1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass eliminates machine instruction PHI nodes by inserting copy 10 // instructions. This destroys SSA information, but is the desired input for 11 // some register allocators. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "PHIEliminationUtils.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/CodeGen/LiveInterval.h" 21 #include "llvm/CodeGen/LiveIntervals.h" 22 #include "llvm/CodeGen/LiveVariables.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineDominators.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineLoopInfo.h" 30 #include "llvm/CodeGen/MachineOperand.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/SlotIndexes.h" 33 #include "llvm/CodeGen/TargetInstrInfo.h" 34 #include "llvm/CodeGen/TargetOpcodes.h" 35 #include "llvm/CodeGen/TargetRegisterInfo.h" 36 #include "llvm/CodeGen/TargetSubtargetInfo.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include <cassert> 42 #include <iterator> 43 #include <utility> 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "phi-node-elimination" 48 49 static cl::opt<bool> 50 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false), 51 cl::Hidden, cl::desc("Disable critical edge splitting " 52 "during PHI elimination")); 53 54 static cl::opt<bool> 55 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false), 56 cl::Hidden, cl::desc("Split all critical edges during " 57 "PHI elimination")); 58 59 static cl::opt<bool> NoPhiElimLiveOutEarlyExit( 60 "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden, 61 cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true.")); 62 63 namespace { 64 65 class PHIElimination : public MachineFunctionPass { 66 MachineRegisterInfo *MRI = nullptr; // Machine register information 67 LiveVariables *LV = nullptr; 68 LiveIntervals *LIS = nullptr; 69 70 public: 71 static char ID; // Pass identification, replacement for typeid 72 73 PHIElimination() : MachineFunctionPass(ID) { 74 initializePHIEliminationPass(*PassRegistry::getPassRegistry()); 75 } 76 77 bool runOnMachineFunction(MachineFunction &MF) override; 78 void getAnalysisUsage(AnalysisUsage &AU) const override; 79 80 private: 81 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions 82 /// in predecessor basic blocks. 83 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); 84 85 void LowerPHINode(MachineBasicBlock &MBB, 86 MachineBasicBlock::iterator LastPHIIt); 87 88 /// analyzePHINodes - Gather information about the PHI nodes in 89 /// here. In particular, we want to map the number of uses of a virtual 90 /// register which is used in a PHI node. We map that to the BB the 91 /// vreg is coming from. This is used later to determine when the vreg 92 /// is killed in the BB. 93 void analyzePHINodes(const MachineFunction& MF); 94 95 /// Split critical edges where necessary for good coalescer performance. 96 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, 97 MachineLoopInfo *MLI, 98 std::vector<SparseBitVector<>> *LiveInSets); 99 100 // These functions are temporary abstractions around LiveVariables and 101 // LiveIntervals, so they can go away when LiveVariables does. 102 bool isLiveIn(Register Reg, const MachineBasicBlock *MBB); 103 bool isLiveOutPastPHIs(Register Reg, const MachineBasicBlock *MBB); 104 105 using BBVRegPair = std::pair<unsigned, Register>; 106 using VRegPHIUse = DenseMap<BBVRegPair, unsigned>; 107 108 // Count the number of non-undef PHI uses of each register in each BB. 109 VRegPHIUse VRegPHIUseCount; 110 111 // Defs of PHI sources which are implicit_def. 112 SmallPtrSet<MachineInstr*, 4> ImpDefs; 113 114 // Map reusable lowered PHI node -> incoming join register. 115 using LoweredPHIMap = 116 DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>; 117 LoweredPHIMap LoweredPHIs; 118 }; 119 120 } // end anonymous namespace 121 122 STATISTIC(NumLowered, "Number of phis lowered"); 123 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split"); 124 STATISTIC(NumReused, "Number of reused lowered phis"); 125 126 char PHIElimination::ID = 0; 127 128 char& llvm::PHIEliminationID = PHIElimination::ID; 129 130 INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE, 131 "Eliminate PHI nodes for register allocation", 132 false, false) 133 INITIALIZE_PASS_DEPENDENCY(LiveVariables) 134 INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE, 135 "Eliminate PHI nodes for register allocation", false, false) 136 137 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { 138 AU.addUsedIfAvailable<LiveVariables>(); 139 AU.addUsedIfAvailable<LiveIntervals>(); 140 AU.addPreserved<LiveVariables>(); 141 AU.addPreserved<SlotIndexes>(); 142 AU.addPreserved<LiveIntervals>(); 143 AU.addPreserved<MachineDominatorTree>(); 144 AU.addPreserved<MachineLoopInfo>(); 145 MachineFunctionPass::getAnalysisUsage(AU); 146 } 147 148 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) { 149 MRI = &MF.getRegInfo(); 150 LV = getAnalysisIfAvailable<LiveVariables>(); 151 LIS = getAnalysisIfAvailable<LiveIntervals>(); 152 153 bool Changed = false; 154 155 // Split critical edges to help the coalescer. 156 if (!DisableEdgeSplitting && (LV || LIS)) { 157 // A set of live-in regs for each MBB which is used to update LV 158 // efficiently also with large functions. 159 std::vector<SparseBitVector<>> LiveInSets; 160 if (LV) { 161 LiveInSets.resize(MF.size()); 162 for (unsigned Index = 0, e = MRI->getNumVirtRegs(); Index != e; ++Index) { 163 // Set the bit for this register for each MBB where it is 164 // live-through or live-in (killed). 165 Register VirtReg = Register::index2VirtReg(Index); 166 MachineInstr *DefMI = MRI->getVRegDef(VirtReg); 167 if (!DefMI) 168 continue; 169 LiveVariables::VarInfo &VI = LV->getVarInfo(VirtReg); 170 SparseBitVector<>::iterator AliveBlockItr = VI.AliveBlocks.begin(); 171 SparseBitVector<>::iterator EndItr = VI.AliveBlocks.end(); 172 while (AliveBlockItr != EndItr) { 173 unsigned BlockNum = *(AliveBlockItr++); 174 LiveInSets[BlockNum].set(Index); 175 } 176 // The register is live into an MBB in which it is killed but not 177 // defined. See comment for VarInfo in LiveVariables.h. 178 MachineBasicBlock *DefMBB = DefMI->getParent(); 179 if (VI.Kills.size() > 1 || 180 (!VI.Kills.empty() && VI.Kills.front()->getParent() != DefMBB)) 181 for (auto *MI : VI.Kills) 182 LiveInSets[MI->getParent()->getNumber()].set(Index); 183 } 184 } 185 186 MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 187 for (auto &MBB : MF) 188 Changed |= SplitPHIEdges(MF, MBB, MLI, (LV ? &LiveInSets : nullptr)); 189 } 190 191 // This pass takes the function out of SSA form. 192 MRI->leaveSSA(); 193 194 // Populate VRegPHIUseCount 195 analyzePHINodes(MF); 196 197 // Eliminate PHI instructions by inserting copies into predecessor blocks. 198 for (auto &MBB : MF) 199 Changed |= EliminatePHINodes(MF, MBB); 200 201 // Remove dead IMPLICIT_DEF instructions. 202 for (MachineInstr *DefMI : ImpDefs) { 203 Register DefReg = DefMI->getOperand(0).getReg(); 204 if (MRI->use_nodbg_empty(DefReg)) { 205 if (LIS) 206 LIS->RemoveMachineInstrFromMaps(*DefMI); 207 DefMI->eraseFromParent(); 208 } 209 } 210 211 // Clean up the lowered PHI instructions. 212 for (auto &I : LoweredPHIs) { 213 if (LIS) 214 LIS->RemoveMachineInstrFromMaps(*I.first); 215 MF.deleteMachineInstr(I.first); 216 } 217 218 // TODO: we should use the incremental DomTree updater here. 219 if (Changed) 220 if (auto *MDT = getAnalysisIfAvailable<MachineDominatorTree>()) 221 MDT->getBase().recalculate(MF); 222 223 LoweredPHIs.clear(); 224 ImpDefs.clear(); 225 VRegPHIUseCount.clear(); 226 227 MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs); 228 229 return Changed; 230 } 231 232 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in 233 /// predecessor basic blocks. 234 bool PHIElimination::EliminatePHINodes(MachineFunction &MF, 235 MachineBasicBlock &MBB) { 236 if (MBB.empty() || !MBB.front().isPHI()) 237 return false; // Quick exit for basic blocks without PHIs. 238 239 // Get an iterator to the last PHI node. 240 MachineBasicBlock::iterator LastPHIIt = 241 std::prev(MBB.SkipPHIsAndLabels(MBB.begin())); 242 243 while (MBB.front().isPHI()) 244 LowerPHINode(MBB, LastPHIIt); 245 246 return true; 247 } 248 249 /// Return true if all defs of VirtReg are implicit-defs. 250 /// This includes registers with no defs. 251 static bool isImplicitlyDefined(unsigned VirtReg, 252 const MachineRegisterInfo &MRI) { 253 for (MachineInstr &DI : MRI.def_instructions(VirtReg)) 254 if (!DI.isImplicitDef()) 255 return false; 256 return true; 257 } 258 259 /// Return true if all sources of the phi node are implicit_def's, or undef's. 260 static bool allPhiOperandsUndefined(const MachineInstr &MPhi, 261 const MachineRegisterInfo &MRI) { 262 for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) { 263 const MachineOperand &MO = MPhi.getOperand(I); 264 if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef()) 265 return false; 266 } 267 return true; 268 } 269 /// LowerPHINode - Lower the PHI node at the top of the specified block. 270 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB, 271 MachineBasicBlock::iterator LastPHIIt) { 272 ++NumLowered; 273 274 MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt); 275 276 // Unlink the PHI node from the basic block, but don't delete the PHI yet. 277 MachineInstr *MPhi = MBB.remove(&*MBB.begin()); 278 279 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; 280 Register DestReg = MPhi->getOperand(0).getReg(); 281 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs"); 282 bool isDead = MPhi->getOperand(0).isDead(); 283 284 // Create a new register for the incoming PHI arguments. 285 MachineFunction &MF = *MBB.getParent(); 286 unsigned IncomingReg = 0; 287 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI? 288 289 // Insert a register to register copy at the top of the current block (but 290 // after any remaining phi nodes) which copies the new incoming register 291 // into the phi node destination. 292 MachineInstr *PHICopy = nullptr; 293 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 294 if (allPhiOperandsUndefined(*MPhi, *MRI)) 295 // If all sources of a PHI node are implicit_def or undef uses, just emit an 296 // implicit_def instead of a copy. 297 PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 298 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); 299 else { 300 // Can we reuse an earlier PHI node? This only happens for critical edges, 301 // typically those created by tail duplication. 302 unsigned &entry = LoweredPHIs[MPhi]; 303 if (entry) { 304 // An identical PHI node was already lowered. Reuse the incoming register. 305 IncomingReg = entry; 306 reusedIncoming = true; 307 ++NumReused; 308 LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for " 309 << *MPhi); 310 } else { 311 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); 312 entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC); 313 } 314 // Give the target possiblity to handle special cases fallthrough otherwise 315 PHICopy = TII->createPHIDestinationCopy(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 316 IncomingReg, DestReg); 317 } 318 319 if (MPhi->peekDebugInstrNum()) { 320 // If referred to by debug-info, store where this PHI was. 321 MachineFunction *MF = MBB.getParent(); 322 unsigned ID = MPhi->peekDebugInstrNum(); 323 auto P = MachineFunction::DebugPHIRegallocPos(&MBB, IncomingReg, 0); 324 auto Res = MF->DebugPHIPositions.insert({ID, P}); 325 assert(Res.second); 326 (void)Res; 327 } 328 329 // Update live variable information if there is any. 330 if (LV) { 331 if (IncomingReg) { 332 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg); 333 334 // Increment use count of the newly created virtual register. 335 LV->setPHIJoin(IncomingReg); 336 337 MachineInstr *OldKill = nullptr; 338 bool IsPHICopyAfterOldKill = false; 339 340 if (reusedIncoming && (OldKill = VI.findKill(&MBB))) { 341 // Calculate whether the PHICopy is after the OldKill. 342 // In general, the PHICopy is inserted as the first non-phi instruction 343 // by default, so it's before the OldKill. But some Target hooks for 344 // createPHIDestinationCopy() may modify the default insert position of 345 // PHICopy. 346 for (auto I = MBB.SkipPHIsAndLabels(MBB.begin()), E = MBB.end(); 347 I != E; ++I) { 348 if (I == PHICopy) 349 break; 350 351 if (I == OldKill) { 352 IsPHICopyAfterOldKill = true; 353 break; 354 } 355 } 356 } 357 358 // When we are reusing the incoming register and it has been marked killed 359 // by OldKill, if the PHICopy is after the OldKill, we should remove the 360 // killed flag from OldKill. 361 if (IsPHICopyAfterOldKill) { 362 LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill); 363 LV->removeVirtualRegisterKilled(IncomingReg, *OldKill); 364 LLVM_DEBUG(MBB.dump()); 365 } 366 367 // Add information to LiveVariables to know that the first used incoming 368 // value or the resued incoming value whose PHICopy is after the OldKIll 369 // is killed. Note that because the value is defined in several places 370 // (once each for each incoming block), the "def" block and instruction 371 // fields for the VarInfo is not filled in. 372 if (!OldKill || IsPHICopyAfterOldKill) 373 LV->addVirtualRegisterKilled(IncomingReg, *PHICopy); 374 } 375 376 // Since we are going to be deleting the PHI node, if it is the last use of 377 // any registers, or if the value itself is dead, we need to move this 378 // information over to the new copy we just inserted. 379 LV->removeVirtualRegistersKilled(*MPhi); 380 381 // If the result is dead, update LV. 382 if (isDead) { 383 LV->addVirtualRegisterDead(DestReg, *PHICopy); 384 LV->removeVirtualRegisterDead(DestReg, *MPhi); 385 } 386 } 387 388 // Update LiveIntervals for the new copy or implicit def. 389 if (LIS) { 390 SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy); 391 392 SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB); 393 if (IncomingReg) { 394 // Add the region from the beginning of MBB to the copy instruction to 395 // IncomingReg's live interval. 396 LiveInterval &IncomingLI = LIS->getOrCreateEmptyInterval(IncomingReg); 397 VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex); 398 if (!IncomingVNI) 399 IncomingVNI = IncomingLI.getNextValue(MBBStartIndex, 400 LIS->getVNInfoAllocator()); 401 IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex, 402 DestCopyIndex.getRegSlot(), 403 IncomingVNI)); 404 } 405 406 LiveInterval &DestLI = LIS->getInterval(DestReg); 407 assert(!DestLI.empty() && "PHIs should have non-empty LiveIntervals."); 408 409 SlotIndex NewStart = DestCopyIndex.getRegSlot(); 410 411 SmallVector<LiveRange*> ToUpdate; 412 ToUpdate.push_back(&DestLI); 413 for (auto &SR : DestLI.subranges()) 414 ToUpdate.push_back(&SR); 415 416 for (auto LR : ToUpdate) { 417 auto DestSegment = LR->find(MBBStartIndex); 418 assert(DestSegment != LR->end() && "PHI destination must be live in block"); 419 420 if (LR->endIndex().isDead()) { 421 // A dead PHI's live range begins and ends at the start of the MBB, but 422 // the lowered copy, which will still be dead, needs to begin and end at 423 // the copy instruction. 424 VNInfo *OrigDestVNI = LR->getVNInfoAt(DestSegment->start); 425 assert(OrigDestVNI && "PHI destination should be live at block entry."); 426 LR->removeSegment(DestSegment->start, DestSegment->start.getDeadSlot()); 427 LR->createDeadDef(NewStart, LIS->getVNInfoAllocator()); 428 LR->removeValNo(OrigDestVNI); 429 continue; 430 } 431 432 if (DestSegment->start > NewStart) { 433 // With a single PHI removed from block the index of the copy may be 434 // lower than the original PHI. Extend live range backward to cover 435 // the copy. 436 VNInfo *VNI = LR->getVNInfoAt(DestSegment->start); 437 assert(VNI && "value should be defined for known segment"); 438 LR->addSegment(LiveInterval::Segment( 439 NewStart, DestSegment->start, VNI)); 440 } else if (DestSegment->start < NewStart) { 441 // Otherwise, remove the region from the beginning of MBB to the copy 442 // instruction from DestReg's live interval. 443 assert(DestSegment->start >= MBBStartIndex); 444 assert(DestSegment->end >= DestCopyIndex.getRegSlot()); 445 LR->removeSegment(DestSegment->start, NewStart); 446 } 447 VNInfo *DestVNI = LR->getVNInfoAt(NewStart); 448 assert(DestVNI && "PHI destination should be live at its definition."); 449 DestVNI->def = NewStart; 450 } 451 } 452 453 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. 454 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) { 455 if (!MPhi->getOperand(i).isUndef()) { 456 --VRegPHIUseCount[BBVRegPair( 457 MPhi->getOperand(i + 1).getMBB()->getNumber(), 458 MPhi->getOperand(i).getReg())]; 459 } 460 } 461 462 // Now loop over all of the incoming arguments, changing them to copy into the 463 // IncomingReg register in the corresponding predecessor basic block. 464 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto; 465 for (int i = NumSrcs - 1; i >= 0; --i) { 466 Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg(); 467 unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg(); 468 bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() || 469 isImplicitlyDefined(SrcReg, *MRI); 470 assert(SrcReg.isVirtual() && 471 "Machine PHI Operands must all be virtual registers!"); 472 473 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source 474 // path the PHI. 475 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB(); 476 477 // Check to make sure we haven't already emitted the copy for this block. 478 // This can happen because PHI nodes may have multiple entries for the same 479 // basic block. 480 if (!MBBsInsertedInto.insert(&opBlock).second) 481 continue; // If the copy has already been emitted, we're done. 482 483 MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg); 484 if (SrcRegDef && TII->isUnspillableTerminator(SrcRegDef)) { 485 assert(SrcRegDef->getOperand(0).isReg() && 486 SrcRegDef->getOperand(0).isDef() && 487 "Expected operand 0 to be a reg def!"); 488 // Now that the PHI's use has been removed (as the instruction was 489 // removed) there should be no other uses of the SrcReg. 490 assert(MRI->use_empty(SrcReg) && 491 "Expected a single use from UnspillableTerminator"); 492 SrcRegDef->getOperand(0).setReg(IncomingReg); 493 494 // Update LiveVariables. 495 if (LV) { 496 LiveVariables::VarInfo &SrcVI = LV->getVarInfo(SrcReg); 497 LiveVariables::VarInfo &IncomingVI = LV->getVarInfo(IncomingReg); 498 IncomingVI.AliveBlocks = std::move(SrcVI.AliveBlocks); 499 SrcVI.AliveBlocks.clear(); 500 } 501 502 continue; 503 } 504 505 // Find a safe location to insert the copy, this may be the first terminator 506 // in the block (or end()). 507 MachineBasicBlock::iterator InsertPos = 508 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg); 509 510 // Insert the copy. 511 MachineInstr *NewSrcInstr = nullptr; 512 if (!reusedIncoming && IncomingReg) { 513 if (SrcUndef) { 514 // The source register is undefined, so there is no need for a real 515 // COPY, but we still need to ensure joint dominance by defs. 516 // Insert an IMPLICIT_DEF instruction. 517 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 518 TII->get(TargetOpcode::IMPLICIT_DEF), 519 IncomingReg); 520 521 // Clean up the old implicit-def, if there even was one. 522 if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg)) 523 if (DefMI->isImplicitDef()) 524 ImpDefs.insert(DefMI); 525 } else { 526 // Delete the debug location, since the copy is inserted into a 527 // different basic block. 528 NewSrcInstr = TII->createPHISourceCopy(opBlock, InsertPos, nullptr, 529 SrcReg, SrcSubReg, IncomingReg); 530 } 531 } 532 533 // We only need to update the LiveVariables kill of SrcReg if this was the 534 // last PHI use of SrcReg to be lowered on this CFG edge and it is not live 535 // out of the predecessor. We can also ignore undef sources. 536 if (LV && !SrcUndef && 537 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] && 538 !LV->isLiveOut(SrcReg, opBlock)) { 539 // We want to be able to insert a kill of the register if this PHI (aka, 540 // the copy we just inserted) is the last use of the source value. Live 541 // variable analysis conservatively handles this by saying that the value 542 // is live until the end of the block the PHI entry lives in. If the value 543 // really is dead at the PHI copy, there will be no successor blocks which 544 // have the value live-in. 545 546 // Okay, if we now know that the value is not live out of the block, we 547 // can add a kill marker in this block saying that it kills the incoming 548 // value! 549 550 // In our final twist, we have to decide which instruction kills the 551 // register. In most cases this is the copy, however, terminator 552 // instructions at the end of the block may also use the value. In this 553 // case, we should mark the last such terminator as being the killing 554 // block, not the copy. 555 MachineBasicBlock::iterator KillInst = opBlock.end(); 556 for (MachineBasicBlock::iterator Term = InsertPos; Term != opBlock.end(); 557 ++Term) { 558 if (Term->readsRegister(SrcReg)) 559 KillInst = Term; 560 } 561 562 if (KillInst == opBlock.end()) { 563 // No terminator uses the register. 564 565 if (reusedIncoming || !IncomingReg) { 566 // We may have to rewind a bit if we didn't insert a copy this time. 567 KillInst = InsertPos; 568 while (KillInst != opBlock.begin()) { 569 --KillInst; 570 if (KillInst->isDebugInstr()) 571 continue; 572 if (KillInst->readsRegister(SrcReg)) 573 break; 574 } 575 } else { 576 // We just inserted this copy. 577 KillInst = NewSrcInstr; 578 } 579 } 580 assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction"); 581 582 // Finally, mark it killed. 583 LV->addVirtualRegisterKilled(SrcReg, *KillInst); 584 585 // This vreg no longer lives all of the way through opBlock. 586 unsigned opBlockNum = opBlock.getNumber(); 587 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum); 588 } 589 590 if (LIS) { 591 if (NewSrcInstr) { 592 LIS->InsertMachineInstrInMaps(*NewSrcInstr); 593 LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr); 594 } 595 596 if (!SrcUndef && 597 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) { 598 LiveInterval &SrcLI = LIS->getInterval(SrcReg); 599 600 bool isLiveOut = false; 601 for (MachineBasicBlock *Succ : opBlock.successors()) { 602 SlotIndex startIdx = LIS->getMBBStartIdx(Succ); 603 VNInfo *VNI = SrcLI.getVNInfoAt(startIdx); 604 605 // Definitions by other PHIs are not truly live-in for our purposes. 606 if (VNI && VNI->def != startIdx) { 607 isLiveOut = true; 608 break; 609 } 610 } 611 612 if (!isLiveOut) { 613 MachineBasicBlock::iterator KillInst = opBlock.end(); 614 for (MachineBasicBlock::iterator Term = InsertPos; 615 Term != opBlock.end(); ++Term) { 616 if (Term->readsRegister(SrcReg)) 617 KillInst = Term; 618 } 619 620 if (KillInst == opBlock.end()) { 621 // No terminator uses the register. 622 623 if (reusedIncoming || !IncomingReg) { 624 // We may have to rewind a bit if we didn't just insert a copy. 625 KillInst = InsertPos; 626 while (KillInst != opBlock.begin()) { 627 --KillInst; 628 if (KillInst->isDebugInstr()) 629 continue; 630 if (KillInst->readsRegister(SrcReg)) 631 break; 632 } 633 } else { 634 // We just inserted this copy. 635 KillInst = std::prev(InsertPos); 636 } 637 } 638 assert(KillInst->readsRegister(SrcReg) && 639 "Cannot find kill instruction"); 640 641 SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst); 642 SrcLI.removeSegment(LastUseIndex.getRegSlot(), 643 LIS->getMBBEndIdx(&opBlock)); 644 for (auto &SR : SrcLI.subranges()) { 645 SR.removeSegment(LastUseIndex.getRegSlot(), 646 LIS->getMBBEndIdx(&opBlock)); 647 } 648 } 649 } 650 } 651 } 652 653 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map. 654 if (reusedIncoming || !IncomingReg) { 655 if (LIS) 656 LIS->RemoveMachineInstrFromMaps(*MPhi); 657 MF.deleteMachineInstr(MPhi); 658 } 659 } 660 661 /// analyzePHINodes - Gather information about the PHI nodes in here. In 662 /// particular, we want to map the number of uses of a virtual register which is 663 /// used in a PHI node. We map that to the BB the vreg is coming from. This is 664 /// used later to determine when the vreg is killed in the BB. 665 void PHIElimination::analyzePHINodes(const MachineFunction& MF) { 666 for (const auto &MBB : MF) { 667 for (const auto &BBI : MBB) { 668 if (!BBI.isPHI()) 669 break; 670 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) { 671 if (!BBI.getOperand(i).isUndef()) { 672 ++VRegPHIUseCount[BBVRegPair( 673 BBI.getOperand(i + 1).getMBB()->getNumber(), 674 BBI.getOperand(i).getReg())]; 675 } 676 } 677 } 678 } 679 } 680 681 bool PHIElimination::SplitPHIEdges(MachineFunction &MF, 682 MachineBasicBlock &MBB, 683 MachineLoopInfo *MLI, 684 std::vector<SparseBitVector<>> *LiveInSets) { 685 if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad()) 686 return false; // Quick exit for basic blocks without PHIs. 687 688 const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr; 689 bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader(); 690 691 bool Changed = false; 692 for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end(); 693 BBI != BBE && BBI->isPHI(); ++BBI) { 694 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { 695 Register Reg = BBI->getOperand(i).getReg(); 696 MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB(); 697 // Is there a critical edge from PreMBB to MBB? 698 if (PreMBB->succ_size() == 1) 699 continue; 700 701 // Avoid splitting backedges of loops. It would introduce small 702 // out-of-line blocks into the loop which is very bad for code placement. 703 if (PreMBB == &MBB && !SplitAllCriticalEdges) 704 continue; 705 const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr; 706 if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges) 707 continue; 708 709 // LV doesn't consider a phi use live-out, so isLiveOut only returns true 710 // when the source register is live-out for some other reason than a phi 711 // use. That means the copy we will insert in PreMBB won't be a kill, and 712 // there is a risk it may not be coalesced away. 713 // 714 // If the copy would be a kill, there is no need to split the edge. 715 bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB); 716 if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit) 717 continue; 718 if (ShouldSplit) { 719 LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge " 720 << printMBBReference(*PreMBB) << " -> " 721 << printMBBReference(MBB) << ": " << *BBI); 722 } 723 724 // If Reg is not live-in to MBB, it means it must be live-in to some 725 // other PreMBB successor, and we can avoid the interference by splitting 726 // the edge. 727 // 728 // If Reg *is* live-in to MBB, the interference is inevitable and a copy 729 // is likely to be left after coalescing. If we are looking at a loop 730 // exiting edge, split it so we won't insert code in the loop, otherwise 731 // don't bother. 732 ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB); 733 734 // Check for a loop exiting edge. 735 if (!ShouldSplit && CurLoop != PreLoop) { 736 LLVM_DEBUG({ 737 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n"; 738 if (PreLoop) 739 dbgs() << "PreLoop: " << *PreLoop; 740 if (CurLoop) 741 dbgs() << "CurLoop: " << *CurLoop; 742 }); 743 // This edge could be entering a loop, exiting a loop, or it could be 744 // both: Jumping directly form one loop to the header of a sibling 745 // loop. 746 // Split unless this edge is entering CurLoop from an outer loop. 747 ShouldSplit = PreLoop && !PreLoop->contains(CurLoop); 748 } 749 if (!ShouldSplit && !SplitAllCriticalEdges) 750 continue; 751 if (!PreMBB->SplitCriticalEdge(&MBB, *this, LiveInSets)) { 752 LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n"); 753 continue; 754 } 755 Changed = true; 756 ++NumCriticalEdgesSplit; 757 } 758 } 759 return Changed; 760 } 761 762 bool PHIElimination::isLiveIn(Register Reg, const MachineBasicBlock *MBB) { 763 assert((LV || LIS) && 764 "isLiveIn() requires either LiveVariables or LiveIntervals"); 765 if (LIS) 766 return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB); 767 else 768 return LV->isLiveIn(Reg, *MBB); 769 } 770 771 bool PHIElimination::isLiveOutPastPHIs(Register Reg, 772 const MachineBasicBlock *MBB) { 773 assert((LV || LIS) && 774 "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals"); 775 // LiveVariables considers uses in PHIs to be in the predecessor basic block, 776 // so that a register used only in a PHI is not live out of the block. In 777 // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than 778 // in the predecessor basic block, so that a register used only in a PHI is live 779 // out of the block. 780 if (LIS) { 781 const LiveInterval &LI = LIS->getInterval(Reg); 782 for (const MachineBasicBlock *SI : MBB->successors()) 783 if (LI.liveAt(LIS->getMBBStartIdx(SI))) 784 return true; 785 return false; 786 } else { 787 return LV->isLiveOut(Reg, *MBB); 788 } 789 } 790