xref: /llvm-project/llvm/lib/CodeGen/ModuloSchedule.cpp (revision ed4e75d5e5ada30c37c57df032378a77e6dd598e)
1 //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/CodeGen/ModuloSchedule.h"
10 #include "llvm/ADT/StringExtras.h"
11 #include "llvm/Analysis/MemoryLocation.h"
12 #include "llvm/CodeGen/LiveIntervals.h"
13 #include "llvm/CodeGen/MachineInstrBuilder.h"
14 #include "llvm/CodeGen/MachineLoopInfo.h"
15 #include "llvm/CodeGen/MachineRegisterInfo.h"
16 #include "llvm/InitializePasses.h"
17 #include "llvm/MC/MCContext.h"
18 #include "llvm/Support/Debug.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include "llvm/Support/raw_ostream.h"
21 
22 #define DEBUG_TYPE "pipeliner"
23 using namespace llvm;
24 
25 static cl::opt<bool> SwapBranchTargetsMVE(
26     "pipeliner-swap-branch-targets-mve", cl::Hidden, cl::init(false),
27     cl::desc("Swap target blocks of a conditional branch for MVE expander"));
28 
29 void ModuloSchedule::print(raw_ostream &OS) {
30   for (MachineInstr *MI : ScheduledInstrs)
31     OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI;
32 }
33 
34 //===----------------------------------------------------------------------===//
35 // ModuloScheduleExpander implementation
36 //===----------------------------------------------------------------------===//
37 
38 /// Return the register values for  the operands of a Phi instruction.
39 /// This function assume the instruction is a Phi.
40 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
41                        unsigned &InitVal, unsigned &LoopVal) {
42   assert(Phi.isPHI() && "Expecting a Phi.");
43 
44   InitVal = 0;
45   LoopVal = 0;
46   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
47     if (Phi.getOperand(i + 1).getMBB() != Loop)
48       InitVal = Phi.getOperand(i).getReg();
49     else
50       LoopVal = Phi.getOperand(i).getReg();
51 
52   assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
53 }
54 
55 /// Return the Phi register value that comes from the incoming block.
56 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
57   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
58     if (Phi.getOperand(i + 1).getMBB() != LoopBB)
59       return Phi.getOperand(i).getReg();
60   return 0;
61 }
62 
63 /// Return the Phi register value that comes the loop block.
64 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
65   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
66     if (Phi.getOperand(i + 1).getMBB() == LoopBB)
67       return Phi.getOperand(i).getReg();
68   return 0;
69 }
70 
71 void ModuloScheduleExpander::expand() {
72   BB = Schedule.getLoop()->getTopBlock();
73   Preheader = *BB->pred_begin();
74   if (Preheader == BB)
75     Preheader = *std::next(BB->pred_begin());
76 
77   // Iterate over the definitions in each instruction, and compute the
78   // stage difference for each use.  Keep the maximum value.
79   for (MachineInstr *MI : Schedule.getInstructions()) {
80     int DefStage = Schedule.getStage(MI);
81     for (const MachineOperand &Op : MI->all_defs()) {
82       Register Reg = Op.getReg();
83       unsigned MaxDiff = 0;
84       bool PhiIsSwapped = false;
85       for (MachineOperand &UseOp : MRI.use_operands(Reg)) {
86         MachineInstr *UseMI = UseOp.getParent();
87         int UseStage = Schedule.getStage(UseMI);
88         unsigned Diff = 0;
89         if (UseStage != -1 && UseStage >= DefStage)
90           Diff = UseStage - DefStage;
91         if (MI->isPHI()) {
92           if (isLoopCarried(*MI))
93             ++Diff;
94           else
95             PhiIsSwapped = true;
96         }
97         MaxDiff = std::max(Diff, MaxDiff);
98       }
99       RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
100     }
101   }
102 
103   generatePipelinedLoop();
104 }
105 
106 void ModuloScheduleExpander::generatePipelinedLoop() {
107   LoopInfo = TII->analyzeLoopForPipelining(BB);
108   assert(LoopInfo && "Must be able to analyze loop!");
109 
110   // Create a new basic block for the kernel and add it to the CFG.
111   MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
112 
113   unsigned MaxStageCount = Schedule.getNumStages() - 1;
114 
115   // Remember the registers that are used in different stages. The index is
116   // the iteration, or stage, that the instruction is scheduled in.  This is
117   // a map between register names in the original block and the names created
118   // in each stage of the pipelined loop.
119   ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
120 
121   // The renaming destination by Phis for the registers across stages.
122   // This map is updated during Phis generation to point to the most recent
123   // renaming destination.
124   ValueMapTy *VRMapPhi = new ValueMapTy[(MaxStageCount + 1) * 2];
125 
126   InstrMapTy InstrMap;
127 
128   SmallVector<MachineBasicBlock *, 4> PrologBBs;
129 
130   // Generate the prolog instructions that set up the pipeline.
131   generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs);
132   MF.insert(BB->getIterator(), KernelBB);
133 
134   // Rearrange the instructions to generate the new, pipelined loop,
135   // and update register names as needed.
136   for (MachineInstr *CI : Schedule.getInstructions()) {
137     if (CI->isPHI())
138       continue;
139     unsigned StageNum = Schedule.getStage(CI);
140     MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum);
141     updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap);
142     KernelBB->push_back(NewMI);
143     InstrMap[NewMI] = CI;
144   }
145 
146   // Copy any terminator instructions to the new kernel, and update
147   // names as needed.
148   for (MachineInstr &MI : BB->terminators()) {
149     MachineInstr *NewMI = MF.CloneMachineInstr(&MI);
150     updateInstruction(NewMI, false, MaxStageCount, 0, VRMap);
151     KernelBB->push_back(NewMI);
152     InstrMap[NewMI] = &MI;
153   }
154 
155   NewKernel = KernelBB;
156   KernelBB->transferSuccessors(BB);
157   KernelBB->replaceSuccessor(BB, KernelBB);
158 
159   generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap,
160                        InstrMap, MaxStageCount, MaxStageCount, false);
161   generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, VRMapPhi,
162                InstrMap, MaxStageCount, MaxStageCount, false);
163 
164   LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
165 
166   SmallVector<MachineBasicBlock *, 4> EpilogBBs;
167   // Generate the epilog instructions to complete the pipeline.
168   generateEpilog(MaxStageCount, KernelBB, BB, VRMap, VRMapPhi, EpilogBBs,
169                  PrologBBs);
170 
171   // We need this step because the register allocation doesn't handle some
172   // situations well, so we insert copies to help out.
173   splitLifetimes(KernelBB, EpilogBBs);
174 
175   // Remove dead instructions due to loop induction variables.
176   removeDeadInstructions(KernelBB, EpilogBBs);
177 
178   // Add branches between prolog and epilog blocks.
179   addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap);
180 
181   delete[] VRMap;
182   delete[] VRMapPhi;
183 }
184 
185 void ModuloScheduleExpander::cleanup() {
186   // Remove the original loop since it's no longer referenced.
187   for (auto &I : *BB)
188     LIS.RemoveMachineInstrFromMaps(I);
189   BB->clear();
190   BB->eraseFromParent();
191 }
192 
193 /// Generate the pipeline prolog code.
194 void ModuloScheduleExpander::generateProlog(unsigned LastStage,
195                                             MachineBasicBlock *KernelBB,
196                                             ValueMapTy *VRMap,
197                                             MBBVectorTy &PrologBBs) {
198   MachineBasicBlock *PredBB = Preheader;
199   InstrMapTy InstrMap;
200 
201   // Generate a basic block for each stage, not including the last stage,
202   // which will be generated in the kernel. Each basic block may contain
203   // instructions from multiple stages/iterations.
204   for (unsigned i = 0; i < LastStage; ++i) {
205     // Create and insert the prolog basic block prior to the original loop
206     // basic block.  The original loop is removed later.
207     MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
208     PrologBBs.push_back(NewBB);
209     MF.insert(BB->getIterator(), NewBB);
210     NewBB->transferSuccessors(PredBB);
211     PredBB->addSuccessor(NewBB);
212     PredBB = NewBB;
213 
214     // Generate instructions for each appropriate stage. Process instructions
215     // in original program order.
216     for (int StageNum = i; StageNum >= 0; --StageNum) {
217       for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
218                                        BBE = BB->getFirstTerminator();
219            BBI != BBE; ++BBI) {
220         if (Schedule.getStage(&*BBI) == StageNum) {
221           if (BBI->isPHI())
222             continue;
223           MachineInstr *NewMI =
224               cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum);
225           updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap);
226           NewBB->push_back(NewMI);
227           InstrMap[NewMI] = &*BBI;
228         }
229       }
230     }
231     rewritePhiValues(NewBB, i, VRMap, InstrMap);
232     LLVM_DEBUG({
233       dbgs() << "prolog:\n";
234       NewBB->dump();
235     });
236   }
237 
238   PredBB->replaceSuccessor(BB, KernelBB);
239 
240   // Check if we need to remove the branch from the preheader to the original
241   // loop, and replace it with a branch to the new loop.
242   unsigned numBranches = TII->removeBranch(*Preheader);
243   if (numBranches) {
244     SmallVector<MachineOperand, 0> Cond;
245     TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc());
246   }
247 }
248 
249 /// Generate the pipeline epilog code. The epilog code finishes the iterations
250 /// that were started in either the prolog or the kernel.  We create a basic
251 /// block for each stage that needs to complete.
252 void ModuloScheduleExpander::generateEpilog(
253     unsigned LastStage, MachineBasicBlock *KernelBB, MachineBasicBlock *OrigBB,
254     ValueMapTy *VRMap, ValueMapTy *VRMapPhi, MBBVectorTy &EpilogBBs,
255     MBBVectorTy &PrologBBs) {
256   // We need to change the branch from the kernel to the first epilog block, so
257   // this call to analyze branch uses the kernel rather than the original BB.
258   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
259   SmallVector<MachineOperand, 4> Cond;
260   bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
261   assert(!checkBranch && "generateEpilog must be able to analyze the branch");
262   if (checkBranch)
263     return;
264 
265   MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
266   if (*LoopExitI == KernelBB)
267     ++LoopExitI;
268   assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
269   MachineBasicBlock *LoopExitBB = *LoopExitI;
270 
271   MachineBasicBlock *PredBB = KernelBB;
272   MachineBasicBlock *EpilogStart = LoopExitBB;
273   InstrMapTy InstrMap;
274 
275   // Generate a basic block for each stage, not including the last stage,
276   // which was generated for the kernel.  Each basic block may contain
277   // instructions from multiple stages/iterations.
278   int EpilogStage = LastStage + 1;
279   for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
280     MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
281     EpilogBBs.push_back(NewBB);
282     MF.insert(BB->getIterator(), NewBB);
283 
284     PredBB->replaceSuccessor(LoopExitBB, NewBB);
285     NewBB->addSuccessor(LoopExitBB);
286 
287     if (EpilogStart == LoopExitBB)
288       EpilogStart = NewBB;
289 
290     // Add instructions to the epilog depending on the current block.
291     // Process instructions in original program order.
292     for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
293       for (auto &BBI : *BB) {
294         if (BBI.isPHI())
295           continue;
296         MachineInstr *In = &BBI;
297         if ((unsigned)Schedule.getStage(In) == StageNum) {
298           // Instructions with memoperands in the epilog are updated with
299           // conservative values.
300           MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
301           updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap);
302           NewBB->push_back(NewMI);
303           InstrMap[NewMI] = In;
304         }
305       }
306     }
307     generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap,
308                          InstrMap, LastStage, EpilogStage, i == 1);
309     generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, VRMapPhi,
310                  InstrMap, LastStage, EpilogStage, i == 1);
311     PredBB = NewBB;
312 
313     LLVM_DEBUG({
314       dbgs() << "epilog:\n";
315       NewBB->dump();
316     });
317   }
318 
319   // Fix any Phi nodes in the loop exit block.
320   LoopExitBB->replacePhiUsesWith(BB, PredBB);
321 
322   // Create a branch to the new epilog from the kernel.
323   // Remove the original branch and add a new branch to the epilog.
324   TII->removeBranch(*KernelBB);
325   assert((OrigBB == TBB || OrigBB == FBB) &&
326          "Unable to determine looping branch direction");
327   if (OrigBB != TBB)
328     TII->insertBranch(*KernelBB, EpilogStart, KernelBB, Cond, DebugLoc());
329   else
330     TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
331   // Add a branch to the loop exit.
332   if (EpilogBBs.size() > 0) {
333     MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
334     SmallVector<MachineOperand, 4> Cond1;
335     TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
336   }
337 }
338 
339 /// Replace all uses of FromReg that appear outside the specified
340 /// basic block with ToReg.
341 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
342                                     MachineBasicBlock *MBB,
343                                     MachineRegisterInfo &MRI,
344                                     LiveIntervals &LIS) {
345   for (MachineOperand &O :
346        llvm::make_early_inc_range(MRI.use_operands(FromReg)))
347     if (O.getParent()->getParent() != MBB)
348       O.setReg(ToReg);
349   if (!LIS.hasInterval(ToReg))
350     LIS.createEmptyInterval(ToReg);
351 }
352 
353 /// Return true if the register has a use that occurs outside the
354 /// specified loop.
355 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
356                             MachineRegisterInfo &MRI) {
357   for (const MachineOperand &MO : MRI.use_operands(Reg))
358     if (MO.getParent()->getParent() != BB)
359       return true;
360   return false;
361 }
362 
363 /// Generate Phis for the specific block in the generated pipelined code.
364 /// This function looks at the Phis from the original code to guide the
365 /// creation of new Phis.
366 void ModuloScheduleExpander::generateExistingPhis(
367     MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
368     MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
369     unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
370   // Compute the stage number for the initial value of the Phi, which
371   // comes from the prolog. The prolog to use depends on to which kernel/
372   // epilog that we're adding the Phi.
373   unsigned PrologStage = 0;
374   unsigned PrevStage = 0;
375   bool InKernel = (LastStageNum == CurStageNum);
376   if (InKernel) {
377     PrologStage = LastStageNum - 1;
378     PrevStage = CurStageNum;
379   } else {
380     PrologStage = LastStageNum - (CurStageNum - LastStageNum);
381     PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
382   }
383 
384   for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
385                                    BBE = BB->getFirstNonPHI();
386        BBI != BBE; ++BBI) {
387     Register Def = BBI->getOperand(0).getReg();
388 
389     unsigned InitVal = 0;
390     unsigned LoopVal = 0;
391     getPhiRegs(*BBI, BB, InitVal, LoopVal);
392 
393     unsigned PhiOp1 = 0;
394     // The Phi value from the loop body typically is defined in the loop, but
395     // not always. So, we need to check if the value is defined in the loop.
396     unsigned PhiOp2 = LoopVal;
397     if (VRMap[LastStageNum].count(LoopVal))
398       PhiOp2 = VRMap[LastStageNum][LoopVal];
399 
400     int StageScheduled = Schedule.getStage(&*BBI);
401     int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal));
402     unsigned NumStages = getStagesForReg(Def, CurStageNum);
403     if (NumStages == 0) {
404       // We don't need to generate a Phi anymore, but we need to rename any uses
405       // of the Phi value.
406       unsigned NewReg = VRMap[PrevStage][LoopVal];
407       rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def,
408                             InitVal, NewReg);
409       if (VRMap[CurStageNum].count(LoopVal))
410         VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
411     }
412     // Adjust the number of Phis needed depending on the number of prologs left,
413     // and the distance from where the Phi is first scheduled. The number of
414     // Phis cannot exceed the number of prolog stages. Each stage can
415     // potentially define two values.
416     unsigned MaxPhis = PrologStage + 2;
417     if (!InKernel && (int)PrologStage <= LoopValStage)
418       MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
419     unsigned NumPhis = std::min(NumStages, MaxPhis);
420 
421     unsigned NewReg = 0;
422     unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
423     // In the epilog, we may need to look back one stage to get the correct
424     // Phi name, because the epilog and prolog blocks execute the same stage.
425     // The correct name is from the previous block only when the Phi has
426     // been completely scheduled prior to the epilog, and Phi value is not
427     // needed in multiple stages.
428     int StageDiff = 0;
429     if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
430         NumPhis == 1)
431       StageDiff = 1;
432     // Adjust the computations below when the phi and the loop definition
433     // are scheduled in different stages.
434     if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
435       StageDiff = StageScheduled - LoopValStage;
436     for (unsigned np = 0; np < NumPhis; ++np) {
437       // If the Phi hasn't been scheduled, then use the initial Phi operand
438       // value. Otherwise, use the scheduled version of the instruction. This
439       // is a little complicated when a Phi references another Phi.
440       if (np > PrologStage || StageScheduled >= (int)LastStageNum)
441         PhiOp1 = InitVal;
442       // Check if the Phi has already been scheduled in a prolog stage.
443       else if (PrologStage >= AccessStage + StageDiff + np &&
444                VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
445         PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
446       // Check if the Phi has already been scheduled, but the loop instruction
447       // is either another Phi, or doesn't occur in the loop.
448       else if (PrologStage >= AccessStage + StageDiff + np) {
449         // If the Phi references another Phi, we need to examine the other
450         // Phi to get the correct value.
451         PhiOp1 = LoopVal;
452         MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
453         int Indirects = 1;
454         while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
455           int PhiStage = Schedule.getStage(InstOp1);
456           if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
457             PhiOp1 = getInitPhiReg(*InstOp1, BB);
458           else
459             PhiOp1 = getLoopPhiReg(*InstOp1, BB);
460           InstOp1 = MRI.getVRegDef(PhiOp1);
461           int PhiOpStage = Schedule.getStage(InstOp1);
462           int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
463           if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
464               VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
465             PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
466             break;
467           }
468           ++Indirects;
469         }
470       } else
471         PhiOp1 = InitVal;
472       // If this references a generated Phi in the kernel, get the Phi operand
473       // from the incoming block.
474       if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
475         if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
476           PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
477 
478       MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
479       bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
480       // In the epilog, a map lookup is needed to get the value from the kernel,
481       // or previous epilog block. How is does this depends on if the
482       // instruction is scheduled in the previous block.
483       if (!InKernel) {
484         int StageDiffAdj = 0;
485         if (LoopValStage != -1 && StageScheduled > LoopValStage)
486           StageDiffAdj = StageScheduled - LoopValStage;
487         // Use the loop value defined in the kernel, unless the kernel
488         // contains the last definition of the Phi.
489         if (np == 0 && PrevStage == LastStageNum &&
490             (StageScheduled != 0 || LoopValStage != 0) &&
491             VRMap[PrevStage - StageDiffAdj].count(LoopVal))
492           PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
493         // Use the value defined by the Phi. We add one because we switch
494         // from looking at the loop value to the Phi definition.
495         else if (np > 0 && PrevStage == LastStageNum &&
496                  VRMap[PrevStage - np + 1].count(Def))
497           PhiOp2 = VRMap[PrevStage - np + 1][Def];
498         // Use the loop value defined in the kernel.
499         else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 &&
500                  VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
501           PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
502         // Use the value defined by the Phi, unless we're generating the first
503         // epilog and the Phi refers to a Phi in a different stage.
504         else if (VRMap[PrevStage - np].count(Def) &&
505                  (!LoopDefIsPhi || (PrevStage != LastStageNum) ||
506                   (LoopValStage == StageScheduled)))
507           PhiOp2 = VRMap[PrevStage - np][Def];
508       }
509 
510       // Check if we can reuse an existing Phi. This occurs when a Phi
511       // references another Phi, and the other Phi is scheduled in an
512       // earlier stage. We can try to reuse an existing Phi up until the last
513       // stage of the current Phi.
514       if (LoopDefIsPhi) {
515         if (static_cast<int>(PrologStage - np) >= StageScheduled) {
516           int LVNumStages = getStagesForPhi(LoopVal);
517           int StageDiff = (StageScheduled - LoopValStage);
518           LVNumStages -= StageDiff;
519           // Make sure the loop value Phi has been processed already.
520           if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
521             NewReg = PhiOp2;
522             unsigned ReuseStage = CurStageNum;
523             if (isLoopCarried(*PhiInst))
524               ReuseStage -= LVNumStages;
525             // Check if the Phi to reuse has been generated yet. If not, then
526             // there is nothing to reuse.
527             if (VRMap[ReuseStage - np].count(LoopVal)) {
528               NewReg = VRMap[ReuseStage - np][LoopVal];
529 
530               rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI,
531                                     Def, NewReg);
532               // Update the map with the new Phi name.
533               VRMap[CurStageNum - np][Def] = NewReg;
534               PhiOp2 = NewReg;
535               if (VRMap[LastStageNum - np - 1].count(LoopVal))
536                 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
537 
538               if (IsLast && np == NumPhis - 1)
539                 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
540               continue;
541             }
542           }
543         }
544         if (InKernel && StageDiff > 0 &&
545             VRMap[CurStageNum - StageDiff - np].count(LoopVal))
546           PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
547       }
548 
549       const TargetRegisterClass *RC = MRI.getRegClass(Def);
550       NewReg = MRI.createVirtualRegister(RC);
551 
552       MachineInstrBuilder NewPhi =
553           BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
554                   TII->get(TargetOpcode::PHI), NewReg);
555       NewPhi.addReg(PhiOp1).addMBB(BB1);
556       NewPhi.addReg(PhiOp2).addMBB(BB2);
557       if (np == 0)
558         InstrMap[NewPhi] = &*BBI;
559 
560       // We define the Phis after creating the new pipelined code, so
561       // we need to rename the Phi values in scheduled instructions.
562 
563       unsigned PrevReg = 0;
564       if (InKernel && VRMap[PrevStage - np].count(LoopVal))
565         PrevReg = VRMap[PrevStage - np][LoopVal];
566       rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
567                             NewReg, PrevReg);
568       // If the Phi has been scheduled, use the new name for rewriting.
569       if (VRMap[CurStageNum - np].count(Def)) {
570         unsigned R = VRMap[CurStageNum - np][Def];
571         rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R,
572                               NewReg);
573       }
574 
575       // Check if we need to rename any uses that occurs after the loop. The
576       // register to replace depends on whether the Phi is scheduled in the
577       // epilog.
578       if (IsLast && np == NumPhis - 1)
579         replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
580 
581       // In the kernel, a dependent Phi uses the value from this Phi.
582       if (InKernel)
583         PhiOp2 = NewReg;
584 
585       // Update the map with the new Phi name.
586       VRMap[CurStageNum - np][Def] = NewReg;
587     }
588 
589     while (NumPhis++ < NumStages) {
590       rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def,
591                             NewReg, 0);
592     }
593 
594     // Check if we need to rename a Phi that has been eliminated due to
595     // scheduling.
596     if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
597       replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
598   }
599 }
600 
601 /// Generate Phis for the specified block in the generated pipelined code.
602 /// These are new Phis needed because the definition is scheduled after the
603 /// use in the pipelined sequence.
604 void ModuloScheduleExpander::generatePhis(
605     MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
606     MachineBasicBlock *KernelBB, ValueMapTy *VRMap, ValueMapTy *VRMapPhi,
607     InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
608     bool IsLast) {
609   // Compute the stage number that contains the initial Phi value, and
610   // the Phi from the previous stage.
611   unsigned PrologStage = 0;
612   unsigned PrevStage = 0;
613   unsigned StageDiff = CurStageNum - LastStageNum;
614   bool InKernel = (StageDiff == 0);
615   if (InKernel) {
616     PrologStage = LastStageNum - 1;
617     PrevStage = CurStageNum;
618   } else {
619     PrologStage = LastStageNum - StageDiff;
620     PrevStage = LastStageNum + StageDiff - 1;
621   }
622 
623   for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
624                                    BBE = BB->instr_end();
625        BBI != BBE; ++BBI) {
626     for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
627       MachineOperand &MO = BBI->getOperand(i);
628       if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
629         continue;
630 
631       int StageScheduled = Schedule.getStage(&*BBI);
632       assert(StageScheduled != -1 && "Expecting scheduled instruction.");
633       Register Def = MO.getReg();
634       unsigned NumPhis = getStagesForReg(Def, CurStageNum);
635       // An instruction scheduled in stage 0 and is used after the loop
636       // requires a phi in the epilog for the last definition from either
637       // the kernel or prolog.
638       if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
639           hasUseAfterLoop(Def, BB, MRI))
640         NumPhis = 1;
641       if (!InKernel && (unsigned)StageScheduled > PrologStage)
642         continue;
643 
644       unsigned PhiOp2;
645       if (InKernel) {
646         PhiOp2 = VRMap[PrevStage][Def];
647         if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
648           if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
649             PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
650       }
651       // The number of Phis can't exceed the number of prolog stages. The
652       // prolog stage number is zero based.
653       if (NumPhis > PrologStage + 1 - StageScheduled)
654         NumPhis = PrologStage + 1 - StageScheduled;
655       for (unsigned np = 0; np < NumPhis; ++np) {
656         // Example for
657         // Org:
658         //   %Org = ... (Scheduled at Stage#0, NumPhi = 2)
659         //
660         // Prolog0 (Stage0):
661         //   %Clone0 = ...
662         // Prolog1 (Stage1):
663         //   %Clone1 = ...
664         // Kernel (Stage2):
665         //   %Phi0 = Phi %Clone1, Prolog1, %Clone2, Kernel
666         //   %Phi1 = Phi %Clone0, Prolog1, %Phi0, Kernel
667         //   %Clone2 = ...
668         // Epilog0 (Stage3):
669         //   %Phi2 = Phi %Clone1, Prolog1, %Clone2, Kernel
670         //   %Phi3 = Phi %Clone0, Prolog1, %Phi0, Kernel
671         // Epilog1 (Stage4):
672         //   %Phi4 = Phi %Clone0, Prolog0, %Phi2, Epilog0
673         //
674         // VRMap = {0: %Clone0, 1: %Clone1, 2: %Clone2}
675         // VRMapPhi (after Kernel) = {0: %Phi1, 1: %Phi0}
676         // VRMapPhi (after Epilog0) = {0: %Phi3, 1: %Phi2}
677 
678         unsigned PhiOp1 = VRMap[PrologStage][Def];
679         if (np <= PrologStage)
680           PhiOp1 = VRMap[PrologStage - np][Def];
681         if (!InKernel) {
682           if (PrevStage == LastStageNum && np == 0)
683             PhiOp2 = VRMap[LastStageNum][Def];
684           else
685             PhiOp2 = VRMapPhi[PrevStage - np][Def];
686         }
687 
688         const TargetRegisterClass *RC = MRI.getRegClass(Def);
689         Register NewReg = MRI.createVirtualRegister(RC);
690 
691         MachineInstrBuilder NewPhi =
692             BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
693                     TII->get(TargetOpcode::PHI), NewReg);
694         NewPhi.addReg(PhiOp1).addMBB(BB1);
695         NewPhi.addReg(PhiOp2).addMBB(BB2);
696         if (np == 0)
697           InstrMap[NewPhi] = &*BBI;
698 
699         // Rewrite uses and update the map. The actions depend upon whether
700         // we generating code for the kernel or epilog blocks.
701         if (InKernel) {
702           rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1,
703                                 NewReg);
704           rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2,
705                                 NewReg);
706 
707           PhiOp2 = NewReg;
708           VRMapPhi[PrevStage - np - 1][Def] = NewReg;
709         } else {
710           VRMapPhi[CurStageNum - np][Def] = NewReg;
711           if (np == NumPhis - 1)
712             rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
713                                   NewReg);
714         }
715         if (IsLast && np == NumPhis - 1)
716           replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
717       }
718     }
719   }
720 }
721 
722 /// Remove instructions that generate values with no uses.
723 /// Typically, these are induction variable operations that generate values
724 /// used in the loop itself.  A dead instruction has a definition with
725 /// no uses, or uses that occur in the original loop only.
726 void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB,
727                                                     MBBVectorTy &EpilogBBs) {
728   // For each epilog block, check that the value defined by each instruction
729   // is used.  If not, delete it.
730   for (MachineBasicBlock *MBB : llvm::reverse(EpilogBBs))
731     for (MachineBasicBlock::reverse_instr_iterator MI = MBB->instr_rbegin(),
732                                                    ME = MBB->instr_rend();
733          MI != ME;) {
734       // From DeadMachineInstructionElem. Don't delete inline assembly.
735       if (MI->isInlineAsm()) {
736         ++MI;
737         continue;
738       }
739       bool SawStore = false;
740       // Check if it's safe to remove the instruction due to side effects.
741       // We can, and want to, remove Phis here.
742       if (!MI->isSafeToMove(SawStore) && !MI->isPHI()) {
743         ++MI;
744         continue;
745       }
746       bool used = true;
747       for (const MachineOperand &MO : MI->all_defs()) {
748         Register reg = MO.getReg();
749         // Assume physical registers are used, unless they are marked dead.
750         if (reg.isPhysical()) {
751           used = !MO.isDead();
752           if (used)
753             break;
754           continue;
755         }
756         unsigned realUses = 0;
757         for (const MachineOperand &U : MRI.use_operands(reg)) {
758           // Check if there are any uses that occur only in the original
759           // loop.  If so, that's not a real use.
760           if (U.getParent()->getParent() != BB) {
761             realUses++;
762             used = true;
763             break;
764           }
765         }
766         if (realUses > 0)
767           break;
768         used = false;
769       }
770       if (!used) {
771         LIS.RemoveMachineInstrFromMaps(*MI);
772         MI++->eraseFromParent();
773         continue;
774       }
775       ++MI;
776     }
777   // In the kernel block, check if we can remove a Phi that generates a value
778   // used in an instruction removed in the epilog block.
779   for (MachineInstr &MI : llvm::make_early_inc_range(KernelBB->phis())) {
780     Register reg = MI.getOperand(0).getReg();
781     if (MRI.use_begin(reg) == MRI.use_end()) {
782       LIS.RemoveMachineInstrFromMaps(MI);
783       MI.eraseFromParent();
784     }
785   }
786 }
787 
788 /// For loop carried definitions, we split the lifetime of a virtual register
789 /// that has uses past the definition in the next iteration. A copy with a new
790 /// virtual register is inserted before the definition, which helps with
791 /// generating a better register assignment.
792 ///
793 ///   v1 = phi(a, v2)     v1 = phi(a, v2)
794 ///   v2 = phi(b, v3)     v2 = phi(b, v3)
795 ///   v3 = ..             v4 = copy v1
796 ///   .. = V1             v3 = ..
797 ///                       .. = v4
798 void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB,
799                                             MBBVectorTy &EpilogBBs) {
800   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
801   for (auto &PHI : KernelBB->phis()) {
802     Register Def = PHI.getOperand(0).getReg();
803     // Check for any Phi definition that used as an operand of another Phi
804     // in the same block.
805     for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
806                                                  E = MRI.use_instr_end();
807          I != E; ++I) {
808       if (I->isPHI() && I->getParent() == KernelBB) {
809         // Get the loop carried definition.
810         unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
811         if (!LCDef)
812           continue;
813         MachineInstr *MI = MRI.getVRegDef(LCDef);
814         if (!MI || MI->getParent() != KernelBB || MI->isPHI())
815           continue;
816         // Search through the rest of the block looking for uses of the Phi
817         // definition. If one occurs, then split the lifetime.
818         unsigned SplitReg = 0;
819         for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
820                                     KernelBB->instr_end()))
821           if (BBJ.readsRegister(Def, /*TRI=*/nullptr)) {
822             // We split the lifetime when we find the first use.
823             if (SplitReg == 0) {
824               SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
825               BuildMI(*KernelBB, MI, MI->getDebugLoc(),
826                       TII->get(TargetOpcode::COPY), SplitReg)
827                   .addReg(Def);
828             }
829             BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
830           }
831         if (!SplitReg)
832           continue;
833         // Search through each of the epilog blocks for any uses to be renamed.
834         for (auto &Epilog : EpilogBBs)
835           for (auto &I : *Epilog)
836             if (I.readsRegister(Def, /*TRI=*/nullptr))
837               I.substituteRegister(Def, SplitReg, 0, *TRI);
838         break;
839       }
840     }
841   }
842 }
843 
844 /// Remove the incoming block from the Phis in a basic block.
845 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
846   for (MachineInstr &MI : *BB) {
847     if (!MI.isPHI())
848       break;
849     for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
850       if (MI.getOperand(i + 1).getMBB() == Incoming) {
851         MI.removeOperand(i + 1);
852         MI.removeOperand(i);
853         break;
854       }
855   }
856 }
857 
858 /// Create branches from each prolog basic block to the appropriate epilog
859 /// block.  These edges are needed if the loop ends before reaching the
860 /// kernel.
861 void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB,
862                                          MBBVectorTy &PrologBBs,
863                                          MachineBasicBlock *KernelBB,
864                                          MBBVectorTy &EpilogBBs,
865                                          ValueMapTy *VRMap) {
866   assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
867   MachineBasicBlock *LastPro = KernelBB;
868   MachineBasicBlock *LastEpi = KernelBB;
869 
870   // Start from the blocks connected to the kernel and work "out"
871   // to the first prolog and the last epilog blocks.
872   SmallVector<MachineInstr *, 4> PrevInsts;
873   unsigned MaxIter = PrologBBs.size() - 1;
874   for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
875     // Add branches to the prolog that go to the corresponding
876     // epilog, and the fall-thru prolog/kernel block.
877     MachineBasicBlock *Prolog = PrologBBs[j];
878     MachineBasicBlock *Epilog = EpilogBBs[i];
879 
880     SmallVector<MachineOperand, 4> Cond;
881     std::optional<bool> StaticallyGreater =
882         LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond);
883     unsigned numAdded = 0;
884     if (!StaticallyGreater) {
885       Prolog->addSuccessor(Epilog);
886       numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
887     } else if (*StaticallyGreater == false) {
888       Prolog->addSuccessor(Epilog);
889       Prolog->removeSuccessor(LastPro);
890       LastEpi->removeSuccessor(Epilog);
891       numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
892       removePhis(Epilog, LastEpi);
893       // Remove the blocks that are no longer referenced.
894       if (LastPro != LastEpi) {
895         LastEpi->clear();
896         LastEpi->eraseFromParent();
897       }
898       if (LastPro == KernelBB) {
899         LoopInfo->disposed();
900         NewKernel = nullptr;
901       }
902       LastPro->clear();
903       LastPro->eraseFromParent();
904     } else {
905       numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
906       removePhis(Epilog, Prolog);
907     }
908     LastPro = Prolog;
909     LastEpi = Epilog;
910     for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
911                                                    E = Prolog->instr_rend();
912          I != E && numAdded > 0; ++I, --numAdded)
913       updateInstruction(&*I, false, j, 0, VRMap);
914   }
915 
916   if (NewKernel) {
917     LoopInfo->setPreheader(PrologBBs[MaxIter]);
918     LoopInfo->adjustTripCount(-(MaxIter + 1));
919   }
920 }
921 
922 /// Return true if we can compute the amount the instruction changes
923 /// during each iteration. Set Delta to the amount of the change.
924 bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) {
925   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
926   const MachineOperand *BaseOp;
927   int64_t Offset;
928   bool OffsetIsScalable;
929   if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
930     return false;
931 
932   // FIXME: This algorithm assumes instructions have fixed-size offsets.
933   if (OffsetIsScalable)
934     return false;
935 
936   if (!BaseOp->isReg())
937     return false;
938 
939   Register BaseReg = BaseOp->getReg();
940 
941   MachineRegisterInfo &MRI = MF.getRegInfo();
942   // Check if there is a Phi. If so, get the definition in the loop.
943   MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
944   if (BaseDef && BaseDef->isPHI()) {
945     BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
946     BaseDef = MRI.getVRegDef(BaseReg);
947   }
948   if (!BaseDef)
949     return false;
950 
951   int D = 0;
952   if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
953     return false;
954 
955   Delta = D;
956   return true;
957 }
958 
959 /// Update the memory operand with a new offset when the pipeliner
960 /// generates a new copy of the instruction that refers to a
961 /// different memory location.
962 void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI,
963                                                MachineInstr &OldMI,
964                                                unsigned Num) {
965   if (Num == 0)
966     return;
967   // If the instruction has memory operands, then adjust the offset
968   // when the instruction appears in different stages.
969   if (NewMI.memoperands_empty())
970     return;
971   SmallVector<MachineMemOperand *, 2> NewMMOs;
972   for (MachineMemOperand *MMO : NewMI.memoperands()) {
973     // TODO: Figure out whether isAtomic is really necessary (see D57601).
974     if (MMO->isVolatile() || MMO->isAtomic() ||
975         (MMO->isInvariant() && MMO->isDereferenceable()) ||
976         (!MMO->getValue())) {
977       NewMMOs.push_back(MMO);
978       continue;
979     }
980     unsigned Delta;
981     if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
982       int64_t AdjOffset = Delta * Num;
983       NewMMOs.push_back(
984           MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()));
985     } else {
986       NewMMOs.push_back(MF.getMachineMemOperand(
987           MMO, 0, LocationSize::beforeOrAfterPointer()));
988     }
989   }
990   NewMI.setMemRefs(MF, NewMMOs);
991 }
992 
993 /// Clone the instruction for the new pipelined loop and update the
994 /// memory operands, if needed.
995 MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI,
996                                                  unsigned CurStageNum,
997                                                  unsigned InstStageNum) {
998   MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
999   updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
1000   return NewMI;
1001 }
1002 
1003 /// Clone the instruction for the new pipelined loop. If needed, this
1004 /// function updates the instruction using the values saved in the
1005 /// InstrChanges structure.
1006 MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr(
1007     MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) {
1008   MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
1009   auto It = InstrChanges.find(OldMI);
1010   if (It != InstrChanges.end()) {
1011     std::pair<unsigned, int64_t> RegAndOffset = It->second;
1012     unsigned BasePos, OffsetPos;
1013     if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
1014       return nullptr;
1015     int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
1016     MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
1017     if (Schedule.getStage(LoopDef) > (signed)InstStageNum)
1018       NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
1019     NewMI->getOperand(OffsetPos).setImm(NewOffset);
1020   }
1021   updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
1022   return NewMI;
1023 }
1024 
1025 /// Update the machine instruction with new virtual registers.  This
1026 /// function may change the definitions and/or uses.
1027 void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI,
1028                                                bool LastDef,
1029                                                unsigned CurStageNum,
1030                                                unsigned InstrStageNum,
1031                                                ValueMapTy *VRMap) {
1032   for (MachineOperand &MO : NewMI->operands()) {
1033     if (!MO.isReg() || !MO.getReg().isVirtual())
1034       continue;
1035     Register reg = MO.getReg();
1036     if (MO.isDef()) {
1037       // Create a new virtual register for the definition.
1038       const TargetRegisterClass *RC = MRI.getRegClass(reg);
1039       Register NewReg = MRI.createVirtualRegister(RC);
1040       MO.setReg(NewReg);
1041       VRMap[CurStageNum][reg] = NewReg;
1042       if (LastDef)
1043         replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
1044     } else if (MO.isUse()) {
1045       MachineInstr *Def = MRI.getVRegDef(reg);
1046       // Compute the stage that contains the last definition for instruction.
1047       int DefStageNum = Schedule.getStage(Def);
1048       unsigned StageNum = CurStageNum;
1049       if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
1050         // Compute the difference in stages between the defintion and the use.
1051         unsigned StageDiff = (InstrStageNum - DefStageNum);
1052         // Make an adjustment to get the last definition.
1053         StageNum -= StageDiff;
1054       }
1055       if (VRMap[StageNum].count(reg))
1056         MO.setReg(VRMap[StageNum][reg]);
1057     }
1058   }
1059 }
1060 
1061 /// Return the instruction in the loop that defines the register.
1062 /// If the definition is a Phi, then follow the Phi operand to
1063 /// the instruction in the loop.
1064 MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) {
1065   SmallPtrSet<MachineInstr *, 8> Visited;
1066   MachineInstr *Def = MRI.getVRegDef(Reg);
1067   while (Def->isPHI()) {
1068     if (!Visited.insert(Def).second)
1069       break;
1070     for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
1071       if (Def->getOperand(i + 1).getMBB() == BB) {
1072         Def = MRI.getVRegDef(Def->getOperand(i).getReg());
1073         break;
1074       }
1075   }
1076   return Def;
1077 }
1078 
1079 /// Return the new name for the value from the previous stage.
1080 unsigned ModuloScheduleExpander::getPrevMapVal(
1081     unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage,
1082     ValueMapTy *VRMap, MachineBasicBlock *BB) {
1083   unsigned PrevVal = 0;
1084   if (StageNum > PhiStage) {
1085     MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
1086     if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
1087       // The name is defined in the previous stage.
1088       PrevVal = VRMap[StageNum - 1][LoopVal];
1089     else if (VRMap[StageNum].count(LoopVal))
1090       // The previous name is defined in the current stage when the instruction
1091       // order is swapped.
1092       PrevVal = VRMap[StageNum][LoopVal];
1093     else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
1094       // The loop value hasn't yet been scheduled.
1095       PrevVal = LoopVal;
1096     else if (StageNum == PhiStage + 1)
1097       // The loop value is another phi, which has not been scheduled.
1098       PrevVal = getInitPhiReg(*LoopInst, BB);
1099     else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
1100       // The loop value is another phi, which has been scheduled.
1101       PrevVal =
1102           getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
1103                         LoopStage, VRMap, BB);
1104   }
1105   return PrevVal;
1106 }
1107 
1108 /// Rewrite the Phi values in the specified block to use the mappings
1109 /// from the initial operand. Once the Phi is scheduled, we switch
1110 /// to using the loop value instead of the Phi value, so those names
1111 /// do not need to be rewritten.
1112 void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB,
1113                                               unsigned StageNum,
1114                                               ValueMapTy *VRMap,
1115                                               InstrMapTy &InstrMap) {
1116   for (auto &PHI : BB->phis()) {
1117     unsigned InitVal = 0;
1118     unsigned LoopVal = 0;
1119     getPhiRegs(PHI, BB, InitVal, LoopVal);
1120     Register PhiDef = PHI.getOperand(0).getReg();
1121 
1122     unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef));
1123     unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal));
1124     unsigned NumPhis = getStagesForPhi(PhiDef);
1125     if (NumPhis > StageNum)
1126       NumPhis = StageNum;
1127     for (unsigned np = 0; np <= NumPhis; ++np) {
1128       unsigned NewVal =
1129           getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
1130       if (!NewVal)
1131         NewVal = InitVal;
1132       rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef,
1133                             NewVal);
1134     }
1135   }
1136 }
1137 
1138 /// Rewrite a previously scheduled instruction to use the register value
1139 /// from the new instruction. Make sure the instruction occurs in the
1140 /// basic block, and we don't change the uses in the new instruction.
1141 void ModuloScheduleExpander::rewriteScheduledInstr(
1142     MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum,
1143     unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg,
1144     unsigned PrevReg) {
1145   bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1);
1146   int StagePhi = Schedule.getStage(Phi) + PhiNum;
1147   // Rewrite uses that have been scheduled already to use the new
1148   // Phi register.
1149   for (MachineOperand &UseOp :
1150        llvm::make_early_inc_range(MRI.use_operands(OldReg))) {
1151     MachineInstr *UseMI = UseOp.getParent();
1152     if (UseMI->getParent() != BB)
1153       continue;
1154     if (UseMI->isPHI()) {
1155       if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
1156         continue;
1157       if (getLoopPhiReg(*UseMI, BB) != OldReg)
1158         continue;
1159     }
1160     InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
1161     assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
1162     MachineInstr *OrigMI = OrigInstr->second;
1163     int StageSched = Schedule.getStage(OrigMI);
1164     int CycleSched = Schedule.getCycle(OrigMI);
1165     unsigned ReplaceReg = 0;
1166     // This is the stage for the scheduled instruction.
1167     if (StagePhi == StageSched && Phi->isPHI()) {
1168       int CyclePhi = Schedule.getCycle(Phi);
1169       if (PrevReg && InProlog)
1170         ReplaceReg = PrevReg;
1171       else if (PrevReg && !isLoopCarried(*Phi) &&
1172                (CyclePhi <= CycleSched || OrigMI->isPHI()))
1173         ReplaceReg = PrevReg;
1174       else
1175         ReplaceReg = NewReg;
1176     }
1177     // The scheduled instruction occurs before the scheduled Phi, and the
1178     // Phi is not loop carried.
1179     if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi))
1180       ReplaceReg = NewReg;
1181     if (StagePhi > StageSched && Phi->isPHI())
1182       ReplaceReg = NewReg;
1183     if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
1184       ReplaceReg = NewReg;
1185     if (ReplaceReg) {
1186       const TargetRegisterClass *NRC =
1187           MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
1188       if (NRC)
1189         UseOp.setReg(ReplaceReg);
1190       else {
1191         Register SplitReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
1192         BuildMI(*BB, UseMI, UseMI->getDebugLoc(), TII->get(TargetOpcode::COPY),
1193                 SplitReg)
1194             .addReg(ReplaceReg);
1195         UseOp.setReg(SplitReg);
1196       }
1197     }
1198   }
1199 }
1200 
1201 bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) {
1202   if (!Phi.isPHI())
1203     return false;
1204   int DefCycle = Schedule.getCycle(&Phi);
1205   int DefStage = Schedule.getStage(&Phi);
1206 
1207   unsigned InitVal = 0;
1208   unsigned LoopVal = 0;
1209   getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
1210   MachineInstr *Use = MRI.getVRegDef(LoopVal);
1211   if (!Use || Use->isPHI())
1212     return true;
1213   int LoopCycle = Schedule.getCycle(Use);
1214   int LoopStage = Schedule.getStage(Use);
1215   return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
1216 }
1217 
1218 //===----------------------------------------------------------------------===//
1219 // PeelingModuloScheduleExpander implementation
1220 //===----------------------------------------------------------------------===//
1221 // This is a reimplementation of ModuloScheduleExpander that works by creating
1222 // a fully correct steady-state kernel and peeling off the prolog and epilogs.
1223 //===----------------------------------------------------------------------===//
1224 
1225 namespace {
1226 // Remove any dead phis in MBB. Dead phis either have only one block as input
1227 // (in which case they are the identity) or have no uses.
1228 void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI,
1229                        LiveIntervals *LIS, bool KeepSingleSrcPhi = false) {
1230   bool Changed = true;
1231   while (Changed) {
1232     Changed = false;
1233     for (MachineInstr &MI : llvm::make_early_inc_range(MBB->phis())) {
1234       assert(MI.isPHI());
1235       if (MRI.use_empty(MI.getOperand(0).getReg())) {
1236         if (LIS)
1237           LIS->RemoveMachineInstrFromMaps(MI);
1238         MI.eraseFromParent();
1239         Changed = true;
1240       } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) {
1241         const TargetRegisterClass *ConstrainRegClass =
1242             MRI.constrainRegClass(MI.getOperand(1).getReg(),
1243                                   MRI.getRegClass(MI.getOperand(0).getReg()));
1244         assert(ConstrainRegClass &&
1245                "Expected a valid constrained register class!");
1246         (void)ConstrainRegClass;
1247         MRI.replaceRegWith(MI.getOperand(0).getReg(),
1248                            MI.getOperand(1).getReg());
1249         if (LIS)
1250           LIS->RemoveMachineInstrFromMaps(MI);
1251         MI.eraseFromParent();
1252         Changed = true;
1253       }
1254     }
1255   }
1256 }
1257 
1258 /// Rewrites the kernel block in-place to adhere to the given schedule.
1259 /// KernelRewriter holds all of the state required to perform the rewriting.
1260 class KernelRewriter {
1261   ModuloSchedule &S;
1262   MachineBasicBlock *BB;
1263   MachineBasicBlock *PreheaderBB, *ExitBB;
1264   MachineRegisterInfo &MRI;
1265   const TargetInstrInfo *TII;
1266   LiveIntervals *LIS;
1267 
1268   // Map from register class to canonical undef register for that class.
1269   DenseMap<const TargetRegisterClass *, Register> Undefs;
1270   // Map from <LoopReg, InitReg> to phi register for all created phis. Note that
1271   // this map is only used when InitReg is non-undef.
1272   DenseMap<std::pair<unsigned, unsigned>, Register> Phis;
1273   // Map from LoopReg to phi register where the InitReg is undef.
1274   DenseMap<Register, Register> UndefPhis;
1275 
1276   // Reg is used by MI. Return the new register MI should use to adhere to the
1277   // schedule. Insert phis as necessary.
1278   Register remapUse(Register Reg, MachineInstr &MI);
1279   // Insert a phi that carries LoopReg from the loop body and InitReg otherwise.
1280   // If InitReg is not given it is chosen arbitrarily. It will either be undef
1281   // or will be chosen so as to share another phi.
1282   Register phi(Register LoopReg, std::optional<Register> InitReg = {},
1283                const TargetRegisterClass *RC = nullptr);
1284   // Create an undef register of the given register class.
1285   Register undef(const TargetRegisterClass *RC);
1286 
1287 public:
1288   KernelRewriter(MachineLoop &L, ModuloSchedule &S, MachineBasicBlock *LoopBB,
1289                  LiveIntervals *LIS = nullptr);
1290   void rewrite();
1291 };
1292 } // namespace
1293 
1294 KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S,
1295                                MachineBasicBlock *LoopBB, LiveIntervals *LIS)
1296     : S(S), BB(LoopBB), PreheaderBB(L.getLoopPreheader()),
1297       ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()),
1298       TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) {
1299   PreheaderBB = *BB->pred_begin();
1300   if (PreheaderBB == BB)
1301     PreheaderBB = *std::next(BB->pred_begin());
1302 }
1303 
1304 void KernelRewriter::rewrite() {
1305   // Rearrange the loop to be in schedule order. Note that the schedule may
1306   // contain instructions that are not owned by the loop block (InstrChanges and
1307   // friends), so we gracefully handle unowned instructions and delete any
1308   // instructions that weren't in the schedule.
1309   auto InsertPt = BB->getFirstTerminator();
1310   MachineInstr *FirstMI = nullptr;
1311   for (MachineInstr *MI : S.getInstructions()) {
1312     if (MI->isPHI())
1313       continue;
1314     if (MI->getParent())
1315       MI->removeFromParent();
1316     BB->insert(InsertPt, MI);
1317     if (!FirstMI)
1318       FirstMI = MI;
1319   }
1320   assert(FirstMI && "Failed to find first MI in schedule");
1321 
1322   // At this point all of the scheduled instructions are between FirstMI
1323   // and the end of the block. Kill from the first non-phi to FirstMI.
1324   for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) {
1325     if (LIS)
1326       LIS->RemoveMachineInstrFromMaps(*I);
1327     (I++)->eraseFromParent();
1328   }
1329 
1330   // Now remap every instruction in the loop.
1331   for (MachineInstr &MI : *BB) {
1332     if (MI.isPHI() || MI.isTerminator())
1333       continue;
1334     for (MachineOperand &MO : MI.uses()) {
1335       if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit())
1336         continue;
1337       Register Reg = remapUse(MO.getReg(), MI);
1338       MO.setReg(Reg);
1339     }
1340   }
1341   EliminateDeadPhis(BB, MRI, LIS);
1342 
1343   // Ensure a phi exists for all instructions that are either referenced by
1344   // an illegal phi or by an instruction outside the loop. This allows us to
1345   // treat remaps of these values the same as "normal" values that come from
1346   // loop-carried phis.
1347   for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) {
1348     if (MI->isPHI()) {
1349       Register R = MI->getOperand(0).getReg();
1350       phi(R);
1351       continue;
1352     }
1353 
1354     for (MachineOperand &Def : MI->defs()) {
1355       for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) {
1356         if (MI.getParent() != BB) {
1357           phi(Def.getReg());
1358           break;
1359         }
1360       }
1361     }
1362   }
1363 }
1364 
1365 Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) {
1366   MachineInstr *Producer = MRI.getUniqueVRegDef(Reg);
1367   if (!Producer)
1368     return Reg;
1369 
1370   int ConsumerStage = S.getStage(&MI);
1371   if (!Producer->isPHI()) {
1372     // Non-phi producers are simple to remap. Insert as many phis as the
1373     // difference between the consumer and producer stages.
1374     if (Producer->getParent() != BB)
1375       // Producer was not inside the loop. Use the register as-is.
1376       return Reg;
1377     int ProducerStage = S.getStage(Producer);
1378     assert(ConsumerStage != -1 &&
1379            "In-loop consumer should always be scheduled!");
1380     assert(ConsumerStage >= ProducerStage);
1381     unsigned StageDiff = ConsumerStage - ProducerStage;
1382 
1383     for (unsigned I = 0; I < StageDiff; ++I)
1384       Reg = phi(Reg);
1385     return Reg;
1386   }
1387 
1388   // First, dive through the phi chain to find the defaults for the generated
1389   // phis.
1390   SmallVector<std::optional<Register>, 4> Defaults;
1391   Register LoopReg = Reg;
1392   auto LoopProducer = Producer;
1393   while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) {
1394     LoopReg = getLoopPhiReg(*LoopProducer, BB);
1395     Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB));
1396     LoopProducer = MRI.getUniqueVRegDef(LoopReg);
1397     assert(LoopProducer);
1398   }
1399   int LoopProducerStage = S.getStage(LoopProducer);
1400 
1401   std::optional<Register> IllegalPhiDefault;
1402 
1403   if (LoopProducerStage == -1) {
1404     // Do nothing.
1405   } else if (LoopProducerStage > ConsumerStage) {
1406     // This schedule is only representable if ProducerStage == ConsumerStage+1.
1407     // In addition, Consumer's cycle must be scheduled after Producer in the
1408     // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP
1409     // functions.
1410 #ifndef NDEBUG // Silence unused variables in non-asserts mode.
1411     int LoopProducerCycle = S.getCycle(LoopProducer);
1412     int ConsumerCycle = S.getCycle(&MI);
1413 #endif
1414     assert(LoopProducerCycle <= ConsumerCycle);
1415     assert(LoopProducerStage == ConsumerStage + 1);
1416     // Peel off the first phi from Defaults and insert a phi between producer
1417     // and consumer. This phi will not be at the front of the block so we
1418     // consider it illegal. It will only exist during the rewrite process; it
1419     // needs to exist while we peel off prologs because these could take the
1420     // default value. After that we can replace all uses with the loop producer
1421     // value.
1422     IllegalPhiDefault = Defaults.front();
1423     Defaults.erase(Defaults.begin());
1424   } else {
1425     assert(ConsumerStage >= LoopProducerStage);
1426     int StageDiff = ConsumerStage - LoopProducerStage;
1427     if (StageDiff > 0) {
1428       LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size()
1429                         << " to " << (Defaults.size() + StageDiff) << "\n");
1430       // If we need more phis than we have defaults for, pad out with undefs for
1431       // the earliest phis, which are at the end of the defaults chain (the
1432       // chain is in reverse order).
1433       Defaults.resize(Defaults.size() + StageDiff,
1434                       Defaults.empty() ? std::optional<Register>()
1435                                        : Defaults.back());
1436     }
1437   }
1438 
1439   // Now we know the number of stages to jump back, insert the phi chain.
1440   auto DefaultI = Defaults.rbegin();
1441   while (DefaultI != Defaults.rend())
1442     LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg));
1443 
1444   if (IllegalPhiDefault) {
1445     // The consumer optionally consumes LoopProducer in the same iteration
1446     // (because the producer is scheduled at an earlier cycle than the consumer)
1447     // or the initial value. To facilitate this we create an illegal block here
1448     // by embedding a phi in the middle of the block. We will fix this up
1449     // immediately prior to pruning.
1450     auto RC = MRI.getRegClass(Reg);
1451     Register R = MRI.createVirtualRegister(RC);
1452     MachineInstr *IllegalPhi =
1453         BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1454             .addReg(*IllegalPhiDefault)
1455             .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect.
1456             .addReg(LoopReg)
1457             .addMBB(BB); // Block choice is arbitrary and has no effect.
1458     // Illegal phi should belong to the producer stage so that it can be
1459     // filtered correctly during peeling.
1460     S.setStage(IllegalPhi, LoopProducerStage);
1461     return R;
1462   }
1463 
1464   return LoopReg;
1465 }
1466 
1467 Register KernelRewriter::phi(Register LoopReg, std::optional<Register> InitReg,
1468                              const TargetRegisterClass *RC) {
1469   // If the init register is not undef, try and find an existing phi.
1470   if (InitReg) {
1471     auto I = Phis.find({LoopReg, *InitReg});
1472     if (I != Phis.end())
1473       return I->second;
1474   } else {
1475     for (auto &KV : Phis) {
1476       if (KV.first.first == LoopReg)
1477         return KV.second;
1478     }
1479   }
1480 
1481   // InitReg is either undef or no existing phi takes InitReg as input. Try and
1482   // find a phi that takes undef as input.
1483   auto I = UndefPhis.find(LoopReg);
1484   if (I != UndefPhis.end()) {
1485     Register R = I->second;
1486     if (!InitReg)
1487       // Found a phi taking undef as input, and this input is undef so return
1488       // without any more changes.
1489       return R;
1490     // Found a phi taking undef as input, so rewrite it to take InitReg.
1491     MachineInstr *MI = MRI.getVRegDef(R);
1492     MI->getOperand(1).setReg(*InitReg);
1493     Phis.insert({{LoopReg, *InitReg}, R});
1494     const TargetRegisterClass *ConstrainRegClass =
1495         MRI.constrainRegClass(R, MRI.getRegClass(*InitReg));
1496     assert(ConstrainRegClass && "Expected a valid constrained register class!");
1497     (void)ConstrainRegClass;
1498     UndefPhis.erase(I);
1499     return R;
1500   }
1501 
1502   // Failed to find any existing phi to reuse, so create a new one.
1503   if (!RC)
1504     RC = MRI.getRegClass(LoopReg);
1505   Register R = MRI.createVirtualRegister(RC);
1506   if (InitReg) {
1507     const TargetRegisterClass *ConstrainRegClass =
1508         MRI.constrainRegClass(R, MRI.getRegClass(*InitReg));
1509     assert(ConstrainRegClass && "Expected a valid constrained register class!");
1510     (void)ConstrainRegClass;
1511   }
1512   BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R)
1513       .addReg(InitReg ? *InitReg : undef(RC))
1514       .addMBB(PreheaderBB)
1515       .addReg(LoopReg)
1516       .addMBB(BB);
1517   if (!InitReg)
1518     UndefPhis[LoopReg] = R;
1519   else
1520     Phis[{LoopReg, *InitReg}] = R;
1521   return R;
1522 }
1523 
1524 Register KernelRewriter::undef(const TargetRegisterClass *RC) {
1525   Register &R = Undefs[RC];
1526   if (R == 0) {
1527     // Create an IMPLICIT_DEF that defines this register if we need it.
1528     // All uses of this should be removed by the time we have finished unrolling
1529     // prologs and epilogs.
1530     R = MRI.createVirtualRegister(RC);
1531     auto *InsertBB = &PreheaderBB->getParent()->front();
1532     BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(),
1533             TII->get(TargetOpcode::IMPLICIT_DEF), R);
1534   }
1535   return R;
1536 }
1537 
1538 namespace {
1539 /// Describes an operand in the kernel of a pipelined loop. Characteristics of
1540 /// the operand are discovered, such as how many in-loop PHIs it has to jump
1541 /// through and defaults for these phis.
1542 class KernelOperandInfo {
1543   MachineBasicBlock *BB;
1544   MachineRegisterInfo &MRI;
1545   SmallVector<Register, 4> PhiDefaults;
1546   MachineOperand *Source;
1547   MachineOperand *Target;
1548 
1549 public:
1550   KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI,
1551                     const SmallPtrSetImpl<MachineInstr *> &IllegalPhis)
1552       : MRI(MRI) {
1553     Source = MO;
1554     BB = MO->getParent()->getParent();
1555     while (isRegInLoop(MO)) {
1556       MachineInstr *MI = MRI.getVRegDef(MO->getReg());
1557       if (MI->isFullCopy()) {
1558         MO = &MI->getOperand(1);
1559         continue;
1560       }
1561       if (!MI->isPHI())
1562         break;
1563       // If this is an illegal phi, don't count it in distance.
1564       if (IllegalPhis.count(MI)) {
1565         MO = &MI->getOperand(3);
1566         continue;
1567       }
1568 
1569       Register Default = getInitPhiReg(*MI, BB);
1570       MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1)
1571                                             : &MI->getOperand(3);
1572       PhiDefaults.push_back(Default);
1573     }
1574     Target = MO;
1575   }
1576 
1577   bool operator==(const KernelOperandInfo &Other) const {
1578     return PhiDefaults.size() == Other.PhiDefaults.size();
1579   }
1580 
1581   void print(raw_ostream &OS) const {
1582     OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in "
1583        << *Source->getParent();
1584   }
1585 
1586 private:
1587   bool isRegInLoop(MachineOperand *MO) {
1588     return MO->isReg() && MO->getReg().isVirtual() &&
1589            MRI.getVRegDef(MO->getReg())->getParent() == BB;
1590   }
1591 };
1592 } // namespace
1593 
1594 MachineBasicBlock *
1595 PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) {
1596   MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII);
1597   if (LPD == LPD_Front)
1598     PeeledFront.push_back(NewBB);
1599   else
1600     PeeledBack.push_front(NewBB);
1601   for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator();
1602        ++I, ++NI) {
1603     CanonicalMIs[&*I] = &*I;
1604     CanonicalMIs[&*NI] = &*I;
1605     BlockMIs[{NewBB, &*I}] = &*NI;
1606     BlockMIs[{BB, &*I}] = &*I;
1607   }
1608   return NewBB;
1609 }
1610 
1611 void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB,
1612                                                        int MinStage) {
1613   for (auto I = MB->getFirstInstrTerminator()->getReverseIterator();
1614        I != std::next(MB->getFirstNonPHI()->getReverseIterator());) {
1615     MachineInstr *MI = &*I++;
1616     int Stage = getStage(MI);
1617     if (Stage == -1 || Stage >= MinStage)
1618       continue;
1619 
1620     for (MachineOperand &DefMO : MI->defs()) {
1621       SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1622       for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1623         // Only PHIs can use values from this block by construction.
1624         // Match with the equivalent PHI in B.
1625         assert(UseMI.isPHI());
1626         Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1627                                                MI->getParent());
1628         Subs.emplace_back(&UseMI, Reg);
1629       }
1630       for (auto &Sub : Subs)
1631         Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1632                                       *MRI.getTargetRegisterInfo());
1633     }
1634     if (LIS)
1635       LIS->RemoveMachineInstrFromMaps(*MI);
1636     MI->eraseFromParent();
1637   }
1638 }
1639 
1640 void PeelingModuloScheduleExpander::moveStageBetweenBlocks(
1641     MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) {
1642   auto InsertPt = DestBB->getFirstNonPHI();
1643   DenseMap<Register, Register> Remaps;
1644   for (MachineInstr &MI : llvm::make_early_inc_range(
1645            llvm::make_range(SourceBB->getFirstNonPHI(), SourceBB->end()))) {
1646     if (MI.isPHI()) {
1647       // This is an illegal PHI. If we move any instructions using an illegal
1648       // PHI, we need to create a legal Phi.
1649       if (getStage(&MI) != Stage) {
1650         // The legal Phi is not necessary if the illegal phi's stage
1651         // is being moved.
1652         Register PhiR = MI.getOperand(0).getReg();
1653         auto RC = MRI.getRegClass(PhiR);
1654         Register NR = MRI.createVirtualRegister(RC);
1655         MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(),
1656                                    DebugLoc(), TII->get(TargetOpcode::PHI), NR)
1657                                .addReg(PhiR)
1658                                .addMBB(SourceBB);
1659         BlockMIs[{DestBB, CanonicalMIs[&MI]}] = NI;
1660         CanonicalMIs[NI] = CanonicalMIs[&MI];
1661         Remaps[PhiR] = NR;
1662       }
1663     }
1664     if (getStage(&MI) != Stage)
1665       continue;
1666     MI.removeFromParent();
1667     DestBB->insert(InsertPt, &MI);
1668     auto *KernelMI = CanonicalMIs[&MI];
1669     BlockMIs[{DestBB, KernelMI}] = &MI;
1670     BlockMIs.erase({SourceBB, KernelMI});
1671   }
1672   SmallVector<MachineInstr *, 4> PhiToDelete;
1673   for (MachineInstr &MI : DestBB->phis()) {
1674     assert(MI.getNumOperands() == 3);
1675     MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg());
1676     // If the instruction referenced by the phi is moved inside the block
1677     // we don't need the phi anymore.
1678     if (getStage(Def) == Stage) {
1679       Register PhiReg = MI.getOperand(0).getReg();
1680       assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg(),
1681                                             /*TRI=*/nullptr) != -1);
1682       MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
1683       MI.getOperand(0).setReg(PhiReg);
1684       PhiToDelete.push_back(&MI);
1685     }
1686   }
1687   for (auto *P : PhiToDelete)
1688     P->eraseFromParent();
1689   InsertPt = DestBB->getFirstNonPHI();
1690   // Helper to clone Phi instructions into the destination block. We clone Phi
1691   // greedily to avoid combinatorial explosion of Phi instructions.
1692   auto clonePhi = [&](MachineInstr *Phi) {
1693     MachineInstr *NewMI = MF.CloneMachineInstr(Phi);
1694     DestBB->insert(InsertPt, NewMI);
1695     Register OrigR = Phi->getOperand(0).getReg();
1696     Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR));
1697     NewMI->getOperand(0).setReg(R);
1698     NewMI->getOperand(1).setReg(OrigR);
1699     NewMI->getOperand(2).setMBB(*DestBB->pred_begin());
1700     Remaps[OrigR] = R;
1701     CanonicalMIs[NewMI] = CanonicalMIs[Phi];
1702     BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI;
1703     PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi];
1704     return R;
1705   };
1706   for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) {
1707     for (MachineOperand &MO : I->uses()) {
1708       if (!MO.isReg())
1709         continue;
1710       if (Remaps.count(MO.getReg()))
1711         MO.setReg(Remaps[MO.getReg()]);
1712       else {
1713         // If we are using a phi from the source block we need to add a new phi
1714         // pointing to the old one.
1715         MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg());
1716         if (Use && Use->isPHI() && Use->getParent() == SourceBB) {
1717           Register R = clonePhi(Use);
1718           MO.setReg(R);
1719         }
1720       }
1721     }
1722   }
1723 }
1724 
1725 Register
1726 PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi,
1727                                                   MachineInstr *Phi) {
1728   unsigned distance = PhiNodeLoopIteration[Phi];
1729   MachineInstr *CanonicalUse = CanonicalPhi;
1730   Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg();
1731   for (unsigned I = 0; I < distance; ++I) {
1732     assert(CanonicalUse->isPHI());
1733     assert(CanonicalUse->getNumOperands() == 5);
1734     unsigned LoopRegIdx = 3, InitRegIdx = 1;
1735     if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent())
1736       std::swap(LoopRegIdx, InitRegIdx);
1737     CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg();
1738     CanonicalUse = MRI.getVRegDef(CanonicalUseReg);
1739   }
1740   return CanonicalUseReg;
1741 }
1742 
1743 void PeelingModuloScheduleExpander::peelPrologAndEpilogs() {
1744   BitVector LS(Schedule.getNumStages(), true);
1745   BitVector AS(Schedule.getNumStages(), true);
1746   LiveStages[BB] = LS;
1747   AvailableStages[BB] = AS;
1748 
1749   // Peel out the prologs.
1750   LS.reset();
1751   for (int I = 0; I < Schedule.getNumStages() - 1; ++I) {
1752     LS[I] = true;
1753     Prologs.push_back(peelKernel(LPD_Front));
1754     LiveStages[Prologs.back()] = LS;
1755     AvailableStages[Prologs.back()] = LS;
1756   }
1757 
1758   // Create a block that will end up as the new loop exiting block (dominated by
1759   // all prologs and epilogs). It will only contain PHIs, in the same order as
1760   // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property
1761   // that the exiting block is a (sub) clone of BB. This in turn gives us the
1762   // property that any value deffed in BB but used outside of BB is used by a
1763   // PHI in the exiting block.
1764   MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock();
1765   EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true);
1766   // Push out the epilogs, again in reverse order.
1767   // We can't assume anything about the minumum loop trip count at this point,
1768   // so emit a fairly complex epilog.
1769 
1770   // We first peel number of stages minus one epilogue. Then we remove dead
1771   // stages and reorder instructions based on their stage. If we have 3 stages
1772   // we generate first:
1773   // E0[3, 2, 1]
1774   // E1[3', 2']
1775   // E2[3'']
1776   // And then we move instructions based on their stages to have:
1777   // E0[3]
1778   // E1[2, 3']
1779   // E2[1, 2', 3'']
1780   // The transformation is legal because we only move instructions past
1781   // instructions of a previous loop iteration.
1782   for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) {
1783     Epilogs.push_back(peelKernel(LPD_Back));
1784     MachineBasicBlock *B = Epilogs.back();
1785     filterInstructions(B, Schedule.getNumStages() - I);
1786     // Keep track at which iteration each phi belongs to. We need it to know
1787     // what version of the variable to use during prologue/epilogue stitching.
1788     EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true);
1789     for (MachineInstr &Phi : B->phis())
1790       PhiNodeLoopIteration[&Phi] = Schedule.getNumStages() - I;
1791   }
1792   for (size_t I = 0; I < Epilogs.size(); I++) {
1793     LS.reset();
1794     for (size_t J = I; J < Epilogs.size(); J++) {
1795       int Iteration = J;
1796       unsigned Stage = Schedule.getNumStages() - 1 + I - J;
1797       // Move stage one block at a time so that Phi nodes are updated correctly.
1798       for (size_t K = Iteration; K > I; K--)
1799         moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage);
1800       LS[Stage] = true;
1801     }
1802     LiveStages[Epilogs[I]] = LS;
1803     AvailableStages[Epilogs[I]] = AS;
1804   }
1805 
1806   // Now we've defined all the prolog and epilog blocks as a fallthrough
1807   // sequence, add the edges that will be followed if the loop trip count is
1808   // lower than the number of stages (connecting prologs directly with epilogs).
1809   auto PI = Prologs.begin();
1810   auto EI = Epilogs.begin();
1811   assert(Prologs.size() == Epilogs.size());
1812   for (; PI != Prologs.end(); ++PI, ++EI) {
1813     MachineBasicBlock *Pred = *(*EI)->pred_begin();
1814     (*PI)->addSuccessor(*EI);
1815     for (MachineInstr &MI : (*EI)->phis()) {
1816       Register Reg = MI.getOperand(1).getReg();
1817       MachineInstr *Use = MRI.getUniqueVRegDef(Reg);
1818       if (Use && Use->getParent() == Pred) {
1819         MachineInstr *CanonicalUse = CanonicalMIs[Use];
1820         if (CanonicalUse->isPHI()) {
1821           // If the use comes from a phi we need to skip as many phi as the
1822           // distance between the epilogue and the kernel. Trace through the phi
1823           // chain to find the right value.
1824           Reg = getPhiCanonicalReg(CanonicalUse, Use);
1825         }
1826         Reg = getEquivalentRegisterIn(Reg, *PI);
1827       }
1828       MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false));
1829       MI.addOperand(MachineOperand::CreateMBB(*PI));
1830     }
1831   }
1832 
1833   // Create a list of all blocks in order.
1834   SmallVector<MachineBasicBlock *, 8> Blocks;
1835   llvm::copy(PeeledFront, std::back_inserter(Blocks));
1836   Blocks.push_back(BB);
1837   llvm::copy(PeeledBack, std::back_inserter(Blocks));
1838 
1839   // Iterate in reverse order over all instructions, remapping as we go.
1840   for (MachineBasicBlock *B : reverse(Blocks)) {
1841     for (auto I = B->instr_rbegin();
1842          I != std::next(B->getFirstNonPHI()->getReverseIterator());) {
1843       MachineBasicBlock::reverse_instr_iterator MI = I++;
1844       rewriteUsesOf(&*MI);
1845     }
1846   }
1847   for (auto *MI : IllegalPhisToDelete) {
1848     if (LIS)
1849       LIS->RemoveMachineInstrFromMaps(*MI);
1850     MI->eraseFromParent();
1851   }
1852   IllegalPhisToDelete.clear();
1853 
1854   // Now all remapping has been done, we're free to optimize the generated code.
1855   for (MachineBasicBlock *B : reverse(Blocks))
1856     EliminateDeadPhis(B, MRI, LIS);
1857   EliminateDeadPhis(ExitingBB, MRI, LIS);
1858 }
1859 
1860 MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() {
1861   MachineFunction &MF = *BB->getParent();
1862   MachineBasicBlock *Exit = *BB->succ_begin();
1863   if (Exit == BB)
1864     Exit = *std::next(BB->succ_begin());
1865 
1866   MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
1867   MF.insert(std::next(BB->getIterator()), NewBB);
1868 
1869   // Clone all phis in BB into NewBB and rewrite.
1870   for (MachineInstr &MI : BB->phis()) {
1871     auto RC = MRI.getRegClass(MI.getOperand(0).getReg());
1872     Register OldR = MI.getOperand(3).getReg();
1873     Register R = MRI.createVirtualRegister(RC);
1874     SmallVector<MachineInstr *, 4> Uses;
1875     for (MachineInstr &Use : MRI.use_instructions(OldR))
1876       if (Use.getParent() != BB)
1877         Uses.push_back(&Use);
1878     for (MachineInstr *Use : Uses)
1879       Use->substituteRegister(OldR, R, /*SubIdx=*/0,
1880                               *MRI.getTargetRegisterInfo());
1881     MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1882         .addReg(OldR)
1883         .addMBB(BB);
1884     BlockMIs[{NewBB, &MI}] = NI;
1885     CanonicalMIs[NI] = &MI;
1886   }
1887   BB->replaceSuccessor(Exit, NewBB);
1888   Exit->replacePhiUsesWith(BB, NewBB);
1889   NewBB->addSuccessor(Exit);
1890 
1891   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1892   SmallVector<MachineOperand, 4> Cond;
1893   bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond);
1894   (void)CanAnalyzeBr;
1895   assert(CanAnalyzeBr && "Must be able to analyze the loop branch!");
1896   TII->removeBranch(*BB);
1897   TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB,
1898                     Cond, DebugLoc());
1899   TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc());
1900   return NewBB;
1901 }
1902 
1903 Register
1904 PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg,
1905                                                        MachineBasicBlock *BB) {
1906   MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
1907   unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg, /*TRI=*/nullptr);
1908   return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg();
1909 }
1910 
1911 void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) {
1912   if (MI->isPHI()) {
1913     // This is an illegal PHI. The loop-carried (desired) value is operand 3,
1914     // and it is produced by this block.
1915     Register PhiR = MI->getOperand(0).getReg();
1916     Register R = MI->getOperand(3).getReg();
1917     int RMIStage = getStage(MRI.getUniqueVRegDef(R));
1918     if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage))
1919       R = MI->getOperand(1).getReg();
1920     MRI.setRegClass(R, MRI.getRegClass(PhiR));
1921     MRI.replaceRegWith(PhiR, R);
1922     // Postpone deleting the Phi as it may be referenced by BlockMIs and used
1923     // later to figure out how to remap registers.
1924     MI->getOperand(0).setReg(PhiR);
1925     IllegalPhisToDelete.push_back(MI);
1926     return;
1927   }
1928 
1929   int Stage = getStage(MI);
1930   if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 ||
1931       LiveStages[MI->getParent()].test(Stage))
1932     // Instruction is live, no rewriting to do.
1933     return;
1934 
1935   for (MachineOperand &DefMO : MI->defs()) {
1936     SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1937     for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1938       // Only PHIs can use values from this block by construction.
1939       // Match with the equivalent PHI in B.
1940       assert(UseMI.isPHI());
1941       Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1942                                              MI->getParent());
1943       Subs.emplace_back(&UseMI, Reg);
1944     }
1945     for (auto &Sub : Subs)
1946       Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1947                                     *MRI.getTargetRegisterInfo());
1948   }
1949   if (LIS)
1950     LIS->RemoveMachineInstrFromMaps(*MI);
1951   MI->eraseFromParent();
1952 }
1953 
1954 void PeelingModuloScheduleExpander::fixupBranches() {
1955   // Work outwards from the kernel.
1956   bool KernelDisposed = false;
1957   int TC = Schedule.getNumStages() - 1;
1958   for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend();
1959        ++PI, ++EI, --TC) {
1960     MachineBasicBlock *Prolog = *PI;
1961     MachineBasicBlock *Fallthrough = *Prolog->succ_begin();
1962     MachineBasicBlock *Epilog = *EI;
1963     SmallVector<MachineOperand, 4> Cond;
1964     TII->removeBranch(*Prolog);
1965     std::optional<bool> StaticallyGreater =
1966         LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond);
1967     if (!StaticallyGreater) {
1968       LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n");
1969       // Dynamically branch based on Cond.
1970       TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc());
1971     } else if (*StaticallyGreater == false) {
1972       LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n");
1973       // Prolog never falls through; branch to epilog and orphan interior
1974       // blocks. Leave it to unreachable-block-elim to clean up.
1975       Prolog->removeSuccessor(Fallthrough);
1976       for (MachineInstr &P : Fallthrough->phis()) {
1977         P.removeOperand(2);
1978         P.removeOperand(1);
1979       }
1980       TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc());
1981       KernelDisposed = true;
1982     } else {
1983       LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n");
1984       // Prolog always falls through; remove incoming values in epilog.
1985       Prolog->removeSuccessor(Epilog);
1986       for (MachineInstr &P : Epilog->phis()) {
1987         P.removeOperand(4);
1988         P.removeOperand(3);
1989       }
1990     }
1991   }
1992 
1993   if (!KernelDisposed) {
1994     LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1));
1995     LoopInfo->setPreheader(Prologs.back());
1996   } else {
1997     LoopInfo->disposed();
1998   }
1999 }
2000 
2001 void PeelingModuloScheduleExpander::rewriteKernel() {
2002   KernelRewriter KR(*Schedule.getLoop(), Schedule, BB);
2003   KR.rewrite();
2004 }
2005 
2006 void PeelingModuloScheduleExpander::expand() {
2007   BB = Schedule.getLoop()->getTopBlock();
2008   Preheader = Schedule.getLoop()->getLoopPreheader();
2009   LLVM_DEBUG(Schedule.dump());
2010   LoopInfo = TII->analyzeLoopForPipelining(BB);
2011   assert(LoopInfo);
2012 
2013   rewriteKernel();
2014   peelPrologAndEpilogs();
2015   fixupBranches();
2016 }
2017 
2018 void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() {
2019   BB = Schedule.getLoop()->getTopBlock();
2020   Preheader = Schedule.getLoop()->getLoopPreheader();
2021 
2022   // Dump the schedule before we invalidate and remap all its instructions.
2023   // Stash it in a string so we can print it if we found an error.
2024   std::string ScheduleDump;
2025   raw_string_ostream OS(ScheduleDump);
2026   Schedule.print(OS);
2027   OS.flush();
2028 
2029   // First, run the normal ModuleScheduleExpander. We don't support any
2030   // InstrChanges.
2031   assert(LIS && "Requires LiveIntervals!");
2032   ModuloScheduleExpander MSE(MF, Schedule, *LIS,
2033                              ModuloScheduleExpander::InstrChangesTy());
2034   MSE.expand();
2035   MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel();
2036   if (!ExpandedKernel) {
2037     // The expander optimized away the kernel. We can't do any useful checking.
2038     MSE.cleanup();
2039     return;
2040   }
2041   // Before running the KernelRewriter, re-add BB into the CFG.
2042   Preheader->addSuccessor(BB);
2043 
2044   // Now run the new expansion algorithm.
2045   KernelRewriter KR(*Schedule.getLoop(), Schedule, BB);
2046   KR.rewrite();
2047   peelPrologAndEpilogs();
2048 
2049   // Collect all illegal phis that the new algorithm created. We'll give these
2050   // to KernelOperandInfo.
2051   SmallPtrSet<MachineInstr *, 4> IllegalPhis;
2052   for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) {
2053     if (NI->isPHI())
2054       IllegalPhis.insert(&*NI);
2055   }
2056 
2057   // Co-iterate across both kernels. We expect them to be identical apart from
2058   // phis and full COPYs (we look through both).
2059   SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs;
2060   auto OI = ExpandedKernel->begin();
2061   auto NI = BB->begin();
2062   for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) {
2063     while (OI->isPHI() || OI->isFullCopy())
2064       ++OI;
2065     while (NI->isPHI() || NI->isFullCopy())
2066       ++NI;
2067     assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!");
2068     // Analyze every operand separately.
2069     for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin();
2070          OOpI != OI->operands_end(); ++OOpI, ++NOpI)
2071       KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis),
2072                         KernelOperandInfo(&*NOpI, MRI, IllegalPhis));
2073   }
2074 
2075   bool Failed = false;
2076   for (auto &OldAndNew : KOIs) {
2077     if (OldAndNew.first == OldAndNew.second)
2078       continue;
2079     Failed = true;
2080     errs() << "Modulo kernel validation error: [\n";
2081     errs() << " [golden] ";
2082     OldAndNew.first.print(errs());
2083     errs() << "          ";
2084     OldAndNew.second.print(errs());
2085     errs() << "]\n";
2086   }
2087 
2088   if (Failed) {
2089     errs() << "Golden reference kernel:\n";
2090     ExpandedKernel->print(errs());
2091     errs() << "New kernel:\n";
2092     BB->print(errs());
2093     errs() << ScheduleDump;
2094     report_fatal_error(
2095         "Modulo kernel validation (-pipeliner-experimental-cg) failed");
2096   }
2097 
2098   // Cleanup by removing BB from the CFG again as the original
2099   // ModuloScheduleExpander intended.
2100   Preheader->removeSuccessor(BB);
2101   MSE.cleanup();
2102 }
2103 
2104 MachineInstr *ModuloScheduleExpanderMVE::cloneInstr(MachineInstr *OldMI) {
2105   MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
2106 
2107   // TODO: Offset information needs to be corrected.
2108   NewMI->dropMemRefs(MF);
2109 
2110   return NewMI;
2111 }
2112 
2113 /// Create a dedicated exit for Loop. Exit is the original exit for Loop.
2114 /// If it is already dedicated exit, return it. Otherwise, insert a new
2115 /// block between them and return the new block.
2116 static MachineBasicBlock *createDedicatedExit(MachineBasicBlock *Loop,
2117                                               MachineBasicBlock *Exit) {
2118   if (Exit->pred_size() == 1)
2119     return Exit;
2120 
2121   MachineFunction *MF = Loop->getParent();
2122   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
2123 
2124   MachineBasicBlock *NewExit =
2125       MF->CreateMachineBasicBlock(Loop->getBasicBlock());
2126   MF->insert(Loop->getIterator(), NewExit);
2127 
2128   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2129   SmallVector<MachineOperand, 4> Cond;
2130   TII->analyzeBranch(*Loop, TBB, FBB, Cond);
2131   if (TBB == Loop)
2132     FBB = NewExit;
2133   else if (FBB == Loop)
2134     TBB = NewExit;
2135   else
2136     llvm_unreachable("unexpected loop structure");
2137   TII->removeBranch(*Loop);
2138   TII->insertBranch(*Loop, TBB, FBB, Cond, DebugLoc());
2139   Loop->replaceSuccessor(Exit, NewExit);
2140   TII->insertUnconditionalBranch(*NewExit, Exit, DebugLoc());
2141   NewExit->addSuccessor(Exit);
2142 
2143   Exit->replacePhiUsesWith(Loop, NewExit);
2144 
2145   return NewExit;
2146 }
2147 
2148 /// Insert branch code into the end of MBB. It branches to GreaterThan if the
2149 /// remaining trip count for instructions in LastStage0Insts is greater than
2150 /// RequiredTC, and to Otherwise otherwise.
2151 void ModuloScheduleExpanderMVE::insertCondBranch(MachineBasicBlock &MBB,
2152                                                  int RequiredTC,
2153                                                  InstrMapTy &LastStage0Insts,
2154                                                  MachineBasicBlock &GreaterThan,
2155                                                  MachineBasicBlock &Otherwise) {
2156   SmallVector<MachineOperand, 4> Cond;
2157   LoopInfo->createRemainingIterationsGreaterCondition(RequiredTC, MBB, Cond,
2158                                                       LastStage0Insts);
2159 
2160   if (SwapBranchTargetsMVE) {
2161     // Set SwapBranchTargetsMVE to true if a target prefers to replace TBB and
2162     // FBB for optimal performance.
2163     if (TII->reverseBranchCondition(Cond))
2164       llvm_unreachable("can not reverse branch condition");
2165     TII->insertBranch(MBB, &Otherwise, &GreaterThan, Cond, DebugLoc());
2166   } else {
2167     TII->insertBranch(MBB, &GreaterThan, &Otherwise, Cond, DebugLoc());
2168   }
2169 }
2170 
2171 /// Generate a pipelined loop that is unrolled by using MVE algorithm and any
2172 /// other necessary blocks. The control flow is modified to execute the
2173 /// pipelined loop if the trip count satisfies the condition, otherwise the
2174 /// original loop. The original loop is also used to execute the remainder
2175 /// iterations which occur due to unrolling.
2176 void ModuloScheduleExpanderMVE::generatePipelinedLoop() {
2177   // The control flow for pipelining with MVE:
2178   //
2179   // OrigPreheader:
2180   //   // The block that is originally the loop preheader
2181   //   goto Check
2182   //
2183   // Check:
2184   //   // Check whether the trip count satisfies the requirements to pipeline.
2185   //   if (LoopCounter > NumStages + NumUnroll - 2)
2186   //     // The minimum number of iterations to pipeline =
2187   //     //   iterations executed in prolog/epilog (NumStages-1) +
2188   //     //   iterations executed in one kernel run (NumUnroll)
2189   //     goto Prolog
2190   //   // fallback to the original loop
2191   //   goto NewPreheader
2192   //
2193   // Prolog:
2194   //   // All prolog stages. There are no direct branches to the epilogue.
2195   //   goto NewKernel
2196   //
2197   // NewKernel:
2198   //   // NumUnroll copies of the kernel
2199   //   if (LoopCounter > MVE-1)
2200   //     goto NewKernel
2201   //   goto Epilog
2202   //
2203   // Epilog:
2204   //   // All epilog stages.
2205   //   if (LoopCounter > 0)
2206   //     // The remainder is executed in the original loop
2207   //     goto NewPreheader
2208   //   goto NewExit
2209   //
2210   // NewPreheader:
2211   //   // Newly created preheader for the original loop.
2212   //   // The initial values of the phis in the loop are merged from two paths.
2213   //   NewInitVal = Phi OrigInitVal, Check, PipelineLastVal, Epilog
2214   //   goto OrigKernel
2215   //
2216   // OrigKernel:
2217   //   // The original loop block.
2218   //   if (LoopCounter != 0)
2219   //     goto OrigKernel
2220   //   goto NewExit
2221   //
2222   // NewExit:
2223   //   // Newly created dedicated exit for the original loop.
2224   //   // Merge values which are referenced after the loop
2225   //   Merged = Phi OrigVal, OrigKernel, PipelineVal, Epilog
2226   //   goto OrigExit
2227   //
2228   // OrigExit:
2229   //   // The block that is originally the loop exit.
2230   //   // If it is already deicated exit, NewExit is not created.
2231 
2232   // An example of where each stage is executed:
2233   // Assume #Stages 3, #MVE 4, #Iterations 12
2234   // Iter   0 1 2 3 4 5 6 7 8 9 10-11
2235   // -------------------------------------------------
2236   // Stage  0                          Prolog#0
2237   // Stage  1 0                        Prolog#1
2238   // Stage  2 1 0                      Kernel Unroll#0 Iter#0
2239   // Stage    2 1 0                    Kernel Unroll#1 Iter#0
2240   // Stage      2 1 0                  Kernel Unroll#2 Iter#0
2241   // Stage        2 1 0                Kernel Unroll#3 Iter#0
2242   // Stage          2 1 0              Kernel Unroll#0 Iter#1
2243   // Stage            2 1 0            Kernel Unroll#1 Iter#1
2244   // Stage              2 1 0          Kernel Unroll#2 Iter#1
2245   // Stage                2 1 0        Kernel Unroll#3 Iter#1
2246   // Stage                  2 1        Epilog#0
2247   // Stage                    2        Epilog#1
2248   // Stage                      0-2    OrigKernel
2249 
2250   LoopInfo = TII->analyzeLoopForPipelining(OrigKernel);
2251   assert(LoopInfo && "Must be able to analyze loop!");
2252 
2253   calcNumUnroll();
2254 
2255   Check = MF.CreateMachineBasicBlock(OrigKernel->getBasicBlock());
2256   Prolog = MF.CreateMachineBasicBlock(OrigKernel->getBasicBlock());
2257   NewKernel = MF.CreateMachineBasicBlock(OrigKernel->getBasicBlock());
2258   Epilog = MF.CreateMachineBasicBlock(OrigKernel->getBasicBlock());
2259   NewPreheader = MF.CreateMachineBasicBlock(OrigKernel->getBasicBlock());
2260 
2261   MF.insert(OrigKernel->getIterator(), Check);
2262   MF.insert(OrigKernel->getIterator(), Prolog);
2263   MF.insert(OrigKernel->getIterator(), NewKernel);
2264   MF.insert(OrigKernel->getIterator(), Epilog);
2265   MF.insert(OrigKernel->getIterator(), NewPreheader);
2266 
2267   NewExit = createDedicatedExit(OrigKernel, OrigExit);
2268 
2269   NewPreheader->transferSuccessorsAndUpdatePHIs(OrigPreheader);
2270   TII->insertUnconditionalBranch(*NewPreheader, OrigKernel, DebugLoc());
2271 
2272   OrigPreheader->addSuccessor(Check);
2273   TII->removeBranch(*OrigPreheader);
2274   TII->insertUnconditionalBranch(*OrigPreheader, Check, DebugLoc());
2275 
2276   Check->addSuccessor(Prolog);
2277   Check->addSuccessor(NewPreheader);
2278 
2279   Prolog->addSuccessor(NewKernel);
2280 
2281   NewKernel->addSuccessor(NewKernel);
2282   NewKernel->addSuccessor(Epilog);
2283 
2284   Epilog->addSuccessor(NewPreheader);
2285   Epilog->addSuccessor(NewExit);
2286 
2287   InstrMapTy LastStage0Insts;
2288   insertCondBranch(*Check, Schedule.getNumStages() + NumUnroll - 2,
2289                    LastStage0Insts, *Prolog, *NewPreheader);
2290 
2291   // VRMaps map (prolog/kernel/epilog phase#, original register#) to new
2292   // register#
2293   SmallVector<ValueMapTy> PrologVRMap, KernelVRMap, EpilogVRMap;
2294   generateProlog(PrologVRMap);
2295   generateKernel(PrologVRMap, KernelVRMap, LastStage0Insts);
2296   generateEpilog(KernelVRMap, EpilogVRMap, LastStage0Insts);
2297 }
2298 
2299 /// Replace MI's use operands according to the maps.
2300 void ModuloScheduleExpanderMVE::updateInstrUse(
2301     MachineInstr *MI, int StageNum, int PhaseNum,
2302     SmallVectorImpl<ValueMapTy> &CurVRMap,
2303     SmallVectorImpl<ValueMapTy> *PrevVRMap) {
2304   // If MI is in the prolog/kernel/epilog block, CurVRMap is
2305   // PrologVRMap/KernelVRMap/EpilogVRMap respectively.
2306   // PrevVRMap is nullptr/PhiVRMap/KernelVRMap respectively.
2307   // Refer to the appropriate map according to the stage difference between
2308   // MI and the definition of an operand.
2309 
2310   for (MachineOperand &UseMO : MI->uses()) {
2311     if (!UseMO.isReg() || !UseMO.getReg().isVirtual())
2312       continue;
2313     int DiffStage = 0;
2314     Register OrigReg = UseMO.getReg();
2315     MachineInstr *DefInst = MRI.getVRegDef(OrigReg);
2316     if (!DefInst || DefInst->getParent() != OrigKernel)
2317       continue;
2318     unsigned InitReg = 0;
2319     unsigned DefReg = OrigReg;
2320     if (DefInst->isPHI()) {
2321       ++DiffStage;
2322       unsigned LoopReg;
2323       getPhiRegs(*DefInst, OrigKernel, InitReg, LoopReg);
2324       // LoopReg is guaranteed to be defined within the loop by canApply()
2325       DefReg = LoopReg;
2326       DefInst = MRI.getVRegDef(LoopReg);
2327     }
2328     unsigned DefStageNum = Schedule.getStage(DefInst);
2329     DiffStage += StageNum - DefStageNum;
2330     Register NewReg;
2331     if (PhaseNum >= DiffStage && CurVRMap[PhaseNum - DiffStage].count(DefReg))
2332       // NewReg is defined in a previous phase of the same block
2333       NewReg = CurVRMap[PhaseNum - DiffStage][DefReg];
2334     else if (!PrevVRMap)
2335       // Since this is the first iteration, refer the initial register of the
2336       // loop
2337       NewReg = InitReg;
2338     else
2339       // Cases where DiffStage is larger than PhaseNum.
2340       // If MI is in the kernel block, the value is defined by the previous
2341       // iteration and PhiVRMap is referenced. If MI is in the epilog block, the
2342       // value is defined in the kernel block and KernelVRMap is referenced.
2343       NewReg = (*PrevVRMap)[PrevVRMap->size() - (DiffStage - PhaseNum)][DefReg];
2344 
2345     const TargetRegisterClass *NRC =
2346         MRI.constrainRegClass(NewReg, MRI.getRegClass(OrigReg));
2347     if (NRC)
2348       UseMO.setReg(NewReg);
2349     else {
2350       Register SplitReg = MRI.createVirtualRegister(MRI.getRegClass(OrigReg));
2351       BuildMI(*OrigKernel, MI, MI->getDebugLoc(), TII->get(TargetOpcode::COPY),
2352               SplitReg)
2353           .addReg(NewReg);
2354       UseMO.setReg(SplitReg);
2355     }
2356   }
2357 }
2358 
2359 /// Return a phi if Reg is referenced by the phi.
2360 /// canApply() guarantees that at most only one such phi exists.
2361 static MachineInstr *getLoopPhiUser(Register Reg, MachineBasicBlock *Loop) {
2362   for (MachineInstr &Phi : Loop->phis()) {
2363     unsigned InitVal, LoopVal;
2364     getPhiRegs(Phi, Loop, InitVal, LoopVal);
2365     if (LoopVal == Reg)
2366       return &Phi;
2367   }
2368   return nullptr;
2369 }
2370 
2371 /// Generate phis for registers defined by OrigMI.
2372 void ModuloScheduleExpanderMVE::generatePhi(
2373     MachineInstr *OrigMI, int UnrollNum,
2374     SmallVectorImpl<ValueMapTy> &PrologVRMap,
2375     SmallVectorImpl<ValueMapTy> &KernelVRMap,
2376     SmallVectorImpl<ValueMapTy> &PhiVRMap) {
2377   int StageNum = Schedule.getStage(OrigMI);
2378   bool UsePrologReg;
2379   if (Schedule.getNumStages() - NumUnroll + UnrollNum - 1 >= StageNum)
2380     UsePrologReg = true;
2381   else if (Schedule.getNumStages() - NumUnroll + UnrollNum == StageNum)
2382     UsePrologReg = false;
2383   else
2384     return;
2385 
2386   // Examples that show which stages are merged by phi.
2387   // Meaning of the symbol following the stage number:
2388   //   a/b: Stages with the same letter are merged (UsePrologReg == true)
2389   //   +: Merged with the initial value (UsePrologReg == false)
2390   //   *: No phis required
2391   //
2392   // #Stages 3, #MVE 4
2393   // Iter   0 1 2 3 4 5 6 7 8
2394   // -----------------------------------------
2395   // Stage  0a                 Prolog#0
2396   // Stage  1a 0b              Prolog#1
2397   // Stage  2* 1* 0*           Kernel Unroll#0
2398   // Stage     2* 1* 0+        Kernel Unroll#1
2399   // Stage        2* 1+ 0a     Kernel Unroll#2
2400   // Stage           2+ 1a 0b  Kernel Unroll#3
2401   //
2402   // #Stages 3, #MVE 2
2403   // Iter   0 1 2 3 4 5 6 7 8
2404   // -----------------------------------------
2405   // Stage  0a                 Prolog#0
2406   // Stage  1a 0b              Prolog#1
2407   // Stage  2* 1+ 0a           Kernel Unroll#0
2408   // Stage     2+ 1a 0b        Kernel Unroll#1
2409   //
2410   // #Stages 3, #MVE 1
2411   // Iter   0 1 2 3 4 5 6 7 8
2412   // -----------------------------------------
2413   // Stage  0*                 Prolog#0
2414   // Stage  1a 0b              Prolog#1
2415   // Stage  2+ 1a 0b           Kernel Unroll#0
2416 
2417   for (MachineOperand &DefMO : OrigMI->defs()) {
2418     if (!DefMO.isReg() || DefMO.isDead())
2419       continue;
2420     Register OrigReg = DefMO.getReg();
2421     auto NewReg = KernelVRMap[UnrollNum].find(OrigReg);
2422     if (NewReg == KernelVRMap[UnrollNum].end())
2423       continue;
2424     Register CorrespondReg;
2425     if (UsePrologReg) {
2426       int PrologNum = Schedule.getNumStages() - NumUnroll + UnrollNum - 1;
2427       CorrespondReg = PrologVRMap[PrologNum][OrigReg];
2428     } else {
2429       MachineInstr *Phi = getLoopPhiUser(OrigReg, OrigKernel);
2430       if (!Phi)
2431         continue;
2432       CorrespondReg = getInitPhiReg(*Phi, OrigKernel);
2433     }
2434 
2435     assert(CorrespondReg.isValid());
2436     Register PhiReg = MRI.createVirtualRegister(MRI.getRegClass(OrigReg));
2437     BuildMI(*NewKernel, NewKernel->getFirstNonPHI(), DebugLoc(),
2438             TII->get(TargetOpcode::PHI), PhiReg)
2439         .addReg(NewReg->second)
2440         .addMBB(NewKernel)
2441         .addReg(CorrespondReg)
2442         .addMBB(Prolog);
2443     PhiVRMap[UnrollNum][OrigReg] = PhiReg;
2444   }
2445 }
2446 
2447 static void replacePhiSrc(MachineInstr &Phi, Register OrigReg, Register NewReg,
2448                           MachineBasicBlock *NewMBB) {
2449   for (unsigned Idx = 1; Idx < Phi.getNumOperands(); Idx += 2) {
2450     if (Phi.getOperand(Idx).getReg() == OrigReg) {
2451       Phi.getOperand(Idx).setReg(NewReg);
2452       Phi.getOperand(Idx + 1).setMBB(NewMBB);
2453       return;
2454     }
2455   }
2456 }
2457 
2458 /// Generate phis that merge values from multiple routes
2459 void ModuloScheduleExpanderMVE::mergeRegUsesAfterPipeline(Register OrigReg,
2460                                                           Register NewReg) {
2461   SmallVector<MachineOperand *> UsesAfterLoop;
2462   SmallVector<MachineInstr *> LoopPhis;
2463   for (MachineRegisterInfo::use_iterator I = MRI.use_begin(OrigReg),
2464                                          E = MRI.use_end();
2465        I != E; ++I) {
2466     MachineOperand &O = *I;
2467     if (O.getParent()->getParent() != OrigKernel &&
2468         O.getParent()->getParent() != Prolog &&
2469         O.getParent()->getParent() != NewKernel &&
2470         O.getParent()->getParent() != Epilog)
2471       UsesAfterLoop.push_back(&O);
2472     if (O.getParent()->getParent() == OrigKernel && O.getParent()->isPHI())
2473       LoopPhis.push_back(O.getParent());
2474   }
2475 
2476   // Merge the route that only execute the pipelined loop (when there are no
2477   // remaining iterations) with the route that execute the original loop.
2478   if (!UsesAfterLoop.empty()) {
2479     Register PhiReg = MRI.createVirtualRegister(MRI.getRegClass(OrigReg));
2480     BuildMI(*NewExit, NewExit->getFirstNonPHI(), DebugLoc(),
2481             TII->get(TargetOpcode::PHI), PhiReg)
2482         .addReg(OrigReg)
2483         .addMBB(OrigKernel)
2484         .addReg(NewReg)
2485         .addMBB(Epilog);
2486 
2487     for (MachineOperand *MO : UsesAfterLoop)
2488       MO->setReg(PhiReg);
2489 
2490     if (!LIS.hasInterval(PhiReg))
2491       LIS.createEmptyInterval(PhiReg);
2492   }
2493 
2494   // Merge routes from the pipelined loop and the bypassed route before the
2495   // original loop
2496   if (!LoopPhis.empty()) {
2497     for (MachineInstr *Phi : LoopPhis) {
2498       unsigned InitReg, LoopReg;
2499       getPhiRegs(*Phi, OrigKernel, InitReg, LoopReg);
2500       Register NewInit = MRI.createVirtualRegister(MRI.getRegClass(InitReg));
2501       BuildMI(*NewPreheader, NewPreheader->getFirstNonPHI(), Phi->getDebugLoc(),
2502               TII->get(TargetOpcode::PHI), NewInit)
2503           .addReg(InitReg)
2504           .addMBB(Check)
2505           .addReg(NewReg)
2506           .addMBB(Epilog);
2507       replacePhiSrc(*Phi, InitReg, NewInit, NewPreheader);
2508     }
2509   }
2510 }
2511 
2512 void ModuloScheduleExpanderMVE::generateProlog(
2513     SmallVectorImpl<ValueMapTy> &PrologVRMap) {
2514   PrologVRMap.clear();
2515   PrologVRMap.resize(Schedule.getNumStages() - 1);
2516   DenseMap<MachineInstr *, std::pair<int, int>> NewMIMap;
2517   for (int PrologNum = 0; PrologNum < Schedule.getNumStages() - 1;
2518        ++PrologNum) {
2519     for (MachineInstr *MI : Schedule.getInstructions()) {
2520       if (MI->isPHI())
2521         continue;
2522       int StageNum = Schedule.getStage(MI);
2523       if (StageNum > PrologNum)
2524         continue;
2525       MachineInstr *NewMI = cloneInstr(MI);
2526       updateInstrDef(NewMI, PrologVRMap[PrologNum], false);
2527       NewMIMap[NewMI] = {PrologNum, StageNum};
2528       Prolog->push_back(NewMI);
2529     }
2530   }
2531 
2532   for (auto I : NewMIMap) {
2533     MachineInstr *MI = I.first;
2534     int PrologNum = I.second.first;
2535     int StageNum = I.second.second;
2536     updateInstrUse(MI, StageNum, PrologNum, PrologVRMap, nullptr);
2537   }
2538 
2539   LLVM_DEBUG({
2540     dbgs() << "prolog:\n";
2541     Prolog->dump();
2542   });
2543 }
2544 
2545 void ModuloScheduleExpanderMVE::generateKernel(
2546     SmallVectorImpl<ValueMapTy> &PrologVRMap,
2547     SmallVectorImpl<ValueMapTy> &KernelVRMap, InstrMapTy &LastStage0Insts) {
2548   KernelVRMap.clear();
2549   KernelVRMap.resize(NumUnroll);
2550   SmallVector<ValueMapTy> PhiVRMap;
2551   PhiVRMap.resize(NumUnroll);
2552   DenseMap<MachineInstr *, std::pair<int, int>> NewMIMap;
2553   DenseMap<MachineInstr *, MachineInstr *> MIMapLastStage0;
2554   for (int UnrollNum = 0; UnrollNum < NumUnroll; ++UnrollNum) {
2555     for (MachineInstr *MI : Schedule.getInstructions()) {
2556       if (MI->isPHI())
2557         continue;
2558       int StageNum = Schedule.getStage(MI);
2559       MachineInstr *NewMI = cloneInstr(MI);
2560       if (UnrollNum == NumUnroll - 1)
2561         LastStage0Insts[MI] = NewMI;
2562       updateInstrDef(NewMI, KernelVRMap[UnrollNum],
2563                      (UnrollNum == NumUnroll - 1 && StageNum == 0));
2564       generatePhi(MI, UnrollNum, PrologVRMap, KernelVRMap, PhiVRMap);
2565       NewMIMap[NewMI] = {UnrollNum, StageNum};
2566       NewKernel->push_back(NewMI);
2567     }
2568   }
2569 
2570   for (auto I : NewMIMap) {
2571     MachineInstr *MI = I.first;
2572     int UnrollNum = I.second.first;
2573     int StageNum = I.second.second;
2574     updateInstrUse(MI, StageNum, UnrollNum, KernelVRMap, &PhiVRMap);
2575   }
2576 
2577   // If remaining trip count is greater than NumUnroll-1, loop continues
2578   insertCondBranch(*NewKernel, NumUnroll - 1, LastStage0Insts, *NewKernel,
2579                    *Epilog);
2580 
2581   LLVM_DEBUG({
2582     dbgs() << "kernel:\n";
2583     NewKernel->dump();
2584   });
2585 }
2586 
2587 void ModuloScheduleExpanderMVE::generateEpilog(
2588     SmallVectorImpl<ValueMapTy> &KernelVRMap,
2589     SmallVectorImpl<ValueMapTy> &EpilogVRMap, InstrMapTy &LastStage0Insts) {
2590   EpilogVRMap.clear();
2591   EpilogVRMap.resize(Schedule.getNumStages() - 1);
2592   DenseMap<MachineInstr *, std::pair<int, int>> NewMIMap;
2593   for (int EpilogNum = 0; EpilogNum < Schedule.getNumStages() - 1;
2594        ++EpilogNum) {
2595     for (MachineInstr *MI : Schedule.getInstructions()) {
2596       if (MI->isPHI())
2597         continue;
2598       int StageNum = Schedule.getStage(MI);
2599       if (StageNum <= EpilogNum)
2600         continue;
2601       MachineInstr *NewMI = cloneInstr(MI);
2602       updateInstrDef(NewMI, EpilogVRMap[EpilogNum], StageNum - 1 == EpilogNum);
2603       NewMIMap[NewMI] = {EpilogNum, StageNum};
2604       Epilog->push_back(NewMI);
2605     }
2606   }
2607 
2608   for (auto I : NewMIMap) {
2609     MachineInstr *MI = I.first;
2610     int EpilogNum = I.second.first;
2611     int StageNum = I.second.second;
2612     updateInstrUse(MI, StageNum, EpilogNum, EpilogVRMap, &KernelVRMap);
2613   }
2614 
2615   // If there are remaining iterations, they are executed in the original loop.
2616   // Instructions related to loop control, such as loop counter comparison,
2617   // are indicated by shouldIgnoreForPipelining() and are assumed to be placed
2618   // in stage 0. Thus, the map is for the last one in the kernel.
2619   insertCondBranch(*Epilog, 0, LastStage0Insts, *NewPreheader, *NewExit);
2620 
2621   LLVM_DEBUG({
2622     dbgs() << "epilog:\n";
2623     Epilog->dump();
2624   });
2625 }
2626 
2627 /// Calculate the number of unroll required and set it to NumUnroll
2628 void ModuloScheduleExpanderMVE::calcNumUnroll() {
2629   DenseMap<MachineInstr *, unsigned> Inst2Idx;
2630   NumUnroll = 1;
2631   for (unsigned I = 0; I < Schedule.getInstructions().size(); ++I)
2632     Inst2Idx[Schedule.getInstructions()[I]] = I;
2633 
2634   for (MachineInstr *MI : Schedule.getInstructions()) {
2635     if (MI->isPHI())
2636       continue;
2637     int StageNum = Schedule.getStage(MI);
2638     for (const MachineOperand &MO : MI->uses()) {
2639       if (!MO.isReg() || !MO.getReg().isVirtual())
2640         continue;
2641       MachineInstr *DefMI = MRI.getVRegDef(MO.getReg());
2642       if (DefMI->getParent() != OrigKernel)
2643         continue;
2644 
2645       int NumUnrollLocal = 1;
2646       if (DefMI->isPHI()) {
2647         ++NumUnrollLocal;
2648         // canApply() guarantees that DefMI is not phi and is an instruction in
2649         // the loop
2650         DefMI = MRI.getVRegDef(getLoopPhiReg(*DefMI, OrigKernel));
2651       }
2652       NumUnrollLocal += StageNum - Schedule.getStage(DefMI);
2653       if (Inst2Idx[MI] <= Inst2Idx[DefMI])
2654         --NumUnrollLocal;
2655       NumUnroll = std::max(NumUnroll, NumUnrollLocal);
2656     }
2657   }
2658   LLVM_DEBUG(dbgs() << "NumUnroll: " << NumUnroll << "\n");
2659 }
2660 
2661 /// Create new virtual registers for definitions of NewMI and update NewMI.
2662 /// If the definitions are referenced after the pipelined loop, phis are
2663 /// created to merge with other routes.
2664 void ModuloScheduleExpanderMVE::updateInstrDef(MachineInstr *NewMI,
2665                                                ValueMapTy &VRMap,
2666                                                bool LastDef) {
2667   for (MachineOperand &MO : NewMI->operands()) {
2668     if (!MO.isReg() || !MO.getReg().isVirtual() || !MO.isDef())
2669       continue;
2670     Register Reg = MO.getReg();
2671     const TargetRegisterClass *RC = MRI.getRegClass(Reg);
2672     Register NewReg = MRI.createVirtualRegister(RC);
2673     MO.setReg(NewReg);
2674     VRMap[Reg] = NewReg;
2675     if (LastDef)
2676       mergeRegUsesAfterPipeline(Reg, NewReg);
2677   }
2678 }
2679 
2680 void ModuloScheduleExpanderMVE::expand() {
2681   OrigKernel = Schedule.getLoop()->getTopBlock();
2682   OrigPreheader = Schedule.getLoop()->getLoopPreheader();
2683   OrigExit = Schedule.getLoop()->getExitBlock();
2684 
2685   LLVM_DEBUG(Schedule.dump());
2686 
2687   generatePipelinedLoop();
2688 }
2689 
2690 /// Check if ModuloScheduleExpanderMVE can be applied to L
2691 bool ModuloScheduleExpanderMVE::canApply(MachineLoop &L) {
2692   if (!L.getExitBlock()) {
2693     LLVM_DEBUG(
2694         dbgs() << "Can not apply MVE expander: No single exit block.\n";);
2695     return false;
2696   }
2697 
2698   MachineBasicBlock *BB = L.getTopBlock();
2699   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
2700 
2701   // Put some constraints on the operands of the phis to simplify the
2702   // transformation
2703   DenseSet<unsigned> UsedByPhi;
2704   for (MachineInstr &MI : BB->phis()) {
2705     // Registers defined by phis must be used only inside the loop and be never
2706     // used by phis.
2707     for (MachineOperand &MO : MI.defs())
2708       if (MO.isReg())
2709         for (MachineInstr &Ref : MRI.use_instructions(MO.getReg()))
2710           if (Ref.getParent() != BB || Ref.isPHI()) {
2711             LLVM_DEBUG(dbgs()
2712                            << "Can not apply MVE expander: A phi result is "
2713                               "referenced outside of the loop or by phi.\n";);
2714             return false;
2715           }
2716 
2717     // A source register from the loop block must be defined inside the loop.
2718     // A register defined inside the loop must be referenced by only one phi at
2719     // most.
2720     unsigned InitVal, LoopVal;
2721     getPhiRegs(MI, MI.getParent(), InitVal, LoopVal);
2722     if (!Register(LoopVal).isVirtual() ||
2723         MRI.getVRegDef(LoopVal)->getParent() != BB) {
2724       LLVM_DEBUG(
2725           dbgs() << "Can not apply MVE expander: A phi source value coming "
2726                     "from the loop is not defined in the loop.\n";);
2727       return false;
2728     }
2729     if (UsedByPhi.count(LoopVal)) {
2730       LLVM_DEBUG(dbgs() << "Can not apply MVE expander: A value defined in the "
2731                            "loop is referenced by two or more phis.\n";);
2732       return false;
2733     }
2734     UsedByPhi.insert(LoopVal);
2735   }
2736 
2737   return true;
2738 }
2739 
2740 //===----------------------------------------------------------------------===//
2741 // ModuloScheduleTestPass implementation
2742 //===----------------------------------------------------------------------===//
2743 // This pass constructs a ModuloSchedule from its module and runs
2744 // ModuloScheduleExpander.
2745 //
2746 // The module is expected to contain a single-block analyzable loop.
2747 // The total order of instructions is taken from the loop as-is.
2748 // Instructions are expected to be annotated with a PostInstrSymbol.
2749 // This PostInstrSymbol must have the following format:
2750 //  "Stage=%d Cycle=%d".
2751 //===----------------------------------------------------------------------===//
2752 
2753 namespace {
2754 class ModuloScheduleTest : public MachineFunctionPass {
2755 public:
2756   static char ID;
2757 
2758   ModuloScheduleTest() : MachineFunctionPass(ID) {
2759     initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry());
2760   }
2761 
2762   bool runOnMachineFunction(MachineFunction &MF) override;
2763   void runOnLoop(MachineFunction &MF, MachineLoop &L);
2764 
2765   void getAnalysisUsage(AnalysisUsage &AU) const override {
2766     AU.addRequired<MachineLoopInfoWrapperPass>();
2767     AU.addRequired<LiveIntervalsWrapperPass>();
2768     MachineFunctionPass::getAnalysisUsage(AU);
2769   }
2770 };
2771 } // namespace
2772 
2773 char ModuloScheduleTest::ID = 0;
2774 
2775 INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test",
2776                       "Modulo Schedule test pass", false, false)
2777 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass)
2778 INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass)
2779 INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test",
2780                     "Modulo Schedule test pass", false, false)
2781 
2782 bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) {
2783   MachineLoopInfo &MLI = getAnalysis<MachineLoopInfoWrapperPass>().getLI();
2784   for (auto *L : MLI) {
2785     if (L->getTopBlock() != L->getBottomBlock())
2786       continue;
2787     runOnLoop(MF, *L);
2788     return false;
2789   }
2790   return false;
2791 }
2792 
2793 static void parseSymbolString(StringRef S, int &Cycle, int &Stage) {
2794   std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_");
2795   std::pair<StringRef, StringRef> StageTokenAndValue =
2796       getToken(StageAndCycle.first, "-");
2797   std::pair<StringRef, StringRef> CycleTokenAndValue =
2798       getToken(StageAndCycle.second, "-");
2799   if (StageTokenAndValue.first != "Stage" ||
2800       CycleTokenAndValue.first != "_Cycle") {
2801     llvm_unreachable(
2802         "Bad post-instr symbol syntax: see comment in ModuloScheduleTest");
2803     return;
2804   }
2805 
2806   StageTokenAndValue.second.drop_front().getAsInteger(10, Stage);
2807   CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle);
2808 
2809   dbgs() << "  Stage=" << Stage << ", Cycle=" << Cycle << "\n";
2810 }
2811 
2812 void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) {
2813   LiveIntervals &LIS = getAnalysis<LiveIntervalsWrapperPass>().getLIS();
2814   MachineBasicBlock *BB = L.getTopBlock();
2815   dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n";
2816 
2817   DenseMap<MachineInstr *, int> Cycle, Stage;
2818   std::vector<MachineInstr *> Instrs;
2819   for (MachineInstr &MI : *BB) {
2820     if (MI.isTerminator())
2821       continue;
2822     Instrs.push_back(&MI);
2823     if (MCSymbol *Sym = MI.getPostInstrSymbol()) {
2824       dbgs() << "Parsing post-instr symbol for " << MI;
2825       parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]);
2826     }
2827   }
2828 
2829   ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle),
2830                     std::move(Stage));
2831   ModuloScheduleExpander MSE(
2832       MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy());
2833   MSE.expand();
2834   MSE.cleanup();
2835 }
2836 
2837 //===----------------------------------------------------------------------===//
2838 // ModuloScheduleTestAnnotater implementation
2839 //===----------------------------------------------------------------------===//
2840 
2841 void ModuloScheduleTestAnnotater::annotate() {
2842   for (MachineInstr *MI : S.getInstructions()) {
2843     SmallVector<char, 16> SV;
2844     raw_svector_ostream OS(SV);
2845     OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI);
2846     MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str());
2847     MI->setPostInstrSymbol(MF, Sym);
2848   }
2849 }
2850