xref: /llvm-project/llvm/lib/CodeGen/PHIElimination.cpp (revision 79d0de2ac37b6b7d66720611935d1dd7fc4fbd43)
1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass eliminates machine instruction PHI nodes by inserting copy
10 // instructions.  This destroys SSA information, but is the desired input for
11 // some register allocators.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "PHIEliminationUtils.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/CodeGen/LiveInterval.h"
21 #include "llvm/CodeGen/LiveIntervals.h"
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineLoopInfo.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/SlotIndexes.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetOpcodes.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/TargetSubtargetInfo.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include <cassert>
42 #include <iterator>
43 #include <utility>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "phi-node-elimination"
48 
49 static cl::opt<bool>
50 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
51                      cl::Hidden, cl::desc("Disable critical edge splitting "
52                                           "during PHI elimination"));
53 
54 static cl::opt<bool>
55 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
56                       cl::Hidden, cl::desc("Split all critical edges during "
57                                            "PHI elimination"));
58 
59 static cl::opt<bool> NoPhiElimLiveOutEarlyExit(
60     "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden,
61     cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
62 
63 namespace {
64 
65   class PHIElimination : public MachineFunctionPass {
66     MachineRegisterInfo *MRI = nullptr; // Machine register information
67     LiveVariables *LV = nullptr;
68     LiveIntervals *LIS = nullptr;
69 
70   public:
71     static char ID; // Pass identification, replacement for typeid
72 
73     PHIElimination() : MachineFunctionPass(ID) {
74       initializePHIEliminationPass(*PassRegistry::getPassRegistry());
75     }
76 
77     bool runOnMachineFunction(MachineFunction &MF) override;
78     void getAnalysisUsage(AnalysisUsage &AU) const override;
79 
80   private:
81     /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
82     /// in predecessor basic blocks.
83     bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
84 
85     void LowerPHINode(MachineBasicBlock &MBB,
86                       MachineBasicBlock::iterator LastPHIIt,
87                       bool AllEdgesCritical);
88 
89     /// analyzePHINodes - Gather information about the PHI nodes in
90     /// here. In particular, we want to map the number of uses of a virtual
91     /// register which is used in a PHI node. We map that to the BB the
92     /// vreg is coming from. This is used later to determine when the vreg
93     /// is killed in the BB.
94     void analyzePHINodes(const MachineFunction& MF);
95 
96     /// Split critical edges where necessary for good coalescer performance.
97     bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
98                        MachineLoopInfo *MLI,
99                        std::vector<SparseBitVector<>> *LiveInSets);
100 
101     // These functions are temporary abstractions around LiveVariables and
102     // LiveIntervals, so they can go away when LiveVariables does.
103     bool isLiveIn(Register Reg, const MachineBasicBlock *MBB);
104     bool isLiveOutPastPHIs(Register Reg, const MachineBasicBlock *MBB);
105 
106     using BBVRegPair = std::pair<unsigned, Register>;
107     using VRegPHIUse = DenseMap<BBVRegPair, unsigned>;
108 
109     // Count the number of non-undef PHI uses of each register in each BB.
110     VRegPHIUse VRegPHIUseCount;
111 
112     // Defs of PHI sources which are implicit_def.
113     SmallPtrSet<MachineInstr*, 4> ImpDefs;
114 
115     // Map reusable lowered PHI node -> incoming join register.
116     using LoweredPHIMap =
117         DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>;
118     LoweredPHIMap LoweredPHIs;
119   };
120 
121 } // end anonymous namespace
122 
123 STATISTIC(NumLowered, "Number of phis lowered");
124 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
125 STATISTIC(NumReused, "Number of reused lowered phis");
126 
127 char PHIElimination::ID = 0;
128 
129 char& llvm::PHIEliminationID = PHIElimination::ID;
130 
131 INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE,
132                       "Eliminate PHI nodes for register allocation",
133                       false, false)
134 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
135 INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE,
136                     "Eliminate PHI nodes for register allocation", false, false)
137 
138 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
139   AU.addUsedIfAvailable<LiveVariables>();
140   AU.addPreserved<LiveVariables>();
141   AU.addPreserved<SlotIndexes>();
142   AU.addPreserved<LiveIntervals>();
143   AU.addPreserved<MachineDominatorTreeWrapperPass>();
144   AU.addPreserved<MachineLoopInfoWrapperPass>();
145   MachineFunctionPass::getAnalysisUsage(AU);
146 }
147 
148 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
149   MRI = &MF.getRegInfo();
150   LV = getAnalysisIfAvailable<LiveVariables>();
151   LIS = getAnalysisIfAvailable<LiveIntervals>();
152 
153   bool Changed = false;
154 
155   // Split critical edges to help the coalescer.
156   if (!DisableEdgeSplitting && (LV || LIS)) {
157     // A set of live-in regs for each MBB which is used to update LV
158     // efficiently also with large functions.
159     std::vector<SparseBitVector<>> LiveInSets;
160     if (LV) {
161       LiveInSets.resize(MF.size());
162       for (unsigned Index = 0, e = MRI->getNumVirtRegs(); Index != e; ++Index) {
163         // Set the bit for this register for each MBB where it is
164         // live-through or live-in (killed).
165         Register VirtReg = Register::index2VirtReg(Index);
166         MachineInstr *DefMI = MRI->getVRegDef(VirtReg);
167         if (!DefMI)
168           continue;
169         LiveVariables::VarInfo &VI = LV->getVarInfo(VirtReg);
170         SparseBitVector<>::iterator AliveBlockItr = VI.AliveBlocks.begin();
171         SparseBitVector<>::iterator EndItr = VI.AliveBlocks.end();
172         while (AliveBlockItr != EndItr) {
173           unsigned BlockNum = *(AliveBlockItr++);
174           LiveInSets[BlockNum].set(Index);
175         }
176         // The register is live into an MBB in which it is killed but not
177         // defined. See comment for VarInfo in LiveVariables.h.
178         MachineBasicBlock *DefMBB = DefMI->getParent();
179         if (VI.Kills.size() > 1 ||
180             (!VI.Kills.empty() && VI.Kills.front()->getParent() != DefMBB))
181           for (auto *MI : VI.Kills)
182             LiveInSets[MI->getParent()->getNumber()].set(Index);
183       }
184     }
185 
186     MachineLoopInfoWrapperPass *MLIWrapper =
187         getAnalysisIfAvailable<MachineLoopInfoWrapperPass>();
188     MachineLoopInfo *MLI = MLIWrapper ? &MLIWrapper->getLI() : nullptr;
189     for (auto &MBB : MF)
190       Changed |= SplitPHIEdges(MF, MBB, MLI, (LV ? &LiveInSets : nullptr));
191   }
192 
193   // This pass takes the function out of SSA form.
194   MRI->leaveSSA();
195 
196   // Populate VRegPHIUseCount
197   if (LV || LIS)
198     analyzePHINodes(MF);
199 
200   // Eliminate PHI instructions by inserting copies into predecessor blocks.
201   for (auto &MBB : MF)
202     Changed |= EliminatePHINodes(MF, MBB);
203 
204   // Remove dead IMPLICIT_DEF instructions.
205   for (MachineInstr *DefMI : ImpDefs) {
206     Register DefReg = DefMI->getOperand(0).getReg();
207     if (MRI->use_nodbg_empty(DefReg)) {
208       if (LIS)
209         LIS->RemoveMachineInstrFromMaps(*DefMI);
210       DefMI->eraseFromParent();
211     }
212   }
213 
214   // Clean up the lowered PHI instructions.
215   for (auto &I : LoweredPHIs) {
216     if (LIS)
217       LIS->RemoveMachineInstrFromMaps(*I.first);
218     MF.deleteMachineInstr(I.first);
219   }
220 
221   // TODO: we should use the incremental DomTree updater here.
222   if (Changed)
223     if (auto *MDT = getAnalysisIfAvailable<MachineDominatorTreeWrapperPass>())
224       MDT->getDomTree().getBase().recalculate(MF);
225 
226   LoweredPHIs.clear();
227   ImpDefs.clear();
228   VRegPHIUseCount.clear();
229 
230   MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs);
231 
232   return Changed;
233 }
234 
235 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
236 /// predecessor basic blocks.
237 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
238                                        MachineBasicBlock &MBB) {
239   if (MBB.empty() || !MBB.front().isPHI())
240     return false;   // Quick exit for basic blocks without PHIs.
241 
242   // Get an iterator to the last PHI node.
243   MachineBasicBlock::iterator LastPHIIt =
244     std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
245 
246   // If all incoming edges are critical, we try to deduplicate identical PHIs so
247   // that we generate fewer copies. If at any edge is non-critical, we either
248   // have less than two predecessors (=> no PHIs) or a predecessor has only us
249   // as a successor (=> identical PHI node can't occur in different block).
250   bool AllEdgesCritical = MBB.pred_size() >= 2;
251   for (MachineBasicBlock *Pred : MBB.predecessors()) {
252     if (Pred->succ_size() < 2) {
253       AllEdgesCritical = false;
254       break;
255     }
256   }
257 
258   while (MBB.front().isPHI())
259     LowerPHINode(MBB, LastPHIIt, AllEdgesCritical);
260 
261   return true;
262 }
263 
264 /// Return true if all defs of VirtReg are implicit-defs.
265 /// This includes registers with no defs.
266 static bool isImplicitlyDefined(unsigned VirtReg,
267                                 const MachineRegisterInfo &MRI) {
268   for (MachineInstr &DI : MRI.def_instructions(VirtReg))
269     if (!DI.isImplicitDef())
270       return false;
271   return true;
272 }
273 
274 /// Return true if all sources of the phi node are implicit_def's, or undef's.
275 static bool allPhiOperandsUndefined(const MachineInstr &MPhi,
276                                     const MachineRegisterInfo &MRI) {
277   for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) {
278     const MachineOperand &MO = MPhi.getOperand(I);
279     if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef())
280       return false;
281   }
282   return true;
283 }
284 /// LowerPHINode - Lower the PHI node at the top of the specified block.
285 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
286                                   MachineBasicBlock::iterator LastPHIIt,
287                                   bool AllEdgesCritical) {
288   ++NumLowered;
289 
290   MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
291 
292   // Unlink the PHI node from the basic block, but don't delete the PHI yet.
293   MachineInstr *MPhi = MBB.remove(&*MBB.begin());
294 
295   unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
296   Register DestReg = MPhi->getOperand(0).getReg();
297   assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
298   bool isDead = MPhi->getOperand(0).isDead();
299 
300   // Create a new register for the incoming PHI arguments.
301   MachineFunction &MF = *MBB.getParent();
302   unsigned IncomingReg = 0;
303   bool EliminateNow = true;     // delay elimination of nodes in LoweredPHIs
304   bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
305 
306   // Insert a register to register copy at the top of the current block (but
307   // after any remaining phi nodes) which copies the new incoming register
308   // into the phi node destination.
309   MachineInstr *PHICopy = nullptr;
310   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
311   if (allPhiOperandsUndefined(*MPhi, *MRI))
312     // If all sources of a PHI node are implicit_def or undef uses, just emit an
313     // implicit_def instead of a copy.
314     PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
315             TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
316   else {
317     // Can we reuse an earlier PHI node? This only happens for critical edges,
318     // typically those created by tail duplication. Typically, an identical PHI
319     // node can't occur, so avoid hashing/storing such PHIs, which is somewhat
320     // expensive.
321     unsigned *Entry = nullptr;
322     if (AllEdgesCritical)
323       Entry = &LoweredPHIs[MPhi];
324     if (Entry && *Entry) {
325       // An identical PHI node was already lowered. Reuse the incoming register.
326       IncomingReg = *Entry;
327       reusedIncoming = true;
328       ++NumReused;
329       LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for "
330                         << *MPhi);
331     } else {
332       const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
333       IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
334       if (Entry) {
335         EliminateNow = false;
336         *Entry = IncomingReg;
337       }
338     }
339 
340     // Give the target possiblity to handle special cases fallthrough otherwise
341     PHICopy = TII->createPHIDestinationCopy(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
342                                   IncomingReg, DestReg);
343   }
344 
345   if (MPhi->peekDebugInstrNum()) {
346     // If referred to by debug-info, store where this PHI was.
347     MachineFunction *MF = MBB.getParent();
348     unsigned ID = MPhi->peekDebugInstrNum();
349     auto P = MachineFunction::DebugPHIRegallocPos(&MBB, IncomingReg, 0);
350     auto Res = MF->DebugPHIPositions.insert({ID, P});
351     assert(Res.second);
352     (void)Res;
353   }
354 
355   // Update live variable information if there is any.
356   if (LV) {
357     if (IncomingReg) {
358       LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
359 
360       MachineInstr *OldKill = nullptr;
361       bool IsPHICopyAfterOldKill = false;
362 
363       if (reusedIncoming && (OldKill = VI.findKill(&MBB))) {
364         // Calculate whether the PHICopy is after the OldKill.
365         // In general, the PHICopy is inserted as the first non-phi instruction
366         // by default, so it's before the OldKill. But some Target hooks for
367         // createPHIDestinationCopy() may modify the default insert position of
368         // PHICopy.
369         for (auto I = MBB.SkipPHIsAndLabels(MBB.begin()), E = MBB.end();
370              I != E; ++I) {
371           if (I == PHICopy)
372             break;
373 
374           if (I == OldKill) {
375             IsPHICopyAfterOldKill = true;
376             break;
377           }
378         }
379       }
380 
381       // When we are reusing the incoming register and it has been marked killed
382       // by OldKill, if the PHICopy is after the OldKill, we should remove the
383       // killed flag from OldKill.
384       if (IsPHICopyAfterOldKill) {
385         LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill);
386         LV->removeVirtualRegisterKilled(IncomingReg, *OldKill);
387         LLVM_DEBUG(MBB.dump());
388       }
389 
390       // Add information to LiveVariables to know that the first used incoming
391       // value or the resued incoming value whose PHICopy is after the OldKIll
392       // is killed. Note that because the value is defined in several places
393       // (once each for each incoming block), the "def" block and instruction
394       // fields for the VarInfo is not filled in.
395       if (!OldKill || IsPHICopyAfterOldKill)
396         LV->addVirtualRegisterKilled(IncomingReg, *PHICopy);
397     }
398 
399     // Since we are going to be deleting the PHI node, if it is the last use of
400     // any registers, or if the value itself is dead, we need to move this
401     // information over to the new copy we just inserted.
402     LV->removeVirtualRegistersKilled(*MPhi);
403 
404     // If the result is dead, update LV.
405     if (isDead) {
406       LV->addVirtualRegisterDead(DestReg, *PHICopy);
407       LV->removeVirtualRegisterDead(DestReg, *MPhi);
408     }
409   }
410 
411   // Update LiveIntervals for the new copy or implicit def.
412   if (LIS) {
413     SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy);
414 
415     SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
416     if (IncomingReg) {
417       // Add the region from the beginning of MBB to the copy instruction to
418       // IncomingReg's live interval.
419       LiveInterval &IncomingLI = LIS->getOrCreateEmptyInterval(IncomingReg);
420       VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
421       if (!IncomingVNI)
422         IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
423                                               LIS->getVNInfoAllocator());
424       IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
425                                                   DestCopyIndex.getRegSlot(),
426                                                   IncomingVNI));
427     }
428 
429     LiveInterval &DestLI = LIS->getInterval(DestReg);
430     assert(!DestLI.empty() && "PHIs should have non-empty LiveIntervals.");
431 
432     SlotIndex NewStart = DestCopyIndex.getRegSlot();
433 
434     SmallVector<LiveRange *> ToUpdate({&DestLI});
435     for (auto &SR : DestLI.subranges())
436       ToUpdate.push_back(&SR);
437 
438     for (auto LR : ToUpdate) {
439       auto DestSegment = LR->find(MBBStartIndex);
440       assert(DestSegment != LR->end() &&
441              "PHI destination must be live in block");
442 
443       if (LR->endIndex().isDead()) {
444         // A dead PHI's live range begins and ends at the start of the MBB, but
445         // the lowered copy, which will still be dead, needs to begin and end at
446         // the copy instruction.
447         VNInfo *OrigDestVNI = LR->getVNInfoAt(DestSegment->start);
448         assert(OrigDestVNI && "PHI destination should be live at block entry.");
449         LR->removeSegment(DestSegment->start, DestSegment->start.getDeadSlot());
450         LR->createDeadDef(NewStart, LIS->getVNInfoAllocator());
451         LR->removeValNo(OrigDestVNI);
452         continue;
453       }
454 
455       // Destination copies are not inserted in the same order as the PHI nodes
456       // they replace. Hence the start of the live range may need to be adjusted
457       // to match the actual slot index of the copy.
458       if (DestSegment->start > NewStart) {
459         VNInfo *VNI = LR->getVNInfoAt(DestSegment->start);
460         assert(VNI && "value should be defined for known segment");
461         LR->addSegment(
462             LiveInterval::Segment(NewStart, DestSegment->start, VNI));
463       } else if (DestSegment->start < NewStart) {
464         assert(DestSegment->start >= MBBStartIndex);
465         assert(DestSegment->end >= DestCopyIndex.getRegSlot());
466         LR->removeSegment(DestSegment->start, NewStart);
467       }
468       VNInfo *DestVNI = LR->getVNInfoAt(NewStart);
469       assert(DestVNI && "PHI destination should be live at its definition.");
470       DestVNI->def = NewStart;
471     }
472   }
473 
474   // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
475   if (LV || LIS) {
476     for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
477       if (!MPhi->getOperand(i).isUndef()) {
478         --VRegPHIUseCount[BBVRegPair(
479             MPhi->getOperand(i + 1).getMBB()->getNumber(),
480             MPhi->getOperand(i).getReg())];
481       }
482     }
483   }
484 
485   // Now loop over all of the incoming arguments, changing them to copy into the
486   // IncomingReg register in the corresponding predecessor basic block.
487   SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
488   for (int i = NumSrcs - 1; i >= 0; --i) {
489     Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg();
490     unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
491     bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
492       isImplicitlyDefined(SrcReg, *MRI);
493     assert(SrcReg.isVirtual() &&
494            "Machine PHI Operands must all be virtual registers!");
495 
496     // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
497     // path the PHI.
498     MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
499 
500     // Check to make sure we haven't already emitted the copy for this block.
501     // This can happen because PHI nodes may have multiple entries for the same
502     // basic block.
503     if (!MBBsInsertedInto.insert(&opBlock).second)
504       continue;  // If the copy has already been emitted, we're done.
505 
506     MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg);
507     if (SrcRegDef && TII->isUnspillableTerminator(SrcRegDef)) {
508       assert(SrcRegDef->getOperand(0).isReg() &&
509              SrcRegDef->getOperand(0).isDef() &&
510              "Expected operand 0 to be a reg def!");
511       // Now that the PHI's use has been removed (as the instruction was
512       // removed) there should be no other uses of the SrcReg.
513       assert(MRI->use_empty(SrcReg) &&
514              "Expected a single use from UnspillableTerminator");
515       SrcRegDef->getOperand(0).setReg(IncomingReg);
516 
517       // Update LiveVariables.
518       if (LV) {
519         LiveVariables::VarInfo &SrcVI = LV->getVarInfo(SrcReg);
520         LiveVariables::VarInfo &IncomingVI = LV->getVarInfo(IncomingReg);
521         IncomingVI.AliveBlocks = std::move(SrcVI.AliveBlocks);
522         SrcVI.AliveBlocks.clear();
523       }
524 
525       continue;
526     }
527 
528     // Find a safe location to insert the copy, this may be the first terminator
529     // in the block (or end()).
530     MachineBasicBlock::iterator InsertPos =
531       findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
532 
533     // Insert the copy.
534     MachineInstr *NewSrcInstr = nullptr;
535     if (!reusedIncoming && IncomingReg) {
536       if (SrcUndef) {
537         // The source register is undefined, so there is no need for a real
538         // COPY, but we still need to ensure joint dominance by defs.
539         // Insert an IMPLICIT_DEF instruction.
540         NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
541                               TII->get(TargetOpcode::IMPLICIT_DEF),
542                               IncomingReg);
543 
544         // Clean up the old implicit-def, if there even was one.
545         if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
546           if (DefMI->isImplicitDef())
547             ImpDefs.insert(DefMI);
548       } else {
549         // Delete the debug location, since the copy is inserted into a
550         // different basic block.
551         NewSrcInstr = TII->createPHISourceCopy(opBlock, InsertPos, nullptr,
552                                                SrcReg, SrcSubReg, IncomingReg);
553       }
554     }
555 
556     // We only need to update the LiveVariables kill of SrcReg if this was the
557     // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
558     // out of the predecessor. We can also ignore undef sources.
559     if (LV && !SrcUndef &&
560         !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
561         !LV->isLiveOut(SrcReg, opBlock)) {
562       // We want to be able to insert a kill of the register if this PHI (aka,
563       // the copy we just inserted) is the last use of the source value. Live
564       // variable analysis conservatively handles this by saying that the value
565       // is live until the end of the block the PHI entry lives in. If the value
566       // really is dead at the PHI copy, there will be no successor blocks which
567       // have the value live-in.
568 
569       // Okay, if we now know that the value is not live out of the block, we
570       // can add a kill marker in this block saying that it kills the incoming
571       // value!
572 
573       // In our final twist, we have to decide which instruction kills the
574       // register.  In most cases this is the copy, however, terminator
575       // instructions at the end of the block may also use the value. In this
576       // case, we should mark the last such terminator as being the killing
577       // block, not the copy.
578       MachineBasicBlock::iterator KillInst = opBlock.end();
579       for (MachineBasicBlock::iterator Term = InsertPos; Term != opBlock.end();
580            ++Term) {
581         if (Term->readsRegister(SrcReg, /*TRI=*/nullptr))
582           KillInst = Term;
583       }
584 
585       if (KillInst == opBlock.end()) {
586         // No terminator uses the register.
587 
588         if (reusedIncoming || !IncomingReg) {
589           // We may have to rewind a bit if we didn't insert a copy this time.
590           KillInst = InsertPos;
591           while (KillInst != opBlock.begin()) {
592             --KillInst;
593             if (KillInst->isDebugInstr())
594               continue;
595             if (KillInst->readsRegister(SrcReg, /*TRI=*/nullptr))
596               break;
597           }
598         } else {
599           // We just inserted this copy.
600           KillInst = NewSrcInstr;
601         }
602       }
603       assert(KillInst->readsRegister(SrcReg, /*TRI=*/nullptr) &&
604              "Cannot find kill instruction");
605 
606       // Finally, mark it killed.
607       LV->addVirtualRegisterKilled(SrcReg, *KillInst);
608 
609       // This vreg no longer lives all of the way through opBlock.
610       unsigned opBlockNum = opBlock.getNumber();
611       LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
612     }
613 
614     if (LIS) {
615       if (NewSrcInstr) {
616         LIS->InsertMachineInstrInMaps(*NewSrcInstr);
617         LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr);
618       }
619 
620       if (!SrcUndef &&
621           !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
622         LiveInterval &SrcLI = LIS->getInterval(SrcReg);
623 
624         bool isLiveOut = false;
625         for (MachineBasicBlock *Succ : opBlock.successors()) {
626           SlotIndex startIdx = LIS->getMBBStartIdx(Succ);
627           VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
628 
629           // Definitions by other PHIs are not truly live-in for our purposes.
630           if (VNI && VNI->def != startIdx) {
631             isLiveOut = true;
632             break;
633           }
634         }
635 
636         if (!isLiveOut) {
637           MachineBasicBlock::iterator KillInst = opBlock.end();
638           for (MachineBasicBlock::iterator Term = InsertPos;
639                Term != opBlock.end(); ++Term) {
640             if (Term->readsRegister(SrcReg, /*TRI=*/nullptr))
641               KillInst = Term;
642           }
643 
644           if (KillInst == opBlock.end()) {
645             // No terminator uses the register.
646 
647             if (reusedIncoming || !IncomingReg) {
648               // We may have to rewind a bit if we didn't just insert a copy.
649               KillInst = InsertPos;
650               while (KillInst != opBlock.begin()) {
651                 --KillInst;
652                 if (KillInst->isDebugInstr())
653                   continue;
654                 if (KillInst->readsRegister(SrcReg, /*TRI=*/nullptr))
655                   break;
656               }
657             } else {
658               // We just inserted this copy.
659               KillInst = std::prev(InsertPos);
660             }
661           }
662           assert(KillInst->readsRegister(SrcReg, /*TRI=*/nullptr) &&
663                  "Cannot find kill instruction");
664 
665           SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst);
666           SrcLI.removeSegment(LastUseIndex.getRegSlot(),
667                               LIS->getMBBEndIdx(&opBlock));
668           for (auto &SR : SrcLI.subranges()) {
669             SR.removeSegment(LastUseIndex.getRegSlot(),
670                              LIS->getMBBEndIdx(&opBlock));
671           }
672         }
673       }
674     }
675   }
676 
677   // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
678   if (EliminateNow) {
679     if (LIS)
680       LIS->RemoveMachineInstrFromMaps(*MPhi);
681     MF.deleteMachineInstr(MPhi);
682   }
683 }
684 
685 /// analyzePHINodes - Gather information about the PHI nodes in here. In
686 /// particular, we want to map the number of uses of a virtual register which is
687 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
688 /// used later to determine when the vreg is killed in the BB.
689 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
690   for (const auto &MBB : MF) {
691     for (const auto &BBI : MBB) {
692       if (!BBI.isPHI())
693         break;
694       for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) {
695         if (!BBI.getOperand(i).isUndef()) {
696           ++VRegPHIUseCount[BBVRegPair(
697               BBI.getOperand(i + 1).getMBB()->getNumber(),
698               BBI.getOperand(i).getReg())];
699         }
700       }
701     }
702   }
703 }
704 
705 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
706                                    MachineBasicBlock &MBB,
707                                    MachineLoopInfo *MLI,
708                                    std::vector<SparseBitVector<>> *LiveInSets) {
709   if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad())
710     return false;   // Quick exit for basic blocks without PHIs.
711 
712   const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
713   bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
714 
715   bool Changed = false;
716   for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
717        BBI != BBE && BBI->isPHI(); ++BBI) {
718     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
719       Register Reg = BBI->getOperand(i).getReg();
720       MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
721       // Is there a critical edge from PreMBB to MBB?
722       if (PreMBB->succ_size() == 1)
723         continue;
724 
725       // Avoid splitting backedges of loops. It would introduce small
726       // out-of-line blocks into the loop which is very bad for code placement.
727       if (PreMBB == &MBB && !SplitAllCriticalEdges)
728         continue;
729       const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
730       if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
731         continue;
732 
733       // LV doesn't consider a phi use live-out, so isLiveOut only returns true
734       // when the source register is live-out for some other reason than a phi
735       // use. That means the copy we will insert in PreMBB won't be a kill, and
736       // there is a risk it may not be coalesced away.
737       //
738       // If the copy would be a kill, there is no need to split the edge.
739       bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB);
740       if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit)
741         continue;
742       if (ShouldSplit) {
743         LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge "
744                           << printMBBReference(*PreMBB) << " -> "
745                           << printMBBReference(MBB) << ": " << *BBI);
746       }
747 
748       // If Reg is not live-in to MBB, it means it must be live-in to some
749       // other PreMBB successor, and we can avoid the interference by splitting
750       // the edge.
751       //
752       // If Reg *is* live-in to MBB, the interference is inevitable and a copy
753       // is likely to be left after coalescing. If we are looking at a loop
754       // exiting edge, split it so we won't insert code in the loop, otherwise
755       // don't bother.
756       ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB);
757 
758       // Check for a loop exiting edge.
759       if (!ShouldSplit && CurLoop != PreLoop) {
760         LLVM_DEBUG({
761           dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
762           if (PreLoop)
763             dbgs() << "PreLoop: " << *PreLoop;
764           if (CurLoop)
765             dbgs() << "CurLoop: " << *CurLoop;
766         });
767         // This edge could be entering a loop, exiting a loop, or it could be
768         // both: Jumping directly form one loop to the header of a sibling
769         // loop.
770         // Split unless this edge is entering CurLoop from an outer loop.
771         ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
772       }
773       if (!ShouldSplit && !SplitAllCriticalEdges)
774         continue;
775       if (!PreMBB->SplitCriticalEdge(&MBB, *this, LiveInSets)) {
776         LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n");
777         continue;
778       }
779       Changed = true;
780       ++NumCriticalEdgesSplit;
781     }
782   }
783   return Changed;
784 }
785 
786 bool PHIElimination::isLiveIn(Register Reg, const MachineBasicBlock *MBB) {
787   assert((LV || LIS) &&
788          "isLiveIn() requires either LiveVariables or LiveIntervals");
789   if (LIS)
790     return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
791   else
792     return LV->isLiveIn(Reg, *MBB);
793 }
794 
795 bool PHIElimination::isLiveOutPastPHIs(Register Reg,
796                                        const MachineBasicBlock *MBB) {
797   assert((LV || LIS) &&
798          "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
799   // LiveVariables considers uses in PHIs to be in the predecessor basic block,
800   // so that a register used only in a PHI is not live out of the block. In
801   // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
802   // in the predecessor basic block, so that a register used only in a PHI is live
803   // out of the block.
804   if (LIS) {
805     const LiveInterval &LI = LIS->getInterval(Reg);
806     for (const MachineBasicBlock *SI : MBB->successors())
807       if (LI.liveAt(LIS->getMBBStartIdx(SI)))
808         return true;
809     return false;
810   } else {
811     return LV->isLiveOut(Reg, *MBB);
812   }
813 }
814