1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass eliminates machine instruction PHI nodes by inserting copy 10 // instructions. This destroys SSA information, but is the desired input for 11 // some register allocators. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "PHIEliminationUtils.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/CodeGen/LiveInterval.h" 21 #include "llvm/CodeGen/LiveIntervals.h" 22 #include "llvm/CodeGen/LiveVariables.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineDominators.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineLoopInfo.h" 30 #include "llvm/CodeGen/MachineOperand.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/SlotIndexes.h" 33 #include "llvm/CodeGen/TargetInstrInfo.h" 34 #include "llvm/CodeGen/TargetOpcodes.h" 35 #include "llvm/CodeGen/TargetRegisterInfo.h" 36 #include "llvm/CodeGen/TargetSubtargetInfo.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include <cassert> 42 #include <iterator> 43 #include <utility> 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "phi-node-elimination" 48 49 static cl::opt<bool> 50 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false), 51 cl::Hidden, cl::desc("Disable critical edge splitting " 52 "during PHI elimination")); 53 54 static cl::opt<bool> 55 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false), 56 cl::Hidden, cl::desc("Split all critical edges during " 57 "PHI elimination")); 58 59 static cl::opt<bool> NoPhiElimLiveOutEarlyExit( 60 "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden, 61 cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true.")); 62 63 namespace { 64 65 class PHIElimination : public MachineFunctionPass { 66 MachineRegisterInfo *MRI = nullptr; // Machine register information 67 LiveVariables *LV = nullptr; 68 LiveIntervals *LIS = nullptr; 69 70 public: 71 static char ID; // Pass identification, replacement for typeid 72 73 PHIElimination() : MachineFunctionPass(ID) { 74 initializePHIEliminationPass(*PassRegistry::getPassRegistry()); 75 } 76 77 bool runOnMachineFunction(MachineFunction &MF) override; 78 void getAnalysisUsage(AnalysisUsage &AU) const override; 79 80 private: 81 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions 82 /// in predecessor basic blocks. 83 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); 84 85 void LowerPHINode(MachineBasicBlock &MBB, 86 MachineBasicBlock::iterator LastPHIIt, 87 bool AllEdgesCritical); 88 89 /// analyzePHINodes - Gather information about the PHI nodes in 90 /// here. In particular, we want to map the number of uses of a virtual 91 /// register which is used in a PHI node. We map that to the BB the 92 /// vreg is coming from. This is used later to determine when the vreg 93 /// is killed in the BB. 94 void analyzePHINodes(const MachineFunction& MF); 95 96 /// Split critical edges where necessary for good coalescer performance. 97 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, 98 MachineLoopInfo *MLI, 99 std::vector<SparseBitVector<>> *LiveInSets); 100 101 // These functions are temporary abstractions around LiveVariables and 102 // LiveIntervals, so they can go away when LiveVariables does. 103 bool isLiveIn(Register Reg, const MachineBasicBlock *MBB); 104 bool isLiveOutPastPHIs(Register Reg, const MachineBasicBlock *MBB); 105 106 using BBVRegPair = std::pair<unsigned, Register>; 107 using VRegPHIUse = DenseMap<BBVRegPair, unsigned>; 108 109 // Count the number of non-undef PHI uses of each register in each BB. 110 VRegPHIUse VRegPHIUseCount; 111 112 // Defs of PHI sources which are implicit_def. 113 SmallPtrSet<MachineInstr*, 4> ImpDefs; 114 115 // Map reusable lowered PHI node -> incoming join register. 116 using LoweredPHIMap = 117 DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>; 118 LoweredPHIMap LoweredPHIs; 119 }; 120 121 } // end anonymous namespace 122 123 STATISTIC(NumLowered, "Number of phis lowered"); 124 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split"); 125 STATISTIC(NumReused, "Number of reused lowered phis"); 126 127 char PHIElimination::ID = 0; 128 129 char& llvm::PHIEliminationID = PHIElimination::ID; 130 131 INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE, 132 "Eliminate PHI nodes for register allocation", 133 false, false) 134 INITIALIZE_PASS_DEPENDENCY(LiveVariablesWrapperPass) 135 INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE, 136 "Eliminate PHI nodes for register allocation", false, false) 137 138 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { 139 AU.addUsedIfAvailable<LiveVariablesWrapperPass>(); 140 AU.addPreserved<LiveVariablesWrapperPass>(); 141 AU.addPreserved<SlotIndexesWrapperPass>(); 142 AU.addPreserved<LiveIntervals>(); 143 AU.addPreserved<MachineDominatorTreeWrapperPass>(); 144 AU.addPreserved<MachineLoopInfoWrapperPass>(); 145 MachineFunctionPass::getAnalysisUsage(AU); 146 } 147 148 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) { 149 MRI = &MF.getRegInfo(); 150 auto *LVWrapper = getAnalysisIfAvailable<LiveVariablesWrapperPass>(); 151 LV = LVWrapper ? &LVWrapper->getLV() : nullptr; 152 LIS = getAnalysisIfAvailable<LiveIntervals>(); 153 154 bool Changed = false; 155 156 // Split critical edges to help the coalescer. 157 if (!DisableEdgeSplitting && (LV || LIS)) { 158 // A set of live-in regs for each MBB which is used to update LV 159 // efficiently also with large functions. 160 std::vector<SparseBitVector<>> LiveInSets; 161 if (LV) { 162 LiveInSets.resize(MF.size()); 163 for (unsigned Index = 0, e = MRI->getNumVirtRegs(); Index != e; ++Index) { 164 // Set the bit for this register for each MBB where it is 165 // live-through or live-in (killed). 166 Register VirtReg = Register::index2VirtReg(Index); 167 MachineInstr *DefMI = MRI->getVRegDef(VirtReg); 168 if (!DefMI) 169 continue; 170 LiveVariables::VarInfo &VI = LV->getVarInfo(VirtReg); 171 SparseBitVector<>::iterator AliveBlockItr = VI.AliveBlocks.begin(); 172 SparseBitVector<>::iterator EndItr = VI.AliveBlocks.end(); 173 while (AliveBlockItr != EndItr) { 174 unsigned BlockNum = *(AliveBlockItr++); 175 LiveInSets[BlockNum].set(Index); 176 } 177 // The register is live into an MBB in which it is killed but not 178 // defined. See comment for VarInfo in LiveVariables.h. 179 MachineBasicBlock *DefMBB = DefMI->getParent(); 180 if (VI.Kills.size() > 1 || 181 (!VI.Kills.empty() && VI.Kills.front()->getParent() != DefMBB)) 182 for (auto *MI : VI.Kills) 183 LiveInSets[MI->getParent()->getNumber()].set(Index); 184 } 185 } 186 187 MachineLoopInfoWrapperPass *MLIWrapper = 188 getAnalysisIfAvailable<MachineLoopInfoWrapperPass>(); 189 MachineLoopInfo *MLI = MLIWrapper ? &MLIWrapper->getLI() : nullptr; 190 for (auto &MBB : MF) 191 Changed |= SplitPHIEdges(MF, MBB, MLI, (LV ? &LiveInSets : nullptr)); 192 } 193 194 // This pass takes the function out of SSA form. 195 MRI->leaveSSA(); 196 197 // Populate VRegPHIUseCount 198 if (LV || LIS) 199 analyzePHINodes(MF); 200 201 // Eliminate PHI instructions by inserting copies into predecessor blocks. 202 for (auto &MBB : MF) 203 Changed |= EliminatePHINodes(MF, MBB); 204 205 // Remove dead IMPLICIT_DEF instructions. 206 for (MachineInstr *DefMI : ImpDefs) { 207 Register DefReg = DefMI->getOperand(0).getReg(); 208 if (MRI->use_nodbg_empty(DefReg)) { 209 if (LIS) 210 LIS->RemoveMachineInstrFromMaps(*DefMI); 211 DefMI->eraseFromParent(); 212 } 213 } 214 215 // Clean up the lowered PHI instructions. 216 for (auto &I : LoweredPHIs) { 217 if (LIS) 218 LIS->RemoveMachineInstrFromMaps(*I.first); 219 MF.deleteMachineInstr(I.first); 220 } 221 222 // TODO: we should use the incremental DomTree updater here. 223 if (Changed) 224 if (auto *MDT = getAnalysisIfAvailable<MachineDominatorTreeWrapperPass>()) 225 MDT->getDomTree().getBase().recalculate(MF); 226 227 LoweredPHIs.clear(); 228 ImpDefs.clear(); 229 VRegPHIUseCount.clear(); 230 231 MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs); 232 233 return Changed; 234 } 235 236 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in 237 /// predecessor basic blocks. 238 bool PHIElimination::EliminatePHINodes(MachineFunction &MF, 239 MachineBasicBlock &MBB) { 240 if (MBB.empty() || !MBB.front().isPHI()) 241 return false; // Quick exit for basic blocks without PHIs. 242 243 // Get an iterator to the last PHI node. 244 MachineBasicBlock::iterator LastPHIIt = 245 std::prev(MBB.SkipPHIsAndLabels(MBB.begin())); 246 247 // If all incoming edges are critical, we try to deduplicate identical PHIs so 248 // that we generate fewer copies. If at any edge is non-critical, we either 249 // have less than two predecessors (=> no PHIs) or a predecessor has only us 250 // as a successor (=> identical PHI node can't occur in different block). 251 bool AllEdgesCritical = MBB.pred_size() >= 2; 252 for (MachineBasicBlock *Pred : MBB.predecessors()) { 253 if (Pred->succ_size() < 2) { 254 AllEdgesCritical = false; 255 break; 256 } 257 } 258 259 while (MBB.front().isPHI()) 260 LowerPHINode(MBB, LastPHIIt, AllEdgesCritical); 261 262 return true; 263 } 264 265 /// Return true if all defs of VirtReg are implicit-defs. 266 /// This includes registers with no defs. 267 static bool isImplicitlyDefined(unsigned VirtReg, 268 const MachineRegisterInfo &MRI) { 269 for (MachineInstr &DI : MRI.def_instructions(VirtReg)) 270 if (!DI.isImplicitDef()) 271 return false; 272 return true; 273 } 274 275 /// Return true if all sources of the phi node are implicit_def's, or undef's. 276 static bool allPhiOperandsUndefined(const MachineInstr &MPhi, 277 const MachineRegisterInfo &MRI) { 278 for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) { 279 const MachineOperand &MO = MPhi.getOperand(I); 280 if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef()) 281 return false; 282 } 283 return true; 284 } 285 /// LowerPHINode - Lower the PHI node at the top of the specified block. 286 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB, 287 MachineBasicBlock::iterator LastPHIIt, 288 bool AllEdgesCritical) { 289 ++NumLowered; 290 291 MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt); 292 293 // Unlink the PHI node from the basic block, but don't delete the PHI yet. 294 MachineInstr *MPhi = MBB.remove(&*MBB.begin()); 295 296 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; 297 Register DestReg = MPhi->getOperand(0).getReg(); 298 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs"); 299 bool isDead = MPhi->getOperand(0).isDead(); 300 301 // Create a new register for the incoming PHI arguments. 302 MachineFunction &MF = *MBB.getParent(); 303 unsigned IncomingReg = 0; 304 bool EliminateNow = true; // delay elimination of nodes in LoweredPHIs 305 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI? 306 307 // Insert a register to register copy at the top of the current block (but 308 // after any remaining phi nodes) which copies the new incoming register 309 // into the phi node destination. 310 MachineInstr *PHICopy = nullptr; 311 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 312 if (allPhiOperandsUndefined(*MPhi, *MRI)) 313 // If all sources of a PHI node are implicit_def or undef uses, just emit an 314 // implicit_def instead of a copy. 315 PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 316 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); 317 else { 318 // Can we reuse an earlier PHI node? This only happens for critical edges, 319 // typically those created by tail duplication. Typically, an identical PHI 320 // node can't occur, so avoid hashing/storing such PHIs, which is somewhat 321 // expensive. 322 unsigned *Entry = nullptr; 323 if (AllEdgesCritical) 324 Entry = &LoweredPHIs[MPhi]; 325 if (Entry && *Entry) { 326 // An identical PHI node was already lowered. Reuse the incoming register. 327 IncomingReg = *Entry; 328 reusedIncoming = true; 329 ++NumReused; 330 LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for " 331 << *MPhi); 332 } else { 333 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); 334 IncomingReg = MF.getRegInfo().createVirtualRegister(RC); 335 if (Entry) { 336 EliminateNow = false; 337 *Entry = IncomingReg; 338 } 339 } 340 341 // Give the target possiblity to handle special cases fallthrough otherwise 342 PHICopy = TII->createPHIDestinationCopy(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 343 IncomingReg, DestReg); 344 } 345 346 if (MPhi->peekDebugInstrNum()) { 347 // If referred to by debug-info, store where this PHI was. 348 MachineFunction *MF = MBB.getParent(); 349 unsigned ID = MPhi->peekDebugInstrNum(); 350 auto P = MachineFunction::DebugPHIRegallocPos(&MBB, IncomingReg, 0); 351 auto Res = MF->DebugPHIPositions.insert({ID, P}); 352 assert(Res.second); 353 (void)Res; 354 } 355 356 // Update live variable information if there is any. 357 if (LV) { 358 if (IncomingReg) { 359 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg); 360 361 MachineInstr *OldKill = nullptr; 362 bool IsPHICopyAfterOldKill = false; 363 364 if (reusedIncoming && (OldKill = VI.findKill(&MBB))) { 365 // Calculate whether the PHICopy is after the OldKill. 366 // In general, the PHICopy is inserted as the first non-phi instruction 367 // by default, so it's before the OldKill. But some Target hooks for 368 // createPHIDestinationCopy() may modify the default insert position of 369 // PHICopy. 370 for (auto I = MBB.SkipPHIsAndLabels(MBB.begin()), E = MBB.end(); 371 I != E; ++I) { 372 if (I == PHICopy) 373 break; 374 375 if (I == OldKill) { 376 IsPHICopyAfterOldKill = true; 377 break; 378 } 379 } 380 } 381 382 // When we are reusing the incoming register and it has been marked killed 383 // by OldKill, if the PHICopy is after the OldKill, we should remove the 384 // killed flag from OldKill. 385 if (IsPHICopyAfterOldKill) { 386 LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill); 387 LV->removeVirtualRegisterKilled(IncomingReg, *OldKill); 388 LLVM_DEBUG(MBB.dump()); 389 } 390 391 // Add information to LiveVariables to know that the first used incoming 392 // value or the resued incoming value whose PHICopy is after the OldKIll 393 // is killed. Note that because the value is defined in several places 394 // (once each for each incoming block), the "def" block and instruction 395 // fields for the VarInfo is not filled in. 396 if (!OldKill || IsPHICopyAfterOldKill) 397 LV->addVirtualRegisterKilled(IncomingReg, *PHICopy); 398 } 399 400 // Since we are going to be deleting the PHI node, if it is the last use of 401 // any registers, or if the value itself is dead, we need to move this 402 // information over to the new copy we just inserted. 403 LV->removeVirtualRegistersKilled(*MPhi); 404 405 // If the result is dead, update LV. 406 if (isDead) { 407 LV->addVirtualRegisterDead(DestReg, *PHICopy); 408 LV->removeVirtualRegisterDead(DestReg, *MPhi); 409 } 410 } 411 412 // Update LiveIntervals for the new copy or implicit def. 413 if (LIS) { 414 SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy); 415 416 SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB); 417 if (IncomingReg) { 418 // Add the region from the beginning of MBB to the copy instruction to 419 // IncomingReg's live interval. 420 LiveInterval &IncomingLI = LIS->getOrCreateEmptyInterval(IncomingReg); 421 VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex); 422 if (!IncomingVNI) 423 IncomingVNI = IncomingLI.getNextValue(MBBStartIndex, 424 LIS->getVNInfoAllocator()); 425 IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex, 426 DestCopyIndex.getRegSlot(), 427 IncomingVNI)); 428 } 429 430 LiveInterval &DestLI = LIS->getInterval(DestReg); 431 assert(!DestLI.empty() && "PHIs should have non-empty LiveIntervals."); 432 433 SlotIndex NewStart = DestCopyIndex.getRegSlot(); 434 435 SmallVector<LiveRange *> ToUpdate({&DestLI}); 436 for (auto &SR : DestLI.subranges()) 437 ToUpdate.push_back(&SR); 438 439 for (auto LR : ToUpdate) { 440 auto DestSegment = LR->find(MBBStartIndex); 441 assert(DestSegment != LR->end() && 442 "PHI destination must be live in block"); 443 444 if (LR->endIndex().isDead()) { 445 // A dead PHI's live range begins and ends at the start of the MBB, but 446 // the lowered copy, which will still be dead, needs to begin and end at 447 // the copy instruction. 448 VNInfo *OrigDestVNI = LR->getVNInfoAt(DestSegment->start); 449 assert(OrigDestVNI && "PHI destination should be live at block entry."); 450 LR->removeSegment(DestSegment->start, DestSegment->start.getDeadSlot()); 451 LR->createDeadDef(NewStart, LIS->getVNInfoAllocator()); 452 LR->removeValNo(OrigDestVNI); 453 continue; 454 } 455 456 // Destination copies are not inserted in the same order as the PHI nodes 457 // they replace. Hence the start of the live range may need to be adjusted 458 // to match the actual slot index of the copy. 459 if (DestSegment->start > NewStart) { 460 VNInfo *VNI = LR->getVNInfoAt(DestSegment->start); 461 assert(VNI && "value should be defined for known segment"); 462 LR->addSegment( 463 LiveInterval::Segment(NewStart, DestSegment->start, VNI)); 464 } else if (DestSegment->start < NewStart) { 465 assert(DestSegment->start >= MBBStartIndex); 466 assert(DestSegment->end >= DestCopyIndex.getRegSlot()); 467 LR->removeSegment(DestSegment->start, NewStart); 468 } 469 VNInfo *DestVNI = LR->getVNInfoAt(NewStart); 470 assert(DestVNI && "PHI destination should be live at its definition."); 471 DestVNI->def = NewStart; 472 } 473 } 474 475 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. 476 if (LV || LIS) { 477 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) { 478 if (!MPhi->getOperand(i).isUndef()) { 479 --VRegPHIUseCount[BBVRegPair( 480 MPhi->getOperand(i + 1).getMBB()->getNumber(), 481 MPhi->getOperand(i).getReg())]; 482 } 483 } 484 } 485 486 // Now loop over all of the incoming arguments, changing them to copy into the 487 // IncomingReg register in the corresponding predecessor basic block. 488 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto; 489 for (int i = NumSrcs - 1; i >= 0; --i) { 490 Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg(); 491 unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg(); 492 bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() || 493 isImplicitlyDefined(SrcReg, *MRI); 494 assert(SrcReg.isVirtual() && 495 "Machine PHI Operands must all be virtual registers!"); 496 497 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source 498 // path the PHI. 499 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB(); 500 501 // Check to make sure we haven't already emitted the copy for this block. 502 // This can happen because PHI nodes may have multiple entries for the same 503 // basic block. 504 if (!MBBsInsertedInto.insert(&opBlock).second) 505 continue; // If the copy has already been emitted, we're done. 506 507 MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg); 508 if (SrcRegDef && TII->isUnspillableTerminator(SrcRegDef)) { 509 assert(SrcRegDef->getOperand(0).isReg() && 510 SrcRegDef->getOperand(0).isDef() && 511 "Expected operand 0 to be a reg def!"); 512 // Now that the PHI's use has been removed (as the instruction was 513 // removed) there should be no other uses of the SrcReg. 514 assert(MRI->use_empty(SrcReg) && 515 "Expected a single use from UnspillableTerminator"); 516 SrcRegDef->getOperand(0).setReg(IncomingReg); 517 518 // Update LiveVariables. 519 if (LV) { 520 LiveVariables::VarInfo &SrcVI = LV->getVarInfo(SrcReg); 521 LiveVariables::VarInfo &IncomingVI = LV->getVarInfo(IncomingReg); 522 IncomingVI.AliveBlocks = std::move(SrcVI.AliveBlocks); 523 SrcVI.AliveBlocks.clear(); 524 } 525 526 continue; 527 } 528 529 // Find a safe location to insert the copy, this may be the first terminator 530 // in the block (or end()). 531 MachineBasicBlock::iterator InsertPos = 532 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg); 533 534 // Insert the copy. 535 MachineInstr *NewSrcInstr = nullptr; 536 if (!reusedIncoming && IncomingReg) { 537 if (SrcUndef) { 538 // The source register is undefined, so there is no need for a real 539 // COPY, but we still need to ensure joint dominance by defs. 540 // Insert an IMPLICIT_DEF instruction. 541 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 542 TII->get(TargetOpcode::IMPLICIT_DEF), 543 IncomingReg); 544 545 // Clean up the old implicit-def, if there even was one. 546 if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg)) 547 if (DefMI->isImplicitDef()) 548 ImpDefs.insert(DefMI); 549 } else { 550 // Delete the debug location, since the copy is inserted into a 551 // different basic block. 552 NewSrcInstr = TII->createPHISourceCopy(opBlock, InsertPos, nullptr, 553 SrcReg, SrcSubReg, IncomingReg); 554 } 555 } 556 557 // We only need to update the LiveVariables kill of SrcReg if this was the 558 // last PHI use of SrcReg to be lowered on this CFG edge and it is not live 559 // out of the predecessor. We can also ignore undef sources. 560 if (LV && !SrcUndef && 561 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] && 562 !LV->isLiveOut(SrcReg, opBlock)) { 563 // We want to be able to insert a kill of the register if this PHI (aka, 564 // the copy we just inserted) is the last use of the source value. Live 565 // variable analysis conservatively handles this by saying that the value 566 // is live until the end of the block the PHI entry lives in. If the value 567 // really is dead at the PHI copy, there will be no successor blocks which 568 // have the value live-in. 569 570 // Okay, if we now know that the value is not live out of the block, we 571 // can add a kill marker in this block saying that it kills the incoming 572 // value! 573 574 // In our final twist, we have to decide which instruction kills the 575 // register. In most cases this is the copy, however, terminator 576 // instructions at the end of the block may also use the value. In this 577 // case, we should mark the last such terminator as being the killing 578 // block, not the copy. 579 MachineBasicBlock::iterator KillInst = opBlock.end(); 580 for (MachineBasicBlock::iterator Term = InsertPos; Term != opBlock.end(); 581 ++Term) { 582 if (Term->readsRegister(SrcReg, /*TRI=*/nullptr)) 583 KillInst = Term; 584 } 585 586 if (KillInst == opBlock.end()) { 587 // No terminator uses the register. 588 589 if (reusedIncoming || !IncomingReg) { 590 // We may have to rewind a bit if we didn't insert a copy this time. 591 KillInst = InsertPos; 592 while (KillInst != opBlock.begin()) { 593 --KillInst; 594 if (KillInst->isDebugInstr()) 595 continue; 596 if (KillInst->readsRegister(SrcReg, /*TRI=*/nullptr)) 597 break; 598 } 599 } else { 600 // We just inserted this copy. 601 KillInst = NewSrcInstr; 602 } 603 } 604 assert(KillInst->readsRegister(SrcReg, /*TRI=*/nullptr) && 605 "Cannot find kill instruction"); 606 607 // Finally, mark it killed. 608 LV->addVirtualRegisterKilled(SrcReg, *KillInst); 609 610 // This vreg no longer lives all of the way through opBlock. 611 unsigned opBlockNum = opBlock.getNumber(); 612 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum); 613 } 614 615 if (LIS) { 616 if (NewSrcInstr) { 617 LIS->InsertMachineInstrInMaps(*NewSrcInstr); 618 LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr); 619 } 620 621 if (!SrcUndef && 622 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) { 623 LiveInterval &SrcLI = LIS->getInterval(SrcReg); 624 625 bool isLiveOut = false; 626 for (MachineBasicBlock *Succ : opBlock.successors()) { 627 SlotIndex startIdx = LIS->getMBBStartIdx(Succ); 628 VNInfo *VNI = SrcLI.getVNInfoAt(startIdx); 629 630 // Definitions by other PHIs are not truly live-in for our purposes. 631 if (VNI && VNI->def != startIdx) { 632 isLiveOut = true; 633 break; 634 } 635 } 636 637 if (!isLiveOut) { 638 MachineBasicBlock::iterator KillInst = opBlock.end(); 639 for (MachineBasicBlock::iterator Term = InsertPos; 640 Term != opBlock.end(); ++Term) { 641 if (Term->readsRegister(SrcReg, /*TRI=*/nullptr)) 642 KillInst = Term; 643 } 644 645 if (KillInst == opBlock.end()) { 646 // No terminator uses the register. 647 648 if (reusedIncoming || !IncomingReg) { 649 // We may have to rewind a bit if we didn't just insert a copy. 650 KillInst = InsertPos; 651 while (KillInst != opBlock.begin()) { 652 --KillInst; 653 if (KillInst->isDebugInstr()) 654 continue; 655 if (KillInst->readsRegister(SrcReg, /*TRI=*/nullptr)) 656 break; 657 } 658 } else { 659 // We just inserted this copy. 660 KillInst = std::prev(InsertPos); 661 } 662 } 663 assert(KillInst->readsRegister(SrcReg, /*TRI=*/nullptr) && 664 "Cannot find kill instruction"); 665 666 SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst); 667 SrcLI.removeSegment(LastUseIndex.getRegSlot(), 668 LIS->getMBBEndIdx(&opBlock)); 669 for (auto &SR : SrcLI.subranges()) { 670 SR.removeSegment(LastUseIndex.getRegSlot(), 671 LIS->getMBBEndIdx(&opBlock)); 672 } 673 } 674 } 675 } 676 } 677 678 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map. 679 if (EliminateNow) { 680 if (LIS) 681 LIS->RemoveMachineInstrFromMaps(*MPhi); 682 MF.deleteMachineInstr(MPhi); 683 } 684 } 685 686 /// analyzePHINodes - Gather information about the PHI nodes in here. In 687 /// particular, we want to map the number of uses of a virtual register which is 688 /// used in a PHI node. We map that to the BB the vreg is coming from. This is 689 /// used later to determine when the vreg is killed in the BB. 690 void PHIElimination::analyzePHINodes(const MachineFunction& MF) { 691 for (const auto &MBB : MF) { 692 for (const auto &BBI : MBB) { 693 if (!BBI.isPHI()) 694 break; 695 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) { 696 if (!BBI.getOperand(i).isUndef()) { 697 ++VRegPHIUseCount[BBVRegPair( 698 BBI.getOperand(i + 1).getMBB()->getNumber(), 699 BBI.getOperand(i).getReg())]; 700 } 701 } 702 } 703 } 704 } 705 706 bool PHIElimination::SplitPHIEdges(MachineFunction &MF, 707 MachineBasicBlock &MBB, 708 MachineLoopInfo *MLI, 709 std::vector<SparseBitVector<>> *LiveInSets) { 710 if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad()) 711 return false; // Quick exit for basic blocks without PHIs. 712 713 const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr; 714 bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader(); 715 716 bool Changed = false; 717 for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end(); 718 BBI != BBE && BBI->isPHI(); ++BBI) { 719 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { 720 Register Reg = BBI->getOperand(i).getReg(); 721 MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB(); 722 // Is there a critical edge from PreMBB to MBB? 723 if (PreMBB->succ_size() == 1) 724 continue; 725 726 // Avoid splitting backedges of loops. It would introduce small 727 // out-of-line blocks into the loop which is very bad for code placement. 728 if (PreMBB == &MBB && !SplitAllCriticalEdges) 729 continue; 730 const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr; 731 if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges) 732 continue; 733 734 // LV doesn't consider a phi use live-out, so isLiveOut only returns true 735 // when the source register is live-out for some other reason than a phi 736 // use. That means the copy we will insert in PreMBB won't be a kill, and 737 // there is a risk it may not be coalesced away. 738 // 739 // If the copy would be a kill, there is no need to split the edge. 740 bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB); 741 if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit) 742 continue; 743 if (ShouldSplit) { 744 LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge " 745 << printMBBReference(*PreMBB) << " -> " 746 << printMBBReference(MBB) << ": " << *BBI); 747 } 748 749 // If Reg is not live-in to MBB, it means it must be live-in to some 750 // other PreMBB successor, and we can avoid the interference by splitting 751 // the edge. 752 // 753 // If Reg *is* live-in to MBB, the interference is inevitable and a copy 754 // is likely to be left after coalescing. If we are looking at a loop 755 // exiting edge, split it so we won't insert code in the loop, otherwise 756 // don't bother. 757 ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB); 758 759 // Check for a loop exiting edge. 760 if (!ShouldSplit && CurLoop != PreLoop) { 761 LLVM_DEBUG({ 762 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n"; 763 if (PreLoop) 764 dbgs() << "PreLoop: " << *PreLoop; 765 if (CurLoop) 766 dbgs() << "CurLoop: " << *CurLoop; 767 }); 768 // This edge could be entering a loop, exiting a loop, or it could be 769 // both: Jumping directly form one loop to the header of a sibling 770 // loop. 771 // Split unless this edge is entering CurLoop from an outer loop. 772 ShouldSplit = PreLoop && !PreLoop->contains(CurLoop); 773 } 774 if (!ShouldSplit && !SplitAllCriticalEdges) 775 continue; 776 if (!PreMBB->SplitCriticalEdge(&MBB, *this, LiveInSets)) { 777 LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n"); 778 continue; 779 } 780 Changed = true; 781 ++NumCriticalEdgesSplit; 782 } 783 } 784 return Changed; 785 } 786 787 bool PHIElimination::isLiveIn(Register Reg, const MachineBasicBlock *MBB) { 788 assert((LV || LIS) && 789 "isLiveIn() requires either LiveVariables or LiveIntervals"); 790 if (LIS) 791 return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB); 792 else 793 return LV->isLiveIn(Reg, *MBB); 794 } 795 796 bool PHIElimination::isLiveOutPastPHIs(Register Reg, 797 const MachineBasicBlock *MBB) { 798 assert((LV || LIS) && 799 "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals"); 800 // LiveVariables considers uses in PHIs to be in the predecessor basic block, 801 // so that a register used only in a PHI is not live out of the block. In 802 // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than 803 // in the predecessor basic block, so that a register used only in a PHI is live 804 // out of the block. 805 if (LIS) { 806 const LiveInterval &LI = LIS->getInterval(Reg); 807 for (const MachineBasicBlock *SI : MBB->successors()) 808 if (LI.liveAt(LIS->getMBBStartIdx(SI))) 809 return true; 810 return false; 811 } else { 812 return LV->isLiveOut(Reg, *MBB); 813 } 814 } 815