, 4> ImpDefs; 114 115 // Map reusable lowered PHI node -> incoming join register. 116 using LoweredPHIMap = 117 DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>; 118 LoweredPHIMap LoweredPHIs; 119 }; 120 121 } // end anonymous namespace 122 123 STATISTIC(NumLowered, "Number of phis lowered"); 124 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split"); 125 STATISTIC(NumReused, "Number of reused lowered phis"); 126 127 char PHIElimination::ID = 0; 128 129 char& llvm::PHIEliminationID = PHIElimination::ID; 130 131 INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE, 132 "Eliminate PHI nodes for register allocation", 133 false, false) 134 INITIALIZE_PASS_DEPENDENCY(LiveVariables) 135 INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE, 136 "Eliminate PHI nodes for register allocation", false, false) 137 138 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { 139 AU.addUsedIfAvailable<LiveVariables>(); 140 AU.addPreserved<LiveVariables>(); 141 AU.addPreserved<SlotIndexes>(); 142 AU.addPreserved<LiveIntervals>(); 143 AU.addPreserved<MachineDominatorTreeWrapperPass>(); 144 AU.addPreserved<MachineLoopInfoWrapperPass>(); 145 MachineFunctionPass::getAnalysisUsage(AU); 146 } 147 148 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) { 149 MRI = &MF.getRegInfo(); 150 LV = getAnalysisIfAvailable<LiveVariables>(); 151 LIS = getAnalysisIfAvailable<LiveIntervals>(); 152 153 bool Changed = false; 154 155 // Split critical edges to help the coalescer. 156 if (!DisableEdgeSplitting && (LV || LIS)) { 157 // A set of live-in regs for each MBB which is used to update LV 158 // efficiently also with large functions. 159 std::vector<SparseBitVector<>> LiveInSets; 160 if (LV) { 161 LiveInSets.resize(MF.size()); 162 for (unsigned Index = 0, e = MRI->getNumVirtRegs(); Index != e; ++Index) { 163 // Set the bit for this register for each MBB where it is 164 // live-through or live-in (killed). 165 Register VirtReg = Register::index2VirtReg(Index); 166 MachineInstr *DefMI = MRI->getVRegDef(VirtReg); 167 if (!DefMI) 168 continue; 169 LiveVariables::VarInfo &VI = LV->getVarInfo(VirtReg); 170 SparseBitVector<>::iterator AliveBlockItr = VI.AliveBlocks.begin(); 171 SparseBitVector<>::iterator EndItr = VI.AliveBlocks.end(); 172 while (AliveBlockItr != EndItr) { 173 unsigned BlockNum = *(AliveBlockItr++); 174 LiveInSets[BlockNum].set(Index); 175 } 176 // The register is live into an MBB in which it is killed but not 177 // defined. See comment for VarInfo in LiveVariables.h. 178 MachineBasicBlock *DefMBB = DefMI->getParent(); 179 if (VI.Kills.size() > 1 || 180 (!VI.Kills.empty() && VI.Kills.front()->getParent() != DefMBB)) 181 for (auto *MI : VI.Kills) 182 LiveInSets[MI->getParent()->getNumber()].set(Index); 183 } 184 } 185 186 MachineLoopInfoWrapperPass *MLIWrapper = 187 getAnalysisIfAvailable<MachineLoopInfoWrapperPass>(); 188 MachineLoopInfo *MLI = MLIWrapper ? &MLIWrapper->getLI() : nullptr; 189 for (auto &MBB : MF) 190 Changed |= SplitPHIEdges(MF, MBB, MLI, (LV ? &LiveInSets : nullptr)); 191 } 192 193 // This pass takes the function out of SSA form. 194 MRI->leaveSSA(); 195 196 // Populate VRegPHIUseCount 197 if (LV || LIS) 198 analyzePHINodes(MF); 199 200 // Eliminate PHI instructions by inserting copies into predecessor blocks. 201 for (auto &MBB : MF) 202 Changed |= EliminatePHINodes(MF, MBB); 203 204 // Remove dead IMPLICIT_DEF instructions. 205 for (MachineInstr *DefMI : ImpDefs) { 206 Register DefReg = DefMI->getOperand(0).getReg(); 207 if (MRI->use_nodbg_empty(DefReg)) { 208 if (LIS) 209 LIS->RemoveMachineInstrFromMaps(*DefMI); 210 DefMI->eraseFromParent(); 211 } 212 } 213 214 // Clean up the lowered PHI instructions. 215 for (auto &I : LoweredPHIs) { 216 if (LIS) 217 LIS->RemoveMachineInstrFromMaps(*I.first); 218 MF.deleteMachineInstr(I.first); 219 } 220 221 // TODO: we should use the incremental DomTree updater here. 222 if (Changed) 223 if (auto *MDT = getAnalysisIfAvailable<MachineDominatorTreeWrapperPass>()) 224 MDT->getDomTree().getBase().recalculate(MF); 225 226 LoweredPHIs.clear(); 227 ImpDefs.clear(); 228 VRegPHIUseCount.clear(); 229 230 MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs); 231 232 return Changed; 233 } 234 235 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in 236 /// predecessor basic blocks. 237 bool PHIElimination::EliminatePHINodes(MachineFunction &MF, 238 MachineBasicBlock &MBB) { 239 if (MBB.empty() || !MBB.front().isPHI()) 240 return false; // Quick exit for basic blocks without PHIs. 241 242 // Get an iterator to the last PHI node. 243 MachineBasicBlock::iterator LastPHIIt = 244 std::prev(MBB.SkipPHIsAndLabels(MBB.begin())); 245 246 // If all incoming edges are critical, we try to deduplicate identical PHIs so 247 // that we generate fewer copies. If at any edge is non-critical, we either 248 // have less than two predecessors (=> no PHIs) or a predecessor has only us 249 // as a successor (=> identical PHI node can't occur in different block). 250 bool AllEdgesCritical = MBB.pred_size() >= 2; 251 for (MachineBasicBlock *Pred : MBB.predecessors()) { 252 if (Pred->succ_size() < 2) { 253 AllEdgesCritical = false; 254 break; 255 } 256 } 257 258 while (MBB.front().isPHI()) 259 LowerPHINode(MBB, LastPHIIt, AllEdgesCritical); 260 261 return true; 262 } 263 264 /// Return true if all defs of VirtReg are implicit-defs. 265 /// This includes registers with no defs. 266 static bool isImplicitlyDefined(unsigned VirtReg, 267 const MachineRegisterInfo &MRI) { 268 for (MachineInstr &DI : MRI.def_instructions(VirtReg)) 269 if (!DI.isImplicitDef()) 270 return false; 271 return true; 272 } 273 274 /// Return true if all sources of the phi node are implicit_def's, or undef's. 275 static bool allPhiOperandsUndefined(const MachineInstr &MPhi, 276 const MachineRegisterInfo &MRI) { 277 for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) { 278 const MachineOperand &MO = MPhi.getOperand(I); 279 if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef()) 280 return false; 281 } 282 return true; 283 } 284 /// LowerPHINode - Lower the PHI node at the top of the specified block. 285 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB, 286 MachineBasicBlock::iterator LastPHIIt, 287 bool AllEdgesCritical) { 288 ++NumLowered; 289 290 MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt); 291 292 // Unlink the PHI node from the basic block, but don't delete the PHI yet. 293 MachineInstr *MPhi = MBB.remove(&*MBB.begin()); 294 295 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; 296 Register DestReg = MPhi->getOperand(0).getReg(); 297 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs"); 298 bool isDead = MPhi->getOperand(0).isDead(); 299 300 // Create a new register for the incoming PHI arguments. 301 MachineFunction &MF = *MBB.getParent(); 302 unsigned IncomingReg = 0; 303 bool EliminateNow = true; // delay elimination of nodes in LoweredPHIs 304 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI? 305 306 // Insert a register to register copy at the top of the current block (but 307 // after any remaining phi nodes) which copies the new incoming register 308 // into the phi node destination. 309 MachineInstr *PHICopy = nullptr; 310 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 311 if (allPhiOperandsUndefined(*MPhi, *MRI)) 312 // If all sources of a PHI node are implicit_def or undef uses, just emit an 313 // implicit_def instead of a copy. 314 PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 315 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); 316 else { 317 // Can we reuse an earlier PHI node? This only happens for critical edges, 318 // typically those created by tail duplication. Typically, an identical PHI 319 // node can't occur, so avoid hashing/storing such PHIs, which is somewhat 320 // expensive. 321 unsigned *Entry = nullptr; 322 if (AllEdgesCritical) 323 Entry = &LoweredPHIs[MPhi]; 324 if (Entry && *Entry) { 325 // An identical PHI node was already lowered. Reuse the incoming register. 326 IncomingReg = *Entry; 327 reusedIncoming = true; 328 ++NumReused; 329 LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for " 330 << *MPhi); 331 } else { 332 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); 333 IncomingReg = MF.getRegInfo().createVirtualRegister(RC); 334 if (Entry) { 335 EliminateNow = false; 336 *Entry = IncomingReg; 337 } 338 } 339 340 // Give the target possiblity to handle special cases fallthrough otherwise 341 PHICopy = TII->createPHIDestinationCopy(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 342 IncomingReg, DestReg); 343 } 344 345 if (MPhi->peekDebugInstrNum()) { 346 // If referred to by debug-info, store where this PHI was. 347 MachineFunction *MF = MBB.getParent(); 348 unsigned ID = MPhi->peekDebugInstrNum(); 349 auto P = MachineFunction::DebugPHIRegallocPos(&MBB, IncomingReg, 0); 350 auto Res = MF->DebugPHIPositions.insert({ID, P}); 351 assert(Res.second); 352 (void)Res; 353 } 354 355 // Update live variable information if there is any. 356 if (LV) { 357 if (IncomingReg) { 358 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg); 359 360 MachineInstr *OldKill = nullptr; 361 bool IsPHICopyAfterOldKill = false; 362 363 if (reusedIncoming && (OldKill = VI.findKill(&MBB))) { 364 // Calculate whether the PHICopy is after the OldKill. 365 // In general, the PHICopy is inserted as the first non-phi instruction 366 // by default, so it's before the OldKill. But some Target hooks for 367 // createPHIDestinationCopy() may modify the default insert position of 368 // PHICopy. 369 for (auto I = MBB.SkipPHIsAndLabels(MBB.begin()), E = MBB.end(); 370 I != E; ++I) { 371 if (I == PHICopy) 372 break; 373 374 if (I == OldKill) { 375 IsPHICopyAfterOldKill = true; 376 break; 377 } 378 } 379 } 380 381 // When we are reusing the incoming register and it has been marked killed 382 // by OldKill, if the PHICopy is after the OldKill, we should remove the 383 // killed flag from OldKill. 384 if (IsPHICopyAfterOldKill) { 385 LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill); 386 LV->removeVirtualRegisterKilled(IncomingReg, *OldKill); 387 LLVM_DEBUG(MBB.dump()); 388 } 389 390 // Add information to LiveVariables to know that the first used incoming 391 // value or the resued incoming value whose PHICopy is after the OldKIll 392 // is killed. Note that because the value is defined in several places 393 // (once each for each incoming block), the "def" block and instruction 394 // fields for the VarInfo is not filled in. 395 if (!OldKill || IsPHICopyAfterOldKill) 396 LV->addVirtualRegisterKilled(IncomingReg, *PHICopy); 397 } 398 399 // Since we are going to be deleting the PHI node, if it is the last use of 400 // any registers, or if the value itself is dead, we need to move this 401 // information over to the new copy we just inserted. 402 LV->removeVirtualRegistersKilled(*MPhi); 403 404 // If the result is dead, update LV. 405 if (isDead) { 406 LV->addVirtualRegisterDead(DestReg, *PHICopy); 407 LV->removeVirtualRegisterDead(DestReg, *MPhi); 408 } 409 } 410 411 // Update LiveIntervals for the new copy or implicit def. 412 if (LIS) { 413 SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy); 414 415 SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB); 416 if (IncomingReg) { 417 // Add the region from the beginning of MBB to the copy instruction to 418 // IncomingReg's live interval. 419 LiveInterval &IncomingLI = LIS->getOrCreateEmptyInterval(IncomingReg); 420 VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex); 421 if (!IncomingVNI) 422 IncomingVNI = IncomingLI.getNextValue(MBBStartIndex, 423 LIS->getVNInfoAllocator()); 424 IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex, 425 DestCopyIndex.getRegSlot(), 426 IncomingVNI)); 427 } 428 429 LiveInterval &DestLI = LIS->getInterval(DestReg); 430 assert(!DestLI.empty() && "PHIs should have non-empty LiveIntervals."); 431 432 SlotIndex NewStart = DestCopyIndex.getRegSlot(); 433 434 SmallVector<LiveRange *> ToUpdate({&DestLI}); 435 for (auto &SR : DestLI.subranges()) 436 ToUpdate.push_back(&SR); 437 438 for (auto LR : ToUpdate) { 439 auto DestSegment = LR->find(MBBStartIndex); 440 assert(DestSegment != LR->end() && 441 "PHI destination must be live in block"); 442 443 if (LR->endIndex().isDead()) { 444 // A dead PHI's live range begins and ends at the start of the MBB, but 445 // the lowered copy, which will still be dead, needs to begin and end at 446 // the copy instruction. 447 VNInfo *OrigDestVNI = LR->getVNInfoAt(DestSegment->start); 448 assert(OrigDestVNI && "PHI destination should be live at block entry."); 449 LR->removeSegment(DestSegment->start, DestSegment->start.getDeadSlot()); 450 LR->createDeadDef(NewStart, LIS->getVNInfoAllocator()); 451 LR->removeValNo(OrigDestVNI); 452 continue; 453 } 454 455 // Destination copies are not inserted in the same order as the PHI nodes 456 // they replace. Hence the start of the live range may need to be adjusted 457 // to match the actual slot index of the copy. 458 if (DestSegment->start > NewStart) { 459 VNInfo *VNI = LR->getVNInfoAt(DestSegment->start); 460 assert(VNI && "value should be defined for known segment"); 461 LR->addSegment( 462 LiveInterval::Segment(NewStart, DestSegment->start, VNI)); 463 } else if (DestSegment->start < NewStart) { 464 assert(DestSegment->start >= MBBStartIndex); 465 assert(DestSegment->end >= DestCopyIndex.getRegSlot()); 466 LR->removeSegment(DestSegment->start, NewStart); 467 } 468 VNInfo *DestVNI = LR->getVNInfoAt(NewStart); 469 assert(DestVNI && "PHI destination should be live at its definition."); 470 DestVNI->def = NewStart; 471 } 472 } 473 474 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. 475 if (LV || LIS) { 476 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) { 477 if (!MPhi->getOperand(i).isUndef()) { 478 --VRegPHIUseCount[BBVRegPair( 479 MPhi->getOperand(i + 1).getMBB()->getNumber(), 480 MPhi->getOperand(i).getReg())]; 481 } 482 } 483 } 484 485 // Now loop over all of the incoming arguments, changing them to copy into the 486 // IncomingReg register in the corresponding predecessor basic block. 487 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto; 488 for (int i = NumSrcs - 1; i >= 0; --i) { 489 Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg(); 490 unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg(); 491 bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() || 492 isImplicitlyDefined(SrcReg, *MRI); 493 assert(SrcReg.isVirtual() && 494 "Machine PHI Operands must all be virtual registers!"); 495 496 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source 497 // path the PHI. 498 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB(); 499 500 // Check to make sure we haven't already emitted the copy for this block. 501 // This can happen because PHI nodes may have multiple entries for the same 502 // basic block. 503 if (!MBBsInsertedInto.insert(&opBlock).second) 504 continue; // If the copy has already been emitted, we're done. 505 506 MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg); 507 if (SrcRegDef && TII->isUnspillableTerminator(SrcRegDef)) { 508 assert(SrcRegDef->getOperand(0).isReg() && 509 SrcRegDef->getOperand(0).isDef() && 510 "Expected operand 0 to be a reg def!"); 511 // Now that the PHI's use has been removed (as the instruction was 512 // removed) there should be no other uses of the SrcReg. 513 assert(MRI->use_empty(SrcReg) && 514 "Expected a single use from UnspillableTerminator"); 515 SrcRegDef->getOperand(0).setReg(IncomingReg); 516 517 // Update LiveVariables. 518 if (LV) { 519 LiveVariables::VarInfo &SrcVI = LV->getVarInfo(SrcReg); 520 LiveVariables::VarInfo &IncomingVI = LV->getVarInfo(IncomingReg); 521 IncomingVI.AliveBlocks = std::move(SrcVI.AliveBlocks); 522 SrcVI.AliveBlocks.clear(); 523 } 524 525 continue; 526 } 527 528 // Find a safe location to insert the copy, this may be the first terminator 529 // in the block (or end()). 530 MachineBasicBlock::iterator InsertPos = 531 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg); 532 533 // Insert the copy. 534 MachineInstr *NewSrcInstr = nullptr; 535 if (!reusedIncoming && IncomingReg) { 536 if (SrcUndef) { 537 // The source register is undefined, so there is no need for a real 538 // COPY, but we still need to ensure joint dominance by defs. 539 // Insert an IMPLICIT_DEF instruction. 540 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 541 TII->get(TargetOpcode::IMPLICIT_DEF), 542 IncomingReg); 543 544 // Clean up the old implicit-def, if there even was one. 545 if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg)) 546 if (DefMI->isImplicitDef()) 547 ImpDefs.insert(DefMI); 548 } else { 549 // Delete the debug location, since the copy is inserted into a 550 // different basic block. 551 NewSrcInstr = TII->createPHISourceCopy(opBlock, InsertPos, nullptr, 552 SrcReg, SrcSubReg, IncomingReg); 553 } 554 } 555 556 // We only need to update the LiveVariables kill of SrcReg if this was the 557 // last PHI use of SrcReg to be lowered on this CFG edge and it is not live 558 // out of the predecessor. We can also ignore undef sources. 559 if (LV && !SrcUndef && 560 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] && 561 !LV->isLiveOut(SrcReg, opBlock)) { 562 // We want to be able to insert a kill of the register if this PHI (aka, 563 // the copy we just inserted) is the last use of the source value. Live 564 // variable analysis conservatively handles this by saying that the value 565 // is live until the end of the block the PHI entry lives in. If the value 566 // really is dead at the PHI copy, there will be no successor blocks which 567 // have the value live-in. 568 569 // Okay, if we now know that the value is not live out of the block, we 570 // can add a kill marker in this block saying that it kills the incoming 571 // value! 572 573 // In our final twist, we have to decide which instruction kills the 574 // register. In most cases this is the copy, however, terminator 575 // instructions at the end of the block may also use the value. In this 576 // case, we should mark the last such terminator as being the killing 577 // block, not the copy. 578 MachineBasicBlock::iterator KillInst = opBlock.end(); 579 for (MachineBasicBlock::iterator Term = InsertPos; Term != opBlock.end(); 580 ++Term) { 581 if (Term->readsRegister(SrcReg, /*TRI=*/nullptr)) 582 KillInst = Term; 583 } 584 585 if (KillInst == opBlock.end()) { 586 // No terminator uses the register. 587 588 if (reusedIncoming || !IncomingReg) { 589 // We may have to rewind a bit if we didn't insert a copy this time. 590 KillInst = InsertPos; 591 while (KillInst != opBlock.begin()) { 592 --KillInst; 593 if (KillInst->isDebugInstr()) 594 continue; 595 if (KillInst->readsRegister(SrcReg, /*TRI=*/nullptr)) 596 break; 597 } 598 } else { 599 // We just inserted this copy. 600 KillInst = NewSrcInstr; 601 } 602 } 603 assert(KillInst->readsRegister(SrcReg, /*TRI=*/nullptr) && 604 "Cannot find kill instruction"); 605 606 // Finally, mark it killed. 607 LV->addVirtualRegisterKilled(SrcReg, *KillInst); 608 609 // This vreg no longer lives all of the way through opBlock. 610 unsigned opBlockNum = opBlock.getNumber(); 611 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum); 612 } 613 614 if (LIS) { 615 if (NewSrcInstr) { 616 LIS->InsertMachineInstrInMaps(*NewSrcInstr); 617 LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr); 618 } 619 620 if (!SrcUndef && 621 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) { 622 LiveInterval &SrcLI = LIS->getInterval(SrcReg); 623 624 bool isLiveOut = false; 625 for (MachineBasicBlock *Succ : opBlock.successors()) { 626 SlotIndex startIdx = LIS->getMBBStartIdx(Succ); 627 VNInfo *VNI = SrcLI.getVNInfoAt(startIdx); 628 629 // Definitions by other PHIs are not truly live-in for our purposes. 630 if (VNI && VNI->def != startIdx) { 631 isLiveOut = true; 632 break; 633 } 634 } 635 636 if (!isLiveOut) { 637 MachineBasicBlock::iterator KillInst = opBlock.end(); 638 for (MachineBasicBlock::iterator Term = InsertPos; 639 Term != opBlock.end(); ++Term) { 640 if (Term->readsRegister(SrcReg, /*TRI=*/nullptr)) 641 KillInst = Term; 642 } 643 644 if (KillInst == opBlock.end()) { 645 // No terminator uses the register. 646 647 if (reusedIncoming || !IncomingReg) { 648 // We may have to rewind a bit if we didn't just insert a copy. 649 KillInst = InsertPos; 650 while (KillInst != opBlock.begin()) { 651 --KillInst; 652 if (KillInst->isDebugInstr()) 653 continue; 654 if (KillInst->readsRegister(SrcReg, /*TRI=*/nullptr)) 655 break; 656 } 657 } else { 658 // We just inserted this copy. 659 KillInst = std::prev(InsertPos); 660 } 661 } 662 assert(KillInst->readsRegister(SrcReg, /*TRI=*/nullptr) && 663 "Cannot find kill instruction"); 664 665 SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst); 666 SrcLI.removeSegment(LastUseIndex.getRegSlot(), 667 LIS->getMBBEndIdx(&opBlock)); 668 for (auto &SR : SrcLI.subranges()) { 669 SR.removeSegment(LastUseIndex.getRegSlot(), 670 LIS->getMBBEndIdx(&opBlock)); 671 } 672 } 673 } 674 } 675 } 676 677 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map. 678 if (EliminateNow) { 679 if (LIS) 680 LIS->RemoveMachineInstrFromMaps(*MPhi); 681 MF.deleteMachineInstr(MPhi); 682 } 683 } 684 685 /// analyzePHINodes - Gather information about the PHI nodes in here. In 686 /// particular, we want to map the number of uses of a virtual register which is 687 /// used in a PHI node. We map that to the BB the vreg is coming from. This is 688 /// used later to determine when the vreg is killed in the BB. 689 void PHIElimination::analyzePHINodes(const MachineFunction& MF) { 690 for (const auto &MBB : MF) { 691 for (const auto &BBI : MBB) { 692 if (!BBI.isPHI()) 693 break; 694 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) { 695 if (!BBI.getOperand(i).isUndef()) { 696 ++VRegPHIUseCount[BBVRegPair( 697 BBI.getOperand(i + 1).getMBB()->getNumber(), 698 BBI.getOperand(i).getReg())]; 699 } 700 } 701 } 702 } 703 } 704 705 bool PHIElimination::SplitPHIEdges(MachineFunction &MF, 706 MachineBasicBlock &MBB, 707 MachineLoopInfo *MLI, 708 std::vector<SparseBitVector<>> *LiveInSets) { 709 if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad()) 710 return false; // Quick exit for basic blocks without PHIs. 711 712 const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr; 713 bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader(); 714 715 bool Changed = false; 716 for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end(); 717 BBI != BBE && BBI->isPHI(); ++BBI) { 718 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { 719 Register Reg = BBI->getOperand(i).getReg(); 720 MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB(); 721 // Is there a critical edge from PreMBB to MBB? 722 if (PreMBB->succ_size() == 1) 723 continue; 724 725 // Avoid splitting backedges of loops. It would introduce small 726 // out-of-line blocks into the loop which is very bad for code placement. 727 if (PreMBB == &MBB && !SplitAllCriticalEdges) 728 continue; 729 const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr; 730 if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges) 731 continue; 732 733 // LV doesn't consider a phi use live-out, so isLiveOut only returns true 734 // when the source register is live-out for some other reason than a phi 735 // use. That means the copy we will insert in PreMBB won't be a kill, and 736 // there is a risk it may not be coalesced away. 737 // 738 // If the copy would be a kill, there is no need to split the edge. 739 bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB); 740 if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit) 741 continue; 742 if (ShouldSplit) { 743 LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge " 744 << printMBBReference(*PreMBB) << " -> " 745 << printMBBReference(MBB) << ": " << *BBI); 746 } 747 748 // If Reg is not live-in to MBB, it means it must be live-in to some 749 // other PreMBB successor, and we can avoid the interference by splitting 750 // the edge. 751 // 752 // If Reg *is* live-in to MBB, the interference is inevitable and a copy 753 // is likely to be left after coalescing. If we are looking at a loop 754 // exiting edge, split it so we won't insert code in the loop, otherwise 755 // don't bother. 756 ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB); 757 758 // Check for a loop exiting edge. 759 if (!ShouldSplit && CurLoop != PreLoop) { 760 LLVM_DEBUG({ 761 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n"; 762 if (PreLoop) 763 dbgs() << "PreLoop: " << *PreLoop; 764 if (CurLoop) 765 dbgs() << "CurLoop: " << *CurLoop; 766 }); 767 // This edge could be entering a loop, exiting a loop, or it could be 768 // both: Jumping directly form one loop to the header of a sibling 769 // loop. 770 // Split unless this edge is entering CurLoop from an outer loop. 771 ShouldSplit = PreLoop && !PreLoop->contains(CurLoop); 772 } 773 if (!ShouldSplit && !SplitAllCriticalEdges) 774 continue; 775 if (!PreMBB->SplitCriticalEdge(&MBB, *this, LiveInSets)) { 776 LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n"); 777 continue; 778 } 779 Changed = true; 780 ++NumCriticalEdgesSplit; 781 } 782 } 783 return Changed; 784 } 785 786 bool PHIElimination::isLiveIn(Register Reg, const MachineBasicBlock *MBB) { 787 assert((LV || LIS) && 788 "isLiveIn() requires either LiveVariables or LiveIntervals"); 789 if (LIS) 790 return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB); 791 else 792 return LV->isLiveIn(Reg, *MBB); 793 } 794 795 bool PHIElimination::isLiveOutPastPHIs(Register Reg, 796 const MachineBasicBlock *MBB) { 797 assert((LV || LIS) && 798 "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals"); 799 // LiveVariables considers uses in PHIs to be in the predecessor basic block, 800 // so that a register used only in a PHI is not live out of the block. In 801 // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than 802 // in the predecessor basic block, so that a register used only in a PHI is live 803 // out of the block. 804 if (LIS) { 805 const LiveInterval &LI = LIS->getInterval(Reg); 806 for (const MachineBasicBlock *SI : MBB->successors()) 807 if (LI.liveAt(LIS->getMBBStartIdx(SI))) 808 return true; 809 return false; 810 } else { 811 return LV->isLiveOut(Reg, *MBB); 812 } 813 } 814